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Abstract—In this paper, we present a procedure to calculate the
discrete modes propagated with Crank-Nicolson FDTD in metallic
waveguides. This procedure enables the correct excitation of this kind
of waveguides at any resolution. The problem is reduced to solving
an eigenvalue equation, which is performed, both in a closed form, for
the usual rectangular waveguide, and numerically in the most general
case, validated here with a ridged rectangular waveguide.
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1. INTRODUCTION

The Finite Difference Time Domain (FDTD) [1] method is one
of the most widely used numerical techniques in computational
electrodynamics. However, for many problems of interest it
may become computationally inefficient, due to the upper limit
for the time step imposed by the Courant-Friedrich-Lewy (CFL)
stability condition [2]. There is a growing interest in overcoming
this limitation by employing unconditionally stable implicit FDTD
methods, for which time and space steps can be independently
chosen. The unconditionally stable alternating direction implicit
(ADI-FDTD) method [3, 4] and some of his variations (Locally One
Dimensional [5, 6], split-step [7], etc.) have received a lot of attraction
recently. These approximations suffer up to some extent of numerical
errors, which may become severe for some practical applications [8, 9].

An alternative to ADI-FDTD based methods, is the Crank-
Nicolson FDTD (CN-FDTD) method, for being unconditionally stable
beyond the CFL limit, and not presenting the numerical errors found
in these [8]. As in the classical FDTD, CN-FDTD replaces the time
and space derivatives by second order centered differences, but unlike
FDTD, the fields affected by the curl operators are also averaged in
time. The resulting scheme is an unconditionally stable fully implicit
marching-on-in-time algorithm.

Recently, both iterative preconditioned/non-preconditioned and
direct solving of CN-FDTD [10–16] are paving the way to its
development, and it is becoming a promising alternative to the classical
Yee-FDTD method, which is worth to be extended to include all the
features already developed for the classical FDTD method.

Two important problems, which have received a broad attention
in literature, arise in the simulation of multimode waveguides by time
domain methods: on one hand, the correct excitation of the incident
modes at the feeding port and, on the other hand, their subtraction at
the end of the guide [17–27].

In this paper, we apply some of these techniques to characterize
the discrete modes (also known as mode templates [18]) propagating
on arbitrarily-shaped conducting waveguides solved by the CN-FDTD
method. For this purpose we find the solution of the eigenvalue
problem numerically, for the general case, and analytically, for
rectangular waveguides. The numerical procedure is validated here
with a simple ridged rectangular waveguide.
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2. DISCRETE PROBLEM

Let us assume a conducting waveguide with arbitrary cross section,
filled up with a lossless homogeneous isotropic medium † with electrical
parameters ε and µ, and consider its axis in the Z direction. The modes
propagating in the waveguide must satisfy Maxwell’s curl equations,
together with the boundary conditions at the metallic walls: null
tangential components of the ~E field, and null normal components
of the ~H field.

In order to solve this problem with CN-FDTD an average-in-time
operator is applied to the fields affected by the space derivatives in
Maxwell’s curl equations, and all the derivative operators are replaced
by the centered difference operator. This results in an unconditionally
stable scheme [12], which permits to solve the fields located in the usual
Yee-cube spatial disposition with an implicit-in-space marching-on-in-
time algorithm
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Placing the field components distributed in the usual Yee’s
cube [1], and using the usual FDTD notation (ψn(i, j, k) ≡
ψ(i∆x, j∆y, k∆z, n∆t)) we can write CN-FDTD as

εDtE
n+ 1

2
x (i+ 1

2
,j,k) = Pt

(
DyH

n+ 1
2

z (i+ 1
2
,j,k)−DzH

n+ 1
2

y (i+ 1
2
,j,k)

)
(3)

εDtE
n+ 1

2
y (i,j+ 1

2
,k) = Pt

(
DzH

n+ 1
2

x (i,j+ 1
2
,k)−DxH

n+ 1
2

z (i,j+ 1
2
,k)

)

εDtE
n+ 1

2
z (i,j,k+ 1

2
) = Pt

(
DxH

n+ 1
2

y (i,j,k+ 1
2
)−DyH

n+ 1
2

x (i,j,k+ 1
2
)
)

