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Capture Interspeaker Information With a
Neural Network for Speaker Identification
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Abstract—Model-based approach is one of methods widely
used for speaker identification, where a statistical model is used
to characterize a specific speaker’s voice but no interspeaker
information is involved in its parameter estimation. It is observed
that interspeaker information is very helpful in discriminating be-
tween different speakers. In this paper, we propose a novel method
for the use of interspeaker information to improve performance
of a model-based speaker identification system. A neural network
is employed to capture the interspeaker information from the
output space of those statistical models. In order to sufficiently
utilize interspeaker information, a rival penalized encoding rule is
proposed to design supervised learning pairs. For better general-
ization, moreover, a query-based learning algorithm is presented
to actively select the input data of interest during training of the
neural network. Comparative results on the KING speech corpus
show that our method leads to a considerable improvement for a
model-based speaker identification system.

Index Terms—Interspeaker information, KING speech corpus,
model-based method, neural networks, query-based learning algo-
rithm, rival penalized encoding scheme, speaker identification.

I. INTRODUCTION

T HE goal of speaker identification is to automatically deter-
mine a speaker’s identity by his/her voice among a pop-

ulation. It is widely applied to many fields from confidential
data access to audio indexing in multimedia [14]. In general,
a speaker identification system may be either text-dependent,
where the same text is required for both training and test, or
text-independent, where arbitrary text is allowed to utter.

Speech is a dynamic acoustic signal with many variations,
where both interspeaker and intraspeaker variabilities are highly
correlated with speaker identification problem. For interspeaker
variability, a primary source is physiological differences, e.g.,
vocal tract shape and length, between different speakers, which
could be encoded in acoustic aspect of speech. On the other
hand, person’s manner of speech, e.g., word usage, is another
source to induce some interspeaker variabilities. However, such
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a feature is too mysterious to extract from acoustic signals. For
intraspeaker variability, it refers to the differences in speaking
style [19], including speech rate, stress, voice quality, and tem-
poral variation. In reality, there exist quite different spectral
characteristics for the same words produced by the same speaker
on different conditions. For speaker identification, the primary
objective is to capture interspeaker variabilities, while accom-
modating intraspeaker variabilities.

Sophisticated methods for a speaker identification system,
particularly in the text-independent style, include vector quan-
tization (VQ) [4], [14], [26], hidden Markov model (HMM)
[4], [6], and Gaussian mixture model (GMM) [22], [24]. These
methods could be summarized as the so-calledmodel-based ap-
proach; for each speaker a parametric statistical model is created
to characterize the speaker’s voice, but other speakers’ informa-
tion is not considered in building such a model. For a specific
speaker, ideally, his/her statistical model should always yield
the highest likelihood score for his/her own utterances. In re-
ality, however, intraspeaker variabilities may prevent a statis-
tical model from characterizing speaker’s voice perfectly based
on only a limited duration of voice. Since interspeaker variabil-
ities are not emphasized effectively by those statistical models,
the mismatch due to miscellaneous variabilities may lead to
misidentificationthat utterances belonging to a specific speaker
are wrongly identified as belonging to another speaker. As the
population of speaker candidates increases, such misidentifica-
tion is more severe such that the performance of a model-based
speaker identification system can be highly degraded.

To improve the performance of such a system, some efforts
have been made by considering interspeaker information in pre-
vious studies. As a consequence, some normalization methods
have been proposed through the use of a cohort model to over-
come intraspeaker variabilities [18], [16], [23], [25]. For a spe-
cific speaker, his/her cohort model is created based on the data
belonging to a group of speakers who have similar characteris-
tics in speech. To some extent, information on interspeaker vari-
abilities is somehow conveyed in the cohort model and, there-
fore, is helpful in discriminating between different speakers in
an indirect way. Since a cohort model is highly associated with a
specific speaker, such a normalization method is mostly used for
speaker verification where an identity claim is available. There-
fore, it is inconvenient to speaker identification.

