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Capture Interspeaker Information With a
Neural Network for Speaker Identification

Lan Wang, Ke ChenSenior Member, IEEEand Huisheng ChiSenior Member, IEEE

Abstract—Model-based approach is one of methods widely a feature is too mysterious to extract from acoustic signals. For
used for speaker identification, where a statistical model is used intraspeaker variability, it refers to the differences in speaking
to characterize a specific speaker's voice but no interspeaker style [19], including speech rate, stress, voice quality, and tem-
information is involved in its parameter estimation. It is observed - . PO . ’
that interspeaker information is very helpful in discriminating be- poral varl_atl_on. In reality, there exist quite different spectral
tween different speakers. In this paper, we propose a novel method characteristics for the same words produced by the same speaker
for the use of interspeaker information to improve performance on different conditions. For speaker identification, the primary
of a model-based speaker identification system. A neural network opjective is to capture interspeaker variabilities, while accom-
is employed to capture the interspeaker information from the modating intraspeaker variabilities.

output space of those statistical models. In order to sufficiently S . e .
utilize interspeaker information, a rival penalized encoding rule is Sophisticated methods for a speaker identification system,

proposed to design supervised learning pairs. For better general- particularly in the text-independent style, include vector quan-
ization, moreover, a query-based learning algorithm is presented tization (VQ) [4], [14], [26], hidden Markov model (HMM)
to actively select the input data of interest during training of the  [4], [6], and Gaussian mixture model (GMM) [22], [24]. These
neural network. Comparative results on the KING speech corpus |\ athods could be summarized as the so-catiedel-based ap-
show that our method leads to a considerable improvement for a - - -
model-based speaker identification system. proach for egch speaker a parametrlc statistical model |s_created
to characterize the speaker’s voice, but other speakers’ informa-
tion is not considered in building such a model. For a specific
speaker, ideally, his/her statistical model should always yield
the highest likelihood score for his/her own utterances. In re-
ality, however, intraspeaker variabilities may prevent a statis-
. INTRODUCTION tical model from characterizing speaker’s voice perfectly based
HE goal of speaker identification is to automatically dete@" only a limited durgtion of voipe. Since interspegk_er variabil-
mine a speaker’s identity by his/her voice among a pofiies are not emphasized effectively by those statistical models,
ulation. It is widely applied to many fields from confidentialthe mismatch due to miscellaneous variabilities may lead to
data access to audio indexing in multimedia [14]. In generdisidentificatiorthat utterances belonging to a specific speaker
a speaker identification system may be either text-depende#€ Wrongly identified as belonging to another speaker. As the
where the same text is required for both training and test, BpPulation of speaker candidates increases, such misidentifica-
text-independent, where arbitrary text is allowed to utter.  tion is more severe such that the performance of a model-based
Speech is a dynamic acoustic signal with many variatior&€aker identification system can be highly degraded.
where both interspeaker and intraspeaker variabilities are highly!® improve the performance of such a system, some efforts
correlated with speaker identification problem. For interspeaki@fve been made by considering interspeaker information in pre-
variability, a primary source is physiological differences, e.g¥ious studies. As a consequence, some normalization methods
vocal tract shape and length, between different speakers, whigy® been proposed through the use of a cohort model to over-
could be encoded in acoustic aspect of speech. On the otf@ne intraspeaker variabilities [18], [16], [23], [25]. For a spe-
hand, person’s manner of speech, e.g., word usage, is anofié¢ speaker, his/her cohort model is created based on the data

source to induce some interspeaker variabilities. However, sut_&{o_nglng to a group of speake_rs who have S|_m|Iar charactens_-
tics in speech. To some extent, information on interspeaker vari-

abilities is somehow conveyed in the cohort model and, there-
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speakers, while the outputs are usually labels of correspondofga measure defined by ourselves. Thus, the neural network in
speaker identities. Although interspeaker information is conur hybrid system is no longer a passive learner.

sidered for modeling, phonetic features underlying speakers’For evaluating the effectiveness of our method, we adopt the
voice are more difficult to be captured, due to the catastroptHf¢dNG speech corpus consisting of wide-band and narrow-band
or cross-talk effects of interaction among a huge number 88ts, a benchmark for speaker recognition [5], in simulations.
synaptic weights during training in contrast to a model-basé&Pmparative results show that our method leads to a consider-
approach. On the other hand, there are a large amount of trainffe improvement, in particular, for the narrow-band set.

