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Main Requirements for GPU Performance 

Expose sufficient parallelism 

Use memory efficiently 

Coalesce global memory accesses 

Use shared memory where possible 

Have coherent execution within warps of threads 
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GPU Optimization Fundamentals 

Find ways to parallelize sequential code 

Adjust kernel launch configuration to maximize device utilization 

Ensure global memory accesses are coalesced 

Minimize redundant accesses to global memory 

Avoid different execution paths within the same warp 

Minimize data transfers between the host and the device 

 

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/  
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GPU Optimization Fundamentals 

Find ways to parallelize sequential code 

 

Kernel optimizations 

Launch configuration 

Global memory throughput 

Shared memory access 

Instruction throughput / control flow 

 

Optimization of CPU-GPU interaction 

Maximizing PCIe throughput 

Overlapping kernel execution with memory copies 



© NVIDIA 2013 

APOD: A Systematic Path to Performance 

Assess 

Parallelize 

Optimize 

Deploy 
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Identify hotspots (total time, number of calls) 

Understand scaling (strong and weak) 

Assess 

HOTSPOTS 
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Parallelize 

Applications 

Libraries 
Programming 

Languages 
OpenACC 

Directives 
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Optimize 

Profile-driven optimization 

 

Tools: 

nsight Visual Studio Edition or Eclipse Edition 

nvvp NVIDIA Visual Profiler 

nvprof Command-line profiling 
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Deploy 

Check API return values 

Run cuda-memcheck tools 

Library distribution 

Cluster management 

 

Early gains 

Subsequent changes are evolutionary  

Productize 
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PARALLELIZE 
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Parallelism Needed 

GPU is a parallel machine 

Lots of arithmetic pipelines 

Multiple memory banks 

 

To get good performance, your code must expose sufficient 

parallelism for 2 reasons: 

To actually give work to all the pipelines 

To hide latency of the pipelines 

 

Rough rule of thumb for Tesla K20X: 

You want to have 14K or more threads running concurrently 
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void transpose(float in[][], float out[][], int N) 

{ 

  for(int j=0; j < N; j++) 

    for(int i=0; i < N; i++) 

      out[j][i] = in[i][j]; 

} 

Case Study: Matrix Transpose 

i 

j 
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+ Quickly implemented                                      - Performance weak 

Need to expose parallelism! 

An Initial CUDA Version 

__global__ void transpose(float in[], float out[], int N) 

{ 

  for(int j=0; j < N; j++) 

     for(int i=0; i < N; i++) 

       out[i*N+j] = in[j*N+i]; 

 

} 

 

 

float in[N*N], out[N*N];   

… 

transpose<<<1,1>>>(in, out, N); 
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CUDA Execution Model 

Thread: Sequential execution unit 

All threads execute same sequential program 

Threads execute in parallel 
 

Threads Block: a group of threads 

Executes on a single Streaming Multiprocessor (SM) 

Threads within a block can cooperate 

Light-weight synchronization 

Data exchange 
 

Grid: a collection of thread blocks 

Thread blocks of a grid execute across multiple SMs 

Thread blocks do not synchronize with each other 

Communication between blocks is expensive 
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Kepler Streaming Multiprocessor (SMX) 

Per SMX: 
192 SP CUDA Cores 

64 DP CUDA Cores 

4 warp schedulers 

Up to 2048 concurrent threads 

One or two instructions issued 

per scheduler per clock from a 

single warp 

Register file (256KB) 

Shared memory (48KB) 
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Software Hardware 

Threads are executed by scalar CUDA Cores 

Thread 

CUDA 

Core 

Thread Block Multiprocessor 

Thread blocks are executed on multiprocessors 

 

Thread blocks do not migrate 

 

Several concurrent thread blocks can reside on 

one multiprocessor - limited by multiprocessor 

resources (shared memory and register file) 

Grid 

A kernel is launched as a grid of thread blocks 

Execution Model 

Device 
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+ Quickly implemented                                      - Performance weak 

Need to expose parallelism! 