In previous studies, connectionist approaches have been ap-
plied to build speaker identification systems [2], [3], [7], [9],
[13], [21] where a neural-network model is typically used to
characterize all the speakers’ voice in a given set. In this circum-
stance, the input space of a neural network is composed of fea-
ture vectors extracted from acoustic signals belonging to all the

1045-9227/02$17.00 © 2002 IEEE



WANG et al.: CAPTURE INTERSPEAKER INFORMATION WITH A NEURAL NETWORK 437

speakers, while the outputs are usually labels of corresponding
speaker identities. Although interspeaker information is con-
sidered for modeling, phonetic features underlying speakers’
voice are more difficult to be captured, due to the catastrophic
or cross-talk effects of interaction among a huge number of
synaptic weights during training in contrast to a model-based
approach. On the other hand, there are a large amount of training
data since a neural network usually works directly on the speech
feature space, which results in a heavy computational burden,
and thus, prevents the application of a neural-network based
speaker identification system in practice. In general, speaker
identification is a typical multicategory pattern classification
task. Theoretically, any multicategory classification task can be
decomposed into a set of binary classification subtasks, where
each subtask is to discriminate between the data belonging to
a specific class and all the others. By this fact, some connec-
tionist methods have been proposed by constructing a set of
neural networks with binary outputs for speaker identification
[13], [21]. Indeed, those neural networks of binary outputs may
work in a parallel way, which speeds up training. However, such
methods have to encounter the training dataunbalanceproblem
that the available data belonging to a specific speaker are often
much fewer than those of others during training. This bias could
cause the performance of such a system to be degraded. On
the other hand, modular neural-network methodologies [2], [7],
[9] have been proposed to automatically decompose a compli-
cated speaker identification task, which yields the better perfor-
mance and fast training. However, the modular neural-network
methods may suffer the catastrophic effects due to high dimen-
sionality of the speech feature space such that interspeaker in-
formation still cannot be sufficiently utilized.

Our observation indicates that exploiting direct cross-
relationship among different statistical speaker models, which
we refer as tointerspeaker information, provides a feasible way
to lower misidentification [1]. Unlike previous approaches, we
propose a novel connectionist method for the use of interspeaker
information to improve the performance of a model-based
speaker identification system. In our method, a neural network
is employed to capture interspeaker information from the
output space of those statistical speaker models, which forms
a hybrid system consisting of statistical models and neural
apparatus. The basic idea underlying our method is to build a
mapping between the misidentification caused by statistical
speaker models and their correction. To utilize interspeaker in-
formation sufficiently, arival penalized encoding rule(RPER)
is proposed to design supervised learning pairs for training the
neural network. In contrast to traditional connectionist speaker
identification systems, the neural network in our system works
on the output space of statistical speaker models rather than the
speech data space.

Active learning is an effective way to improve the generaliza-
tion capability of a learner [10], [11], [15], [17], [20], [27]. Mo-
tivated by the idea of large-margin classifiers [28], we present an
alternative query-based learning algorithm to actively select the
input data of interest during training for better generalization.
Unlike the previous query-based learning methods, our method
always selects the data conveying maximal information in terms

of a measure defined by ourselves. Thus, the neural network in
our hybrid system is no longer a passive learner.

For evaluating the effectiveness of our method, we adopt the
KING speech corpus consisting of wide-band and narrow-band
sets, a benchmark for speaker recognition [5], in simulations.
Comparative results show that our method leads to a consider-
able improvement, in particular, for the narrow-band set.

The remainder of this paper is organized as follows. Section II
reviews the GMM-based speaker identification scheme. Sec-
tion III presents our methodology. Section IV reports simulation
results on the KING speech corpus. Conclusions are drawn in
Section V.

II. GMM-B ASED SPEAKER IDENTIFICATION

As a typical model-based approach, GMM has been used
to characterize speaker’s voice in the form of probabilistic
model. It has been reported that the GMM approach outper-
forms other classical methods for text-independent speaker
identification [8], [22]. In this section, we briefly review the
GMM-based speaker identification scheme that will be used in
our simulations.

