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Abstract—Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several

boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of

them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during

boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization

penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional

with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning.

Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in

comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss

relevant issues and relate our algorithm to the previous work.

Index Terms—Semi-supervised learning, boosting framework, smoothness assumption, cluster assumption, manifold assumption,

regularization.
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1 INTRODUCTION

TRADITIONALLY, machine learning is categorized as two
paradigms, i.e., supervised versus unsupervised learn-

ing. Supervised learning (SL) finds out a rule for the predictive
relationship between input and output from a set of finite
examples in the format of input-output pairs, while
unsupervised learning seeks a structure of interests under-
lying a data set. In general, SL requires many training
examples to establish a learner of the satisfactory general-
ization capability. The acquisition of training examples is
nontrivial for SL, which needs to annotate input data with
appropriate labels. In many practical applications, ranging
from data mining to machine perception, however, the
annotation of input data is often difficult, expensive, and
time-consuming, especially when it has to be done manually
by experts. On the other hand, there is often a massive
amount of unannotated data available. In order to exploit
unannotated data, semi-supervised learning (SSL) has become
a novel paradigm by using a large number of unannotated
points together with a small number of annotated examples
to build a better learner [31], [40], [9]. Since SSL needs less
human effort but could offer higher accuracy, exploiting
unannotated data to help SL has received a great deal of
attention from the machine learning community.

In SSL, especially semi-supervised classification, the
ultimate goal is to find out a classifier which not only
minimizes classification errors on the labeled examples, but
also must be compatible with the input distribution by
monitoring their values on unlabeled points [31], [40], [9]. To
work toward the goal, unlabeled data can be exploited in
various ways to discover how data are distributed in the
input space, and then the information acquired from the
unlabeled data is used to find out a good classifier. For
different problem settings, SSL is classified as two categories;
i.e., transductive learning (TL) and semi-supervised inductive
learning (SSIL). TL [37] concerns only the problem of
predicting the labels of test data given in advance based on
a labeled data set by taking both labeled and unlabeled data
together into account. In contrast, SSIL [18] is the problem of
learning a decision rule automatically from a training set
consisting of labeled and unlabeled data for other unseen
data. In this paper, we focus mainly on SSIL as is demanded
by many machine learning and pattern recognition tasks.

Recent studies have revealed that the success of SSL is
attributed to the fact that certain semi-supervised assumptions
(SSAs) hold for the data distribution [9]. As summarized in
[9], there are three fundamental SSAs: semi-supervised smooth-
ness, cluster, and manifold assumptions. The semi-supervised
smoothing assumption states that if two points in a high-
density region are close, then their corresponding labels
should be the same or consistent. The cluster assumption is
described as follows: If points are located in the same cluster,
they are likely to belong to the same class. In other words, the
decision boundary is likely to lie in a low data density region,
which is also referred to as the low-density separation
assumption. The manifold assumption states that the high-
dimensional data lies on a low-dimensional manifold whose
properties ensure more accurate density estimate and/or
more appropriate similarity measures.
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To work on the aforementioned SSAs, regularization has
been employed in SSL to exploit unlabeled data [18]. A
number of regularization methods have been proposed
based on a cluster or smoothness assumption, which
exploits unlabeled data to regularize the decision boundary
and therefore affects the selection of learning hypotheses
[20], [7], [34], [5], [8], [17]. Working on a cluster or
smoothness assumption, most of the regularization meth-
ods are naturally inductive. On the other hand, the
manifold assumption has also been applied for regulariza-
tion where the geometric structure behind labeled and
unlabeled data is explored with a graph-based representa-
tion. In such a representation, examples are expressed as the
vertices and the pairwise similarity between examples is
described as a weighted edge. Thus, graph-based algo-
rithms make good use of the manifold structure to
propagate the known label information over the graph for
labeling all nodes [3], [33], [21], [39], [6]. In nature, most of
such graph-based regularization algorithms are transduc-
tive, although they can be converted into inductive
algorithms with the out-of-sample extension [42]. Recently,
manifold regularization for inductive learning has also been
proposed by constructing a maximum-margin classifier,
along with penalizing the corresponding inconsistency with
the similarity matrix [1]. To our knowledge, there are only a
few algorithms with regularization working on three semi-
supervised assumptions simultaneously in literature [5], [8].

As a generic ensemble learning framework [27], boosting
works via sequentially constructing a linear combination of
base learners, which appears remarkably successful for SL
[16]. Boosting has been extended to SSL with different
strategies. Semi-supervised MarginBoost [14] and ASSEM-
BLE [2] were proposed by introducing the “pseudoclass” or
the “pseudolabel” concepts to an unlabeled point so that
unlabeled points can be treated as same as labeled examples
in the boosting procedure. In essence, such extensions work
in a self-training-like style; the unlabeled points are assigned
pseudoclass labels based on the constructed ensemble
learner so far, and, in turn, these pseudoclass labels will be
used to find a new learner to be added to the ensemble. As
pointed out in [19], such algorithms attempt to minimize
both labeled and unlabeled margin cost only. Thus, a
hypothesis can be very certain about the classification of
unlabeled points with very low margin cost even though
these unlabeled points are not classified correctly. The
cotraining idea [4] was also extended to boosting, e.g.,
CoBoost [13] and the Agreement Boost [23]. To our knowl-
edge, none of the aforementioned semi-supervised boosting
algorithms takes fundamental SSAs into account explicitly.

Recently, SSAs have been adopted to develop novel
boosting algorithms for SL and SSL. In [22], the graph
Laplacian regularizer was introduced into the marginal
AdaBoost for acquiring the manifold information to favor
base learners that are smoothing in a certain sense during
ensemble learning. This algorithm was originally proposed
for SL but can be extended to SSL [22]. In our previous work
[12], we proposed a generic regularizer working on semi-
supervised smoothness and manifold assumptions and
applicable to several semi-supervised boosting algorithms
[13], [14], [2], [23]. However, this regularizer is independent
of the boosting margin cost functional, and thus leads to a
suboptimal boosting procedure for SSL. In addition, the

low-density separation assumption had yet to be investi-
gated, although the possibility of integrating it into the
regularizer was discussed [12]. More recently, novel semi-
supervised boosting algorithms have been developed based
on semi-supervised smoothness and manifold assumptions
for binary classification [24], [25] and multiclass classifica-
tion [36]. However, none of the aforementioned algorithms
has yet to take the low-density separation assumption,
another form of the cluster assumption, into account.
Alternatively, the expectation regularization principle has
recently been applied for developing regularized boosting
algorithms for SSL [29], [30].

In this paper, we extend our previous work [12] to a semi-
supervised boosting framework with regularization work-
ing on semi-supervised smoothness, low-density separation,
and manifold assumptions [9]. As a result, we first propose a
novel cost functional consisting of the margin cost on labeled
data and the regularization penalty on unlabeled data based
on three fundamental SSAs. Then, we develop the boosting
algorithm within the generic margin cost functional frame-
work for boosting [27]. In this framework [27], boosting is
treated as a greedy yet stagewise functional minimization
procedure where each stage seeks a function from a given
subspace so that combining it with those functions already
found in the same way can lead to the greatest reduction in
terms of a cost functional defined based on training
examples. Since our algorithm is within the generic margin
cost functional framework developed for generic yet
abstract boosting algorithms, it allows a range of various
margin cost functions to be applied. To facilitate our
boosting learning, we also come up with an initialization
setting based on clustering analysis. It is worth stating that
our algorithm is developed for binary classification tasks,
but easily extended to cope with multiclass classification
tasks via the one-against-rest scheme, although this treat-
ment might be less efficient than those methods developed
very recently for multiclass boosting without the use of
binary decomposition [43], [36], [30]. Extensive experiments
demonstrate that our algorithm yields favorite results for
benchmark and real-world classification tasks in compar-
ison to many state-of-the-art SSL algorithms [9], including
semi-supervised boosting algorithms [2], [24], [25].

In the reminder of this paper, Section 2 briefly reviews the
generic margin cost functional framework for boosting.
Section 3 presents our regularized semi-supervised boosting
algorithm. Section 4 describes the experimental methodology
and reports experimental results. Section 5 discusses relevant
issues and relates our algorithm to previous work. The last
section draws conclusions. Due to the limited space,
Appendices A-D are left out of main text but can be found
on the Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TPAMI.2010.92.

2 MARGIN COST FUNCTIONAL FRAMEWORK AND

SEMI-SUPERVISED BOOSTING

In the section, we briefly review the generic margin cost
functional framework for abstract boosting, including
AdaBoost [16], and its application to semi-supervised
boosting, e.g., ASSEMBLE [2], to make them self-contained.
Later on, we shall develop our regularized boosting
algorithm within this framework and employ AdaBoost
and ASSEMBLE for comparison.
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2.1 Margin Cost Functional Framework for Boosting

The generic form of an ensemble learner constructed by
boosting is the voted combination of base learners,
sign½F ðxÞ�, where F ðxÞ is the linear combination of base
learners as follows:

F ðxÞ ¼
X
t

wtftðxÞ: ð1Þ

For binary classification, ft : X ! fþ1;�1g are base classi-
fiers and wt 2 IR are weights for linear combination.

