
GPU Optimization Fundamentals

Cliff Woolley, NVIDIA

Developer Technology Group

© NVIDIA 2013

Main Requirements for GPU Performance

Expose sufficient parallelism

Use memory efficiently

Coalesce global memory accesses

Use shared memory where possible

Have coherent execution within warps of threads

© NVIDIA 2013

GPU Optimization Fundamentals

Find ways to parallelize sequential code

Adjust kernel launch configuration to maximize device utilization

Ensure global memory accesses are coalesced

Minimize redundant accesses to global memory

Avoid different execution paths within the same warp

Minimize data transfers between the host and the device

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

© NVIDIA 2013

GPU Optimization Fundamentals

Find ways to parallelize sequential code

Kernel optimizations

Launch configuration

Global memory throughput

Shared memory access

Instruction throughput / control flow

Optimization of CPU-GPU interaction

Maximizing PCIe throughput

Overlapping kernel execution with memory copies

© NVIDIA 2013

APOD: A Systematic Path to Performance

Assess

Parallelize

Optimize

Deploy

© NVIDIA 2013

Identify hotspots (total time, number of calls)

Understand scaling (strong and weak)

Assess

HOTSPOTS

© NVIDIA 2013

Parallelize

Applications

Libraries
Programming

Languages
OpenACC

Directives

© NVIDIA 2013

Optimize

Profile-driven optimization

Tools:

nsight Visual Studio Edition or Eclipse Edition

nvvp NVIDIA Visual Profiler

nvprof Command-line profiling

© NVIDIA 2013

Deploy

Check API return values

Run cuda-memcheck tools

Library distribution

Cluster management

Early gains

Subsequent changes are evolutionary

Productize

© NVIDIA 2013

PARALLELIZE

© NVIDIA 2013

Parallelism Needed

GPU is a parallel machine

Lots of arithmetic pipelines

Multiple memory banks

To get good performance, your code must expose sufficient

parallelism for 2 reasons:

To actually give work to all the pipelines

To hide latency of the pipelines

Rough rule of thumb for Tesla K20X:

You want to have 14K or more threads running concurrently

© NVIDIA 2013

void transpose(float in[][], float out[][], int N)

{

 for(int j=0; j < N; j++)

 for(int i=0; i < N; i++)

 out[j][i] = in[i][j];

}

Case Study: Matrix Transpose

i

j

© NVIDIA 2013

+ Quickly implemented - Performance weak

Need to expose parallelism!

An Initial CUDA Version

__global__ void transpose(float in[], float out[], int N)

{

 for(int j=0; j < N; j++)

 for(int i=0; i < N; i++)

 out[i*N+j] = in[j*N+i];

}

float in[N*N], out[N*N];

…

transpose<<<1,1>>>(in, out, N);

© NVIDIA 2013

CUDA Execution Model

Thread: Sequential execution unit

All threads execute same sequential program

Threads execute in parallel

Threads Block: a group of threads

Executes on a single Streaming Multiprocessor (SM)

Threads within a block can cooperate

Light-weight synchronization

Data exchange

Grid: a collection of thread blocks

Thread blocks of a grid execute across multiple SMs

Thread blocks do not synchronize with each other

Communication between blocks is expensive

© NVIDIA 2013

Kepler Streaming Multiprocessor (SMX)

Per SMX:
192 SP CUDA Cores

64 DP CUDA Cores

4 warp schedulers

Up to 2048 concurrent threads

One or two instructions issued

per scheduler per clock from a

single warp

Register file (256KB)

Shared memory (48KB)

© NVIDIA 2013

Software Hardware

Threads are executed by scalar CUDA Cores

Thread

CUDA

Core

Thread Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on

one multiprocessor - limited by multiprocessor

resources (shared memory and register file)

Grid

A kernel is launched as a grid of thread blocks

Execution Model

Device

© NVIDIA 2013

+ Quickly implemented - Performance weak

Need to expose parallelism!