An Initial CUDA Version 

__global__ void transpose(float in[], float out[], int N) 

{ 

  for(int j=0; j < N; j++) 

     for(int i=0; i < N; i++) 

       out[i*N+j] = in[j*N+i]; 

 

} 

 

 

float in[N*N], out[N*N];   

… 

transpose<<<1,1>>>(in, out, N); 
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Parallelize across matrix elements 

tid 

in 

tid tid 

tid  out 

tid 

tid 

__global__ transpose(float in[], float out[]) 

{ 

  int tid = threadIdx.x; 

  int bid = blockIdx.x; 

 

  out[tid*N+bid] = in[bid*N+tid]; 

} 

 

 

float in[], out[];   

… 

transpose<<<N,N>>>(in, out); 

Process elements independently 
bid 
bid 

bid bid 
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OPTIMIZE 
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OPTIMIZE 

Kernel Optimizations: Launch Configuration 
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Launch Configuration 

Launch configuration is the number of blocks and number of 

threads per block, expressed in CUDA with the <<< >>> notation: 

 
mykernel<<<num_blocks,threads_per_block>>>(…); 

 

What values should we pick for these? 

Need enough total threads to process entire input 

Need enough threads to keep the GPU busy 

Selection of block size is an optimization step involving warp occupancy 
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Multiprocessor 

32 Threads 

Warps 

A thread block consists 

of 32-thread warps 

 

A warp is executed 

physically in parallel 

(SIMD) on a 

multiprocessor 

= 

Warps 

Thread Block 

32 Threads 

32 Threads 

32 Threads 
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Occupancy 

Need enough independent 

threads per SM to hide latencies: 

Instruction latencies 

Memory access latencies 

 

Hardware resources determine 

number of threads that fit per SM 

 

Occupancy = Nactual / Nmax  
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Occupancy 

Occupancy: number of concurrent threads per SM, expressed as: 

Number of concurrent warps of threads, or 

Percentage of maximum concurrent threads 

 

Determined by several factors : 

Registers per thread 

SM registers are partitioned among the threads 

Shared memory per thread block 

SM shared memory is partitioned among the blocks 

Threads per thread block 

Threads are allocated at thread block granularity 

Kepler SM resources: 
 

– 64K 32-bit registers 

– Up to 48 KB of shared memory 

– Up to 2048 concurrent threads 

– Up to 16 concurrent thread blocks 
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Low Latency or High Throughput? 

CPU 

Optimized for low-latency 

access to cached data sets 

Control logic for out-of-order 

and speculative execution 
 

GPU 

Optimized for data-parallel, 

throughput computation 

Architecture tolerant of 

memory latency 

More transistors dedicated to 

computation 
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Low Latency or High Throughput? 

CPU architecture must minimize latency within each thread 

GPU architecture hides latency with computation from other (warps of) threads 

GPU Stream Multiprocessor – High Throughput Processor 

CPU core – Low Latency Processor 

Computation Thread/Warp 

Tn 

 

Processing 

Waiting for data 

Ready to be processed 

Context switch 

W1 

 

W2 

 

W3 

 

W4 

 

T1 

 

T2 

 

T3 

 

T4 
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Occupancy and Performance 

Note that 100% occupancy isn’t needed to reach maximum 

performance 

Once the “needed” occupancy is reached, further increases won’t 

improve performance 

 

Needed occupancy depends on the code 

More independent work per thread -> less occupancy is needed 

Memory-bound codes tend to need more occupancy 

Higher latency than for arithmetic, need more work to hide it 
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Occupancy 

Limiting resources: 

Number of threads  

Number of registers per thread 

Number of blocks  

Amount of shared memory per block 

 

Don’t need for 100% occupancy for 

maximum performance 
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Thread Block Size and Occupancy 

Thread block size is a multiple of warp size (32) 

Even if you request fewer threads, HW rounds up 

Thread blocks can be too small 

Kepler SM can run up to 16 thread blocks concurrently 

SM may reach the block limit before reaching good occupancy 

E.g.: 1-warp thread blocks -> 16 warps per Kepler SM (probably not enough) 

Thread blocks can be too big 

Enough SM resources for more threads, but not enough for a whole block 

A thread block isn’t started until resources are available for all of its 

threads 

 



© NVIDIA 2013 

Thread Block Sizing 

SM resources: 

Registers 

Shared memory 

Number of warps allowed by SM resources 
Too few 

threads per block 

Too many 

threads per block 



© NVIDIA 2013 

Occupancy Example 

 