data since a neural network usually works directly on the speechl he remainder of this paper is organized as follows. Section Il
feature space, which results in a heavy computational burdépYiews the GMM-based speaker identification scheme. Sec-
and thus, prevents the application of a neural-network badig Il presents our methodology. Section IV reports S|mulat|oq
speaker identification system in practice. In general, speakgFU/ts on the KING speech corpus. Conclusions are drawn in

identification is a typical multicategory pattern classificatiorr€ction V-
task. Theoretically, any multicategory classification task can be
decomposed into a set of binary classification subtasks, where
each subtask is to discriminate between the data belonging té\s a typical model-based approach, GMM has been used
a specific class and all the others. By this fact, some connée-characterize speaker’s voice in the form of probabilistic
tionist methods have been proposed by constructing a setnuddel. It has been reported that the GMM approach outper-
neural networks with binary outputs for speaker identificatiolprms other classical methods for text-independent speaker
[13], [21]. Indeed, those neural networks of binary outputs magentification [8], [22]. In this section, we briefly review the
work in a parallel way, which speeds up training. However, suéhMM-based speaker identification scheme that will be used in
methods have to encounter the training dathalanceproblem our simulations.

that the available data belonging to a specific speaker are oftefror a feature vector denoted &g belonging to a specific
much fewer than those of others during training. This bias coud@#€akers, the GMM s a linear combination ok” Gaussian
cause the performance of such a system to be degraded.c@mponents as follows:

Il. GMM-B ASED SPEAKER |DENTIFICATION

the other hand, modular neural-network methodologies [2], [7], K
[9] have been proposed to automatically decompose a compli- P(xy | Xs) = Z we 1k P(xy | Mg g, 35 1) 1)
cated speaker identification task, which yields the better perfor- k=1

mance and fast training. However, the modular neural-netwaor . .
9 wlﬁereP(xt | m, 5, 3, &) is a Gaussian component parameter-

methods may suffer the catastrophic effects due to high dimqgéd by a mean vectom, , and covariance matris, 1, and

S|onaI|f[y of t_he speech featu.re. space .s_uch that mterspeakeug—k is a linear combination coefficient for speaker(s —
formation still cannot be sufficiently utilized.

X e - . 1,2,...,5). Usually, a diagonal covariance matrix is used in
Our observation indicates that exploiting direct cros§1) Given a sequence of feature vectds;, x», . .. , Xy, ...}

relationship among different statistical speaker models, whiglym, 4 specific speaker’s utterances, parameters estimation for
we refer as tanterspeaker informatigrprovides a feasible way As = (W oy 1, By ) (k= 1 Ks=1 S) is per-

P . pr . . . SR SR SR - 100 ) - 100t
to lower m|S|dent|f|cat|on [1]. Unlike previous appro_aches, Wesrmed by the expectation-maximization (EM) algorithm. Thus,
propose a noveliconnecnonlst method for the use of mterspeagegpeciﬁc speaker model is built through finding proper param-
information to improve the performance of a model-basgders in the GMM based on the speaker’s own feature vectors.
speaker identification system. In our method, a neural networkt, evaluate the performance, a sequence of feature vectors

is employed to capture interspeaker information from the givided into overlapping segments &ffeature vectors for
output space of those statistical speaker models, which foryggntification [22]

a hybrid system consisting of statistical models and neural

apparatus. The basic idea underlying our method is to build a segmentl

mapping between the misidentification caused by statistical X Ky KT —15 Ky - -

speaker models and their correction. To utilize interspeaker in- segment/+1

formation sufficiently, aival penalized encoding ruléRPER) X, Xiq 1y s X4 T— 1, XiT > X{4 T 15 - - - -

is proposed to design supervised learning pairs for training the .

neural network. In contrast to traditional connectionist speakep! @ test sggmedf(” = {X, X1, %X o ), the log-like-

identification systems, the neural network in our system work§00d function of a GMM is as following:

on the output space of statistical speaker models rather than the +T 1

speech data space. LXD A, = Z log P(x,|As) s=1,...,5. (2)
Active learning is an effective way to improve the generaliza- t=I

tion capability of a learner [10], [11], [15], [17], [20], [27]. Mo-
tivated by the idea of large-margin classifiers [28], we present
alternative query-based learning algorithm to actively select tf
input data of interest during training for better generalizatiomat 1S

Unlike the previous query-based learning methods, our method ot — argmaxL(X(’) ) 3)
always selects the data conveying maximal information in terms 1<s<S e

;’Hus, the segmentX ¥, is assigned to a label of registered
geakerss*, on the basis of the maximum likelihood principle;



438 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 2, MARCH 2002

I1l. M ETHODOLOGY P(LIA)
L 129 P(L]Ay)

In this section, we present our methodology on how to use
the interspeaker information to improve the performance of a
model-based speaker identification system. We first give our
motivation based on the GMM-based speaker identification
scheme. Then, we present our method for capturing inter-
speaker information with a neural network. For improving
generalization, we further propose a query-based learning
algorithm for training a neural network. All the technical
components mentioned above constitute our methodology.