For a feature vector denoted as belonging to a specific
speaker , the GMM is a linear combination of Gaussian
components as follows:

(1)

where is a Gaussian component parameter-
ized by a mean vector, , and covariance matrix, , and

is a linear combination coefficient for speaker
. Usually, a diagonal covariance matrix is used in

(1). Given a sequence of feature vectors, ,
from a specific speaker’s utterances, parameters estimation for

is per-
formed by the expectation-maximization (EM) algorithm. Thus,
a specific speaker model is built through finding proper param-
eters in the GMM based on the speaker’s own feature vectors.

To evaluate the performance, a sequence of feature vectors
is divided into overlapping segments of feature vectors for
identification [22]

For a test segment , the log-like-
lihood function of a GMM is as following:

(2)

Thus, the segment, , is assigned to a label of registered
speakers, , on the basis of the maximum likelihood principle;
that is

(3)
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III. M ETHODOLOGY

In this section, we present our methodology on how to use
the interspeaker information to improve the performance of a
model-based speaker identification system. We first give our
motivation based on the GMM-based speaker identification
scheme. Then, we present our method for capturing inter-
speaker information with a neural network. For improving
generalization, we further propose a query-based learning
algorithm for training a neural network. All the technical
components mentioned above constitute our methodology.

A. Motivation

As pointed out in the introduction, misidentification for a
GMM may result from limited training data and possible flaws
in a learning process. These factors cause a GMM not to model
speaker’s characteristics perfectly such that misidentification
can occur on a mismatch condition. To indicate this problem,
we first demonstrate the performance of a GMM-based speaker
identification system. A training set is used to train each GMM
for a set of speakers, and an alternative data set recorded in an-
other session, hereinafter calledvalidation set, is used to ob-
serve the variation of those GMMs’ likelihood values. To sim-
plify presentation, we assume that the likelihood values of a
GMM are subject to the Gaussian distribution

(4)

Here are the likelihood values defined in (2) for a specific
speaker model . and are their mean and variance that
can be estimated based on either a training or a validation set.

Now we take an example to present our points. For utter-
ances belonging to speaker 1, their feature vectors are fed to
different speaker models. Fig. 1 illustrates distribution of likeli-
hood values produced by three speaker models, , and ,
denoted by , and , respectively.
For utterances in the training set, it is observed in Fig. 1(a) that
the distribution of likelihood values corresponding to the true
speaker model, , is separated from that of others. It indicates
that speaker 1 is always correctly identified in terms of utter-
ances in his/her training set. For utterances in the validation set,
however, such a result does not remain, as illustrated in Fig. 1(b).
In this circumstance, the overlap between the and

implies that some utterances belonging speaker 1
may be wrongly identified as belonging to speaker 26, according
to the decision strategy defined in (3). Such misidentification is
unavoidable in reality but provides one kind of interspeaker in-
formation in terms of a validation set. In order to improve the
performance of a model-based speaker identification system,
how to utilize interspeaker information is an open problem. In
the sequel, we present a neural-network method to capture such
interspeaker information.

B. Capture interspeaker Information With a Neural Network

Prior to the presentation of our method, we first present a
schematic diagram of our hybrid system, consisting of GMMs
and a neural network, in Fig. 2 in order to understand our method
better. In Fig. 2, GMMs are employed to characterize speakers

(a)

(b)

Fig. 1. Distribution of likelihood values (scores) corresponding to three
speaker models,� ; � , and� , denoted asP (L j� ) (solid line),P (L j� )
(dashed line), andP (L j� ) (dotted line) for utterances belonging to speaker
1. (a) Distribution estimated on a training set. (b) Distribution estimated on a
validation set (different from the training set).

in terms of their voice, while the neural network is used to lower
misidentification made by GMMs through the use of inters-
peaker information. As a consequence, our system is trained in
a two-stage way. Assume that there arespeakers registered
in the system. In the first stage, speaker models are created
with GMMs based on a training set, where one GMM models a
speaker. In the second stage, a neural network, working on the
output space of GMMs, is employed to take advantage of the
aforementioned interspeaker information conveyed in the output
space of GMMs based on a validation set. During training, the
neural network tends to learn how to lower misidentification
resulting from GMMs in a supervised learning way. Once the
two-stage learning is finished, the system, working in a cascade
way, is applicable to any unknown voice token in a testing set for
decision-making, as shown in Fig. 2. In the sequel, we present a
systematic methodology to establish such a system for speaker
identification.