 

 

Occupancy here is limited by 

grid size and number of 

threads per block 
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CUDA Occupancy Calculator 

 

 

 

Analyze effect of 

resource consumption 

on occupancy 
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General Guidelines 

Thread block size choice: 

Start with 128-256 threads per block 

Adjust up/down by what best matches your function 

Example: stencil codes prefer larger blocks to minimize halos 

Multiple of warp size (32 threads) 

If occupancy is critical to performance: 

Check that block size isn’t precluding occupancy allowed by register and 

shared memory resources 

Grid size: 

1,000 or more thread blocks 

10s of “waves” of thread blocks: no need to think about tail effect 

Makes your code ready for several generations of future GPUs 
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Kepler: Level of Parallelism Needed 

To saturate instruction bandwidth: 

Fp32 math:  ~1.7K independent instructions per SM 

Lower for other, lower-throughput instructions 

Keep in mind that Kepler can track up to 2048 threads per SM  

 

To saturate memory bandwidth:  

100+ concurrent independent 128-byte lines per SM 
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OPTIMIZE 

Kernel Optimizations: Global Memory Throughput 
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Host 

CPU 

Chipset 

DRAM 

Device 

DRAM 

 

 

 

 

 

 

Global 

Constant 

Texture 

Local 

GPU 

Multiprocessor 

Registers 

Shared Memory 

Multiprocessor 

Registers 

Shared Memory 

Multiprocessor 

Registers 

Shared Memory 

Constant and Texture  

Caches 

L1 / L2 Cache 

CUDA Memory Architecture 
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Kepler Memory Hierarchy 

L2 

Global Memory 

Registers 

SM-N 

Registers 

SM-0 

Registers 

SM-1 

L1 SMEM Read 

only L1 SMEM Read 

only 
L1 SMEM Read 

only 
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Kepler Memory Hierarchy 

Registers 

Storage local to each threads 

Compiler-managed 

Shared memory / L1 cache 

64 KB, program-configurable into shared:L1 

Program-managed 

Accessible by all threads in the same thread block 

Low latency, high bandwidth: ~2.5 TB/s 

Read-only cache 

Up to 48 KB per Kepler SM 

Hardware-managed (also used by texture units) 

Used for read-only GMEM accesses (not coherent with writes) 
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Kepler Memory Hierarchy 

L2 

1.5 MB 

Hardware-managed: all accesses to global memory go through L2, including CPU 

and peer GPU 

Global memory 

6 GB, accessible by all threads, host (CPU), other GPUs in the same system 

Higher latency (400-800 cycles) 

250 GB/s 
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Load Operation 

Memory operations are issued per warp (32 threads) 

Just like all other instructions 

Operation: 

Threads in a warp provide memory addresses 

Determine which lines/segments are needed 

Request the needed lines/segments 
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Memory Throughput Analysis 

Two perspectives on the throughput: 

Application’s point of view:  

count only bytes requested by application 

HW point of view: 

count all bytes moved by hardware 

The two views can be different: 

Memory is accessed at 32 byte granularity 

Scattered/offset pattern: application doesn’t use all the hw transaction bytes 

Broadcast: the same small transaction serves many threads in a warp 

Two aspects to inspect for performance impact: 

Address pattern 

Number of concurrent accesses in flight 
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Global Memory Operation 

Memory operations are executed per warp 

32 threads in a warp provide memory addresses 

Hardware determines into which lines those addresses fall 

Memory transaction granularity is 32 bytes 

There are benefits to a warp accessing a contiguous aligned region of 128 or 

256 bytes 

 

Access word size 

Natively supported sizes (per thread): 1, 2, 4, 8, 16 bytes 

Assumes that each thread’s address is aligned on the word size boundary 

If you are accessing a data type that’s of non-native size, compiler will 

generate several load or store instructions with native sizes 
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Access Patterns vs. Memory Throughput 

Scenario: 
Warp requests 32 aligned, consecutive 4-byte words 

Addresses fall within 4 segments 
Warp needs 128 bytes 

128 bytes move across the bus 

Bus utilization: 100% 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Access Patterns vs. Memory Throughput 