Given a training set of jLj labeled examples, L ¼
fðx1; y1Þ; . . . ; ðx;yjLjÞg, generated according to a distribution,
boosting finds out F ðxÞ so that P ðF ðxÞ 6¼ yÞ on this
distribution is minimized. In reality, the distribution is
unknown and a training set L is available only. Thus,
boosting would find F ðxÞ by minimizing a margin cost
functional defined on the training set L:

CðF Þ ¼ 1

jLj
X
i2L

C
�
yiF ðxiÞ

�
; ð2Þ

where C : IR! IR is a nonnegative and monotonically
decreasing cost function. In (2), yiF ðxiÞ is the margin of an
example, i 2 L, with respect to F ðxÞ.

At an abstract level, the base learners f 2 F and their
combinations F are viewed as elements of an inner produce
space ðX ; <;>Þ, where X is a linear space of functions
containing linðFÞ, the set of all linear combination of
functions in F . As a result, boosting at this abstract level is
interpreted as finding a new f 2 F to add it to F 2 linðFÞ so
that the cost functional CðF þ �fÞ decreases for some small
value of �. Based on the Taylor expansion approximation on
CðF þ �fÞ to the first order, it would be desirable to choose
f ¼ �rCðF Þ, which always causes CðF þ �fÞ to decrease
most rapidly. Given the fact that rCðF Þ may not be in F
and f is restricted in F , it is unrealistic to choose f ¼
�rCðF Þ in general. Instead, f can be sought with the
greatest inner product with �rCðF Þ, i.e., f should be chosen
to maximize �<rCðF Þ; f > .

In order to maximize �<rCðF Þ; f > , we need to
approximate the functional derivative of CðF Þ in (2) for i ¼
1; . . . ; jLj as follows:

rCðF ÞðxÞ ¼
yiC

0�yiF ðxiÞ�
jLj ; if x ¼ xi;

0; otherwise;

8<
: ð3Þ

where C0ðzÞ is the derivative of the margin cost function
with respect to z. Therefore, the use of (3) in the inner
product leads to

�<rCðF Þ; f >¼ � 1

jLj2
X
i2L

yifðxiÞC0
�
yiF ðxiÞ

�
: ð4Þ

As a cost function CðzÞ is required to be monotonically
decreasing, the term C0½yiF ðxiÞ� will always be negative.
Normalizing C0½yiF ðxiÞ� in (4), we see that finding a
function f to maximize �<rCðF Þ; f > is equivalent to
finding an f to minimize

�
X
i2L

yifðxiÞ
C0
�
yiF ðxiÞ

�P
k2L C

0
�
ykF ðxkÞ

�: ð5Þ

For i 2 L, we define their empirical distribution as DðiÞ ¼
C0½yiF ðxiÞ�=

P
k2L C

0½ykF ðxkÞ�. Then, (5) can be rewritten asP
i:fðxiÞ6¼yi DðiÞ �

P
i:fðxiÞ¼yi DðiÞ ¼ 2

P
i:fðxiÞ6¼yi DðiÞ � 1 since

yifðxiÞ ¼ þ1 if fðxiÞ ¼ yi and �1 otherwise for binary classi-
fication and

P
i2L DðiÞ ¼ 1. As a consequence, finding f to

maximize �<rCðF Þ; f > can be done by finding f to
minimize the weighted error

P
i:fðxiÞ6¼yi DðiÞ, which results

in a generic boosting procedure.
Once f is determined with the procedure described above,

the weight w for combination is chosen so that CðF þ wfÞ
defined in (2) is minimized or decreases as much as possible.

2.2 Semi-Supervised Boosting Learning

In SSL setting, a training set S ¼ L [ U of jLj labeled
examples fðx1; y1Þ; . . . ; ðxjLj; yjLjÞg in L and jU j unlabeled
points fxjLjþ1; . . . ;xjLjþjU jg in U is given. Since there exists
no label information for unlabeled points, the critical idea
behind semi-supervised boosting algorithms like ASSEM-
BLE [2] is introducing a pseudoclass [14] or a pseudomargin
[2] concept to unlabeled points within the margin cost
functional framework [27]. The pseudoclass label of an
unlabeled point x is typically defined as ~y ¼ sign½F ðxÞ� and
its corresponding pseudomargin is ~yF ðxÞ ¼ jF ðxÞj [14], [2].

Within the generic margin cost functional framework
[27], the semi-supervised boosting learning is to find F such
that the cost of functional

CðF Þ ¼ 1

jSj
X
i2S
fIi;L�iC½yiF ðxiÞ� þ Ii;U�iC½jF ðxiÞj�g ð6Þ

is minimized for some nonnegative and monotonically
decreasing cost function C : IR! IR. Here, we define Iz;� ¼
1 if z 2 � and 0 otherwise. �i 2 IRþ in (6) are used to
highlight some training data if the prior knowledge is
available or differentiate between labeled and unlabeled
data if labeled examples are treated more importantly than
unlabeled points. Note that CðF Þ in (6) is no longer convex
due to the pseudomargin cost C½jF ðxiÞj�, and hence, the use
of the greedy yet stagewise learning strategy does not
guarantee to find the global optimum.

As reviewed in Section 2.1, constructing an ensemble
learner needs to choose a base learner, fðxÞ, to maximize
the inner product �hrCðF Þ; fi. For unlabeled points
xjLjþ1; . . . ;xjU j, a subgradient of CðF Þ in (6) has been
introduced in [2] to tackle its nondifferentiable problem as
follows: rCðF ÞðxÞ ¼ �i~yiC0½~yiF ðxiÞ�=jSj if x ¼ xi;xi 2 U
and 0 otherwise. Thus, unlabeled points of pseudoclass
labels can be treated in the same way as labeled examples in
the optimization problem. As a result, finding a proper fðxÞ
amounts to maximizing

�hrCðF Þ; fi ¼ 1

jSj2

( X
i:fðxiÞ6¼yi

Ii;L�iC
0½yiF ðxiÞ�

�
X

i:fðxiÞ¼yi
Ii;L�iC

0½yiF ðxiÞ�

þ
X

i:fðxiÞ6¼~yi

Ii;U�iC
0½jF ðxiÞj�

�
X

i:fðxiÞ¼~yi

Ii;U�iC
0½jF ðxiÞj�

)
:

ð7Þ
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With the same treatment described in (4), finding fðxÞ to
maximize �hrCðF Þ; fi is equivalent to searching for fðxÞ to
minimizeX

i:fðxiÞ6¼ŷi
D̂ðiÞ �

X
i:fðxiÞ¼ŷi

D̂ðiÞ ¼ 2
X

i:fðxiÞ6¼ŷi
D̂ðiÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
misclassification errors

�1: ð8Þ

Here, ŷ is a collective notation of the true label and the
pseudoclass label and defined as ŷi ¼ yi if Ii;L ¼ 1 and ŷi ¼
~yi if Ii;U ¼ 1. For 1� i�jLjþjU j, D̂ðiÞ is the empirical data
distribution defined as

D̂ðiÞ ¼ Ii;L�iC
0½ŷiF ðxiÞ� þ Ii;U�iC0½jF ðxiÞj�P

k2SfIk;L�kC0½ŷkF ðxkÞ� þ Ik;U�kC0½jF ðxkÞj�g
;

and
P

i2S D̂ðiÞ ¼ 1. From (8), fðxÞ can be found by
minimizing weighted errors

P
i:fðxiÞ6¼ŷi D̂ðiÞ. Similarly, the

weight w for combination is chosen so that CðF þ wfÞ
defined in (6) is minimized or decreases as much as
possible. Thus, any boosting algorithms specified for SL [27]
are now applicable to SSL with the aforementioned
treatment for unlabeled points [2].

3 REGULARIZED SEMI-SUPERVISED BOOST

In this section, we first present a novel cost functional for
our regularized semi-supervised boosting learning and then
develop a solution to the optimization problem arising from
this cost functional. Finally, we describe a derived boosting
algorithm for SSL.