P(L|A)

@

A. Motivation

As pointed out in the introduction, misidentification for a
GMM may result from limited training data and possible flaws
in a learning process. These factors cause a GMM not to model
speaker’s characteristics perfectly such that misidentification
can occur on a mismatch condition. To indicate this problem,
we first demonstrate the performance of a GMM-based speaker
identification system. A training set is used to train each GMM Ty
for a set of speakers, and an alternative data set recorded in an- L
other session, hereinafter calledlidation set is used to ob- (b)
serve the variation of those GMMs' likelihood values. To siMgjg 1. pistribution of likelihood values (scores) corresponding to three
plify presentation, we assume that the likelihood values ofsgeaker models\:, X5, andX,s, denoted a®(£ | A,) (solid line), P(L | Az)

P(L|A)

PL| Ay

P (L | M)

GMM are subject to the Gaussian distribution (dashed line), and?(L | A26) (dotted line) for utterances belonging to speaker
1. (a) Distribution estimated on a training set. (b) Distribution estimated on a
1 ([/ —u )2 validation set (different from the training set).
5
P N (IS 4
2o, 20

in terms of their voice, while the neural network is used to lower
Here £ are the likelihood values defined in (2) for a specifienisidentification made by GMMs through the use of inters-
speaker modes. i, and o2 are their mean and variance thapeaker information. As a consequence, our system is trained in
can be estimated based on either a training or a validation set.two-stage way. Assume that there arspeakers registered
Now we take an example to present our points. For uttan the system. In the first stagé, speaker models are created
ances belonging to speaker 1, their feature vectors are fednsith GMMs based on a training set, where one GMM models a
different speaker models. Fig. 1 illustrates distribution of likelispeaker. In the second stage, a neural network, working on the
hood values produced by three speaker modgls\., andXzs, output space of GMMs, is employed to take advantage of the
denoted byP(L| A1), P(L|Az2), and P(L | Az6), respectively. aforementioned interspeaker information conveyed in the output
For utterances in the training set, it is observed in Fig. 1(a) theace of GMMs based on a validation set. During training, the
the distribution of likelihood values corresponding to the trueeural network tends to learn how to lower misidentification
speaker model\;, is separated from that of others. It indicatesesulting from GMMs in a supervised learning way. Once the
that speaker 1 is always correctly identified in terms of uttetwo-stage learning is finished, the system, working in a cascade
ances in his/her training set. For utterances in the validation sggy, is applicable to any unknown voice token in a testing set for
however, such aresult does not remain, as illustrated in Fig. 1(@¢cision-making, as shown in Fig. 2. In the sequel, we present a
In this circumstance, the overlap between gL | A1) and systematic methodology to establish such a system for speaker
P(L] Xs6) implies that some utterances belonging speakeridentification.
may be wrongly identified as belonging to speaker 26, accordingFor the use of interspeaker information, our idea is to build
to the decision strategy defined in (3). Such misidentification & mapping between misidentification and its correction by a
unavoidable in reality but provides one kind of interspeaker imeural network in terms of a validation set. In doing so, the re-
formation in terms of a validation set. In order to improve theaining task is how to design supervised learning pairs based
performance of a model-based speaker identification systewmn,the validation set for training the neural network.
how to utilize interspeaker information is an open problem. In Assume that there are tothlspeech segments belongingto
the sequel, we present a neural-network method to capture sspbakers in the validation set. For a speech segm&ht(l =
interspeaker information. 1,2,..., L), all the GMMs,\;(s = 1,...,5), produce a set
of likelihood values(X® \,)(s = 1,...,5). Thus we as-
B. Capture interspeaker Information With a Neural Network semble these likelihood values into an input vector to the neural
Prior to the presentation of our method, we first presentngtwork, £© = [£9 £ ... £P1", via the following nor-
schematic diagram of our hybrid system, consisting of GMM®alization:
and a neural network, in Fig. 2 in order to understand our method
better. In Fig. 2, GMMs are employed to characterize speakers

['max
Lonax + 0.5 — L(XD X,)

LY = ®)
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Train GMM;s ,S)

based on his/her utterances

i<
(o |

GMM:

(s=1,

Parameters

Neural Network to
— Capture Inter-speaker
Information

Normalization
Procedure

Fig. 2. The schematic diagram of our hybrid speaker identification system.

where L.« = InaxlSSSS’lSlSL{/:(X(I),)\5)}. The above  On the basis of the conditional probability, the target output
normalization is designed to facilitate training of the neurdl'(j| <) in supervised pairs is designed accordingly as follows:
network. . . .

