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Abstract

In practical applications of pattern recognition, there are often different features extracted from
raw data which needs recognizing. Methods of combining multiple classifiers with different fea-
tures are viewed as a general problem in various application areas of pattern recognition. In this
paper, a systematic investigation has been made and possible solutions are classified into three
frameworks, i.e. linear opinion pools, winner-take-all and evidential reasoning. For combining
multiple classifiers with different features, a novel method is presented in the framework of linear
opinion pools and a modified training algorithm for associative switch is also proposed in the
framework of winner-take-all. In the framework of evidential reasoning, several typical methods
are briefly reviewed for use. All aforementioned methods have already been applied to text-
independent speaker identification. The simulations show that results yielded by the methods de-
scribed in this paper are better than not only the individual classifiers’ but also ones obtained by
combining multiple classifiers with the same feature. It indicates that the use of combining multi-
ple classifiers with different features is an effective way to attack the problem of text-independent
speaker identification.

Keywords: Combination of multiple classifiers, different features, linear opinion pools, evidential
reasoning, winner-take-all, maximum likelihood learning, EM algorithm, associative switch, text-
independent speaker identification.

1 Introduction

Recently, the combination of multiple classifiers has been viewed as a new direction for the develop-
ment of highly reliable pattern recognition systems, in particular, optical character recognition (OCR)
systems. Preliminary results indicate that combination of several complementary classifiers leads to
classifiers with improved performance [5, 53, 61, 68, 69]. There are at least two reasons justifying the
necessity of combining multiple classifiers. First, for almost any one of the current pattern recog-
nition application areas, there are a number of classification algorithms available developed from
different theories and methodologies. Usually, for a specific application problem, each of these clas-
sifiers could reach a certain degree of success, but maybe none of them is totally perfect or at least
anyone of them is not so good as expected in practical application. Second, for a specific recognition
problem, there are often numerous types of features which could be used to represent and recognize
patterns. These features are also represented in very diversified forms and it is rather hard to lump
them together for one single classifier to make a decision. As a result, multiple classifiers are needed
to deal with the different features [5, 68, 69, 71]. It also results in a general problem how to combine
those classifiers with different features to yield the improved performance. The basic idea underlying
the combination of multiple classifiers is that a consensus is made somehow based upon the results of
multiple classifiers for a classification task using an elaborate combination scheme. So far, there have
been extensive studies on the combination of multiple classifiers [1, 10, 20, 27, 35, 68]. Among these
researches, possible solutions to the combination may be classified into three frameworks, i.e. linear
opinion pools, winner-take-all and evidential reasoning. In the framework of linear opinion pools, the
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combination schemes make the final decision through the use of a linear combination of multiple
classifiers’ results. In regard to the linear coefficients or weights for combination, there are two kinds
of methods for assigning values to linear coefficients or weights [35], i.e. weights as veridical probabil-
ities [36, 45, 65, 67] and minimum error weights [16, 17, 30, 50]. In the framework of winner-take-all, a
device called associative switch is used in the process of classification to choose the classification result
of a specific classifier for a specific input pattern [69]. Since the combination scheme always chooses
only one classifier among several classifiers to use its result as the final decision for a specific input
pattern, the chosen classifier could be viewed as a winner and the style of the combination method
is similar to the principle of winner-take-all in the unsupervised learning paradigm [31, 37]. In the
framework of evidential reasoning, for an input pattern, the output of each individual classifier is re-
garded as an evidence or an event and the combination scheme makes the final decision based upon
a method of evidential reasoning or a principle of voting [2, 5, 20, 26, 40, 53, 68].

The so-called different features problem refers to that there are numerous types of features which
can be extracted from the same raw data for a classification task. Therefore, several different feature
sets are available for a given data set. Based upon each one of these feature sets, a classifier or sev-
eral different classifiers can be trained for the same classification task. It results in the existence of
multiple classifiers with different features for the same classification task. As a result, the problem
of combining multiple classifiers with different features is how to develop a scheme of combining
these classifiers with different features to produce an improved result for the classification task. In
the current techniques, it is found that most of methods in the framework of evidential reasoning
could be directly applied to combine multiple classifiers with different features since the final deci-
sion is made merely by combining the classifiers’ results using an evidential reasoning method or a
voting principle regardless of the types of input (feature vector) to classifiers. In the framework of
winner-take-all, the combination scheme, associative switch, could also combine multiple classifiers
with different features by using the mapping or coding of different features as the input of the asso-
ciative switch instead of different features themselves [69]. Using such techniques, the considerably
better classification results have been produced in the field of OCR by combining multiple classifiers
with different features [5, 68, 69]. In the framework of linear opinion pools, it is possible to directly
use the methods with minimum error weights to combine multiple classifiers with different features
since the weights could be achieved by performing regression merely based upon the information
of classifiers’ errors regardless of types of input (feature vector) to each classifier [16, 17, 30, 50].
Unfortunately, it is difficult to use the existing techniques with weights as veridical probabilities
[36, 45, 65, 67] for handling the problem since in these methods the achievement of linear coefficients
usually depends upon the input (feature vector) to each classifier. Recent researches show that the
techniques with weights as veridical probabilities can achieve considerably good results in the appli-
cations to combination of multiple classifiers with the same feature [65, 67]. In this paper, we present a
novel linear combination scheme with weights as veridical probabilities to extend the state-of-the-art
techniques for combining multiple classifiers with different features. In addition, we also propose a
modified training method for the associative switch [69] in the framework of winner-take-all in order
to yield better performance.

Speaker identification is the process of determining from which of the registered speaker when a
given utterance comes. Furthermore, speaker identification systems can be either text-independent or
text-dependent. By text-independent, we refer to that the identification procedure should work for
any text in either training or testing [28]. This is a different problem than text-dependent speaker
identification, where the text in both training and testing is the same or is known. Speaker iden-
tification is a rather hard task since a speaker’s voice always changes in time. In particular, text-
independent speaker identification is more difficult than text-dependent speaker identification since
a text-independent speaker identification system has to use elaborate techniques to capture the speaker’s
individual characteristics regardless of the contents carried in the speech, while in text-dependent
speaker identification the use of simple template matching techniques can directly exploit the voice
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individuality associated with each phoneme or syllable. In this paper, only text-independent speaker
identification is considered. There have been extensive studies in speaker identification so far. In
general, the technique of speaker identification includes feature extraction and classification. With
respect to feature extraction, many kinds of individual features covering from the characteristics of
vocal cords to speech spectrum have already been investigated and turned out to be useful to speaker
identification [3, 4, 18, 21, 22, 23, 24, 28, 34, 44, 60, 70]. Unfortunately, none of those features is perfect
for robustness so that there is less agreement on which parameterization of the speech spectrum to
use for features [18, 24, 28, 52, 49]. In addition, some researchers intended to lump two or more
features together into a composite feature [24, 43, 44, 48]. However, the performance of the systems
based upon the composite features was not significantly improved. Furthermore, to a certain extent,
the use of composite features results in the curse of dimensionality problem. In particular, the problem
becomes quite serious when the techniques of neural computing with time-delay [6, 8, 9, 13, 62]
are used. On the other hand, several kinds of classifiers have been also applied in speaker identi-
fication [9, 18, 24, 28, 49, 63]. These classifiers include distance classifiers [3, 4, 25, 33, 42], neural
network classifiers [6, 7, 8, 11, 12, 13, 14, 19, 32, 46, 47, 54] and classifiers based upon parametric
or non-parametric density estimation [28, 29, 52, 57, 59]. Since there are many kinds of features
and classifiers, speaker identification becomes a typical task which needs to combine multiple clas-
sifiers with different features for robustness. Unlike the aforementioned techniques used in speaker
identification, both the proposed and some existing methods are systematically investigated in this
paper for text-independent speaker identification by combining multiple classifiers with different
features. Experimental results demonstrate the effectiveness of these combination methods and in-
dicate that the use of combining multiple classifiers with different features is a promising way for a
text-independent speaker identification system to yield the significantly improved performance.

The remainder of the paper is organized as follows. Section 2 presents a novel method of com-
bining multiple classifiers with different features in the framework of linear opinion pools. Section 3
describes a modified training algorithm for the associative switch in the framework of winner-take-
all and section 4 briefly reviews some existing combination methods in the framework of evidential
reasoning for use in our work. Section 5 presents the applications of the aforementioned combination
methods in text-independent speaker identification and illustrates experimental results. Conclusions
are drawn in the final section.

2 A Linear Combination Method for Different Features

In this section, we present a novel method of combining multiple classifiers with different features on
the basis of the work in [65, 67] which can merely combine multiple classifiers with the same feature.
In the method, a generalized finite mixture model based upon different features is proposed and
the corresponding learning algorithms are presented by maximum likelihood estimation with an EM
algorithm.