3.1 Regularized Margin Cost Functional

Given a training set S ¼ L [ U of jLj labeled examples
fðx1; y1Þ; . . . ; ðxjLj; yjLjÞg in L and jU j unlabeled points
fxjLjþ1; . . . ;xjLjþjU jg in U , we propose a cost functional for
our regularized semi-supervised boosting learning as
follows:

CðF Þ¼
X
i2S

(
1

jLj Ii;L�iC
�
ŷiF ðxiÞ

�
þ

1

jU j Ii;U�ijNðiÞj
�1
X
j2NðiÞ

!ijC
�
ŷjF ðxiÞ

�)
:

ð9Þ

Here, C : IR! IR is a nonnegative and monotonically
decreasing cost function and �i 2 IRþ are parameters to
weight labeled examples based on prior knowledge and/or
emphasize the importance of labeled examples. �i 2 IRþ are
parameters for unlabeled points in U :

�i ¼ �
�
pðxiÞ

�
; ð10Þ

where pðxiÞ is the density of point xi and � : IR! IR is a
nonnegative and monotonically increasing function.!ij is the
affinity measure for any two points i and j in the input space:

!ij ¼ exp �kxi � xjk2

2�2

 !
; ð11Þ

where � is the bandwidth parameter controlling the spread
of this function. NðiÞ is a neighborhood of size jNðiÞj for
unlabeled point i2U without including itself. Iz;� is the

same as defined in Section 2.2. Equation (9) defines a
regularized margin cost functional that reflects not only the
cost incurred by misclassification errors on labeled exam-
ples, but also the inconsistency among labeled and
unlabeled data caused by violating the fundamental SSAs
[9]. We have several remarks on our cost functional in (9) in
terms of the fundamental SSAs [9] and the cost margin
functional framework for boosting [27].

Remark 1. Based on the low-density separation assumption,
�i in (10) tend to ensure that points of higher density, more
likely in the same cluster, play a more important role for
regularization so that inconsistence in such a region
would be penalized more severely. In other words, points
of low density are likely to be located between cluster
boundaries and therefore need less regularization.

Remark 2. Based on the semi-supervised smoothness
assumption, a point should have the same label as
that of its neighbors in NðiÞ. Thus, the local smoothness
is measured by ŷjF ðxiÞ, j2NðiÞ, where ŷj is the true
label yj if point j2NðiÞ is a labeled example and the
pseudoclass label ~yj otherwise. F ðxiÞ is the output of the
current ensemble learner for unlabeled point i. Appar-
ently, the compatibility between unlabeled point i and its
neighbor j2NðiÞ is high only if F ðxiÞ has the same sign
as ŷj. Applying a monotonically decreasing function to
the compatibility, i.e., C½ŷjF ðxiÞ�, would take an effect of
penalizing an unlabeled point of low label compatibility
with its neighbors severely.

Remark 3. Based on the manifold assumption, the similarity
between two points should be measured by an appro-
priate distance reflecting the manifold structure under-
lying the input space. Motivated by the graph-based
regularization to measure pairwise similarities [41], [39],
we employ the Gaussian kernel to define the affinity !ij
in (11) so that the strength of a label incompatibility
penalty would also be determined by the affinity of
unlabeled point i to point j in NðiÞ, i.e., as the
incompatibility between two points is fixed, the closer
they are the severer the penalty is. Whenever we have
prior knowledge on the intrinsic manifold structure of a
specific input space, we would use its geodesic distance
derived from the manifold structure to define affinity !ij
instead of its current definition in (11).

Remark 4. Within the cost margin functional framework
for boosting, the regularization penalty term
jNðiÞj�1P

j2NðiÞ !ijC½ŷjF ðxiÞ� can be viewed as a novel
approximation of the margin cost for unlabeled point i
via the use of all the labels/pseudolabels of its neighbors
in NðiÞ and its current ensemble estimate F ðxiÞ. Note
that this margin cost approximation for unlabeled points
readily distinguishes from the pseudomargin cost
C½jF ðxiÞj� in ASSEMBLE [2], which merely uses its own
information of unlabeled point i without taking its
neighbors into account, as reviewed in Section 2.2.

3.2 Optimization of Our Cost Functional

In order to construct an ensemble learner by boosting, we
need to find a base learner ftðxÞ and a combination weightwt
to minimize the regularized margin cost functional in (9) at
each boosting round. Within the margin cost functional
framework briefly reviewed in Section 2.1, this optimization
problem can be converted into maximizing �<rCðF Þ; f > .
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Since the regularization term has been introduced in the
margin cost functional in (9), maximization of�<rCðF Þ; f >
will no longer be straightforward as described in Sections 2.1
and 2.2. Thus, we develop a solution to this optimization
problem, as described in Proposition 1

Proposition 1. For the regularized margin cost functional
defined in (9), finding fðxÞ to maximize � <rCðF Þ; f > is

equivalent to minimizing

X
i:fðxiÞ6¼ŷi

D̂ðiÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
misclassification errors

þ
X

i:fðxiÞ¼ŷi
� Ii;URðiÞ

ZjU j

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
class label inconsistency

; ð12Þ

where

RðiÞ ¼ �ijNðiÞj�1
X
j2NðiÞ

!ijŷjC
0½ŷjF ðxiÞ�

������
������; ð13aÞ

RUðiÞ ¼ �ijNðiÞj�1
X
j2NðiÞ

!ijC
0�ŷjF ðxiÞ�; ð13bÞ

D̂ðiÞ ¼
1
jLj Ii;L�iC

0½ŷiF ðxiÞ� þ 1
jU j Ii;URUðiÞ

Z
; ð13cÞ

Z ¼
X
k2S

1

jLj Ik;L�kC
0½ŷkF ðxkÞ� þ

1

jU j Ik;URUðkÞ
� �

: ð13dÞ

The proof of Proposition 1 is in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2010.92. In-
tuitively, finding a proper fðxÞ needs to minimize not only
the weighted classification errors for labeled examples and
unlabeled points, but also the class-label inconsistency
caused by the violation of SSAs for unlabeled points, even
though their pseudoclass labels are consistent with the
output of fðxÞ.
D̂ðiÞ in (13c) is the empirical data distribution used for

sampling training examples during boosting learning, and
Z in (13d) is the normalization term such that

P
i2S D̂ðiÞ ¼ 1.

Note that Z is always negative since C0ð�Þ is always negative,
as Cð�Þ is a monotonically decreasing function, which
guarantees D̂ðiÞ and the second term expressing class-label
inconsistency in (12) are always positive.
RðiÞ in (13a) is the actual penalty awarded to unlabeled

point i via regularization. In the context of binary
classification, ŷj 2 f�1;þ1g, we rewrite the regularizer in
(13a) as follows:

RðiÞ ¼ �ijNðiÞj�1

����� X
j2NðiÞ

�
�ðŷj;þ1Þ!ijC0½F ðxiÞ�

� �ðŷj;�1Þ!ijC0½�F ðxiÞ
�
g
�����;

ð14Þ

where �ðu; vÞ¼1 if u¼v and 0 otherwise. By ignoring �i in
(14), we observe that RðiÞ tends to be small only if the
pseudoclass label of point i is consistent with labels/
pseudoclass labels of its neighbors, i.e., sign½F ðxiÞ� ¼ ŷj,
8j 2 NðiÞ. In other words,RðiÞ tends to be large as point i has

a noisy or inhomogeneous neighborhood. By taking �i
defined in (10) into account, RðiÞ will be scaled up by �i if
point i lies in a high data density region, and vice versa. Thus,
RðiÞ forms a density-dependent class-label inconsistency
measure for unlabeled points. Furthermore, the regularizer
RðiÞ also suggests a reliable unlabeled point labeling method
based on the class-label inconsistency during our boosting
learning. In (14), two terms

P
j2NðiÞ �ðŷj;þ1Þ!ijC0½F ðxiÞ� andP

j2NðiÞ �ðŷj;�1Þ!ijC0½�F ðxiÞ� correspond to the penalty
when unlabeled point i is predicted to be �1 but the label/
pseudoclass labels of its neighbors are �1, respectively.
Therefore, the affinity-based penalty competition leads to a
rule for labeling unlabeled point i: For i 2 U , ~yi ¼ �1 ifP

j2NðiÞ �ðŷj;þ1Þ!ijC0½F ðxiÞ�<>
P

j2NðiÞ �ðŷj;�1Þ!ijC0½�F ðxiÞ�.
Note that C0ð�Þ is always negative since Cð�Þ is a mono-
tonically decreasing function. Based on (13a), the rule for
labeling unlabeled points during our boosting learning is
rewritten as

~yi ¼ sign �
X
j2NðiÞ

!ijŷjC
0½ŷjF ðxiÞ�

2
4

3
5:

After a proper function f is found, a combination weightw
needs to be chosen by minimizing the regularized cost
functional CðF þ wfÞ in order to construct optimal F . In
general, w is a step size for linear search and needs to be
chosen based on a specific cost function [27]. It is possible
for some cost functions to find a closed-form solution to the
line search with an optimal step size, while there is no
closed-form solution to many cost functions. Thus, a proper
w should be chosen according to the cost function CðzÞ.

Within the margin cost functional framework [27], a
boosting algorithm terminates when �<rCðF Þ; f > � 0,
due to the fact that the function f no longer found points
in the downhill direction of the margin cost functional CðF Þ.
In other words, the boosting algorithm should terminate as
no f can be found to reduce CðF Þ. For our cost functional
defined in (9), the termination condition of its derived
boosting algorithms is described in Proposition 2.