In order to discriminate between different speakers, it is de- . 1, if P(j, | Xi) > 0,j =1
sirable that misidentification yielded by GMMs [cf. Fig. 1(b)] is TGl =9 -1 W LPG|X)>0,j#1 (7)
corrected while those right decisions made by GMMs keep un- 0, otherwise
changed. In other words, the target output of the neural netw@lguation (7) suggests a new encoding scheme, hereinafter
should be the right label for an input speech segment no matgfledrival penalized encoding ruléRPER), based on inters-
what GMMs outputs are. Traditionally, the target output is epeaker information. That is, thi¢h element in the target vector
coded according to the one-6fscheme, where theh element js assigned tal’(j | 7) for an input vector resulting from any
of the target vector equals one if the input belongs to speakg@terance belonging to speakierThus, our encoding scheme
s and other elements equal zero. Recent studies showed thafedids to punish those GMMs resulting in misidentification
efficient encoding scheme for target outputs could improve thgile the correct decisions made by the GMMs remain.
generalization capability of a neural network [12]. Motivated by |n such an encoding scheme, target vectors are distinct to
this work, we utilize interspeaker information on misidentificaensure that each speaker class has an unique target codeword
tion to design an encoding scheme for target outputs in supgr; — [T(1]s),...,T(S|s)]%. In contrast to the one-af-en-
vised learning pairs. coding scheme, moreover, the Hamming distance of codewords

To acquire interspeaker information on misidentification, weetween the true speaker's and the impostor's is enlarged
define aconfusion matrixhat properly describes both classifisuch that the misidentification by GMMs could be corrected
cation and misidentification results by GMMs on a validatiogore effectively. Based on the supervised learning pairs given

set. The confusion matrix, CM, is in the following form: above, the activation function of the neural network should
be the hyperbolic tangent function. Here, we emphasize that
. ., 7115 . . .
our encoding scheme punishes only those GMMs leading to
no1 no2 na2s .. e . . . . .
CM = i i ) ] . misidentification in terms of the decision strategy in (3) and
: : : : distinguishes from the traditional one-6fencoding scheme
ns1 MNs2 -+ NSs where all the components except the right one are punished.

Heren, denotes the number of the speech segments belongi In terms of our RPER encoding scheme, the decision strategy

to speaket but assigned to speakgiby GMMs according to S1%he neural network during testing is as folloyvs. Given an
. . g . unknown speech segment, the neural network yields an output
the decision strategy in (3). On the basis of the confusion matrix T
. i, - . o éctor,o = [0y, ...,05]*, via the outputs of GMMs. Then the
we derive a conditional probability of misidentification that al

the utterancesy;, belonging to speaketis assigned to s eakerdistance between the output vector and each target codeword
; ¢ gingfosp 9 P T.(s = 1,2,...,5), needs to be calculated by the distance

measure as

i (6) - .
> s d(0,T;) = |o; = T(j|s)l. 8)
j=1

Here,P(j| X;)(y # ) is viewed as the misidentification rate . o )
of a model-based speaker identification system in terms of @D the basis of the minimal distance, the unknown speech seg-
terances belonging to a specific speaker. Thus, the confusfBNt is assigned to a label of registered speakers.e.,

matrix (CM) provides the interspeaker information via the con- " .
" .- — arg: d TS . 9
ditional probability, P(j | X;). s = argmin (0,T5) 9)

nij

P X;) =
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C. A Query-Based Learning Algorithm for Active Learning telephone channel. In each set, all speakers are male and ten
In empirical studies on our method above, we find that a vaiessions for each speaker were recorded from a week to a month

idation set plays an important role for sufficient use of inter@Part. Itis reported [5] that some data in the wide band set were

peaker information with a neural network. However, neural nfnfortunately missing, which results in different population in

work is traditionally treated as a passive learner with randonf{y© Sets. _ _ _
chosen inputs, which might limit the generalization capability of AS handled in [22], the preprocessing for the text-independent