2.1 A Generalized Finite Mixture Model for Different Features

For a sampleD in a data set S0 withM classes, � = f1; 2; � � � ;Mg, we assume that there are P (P > 1)
feature vectors which can be independently extracted from the sample D called x1(D); � � � ;xP (D).
For simplicity, hereafter, we shall rewrite these P feature vectors as x1; � � � ;xP . Accordingly, we may
employ N (N � P ) classifiers, e1; � � � ; eN , to learn the classification task using features extracted
from raw data in S0, respectively, in which the input of the classifier ej is the feature vector xpj (j =
1; � � � ; N ; 1 � pj � P ). Given pattern classes with the labels Ci (i = 1; � � � ;M ), we consider such
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classifiers that for an input xpj , the output of a classifier ej is as follows,

~pj(xpj ) = [pj1(xpj ); � � � ; pjM(xpj )]
T ; pjk(xpj ) � 0;

MX
k=1

pjk(xpj ) = 1 (1)

where pjk(xpj ) denotes the probability that the sample D belongs to Ck recognized by the classi-
fier ej with the input vector xpj , and xpj denotes a feature vector of the sample D with its form of
representation being a vector, a string or whatever else. The direct instances of such classifiers in-
clude those based upon parametric or non-parametric density estimation. Indeed, there are some
classifiers, e.g. distance classifiers or neural network classifiers, which output a vector ~uj(xpj ) =

[uj1(xpj ); � � � ; ujM(xpj )]
T without satisfying ujk(xpj ) � 0 and

PM
k=1 ujk(xpj ) = 1. Fortunately, these

outputs can be transformed into the form in Eq.(1) using a function g(s) [65], that is,

pjk(xpj ) =
g[ujk(xpj )]PM
t=1 g[ujt(xpj )]

k = 1; � � � ;M (2)

where g(s) � 0. There are various forms of the function g(s) such as g(s) = s; g(s) = 1=s; g(s) = e�s

or g(s) = s2; g(s) = 1=s2; g(s) = e�s
2

according to whether or not ujk(xpj ) � 0 (k = 1; � � � ;M).
For an input-output pair fxpj ;yg, where y = [y1; � � � ; yM ]T and yk being a binary value (yk 2

f0; 1g) as well as satisfying
PM

k=1 yk = 1, a classifier ej with the input vector xpj specifies a distribu-
tion given by

P (yjxpj ; �j) =
MY
k=1

[pjk(xpj j�j)]
yk (3)

where �j is the set of parameters of the classifier ej and has been already fixed after the classifier was
trained on the data set S0. For a fixed xpj , it is reduced to a generalized Bernoulli distribution, while
for a fixed y, we can achieve a distribution specified by one of pjk(xpj j~�j)’s.

For combining multiple classifiers with different features, another data set S1 is necessary for
training a combination scheme. For an input-output pair (D;y) in S1, the feature vector xpj (1 �
j � P ) is used as the input of the classifier ej . Moreover, we assume that there are priors � =
f�ij(xi); �i(D)g (i = 1; � � � ; P ; j = 1; � � � ; N ) for each classifier ej (j = 1; � � � ; N) so that we can define
a generalized finite mixture distribution for the pair (D;y) as

P (yjD;�) =
NX
j=1

h PX
i=1

�i(D)�ij(xi)
i
P (yjxpj ; �j) =

NX
j=1

PX
i=1

�i(D)�ij(xi)
MY
k=1

[pjk(xpj j�j)]
yk (4)

where �ij(xi) � 0; �i(D) � 0;
PN

j=1 �ij(xi) = 1,
PP

i=1 �i(D) = 1. xpj (1 � pj � P ) still denotes the
input vector of the classifier ej . The generalized finite mixture distribution leads to a new combina-
tion scheme for dealing with different features. The combination scheme consists of P combination
subschemes (respectively corresponding to P different features) in which �ij(xi) refers to the linear
coefficient produced by subscheme i based upon the the feature vector x i for the classifier ej , while
�i(D) refers to the a priori probability that for the sample D the ith subscheme is used to produce the
linear coefficients for making the final decision in the combination scheme.

In Eq.(4), those priors �ij(xi) 2 � (i = 1; � � � ; P ; j = 1; � � � ; N) are conditional on input vectors
xi (i = 1; � � � ; P ). As a result, we assume that

�ij(xi) =
�ijP (xi; 'ij)PN
r=1 �irP (xi; 'ir)

; �ij � 0;
NX
j=1

�ij = 1; i = 1; � � � ; P; j = 1; � � � ; N: (5)

4



whereP (xi; 'ij) � 0 is a parametric function and, in particular, can be given by Gaussian distribution

P (xi; 'ij) = P (xi;mij;�ij) =
1

(2�)
ni
2 j�ij j

1

2

expf�
1

2
(xi �mij)

T��1
ij (xi �mij)g (6)

where ni is the dimension of xi and 'ij = (mij;�ij) is the set of all parameters in Gaussian distri-
bution. In the combination scheme, thus, the information from the outputs of classifiers, the desire
label y and different input vectors xi (i = 1; � � � ; P ) are jointly considered for combination. In Eq.(4),
however, �ij(xi) and �i(D) (i = 1; � � � ; P ; j = 1; � � � ; N) are still unknown and need learning from
samples in S1. We shall propose a maximum likelihood learning method to determine these priors in
the sequel. Suppose that those priors have been already determined, for an unknown input sample
D, P (yjD) can be computed by

Pk(D) = P (yk = 1jD;�) =
NX
j=1

PX
i=1

�i(D)�ij(xi)pjk(xpj ); k = 1; � � � ;M: (7)

Using Eq.(7), the decision rule is defined as

E(D) =

(
k if Pk(D) = max1�i�M Pi(D) � T

M + 1 otherwise
(8)

where 0 < T < 1 is a predefined threshold. E(D) is the final decision and E(D) = M + 1 denotes
that the sample D is rejected.

2.2 Maximum Likelihood Learning with EM Algorithm

For a classification task, we assume that there areN classifiers which have been trained with P differ-
ent features extracted from raw data in the data set S0. Given another data set S1 = f(D(t);y(t)) t =
1; � � � ; Tg (observed data), using P different features extracted from samples in S1, parameters � =
f�ij(xi); �i(D)g (i = 1; � � � ; P ; j = 1; � � � ; N) are estimated by maximizing the log-likelihood

L =
TX
t=1

logP (y(t)jD(t);�) =
TX
t=1

log
h NX
j=1

PX
i=1

�i(D
(t))�ij(x

(t)
i )P (y(t)jx(t)pj ; �j)

i
(9)

where x(t)pj (1 � pj � P ) denotes the input vector of classifier ej at time t. For the log-likelihood,
we adopt an EM algorithm [15] to estimate all parameters in � by introducing a set of indicators as
missing data to observed data. For i = 1; � � � ; P and j = 1; � � � ; N , these indicators are defined as

I
(t)
i =

(
1 if the linear coefficients are determined by subscheme i
0 otherwise

I
(t)
j =

(
1 if y(t) is generated from classifiers ej .
0 otherwise

where
PP

i=1 I
(t)
i = 1 and

PN
j=1 I

(t)
j = 1 (t = 1; � � � ; T ). Thus, the complete data consists of both the

observed data and the missing data.
An EM algorithm first finds the expected value of the complete-data likelihood. For the observed

data and the proposed mixture model, the Expectation step (E-step) computes the following expecta-
tion of the complete log-likelihood at the sth iteration using Bayes’ rule

E[I
(t)
i ; I

(t)
j jX ] = P (I

(t)
i = 1; I

(t)
j = 1jy(t);D(t);�(s))
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=
Pj(y

(t)jx
(t)
pj ; �j)�

(s)
ij (x

(t)
i )�

(s)
i (D(t))PN

j=1

PP
i=1 �

(s)
i (D(t))�

(s)
ij (x

(t)
i )Pj(y(t)jx

(t)
pj ; �j)

(10)

E[I
(t)
i jX ] = P (I

(t)
i = 1jy(t);D(t);�(s))

=

PN
j=1 Pj(y

(t)jx
(t)
pj ; �j)�

(s)
ij (x

(t)
i )�

(s)
i (D(t))PN

j=1

PP
i=1 �

(s)
i (D(t))�

(s)
ij (x

(t)
i )Pj(y(t)jx

(t)
pj ; �j)

(11)

That is, the a posteriori probabilities are obtained as follows,

h
(s)
i (y(t)jx

(t)
i ) = E[I

(t)
i jX ]; h

(s)
ij (y

(t)jx
(t)
i ) = E[I

(t)
i ; I

(t)
j jX ]: (12)

To simplify the computation in the Maximization step (M-step), a trick in [66, 67] is used to rewrite
Eq.(4) into the following equivalent form

P (y;D) = P (yjD;�)P (xi; ') =
NX
j=1

PX
i=1

�i(D)�ijP (xi; 'ij)P (yjxpj ; �j); (13)

where P (xi; ') =
PN

r=1 �irP (xi; 'ir). Using Eq.(13), the task of Maximization step (M-step) is to
solve the following separate optimal problems for i = 1; � � � ; P; j = 1; � � � ; N:

'
(s+1)
ij = argmax

'ij

TX
t=1

NX
j=1

PX
i=1

h
(s)
ij (y

(t)jx
(t)
i ) logP (xi; 'ij) (14)

�
(s+1)
ij = argmax

�ij

TX
t=1

NX
j=1

PX
i=1

h
(s)
ij (y

(t)jx
(t)
i ) log �ij; s:t:

NX
j=1

�ij = 1; �ij � 0: (15)

�
(s+1)
i = argmax

�i

TX
t=1

PX
i=1

h
(s)
i (y(t)jx

(t)
i ) log �i; s:t:

PX
i=1

�i = 1; �i � 0: (16)

Accordingly, the EM algorithm for training the proposed combination scheme is summarized as

1. Initialization at s = 0
For i = 1; � � � ; P and j = 1; � � � ; N , set �(s)i = 1

P
and �

(s)
ij = 1

N
as well as initialize randomly

'i1 = 'i2 = � � � = 'iN subject to �(s)ij (xi) =
1
N
(j = 1; � � � ; N).