An Initial CUDA Version

__global__ void transpose(float in[], float out[], int N)

{

 for(int j=0; j < N; j++)

 for(int i=0; i < N; i++)

 out[i*N+j] = in[j*N+i];

}

float in[N*N], out[N*N];

…

transpose<<<1,1>>>(in, out, N);

© NVIDIA 2013

Parallelize across matrix elements

tid

in

tid tid

tid out

tid

tid

__global__ transpose(float in[], float out[])

{

 int tid = threadIdx.x;

 int bid = blockIdx.x;

 out[tid*N+bid] = in[bid*N+tid];

}

float in[], out[];

…

transpose<<<N,N>>>(in, out);

Process elements independently
bid
bid

bid bid

© NVIDIA 2013

OPTIMIZE

© NVIDIA 2013

OPTIMIZE

Kernel Optimizations: Launch Configuration

© NVIDIA 2013

Launch Configuration

Launch configuration is the number of blocks and number of

threads per block, expressed in CUDA with the <<< >>> notation:

mykernel<<<num_blocks,threads_per_block>>>(…);

What values should we pick for these?

Need enough total threads to process entire input

Need enough threads to keep the GPU busy

Selection of block size is an optimization step involving warp occupancy

© NVIDIA 2013

Multiprocessor

32 Threads

Warps

A thread block consists

of 32-thread warps

A warp is executed

physically in parallel

(SIMD) on a

multiprocessor

=

Warps

Thread Block

32 Threads

32 Threads

32 Threads

© NVIDIA 2013

Occupancy

Need enough independent

threads per SM to hide latencies:

Instruction latencies

Memory access latencies

Hardware resources determine

number of threads that fit per SM

Occupancy = Nactual / Nmax

© NVIDIA 2013

Occupancy

Occupancy: number of concurrent threads per SM, expressed as:

Number of concurrent warps of threads, or

Percentage of maximum concurrent threads

Determined by several factors :

Registers per thread

SM registers are partitioned among the threads

Shared memory per thread block

SM shared memory is partitioned among the blocks

Threads per thread block

Threads are allocated at thread block granularity

Kepler SM resources:

– 64K 32-bit registers

– Up to 48 KB of shared memory

– Up to 2048 concurrent threads

– Up to 16 concurrent thread blocks

© NVIDIA 2013

Low Latency or High Throughput?

CPU

Optimized for low-latency

access to cached data sets

Control logic for out-of-order

and speculative execution

GPU

Optimized for data-parallel,

throughput computation

Architecture tolerant of

memory latency

More transistors dedicated to

computation

© NVIDIA 2013

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other (warps of) threads

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread/Warp

Tn

Processing

Waiting for data

Ready to be processed

Context switch

W1

W2

W3

W4

T1

T2

T3

T4

© NVIDIA 2013

Occupancy and Performance

Note that 100% occupancy isn’t needed to reach maximum

performance

Once the “needed” occupancy is reached, further increases won’t

improve performance

Needed occupancy depends on the code

More independent work per thread -> less occupancy is needed

Memory-bound codes tend to need more occupancy

Higher latency than for arithmetic, need more work to hide it

© NVIDIA 2013

Occupancy

Limiting resources:

Number of threads

Number of registers per thread

Number of blocks

Amount of shared memory per block

Don’t need for 100% occupancy for

maximum performance

© NVIDIA 2013

Thread Block Size and Occupancy

Thread block size is a multiple of warp size (32)

Even if you request fewer threads, HW rounds up

Thread blocks can be too small

Kepler SM can run up to 16 thread blocks concurrently

SM may reach the block limit before reaching good occupancy

E.g.: 1-warp thread blocks -> 16 warps per Kepler SM (probably not enough)

Thread blocks can be too big

Enough SM resources for more threads, but not enough for a whole block

A thread block isn’t started until resources are available for all of its

threads

© NVIDIA 2013

Thread Block Sizing

SM resources:

Registers

Shared memory

Number of warps allowed by SM resources
Too few

threads per block

Too many

threads per block

© NVIDIA 2013

Occupancy Example

Occupancy here is limited by

grid size and number of

threads per block

© NVIDIA 2013

CUDA Occupancy Calculator

Analyze effect of

resource consumption

on occupancy

© NVIDIA 2013

General Guidelines

Thread block size choice:

