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A new method modifying the frequency dependent alternating direc-
tion implicit finite difference time domain (FD-ADI-FDTD) is pre-
sented. The method can improve the accuracy of FD-ADI-FDTD
without significant increase of computational costs. The proposed
method is validated by numerical tests.

Introduction: One major breakthrough in finite difference time domain
(FDTD) research has been the development of alternating direction
implicit (ADI)-FDTD [1], since it removes the bound on the time step
of conventional FDTD imposed by the Courant Friedrich Lewy (CFL)
stability condition. ADI-FDTD can be seen as a computationally afford-
able approximation of the Crank-Nicolson (CN)-FDTD scheme [2],
found by adding a perturbation term to the latter [3]. This term
permits splitting the fully implicit step advancing from n to n + 1 in
CN-FDTD, into two tridiagonally implicit substeps in ADI-FDTD
going from n to n + 1/2 and from n + 1/2 to n + 1. ADI-FDTD exhi-
bits a loss of accuracy with respect to CN-FDTD that may become
severe for some practical applications [3]. Thus, ADI-FDTD improves
computational efficiency at the cost of accuracy. There have been
efforts to improve the accuracy of ADI-FDTD. For instance, the
approach of [4] is based on an iterative procedure ideally converging
to CN-FDTD. An alternative solution is given by [5] employing an
average approximation of some of the implicit fields. Although both
of these techniques are stable in 2D, their generalisation to 3D seems
to become unstable [6, 7].

In this Letter we present an extension of the approach by [5], for the
frequency dependent ADI-FDTD (FD-ADI-FDTD) described in [8].
Numerical experiments show that this modified FD-ADI-FDTD
scheme is more accurate than normal FD-ADI-FDTD.

Modified frequency dependent ADI-FDTD: Maxwell’s 2D equations
for TM polarisation are
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where E, H, D are, respectively, electric field, magnetic field and electric
flux density, and m and s are the permeability and conductivity of the
medium. We model the frequency dependent media by the single-pole
Debye relationship D = e0er . E with er = e1 + (eS − e1)/(1 + jvtD).
Here er, e0, eS, e1, tD and v are relative permittivity, free-space permit-
tivity, static permittivity, optical permittivity, relaxation time and angular
frequency, respectively. The frequency domain constitutive relationship
for this medium can be translated into time domain using an auxiliary
differential formulation: tD∂Dz/∂t − tDe0e1∂Ez/∂t = e0eSEz − Dz.

Inserting (1) into the constitutive relationship, the time derivative of
Ez is obtained:

∂Ez

∂t
= − eS

tDe1

+ s

e0e1

( )
Ez +

1

tDe0e1

Dz +
1

e0e1

∂Hy

∂x
− 1

e0e1

∂Hx

∂y

(4)

(1), (2), (3), (4) can be written as ∂U/∂t = AU + BU where
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Now, using finite differences for the time derivative and averaging the
fields over time in ∂U/∂t = AU + BU , the CN-FDTD scheme is found
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where I is a 4 × 4 identity matrix. (8) can also be written as
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In ADI-FDTD the last term of (9) is dropped and then solved in two
steps, leading to truncation error which is a function of (Dt/2)2 times
the space derivatives of the field [3]. So the truncation error increases
with larger time steps, imposing a restriction on the time step, particu-
larly when accuracy of the problem is crucial for strong-gradient
fields. Instead, we follow the strategy of [5] and write (9) in a two-
step implicit form, but without dropping any term:
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Now, from the approximations: Un = (Un+1/2 + U n−1/2)/2 and
U n+1/2 = (U n+1 + Un)/2 [5], we obtain U n+1/2 and U n+1 by extrapol-
ation and use in (10) and (11), yielding a couple tridiagonally implicit
set of equations
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Replacing (5) and (6) into (12), we find the first substep of equations
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Substituting Dn+1/2
z from (15) into (14), En+1/2

z is found in terms of
Hn+1/2

y , which is then used in (17) resulting in
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Eqn. (18) forms a system of linear equations of Au ¼ c where A is a tri-
diagonal matrix, u is the unknown field vector Hn+1/2

y and c is the
excitation vector. The solution of this tridiagonal system of equations
provides the values of Hy at half-step. Then using them in (14)–(17),
Dn+1/2

z ,En+1/2
z ,Hn+1/2

x are explicitly found.
Similarly, for the second step, another tridiagonal system of equations

is found and solved to get the values of En+1
z . Then Hn+1

x , Hn+1
y and

Dn+1
z are solved explicitly. A close look to these equations shows that

the tridiagonal matrices of the modified FD-ADI-FDTD are those of
the normal FD-ADI-FDTD [8] except for additional terms which do
not increase the computational burden significantly.

Numerical validation: To validate the proposed modified FD-ADI-
FDTD scheme, numerical tests were conducted for a 2D computational
space of 400 × 400 cells (in x- and y-directions) consisting of two media
and truncated by Mur first-order boundary conditions. Half of the com-
putational space (x ≤ 200) had the parameters eS ¼ 9.5, e1 ¼ 4.2, s ¼
0.0 S/m, tD ¼ 77.0 ps and the other half (x . 200) had eS ¼ 6.2, e1 ¼

3.5, s ¼ 0.0 S/m, tD ¼ 39.0 ps. A line source was applied at (180,200)
in the first medium. The excitation waveform was a Gaussian pulse
centred at 2.3 GHz. A test point, 40 cells away into the second
medium, at (220,200) was taken. A uniform spatial sampling of Dx ¼
Dy ¼ Ds ¼ 0.3 mm was used. The time step was variably taken at or
above the CFL limit of explicit FDTD: Dt = CFLN × Ds/(c
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CFLN referred to as the CFL number and c the free-space light-speed.
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Fig. 1 Observed signals using FD-ADI-FDTD and modified FD-ADI-FDTD
for CFLN ¼ 30

To quantify the improvement of modified FD-ADI-FDTD, we have
defined an average error E calculated over the whole frequency band
ELECT
of the transient excitation as E =
�������������������������������∑

f
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√
. Here,

Srcd is the amplitude spectrum of the field received at the test point
by modified FD-ADI-FDTD and Sref

rcd is that of the reference,
here taken as the solution provided by FD-ADI-FDTD [8] for
CFLN ¼ 1. The average errors for FD-ADI-FDTD and modified
FD-ADI-FDTD for three values of CFLN . 1 are given in Table 1.
Results for the time evolution of Ez at the test point from the two
methods are also shown in Fig. 1 for CFLN ¼ 30. Noticeable errors
are seen when FD-ADI-FDTD is used, while in the case of the modified
scheme these are significantly reduced. Splitting errors resulting from
the dropped last term of (9) account for these errors, which have been
taken care of in the modified FD-ADI-FDTD.

Table 1: Average error of FD-ADI-FDTD and modified FD-ADI-
FDTD at different CFLN

CFLN FD–ADI–FDTD Modified FD–ADI–FDTD

10 0.096932 0.052911

20 0.471145 0.091383

30 0.718453 0.124622

Conclusion: A method capable of reducing errors in FD-ADI-FDTD is
shown and numerically verified. Like FD-ADI-FDTD, the scheme still
requires to solve only a tridiagonal system, but can reduce the pertur-
bations introduced in CN-FDTD to formulate ADI-FDTD.
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