2. The EM procedure at s > 0
(1) E-step. For each pair (D(t);y(t)), compute the a posteriori probabilities h(s)i (y(t)jx

(t)
i ) and

h
(s)
ij (y

(t)jx
(t)
i ) (i = 1; � � � ; P ; j = 1; � � � ; N) using Eq.(10) and Eq.(11).

(2) M-step. Find a new estimate for i = 1; � � � ; P; j = 1; � � � ; N based upon the following
updating formulae:

�
(s+1)
i =

1

T

TX
t=1

h
(s)
i (y(t)jD(t)) (17)

m
(s+1)
ij =

1PT
t=1 h

(s)
ij (y

(t)jx
(t)
i )

TX
t=1

h
(s)
ij (y

(t)jx
(t)
i )x

(t)
i (18)
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�
(s+1)
ij =

1PT
t=1 h

(s)
ij (y

(t)jx
(t)
i )

TX
t=1

h
(s)
ij (y

(t)jx
(t)
i )[x

(t)
i �m

(s+1)
ij ][x

(t)
i �m

(s+1)
ij ]T (19)

�
(s+1)
ij =

1

T

TX
t=1

h
(s)
ij (y

(t)jx
(t)
i ) (20)

�
(s+1)
ij (x

(t)
i ) =

�
(s+1)
ij P (xi;m

(s+1)
ij ;�

(s+1)
ij )PN

r=1 �
(s+1)
ir P (xi;m

(s+1)
ir ;�

(s+1)
ir )

(21)

3. Repeat Step 2 until a predefined ‘stop’ condition is satisfied.

3 A Modified Associative Switch for Different Features

For combining multiple classifiers, the basic idea underlying the combination in the framework of
winner-take-all is to choose the one with the best result from N classifiers as the winner and to
make the final decision by using its result for a specific sample if there is at least one classifier to
classify the sample D correctly. When there is no classifier to classify the sample D correctly, the
combination scheme will reject it. To complete the task of choosing a classifier for each sample, a
device called associative switch has been proposed [69]. The associative switch is composed of N
knobs swj (j = 1; � � � ; N ) with each swj installed on the output channel of classifier ej to decide
whether or not it is chosen as the winner for the current sample, i.e. whether or not to allow its
output pass through to become the final decision. For an input sample D, thus, the output of each
knob is given by

ld =

(
lj if swj = \on00

M + 1 if swj = \off 00
(22)

where ld is the class label of the input sample D determined by the decision maker. Accordingly, N
knobs are controlled by the output of the winner-take-all combination mechanism (WTA-CM). Assume
that output of the WTA-CM is denoted as c = [c1; � � � ; cN ] (0 � cj � 1; j = 1; � � � ; N). The behavior
of each swj is determined as follows

swj =

(
\on00 when j = argmax1�k�N ck and cj � T
\off 00 otherwise

(23)

where T is a predefined threshold and usually 0:5 < T < 1. To combine multiple classifiers with
different features, for an unlabeled sample D, the WTA-CM also needs an input to determine the
behavior of the switch. For this purpose, we adopt an encoding mechanism to produce a mapping
or coding of the sample D , M(D), as the input of the WTA-CM. Like the encoding mechanism in
[69], here, M(D) is just the label vector consisting of N labels produced by individual classifiers i.e.
M(D) = [l1; � � � ; lN ] for the sample D. When different features of an unlabeled sample D are input
to individual classifiers ej (j = 1; � � � ; N), M(D) will also be input to the WTA-CM for recalling code
c which determines the behavior of N knobs so as to either select one of outputs of N classifiers
as the final label ld or block all the output channel of individual classifiers and assign M + 1 to ld.
Such a WTA-CM could be implemented by any existing artificial neural networks with the type of
heteroassociative memory. In this paper, we simply use a three-layered multilayer perceptron (MLP)
architecture to implement the WTA-CM.

The key task in the learning process of the associate switch is the design of the desired output for
training the MLP used as the WTA-CM on a data set S1. Once we have the desired output the training
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procedure is the application of an existing learning algorithm such as backpropagation algorithm [55]
on the training set S1. To design the appropriate desired output of the MLP used as the combination
scheme, we first define a criterion for selecting a winner when there are several classifiers to give the
correct result for a specific sample. We stipulate that the output of each classifier has the standard
form in Eq.(1). If the output of a classifier does not satisfy the form in Eq.(1), it can be transformed
into the standard form using Eq.(2). For a sample D, thus, each classifier ej (j = 1; � � � ; N) with the
input vector xpj (1 � pj � P ) has the output ~pj(xpj ) = [pj1(xpj ); � � � ; pjM (xpj )]. Among those M
components of ~pj(xpj ), we can find two components in the following way

pjk1(xpj ) = max
1�k�M

pjk(xpj ); pjk2(xpj ) = max
1�k�M;k 6=k1

pjk(xpj ): (24)

As a result, we define the criterion of selecting winner as follows,

j� = argmax
j2�

�p(j)(xpj ); �p(j)(xpj ) = pjk1(xpj )� pjk2(xpj ): (25)

where � is a set of all classifiers that output the correct label for a specific sample D. That is, the
classifier ej� will be chosen as the winner. Assume that a sample D in S1 should belong to class k 2 �

and classifier ej(xpj ) = lj (j = 1; � � � ; N ; 1 � pj � P ) as well as c(d)j [M(D)] is the jth component of
the desire output of WTA-CM for the sample D. Using the criterion defined in Eq.(25), we present
a method to produce the desired output of the MLP used as the WTA-CM for the following three
different cases:

Case 1. If lj 6= k for j = 1; � � � ; N , i.e. there is no individual classifier giving a correct classification,
then we assign c

(d)
j [M(D)] = 0, j = 1; � � � ; N .

Case 2. If there is only one lj� = k (1 � j� � N), i.e. there is only one individual classifier giving
the correct classification, then for j = 1; � � � ; N , we let

c
(d)
j [M(D)] =

(
1 when j = j�

0 otherwise

Case 3. If there is a subset ID � f1; � � � ; Ng and lj = k for each j 2 ID, i.e. there is more than one
individual classifier giving the correct result, then for j = 1; � � � ; N , we let

c
(d)
j [M(D)] =

(
1 when lj = k and j = argmaxi2ID �p(i)(xpi)
0 otherwise

where xpi (1 � pi � P ) is a feature vector extracted from the sampleD and used as the input
vector of classifier ei (i = 1; � � � ; N). If there is more than one classifier in ID satisfying both
j 2 ID and j = argmaxi2ID �p(i)(xpi), moreover, then we arbitrarily or randomly choose
only one of these classifiers as the winner, say j 0. As a result, we let

c
(d)
j [M(D)] =

(
1 when lj0 = k and j0 = argmaxi2ID �p(i)(xpi)
0 otherwise

4 Combination Methods Based on Evidential Reasoning

The combination methods based upon evidential reasoning have been extensively studied and al-
ready applied in the field of OCR [5, 53, 61, 68, 69]. The basic idea underlying the methods is that
the result of each individual classifier is regarded as an evidence or an event and the final decision
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is made by consulting all combined classifiers with a method of evidential reasoning or evidence
integrating. The methods of evidential reasoning (integrating) are usually based upon voting prin-
ciple, Bayesian theory and Dempster-Shafer evidence theory. In this section, we briefly review some
methods in [68] which have been applied to the experiments of text-independent speaker identifica-
tion reported in this paper. In the sequel, the original representation in [68] will be rewritten for the
purpose of combining multiple classifiers with different features.