our method. Recent studies [11], [15] showed that query-basdfaker identification system is performed as f?HOWS: 1) pre-
learning could be used for active learning. The basic idea UfPhasizing with filter respongé(z) = 1-0.95:77;2)32ms
derlying the query-based learning is that the next input deperfd@Mming windowing without overlapping; 3) removing the si-
on those used previously so as to improve the generalizatl§RC® and unvoiced partof speech in terms of short-term average
ability of the learner. For our purpose, we present a query-ba&ifr9y; and 4) extracting 16-order Mel-scaled cepstral feature

learning algorithm to actively select the input data of intere¥ECtor from each short-term frame. All the simulations are per-
during training. formed on a PC (Pentium Il1 500) of the Microsoft Windows’'98

In the query-based learning, new queries are chosen Blatform. o
cording to some heuristics. One useful hint is to choose thosdXeSults in [8], [22], and [24] indicate that GMM performs

queries that maximize the expected information content, e. uite well for text-independent speaker identification. In simu-
work in [15], [27]. Motivated by the idea, we select thosgtions' we adopt GMM as a representative of model-based ap-
input data around the decision boundaries as the candiddiERaches to build a model-based speaker identification system.

of next queries since these samples have uncertainty in d&€n a three-layered perceptron is employed to capture inters-
cision-making and, therefore, they could provide maxim&leaker information from output space of GMM. For compar-

information in determining the correct decision boundarie§°N: @ neural-network based speaker identification system is
As argued in the statistical learning theory [28], such sampl@$0 built, where a multilayer perceptron (MLP) is created based
likely play a more important role in generalization. on feature vectors extracted from utterances of all the speakers

As a consequence, our query-based learning algorithm is dethe original validation set without active learning. o
scribed as follows. The performance of speaker identification systems in this

1) Train the neural network first on the output space Qaper is defined as misidentification and identification rates,

GMMs by using 10% samples randomly selected from

a given validation set. Misidentification Rate

2) For each remaining sample belonging to speakarthe _ #incorrectly identified segments _ .
validation set£® (I = 1,...,L,), the neural network N # total testing segments °
trained in step 1) yields an output vecish). Calculate Identification Rate= 100% — Misidentification Rate

the distance between the output and the target codewor : _ . o
b g qn simulations, testing speech segments of a specific length

dingt dD(o® T,),int f(8).
corresponding to speakerd™ (o 7, T, ), in terms of (8) re adopted to evaluate the overall performance of the MLP-

3) Select the sample of maximal distance as next que . . e
which could characterize the shape of decision boun dsed, GMM-based, and our hybrid speaker identification sys-
tems. In order to demonstrate the effectiveness of the RPER

aries . : :
method, we also use the 1-§fencoding scheme in our hybrid
I* = argmax d©® (O(z)7 T,). systems to train the_thre_ze-layer_ed perce_ptron. For comparison,
LIS, moreover, a new validation set is dynamically produced by our

4) Append the selected data to the validation set and retr%lﬁery-based learning algorithm, while random selection is used

the neural network on the resulting validation set. uring training.
5) Repeat steps from 2) to 4) until the prespecified numbg&r results on Wide-Band Set
is reached. . . .
. . In simulations on the wide-band set, we use utterances of
Through the data selection by our query-based learning 35 . : ;
: o . e speakers collected in all ten sessiof&]-S10, for experi-
gorithm, a new validation set is formed for training the neural .
) L ments. For evaluating our method thoroughly, we adopt the two-
network, which could lead to better generalization as demon-_ . o .
. : session training, where speech of around 70 s recorded in two
strated in the next section. . : . . -
sessions is used, and the single-session training, where speech
of around 40 s recorded in a single session is used, to train
49 GMMs of 32 mixture components (the same structure is used
In this section, we present comparative results on the KIN@[22]). Obviously, the data recorded in multiple sessions cover
speech corpus [5] to demonstrate the effectiveness of aunore variabilities than that contained in a single session. To
method proposed in Section IlI. capture the interspeaker information from the output space of
This corpus consisting of wide-band and narrow-band setsG81Ms, a three-layered perceptron consisting of 49 input nodes,
a benchmark acoustic database especially for text-independ@hidden nodes, and 49 output nodes is employed based on a
speaker identification. The wide-band set was collected withceoss-validation procedure. A portion of training data and an al-
high quality microphone in a quiet room, while the narrow-banigrnative session constitute an original validation set, as a basis,
set was collected by telephone handset through a long distateérain the neural network. For each speaker, speech segments