... 
addresses from a warp 

Scenario: 
Warp requests 32 aligned, permuted 4-byte words 

Addresses fall within 4 segments 
Warp needs 128 bytes 

128 bytes move across the bus 

Bus utilization: 100% 

 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Access Patterns vs. Memory Throughput 

Scenario: 
Warp requests 32 misaligned, consecutive 4-byte words 

Addresses fall within at most 5 segments 
Warp needs 128 bytes 

At most 160 bytes move across the bus 

Bus utilization: at least 80% 

Some misaligned patterns will fall within 4 segments, so 100% utilization 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

... 
addresses from a warp 
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Access Patterns vs. Memory Throughput 

addresses from a warp 

Scenario: 
All threads in a warp request the same 4-byte word 

Addresses fall within a single segment 
Warp needs 4 bytes 

32 bytes move across the bus 

Bus utilization: 12.5% 

 

... 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Access Patterns vs. Memory Throughput 

addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

Scenario: 
Warp requests 32 scattered 4-byte words 

Addresses fall within N segments 
Warp needs 128 bytes 

N*32 bytes move across the bus 

Bus utilization:  128 / (N*32) 

... 
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Structures of Non-Native Size 

Say we are reading a 12-byte structure per 
thread 

 

struct Position 

{ 

 float x, y, z; 

}; 

... 

__global__ void kernel( Position *data, ... ) 

{ 

 int idx = blockIdx.x * blockDim.x + threadIdx.x; 

 Position temp = data[idx]; 

 ... 

} 
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Structure of Non-Native Size 

Compiler converts temp = data[idx] into 3 loads: 

Each loads 4 bytes 

Can’t do an 8 and a 4 byte load: 12 bytes per element means that every 

other element wouldn’t align the 8-byte load on 8-byte boundary 

Addresses per warp for each of the loads: 

Successive threads read 4 bytes at 12-byte stride 
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First Load Instruction 

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32 

addresses from a warp 

... 



© NVIDIA 2013 

Second Load Instruction 

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32 

addresses from a warp 

... 



© NVIDIA 2013 

Third Load Instruction 

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32 

addresses from a warp 

... 
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Performance and Solutions 

Because of the address pattern, we end up moving 3x more bytes 

than application requests 

We waste a lot of bandwidth, leaving performance on the table 

Potential solutions: 

Change data layout from array of structures to structure of arrays 

In this case: 3 separate arrays of floats 

The most reliable approach (also ideal for both CPUs and GPUs) 

Use loads via read-only cache 

As long as lines survive in the cache, performance will be nearly optimal 

Stage loads via shared memory 
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Global Memory Access Patterns 

SoA vs AoS: 

Good: point.x[i] 

Not so good: point[i].x 
 

Strided array access: 

~OK: x[i] = a[i+1]  – a[i] 

Slower: x[i] = a[64*i] – a[i] 
 

Random array access: 

Slower: a[rand(i)] 

0 1 31 

0 1 31 
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Summary: GMEM Optimization 

Strive for perfect address coalescing per warp 

Align starting address (may require padding) 

A warp will ideally access within a contiguous region 

Avoid scattered address patterns or patterns with large strides between 

threads 

Analyze and optimize address patterns: 

Use profiling tools (included with CUDA toolkit download) 

Compare the transactions per request to the ideal ratio 

Choose appropriate data layout (prefer SoA) 

If needed, try read-only loads, staging accesses via SMEM 
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Optimizing Access Concurrency 

Goal: utilize all available memory 

bandwidth 

 

Little’s Law: 

# bytes delivered = latency * bandwidth 

 

 

 Increase parallelism (bytes delivered) 

 (or) 

 Reduce latency (time between requests) 

A
c
c
e
s
s
 l
a
te

n
c
y 

L
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Exposing Sufficient Parallelism 

What memory system hardware ultimately needs: 

Sufficient requests in flight to saturate bandwidth 

 

Two ways to increase parallelism: 

More independent accesses within a thread (warp) 

More concurrent threads (warps) 
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Memory-Level Parallelism = Bandwidth 

In order to saturate memory bandwidth, SM must issue 

enough independent memory requests concurrently 
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Memory-Level Parallelism: Requests in flight 

Achieved Kepler memory throughput 

Shown as a function of number of concurrent requests 

per SM with 128-byte lines 
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Experiment: vary size of accesses by 

threads of a warp, check performance 
Memcopy kernel: each warp has 2 concurrent 

requests (one write and the read following it) 