4.1 A Combination Method in Bayesian Formalism

In order to combine multiple classifiers with different features in Bayesian formalism, the error of
each classifier must be taken into consideration. As a result, the error of each classifiers ej may be
described by its confusion matrix [68], PTj , as follows,

PTj =

2
666664

n
(j)
11 n

(j)
12 : : : n

(j)
1M n

(j)
1(M+1)

n
(j)
21 n

(j)
22 : : : n

(j)
2M n

(j)
2(M+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n
(j)
M1 n

(j)
M2 : : : n

(j)
MM n

(j)
M(M+1)

3
777775 (26)

for j = 1; � � � ; N ; where each row i corresponds to class i, Ci, and each column l corresponds to the
event ej(xpj ) = l (l 2 �

S
fM + 1g). Thus, an element n(j)il denotes that n(j)il samples belonging to Ci

have been assigned a label l by classifier ej . For an event ej(xpj ) = l of an error-bearing classifier ej ,
its truth has uncertainty. With the knowledge of its confusion matrix PTj , such an uncertainty could
be modeled by the conditional probabilities that propositions D 2 Ci (i = 1; � � � ;M) are true under
the occurrence of the event ej(xpj ) = l is as follows,

P (D 2 Cijej(xpj ) = l) =
n
(j)
ilPM

i=1 n
(j)
il

(27)

WithN classifiers e1; � � � ; eN , we shall haveN matrices PT1; � � � ; PTN . When these classifiers are used
on feature vectors extracted from the sampleD,N events ej(xpj ) = lj (j = 1; � � � ; N ; lj 2 �

S
fM+1g)

will happen. An integrated belief value bel(�) is defined according to Bayesian formula and the
conditional probabilities [68] as follows,

bel(i) =

QN
j=1 P (D 2 Cijej(xpj ) = lj)PM

i=1

QN
j=1 P (D 2 Cijej(xpj ) = lj)

(28)

where
PM

i=1 bel(i) = 1 since D 2 Ci (i = 1; � � � ;M) are mutually exclusive and exhaustive. bel(i)
becomes the combination scheme which collects evidence of combined classifiers with different fea-
tures and integrates them for making final decision. Depending upon these bel(i) values, therefore,
the final decision is made by combining multiple classifiers with different features as follows,

E(D) =

(
k if bel(k) = maxi2� bel(i) � T

M + 1 otherwise
(29)

where 0 < T � 1 is a predefined threshold.

4.2 A Combination Method Based on Dempster-Shafer Theory

The Dempster-Shafer (D-S) theory of evidence [58] has been applied for combining multiple classi-
fiers [41, 53, 68]. In the method used in our work, the combination is made in the situation that the
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recognition, substitution and rejection rates of each individual classifier are merely necessary as prior
knowledge [68].

In the current problem, there are the M exhaustive and mutually exclusive propositions A = D 2
Ci 8i 2 �, which denote that an input sampleD comes from class iwith the labelCi, and the universal
proposition is � = fA1; � � � ; AMg. When applied to P (1 � P � N) feature vectors extracted from the
sampleD, N classifiers, say e1; � � � ; eN , will produceN evidences ej(xpj ) = lj (j = 1; � � � ; N ; 1 � pj �
P ) with each classifier ej(xpj ) = lj denoting that the sample D is assigned a label lj 2 �

S
fM +1g by

classifier ej with the input vector xpj . Given that 
j ; �j are the recognition rate and the substitution
rate of classifier ej , respectively. Usually 
j + �j is less than one due to the rejection action. For each
classifier ej = lj , if lj 2 �, one could have uncertain beliefs that the proposition Alj = D 2 Clj is true
with a degree 
j and is false with a degree �j ; if lj =M + 1 (i.e. D is rejected by classifier ej with the
input vector xpj ), one has no knowledge about anyone of the M propositions A i = D 2 Ci; 8i 2 �,
which could be viewed as the full support of the universal proposition �. To combine multiple
classifiers with different features, we must discard some unnecessary evidences and special cases
which include the evidences ej(xpj ) = lj with lj = fM + 1g and the cases of the recognition rate

j = 1 and the substitution rate �j = 1. All these cases make the combination unnecessary. After
ruling out the aforementioned evidences and special cases, we can concentrate on the general cases
that there are N 0 evidences ej(xpj ) = lj with 0 < 
j < 1; 0 � �j < 1 (j = 1; � � � ; N 0). For combination,
we first collect the evidences into groups with those impacting the same proposition in each group,
and then combine the evidences in the each group, respectively. Let us denote m(�) and bel(�) as basic
probability assignment (BPA) function and belief value in the D-S theory [58], respectively. For all the
evidences ej(xpj ) = lj (j = 1; � � � ; N 0), suppose that among j1; � � � ; jN 0 there are N1 � min(M;N 0)
different labels, say l01; � � � ; l

0
N1

, thus all the N 0 evidences are divided into N1 groups, say E1; � � � ; EN1
,

in which each ej(xpj ) = lj is put to group Ek if ej(xpj ) = lj = l0j . For each group Ej , a combined BPA
mEj can be obtained by recursively applying the combination rule in the D-S theory [58] to BPA’s
mj1; � � � ;mjr provided by ej1(xpj1 ); � � � ; ejr(xpjr ) since all evidences ej1(xpj1 ) = l0j; � � � ; ejr(xpjr ) = l0j .
That is,

m2 =m1 �mj2 ; m3 =m2 �mj3 ; � � � ; mr =mr�1 �mjr : (30)

Next, we further combine the BPA’s mEj (j = 1; � � � ; N1) into a final combined BPA

m =mE1
�mE2

� � � � �mEN1
(31)

and then to calculate the corresponding bel(Ai) and bel(+Ai) for 8i 2 � based upon the final BPA m.
The combination in Eq.(31) can be calculated with a fast computing method in [68].

On the basis of the belief values, bel(Ai) and bel(+Ai) (i = 1; � � � ;M), the decision rule is defined
as

E(D) =

(
k if �bel(Ak) = maxi2��bel(Ai) � T

M + 1 otherwise
(32)

where 0 < T < 1 and �bel(Ai) = bel(Ai) � bel(+Ai) which reflects the pure total support by the
proposition Ai.

4.3 A Combination Method Using Voting Principle

The committee voting principle is a general method to make a consensus by consulting several opin-
ions. If each opinion could be viewed as an evidence, then the process of making a consensus will
be regarded as the process of evidential reasoning. There have been several combination methods
based upon the different voting principles [61, 68]. For a sample D, each classifier ej (j = 1; � � � ; N)
produces a result of classification based upon one kind of feature extracted from the sample D, say
xpj (1 � pj � P ), i.e. ej(xpj ) = i. We consider the event ej(xpj ) = i as an evidence and represent it
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with following form

Ej(D 2 Ci) =

(
1 if ej(xpj ) = i and i 2 �
0 otherwise

(33)

According to the majority voting principle that the consensus is made only if there are more than a half
of people in the committee who have the same opinion, the decision rule is defined as

E(D) =

(
k if ES(D 2 Ck) = maxi2�ES(D 2 Ci) > T

M + 1 otherwise
(34)

where N
2 � T < N is a predefined threshold and

ES(D 2 Ci) =
NX
j=1

Ej(D 2 Ci); i = 1; � � � ;M: (35)

5 Applications of Combination Methods to Text-Independent Speaker
Identification

In this section, we present applications of all combination methods described in this paper to text-
independent speaker identification. First, we describe the speech database and feature selection.
Then individual classifiers used in the combination is described. It is followed by the results of
individual classifiers and a specific combination. As a case study, finally, the results for comparison
are also reported.

5.1 Speech Database, Feature Selection and Performance Evaluation

5.1.1 The Database

There is no standard database (benchmark) to evaluate speaker identification systems [44], though
the DARPA TIMIT database which was originally designed to evaluate automatic speech recognition
systems is often borrowed to evaluate speaker identification systems. The database for experiments
reported in this paper is a subset of the standard speech database in China. This set represents 20
speakers of the same (Mandarin) dialect. Unlike the DARPA TIMIT database in which all utterances
were recorded in the same session, the utterances in the database were recorded during three separate
sessions. In the first session, 10 different phonetically rich sentences were uttered by each speaker.
The average length of the sentences is about 4.5 seconds. In the second and the third sessions, 5
different sentences are uttered by each speaker, respectively. The average length of the sentences
recorded in the second and the third sessions is about 4.4 and 5.0 seconds, respectively. All utterances
were recorded in a quiet room and sampled at 11.025 kHz sampling frequency in 16 bit precision.