IV. SIMULATIONS
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of this validation set are selected actively by our query-based TABLE |

learning algorithm to form a new validation set for better gener- THE LITSRTAst &gggméog;)'“ TEN
alization. To simplify the presentation, the resulting validation

set consisting of 60 speech segments (about 15 s) by active se- Triall Tral2 Trial3 Triald  Trials

lection is denoted as AV60, and another resulting validation set

consisting of 80 speech segments (about 18 s) by random se-

lection is denoted as RV80. Thus, all the remaining utterances

in this database are used for test. In addition, such a simula-

tion is repeated by the use of data belonging to different ses- Trial 6 Trial7 Tral8 Trial9 Trial10

sions for reliability. Totally, ten trials are performed,; five forthe = Training set s01 503 506 809 510

two-session training and five for the single-session training. In ~ Validation set 801, 806 501, S03 501, S06 S01, S09 501, 810

each trail, different sessions are chosen to form a training set

and an original validation set. As a result, constitutions of ten

trials are listed in Table I. For comparison, moreover, we alé@st to the random selection. In general, more data or queries

train another three layered perception consisting of 16 input, Wgely carry richer information unless appended data are redun-

hidden, and 49 output nodes (a cross-validation method has bé@nt. Apparently, our simulation results are consistent with this

adopted for model selection) directly on the original validatioftatement; i.e., as the number of samples (queries) increases,

set without active learning. the performance is improved no matter which kind of selection
Fig. 3 depicts an example to demonstrate how our methtsgused.

works during testin trial 1. All the speech segments belonging toFid- 5 shows the overall performance of all trials by averaging

speaker 1 on testing sets are fed to the GMM-based and the iﬁi)e.ntifications rates of the GMM-based and our hybrid systems.

brid (RPER) systems. Misidentification caused by GMMs arfgPr explicit comparison, we group the results into two groups

that of the neural network are illustrated in Fig. 3. This examplB terms of training duration; one for those trails of the single-

well demonstrates how misidentification caused by six GMMEESsion training and the other for those trails for the two-ses-

has been lowered by the three-layered perceptron to differ§itn training. Itis evident from Fig. 5 that our hybrid systems,
extents. trained with short training duration (40 s) of a single session,

Now we report the detailed testing results in trail qraise the averaging identification rate up to 4.1% in contrast to
Table Il summarizes identification rates of the MLP-base{f!¢ GMM-based method. Similarly, our hybrid systems, trained
GMM-based, and our hybrid systems on different testing Sé_/gl_t_h longer training duration (70 s) of two sessions, also result
sions. From Table I, we observe that the MLP-based speak&fmprovements. _
identification system performs quite poor since the MLP, Fpr further comparison, we also use testing speech segments
working directly on the speech feature space, could encountétflifferent lengths to evaluate the performance of the GMM-
more complicated decision-making problem along with the cdtased and hybrid systems. Fig. 6. illustrates m|S|dent|'f|cat|'o'n
astrophic or cross-talk effects during training. It is evident frofift€s of the GMM-based and hybrid (RPER) speaker identifi-
simulation results that our hybrid systems outperform both ti§&tion systems as testing lengths vary from 1.6 to 8.0 s for com-
MLP-based and GMM-based speaker identification Systerﬁgnson.From Fig. 6, our method re§ult5|n continuous improve-
no matter which target encoding scheme is used. In particulB}ents regardless of lengths of testing speech segments.

our RPER encoding scheme leads to better generalization fof inally, we compare the CPU time for training two hybrid
the three-layered perceptron in contrast to the H-ehcoding Systems with that for training the MLP-based and GMM-based

scheme. Note that the neural network trained with the $-ofSystems. The two hybrid (RPER) systems are based on RV80
encoding scheme sometimes does not improve the performafigd AV60, respectively. Fig. 7 illustrates training time taken by
of the GMM-based speaker identification system, such as féifferent methods. From Fig. 7, it is observed that the hybrid
utterances in sessio¥®7 andS10, while our encoding scheme Systéms take much shorter time than an MLP-based system. It
consistently leads to improvements in all the sessions. THPlies that our method provides a more efficient way to use
result empirically shows that our encoding method alleviat@§ural networks for speaker identification though other efforts
the catastrophic effects during training. From the comparatig@n P& made as well to reduce the computational load, e.g., the
results of the hybrid systems based on AV60 and RV80, it Y¢orkin [13] and [21]. Itis observed that the active selection by
shown that the active selection by our query-based learnifyf duery-based learning algorithm spends slightly longer time
algorithm achieves better overall performance than randdhftn the random selection. Nevertheless, it appears logical be-
selection. By our active selection, fewer training data are usg@Use €ach query in our active selection is produced by calcu-
but yield higher identification rates. lating the outputs of all unused samples in input space but such
To demonstrate the role of our active learning in more d&&lculation is not needed in the random selection.
tail, Fig. 4 depicts the evolutionary identification process as the
number of queries increases. For comparison, the same prods&esults on Narrow-Band Set
by a random selection is also shown in Fig. 4. It is observedIn the narrow-band set, the limited bandwidth and distorted
from Fig. 4 that the active learner performs similar to a randotransmission channel cause speech quality to be degraded se-
selection initially. After 25 queries, however, the active learnaerely. In particular, there are differences in spectral characteris-
achieves the considerably lower misidentification rates in coties between sessio$1-505 and sessionS06—510, because