Proposition 2. Semi-supervised boosting algorithms with the
regularized margin cost functional in (9) terminate when

X
i:fðxiÞ6¼ŷi

D̂ðiÞ þ
X

i:fðxiÞ¼ŷi
� Ii;URðiÞ

ZjUj

� �
>

1

2
; ð15Þ

where D̂ðiÞ, Z, and RðiÞ are defined in (13).

The proof of Proposition 2 is in Appendix B, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI. 2010.92.

In summary, we achieve a generic solution to the
optimization problem arising from the regularized margin
cost functional in (9). A derived boosting algorithm from
the cost functional needs to choose a proper cost function
used in (9) and addresses other details. We will present a
derived boosting algorithm in Section 3.3 for exemplifica-
tion and employ it in our simulations.

3.3 Algorithm Description

Based on the generic solution obtained in Section 3.2, we
develop a boosting algorithm by addressing all technical
details required. We first present an initialization setting
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including initial unlabeled data labeling, training the first

classifier and a nonlinear function to generate �i from the

density estimation. Then, we describe a regularized semi-

supervised boosting algorithm for binary classification and

exemplify this algorithm with the exponential cost function

that has been widely used in AdaBoost [16], ASSEMBLE [2],

and many other boosting algorithms.

3.3.1 Initialization Setting

For a semi-supervised boosting algorithm, it is necessary to

label unlabeled points during initialization. Prior to boost-

ing learning, there is no ensemble learner, and hence,

F ðxiÞ¼0 for i 2 S. As a result, the initial value of our

regularizer in (14) is rewritten as

R0ðiÞ /
X
j2NðiÞ

f�ðŷj;þ1Þ!ij � �ðŷj;�1Þ!ijg

������
������: ð16Þ

In this situation, we need to take only labeled points in NðiÞ
into account to label unlabeled point i. Thus, a pseudoclass

label should be assigned to unlabeled point i with the rule

derived from (16) by following the winner-take-all principle

described in Section 3.2.
For SSL, an implicit assumption is the labeled example

sparsity; i.e., there are few labeled examples but many

unlabeled points in a training set. Hence, it is highly likely

that many unlabeled points have no labeled point in their

neighborhoods. In (16), moreover, �i defined in (10)

suggests that we should consider the input data distribution

during labeling, i.e., labeling unlabeled point i in a cluster

tends to be more reliable than within the neighborhood of

unlabeled point i especially as unlabeled point i is located

in a low data density region. As a result, any density-based

clustering algorithms, e.g., [38], can be employed to group

training data into clusters, and then, the affinity-based

competition would take place within each cluster other than

their neighborhoods for labeling unlabeled points. To a

great extent, doing so also remedies the labeled example

sparsity problem since all unlabeled points in a cluster can

be labeled as long as there is one labeled point in the cluster.
For a given training set S ¼ L [ U , we first employ a

density-based clustering algorithm to partition S into KS

clusters: c1; . . . ; cKS
. For unlabeled point i 2 ck; k 2

f1; . . . ; KSg, its initial pseudoclass label is assigned with

~yi ¼ argmaxy2Y
X
j2ck

Ij;L�ðyj; yÞ!ij

( )
; ð17Þ

where Y ¼ fþ1;�1g for binary classification and Y ¼
f1; 2; . . . ;Mg for multiclass classification of M classes. In

general, there might be some clusters where no labeled

example is available. In this circumstance, we stipulate that

the initial pseudoclass label of unlabeled point i in such a

cluster is ~yi ¼ 0 to indicate that no label has been assigned

to unlabeled point i.
The competition-based initial unlabeled data labeling

setting also provides a metric to measure the confidence of a

pseudoclass-label assignment as follows:

BðiÞ ¼ max
y2Y

X
j2ck

Ij;L�ðyj; yÞ!ij

( )

� max
y2Y ;y 6¼~yi

X
j2ck

Ij;L�ðyj; yÞ!ij

( )
;

ð18Þ

where ~yi is the initial pseudoclass label of unlabeled point
i 2 ck, k 2 f1; . . . ; KSg, assigned with (17). Also, we stipulate
thatBðiÞ ¼ 0 if ~yi ¼ 0. Once the initial unlabeled data labeling
is completed, we train a chosen base learner on all of the
labeled examples in L and unlabeled points of the high
confidenceBðiÞ in the �th percentile of those unlabeled points
ofBðiÞ > 0 inU to obtain the first classifier. We anticipate that
doing so would considerably lessen the adverse effect
brought about by incorrectly initial unlabeled point labeling.

During the initialization, we need to estimate the density
for computing �i in (10) for a given training set S ¼ L [ U .
In our experiments, we employ the kernel density estima-
tion [15] for density estimation. For a given training set S,
the probability density function is defined as

pðxÞ ¼ 1

jSjhn
XjSj
i¼1

Kh
x� xi
h

	 

;

where Kh : IRn! IR is a positive kernel, n is the dimension
of input space, and h is the bandwidth. After obtaining pðxÞ,
we employ the following nonlinear function to compute �i
for unlabeled point i:

�i ¼ sin
	

2

�
�pðxiÞ

�
	 

; ð19Þ

where 
 2 ZZþ is used to control the steepness of this
nonlinear curve and �pðxiÞ is the normalized version of pðxiÞ
in the following form:

�pðxiÞ ¼
pðxiÞ � pmin
pmax � pmin

;

where pmax and pmin are the maximum and the minimum of
density values across the whole training set S. In general, this
nonlinear function allows regularization to be exerted
severely on those unlabeled points in a region of high density
but lessens the regularization effect on unlabeled points
located in a low data density region via a proper choice of 
.

3.3.2 Algorithm

Based on the solution developed in Section 3.2 and the
initialization setting in Section 3.3.1, we describe our
regularized semi-supervised boosting algorithm for binary
classification as follows:

1) Initialization

1.1 Input training set S ¼ L [ U . For i 2 L, set �i and

choose a cost function, Cð�Þ, used in (9). Set F0ðxÞ ¼ 0

and a maximum boosting round, Tmax.

1.2 Estimate the density function on S. For i 2 U , choose


 and compute �i with (19) and set a neighborhood
NðiÞ via either K nearest neighbor (NN) or �NN

method for unlabeled point i.

1.3 Choose � and calculate the affinity, !ij, among all

training data in S with (11). Fulfill the clustering

analysis on S with a density-based clustering
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algorithm and assign the pseudoclass label ~yi for
unlabeled point i 2 U with (17) to form Y U

0 , where

Y U
t ¼ f~yiji 2 Ug is a collective notation of

pseudoclass labels of unlabeled points at round t.

1.4 Calculate the confidence, BðiÞ, for i 2 U with (18)

and construct the initial training subset S0 ¼ fL;U 0g
based on the confidence of unlabeled points, where

U 0 ¼ fiji 2 U;BðiÞ in the �th percentile for BðiÞ > 0g.
Choose a learning algorithm Lð�; �Þ.

2) Repeat steps 2.1-2.4 for 1 � t � Tmax
2.1 ftðxÞ ¼ LðSt�1; Y

U
t�1Þ to obtain a new base learner.

2.2 Examine the termination condition with (15). If the

condition is met, stop training and return the

ensemble learner, Ft�1ðxÞ, with the decision rule:

y ¼ sign½Ft�1ðxÞ�. Otherwise, choose a proper

step-size wt according to Cð�Þ for constructing the

ensemble learner FtðxÞ ¼ Ft�1ðxÞ þ wtftðxÞ.
2.3 Reset ~yi ¼ sign½�

P
j2NðiÞ !ijŷjC

0½ŷjFtðxiÞ�� for

unlabeled point i 2 U to form Y U
t .

2.4 Update D̂tðiÞ with (13b) and (13c) for i 2 S and then

obtain a new training set St by resampling from S

according to D̂tðiÞ; i.e., St ¼ SampleðS; D̂tÞ.
3) Return the ensemble learner, FTmax , with the decision

rule: y ¼ sign½FTmaxðxÞ�.

Note that this algorithm can be easily extended to

multiclass classification with the one-against-rest scheme,

as described in Appendix D, which is in the Computer

Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TPAMI.2010.92.