Accesses by a warp: 

 4B words: 1 line 

 8B words: 2 lines 

 16B words: 4 lines 

 

To achieve same 

throughput at lower 

occupancy or with 

smaller words, need 

more independent 

requests per warp 

Requests per Thread and Performance 
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Optimizing Access Concurrency 

Have enough concurrent accesses to saturate the bus 

Little’s law: need (mem_latency)x(bandwidth) bytes 
 

Ways to increase concurrent accesses: 

Increase occupancy (run more warps concurrently) 

Adjust thread block dimensions 

– To maximize occupancy at given register and smem requirements 

If occupancy is limited by registers per thread: 

– Reduce register count (-maxrregcount option, or __launch_bounds__) 

Modify code to process several elements per thread 

Doubling elements per thread doubles independent accesses per thread 
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A note about caches 

L1 and L2 caches 

Ignore in software design 

Thousands of concurrent 

threads – cache blocking 

difficult at best 

 

Read-only Data Cache 

Shared with texture pipeline 

Useful for uncoalesced reads 

Handled by compiler when 

const __restrict__ is used, or 

use __ldg() primitive 
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Read-only Data Cache 

Go through the read-only cache 

Not coherent with writes 

Thus, addresses must not be written by the same kernel 

Two ways to enable: 

Decorating pointer arguments as hints to compiler: 

Pointer of interest: const __restrict__ 

All other pointer arguments: __restrict__ 

– Conveys to compiler that no aliasing will occur 

Using __ldg() intrinsic 

Requires no pointer decoration 
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Read-only Data Cache 

Go through the read-only cache 

Not coherent with writes 

Thus, addresses must not be written by the same kernel 

Two ways to enable: 

Decorating pointer arguments as hints to compiler: 

Pointer of interest: const __restrict__ 

All other pointer arguments: __restrict__ 

– Conveys to compiler that no aliasing will occur 

Using __ldg() intrinsic 

Requires no pointer decoration 

 

__global__ void kernel( 

              int* __restrict__ output, 

        const int* __restrict__ input ) 

{ 

     ... 

     output[idx] = input[idx]; 

} 
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Read-only Data Cache 

Go through the read-only cache 

Not coherent with writes 

Thus, addresses must not be written by the same kernel 

Two ways to enable: 

Decorating pointer arguments as hints to compiler: 

Pointer of interest: const __restrict__ 

All other pointer arguments: __restrict__ 

– Conveys to compiler that no aliasing will occur 

Using __ldg() intrinsic 

Requires no pointer decoration 

 

__global__ void kernel( int *output,  

                        int *input ) 

{ 

     ... 

     output[idx] = __ldg( &input[idx] ); 

} 



© NVIDIA 2013 

Blocking for L1, Read-only, L2 Caches 

Short answer: DON’T 

GPU caches are not intended for the same use as CPU caches 

Smaller size (especially per thread), so not aimed at temporal reuse 

Intended to smooth out some access patterns, help with spilled registers, 

etc. 

Usually not worth trying to cache-block like you would on CPU 

100s to 1,000s of run-time scheduled threads competing for the cache 

If it is possible to block for L1 then it’s possible block for SMEM 

Same size 

Same or higher bandwidth 

Guaranteed locality: hw will not evict behind your back 



© NVIDIA 2013 

OPTIMIZE 

Kernel Optimizations: Shared Memory Accesses 
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Shared Memory 

Accessible by all threads in a block 

 

Fast compared to global memory 

Low access latency  

High bandwidth 

 

Common uses: 

Software managed cache 

Data layout conversion 

Global Memory (DRAM) 

Registers 

SM-0 

Registers 

SM-N 

SMEM SMEM 
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Shared Memory/L1 Sizing 

Shared memory and L1 use the same 64KB 

Program-configurable split: 

Fermi:  48:16, 16:48 

Kepler: 48:16, 16:48, 32:32 

CUDA API: cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig() 

Large L1 can improve performance when: 

Spilling registers (more lines in the cache -> fewer evictions) 

Large SMEM can improve performance when: 

Occupancy is limited by SMEM 
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Shared Memory 

Uses: 