Training set 501, S02 S03, S04 S05, S06  S07, S08  S09, S10
Validation set S02, S03 501, 503 S01, S06 SO01, S07 S01, S09
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Fig. 3. Misidentification rates of the GMM-based and the Hybrid (RPER) systems for all the testing utterances belonging to speaker 1 (wideribhh}l set, t
(a) Misidentification rates produced by the GMM-based speaker identification system. (b) Misidentification rates produced by the Hybrid @R&R) sy

TABLE I ' ' ' ' ' '
IDENTIFICATION RATES (%) OF THE MLP-BASED, GMM-BASED, AND A
OUR HYBRID SPEAKER IDENTIFICATION SYSTEMS FORTESTING
SPEECHSEGMENTS OF8 s (WDE-BAND SET, TRIAL 1)

Method Validation Testing Set -1
Set S04 8505 S06 S07  S08  S09  S10  Average

MLP 75.23 70.05 60.10 61.47 63.26 55.64 60.92 63.81 1

GMM 89.61 90.76 87.58 91.21 91.46 84.97 93.00 89.79

Hybrid (1-0f-S) RV80 89.79 94.29 87.89 90.78 92.14 86.34 91.51 90.39
Hybrid (RPER) RV80 9146 9643 88.67 91.35 93.65 89.39 94.14 92.15

Misidentification Rate (%)

Hybrid (RPER} AV60 92.20 96.43 89.97 91.72 91.68 90.97 93.63 92.37 9 F 3"“% g
x)‘)‘esé*xmxxxxxxxxxxx&xxx Wi
7L Active ]
speech is passed through different local telephone channels s
Signal-to-noise ratio (SNR) for sessiof86—-510 is about 10 \ . . . , .
dB worse than that for sessio§91-505. 10 20 30 40 50 60 70 80
For simulations on the narrow-band set, we adopt a prept Number of Queries

cessing procedure similar to that for the wide-band set. More-

over, the mean subtraction technique [22] is applied in prepr'ag- 4. Overall_misidentifiqation rates of hy_brid (RPER) speaker identificatio_n
. d th ighted Mel led t is furth sysfem on testing sets (wide-band set, trial 1) by our query-based learning
cessing an € weighte el-scaled cepstrum 1Is further u rithm and a random selection as the number of queries increases. Here,

for feature extraction [14], which results in the robustness #peech segments of 8 s are used for test.
noise and degraded speech.

There are 51 speakers with all ten sessions used in our simwlierances recorded in sessidf®, S06, and.S07 constitute a
tions. In our simulations, two trials are performed. Accordinglyraining set of the same duration. In two trails, a three-layered
51 GMMs of 32 mixture components are employed to modpkerceptron consisting of 51 input nodes, 60 hidden nodes, and
these speakers. In trial 1, utterances of 100 s recorded in s&k-output nodes is employed to capture the interspeaker infor-
sions S01, 502, and S03 are used to train GMMSs. In trial 2, mation based on the original validation set consisting of speech
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ElHybrid gl~of-S;

GGMM Ar
B Hybrid (RV80) 2 Hybrid (AV60

MLP

94

91.79 92.08

Hybrid (AV60)

CPU Time (hours)

GMM Hybrid (RV80)

Identification Rate (%)

Speaker Identification System

70 seconds

Fig. 7. The CPU time for training of the MLP-based, GMM-based, and

hybrid (RPER) speaker identification systems in terms of the two-session

training (wide-band set).