Start with 128-256 threads per block

Adjust up/down by what best matches your function

Example: stencil codes prefer larger blocks to minimize halos

Multiple of warp size (32 threads)

If occupancy is critical to performance:

Check that block size isn’t precluding occupancy allowed by register and

shared memory resources

Grid size:

1,000 or more thread blocks

10s of “waves” of thread blocks: no need to think about tail effect

Makes your code ready for several generations of future GPUs

© NVIDIA 2013

Kepler: Level of Parallelism Needed

To saturate instruction bandwidth:

Fp32 math: ~1.7K independent instructions per SM

Lower for other, lower-throughput instructions

Keep in mind that Kepler can track up to 2048 threads per SM

To saturate memory bandwidth:

100+ concurrent independent 128-byte lines per SM

© NVIDIA 2013

OPTIMIZE

Kernel Optimizations: Global Memory Throughput

© NVIDIA 2013

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Constant and Texture

Caches

L1 / L2 Cache

CUDA Memory Architecture

© NVIDIA 2013

Kepler Memory Hierarchy

L2

Global Memory

Registers

SM-N

Registers

SM-0

Registers

SM-1

L1 SMEM Read

only L1 SMEM Read

only
L1 SMEM Read

only

© NVIDIA 2013

Kepler Memory Hierarchy

Registers

Storage local to each threads

Compiler-managed

Shared memory / L1 cache

64 KB, program-configurable into shared:L1

Program-managed

Accessible by all threads in the same thread block

Low latency, high bandwidth: ~2.5 TB/s

Read-only cache

Up to 48 KB per Kepler SM

Hardware-managed (also used by texture units)

Used for read-only GMEM accesses (not coherent with writes)

© NVIDIA 2013

Kepler Memory Hierarchy

L2

1.5 MB

Hardware-managed: all accesses to global memory go through L2, including CPU

and peer GPU

Global memory

6 GB, accessible by all threads, host (CPU), other GPUs in the same system

Higher latency (400-800 cycles)

250 GB/s

© NVIDIA 2013

Load Operation

Memory operations are issued per warp (32 threads)

Just like all other instructions

Operation:

Threads in a warp provide memory addresses

Determine which lines/segments are needed

Request the needed lines/segments

© NVIDIA 2013

Memory Throughput Analysis

Two perspectives on the throughput:

Application’s point of view:

count only bytes requested by application

HW point of view:

count all bytes moved by hardware

The two views can be different:

Memory is accessed at 32 byte granularity

Scattered/offset pattern: application doesn’t use all the hw transaction bytes

Broadcast: the same small transaction serves many threads in a warp

Two aspects to inspect for performance impact:

Address pattern

Number of concurrent accesses in flight

© NVIDIA 2013

Global Memory Operation

Memory operations are executed per warp

32 threads in a warp provide memory addresses

Hardware determines into which lines those addresses fall

Memory transaction granularity is 32 bytes

There are benefits to a warp accessing a contiguous aligned region of 128 or

256 bytes

Access word size

Natively supported sizes (per thread): 1, 2, 4, 8, 16 bytes

Assumes that each thread’s address is aligned on the word size boundary

If you are accessing a data type that’s of non-native size, compiler will

generate several load or store instructions with native sizes

© NVIDIA 2013

Access Patterns vs. Memory Throughput

Scenario:
Warp requests 32 aligned, consecutive 4-byte words

Addresses fall within 4 segments
Warp needs 128 bytes

128 bytes move across the bus

Bus utilization: 100%

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

© NVIDIA 2013

Access Patterns vs. Memory Throughput

...
addresses from a warp

Scenario:
Warp requests 32 aligned, permuted 4-byte words

Addresses fall within 4 segments
Warp needs 128 bytes

128 bytes move across the bus

Bus utilization: 100%

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

© NVIDIA 2013

Access Patterns vs. Memory Throughput

Scenario:
Warp requests 32 misaligned, consecutive 4-byte words

Addresses fall within at most 5 segments
Warp needs 128 bytes

At most 160 bytes move across the bus

Bus utilization: at least 80%

Some misaligned patterns will fall within 4 segments, so 100% utilization

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

...
addresses from a warp

© NVIDIA 2013

Access Patterns vs. Memory Throughput

addresses from a warp

Scenario:
All threads in a warp request the same 4-byte word

Addresses fall within a single segment
Warp needs 4 bytes

32 bytes move across the bus

Bus utilization: 12.5%

...