For the use of interspeaker information, our idea is to build
a mapping between misidentification and its correction by a
neural network in terms of a validation set. In doing so, the re-
maining task is how to design supervised learning pairs based
on the validation set for training the neural network.

Assume that there are totalspeech segments belonging to
speakers in the validation set. For a speech segment,

, all the GMMs, , produce a set
of likelihood values . Thus we as-
semble these likelihood values into an input vector to the neural
network, , via the following nor-
malization:

(5)
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Fig. 2. The schematic diagram of our hybrid speaker identification system.

where . The above
normalization is designed to facilitate training of the neural
network.

In order to discriminate between different speakers, it is de-
sirable that misidentification yielded by GMMs [cf. Fig. 1(b)] is
corrected while those right decisions made by GMMs keep un-
changed. In other words, the target output of the neural network
should be the right label for an input speech segment no matter
what GMMs outputs are. Traditionally, the target output is en-
coded according to the one-of-scheme, where theth element
of the target vector equals one if the input belongs to speaker

and other elements equal zero. Recent studies showed that an
efficient encoding scheme for target outputs could improve the
generalization capability of a neural network [12]. Motivated by
this work, we utilize interspeaker information on misidentifica-
tion to design an encoding scheme for target outputs in super-
vised learning pairs.

To acquire interspeaker information on misidentification, we
define aconfusion matrixthat properly describes both classifi-
cation and misidentification results by GMMs on a validation
set. The confusion matrix, CM, is in the following form:

...
...

...
...

Here denotes the number of the speech segments belonging
to speaker but assigned to speakerby GMMs according to
the decision strategy in (3). On the basis of the confusion matrix,
we derive a conditional probability of misidentification that all
the utterances, , belonging to speakeris assigned to speaker

(6)

Here, is viewed as the misidentification rate
of a model-based speaker identification system in terms of ut-
terances belonging to a specific speaker. Thus, the confusion
matrix (CM) provides the interspeaker information via the con-
ditional probability, .

On the basis of the conditional probability, the target output
in supervised pairs is designed accordingly as follows:

if
if
otherwise

(7)

Equation (7) suggests a new encoding scheme, hereinafter
calledrival penalized encoding rule(RPER), based on inters-
peaker information. That is, theth element in the target vector
is assigned to for an input vector resulting from any
utterance belonging to speaker. Thus, our encoding scheme
tends to punish those GMMs resulting in misidentification
while the correct decisions made by the GMMs remain.

In such an encoding scheme, target vectors are distinct to
ensure that each speaker class has an unique target codeword

. In contrast to the one-of-en-
coding scheme, moreover, the Hamming distance of codewords
between the true speaker’s and the impostor’s is enlarged
such that the misidentification by GMMs could be corrected
more effectively. Based on the supervised learning pairs given
above, the activation function of the neural network should
be the hyperbolic tangent function. Here, we emphasize that
our encoding scheme punishes only those GMMs leading to
misidentification in terms of the decision strategy in (3) and
distinguishes from the traditional one-of-encoding scheme
where all the components except the right one are punished.

In terms of our RPER encoding scheme, the decision strategy
of the neural network during testing is as follows. Given an
unknown speech segment, the neural network yields an output
vector, , via the outputs of GMMs. Then the
distance between the output vector and each target codeword

, needs to be calculated by the distance
measure as

(8)

On the basis of the minimal distance, the unknown speech seg-
ment is assigned to a label of registered speakers,, i.e.,

(9)
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C. A Query-Based Learning Algorithm for Active Learning

In empirical studies on our method above, we find that a val-
idation set plays an important role for sufficient use of inters-
peaker information with a neural network. However, neural net-
work is traditionally treated as a passive learner with randomly
chosen inputs, which might limit the generalization capability of
our method. Recent studies [11], [15] showed that query-based
learning could be used for active learning. The basic idea un-
derlying the query-based learning is that the next input depends
on those used previously so as to improve the generalization
ability of the learner. For our purpose, we present a query-based
learning algorithm to actively select the input data of interest
during training.