Some researchers have used the TIMIT database to evaluate their speaker identification systems
and achieved the identifying accuracies close to 100% [6, 7, 8, 32]. However, it is not sufficient to claim
that such systems are robust since there is little variation of speakers’ characteristics carried in voices
recorded in the same session. Actually, the performance of a speaker identification system should be
evaluated by testing utterances recorded in different sessions [4, 22, 28, 29, 43, 44, 52, 59, 60]. As a
result, in the experiments, the training set or Set-1 consists of 10 sentences recorded in the first session
to train all individual classifiers. In addition, 5 sentences recorded in the second session are used as
the training data or cross-validation data (Set-2) to train the combination schemes except the one based
upon the voting principle and the test set or Set-3 is composed of 5 sentences recorded in the third
session for testing both individual classifiers and combination methods described in the paper.
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5.1.2 Feature Selection

Although Wolf outlined a set of desirable attributes on the chosen features for speaker recognition [64]
more than 20 years ago, unfortunately, it is highly unlikely to find any set of features which simul-
taneously has all those attributes in practice [4, 18, 21, 22, 24, 28, 44, 49, 52, 56]. As a result, several
features have already been investigated [4, 21, 22, 28, 34, 63]. The main outcome of the many fea-
ture selection studies was that features which represent pitch and the speech spectrum were the most
effective for speaker identification. However, there is less agreement on which parameterization of
the speech spectrum to use for features. Common spectrum representations for speaker identification
are linear predictive coefficients and their various transformations (cepstral coefficients and PARCOR
coefficients etc.) as well as the cepstrum and its variants such as Mel-scale cepstrum [4, 52, 56, 64].
As a result, we select four common features for the experiments, i.e. linear predictive coding coefficients
(LPCC), linear predictive coding cepstrum (LPC-CEP), cepstrum (CEPS) and Mel-scale cepstrum (MEL-
CEP) [51].

On the other hand, it is generally agreed that the voiced parts of an utterance, especially vowels
and nasal, are more effective than the unvoiced parts for text-independent speaker identification [4,
52, 56, 64]. In experiments, therefore, only the voiced parts of a sentence are kept regardless of their
contents by using a simple energy measuring method. The length of the Hamming analysis window
is 64 ms without overlapping. It should be noted that the size of the analysis window is slightly larger
than the commonly used sizes (normally 16 � 32 ms) since it has been found that the identification
performance is degraded with a normal analysis window [32]. Whenever the short-time energy of
a frame of the sentence is higher than a predefined threshold, spectral features will be calculated.
Furthermore, the samples are pre-emphasized by the filter H(z) = 1 � 0:97z�1 and 24-order LPCC,
24-order LPC-CEP, 20-order CEPS and 20-order MEL-CEP are derived from the processed samples. For
utterances of all 20 speakers, total numbers of feature vectors are 10057 frames in Set-1, 4270 frames
in Set-2 and 4604 frames in Set-3, respectively.

5.1.3 Performance Evaluation

The evaluation of a speaker identification experiment is conducted in the following manner [52]. Af-
ter feature extraction, the test speech is to produce a sequence of feature vectors denoted as f ~f1; � � � ; ~ftg.
The sequence of feature vectors is divided into overlapping segments of S feature vectors. The first
two segments from a sequence would be

Segment 1z }| {
~f1; ~f2; � � � ; ~fS ~fS+1; ~fS+2; � � � ~f1;

Segment 2z }| {
~f2; ~f3; � � � ; ~fS ; ~fS+1 ~fS+2; � � �

A test segment length of 6.4 seconds would correspond to S = 100 feature vectors for a 6.4 ms frame
rate. In the experiments reported in this paper, we choose S = 100; accordingly, total numbers of
segments are 2290 in Set-2 and 2624 in Set-3, respectively, for utterances of all 20 speakers. Each
segment of S vectors is treated as a separate test utterance and identified using the classification
procedures of either individual classifiers or the combination of multiple classifiers. Using a segment,
the system produces either an identifying result or a rejection. The above steps are repeated for test
utterances from each speaker in the population. The final performance evaluation is then computed
according to the identifying rate, rejection rate and substitution rate. In the sequel, Identification,
Substitution and Rejection is the abbreviations for identifying rate, substitution rate and rejection rate.
Accordingly, the Reliability is defined as

Reliability =
Identi�cation

100% � Rejection
(36)
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In the experiments, each speaker has approximately equal amount of testing speech so that the per-
formance evaluation is not biased to any particular speaker.

5.2 Individual Classifiers

Given a sequence of feature vectors, f~xsg, produced from an unknown speaker, the next task of the
speaker identification system is to classify that sequence as having come from one of the speakers in
the known population. As mentioned in the introduction of this paper, there are various classifiers
which have already been used in speaker identification [6, 7, 11, 13, 19, 25, 28, 32, 33, 46, 47, 52, 54, 59].
For the same purpose as the selection of common features, we choose four benchmark classifiers
commonly used in speaker identification [9, 18, 24, 28], i.e. distance classifier, vector quantization,
multilayer perceptron and Gaussian mixture model.

5.2.1 The Distance Classifier

The long term averaging was an early method widely adopted for text-independent speaker identi-
fication. the basic idea underlying the methods is the comparison of an average computed on test
data to a collection of stored averages developed for each of the speakers in training [42]. As a result,
the distance classifiers play a prominent role for classification in the methods. In the methods, each
speaker’s voice characteristics are modeled by the average over all the feature vectors obtained from
samples of the person’s voice (training vectors), f~x(i)t gTit=1 (i = 1; � � � ;K), as such, ~�(i) = 1

Ti

PTi
t=1 ~x

(i)
t .

Then for classification, the average feature vector over the complete test utterance, f~x 0sg
S
s=1, is com-

puted as ~m = 1
S

PS
s=1 ~x

0
s and compared to each speaker’s model using a distance classifier as follows,

d(~m; ~�(i)) = (~m� ~�(i))TW (i)(~m� ~�(i)); i = 1; � � � ;K: (37)

where W (i) is a matrix used to allow different weighings to different directions in the feature space.
For a reference group of K speakers, the test utterance is identified with speaker k only if k =
argmin1�i�K d(~m; ~�(i)). With respect to the matrix W (i) in Eq.(37), there are various forms which
result in the existence of multiple distance classifiers [3, 25, 28, 42]. In the experiments reported in
this paper, the matrix W (i) has the following form:

W (i) = ��1
i ; �i =

1

Ti

TiX
t=1

(~x
(i)
t � ~�(i))(~x

(i)
t � ~�(i))T ; i = 1; � � � ;K: (38)

5.2.2 Vector Quantization

As a non-parametric model, the vector quantization (VQ) classifier was applied to speaker identifica-
tion [59, 38] and has since been the benchmark classifier for text-independent speaker identification
systems. Typically, a speaker is modeled by a VQ codebook of 32 � 128 vectors derived using the
LBG algorithm [39]. The clustering and recognition are carried out using the distance measure in
Eq.(37) with the matrix W (i) (i = 1; � � � ;K) in Eq.(38). The distance between a test vector ~x0s and
the ith speaker’s codebook of C template vectors, f~�1; � � � ; ~�Cg, is the distance of ~x0s to the closest
template,

di(~x
0
s) = min

1�j�C
d(~x0s; ~�j) (39)

The implicit segmentation and acoustic class comparison are performed simultaneously by finding
a closest template in a speaker’s codebook and using that distance as the speaker similarity mea-
sure. Classification of a sequence of test vectors, f~x0sg

S
s=1, is done by finding the speaker codebook
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producing the minimum average distance, which for the ith speaker’s codebook is defined as

�di =
1

S

SX
s=1

di(~x
0
s); i = 1; � � � ;K: (40)

For a reference group of K speakers, the test utterance is identified with speaker k only if k =
argmin1�i�K �di. In the experiments, for each speaker, the codebook consists of 32 vectors and the
matrix W (i) (i = 1; � � � ;K) in Eq.(39) is available from Eq.(38).

5.2.3 The Multilayer Perceptron

As supervised classifiers, neural networks have recently become popular and have been used for
speaker identification [6, 7, 9, 11, 13, 46, 47, 54]. Neural networks learn complex mappings between
inputs and outputs and are particularly useful when the underlying statistics of the considered task
are not well understood. The multilayer perceptron (MLP) is a type of neural network that has grown
popular over the past several years. The MLP can be applied to speaker recognition as follows.
First, the feature vectors are gathered for all speakers in the population. For a reference group of
K speakers, a target vector is designed so that the ith component of the target vector corresponds
to all feature vectors belonging to the ith speaker (i = 1; � � � ;K) and it is labeled as “one” and the
components for the remaining speakers are labeled as “zero” in the target vector. Thus, the MLP
can be trained in the supervised manner for speaker identification. After training, for a test vector
denoted as ~x0s, the MLP produces an output vector ~O(~x0s) = [O1(~x

0
s); � � � ; OK(~x

0
s)]. Accordingly, for

a sequence of test vectors denoted as f~x 0sg
S
s=1, the test utterance is identified with speaker k only if

k = argmax1�i�K �Oi, where �Oi =
1
S

PS
s=1Oi(~x

0
s); i = 1; � � � ;K:

In the experiments reported in the paper, the three-layered fully connected MLP is used and the
2-fold cross-validation technique [50] is employed for finding an appropriate architecture of the MLP
for the considered task. As a result, the numbers of neurons in the hidden layer cover from 32 to 36
which depend upon the dimension of chosen feature vectors. As usual, the number of neurons in
the input layer is the dimension of a feature vector used as the input (In the experiments reported in
this paper, the number of neurons in the input layer is either 20 or 24.) and the number of neurons
in the output layer is the population of speakers in the system. (In the experiments reported in this
paper, there are 20 neurons in the output layer.) The backpropagation algorithm is used for training
the MLPs [55].