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

© NVIDIA 2013

Access Patterns vs. Memory Throughput

addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

Scenario:
Warp requests 32 scattered 4-byte words

Addresses fall within N segments
Warp needs 128 bytes

N*32 bytes move across the bus

Bus utilization: 128 / (N*32)

...

© NVIDIA 2013

Structures of Non-Native Size

Say we are reading a 12-byte structure per
thread

struct Position

{

 float x, y, z;

};

...

__global__ void kernel(Position *data, ...)

{

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 Position temp = data[idx];

 ...

}

© NVIDIA 2013

Structure of Non-Native Size

Compiler converts temp = data[idx] into 3 loads:

Each loads 4 bytes

Can’t do an 8 and a 4 byte load: 12 bytes per element means that every

other element wouldn’t align the 8-byte load on 8-byte boundary

Addresses per warp for each of the loads:

Successive threads read 4 bytes at 12-byte stride

© NVIDIA 2013

First Load Instruction

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32

addresses from a warp

...

© NVIDIA 2013

Second Load Instruction

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32

addresses from a warp

...

© NVIDIA 2013

Third Load Instruction

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32

addresses from a warp

...

© NVIDIA 2013

Performance and Solutions

Because of the address pattern, we end up moving 3x more bytes

than application requests

We waste a lot of bandwidth, leaving performance on the table

Potential solutions:

Change data layout from array of structures to structure of arrays

In this case: 3 separate arrays of floats

The most reliable approach (also ideal for both CPUs and GPUs)

Use loads via read-only cache

As long as lines survive in the cache, performance will be nearly optimal

Stage loads via shared memory

© NVIDIA 2013

Global Memory Access Patterns

SoA vs AoS:

Good: point.x[i]

Not so good: point[i].x

Strided array access:

~OK: x[i] = a[i+1] – a[i]

Slower: x[i] = a[64*i] – a[i]

Random array access:

Slower: a[rand(i)]

0 1 31

0 1 31

© NVIDIA 2013

Summary: GMEM Optimization

Strive for perfect address coalescing per warp

Align starting address (may require padding)

A warp will ideally access within a contiguous region

Avoid scattered address patterns or patterns with large strides between

threads

Analyze and optimize address patterns:

Use profiling tools (included with CUDA toolkit download)

Compare the transactions per request to the ideal ratio

Choose appropriate data layout (prefer SoA)

If needed, try read-only loads, staging accesses via SMEM

© NVIDIA 2013

Optimizing Access Concurrency

Goal: utilize all available memory

bandwidth

Little’s Law:

bytes delivered = latency * bandwidth

 Increase parallelism (bytes delivered)

 (or)

 Reduce latency (time between requests)

A
c
c
e
s
s
 l
a
te

n
c
y

L

© NVIDIA 2013

Exposing Sufficient Parallelism

What memory system hardware ultimately needs:

Sufficient requests in flight to saturate bandwidth

Two ways to increase parallelism:

More independent accesses within a thread (warp)

More concurrent threads (warps)

© NVIDIA 2013

Memory-Level Parallelism = Bandwidth

In order to saturate memory bandwidth, SM must issue

enough independent memory requests concurrently

© NVIDIA 2013

Memory-Level Parallelism: Requests in flight

Achieved Kepler memory throughput

Shown as a function of number of concurrent requests

per SM with 128-byte lines

© NVIDIA 2013

Experiment: vary size of accesses by

threads of a warp, check performance
Memcopy kernel: each warp has 2 concurrent

requests (one write and the read following it)