In the query-based learning, new queries are chosen ac-
cording to some heuristics. One useful hint is to choose those
queries that maximize the expected information content, e.g.,
work in [15], [27]. Motivated by the idea, we select those
input data around the decision boundaries as the candidates
of next queries since these samples have uncertainty in de-
cision-making and, therefore, they could provide maximal
information in determining the correct decision boundaries.
As argued in the statistical learning theory [28], such samples
likely play a more important role in generalization.

As a consequence, our query-based learning algorithm is de-
scribed as follows.

1) Train the neural network first on the output space of
GMMs by using 10% samples randomly selected from
a given validation set.

2) For each remaining sample belonging to speakerin the
validation set, , the neural network
trained in step 1) yields an output vector . Calculate
the distance between the output and the target codeword
corresponding to speaker , in terms of (8).

3) Select the sample of maximal distance as next query,
which could characterize the shape of decision bound-
aries

4) Append the selected data to the validation set and retrain
the neural network on the resulting validation set.

5) Repeat steps from 2) to 4) until the prespecified number
is reached.

Through the data selection by our query-based learning al-
gorithm, a new validation set is formed for training the neural
network, which could lead to better generalization as demon-
strated in the next section.

IV. SIMULATIONS

In this section, we present comparative results on the KING
speech corpus [5] to demonstrate the effectiveness of our
method proposed in Section III.

This corpus consisting of wide-band and narrow-band sets is
a benchmark acoustic database especially for text-independent
speaker identification. The wide-band set was collected with a
high quality microphone in a quiet room, while the narrow-band
set was collected by telephone handset through a long distance

telephone channel. In each set, all speakers are male and ten
sessions for each speaker were recorded from a week to a month
apart. It is reported [5] that some data in the wide band set were
unfortunately missing, which results in different population in
two sets.

As handled in [22], the preprocessing for the text-independent
speaker identification system is performed as follows: 1) pre-
emphasizing with filter response ; 2) 32 ms
Hamming windowing without overlapping; 3) removing the si-
lence and unvoiced part of speech in terms of short-term average
energy; and 4) extracting 16-order Mel-scaled cepstral feature
vector from each short-term frame. All the simulations are per-
formed on a PC (Pentium III 500) of the Microsoft Windows’98
platform.

Results in [8], [22], and [24] indicate that GMM performs
quite well for text-independent speaker identification. In simu-
lations, we adopt GMM as a representative of model-based ap-
proaches to build a model-based speaker identification system.
Then a three-layered perceptron is employed to capture inters-
peaker information from output space of GMM. For compar-
ison, a neural-network based speaker identification system is
also built, where a multilayer perceptron (MLP) is created based
on feature vectors extracted from utterances of all the speakers
in the original validation set without active learning.

The performance of speaker identification systems in this
paper is defined as misidentification and identification rates,
i.e.,

Misidentification Rate
# incorrectly identified segments

# total testing segments
%

Identification Rate % Misidentification Rate

In simulations, testing speech segments of a specific length
are adopted to evaluate the overall performance of the MLP-
based, GMM-based, and our hybrid speaker identification sys-
tems. In order to demonstrate the effectiveness of the RPER
method, we also use the 1-of-encoding scheme in our hybrid
systems to train the three-layered perceptron. For comparison,
moreover, a new validation set is dynamically produced by our
query-based learning algorithm, while random selection is used
during training.