3.3.3 Exemplification with CðzÞ ¼ e�z
The cost function CðzÞ ¼ e�z was used in AnyBoost [27] to

derive a boosting algorithm equivalent to AdaBoost [16] for

SL (see also Section 2.1), ASSEMBLE [2] for SSL (see also

Section 2.2), and many other boosting algorithms. Now we

exemplify our algorithm described in Section 3.3.2 with this

specific cost function. Later on, we shall use this derived

algorithm in our experiments for comparison with Ada-

Boost [16] and ASSEMBLE [2] reviewed in Section 2.
Inserting the cost function CðzÞ ¼ e�z into (9) leads to a

specific regularized margin cost functional:

CðF Þ ¼
X
i2S

(
1

jLj Ii;L�ie
�ŷiF ðxiÞþ

1

jU j Ii;U�ijNðiÞj
�1
X
j2NðiÞ

!ije
�ŷjF ðxiÞ

)
:

Accordingly, the main components of our algorithm in (13)

become

RtðiÞ ¼ �ijNðiÞj�1

����� X
j2NðiÞ

!ijŷje
�ŷjFtðxiÞ

�����; ð20aÞ

RU;tðiÞ ¼ �ijNðiÞj�1
X
j2NðiÞ

!i;je
�ŷjFtðxiÞ; ð20bÞ

D̂tðiÞ ¼ �
1
jLj Ii;L�ie

�ŷiFtðxiÞ þ 1
jU j Ii;URU;tðiÞ

Zt
; ð20cÞ

Zt ¼ �
X
k2S

(
1

jLj Ik;L�ke
�ŷkFtðxkÞ þ 1

jU j Ik;URU;tðkÞ
)
; ð20dÞ

where ŷi ¼ yi if i 2 L and ~yi 2 Y U
t�1 if i 2 U . In the algorithm

described in Section 3.3.2, the termination condition in

Step 2.2 is achieved by inserting (20) into (15). With this cost
function,C0½�ŷjFtðxiÞ� in Step 2.3 and (13) in Step 2.4 are now

instantiated with �e�ŷjFtðxiÞ and (20), respectively. For the

exponential cost function, there is an optimal step size wt
used in Step 2.2, as described in Proposition 3.

Proposition 3. For the cost function CðzÞ ¼ e�z used in (9), the

regularized margin cost functional CðFt�1 þ wtftÞ is mini-

mized by choosing the step size

wt ¼
1

2
ln

 
1
jLj
P

i:ftðxiÞ¼ŷi Ii;L�ie
�ŷiFt�1ðxiÞ þ P ðiÞ

1
jLj
P

i:ftðxiÞ6¼ŷi Ii;L�ie
�ŷiFt�1ðxiÞ þQðiÞ

!
; ð21Þ

where

P ðiÞ ¼ 1

jU j
X
i2S

(
Ii;U�ijNðiÞj�1�

�
ftðxiÞ;�1

�
X
i2NðiÞ

�ðŷj;�1Þ!ijeFt�1ðxiÞ þ Ii;U�ijNðiÞj�1

�
�
ftðxiÞ;þ1

� X
i2NðiÞ

�ðŷj;þ1Þ!ije�Ft�1ðxiÞ

)
;

QðiÞ ¼ 1

jU j
X
i2S

(
Ii;U�ijNðiÞj�1�

�
ftðxiÞ;�1

�
X
i2NðiÞ

�ðŷj;þ1Þ!ije�Ft�1ðxiÞ þ Ii;U�ijNðiÞj�1

�
�
ftðxiÞ;þ1

� X
i2NðiÞ

�ðŷj;�1Þ!ijeFt�1ðxiÞ

)
:

The proof of Proposition 3 is in Appendix C, which can be
found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPAMI. 2010.92.

4 EXPERIMENTS

In this section, we first use a synthetic data set to

demonstrate the role that different SSAs play in terms of

our cost functional. Then we thoroughly evaluate our

boosting algorithm, hereinafter named as RegBoost, with a
variety of SSL tasks, including SSL-book [9], UCI [35], and

facial expression recognition [26] benchmarks. By using all

of the aforementioned SSL tasks, we compare RegBoost
with ASSEMBLE [2], a winning algorithm of the NIPS 2001

unlabeled data competition [2] and the third-party-inde-

pendent assessment across various SSL techniques and
problem domains [11], and AdaBoost [16] trained on only

labeled examples as a baseline. Furthermore, we compare

RegBoost with two state-of-the-art semi-supervised boost-
ing algorithms [24], [25] on SSL-book and UCI benchmarks,

respectively.
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4.1 Synthetic Data Set

In order to facilitate the understanding how an SSL algorithm
works on SSAs, we design a synthetic data set of two classes,
named noisy two half-moons, where three fundamental SSAs
[9] hold. The training data set shown in Fig. 1a consists of
four labeled examples marked with ^ and and 322
unlabeled points. As depicted in Fig. 1a, this data set
contains two half-moon-like manifold structures separated
by a low data density region. Although the low data density
region is noisy, the semi-supervised smoothness assumption
holds within high data density clusters corresponding to two
classes. With this data set, we can closely observe the
behavior of an SSL algorithm working on SSAs.

In order to observe how our algorithm works on
different SSAs, we modify our cost functional in (9) by first
considering only the smoothness assumption, and then
taking other SSAs into account. By setting !ij¼1 and �i¼
1=jU j in (9), we switch off manifold and low-density
separation assumptions. To facilitate our presentation, the
boosting algorithm derived from the modified cost func-
tional is named RegBoost-S. Next, we keep �i¼1=jUj but
apply !ij in (11) to (9), which results in another boosting
algorithm working on smoothness and manifold assump-
tions, named RegBoost-SM. As described in Section 3,
RegBoost works on three SSAs. As a result, the usefulness
of individual SSAs and their combinations would be
exhibited via behaviors of three boosting algorithms. In
our experiment, we employ an SVM with the RBF kernel to
be the base learner and use the same initialization and
parameters as discussed in Section 5 for three algorithms.
Results after 20 boosting iterations are reported as more
iterations do not change decision boundaries.

Figs. 1b, 1c, and 1d depict decision boundaries established
by three boosting algorithms. In Fig. 1b, we observe that
RegBoost-S results in an inaccurate zigzag decision bound-
ary that traverses through the top of the lower half-moon
cluster. In contrast, RegBoost-SM and RegBoost successfully
identify manifold structures so that their decision bound-
aries separate two clusters well. As shown in Fig. 1c,

RegBoost-SM produces a rough decision boundary cor-
rupted by noise. In contrast, RegBoost yields a smoothing
decision boundary that traverses right through the middle of
the low data density region between two half-moon clusters,
as illustrated in Fig. 1d, since less regularization is exerted on
those noisy points due to the low-density separation
assumption. Apparently, RegBoost is superior to RegBoost-
SM in terms of generalization. The experimental results
shown in Figs. 1b, 1c, and 1d vividly demonstrate the role
that different SSAs play in our cost functional.

4.2 Experiments on Transductive Learning

TL is a special kind of SSL where the test set coincides with
the set of unlabeled data used for training [37]. For TL,
several benchmarks have been elaborately designed and
already used for evaluating many SSL algorithms (see [9,
Chapter 21] for details). We apply our algorithm, along with
AdaBoost and ASSEMBLE, to seven benchmark tasks [9]
and compare them with 14 state-of-the-art SSL algorithms
[9] and ManifoldBoost [24].

The benchmarks used in our experiments are three
artificial data sets, g241c, g241d, and Digit1, and four
real data sets, USPS (imbalanced), COIL, BCI, and Text

(sparse discrete). All data sets contain 1,500 points, except for
BCI of 400 points, and the input data dimension is 241, apart
from BCI and Text where their input data dimensions are
114 and 11,960, respectively. In addition, all benchmarks are
for binary classification except forCOIL, a six-class classifica-
tion task. In our experiments, we strictly follow the instruc-
tions given by designers and use the exactly same
experimental setup [9]. That is, we conduct experiments on
12 subsets of each data set with the number of 10 or 100
labeled points stipulated in the benchmark. As suggested in
[9], we report the best mean test error on 12 subsets of each
benchmark achieved by three boosting algorithms with three
base learners, i.e., three nearest neighbor (3NN) classifier
with the euclidean distance, a three-layered MLP of 10 hidden
neurons, and an SVM with the linear kernel. In our
experiments, we always fix parameters �i, �, 
, �, and Tmax,
but tune the remaining parameters in RegBoost for different
data sets, as discussed in Section 5.

Tables 1 and 2 tabulate experimental results achieved by
AdaBoost, ASSEMBLE, and RegBoost along with those of
ManifoldBoost reported in [24] in comparison to those of
14 SSL algorithms [9]. The details of ManifoldBoost and
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Fig. 1. Synthetic data set. (a) Training data set of four labeled examples.
(b) The decision boundary produced by RegBoost-S. (c) The decision
boundary produced by RegBoost-SM. (d) The decision boundary
produced by RegBoost.

TABLE 1
Test Errors (in Percent) with 10 Labeled Training Points



other SSL algorithms are omitted here due to the limited
space but can be found from [24] and [9, Chapter 21].