µDtH
n+ 1

2
x (i,j+ 1

2
,k+ 1

2
) = Pt

(
DzE

n+ 1
2

y (i,j+ 1
2
,k+ 1

2
)−DyE

n+ 1
2

z (i,j+ 1
2
,k+ 1

2
)
)

µDtH
n+ 1

2
y (i+ 1

2
,j,k+ 1

2
) = Pt

(
DxE

n+ 1
2

z (i+ 1
2
,j,k+ 1

2
)−DzE

n+ 1
2

x (i+ 1
2
,j,k+ 1

2
)
)

µDtH
n+ 1

2
z (i+ 1

2
,j+ 1

2
,k) = Pt

(
DyE

n+ 1
2

x (i+ 1
2
,j+ 1

2
,k)−DxE

n+ 1
2

y (i+ 1
2
,j+ 1

2
,k)

)

Following the way employed in the non-discrete case, we
will search for discrete solutions of (3) with the general form
† Although the procedure is shown for simplicity for lossless media, it can be easily
formulated for lossy media.
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Ψmt(mx,my,mz) = Ψo(mx,my) e−jβgmz∆zejωmt∆t, with βg being the
propagation constant along the waveguide, (mx, my,mz) integer/semi-
integer multiples of the space step, mt integer/semi-integer multiple
of the time-step, and Ψo(mx,my) the transversal profile amplitude.
For these functions, Dz, Dt and Pt have the following eigenvalues
respectively
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The general solution of Equation (3), as in the non-discrete case, can
be divided into two basic mode sets: Transverse Magnetic (TM), for
which Hz = 0, and Transverse Electric (TE), for which Ez = 0. It
can be seen that for both TM and TE modes, it is sufficient to obtain
respectively Eoz and Hoz, to calculate the remaining components. For
instance, for the TM polarization (3) is equivalent to
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with the dispersion relationship

κ2 = a2
z − µενt

2, νt =
at

nt
= 2j

tan(ω∆t
2 )

∆t
(6)

If we place the staircased conducting walls along the planes
of Yee’s cube containing the Ez component (Fig. 1), the boundary
conditions at the planes parallel to XZ are

Eoz(i,j0) = 0 (7a)
Eox(i+ 1

2
,j0) = 0 (7b)
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2
,j0) = 0 (7c)

and for the planes parallel to YZ

Eoz(i0,j) = 0 (8a)
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) = 0 (8b)
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2
) = 0 (8c)
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Figure 1. Arrangement of the fields at an edge of the guide.

It can easily be deduced from Equation (5), that (7a) and (8a) are
enough to satisfy the remaining boundary conditions (7b), (7c) and
(8b), (8c) automatically.

Analogously, the eigenvalue equation for the TE polarization is(DxDx +DyDy + κ2
)
Hoz(i+ 1

2
,j+ 1

2) = 0 (9)
Placing the waveguide walls in the same manner as in the TM case,
the boundary conditions reduce to

DyHoz(i+ 1
2
,j0) = 0 (XZ), DxHoz(i0,j+ 1

2
) = 0 (Y Z) (10)

These eigenvalue problems can be solved by numerical techniques,
although an analytical solution can be sought in some simple cases.
For instance, for a rectangular waveguide, a closed-form solution is
shown in Table 1. It should be noticed that the non-discrete solution is
obtained from the discrete one by replacing the space discrete variables
in Table 1 by the continuous ones, and bt by ω, bx by pπ

a , by by qπ
b , and

bz by βg, which are their respective limits when all the increments tend
to 0. The FDTD solution is totally similar just replacing tan(ω∆t

2 ) by
sin(ω∆t

2 ) wherever it appears.
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Table 1. Closed form of the discrete TE and TM modes for a
rectangular waveguide of size a× b.
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To obtain a discrete numerical solution, for instance in the TE
case, we first arrange the values of Hoz(i+ 1

2
,j+ 1

2
) for all the discretized

points on the waveguide cross section on a single column vector
~Φ, and then, replacing the transverse discrete Laplacian operator
DxDx+DyDy by (1), Equations (9) and (10) can be explicitly written in
matrix form as M̃~Φ = −κ2~Φ. Since M̃ turns out to be a sparse matrix
(no more than 5 non-null elements per line), this eigenvalue problem
can be solved using well known linear algebra numerical techniques.
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3. IMPLEMENTATION INTO CN-FDTD