5.2.4 Gaussian Mixture Model

As a parametric model, the Gaussian mixture model (GMM) was more recently applied to text-dependent
speaker identification [52] and has demonstrated excellent performance for short test utterances. The
basic idea underlying the GMM method lies in that the distribution of feature vectors extracted from
a person’s speech is modeled by a GMM density. For a feature vector denoted as ~x 0s, the mixture
density is defined as

P (~xsj
i) =
MX
j=1

�
(i)
j P

(i)
j (~xs); i = 1; � � � ;K: (41)

The density is a weighted linear combination of M component uni-modal Gaussian densities de-
scribed in Eq.(6), P (i)

j (~xs), each parameterized by a mean vector, ~�(i)j , and covariance matrix, �(i)
j .

Collectively, the parameters of a speaker’s density model are denoted as 
 i = f�
(i)
j ; ~�

(i)
j ;�

(i)
j g. In

this paper, diagonal covariance matrices are used like the work in [52]. Given a sequence of feature
vectors from a person’s training speech, maximum likelihood estimates of the model parameters
are obtained using the EM algorithm [15, 52]. For a reference group of K speakers K = f1; � � � ;Kg
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represented by models 
1; � � � ;
K , the objective is to find the speaker model which has the maxi-
mum of a posteriori probability for the input vectors, f~x0sg

S
s=1. Using logarithms and the assumed

independence between observations, the test utterance is identified with speaker k only if k =
argmax1�i�K

PS
s=1 logP (~x

0
sj
i) in which each P (~x0sj
i) (i = 1; � � � ;K) is given in Eq.(41). In the

experiments reported in the paper, 32 components (M = 32) is used in the mixture model described
in Eq.(41).

5.3 Results of Individual Classifiers and The Optimal Correspondency

First of all, we apply four chosen benchmark classifiers individually on each of four chosen common
features for the text-independent speaker identification task. As mentioned above, the speech data
in Set-1 were used for training each individual classifier. Since four feature sets are available from
speech data in Set-1, each individual classifier was respectively trained on the four feature sets. As
a result, each individual classifier will have four results corresponding to four feature sets when the
speech data in Set-3 were used for testing. In the experiments, several thresholds are used to reject
uncertain results and the best identifying result is obtained by trial and test. In this paper, the best
identifying result yielded by a classifier or a method of combining multiple classifiers on a fixed test
set is defined as the one with the maximal identifying rate. After four classifiers are respectively trained
on four feature sets of speech data in Set-1, the best identifying results of four individual classifiers
by testing speech data in Set-3 are shown in Table 1–4.

For convenience, we abbreviate names of combination methods described in this paper as follows.
The linear combination method described in section 2 is called LIN-COM-DIF and the modified asso-
ciative switch presented in section 3 is called M-ASSOC-SW. As for the methods described in section
4, the combination methods based upon Bayesian theory, Dempster-Shafer evidence theory and the
voting principle are called BAYES, D-S and VOTING, respectively. In order to combine multiple clas-
sifiers with different features using LIN-COM-DIF and M-ASSOC-SW, the output of each classifier
needs transforming into the standard form described in Eq.(1) using Eq.(2). As a result, two functions
are chosen for the purpose as follows. The outputs of the MLP classifier and the GMM classifier are
processed by the function g(s) = s and the outputs of the distance classifier and the VQ classifier are
processed by the function g(s) = 1=s. In the experiments of the M-ASSOC-SW method, the architec-
ture of the MLP used for selecting a winner is a three-layered fully connected neural network with 4
input neurons, 4 hidden neurons and 4 output neurons and the standard backpropagation algorithm
was used to train the MLP. Except the VOTING method, in the experiments, the speech data in Set-2
is employed to train each combination scheme or provides the a priori knowledge for combination,
i.e. the training of each subscheme in the LIN-COM-DIF and the winner-take-all combination mech-
anism in the M-ASSOC-SW as well as the achievement of the confusion matrices in the BAYES and
performance of each individual classifier (recognition rate and substitution rate) used in the D-S. In
the VOTING method, the combination is directly fulfilled in the test set. (Actually, the test results on
Set-2 may be helpful to the selection of an appropriate rejection rate during testing on Set-3). In the
sequel, all results reported were obtained by testing speech data in Set-3.

In the current problem of combination, there are four different classifiers which were respectively
trained on four different feature sets. It results in 16 possible cases for combination. We call each of
such cases correspondency defined as the corresponding relation between those combined classifiers
and their input features for a specific combination. For instance, K individual classifiers, classifier-
1,� � �,classifier-K, are respectively trained on K feature sets, feature-1,� � �,feature-K. If these K classifiers
are combined somehow after the training of K individual classifiers finishes, such a corresponding
relation between K classifiers and their input features, i.e. classifier-k with feature-k (k = 1; � � � ;K),
will be called a correspondency. Moreover, the correspondency which can yields the best identify-
ing result is called optimal correspondency. We have exhaustively investigated all 16 correspondencies
using all combination methods described in section 2-4. For each combination method, 10 rejection
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thresholds which are uniformly distributed over the appropriate intervals defined in decision rules
in Eq.(7), Eq.(23), Eq.(29), Eq.(32) and Eq.(34) were also selected to find the best identifying result by
trial and test. As a result, We found an optimal correspondency from 16 possible correspondencies
on the current speech database and the optimal correspondency is listed in Table 5. Using the opti-
mal correspondency, we found that all combination methods described in the paper could yield the
best identifying results. As a result, the best identifying results produced by different combination
methods on the optimal correspondency and the corresponding rejection thresholds are shown in
Table 6.

For the purpose of comparison, we have done the experiments on the optimal correspondency
using the original associative switch in [69] and the proposed method in section 3. In [69], several
methods were proposed for producing the desired output of the MLP used for selecting a winner. In
the experiments, we exhaustively used those methods in [69] and only the best identifying result is
reported here. We call the original associative switch ASSOC-SW and the best identifying results pro-
duced by the M-ASSOC-SW and ASSOC-SW are shown in Table 7. It is evident from the simulation
that the modified associative switch outperforms the original one.

5.4 The Results for Comparison

As mentioned above, there are 16 possible correspondencies. In addition, there are several methods
of combining multiple classifiers available in this paper. Although we have exhaustively done ex-
periments on all correspondencies, we cannot report all of experimental results due to the limited
space. For the purpose of comparison, we merely report some typical experiments for exploring dif-
ferent combinations. It should still be noted that several thresholds have been used in combinations
of classifiers and only best identifying results are reported here.

Since there are four results of each classifier on four features of the same raw data, it is natural to
consider such a correspondency to use the features such that individual classifiers can respectively
achieve the best identifying result. According to results reported in Table 1–4, we could achieve
the correspondency listed in Table 8. For convenience, the correspondency between classifiers and
features is called correspondency-1. Accordingly, the results of correspondency-1 using different
combination methods are shown in Table 9. However, its performance is slightly worse than the
optimal correspondency’s.

To investigate the complementarity among different features, the experiments of combining clas-
sifiers (the same type) with four different features have been conducted. In the experiments, one kind
of classifier is chosen and respectively trained with four different features of raw data. Due to the
limited space, in Table 11, we merely report the results of so-called correspondency-2 listed in Table
10. For other similar correspondencies, the results of other kinds of classifiers chosen in this paper
are quite similar to the results on correspondency-2.

We have also conducted some experiments for combining four different classifiers with the same
feature. The circumstance often occurs in most of pattern recognition problems. For convenience,
correspondency-3, correspondency-4 and correspondency-5 denote correspondencies listed in Table
12–14, respectively. In addition, it was difficult to obtain better results than the best one of the in-
dividual classifier reported in Table 4 (the GMM classifier with the feature MEL-CEP) by combining
four classifier with the feature CEPS. Therefore, the results of combining classifiers with the feature
CEPS is not reported here. In addition, it is worth noting that in the circumstance of multiple classi-
fiers with the same feature the LIN-COM-DIF method is degenerated into the method in [65]. That
is, it is just the case that there is the unique �1 and the value �1 is always one in Eq.(4). Here, we
still call the method LIN-COM-DIF for consistency. Accordingly, the results of correspondency-3,
correspondency-4 and correspondency-5 are shown in Table 15–17, respectively.

On the basis of all experimental results, it is evident that the proposed method called LIN-COM-
DIF could achieve the improved results for all cases. The method called BAYES could also achieve
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the satisfactory results for all cases except the correspondency-3, which is consistent with other ap-
plications of the BAYES method [50, 68].