A. Results on Wide-Band Set

In simulations on the wide-band set, we use utterances of
49 speakers collected in all ten sessions,– , for experi-
ments. For evaluating our method thoroughly, we adopt the two-
session training, where speech of around 70 s recorded in two
sessions is used, and the single-session training, where speech
of around 40 s recorded in a single session is used, to train
49 GMMs of 32 mixture components (the same structure is used
in [22]). Obviously, the data recorded in multiple sessions cover
more variabilities than that contained in a single session. To
capture the interspeaker information from the output space of
GMMs, a three-layered perceptron consisting of 49 input nodes,
60 hidden nodes, and 49 output nodes is employed based on a
cross-validation procedure. A portion of training data and an al-
ternative session constitute an original validation set, as a basis,
to train the neural network. For each speaker, speech segments
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of this validation set are selected actively by our query-based
learning algorithm to form a new validation set for better gener-
alization. To simplify the presentation, the resulting validation
set consisting of 60 speech segments (about 15 s) by active se-
lection is denoted as AV60, and another resulting validation set
consisting of 80 speech segments (about 18 s) by random se-
lection is denoted as RV80. Thus, all the remaining utterances
in this database are used for test. In addition, such a simula-
tion is repeated by the use of data belonging to different ses-
sions for reliability. Totally, ten trials are performed; five for the
two-session training and five for the single-session training. In
each trail, different sessions are chosen to form a training set
and an original validation set. As a result, constitutions of ten
trials are listed in Table I. For comparison, moreover, we also
train another three layered perception consisting of 16 input, 40
hidden, and 49 output nodes (a cross-validation method has been
adopted for model selection) directly on the original validation
set without active learning.

Fig. 3 depicts an example to demonstrate how our method
works during test in trial 1. All the speech segments belonging to
speaker 1 on testing sets are fed to the GMM-based and the hy-
brid (RPER) systems. Misidentification caused by GMMs and
that of the neural network are illustrated in Fig. 3. This example
well demonstrates how misidentification caused by six GMMs
has been lowered by the three-layered perceptron to different
extents.

Now we report the detailed testing results in trail 1.
Table II summarizes identification rates of the MLP-based,
GMM-based, and our hybrid systems on different testing ses-
sions. From Table II, we observe that the MLP-based speaker
identification system performs quite poor since the MLP,
working directly on the speech feature space, could encounter a
more complicated decision-making problem along with the cat-
astrophic or cross-talk effects during training. It is evident from
simulation results that our hybrid systems outperform both the
MLP-based and GMM-based speaker identification systems
no matter which target encoding scheme is used. In particular,
our RPER encoding scheme leads to better generalization for
the three-layered perceptron in contrast to the 1-of-encoding
scheme. Note that the neural network trained with the 1-of-
encoding scheme sometimes does not improve the performance
of the GMM-based speaker identification system, such as for
utterances in sessions and , while our encoding scheme
consistently leads to improvements in all the sessions. This
result empirically shows that our encoding method alleviates
the catastrophic effects during training. From the comparative
results of the hybrid systems based on AV60 and RV80, it is
shown that the active selection by our query-based learning
algorithm achieves better overall performance than random
selection. By our active selection, fewer training data are used
but yield higher identification rates.

To demonstrate the role of our active learning in more de-
tail, Fig. 4 depicts the evolutionary identification process as the
number of queries increases. For comparison, the same process
by a random selection is also shown in Fig. 4. It is observed
from Fig. 4 that the active learner performs similar to a random
selection initially. After 25 queries, however, the active learner
achieves the considerably lower misidentification rates in con-

TABLE I
THE LIST OF CONSTITUTIONS IN TEN

TRAILS (WIDE-BAND SET)

trast to the random selection. In general, more data or queries
likely carry richer information unless appended data are redun-
dant. Apparently, our simulation results are consistent with this
statement; i.e., as the number of samples (queries) increases,
the performance is improved no matter which kind of selection
is used.

Fig. 5 shows the overall performance of all trials by averaging
identifications rates of the GMM-based and our hybrid systems.
For explicit comparison, we group the results into two groups
in terms of training duration; one for those trails of the single-
session training and the other for those trails for the two-ses-
sion training. It is evident from Fig. 5 that our hybrid systems,
trained with short training duration (40 s) of a single session,
raise the averaging identification rate up to 4.1% in contrast to
the GMM-based method. Similarly, our hybrid systems, trained
with longer training duration (70 s) of two sessions, also result
in improvements.