From Tables 1 and 2, it is evident that RegBoost
outperforms ASSEMBLE and AdaBoost on all seven bench-
marks, regardless of the number of labeled examples used.
It is observed that RegBoost is significantly better than
ASSEMBLE on six binary classification tasks, while their
performance is similar on COIL, a multiclass classification
task. In comparison with the baseline system, the use of
unlabeled points in RegBoost always leads to improvement,
while it is not true for ASSEMBLE, as its performance is
inferior to that of AdaBoost on four benchmarks. Mani-
foldBoost, working on the manifold assumption [24], was
applied to five out of seven benchmarks. In comparison to
ASSEMBLE and AdaBoost, ManifoldBoost generally per-
forms better on those benchmarks whenever the manifold
assumption holds and sufficient labeled points are used for
training. It is observed from Tables 1 and 2 that RegBoost
generally outperforms ManifoldBoost for all five data sets,
although its performance is marginally worse than that of
ManifoldBoost on g241d with 10 labeled examples for
training and on Digit1 with 100 labeled examples for
training. According to [9], g241d was generated so that the
cluster assumption holds but the cluster structure is
misleading; the correct decision boundary traverses
through high data density regions, which violates the low-
density separation assumption. As 10 labeled examples are
used for training, labeled examples provide too little
information to detect the violation of the SSA, which causes
RegBoost to yield a less satisfactory result. As labeled points
are increased to 100, RegBoost copes with the misleading
situation well, as shown in Table 2, since the sufficient
supervision information can cancel out the adverse effect
made by the violation of an SSA. On the other hand,
Digit1 was designed to have points close to a low-
dimensional manifold embedded into a high-dimensional
space but not to show a cluster structure [9]. In comparison
to ASSEMBLE and AdaBoost, ManifoldBoost and RegBoost
perform well on Digit1 due to SSAs. Results on g241d

and Digit1 manifest that the use of hybrid SSAs in
RegBoost leads to the favorite performance even though
some SSAs do not hold for a data set. All of the above
comparison results for different boosting algorithms sug-
gest that the exploitation of unlabeled data with regulariza-
tion working on SSAs plays a crucial role in improving
boosting algorithms for SSL.

In comparison to various SSL algorithms in [9], RegBoost
yields satisfactory performance in general. Although
RegBoost is developed for SSIL, it is comparable with those
established SSL algorithms on all benchmarks except
Digit1. In particular, RegBoost yields the best performance
among 17 algorithms on the BCI benchmark, as shown in
Tables 1 and 2. Since BCI is collected from a real-world task
[9], the intrinsic structures underlying the data set are
generally unknown, although it seems plausible that the
signals recorded by an EEG have rather few degrees of
freedom. Results achieved by RegBoost suggest that this
data set may be of both manifold-like and cluster-like
structures since the regularization working on hybrid SSAs
yields the best performance regardless of experimental
setup. Given the fact that no algorithm dominates the
performance on all the benchmarks, we conclude that
RegBoost would be highly competitive with the existing
SSL algorithms for some specific tasks.

4.3 Experiments on Inductive Learning

The UCI machine learning repository [35], originally de-
signed for assessing SL algorithms, has been extensively used
for assessing SSL algorithms. As a result, we adopt UCI
benchmarks to evaluate the generalization performance of
RegBoost in comparison to AdaBoost [16], ASSEMBLE [2],
and SemiBoost [25]. We first describe our experimental
setting, and then report results achieved by four boosting
algorithms on 13 UCI binary classification tasks under the
same conditions. Due to the limited space, we report
experimental results on the other 13 UCI multiclass classifica-
tion tasks separately in Appendix D, which can be found on
the Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TPAMI.2010.92.

4.3.1 Experimental Setting

There are various benchmark data sets in the UCI machine
learning repository [35]. As a result, we select a number of
data sets to reflect the nature of various data sets, e.g.,
attribute types (numerical versus cardinal and complete
versus missing attributes), the number of classes (binary
versus multiclass), and balanced versus unbalanced data
points in different classes. For binary classification, we
employ 13 UCI data sets for performance evaluation. Table 3
tabulates the information on 13 UCI data sets, including the
number of data points and attributes.

To produce training and test data sets, we first divide
each UCI data set randomly into two subsets: S and T with
the ratio 4:1 for training and test. Then, we further partition
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the training set S randomly into two subsets: L and U with a
labeled data rate (LDR), jLj=jSj, which determines how many
labeled examples would be used in the training set. In the
training set S, the labels of all the examples in U are
removed to generate unlabeled points, while labeled
examples in L retain the information on their attributes
and labels. We conduct experiments at the LDR of 5, 10, and
20 percent, respectively, for all 13 UCI binary classification
benchmarks. For the robust performance evaluation, we
conduct 10 trials, i.e., the use of 10 different training and test
subset combinations for each benchmark, and use the test
error, misclassification rate on the test set T , to assess the
generalization performance of boosting algorithms.

In a boosting algorithm, we employ three typical weak
learners, i.e., 3NN classifier with euclidean distance, naive
Bayes (NB) classifier, and C4.5 decision tree (DT) as a base
learner, respectively, although other base learners, e.g.,
SVM or neural networks, may achieve better performance
according to our empirical studies not reported here. Thus,
no parameter tuning is needed for three base learners once
C4.5 DTs are restricted to two levels in depth for all the
benchmarks. Finally, a boosting algorithm is terminated by
meeting its stopping condition before Tmax rounds or
running Tmax ¼ 50 rounds given the fact that running more
rounds does not considerably alter the performance in
general. Parameters used in AdaBoost and ASSEMBLE are
set as suggested in [16], [2].

For parameters in SemiBoost [25], our experiments reveal
that the default parameters suggested in their paper seldom
lead to satisfactory performance for the selected UCI bench-
marks, although their default setting might be appropriate to
their experiments where they always use 10 labeled examples
for training. For fair comparison, we search for the best value
of three essential parameters in a broad range. The default
sampling parameter was set to 10 percent unlabeled points of
top confidence at each boosting iteration [25]. But, we find
that the default sampling rate often results in the poor
performance, and hence, exhaustedly search for the range
between 1 and 15 percent to find out the most appropriate
sampling rate for each benchmark. Similarly, their empirical
studies suggested that the scale parameter used to determine
the similarity matrix was quite stable and the performance
was insensitive to the choice of this parameter [25]. However,
our empirical studies show that the choice of this parameter

may affect the performance. As a result, we seek the best value
for this parameter by looking at the similarity values from the
10th to 90th percentiles, varied in steps of 10, as suggested in
[25]. Finally, the default stopping criterion of SemiBoost was
set to Tmax ¼ 20 boosting rounds [25]. Nevertheless, we find
that more boosting iterations may lead their algorithm to a
better result. Thus, we always run SemiBoost for Tmax ¼ 50
boosting rounds if their stopping condition is not met and also
record its performance after 20 rounds for each data set. Then,
we report the better result achieved by either 20 or 50 rounds.

For RegBoost, we fix most of the parameters in our
experiments as discussed in Section 5, although further fine
tuning might yield better performance. Here, we describe
only the setup of two parameters tuned for different UCI
data sets. In our experiments, we use the KNN method to
define the neighborhood of each unlabeled point, i.e.,
jNðiÞj ¼ K. In our experiments, K is chosen to be 4 or 5.
A number of points between 6 and 25 percent of jSj in
proportion to LDRs are randomly chosen by sampling with
D̂ðiÞ, defined in (20), at each boosting iteration for training a
base learner.

4.3.2 Experimental Results

Corresponding to different LDRs, Tables 4, 5, and 6 show
the generalization performance of boosting algorithms with
three base learners on the 13 UCI data sets listed in Table 3,
respectively. To facilitate the presentation, we abbreviate
AdaBoost, ASSEMBLE, SemiBoost, and RegBoost to ADAB,
ASMB, SEMIB, and REGB in Tables 4, 5, and 6. Below, we
present results in terms of individual base learners, and
then discuss results across different base learners.

Table 4 shows the generalization performance of four
boosting algorithms as a training set is generated with
LDR ¼ 5%. As 3NN is used as the base learner, RegBoost
improves the AdaBoost baseline performance on all 13 data
sets, while ASSEMBLE and SemiBoost improve the baseline
performance on 12 and 8 data sets, respectively. Moreover,
RegBoost outperforms ASSEMBLE on all 13 data sets, while
it yields the better performance than SemiBoost on 10 data
sets. We use the italic font to mark the best performance of
four boosting algorithms using the same base learner. It is
observed from Table 4 that RegBoost wins on 10 out of
13 data sets and SemiBoost yields the lowest test errors on
AUS, GC, and HMS with 3NN. As NB is used, RegBoost
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improves the baseline performance on 12 data sets and
yields nearly the same error rate as the baseline perfor-
mance on ION, while ASSEMBLE and SemiBoost outper-
form AdaBoost on seven and five data sets only,
respectively. Again, RegBoost outperforms ASSEMBLE on
all 13 data sets and SemiBoost on all data sets except HEP.
As marked by either the italic or the bold font that stands
for the best performance regardless of base learners,
RegBoost and SemiBoost win on 11 data sets and HEP only,
respectively, while none of the three semi-supervised
boosting algorithms improves the baseline performance
for KVK. By using the C4.5 DT, RegBoost improves the
baseline performance on all 13 data sets, while ASSEMBLE
and SemiBoost yield lower test errors than AdaBoost on
only three and six data sets, respectively. By comparison,
RegBoost outperforms ASSEMBLE and SemiBoost on 13
and 12 data sets, respectively. With the C4.5 DT, RegBoost
wins on 12 data sets, while SemiBoost wins on HMS, as
marked with the italic or the bold font. As highlighted in
Table 4 with the bold font, RegBoost wins on 11 data sets
overall, while SemiBoost wins on HMS and HEP, regardless
of base learners used in experiments.