Accesses by a warp:

 4B words: 1 line

 8B words: 2 lines

 16B words: 4 lines

To achieve same

throughput at lower

occupancy or with

smaller words, need

more independent

requests per warp

Requests per Thread and Performance

© NVIDIA 2013

Optimizing Access Concurrency

Have enough concurrent accesses to saturate the bus

Little’s law: need (mem_latency)x(bandwidth) bytes

Ways to increase concurrent accesses:

Increase occupancy (run more warps concurrently)

Adjust thread block dimensions

– To maximize occupancy at given register and smem requirements

If occupancy is limited by registers per thread:

– Reduce register count (-maxrregcount option, or __launch_bounds__)

Modify code to process several elements per thread

Doubling elements per thread doubles independent accesses per thread

© NVIDIA 2013

A note about caches

L1 and L2 caches

Ignore in software design

Thousands of concurrent

threads – cache blocking

difficult at best

Read-only Data Cache

Shared with texture pipeline

Useful for uncoalesced reads

Handled by compiler when

const __restrict__ is used, or

use __ldg() primitive

© NVIDIA 2013

Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer arguments as hints to compiler:

Pointer of interest: const __restrict__

All other pointer arguments: __restrict__

– Conveys to compiler that no aliasing will occur

Using __ldg() intrinsic

Requires no pointer decoration

© NVIDIA 2013

Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer arguments as hints to compiler:

Pointer of interest: const __restrict__

All other pointer arguments: __restrict__

– Conveys to compiler that no aliasing will occur

Using __ldg() intrinsic

Requires no pointer decoration

__global__ void kernel(

 int* __restrict__ output,

 const int* __restrict__ input)

{

 ...

 output[idx] = input[idx];

}

© NVIDIA 2013

Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer arguments as hints to compiler:

Pointer of interest: const __restrict__

All other pointer arguments: __restrict__

– Conveys to compiler that no aliasing will occur

Using __ldg() intrinsic

Requires no pointer decoration

__global__ void kernel(int *output,

 int *input)

{

 ...

 output[idx] = __ldg(&input[idx]);

}

© NVIDIA 2013

Blocking for L1, Read-only, L2 Caches

Short answer: DON’T

GPU caches are not intended for the same use as CPU caches

Smaller size (especially per thread), so not aimed at temporal reuse

Intended to smooth out some access patterns, help with spilled registers,

etc.

Usually not worth trying to cache-block like you would on CPU

100s to 1,000s of run-time scheduled threads competing for the cache

If it is possible to block for L1 then it’s possible block for SMEM

Same size

Same or higher bandwidth

Guaranteed locality: hw will not evict behind your back

© NVIDIA 2013

OPTIMIZE

Kernel Optimizations: Shared Memory Accesses

© NVIDIA 2013

Shared Memory

Accessible by all threads in a block

Fast compared to global memory

Low access latency

High bandwidth

Common uses:

Software managed cache

Data layout conversion

Global Memory (DRAM)

Registers

SM-0

Registers

SM-N

SMEM SMEM

© NVIDIA 2013

Shared Memory/L1 Sizing

Shared memory and L1 use the same 64KB

Program-configurable split:

Fermi: 48:16, 16:48

Kepler: 48:16, 16:48, 32:32

CUDA API: cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()

Large L1 can improve performance when:

Spilling registers (more lines in the cache -> fewer evictions)

Large SMEM can improve performance when:

Occupancy is limited by SMEM

© NVIDIA 2013

Shared Memory

Uses:

Inter-thread communication within a block

Cache data to reduce redundant global memory accesses

Use it to improve global memory access patterns

Organization:

32 banks, 4-byte (or 8-byte) banks

Successive words accessed through different banks

© NVIDIA 2013

Shared Memory

Uses:

Inter-thread communication within a block

Cache data to reduce redundant global memory accesses

Use it to improve global memory access patterns

Performance:

smem accesses are issued per warp

Throughput is 4 (or 8) bytes per bank per clock per multiprocessor

serialization: if N threads of 32 access different words in the same bank,

N accesses are executed serially

multicast: N threads access the same word in one fetch

Could be different bytes within the same word

© NVIDIA 2013

Shared Memory Organization

Organized in 32 independent banks

Optimal access: no two words from

same bank

Separate banks per thread

Banks can multicast

Multiple words from same bank serialize

C

Bank

Any 1:1 or multicast pattern

C C C

Bank Bank Bank

C

Bank

C C C

Bank Bank Bank

© NVIDIA 2013

Bank Addressing Examples

 No Bank Conflicts No Bank Conflicts

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© NVIDIA 2013

Bank Addressing Examples

 2-way Bank Conflicts 8-way Bank Conflicts

Thread 31
Thread 30
Thread 29
Thread 28

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 31

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

© NVIDIA 2013

Case Study: Matrix Transpose

Coalesced read

Scattered write (stride N)

Process matrix tile, not single

row/column, per block

Transpose matrix tile within block

 out

in

© NVIDIA 2013

Case Study: Matrix Transpose

Coalesced read

Scattered write (stride N)

Transpose matrix tile within block

Need threads in a block to cooperate:

use shared memory

out

in

© NVIDIA 2013

Transpose with coalesced read/write

__global__ transpose(float in[], float out[])

{

 __shared__ float tile[TILE][TILE];

 int glob_in = xIndex + (yIndex)*N;

 int glob_out = xIndex + (yIndex)*N;

 tile[threadIdx.y][threadIdx.x] = in[glob_in];

 __syncthreads();

 out[glob_out] = tile[threadIdx.x][threadIdx.y];

}

grid(N/TILE, N/TILE,1)

threads(TILE, TILE, 1)

transpose<<<grid, threads>>>(in, out);

Fixed GMEM coalescing, but introduced SMEM bank conflicts

© NVIDIA 2013

Shared Memory: Avoiding Bank Conflicts

Example: 32x32 SMEM array

Warp accesses a column:

32-way bank conflicts (threads in a warp access the same bank)

31

2 1 0

31 2 1 0

31 2 1 0

warps:

0 1 2 31

Bank 0

Bank 1

 …

Bank 31
2 0 1

31

© NVIDIA 2013

Shared Memory: Avoiding Bank Conflicts

Add a column for padding:

32x33 SMEM array

Warp accesses a column:

32 different banks, no bank conflicts

31 2 1 0

31 2 1 0

31 2 1 0

warps:

0 1 2 31 padding

Bank 0

Bank 1

 …

Bank 31

31 2 0 1

© NVIDIA 2013

OPTIMIZE

Kernel Optimizations: Instruction Throughput / Control Flow

© NVIDIA 2013

Exposing Sufficient Parallelism

What SMX ultimately needs:

Sufficient number of independent instructions

Kepler GK110 is “wider” than Fermi or GK104; needs more parallelism

Two ways to increase parallelism:

More independent instructions (ILP) within a thread (warp)

More concurrent threads (warps)

© NVIDIA 2013

Independent Instructions: ILP vs. TLP

SMX can leverage available Instruction-Level Parallelism more or

less interchangeably with Thread-Level Parallelism

Sometimes easier to increase ILP than to increase TLP

E.g., # of threads may be limited by algorithm or by HW resource limits

But if each thread has some degree of independent operations to do,

Kepler SMX can leverage that. (E.g., a small loop that is unrolled.)

In fact, some degree of ILP is actually required to approach

theoretical max Instructions Per Clock (IPC)

© NVIDIA 2013

Runtime Math Library and Intrinsics

Two types of runtime math library functions

__func(): many map directly to hardware ISA

Fast but lower accuracy (see CUDA Programming Guide for full details)

Examples: __sinf(x), __expf(x), __powf(x, y)

func(): compile to multiple instructions

Slower but higher accuracy (5 ulp or less)

Examples: sin(x), exp(x), pow(x, y)

A number of additional intrinsics:

__sincosf(), __frcp_rz(), ...

Explicit IEEE rounding modes (rz,rn,ru,rd)

© NVIDIA 2013

Control Flow

Instructions are issued per 32 threads (warp)

Divergent branches:

Threads within a single warp take different paths

if-else, ...