For further comparison, we also use testing speech segments
of different lengths to evaluate the performance of the GMM-
based and hybrid systems. Fig. 6 illustrates misidentification
rates of the GMM-based and hybrid (RPER) speaker identifi-
cation systems as testing lengths vary from 1.6 to 8.0 s for com-
parison. From Fig. 6, our method results in continuous improve-
ments regardless of lengths of testing speech segments.

Finally, we compare the CPU time for training two hybrid
systems with that for training the MLP-based and GMM-based
systems. The two hybrid (RPER) systems are based on RV80
and AV60, respectively. Fig. 7 illustrates training time taken by
different methods. From Fig. 7, it is observed that the hybrid
systems take much shorter time than an MLP-based system. It
implies that our method provides a more efficient way to use
neural networks for speaker identification though other efforts
can be made as well to reduce the computational load, e.g., the
work in [13] and [21]. It is observed that the active selection by
our query-based learning algorithm spends slightly longer time
than the random selection. Nevertheless, it appears logical be-
cause each query in our active selection is produced by calcu-
lating the outputs of all unused samples in input space but such
calculation is not needed in the random selection.

B. Results on Narrow-Band Set

In the narrow-band set, the limited bandwidth and distorted
transmission channel cause speech quality to be degraded se-
verely. In particular, there are differences in spectral characteris-
tics between sessions – and sessions – , because



442 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 2, MARCH 2002

(a)

(b)

Fig. 3. Misidentification rates of the GMM-based and the Hybrid (RPER) systems for all the testing utterances belonging to speaker 1 (wide-band set, trial 1).
(a) Misidentification rates produced by the GMM-based speaker identification system. (b) Misidentification rates produced by the Hybrid (RPER) system.

TABLE II
IDENTIFICATION RATES (%) OF THE MLP-BASED, GMM-BASED, AND

OUR HYBRID SPEAKER IDENTIFICATION SYSTEMS FORTESTING

SPEECHSEGMENTS OF8 s (WIDE-BAND SET, TRIAL 1)

speech is passed through different local telephone channels [5].
Signal-to-noise ratio (SNR) for sessions – is about 10
dB worse than that for sessions – .

For simulations on the narrow-band set, we adopt a prepro-
cessing procedure similar to that for the wide-band set. More-
over, the mean subtraction technique [22] is applied in prepro-
cessing and the weighted Mel-scaled cepstrum is further used
for feature extraction [14], which results in the robustness to
noise and degraded speech.

There are 51 speakers with all ten sessions used in our simula-
tions. In our simulations, two trials are performed. Accordingly,
51 GMMs of 32 mixture components are employed to model
these speakers. In trial 1, utterances of 100 s recorded in ses-
sions , and are used to train GMMs. In trial 2,

Fig. 4. Overall misidentification rates of hybrid (RPER) speaker identification
system on testing sets (wide-band set, trial 1) by our query-based learning
algorithm and a random selection as the number of queries increases. Here,
speech segments of 8 s are used for test.

utterances recorded in sessions , and constitute a
training set of the same duration. In two trails, a three-layered
perceptron consisting of 51 input nodes, 60 hidden nodes, and
51 output nodes is employed to capture the interspeaker infor-
mation based on the original validation set consisting of speech
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Fig. 5. Overall identification rates of GMM-based and Hybrid speaker
identification systems based on GMMs trained with speech of different lengths
in terms of the two-session and the single-session training (wide-band set).
Here, speech segments of 8 s are used for test.

Fig. 6. Overall misidentification rates of the GMM-based and the hybrid
(RPER) speaker identification systems in terms of different testing speech
segments spanning from 1.6 to 8.0 s (wide-band set, ten trials).

belonging to sessions and . Similarly, our query-based
learning algorithm is used to form a new validation set during
training. Other six sessions are used for test. For comparison, the
same training set in each trail is also used to train an MLP-based
speaker identification system of the structure consisting of 16
input, 40 hidden, and 51 output nodes.