Table 5 shows the generalization performance of four
boosting algorithms as a training set is generated with
LDR ¼ 10%. With 3NN, RegBoost improves the baseline
performance on all 13 data sets, while ASSEMBLE and
SemiBoost yield lower test error rates than AdaBoost on 11

and 7 data sets, respectively. RegBoost outperforms ASSEM-
BLE and SemiBoost on 13 and 10 data sets, respectively. By
comparing four algorithms with 3NN, RegBoost wins on
nine data sets and SemiBoost yields the lowest test errors on
AUS, GC, HMS, and MM. As NB is used, RegBoost yields lower
error rates than AdaBoost on all 13 data sets, while
ASSEMBLE and SemiBoost improve the baseline perfor-
mance on only six and five data sets, respectively. Moreover,
RegBoost outperforms ASSEMBLE and SemiBoost on 13 and
12 data sets, respectively. By comparing four algorithms with
NB, RegBoost wins on 12 data sets and SemiBoost wins on
HEP. With the C4.5 DT, RegBoost improves the baseline
performance on 12 data sets and yields the same performance
on KVK, while ASSEMBLE and SemiBoost outperform
AdaBoost on only two and three data sets, respectively.
Moreover RegBoost outperforms ASSEMBLE and SemiBoost
on 13 and 12 data sets, respectively. With the C4.5 DT,
RegBoost wins on 12 data sets, while SemiBoost wins on HMS.
As boldfaced in Table 5, RegBoost wins on 12 data sets
overall, while SemiBoost wins on HEP only, regardless of
base learners.

Table 6 shows the generalization performance of four
boosting algorithms as a training set is generated with
LDR ¼ 20%. As 3NN is used, RegBoost outperforms
AdaBoost on all 13 data sets, while ASSEMBLE and
SemiBoost yield lower test errors than AdaBoost on 10
and eight data sets, respectively. Furthermore, RegBoost
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yields better performance than ASSEMBLE and SemiBoost
on 13 and eight data sets, respectively. With 3NN, RegBoost
wins on eight data sets and SemiBoost wins on the
remaining five data sets, as italicized in Table 6. By using
NB, RegBoost improves the baseline performance on 11 but
fails on two unbalanced data sets, VOTE and WDBC. In
contrast, ASSEMBLE and SemiBoost outperform AdaBoost
on only five data sets. With NB, RegBoost yields better
performance than ASSEMBLE and SemiBoost on 13 and 11
data sets, respectively. Using NB, RegBoost and SemiBoost
win on nine and two data sets, respectively, while AdaBoost
wins VOTE and WDBC. As C4.5 DT is used, RegBoost
improves the baseline performance on 12 data sets but fails
on ION, while ASSEMBLE is inferior to the baseline on all
data sets except HMS, and SemiBoost outperforms AdaBoost
on only five data sets. With C4.5 DT, RegBoost wins on 11
data sets, while AdaBoost wins on ION, and SemiBoost
wins on HMS. Regardless of base learners, overall, Semi-
Boost wins on HEP and MM and RegBoost wins on the
remaining 11 data sets, as boldfaced in Table 6.

In summary, the use of NB or C4.5 DT as a base learner
generally leads to better performance than 3NN for four
boosting algorithms, regardless of LDRs. In contrast to the
baseline performance, RegBoost with unlabeled points
constantly makes improvements for all 13 data sets,
regardless of LDRs, while ASSEMBLE and SemiBoost yield
lower test errors on only a few data sets at different LDRs.
Moreover, RegBoost outperforms ASSEMBLE on all 13 data
sets at every LDR with different base learners, while
SemiBoost performs better than ASSEMBLE on only some
data sets at different LDRs. In addition, greater improve-
ment is achieved by RegBoost on most of the data sets as
fewer labeled examples are available for training or the LDR
is smaller, as shown in Table 4. For a large LDR, there are
already sufficient labeled examples to train AdaBoost for
some data sets, e.g., KVK. Even in this circumstance,
RegBoost with unlabeled points still improves the baseline
performance, while ASSEMBLE and SemiBoost fail on the
same condition, as shown in Table 6. Overall, RegBoost
wins on 11 data sets at every LDR used in our experiments
and holds AdaBoost to a performance draw on KVK at
LDR ¼ 10%, while SemiBoost wins on two, one, and two
data sets at LDR ¼ 5, 10, and 20%, respectively, as
boldfaced in Tables 4, 5, and 6. Based on experimental
results on UCI benchmarks, including those on multiclass
classification tasks reported in Appendix D, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2010.92, we
conclude that the exploitation of multiple SSAs within the
boosting framework paves a promising way for SSL.

4.4 Facial Expression Recognition

Automatic facial expression recognition is a task to use
facial images of an individual to identify his/her emotional
state at the moment when those pictures were taken. While
a huge number of facial images are easily available, the
annotation of a facial image with a proper emotional state is
often extremely difficult and time-consuming since indivi-
duals express their emotion in rather diversified ways and
facial expression is also affected by a number of factors, e.g.,
culture, habits, and so on. Thus, facial expression recogni-
tion becomes a typical SSL task and we would further
assess our RegBoost with such a real-world multiclass
classification task.

We evaluate RegBoost with the one-against-rest multi-
class classification strategy by a facial expression bench-
mark, the AR face database [26], where there are 56 female
and 70 male expressers who posed for two examples in
different sessions for each of four facial expressions, neutral,
smile, anger, and scream, as exemplified in Fig. 2a. In total,
1,008 pictures of 768� 576 pixels were collected with
different illumination conditions, background, and occlu-
sions, e.g., glasses and scarf [26]. In our experiments, we
apply the Gabor filter of three scales and eight orientations
and PCA to each image for feature extraction. As a result,
we use the top 100 PCA coefficients of a filtered image to
form its feature vector.

For SSL simulations, we first randomly pick 20 percent of
the images (balanced to four classes) as test data and the
rest of the images constitute a training set (S) that is further
randomly split into labeled data (L) and unlabeled data (U)
subsets with different LDRs ranging from 20 to 50 percent.
At LDR ¼ 20%, we investigate the role of unlabeled data in
detail by using a portion of U each time. At other LDRs, we
report the performance with all unlabeled points in U only.
We use a three-layered MLP of 80 hidden neurons as the
base learner and set 70 boosting iterations to stop the
algorithms if their termination conditions are not met.
Parameter setting in RegBoost is discussed in Section 5. For
reliability, 10 trials are conducted for each experiment at
every LDR.

Fig. 2b shows the evolution of averaging test errors on
10 trials at LDR ¼ 20% as unlabeled points increase from 20
to 100 percent of jUj against the baseline performance of
AdaBoost trained on only labeled examples in L. It is
observed that increasing unlabeled points for training leads
to lower test errors in general. In particular, RegBoost always
outperforms ASSEMBLE and yields greater improvement as
more unlabeled points are used. From Figs. 2c, 2d, and 2e, it
is evident that both ASSEMBLE and RegBoost improve the
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Fig. 2. Facial expression recognition on the AR face database. (a) Exemplar pictures corresponding to four facial expressions. (b) Evolution of
averaging test errors as different numbers of unlabeled instances are used at LDR ¼ 20%. (c), (d), and (e) Test errors at LDR ¼ 30, 40, and 50%,
respectively.



baseline performance, and RegBoost outperforms ASSEM-
BLE at all of the LDRs.

AdaBoost with more sophisticated feature extraction and
selection techniques was previously applied to AR for SL,
where a subset of 960 images was used by excluding some
abnormal ones [32]. The five-fold cross validation was used to
evaluate the performance of AdaBoost with different multi-
class classification strategies [32], i.e., at each trial, 80 percent
of labeled images in the AR subset of 960 images were used
for training and the remaining 20 percent of images were
employed for test. AdaBoost with the one-against-rest and
the exhaustive strategies achieved 22.53 and 20.73 percent
averaging error rates [32], respectively. In contrast, RegBoost
trained on 40 percent labeled and 40 percent unlabeled AR
images yields a test error rate of 20.80 percent, as shown in
Fig. 2e. Our results suggest that the proper use of unlabeled
data in SSL algorithms is promising for facial expression
recognition.

5 DISCUSSIONS

In this section, we discuss issues concerning our approach
and relate it to the previous work and the latest develop-
ments in the context of regularization and boosting for SSL.