6 Conclusions

We have described several methods of combining multiple classifiers with different features and
their application to text-independent speaker identification In particular, we classify the state-of-the-
art techniques for combining multiple classifiers into three frameworks. The methods in the same
framework share the similar principle for combination. Based upon the experimental results, we
have demonstrated that the performance of the text-independent speaker identification system is
significantly improved and the methods of combining multiple classifiers with different features de-
scribed in this paper outperform not only the individual classifiers but also the methods of combining
multiple classifiers with the same feature. Moreover, it is evident from simulations that the proposed
linear combination method outperforms other methods described in the paper. However, there are
two open problems in the combination of multiple classifiers with different features. One is that there
is no analysis of value of information from dependent classifiers in the case of different features as
input though the topic has been recently discussed in the case of the same feature as the input of
dependent classifiers [35]. The other is that for a given task an effective method of searching for an
optimal correspondency on available classifiers and different features will be needed to be developed
though the exhaustive way might work as it did in the paper. We shall explore these problems in our
ongoing research.

Acknowledgments

Authors are very grateful to anonymous referees for their useful comments. This work was partially
supported by National Science Foundation of China with Grants 69571002 & 69475007, the Climb-
ing Program – National Key Project for Fundamental Research in China with Grant NSC 92097 and
Foundation for Chinese Young Scientists Returning from Overseas.

References

1. M. A. Abidi and R. C. Gonzalez. Data Fusion in Robotics and Machine Intelligence. Academic Press,
San Diego, 1992.

2. C. Agnew. Multiple probability assessments by dependent experts. J. Am. Stat. Assoc., 80:343–347,
1985.

3. B. S. Atal. Automatic speaker recognition based on pitch contour. J. Acoust. Soc. Am., 52(6):1687–
1697, 1972.

4. B. S. Atal. Effectiveness of linear prediction characteristics of the speech waves for automatic
speaker identification and verification. J. Acoust. Soc. Am., 55(6):1304–1312, 1974.

5. R. Battiti and A. M. Colla. Democracy in neural nets: voting schemes for classification. Neural
Networks, 7(4):691–708, 1994.

6. Y. Bennani. A modular and hybrid connectionist system for speaker identification. Neural Com-
putation, 7(4):791–798, 1995.

17



7. Y. Bennani, F. Fogelman, and P. Gallinari. A connectionist approach for speaker identification. In
Proc. Int. conf. Acoust., Speech, Signal Processing, 1990. 265–268.

8. Y. Bennani and P. Gallinari. On the use of TDNN extracted features information in talker identi-
fication. In Proc. Int. conf. Acoust., Speech, Signal Processing, 1991. 385–388.

9. Y. Bennani and P. Gallinari. Connectionist approaches for automatic speaker recognition. In Proc.
ESCA Workshop on Automatic Speaker Recognition, Identification and Verification, 1994. 95–102.

10. S. Chatterjee and S. Chatterjee. On combining expert opinions. Am. J. Math. Management Sci.,
7(1):271–295, 1987.

11. K. Chen, D. Xie, and H. Chi. Speaker identification based on hierarchical mixture of experts. In
Proc. World Congress on Neural Networks, Washington D.C., 1995. I493–I496.

12. K. Chen, D. Xie, and H. Chi. A modified HME architecture for text-dependent speaker identifi-
cation. IEEE Trans. Neural Networks, 7(5):1309–1313, 1996.

13. K. Chen, D. Xie, and H. Chi. Speaker identification using time-delay HMEs. Int. J. Neural Systems,
7(1):29–43, 1996.

14. K. Chen, D. Xie, and H. Chi. Text-dependent speaker identification based on input/output
HMMs: an empirical study. Neural Processing Letters, 3(2):81–89, 1996.

15. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from incomplete data via the
EM algorithm. J. Royal Stat. Soc. B, 39:1–38, 1977.

16. J. P. Dickenson. Some statistical results in the combination of forecasts. Oper. Res. Q., 24:253–260,
1973.

17. J. P. Dickenson. Some comments on the combination of forecasts. Oper. Res. Q., 26:205–210, 1975.

18. G. Doddington. Speaker recognition – identifying people by their voice. Proceedings of IEEE,
73(11):1651–1664, 1986.

19. K. R. Farrell, R. J. Mammone, and K. T. Assaleh. Speaker recognition using neural network
classifier. IEEE Trans. Audio, Speech Processing, 2(1):194–205, 1994.

20. S. French. Group consensus probability distributions: a critical survey. In J. M. Bernardo,
D. V. Lindley M. H. DeGroot, and A. F. M. Smith, editors, Bayesian Statistics, volume 2. Elsevier
Science Publishers, North-Holland, 1985.

21. S. Furui. Cepstral analysis technique for automatic speaker verification. IEEE Trans. Acoust.
Speech, Signal Processing, 29(2):254–272, 1981.

22. S. Furui. Comparison of speaker recognition methods using statistical features and dynamic
features. IEEE Trans. Acoust. Speech, Signal Processing, 29(3):197–200, 1981.

23. S. Furui. Research on individual features in speech waves and automatic speaker recognition
techniques. Speech Communication, 5(2):183–197, 1986.

24. S. Furui. An overview of speaker recognition technology. In Proc. ESCA Workshop on Automatic
Speaker Recognition, Identification and Verification, 1994. 1–9.

25. S. Furui, F. Itakura, and S. Saito. Talker recognition by longtime averaged speech spectrum.
Electronics and Communications in Japan, 55-A(10):54–61, 1972.

18



26. A. Gelfand, B. Ballick, and D. Dey. Modeling expert opinion arising as a partial probabilistic
specification. J. Am. Stat. Assoc., 90:598–604, 1995.

27. C. Genest and J. V. Zidek. Combining probability distributions: a critique and an annotated
bibliography. Statist. Sci., 1:114–148, 1986.

28. H. Gish and M. Schmidt. Text-independent speaker identification. IEEE Signal Processing Maga-
zine, pages 18–32, Oct. 1994.

29. H. Gish, M. Schmidt, and A Mieke. A robust segmental method for text-independent speaker
identification. In Proc. Int. conf. Acoust., Speech, Signal Processing, 1994. 145–148.

30. C. W. J. Granger and R. Ramanathan. Improved methods of combining forecasts. J. Forecasting,
3:197–204, 1984.

31. S. Grossberg. Competition, decision and consensus. J. Mathematical Analysis and Applications,
66:470–493, 1978.

32. J. He, L. Liu, and G. Palm. A text-independent speaker identification system based on neural
networks. In Proc. Int. conf. Spoken Language Processing, Yokohama, 1994.

33. A. Higgins, L. Bahler, and J. Porter. Voice identification using nearest-neighbor distance measure.
In Proc. Int. conf. Acoust., Speech, Signal Processing, 1993. 375–378.

34. M. Homayounpour and G. Chollet. A comparison of some relevant parametric representations
for speaker verification. In Proc. ESCA Workshop on Automatic Speaker Recognition, Identification
and Verification, 1994. 1–9.

35. R. A. Jocobs. Methods for combining experts’ probability assessments. Neural Computation,
7(5):867–888, 1995.

36. R. A. Jocobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3:79–87, 1991.

37. T. Kohonen. Self-organization and associative memory. Springer-Verlag, Tokyo, 1988.

38. K. Li and E. Wrench. An approach to text-independent speaker recognition with short utterances.
In Proc. Int. conf. Acoust., Speech, Signal Processing, 1983. 555–558.

39. T. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantization. IEEE Trans. Communi-
cations, 28(1):84–95, 1980.

40. D. V. Lindley. Reconciliation of discrete probability distributions. In J. M. Bernardo, D. V. Lind-
ley M. H. DeGroot, and A. F. M. Smith, editors, Bayesian Statistics, volume 2. Elsevier Science
Publishers, North-Holland, 1985.

41. E. J. Mandler and J. Schurmann. Combining the classification results of independent classifiers
based on the Dempster/Shafer theory of evidence. Pattern Recognition and Artificial Intelligence,
5:381–393, 1988.

42. J. Markel, B. Oshika, and A. Gray Jr. Text-independent speaker recognition from a large linguis-
tically unconstrained time-space data base. IEEE Trans. Acoust., Speech, Sigal Processing, 27:74–82,
1979.

43. T. Matsui and S. Furui. A text-dependent speaker recognition method robust against utterance
variations. In Proc. Int. conf. Acoust., Speech, Signal Processing, 1991. 377–380.

19



44. T. Matsui and S. Furui. Speaker recognition technology. NTT Review, 7(2):40–48, 1995.

45. S. J. Nowlan. Competing experts: An experimental investigation of associative mixture models.
Tech. Rep. CRG-TR-90-5, Department of Computer Science, University of Toronto, 1990.

46. J. Oglesby and J. S. Mason. Optimization of neural models for speaker identification. In Proc. Int.
conf. Acoust., Speech, Signal Processing, 1990. 261–264.

47. J. Oglesby and J. S. Mason. Radial basis function networks for speaker recognition. In Proc. Int.
conf. Acoust., Speech, Signal Processing, 1991. 393–396.

48. J. P. Openshaw, Z. P. Sun, and J. S. Mason. A comparison of composite features under degraded
speech in speaker recognition. In Proc. Int. conf. Acoust., Speech, Signal Processing, 1993. II371–
II374.