Tables III and IV summarize identification rates of our
hybrid systems on testing sets in two trails along with the
corresponding results of the MLP-based and GMM-based
systems for comparison. It is evident for simulation results that
our hybrid (RPER) systems lead to significant improvements
in comparison with the MLP-based, GMM-based and hybrid
(1-of- ) systems, even though the SNR in some sessions, e.g.,
session , is lower than 20 dB. Moreover, simulation results
indicate that our query-based learning algorithm performs
better than random selection, even with fewer training data (60
segments by our active selection versus 80 segments by the
random selection).

Fig. 7. The CPU time for training of the MLP-based, GMM-based, and
hybrid (RPER) speaker identification systems in terms of the two-session
training (wide-band set).

TABLE III
IDENTIFICATION RATES (%) OF THE MLP-BASED, GMM-BASED, AND

OUR HYBRID SPEAKER IDENTIFICATION SYSTEMS FORTESTING

SPEECHSEGMENTS OF8 s (NARROW-BAND SET, TRIAL 1)

TABLE IV
IDENTIFICATION RATES (%) OF THE MLP-BASED, GMM-BASED, AND

OUR HYBRID SPEAKER IDENTIFICATION SYSTEMS FORTESTING

SPEECHSEGMENTS OF8 s (NARROW-BAND SET, TRIAL 2)

For overall performance in two trials, Fig. 8 depicts the aver-
aging misidentification rates of the GMM-based and our hybrid
(RPER) systems as testing lengths vary from 1.6 to 8.0 s. Ap-
parently, our method consistently results in significant improve-
ments. For further comparison between our active learning and
random selection in trail 1, we also show their evolutionary iden-
tification process in Fig. 9. Although both active and random
selection can reduce the misidentification rates as the number
of queries increases, our active selection method leads to better
generalization on this noisy database.

V. CONCLUSION

We have presented a novel connectionist method to improve
a model-based speaker identification system by introduction of
interspeaker information. Simulation results on the KING data-
base show that our method leads to a considerable improvement
for a GMM-based speaker identification system. The proposed
encoding scheme based on interspeaker information results in
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Fig. 8. Overall misidentification rates of the GMM-based and the hybrid
(RPER) speaker identification systems in terms of different testing speech
segments spanning from 1.6 to 8.0 s (narrow-band set, two trials).

Fig. 9. Overall misidentification rates of hybrid (RPER) speaker identification
system on different testing sets (narrow-band set, trial 1) by our active learning
and random selection as the number of queries increases. Here, speech segments
of 8 s are used for test.

better generalization in contrast to the traditional one-of-en-
coding scheme, and our query-based learning algorithm can dy-
namically generate an effective validation set by active learning,
which leads to better generalization. In addition, our method
yields faster training in contrast to those connectionist speaker
identification methods with classification directly on the speech
feature space. Thus, our method would provide a fast way to up-
date an speaker identification system once new speech data are
available.

Appending a new user is a substantial task for any realistic op-
erational system. It is unavoidable either in our hybrid system.
Unlike other connectionist speaker identification systems, it is
done in our method by appending a statistical speaker model and
retraining the neural network separately. Thus, an open problem,
how to update the neural network in our system fast, still re-
mains to be studied in the future, though this neural network
works on the output space of statistical speaker models where
fewer data are required for training.

Essentially, our method can be viewed as an application of
the stack generalization principle in machine learning [29]. In
this sense, the methodology presented in this paper provides a
framework to reduce misidentification in speaker identification
by the use of interspeaker information regardless of the compu-
tational apparatus used in this paper. Our earlier work indicated
that the use of alternative computational apparatus under this
framework yields the satisfactory result [1]. On the other hand,
the idea underlying our methodology could be also extended
to handle some acoustic modeling problems; e.g., our method
is expected to yield better discrimination between two similar
phonemes.
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