As elucidated in Section 3.1, the regularization term
exerted on unlabeled points in (9) is based on three SSAs [9]
and also on a novel margin cost approximation for unlabeled
points within the margin cost functional framework [27],
especially for semi-supervised classification. This margin
cost approximation uses the pseudoclass labels of those
unlabeled points in the neighborhood of unlabeled point i,
defined as sign½F ðxjÞ� and j 2 NðiÞ, which causes the
regularized margin cost functional defined in (9) to be
nonconvex. Thus, the gradient-based local search procedure
presented in Section 3.2 does not guarantee to find the global
optimum. Nevertheless, boosting is a relaxation process that
approximates the original target function F with a linear
combination of functions. We need to find a function f from a
given functional subspace and a step size w at each iteration
to minimize a cost functional CðFþwfÞ. At each iteration, the
local F is fixed, and hence, CðFþwfÞ in (9) is convex with
respect to f and w as long as the cost function Cð�Þ is convex.
To avoid getting stuck in an unwanted local optimum, we
propose an initialization method based on clustering
analysis in Section 3.3.1 to generate the first classifier for
our RegBoost learning. Our empirical studies manifest that
the initialization method works well, and hence, ensure that
RegBoost yields the satisfactory performance. In our ongoing
research, we shall be investigating alternative optimization
techniques, e.g., those described in [10], to tackle the local
optimum problem.

In our RegBoost, the regularization works on the low
density separation assumption along with other SSAs.
However, such an assumption does not always hold. The
violation of this assumption may lead to two different
situations, i.e., there is no cluster structure underlying a data
set or there is a cluster structure but such structural
information is misleading. The former situation does not
significantly affect the performance of RegBoost without
turning off the low-density separation assumption, as
shown in our experiments on the UCI data sets of high

Bayes errors that implicitly suggest no underlying cluster
structures, e.g., BUPA [35]. However, the latter situation may
degrade the performance of RegBoost without sufficient
labeled examples used for training. As demonstrated on
g241d, an SSL-book benchmark [9], RegBoost fails to yield
better performance than those not working on the low-
density separation assumption, e.g., ManifoldBoost [24],
since the data set is designed to have a misleading cluster
structure. To tackle this problem, cross-validation techni-
ques may be applied to detect such a situation in general.
Once the violation situation is identified, we can switch off
the low-density separation assumption by setting all �i
equal to 1=jU j uniformly.

As the density of input data is explicitly employed to
control regularization via �i, i 2 U , in (9), the accuracy of
density estimation is also another factor to affect the
performance of RegBoost. For the sake of computational
efficiency, we employ a density-based clustering algorithm
that fulfills density estimation for regularization and cluster-
ing analysis for the initialization together. In general, none of
the existing clustering algorithms are perfect; a clustering
algorithm may make a mistake by either overdividing an
intrinsic cluster into two or more clusters or merging two or
more natural clusters into one single cluster. If such a mistake
occurs, an uneven labeled data distribution may degrade the
performance of RegBoost. For instance, it could be proble-
matic if there are only labeled examples of the same class
available for a single cluster produced by wrongly merging
two intrinsic clusters corresponding to two different classes.
Nevertheless, our empirical studies indicate that as labeled
examples are distributed properly, our cluster-based initi-
alization works well even in the presence of incorrect
clustering analysis.

There are several parameters in RegBoost. Our empirical
studies reveal that the performance of RegBoost is
insensitive to the choice of most parameters, while some
of them need to be tuned for a given data set. First of all, �i
in (9) are always fixed to minðjU j=jLj; 5Þ, and � in (11) is set
to the standard deviation of all distances between training
examples. For all data sets used in our experiments,
including those not reported here, the performance of
RegBoost is insensitive to 
 used for calculating �i in (10)
when 
 is chosen within the range between four and six. As
a result, 
 is set to five for all experiments reported in this
paper. Next, we find that satisfactory performance is
achieved by setting � used in our initialization to a value
in the range between 10 and 15 percent. Although the
neighborhood of an unlabeled point i, NðiÞ, can be defined
by either �NN specified with a distance threshold � or KNN
specified with the number of its nearest neighbors K, our
empirical studies indicate that the performance of RegBoost
is more sensitive to choice of � than K. Therefore, we
suggest the use of KNN to define the neighborhood and K
is chosen in the range between 3 and 10 in proportion to the
number of all training examples. Finally, ðLDRþ �ÞjSj
training examples, where 0:01 ��� 0:1 and jSj is the
number of all the training examples, are randomly chosen
by sampling with D̂ðiÞ defined in (20) to train a base learner
at each boosting iteration.

In comparison with the existing regularization techniques
used in SSL, our RegBoost is closely related to graph-based
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methods, e.g., [39]. In general, a graph-based method wants
to find a function to satisfy two conditions simultaneously
[40]: 1) It should be close to given labels on the labeled
nodes and 2) it should be smooth on the whole graph. In
particular, the work in [39] developed a regularization
framework to carry out the above idea by defining the
global and local consistency terms in their cost function.
Likewise, our cost function for RegBoost in (12) has two
terms explicitly corresponding to the global and the local
consistency, which resembles theirs [39]. Nevertheless, a
graph-based algorithm is naturally applicable to TL only,
although it can be combined with other methods, e.g., a
mixture model [42], for inductive learning. In contrast, our
RegBoost is developed for SSIL.

Very recently, several semi-supervised boosting algo-
rithms have been developed with regularization working on
SSAs or information-theoretic constraints for binary classifi-
cation [24], [25], [29] and multiclass classification [36], [30].
SemiBoost [25], ManifoldBoost [24], and MCSSB [36] were
proposed based on manifold and smoothness assumptions
without considering the low-density separation assumption,
while SERBoost [29] and RMSBoost [30] were developed with
the expectation regularization principle.

SemiBoost and MCSSB proposed an alternative type of
regularization consisting of two terms in different forms to
penalize the inconsistency between labeled and unlabeled
points as well as the inconsistency between unlabeled points
themselves separately [25], [36]. In order to avoid the
nonconvex problem, they used the ensemble prediction
F ðxiÞ for unlabeled point i other than its pseudoclass label
sign½F ðxiÞ� in their cost functionals [25], [36]. Similarly to
ours, ManifoldBoost [24] was also developed within the
margin cost functional framework [27], but directly em-
ployed the Laplace functional smoothness penalty suggested
in [1] to be their regularizer. As the Laplace regularization is
generally used for regression [1], the ensemble prediction
F ðxiÞ for unlabeled point i is required in the regularization
term. Hence, ManifoldBoost can be used in various tasks by
different settings [24]. For classification, however, ensemble
predictions for those unlabeled points near a decision
boundary but belonging to two different classes may have a
very small difference, which results in a low cost. In contrast,
the use of pseudoclass labels in this circumstance leads to a
high cost to penalize the label inconsistency for classification.
Although the use of pseudoclass labels incurs a nonconvex
cost functional, we firmly believe that our cost functional
with a novel margin cost approximation for unlabeled points
is more appropriate for semi-supervised classification.

For optimization, SemiBoost and MCSSB used a rather
different procedure to derive their boosting algorithms [25],
[36]. Unlike ManifoldBoost and our RegBoost, which apply
the gradient-based local search to a functional subspace,
they approximate their cost functionals with several bounds
and the optimum of those bounds is used as their solutions
[25], [36]. It is well known that the optimum of a cost
functional may be different from that of its bounds. Thus,
the tightness or the quality of those bounds would critically
determine the performance of SemiBoost and MCSSB even
though their cost functional is convex.

More recently, SERBoost and RMSBoost [29], [30] used
the cross entropy between the prior probability and the

optimized model for regularization on unlabeled points

instead of SSAs. The gradient-based local search was used

for optimization to derive SERBoost and RMSBoost algo-

rithms. Unlike our initialization, which uses hard labels of

unlabeled points, label priors used in SERBoost and

RMSBoost lead to a probabilistic way of finding priors for

unlabeled points based on underlying cluster structures,

which could deal with the uncertainty of unlabeled data in a

better way. As argued in [29], [30], the use of expectation

regularization enables SERBoost and RMSBoost to utilize

prior knowledge easily and tackle a large-scale problem

efficiently. Thus, we believe that developing regularization

techniques within the boosting framework from different

perspectives would be helpful to understand SSAs and other

useful constraints for semi-supervised ensemble learning.

6 CONCLUSIONS

We have proposed a semi-supervised boosting framework by

introducing the regularization working on three fundamental

SSAs. Experiments on different benchmark and real-world

tasks demonstrate the constant improvement made by our

algorithm with unlabeled data in comparison to the baseline

and state-of-the-art SSL algorithms. In our ongoing work, we

work toward seeking an alternative optimization strategy for

our cost functional to tackle the local optimum problem in a

more effective way and exploring potential real applications.

Furthermore, we shall develop an effective approach to

dealing with unlabeled data where SSAs do not hold.
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