Fig. 5. Overall identification rates of GMM-based and Hybrid speaker

identification systems based on GMMs trained with speech of different lengths

in terms of the two-session and the single-session training (wide-band set). TABLE Il

Here, speech segments of 8 s are used for test. IDENTIFICATION RATES (%) OF THE MLP-BASED, GMM-BASED, AND

OUR HYBRID SPEAKER IDENTIFICATION SYSTEMS FORTESTING
SPEECHSEGMENTS OF8 s (NARROW-BAND SET, TRIAL 1)

Training Speech Length

22
Method Validation Testing Set
20 |- e Set S04 805 S07  S08  S09  S10  Average
MLP 51.49 50.48 46.62 45890 4471 4184  46.83
18 . GMM 88.12 72.50 47.40 60.41 61.90 62.67  65.50
Hybrid (1-0f-S) RVS0 | 8547 73.29 51.12 62.95 69.78 69.51 68.68
16 - Hybrid (RPER) RV80 |88.21 75.68 57.87 67.04 69.33 67.18 70.88
Hybrid (RPER) AVE0 | 8821 79.28 63.01 6494 70.13 70.65 72.69

12 - TABLE IV
IDENTIFICATION RATES (%) OF THE MLP-BASED, GMM-BASED, AND
- OUR HYBRID SPEAKER IDENTIFICATION SYSTEMS FORTESTING

SPEECHSEGMENTS OF8 s (NARROW-BAND SET, TRIAL 2)

Misidentification Rate (%)
=
T

10 |

8 [ 4
Method Validation Testing Set

6 1 1 i 1 1 1 1 1 ! Set S02 S03 S04 S08  S09  S10  Average

1.6 24 32 4 4.8 5.6 6.4 7.2 8 MLP 51.23 52.32 6019 5334 47.98 4826 5255

Testing Speech Segment Length (seconds) GMM 60.45 T70.91 77.08 77.22 72.62 6881  7L18

Hybrid (1-0f-S) RVB0 |67.03 73.19 8249 77.47 7354 7336 7451

Fig. 6. Overall misidentification rates of the GMM-based and the hybrid ~ fybrid (RPER) || RVE0 | 70.37 76.26 8261 79.61 7440 73.62 7615

(RPER) speaker identification systems in terms of different testing speech Hybrid (RPER) | AV60 | 7271 78.58 8661 8330 7546 79.87  79.42

segments spanning from 1.6 to 8.0 s (wide-band set, ten trials).

For overall performance in two trials, Fig. 8 depicts the aver-
2 ing misidentification rates of the GMM-based and our hybrid
félgER) systems as testing lengths vary from 1.6 to 8.0 s. Ap-
’Soeagently, our method consistently results in significant improve-
. . - {réents. For further comparison between our active learning and
speaker identification system of the structure consisting of C ; . . .
; ) random selection in trail 1, we also show their evolutionary iden-
input, 40 hidden, and 51 output nodes. o L .

Tables 1l and IV e identificati ¢ ¢ tification process in Fig. 9. Although both active and random

aoles an summarize dentimeation rates of Ul ection can reduce the misidentification rates as the number

hybrid systgms on testing sets in two trails along with thgf gueries increases, our active selection method leads to better
corresponding results of the MLP-based and GMM-bas %neralization on this noisy database
; .

systems for comparison. It is evident for simulation results th
our hybrid (RPER) systems lead to significant improvements
in comparison with the MLP-based, GMM-based and hybrid
(1-of-S) systems, even though the SNR in some sessions, e.g\We have presented a novel connectionist method to improve
sessionS07, is lower than 20 dB. Moreover, simulation result® model-based speaker identification system by introduction of
indicate that our query-based learning algorithm perfornisterspeaker information. Simulation results on the KING data-
better than random selection, even with fewer training data (6@se show that our method leads to a considerable improvement
segments by our active selection versus 80 segments by fimea GMM-based speaker identification system. The proposed
random selection). encoding scheme based on interspeaker information results in

belonging to session$01 and.S06. Similarly, our query-based
learning algorithm is used to form a new validation set duri
training. Other six sessions are used for test. For comparison
same training setin each trail is also used to train an MLP-ba

V. CONCLUSION
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Essentially, our method can be viewed as an application of
the stack generalization principle in machine learning [29]. In
this sense, the methodology presented in this paper provides a
framework to reduce misidentification in speaker identification
by the use of interspeaker information regardless of the compu-
tational apparatus used in this paper. Our earlier work indicated
that the use of alternative computational apparatus under this
framework yields the satisfactory result [1]. On the other hand,
the idea underlying our methodology could be also extended
to handle some acoustic modeling problems; e.g., our method
is expected to yield better discrimination between two similar
phonemes.
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