Inter-thread communication within a block 

Cache data to reduce redundant global memory accesses 

Use it to improve global memory access patterns 

 

Organization: 

32 banks, 4-byte (or 8-byte) banks 

Successive words accessed through different banks 
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Shared Memory 

Uses: 

Inter-thread communication within a block 

Cache data to reduce redundant global memory accesses 

Use it to improve global memory access patterns 

 

Performance: 

smem accesses are issued per warp 

Throughput is 4 (or 8) bytes per bank per clock per multiprocessor 

serialization: if N threads of 32 access different words in the same bank, 

N accesses are executed serially 

multicast: N threads access the same word in one fetch 

Could be different bytes within the same word 
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Shared Memory Organization 

Organized in 32 independent banks 
 

Optimal access: no two words from 

same bank 

Separate banks per thread 

Banks can multicast 

 

Multiple words from same bank serialize 
 

C 

Bank 

Any 1:1 or multicast pattern 

C C C 

Bank Bank Bank 

C 

Bank 

C C C 

Bank Bank Bank 
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Bank Addressing Examples 

 No Bank Conflicts  No Bank Conflicts 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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Bank Addressing Examples 

 2-way Bank Conflicts  8-way Bank Conflicts 

Thread 31 
Thread 30 
Thread 29 
Thread 28 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 31 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 
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Case Study: Matrix Transpose 

 

Coalesced read 

Scattered write (stride N) 

 

Process matrix tile, not single 

row/column, per block 

 

Transpose matrix tile within block 

 out 

in 
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Case Study: Matrix Transpose 

 

Coalesced read 

Scattered write (stride N) 

 

Transpose matrix tile within block 

 

Need threads in a block to cooperate: 

use shared memory 

out 

in 
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Transpose with coalesced read/write 

__global__ transpose(float in[], float out[]) 

{ 

  

  __shared__ float tile[TILE][TILE]; 

 

  int glob_in = xIndex + (yIndex)*N; 

  int glob_out = xIndex + (yIndex)*N; 

 

  tile[threadIdx.y][threadIdx.x] = in[glob_in]; 

 

  __syncthreads(); 

 

  out[glob_out] = tile[threadIdx.x][threadIdx.y]; 

 

} 

 

 

grid(N/TILE, N/TILE,1) 

threads(TILE, TILE, 1) 

transpose<<<grid, threads>>>(in, out); 

Fixed GMEM coalescing, but introduced SMEM bank conflicts 
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Shared Memory: Avoiding Bank Conflicts 

Example: 32x32 SMEM array 

Warp accesses a column: 

32-way bank conflicts (threads in a warp access the same bank) 

 

31 

2 1 0 

31 2 1 0 

31 2 1 0 

warps: 

0         1         2              31 

Bank 0 

Bank 1 

  … 

Bank 31 
2 0 1 

31 
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Shared Memory: Avoiding Bank Conflicts 

Add a column for padding: 

32x33 SMEM array 

Warp accesses a column: 

32 different banks, no bank conflicts 

 

31 2 1 0 

31 2 1 0 

31 2 1 0 

warps: 

0         1         2             31   padding 

Bank 0 

Bank 1 

  … 

Bank 31 

31 2 0 1 



© NVIDIA 2013 

OPTIMIZE 

Kernel Optimizations: Instruction Throughput / Control Flow 
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Exposing Sufficient Parallelism 

What SMX ultimately needs: 

Sufficient number of independent instructions 

Kepler GK110 is “wider” than Fermi or GK104; needs more parallelism 

 

Two ways to increase parallelism: 

More independent instructions (ILP) within a thread (warp) 

More concurrent threads (warps) 



© NVIDIA 2013 

Independent Instructions: ILP vs. TLP 

SMX can leverage available Instruction-Level Parallelism more or 

less interchangeably with Thread-Level Parallelism 
 

Sometimes easier to increase ILP than to increase TLP 

E.g., # of threads may be limited by algorithm or by HW resource limits 

But if each thread has some degree of independent operations to do, 

Kepler SMX can leverage that.  (E.g., a small loop that is unrolled.) 