Different execution paths within a warp are serialized

Different warps can execute different code with no impact on

performance

© NVIDIA 2013

Control Flow

Avoid diverging within a warp

Example with divergence:
if (threadIdx.x > 2) {...} else {...}

Branch granularity < warp size

Example without divergence:
if (threadIdx.x / warpSize > 2) {...} else {...}

Branch granularity is a whole multiple of warp size

© NVIDIA 2013

Control Flow

if (...)

{

 // then-clause

}

else

{

 // else-clause

}

in
s

tr
u

c
ti

o
n

s

© NVIDIA 2013

Execution within warps is coherent
in

s
tr

u
c

ti
o

n
s

 /
 t

im
e

Warp

(“vector” of threads)

35 34 33 63 62 32 3 2 1 31 30 0

Warp

(“vector” of threads)

© NVIDIA 2013

Execution diverges within a warp
in

s
tr

u
c

ti
o

n
s

 /
 t

im
e

3 2 1 31 30 0 35 34 33 63 62 32

© NVIDIA 2013

Execution diverges within a warp
in

s
tr

u
c

ti
o

n
s

 /
 t

im
e

3 2 1 31 30 0 35 34 33 63 62 32

Solution: Group threads with similar control flow

© NVIDIA 2013

OPTIMIZE

Optimizing CPU-GPU Interaction: Maximizing PCIe Throughput

© NVIDIA 2013

Maximizing PCIe Throughput

Use transfers that are of reasonable size (a few MB, at least)

Use pinned system memory

Overlap memcopies with useful computation

© NVIDIA 2013

Pinned (non-pageable) memory

Pinned memory enables:

faster PCIe copies

memcopies asynchronous with CPU

memcopies asynchronous with GPU

Usage

cudaHostAlloc / cudaFreeHost

instead of malloc / free

cudaHostRegister / cudaHostUnregister

pin regular memory after allocation

Implication:

pinned memory is essentially removed from host virtual memory

© NVIDIA 2013

Asynchronicity in CUDA

Default:

Kernel launches are asynchronous with CPU

Memcopies (D2H, H2D) block CPU thread

CUDA calls are serialized by the driver

Streams and async functions provide additional asynchronicity:

Memcopies (D2H, H2D) asynchronous with CPU

Ability to concurrently execute kernels and memcopies

Stream: sequence of ops that execute in issue-order on GPU

Operations from different streams may be interleaved

Kernels and memcopies from different streams can be overlapped

© NVIDIA 2013

OPTIMIZE

Optimizing CPU-GPU Interaction: Overlapping Kernel

Execution with Memory Copies

© NVIDIA 2013

Overlap kernel and memory copy

Requirements:

D2H or H2D memcopy from pinned memory

Kernel and memcopy in different, non-0 streams

Code:
cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);

potentially

overlapped

© NVIDIA 2013

Call Sequencing for Optimal Overlap

CUDA calls are dispatched in the sequence they were issued

Kepler can concurrently execute:

Up to 32 kernels

Up to 2 memcopies, as long as they are in different directions (D2H, H2D)

A call is dispatched if both are true:

Resources are available

Preceding calls in the same stream have completed

Scheduling:

Kernels are executed in the order in which they were issued

Thread blocks for a given kernel are scheduled if all thread blocks for

preceding kernels have been scheduled and SM resources still available

© NVIDIA 2013

Hyper-Q Enables Efficient Scheduling

Grid Management Unit selects most appropriate task from up to

32 hardware queues (CUDA streams)

Improves scheduling of concurrently executed grids

Particularly interesting for MPI applications when combined with

CUDA Proxy (though not limited to MPI applications)