The procedure described in [14] has been followed for the
implementation of the CN-FDTD Equation (3). An iterative Krylov-
based solution, employing the BiCGStab solver has been applied.
The discrete mode has been fed into the computational space with
a total-field/scattered-field formulation implemented by means of an
equivalent set of surface currents on two Huygens’ planes [2]: one to
inject the propagating mode at a plane near one end of waveguide, and
the other one close to the other end to suppress it. Simple Mur first
order boundary conditions are placed at every end of the waveguide.

4. RESULTS

Using the IMSL eigenvalue routines, we have obtained the TE
numerical discrete modes supported by an air-filled ridged rectangular
waveguide (Fig. 2(middle)): a total number of 937 modes can
propagate in the waveguide‡. In order to test the accuracy of the
method, we have excited at 3.30 GHz the 9th TE mode, employing
for the simulation ∆x = ∆y = 333.3mm, ∆z = 9.0mm, ∆t =
29.70 ps. This mode, which has a numerical cutoff frequency of
33.30MHz, propagates along the Z axis with a low resolution
(∼ 10 cells/wavelength), and it is poorly sampled in time (∼ 10
samples/period). Fig. 2 shows the Hoz pattern of this mode, together
with the propagation of Ex along Z at y = 38∆y, after 1200 time steps.
The null field region beginning at z = 600∆z (the mode is excited at
z = 400∆z) corresponds to the scattered field zone. Less than 0.01%
of the energy escapes from the total field region, which proves the
accuracy of the predicted mode propagation. It bears noting that
the numerical modes (eigenvectors) found for FDTD are the same as
those of CN-FDTD since the space operators of both methods coincide.
However the cut-off frequencies (eigenvalues) differ (sinus functions
in FDTD and tangent functions in CN-FDTD), and the numerical
dispersion also differs. Similar relative deviations between FDTD and
CN-FDTD to the ones commented in the next example for the square
waveguide are found (see [9] for more details on the dispersion topic).

We have also excited a 10 mm side air-filled square waveguide,
with a discrete TM11 mode from Table 1 at 31GHz. A coarse space-
time sampling has been taken ∆x = ∆y = 1.667 mm, ∆z = 1.581mm,
∆t = 3.12 ps, which results in ∼ 8 cells/wavelength in the propagation
direction, and ∼ 10 samples/period. The CN-FDTD cut-off frequency
‡ The actual number of discrete modes is limited by the space discretization.
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of this mode is fc = 20.67 GHz§. Fig. 3 shows the Ez profile at
(x = 3∆x, y = 3∆y), from z = 80∆z to z = 120∆z (the mode is
excited at z = 0), after 300 time steps. Perfect agreement is shown
between the discrete mode propagated with CN-FDTD (dashed line)
and its predicted propagation (‘+’ symbols), while phase differences
can be appreciated between the non-discrete mode (sampled in time
and in space) propagated with CN-FDTD (continuous line) and its
predicted evolution (‘¦’ symbols)‖.
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Figure 2. Hoz pattern of the 9th TE mode for a ridged rectangular
waveguide (top). Geometry of this guide (middle). Propagation
along the Z-axis of the Ex component of the 9th mode, at y = 38
cells (bottom). All dimensions are in cells (∆x = ∆y = 333.3mm,
∆z = 9.0mm, ∆t = 29.70 ps).
§ Just for comparison: the non-discrete cut-off frequency is fc = 21.20GHz while the Yee-
FDTD discrete one is 21.11GHz. The FDTD discrete solution is closer to the non-discrete
one, as expected, since the dispersion of CN-FDTD is higher than that of the classical Yee
FDTD [9].
‖ This behavior has also been discussed in [28].
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5. CONCLUSIONS

In this paper, we have presented a procedure to obtain the discrete
numerical modes propagated by the CN-FDTD method in arbitrarily-
shaped metallic waveguides. We have reduced the problem to the
solution of an eigenvalue problem, which has been addressed in the
general case by numerical techniques, and in an analytical manner for
rectangular waveguides.
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