 

In fact, some degree of ILP is actually required to approach 

theoretical max Instructions Per Clock (IPC) 
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Runtime Math Library and Intrinsics 

Two types of runtime math library functions 

__func(): many map directly to hardware ISA 

Fast but lower accuracy (see CUDA Programming Guide for full details) 

Examples: __sinf(x), __expf(x), __powf(x, y) 

func(): compile to multiple instructions 

Slower but higher accuracy (5 ulp or less) 

Examples: sin(x), exp(x), pow(x, y) 

 

A number of additional intrinsics: 

__sincosf(), __frcp_rz(), ... 

Explicit IEEE rounding modes (rz,rn,ru,rd) 
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Control Flow 

Instructions are issued per 32 threads (warp) 

 

Divergent branches: 

Threads within a single warp take different paths 

if-else, ... 

Different execution paths within a warp are serialized 

 

Different warps can execute different code with no impact on 

performance 
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Control Flow 

Avoid diverging within a warp 

 

Example with divergence:  
if (threadIdx.x > 2) {...} else {...} 

Branch granularity < warp size 

 

Example without divergence: 
if (threadIdx.x / warpSize > 2) {...} else {...} 

Branch granularity is a whole multiple of warp size 
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Control Flow  

if ( ... ) 

{ 

     // then-clause 
 

} 

else 

{ 

    // else-clause 
 

} 
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Execution within warps is coherent 
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Warp  

(“vector” of threads) 

35 34 33 63 62 32 3 2 1 31 30 0 

Warp  

(“vector” of threads) 
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Execution diverges within a warp 
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Execution diverges within a warp 
in
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3 2 1 31 30 0 35 34 33 63 62 32 

Solution: Group threads with similar control flow 
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OPTIMIZE 

Optimizing CPU-GPU Interaction: Maximizing PCIe Throughput 
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Maximizing PCIe Throughput 

Use transfers that are of reasonable size (a few MB, at least) 

Use pinned system memory 

Overlap memcopies with useful computation 
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Pinned (non-pageable) memory 

Pinned memory enables: 

faster PCIe copies 

memcopies asynchronous with CPU 

memcopies asynchronous with GPU 

Usage 

cudaHostAlloc / cudaFreeHost 

instead of malloc / free 

cudaHostRegister / cudaHostUnregister 

pin regular memory after allocation 

Implication: 

pinned memory is essentially removed from host virtual memory 
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Asynchronicity in CUDA 

Default: 

Kernel launches are asynchronous with CPU 

Memcopies (D2H, H2D) block CPU thread 

CUDA calls are serialized by the driver 

Streams and async functions provide additional asynchronicity: 

Memcopies (D2H, H2D) asynchronous with CPU 

Ability to concurrently execute kernels and memcopies 

 

Stream: sequence of ops that execute in issue-order on GPU 

Operations from different streams may be interleaved 

Kernels and memcopies from different streams can be overlapped 
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OPTIMIZE 

Optimizing CPU-GPU Interaction: Overlapping Kernel 

Execution with Memory Copies 



© NVIDIA 2013 

Overlap kernel and memory copy 

Requirements: 

D2H or H2D memcopy from pinned memory 

Kernel and memcopy in different, non-0 streams 

Code: 
cudaStream_t   stream1, stream2; 

cudaStreamCreate(&stream1); 

cudaStreamCreate(&stream2); 

 

cudaMemcpyAsync( dst, src, size, dir, stream1 ); 

kernel<<<grid, block, 0, stream2>>>(…); 

potentially 

overlapped 
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Call Sequencing for Optimal Overlap 

CUDA calls are dispatched in the sequence they were issued 

Kepler can concurrently execute: 

Up to 32 kernels 

Up to 2 memcopies, as long as they are in different directions (D2H, H2D) 

A call is dispatched if both are true: 

Resources are available  

Preceding calls in the same stream have completed 

Scheduling: 

Kernels are executed in the order in which they were issued 

Thread blocks for a given kernel are scheduled if all thread blocks for 

preceding kernels have been scheduled and SM resources still available 
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Hyper-Q Enables Efficient Scheduling 

Grid Management Unit selects most appropriate task from up to 

32 hardware queues (CUDA streams) 

 

Improves scheduling of concurrently executed grids 

 