© NVIDIA 2013

Stream Dependencies Example

void foo(void)
{
 kernel_A<<<g,b,s, stream_1>>>();
 kernel_B<<<g,b,s, stream_1>>>();
 kernel_C<<<g,b,s, stream_1>>>();
}

void bar(void)
{
 kernel_P<<<g,b,s, stream_2>>>();
 kernel_Q<<<g,b,s, stream_2>>>();
 kernel_R<<<g,b,s, stream_2>>>();
}

stream_1

kernel_A

kernel_B

kernel_C

stream_2

kernel_P

kernel_Q

kernel_R

© NVIDIA 2013

Stream Dependencies without Hyper-Q

stream_1

kernel_A

kernel_B

kernel_C

stream_2

kernel_P

kernel_Q

kernel_R

Hardware Work Queue

R—Q—P C—B—A

© NVIDIA 2013

Stream Dependencies with Hyper-Q

Hyper-Q allows 32-way concurrency

Avoids inter-stream dependencies

stream_1

kernel_A

kernel_B

kernel_C

stream_2

kernel_P

kernel_Q

kernel_R

C—B—A

R—Q—P

Multiple Hardware Work Queues

© NVIDIA 2013

Heterogeneous system: overlap work and data movement

Kepler + CUDA 5: Hyper-Q and CPU Callbacks

Hyper-Q Example: Building a Pipeline

DMA

DMA

© NVIDIA 2013

Pipeline Code

for (unsigned int i = 0 ; i < nIterations ; ++i)
{
 // Copy data from host to device
 cudaMemcpyAsync(d_data, h_data, cpybytes, cudaMemcpyHostToDevice,
 *r_streams.active());

 // Launch device kernel A
 kernel_A<<<gdim, bdim, 0, *r_streams.active()>>>();

 // Copy data from device to host
 cudaMemcpyAsync(h_data, d_data, cpybytes, cudaMemcpyDeviceToHost,
 *r_streams.active());

 // Launch host post-process
 cudaStreamAddCallback(*r_streams.active(), cpu_callback,
 r_streamids.active(), 0);

 // Rotate streams
 r_streams.rotate(); r_streamids.rotate();
}

© NVIDIA 2013

False dependencies prevent overlap

Breadth-first launch gives overlap, requires more complex code

Pipeline Without Hyper-Q

© NVIDIA 2013

Full overlap of all engines

Simple to program

Pipeline With Hyper-Q

© NVIDIA 2013

Hyper-Q also enables CUDA Proxy

No application modifications necessary

Start proxy daemon by setting CRAY_CUDA_PROXY=1 in batch script

CUDA driver detects daemon and routes GPU accesses through it

Combines requests from several processes into one GPU context

(shared virtual memory space, concurrent kernels possible, etc.)

Allows for overlap of kernels with memcopies without explicit

use of streams

© NVIDIA 2013

But Hyper-Q != CUDA Proxy

One process: No proxy required!

Automatically utilized

One or many host threads no problem

Just need multiple CUDA streams

Removes false dependencies among CUDA streams that

reduce effective concurrency on earlier GPUs

Multi-process: Use CUDA Proxy

Leverages task-level parallelism across processes (e.g., MPI ranks)

MPI is not required for proxy – it’s just the common case for HPC

© NVIDIA 2013

APOD: A Systematic Path to Performance

Assess

Parallelize

Optimize

Deploy

© NVIDIA 2013

Additional Information

nvidia.com/cuda

nvidia.com/kepler

docs.nvidia.com/cuda

gputechconf.com

GPUs from

mobile to HPC

Program with directives,

libraries and languages

High performance

CUDA platform

Comprehensive tools,

large ecosystem

© NVIDIA 2013

Additional Information: GTC

Kepler architecture:

GTC 2012 S0642: Inside Kepler

Assessing performance limiters:

GTC 2012 S0514: GPU Performance Analysis

and Optimization

Profiling tools:

GTC 2012 S0419: CUDA Performance Tools

GTC 2012 S0420: Nsight IDE for Linux and Mac

GPU computing webinars:

developer.nvidia.com/gpu-computing-webinars
http://www.gputechconf.com/gtcnew/on-

demand-gtc.php

http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars
http://developer.nvidia.com/gpu-computing-webinars