49. D. O’Shaughnessy. Speaker recognition. IEEE ASSP Magazine, 3(4):4–17, 1986.

50. M. P. Perrone. Improving regression estimation: averaging methods of variance reduction with
extensions to general convex measure optimization. Ph.D. thesis, Department of Physics, Brown
University, 1993.

51. L. R. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Englewood Cliffs, Prentice-
Hall, New Jersey, 1993.

52. D. A. Reynolds. A Gaussian mixture modeling approach to text-independent speaker identifica-
tion. Ph.D. Thesis, Department of Electrical Engineering, Georgia Institute of Technology, 1992.

53. G. Rogova. Combining the results of several neural network classifiers. Neural Networks, 7(5):777–
781, 1994.

54. L. Rudasi and S. A. Zahorian. Text-independent talker identification with neural networks. In
Proc. Int. conf. Acoust., Speech, Signal Processing, 1991. 389–392.

55. D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing: Explorations in the microstruc-
ture of cognition. MIT Press, Cambridge, 1986.

56. M. R. Sambur. Selection of acoustic features for speaker identification. IEEE Trans. Acoust., Speech,
Signal Processing, 23:176–182, 1975.

57. R. Schwartz, S. Roucos, and M. Berouti. The application of probability density estimation to
text-independent speaker identification. In Proc. Int. conf. Acoust., Speech, Signal Processing, 1982.
1649–1652.

58. G. Shafer. A Mathematical Theory of Evidence. MIT Press, Cambridge, 1976.

59. F. Soong, A. Rosenberg, L. Rabiner, and B. Juang. A vector quantization approach to speaker
recognition. In Proc. Int. conf. Acoust., Speech, Signal Processing, 1985. 387–390.

60. F. K. Soong and A. E. Rosenberg. On the use of instantaneous and transitional spectral informa-
tion in speaker recognition. IEEE Trans. Acoust., Speech, Signal Processing, 36(6):871–879, 1988.

61. C. Y. Suen, T. A. Nadal, T. A. Mai, R. Legault, and L. Lam. Recognition of totally unconstrained
handwritten numerals based on the concept of multiple experts. In C. Y. Suen, editor, Forniers in
Handwriting Recognition, Montreal: Concordia University, 1990. 131–143.

62. A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition using time-
delay neural networks. IEEE Trans. Acoust., Speech, Signal Processing, 37:328–339, 1989.

20



63. R. Wohlford, E. Wrench Jr., and B. Lamdel. A comparison of four techniques for automatic
speaker recognition. In Proc. Int. conf. Acoust., Speech, Signal Processing, 1980. 908–911.

64. J. Wolf. Efficient acoustic parameters for speaker recognition. J. Acoust. Soc. Am., 51(6):2044–2056,
1972.

65. L. Xu and M. I. Jordan. EM learning on a generalized finite mixture model for combining multiple
classifiers. In Proc. World Congress on Neural Networks, San Diego, 1993. IV227–IV230.

66. L. Xu and M. I. Jordan. A modified gating network for the mixtures of experts architecture. In
Proc. World Congress on Neural Networks, San Diego, 1994. II405–II410.

67. L. Xu, M. I. Jordan, and G. E. Hinton. An alternative model for mixture of experts. In J. D.
Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems,
pages 633–640, Cambridge MA, 1995. MIT Press.

68. L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combining multiple classifiers and their applica-
tions to handwriting recognition. IEEE Trans. Sys. Man. Cybern., 23(3):418–435, 1992.

69. L. Xu, A. Krzyzak, and C. Y. Suen. Associative switch for combining multiple classifiers. Journal
of Artificial Neural Networks, 1(1):77–100, 1994.

70. L. Xu, J. Oglesby, and J. S. Mason. The optimization of perceptually-based features for speaker
identification. In Proc. Int. conf. Acoust., Speech, Signal Processing, 1989. 520–523.

71. Z. Zhang, I. Harmann, J. Guo, and R. Suchenwirth. A recognition method of printed Chinese
character by feature combination. Int. J. Research and Engineering – Postal Applications, 1:77–82,
1989.

21



Table 1: The results(%) of the distance classifier

Feature (Input) Identification Substitution Rejection Reliability
LPCC 74.46 18.19 7.35 80.37

LPC-CEP 74.80 13.38 11.82 84.83
CEPS 64.66 25.50 9.84 71.72

MEL-CEP 76.03 16.46 7.51 82.20

Table 2: The results(%) of the vector quantization classifier

Feature (Input) Identification Substitution Rejection Reliability
LPCC 73.33 14.44 13.23 83.36

LPC-CEP 88.30 3.20 8.50 96.51
CEPS 80.87 16.50 2.63 83.05

MEL-CEP 88.49 1.30 10.21 98.55

Table 3: The results(%) of the multilayer perceptron classifier

Feature (Input) Identification Substitution Rejection Reliability
LPCC 88.57 6.93 4.50 92.74

LPC-CEP 86.93 8.16 4.91 91.43
CEPS 65.05 22.33 12.62 74.44

MEL-CEP 83.75 5.10 11.15 93.27

Table 4: The results(%) of the Gaussian mixture model classifier

Feature (Input) Identification Substitution Rejection Reliability
LPCC 86.32 6.97 6.71 92.53

LPC-CEP 91.65 2.82 5.53 97.02
CEPS 81.67 11.09 7.24 88.04

MEL-CEP 91.73 1.37 6.90 98.53

Table 5: The optimal correspondency on classifiers and features

Classifier Distance-Classifier VQ MLP GMM
Feature (Input) LPCC MEL-CEP LPC-CEP MEL-CEP
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Table 6: The results(%) of the optimal correspondency using different combination methods

Method Rejection-Threshold Identification Substitution Rejection Reliability
LIN-COM-DIF 0.1 97.33 0.00 2.67 100.0
M-ASSOC-SW 0.6 94.78 5.22 0.00 94.78

BAYES 0.9 97.07 0.00 2.93 100.0
D-S 0.6 96.38 1.64 1.98 98.33

VOTING 2 95.58 0.69 3.73 99.28

Table 7: The results(%) of the optimal correspondency using M-ASSOC-SW and ASSOC-SW

Method Identification Substitution Rejection Reliability
ASSOC-SW 93.25 6.75 0.00 93.25

M-ASSOC-SW 94.78 5.22 0.00 94.78

Table 8: Correspondency-1 on classifiers and features

Classifier Distance-Classifier VQ MLP GMM
Feature (Input) MEL-CEP MEL-CEP LPCC MEL-CEP

Table 9: The results(%) of correspondency-1 using different combination methods

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 97.17 1.23 1.60 98.75
M-ASSOC-SW 93.87 4.69 1.45 95.25

BAYES 96.80 3.20 0.00 96.80
D-S 94.13 2.36 3.61 97.56

VOTING 93.75 0.91 5.34 99.04

Table 10: Correspondency-2 on classifiers and features

Classifier MLP MLP MLP MLP
Feature (Input) LPCC LPC-CEP CEPS MEL-CEP

Table 11: The results(%) of correspondency-2 using methods of combining classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 93.80 6.12 2.08 95.79
M-ASSOC-SW 91.03 8.47 0.5 91.49

BAYES 91.99 7.89 0.12 92.10
D-S 89.38 6.93 3.69 92.73

VOTING 88.87 6.30 4.83 93.38
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Table 12: Correspondency-3 on classifiers and the feature

Classifier Distance-Classifier VQ MLP GMM
Feature (Input) LPCC LPCC LPCC LPCC

Table 13: Correspondency-4 on classifiers and the feature

Classifier Distance-Classifier VQ MLP GMM
Feature (Input) LPC-CEP LPC-CEP LPC-CEP LPC-CEP

Table 14: Correspondency-5 on classifiers and the feature

Classifier Distance-Classifier VQ MLP GMM
Feature (Input) MEL-CEP MEL-CEP MEL-CEP MEL-CEP

Table 15: The results(%) of correspondency-3 using methods of combining multiple classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 92.77 5.40 1.83 94.50
M-ASSOC-SW 89.22 8.46 2.32 91.34

BAYES 77.25 16.04 6.71 82.80
D-S 91.05 5.60 3.35 94.21

VOTING 90.58 4.62 4.80 93.47

Table 16: The results(%) of correspondency-4 using methods of combining multiple classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 95.29 3.53 1.18 96.43
M-ASSOC-SW 91.86 6.46 1.68 93.43

BAYES 96.11 3.89 0.00 96.11
D-S 91.27 6.59 2.14 93.27

VOTING 92.98 2.78 4.24 97.10

Table 17: The results(%) of correspondency-5 using methods of combining multiple classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 96.50 2.54 1.96 98.43
M-ASSOC-SW 93.15 6.85 0.00 93.15

BAYES 95.20 4.76 0.04 95.23
D-S 94.13 4.80 1.07 95.15

VOTING 91.12 0.91 7.97 99.01
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