Particularly interesting for MPI applications when combined with 

CUDA Proxy (though not limited to MPI applications) 
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Stream Dependencies Example 

void foo(void) 
{ 
    kernel_A<<<g,b,s, stream_1>>>(); 
    kernel_B<<<g,b,s, stream_1>>>(); 
    kernel_C<<<g,b,s, stream_1>>>(); 
} 
 
void bar(void) 
{ 
    kernel_P<<<g,b,s, stream_2>>>(); 
    kernel_Q<<<g,b,s, stream_2>>>(); 
    kernel_R<<<g,b,s, stream_2>>>(); 
} 

stream_1 

kernel_A 

kernel_B 

kernel_C 

stream_2 

kernel_P 

kernel_Q 

kernel_R 
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Stream Dependencies without Hyper-Q 

stream_1 

kernel_A 

kernel_B 

kernel_C 

stream_2 

kernel_P 

kernel_Q 

kernel_R 

Hardware Work Queue 

R—Q—P     C—B—A 
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Stream Dependencies with Hyper-Q 

Hyper-Q allows 32-way concurrency 

Avoids inter-stream dependencies 

 

stream_1 

kernel_A 

kernel_B 

kernel_C 

stream_2 

kernel_P 

kernel_Q 

kernel_R 

C—B—A 

R—Q—P 

Multiple Hardware Work Queues 
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Heterogeneous system: overlap work and data movement 

Kepler + CUDA 5: Hyper-Q and CPU Callbacks 

Hyper-Q Example: Building a Pipeline 

DMA 

DMA 
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Pipeline Code 

for (unsigned int i = 0 ; i < nIterations ; ++i) 
{ 
    // Copy data from host to device 
    cudaMemcpyAsync(d_data, h_data, cpybytes, cudaMemcpyHostToDevice, 
                    *r_streams.active()); 
 
    // Launch device kernel A 
    kernel_A<<<gdim, bdim, 0, *r_streams.active()>>>(); 
 
    // Copy data from device to host 
    cudaMemcpyAsync(h_data, d_data, cpybytes, cudaMemcpyDeviceToHost, 
                    *r_streams.active()); 
 
    // Launch host post-process 
    cudaStreamAddCallback(*r_streams.active(), cpu_callback, 
                          r_streamids.active(), 0); 
 
    // Rotate streams 
    r_streams.rotate(); r_streamids.rotate(); 
} 
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False dependencies prevent overlap 

Breadth-first launch gives overlap, requires more complex code 

Pipeline Without Hyper-Q 
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Full overlap of all engines 

Simple to program 

Pipeline With Hyper-Q 
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Hyper-Q also enables CUDA Proxy 

No application modifications necessary 

Start proxy daemon by setting CRAY_CUDA_PROXY=1 in batch script 

CUDA driver detects daemon and routes GPU accesses through it 

 

Combines requests from several processes into one GPU context 

(shared virtual memory space, concurrent kernels possible, etc.) 

 

Allows for overlap of kernels with memcopies without explicit 

use of streams 
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But Hyper-Q != CUDA Proxy 

One process: No proxy required! 

Automatically utilized 

One or many host threads no problem 

Just need multiple CUDA streams 

Removes false dependencies among CUDA streams that 

reduce effective concurrency on earlier GPUs 

 

Multi-process: Use CUDA Proxy 

Leverages task-level parallelism across processes (e.g., MPI ranks) 

MPI is not required for proxy – it’s just the common case for HPC 
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APOD: A Systematic Path to Performance 

Assess 

Parallelize 

Optimize 

Deploy 
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Additional Information 

nvidia.com/cuda 

nvidia.com/kepler 

 

docs.nvidia.com/cuda 

 

gputechconf.com 

GPUs from 

mobile to HPC 

Program with directives, 

libraries and languages 

High performance 

CUDA platform 

Comprehensive tools, 

large ecosystem 
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Additional Information: GTC 

Kepler architecture: 

GTC 2012 S0642: Inside Kepler 
 

Assessing performance limiters: 

GTC 2012 S0514: GPU Performance Analysis 

and Optimization 
 

Profiling tools: 

GTC 2012 S0419: CUDA Performance Tools 

GTC 2012 S0420: Nsight IDE for Linux and Mac 
 

GPU computing webinars: 

developer.nvidia.com/gpu-computing-webinars 
http://www.gputechconf.com/gtcnew/on-

demand-gtc.php 

http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars

