
J2UL-1897-02ENZ0(00)
November 2015

FUJITSU Software
Technical Computing Suite V2.0

Debugger User's Guide
(PRIMEHPC FX100)

Preface

Purpose

This guide describes the features of the interactive Debugger (referred to as "the Debugger" in this guide) and explains how to use it for
Technical Computing Suite (referred to as "this system" in this guide).

The Debugger is provided with the FUJITSU Software Development Tools (FSDT), which is a GUI development environment. Refer to
the "fdb manual", displayed by executing the man command, for information on using fdb commands on the command line.

This guide applies to the Debugger used on the Linux operating system.

Intended Readers

This guide is intended for those who want to debug programs using the Debugger. It is assumed that readers of this guide have working
knowledge of program development operations and related command operations in Linux.

Organization of This Guide

This manual is organized as follows:

Chapter 1 Overview of the Debugger

Provides an overview of the functionality of the Debugger

Chapter 2 Debugger Features

Describes the Debugger features that are commonly used while debugging

Chapter 3 Debugger Windows and Menus

Describes the elements in Debugger windows

Chapter 4 List of Debugger Operations

Lists the various debugging operations with their respective operating instruction

Appendix A Considerations for Using the Debugger

Describes the key points to consider when using the Debugger

Appendix B Notes on Migration from FX10 System to FX100 System

Describes notes on migrating from FX10 system to FX100 system

Appendix C Compatibility Information (FX10 System)

Describes compatibility information as notes on migrating

Appendix D Compatibility Information (FX100 System)

Describes compatibility information as notes on migrating

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country
and/or US export control laws.

Trademarks

- Linux is a registered trademark or trademark of Linus Torvalds in the United States and other countries.

- OpenMP is a trademark of OpenMP Architecture Review Board.

- Other trademarks and registered trademarks are trademarks or registered trademarks of their respective owners.

- Trademark symbols (TM, (R)) are not necessarily added to system name or product name, etc. published in this material.

Date of Publication and Version

- i -

Version Manual code

November 2015, 2nd Version J2UL-1897-02ENZ0(00)

February 2015, Version 1.1 J2UL-1897-01ENZ0(01)

October 2014, 1st Version J2UL-1897-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2014-2015

Update History

Changes Location Version

The article "Debugging COARRAY feature" is added. Appendix A 2nd Version

The article "Debugging in environment with effective job swap function" is added. Appendix A

Fixed the error in writing. -

The article "Using the tool runtime daemon for the Debugger" is changed. Appendix A Version 1.1

The article "Display the source file on source view panel" is changed. Appendix A

The article "The how of debugging by fdb command" is added. Appendix A

The article "Start condition of Debugger" is added. Appendix A

"Notes on migrating from FX10 system to FX100 system" is added. Appendix B

Compatibility information is added. Appendix C
Appendix D

All rights reserved.

The information in this manual is subject to change without notice.

- ii -

Contents
Chapter 1 Overview of the Debugger...1

1.1 Debugger Features... 1
1.2 Operating Environment of the Debugger...1
1.3 Program Compilation...2
1.4 Job Submission.. 2

Chapter 2 Debugger Features..3
2.1 Setting of Stop Positions..3
2.2 Execution Control.. 4

2.2.1 Execution control for the temporary stop state...4
2.2.2 Execution control for active programs..4
2.2.3 Specifying the debugging object...5

2.3 Display Feature.. 5
2.3.1 Stack trace information...7
2.3.2 Display feature..7

Chapter 3 Debugger Windows and Menus...9
3.1 Debugger start setting Window... 9

3.1.1 Debug tab..10
3.1.2 Corefile debug tab...10
3.1.3 Job ID attach debug tab.. 11

3.2 Main Window.. 12
3.2.1 Menu bar... 13
3.2.2 Toolbar..14
3.2.3 Application structure panel...15
3.2.4 Source view panel...17
3.2.5 Stack trace tab...20
3.2.6 Local variables tab.. 21
3.2.7 Debugging console tab..22

3.3 Entity Information Window...22
3.3.1 Stack trace tab...23
3.3.2 Action points tab...23

3.3.2.1 Breakpoints bar.. 23
3.3.2.2 Watchpoints bar... 24
3.3.2.3 Barrierpoints bar.. 25

3.3.3 Local variables tab.. 26
3.3.4 Print tab...27
3.3.5 Commands tab.. 28

3.4 Exiting Debugger...29

Chapter 4 List of Debugger Operations..30

Appendix A Considerations for Using the Debugger..34

Appendix B Notes on Migration from FX10 System to FX100 System...37
B.1 Start condition of Debugger is changed.. 37

Appendix C Compatibility Information (FX10 System)... 38
C.1 Migration to V2.0L10(Generation Number:11)..38

C.1.1 Start condition of Debugger is changed... 38

Appendix D Compatibility Information (FX100 System)... 39
D.1 Migration to V2.0L10(Generation Number:02)... 39

D.1.1 Start condition of Debugger is changed...39

- iii -

Chapter 1 Overview of the Debugger
This chapter provides an overview of the Debugger, explaining its functionality.

The Debugger enables debugging of Fortran, C/C++, MPI, and XPFortran programs for which a job is submitted to this system.

For normal debug and corefile debug of MPI and XPFortran programs, up to 192 parallel processes of MPI programs can be debugged.

If the number of parallel processes of programs to be debugged is more than 192, limit the count to 192 or less, and then debug it.

1.1 Debugger Features
The Debugger provides the following three debugging modes.

- Normal debug

Normal debug submits a job using the debugging feature of the FUJITSU Software Development Tools (FSDT) with the user terminal,
executing from the start of a program and debugging it. It displays the expressions and variables of a program, controls the execution,
and also sets the execution stop position while debugging.

- Corefile debug

Corefile debug statically verifies the abnormal termination state by using the corefile that is output when a job terminates abnormally.
The Debugger can handle only one corefile at a time.

- Job ID attach debug

This captures all the processes of a job by specifying the job ID.

Job ID attach debug is useful if you want to verify the state of a program when the active job specified by the job ID does not exit.

Additionally, using the Debugger GUI, you can perform the following operations for Fortran, C/C++, MPI, and XPFortran programs.

- Control a program's execution

It is possible to restart a program and run it till the next stop position, or execute it line-by-line.

- Set the execution stop position for a program

Breakpoints, watchpoints, and barrierpoints can be set.

- Display the expressions and variable values

The expressions, variable values, and local variables can be displayed.

- Display and select the stack trace

By displaying the stack trace and selecting the stack position, a function call can be traced.

The command that displays the debug information of the debugging engine (fdb) can also be executed by using the command line interface
from the GUI.

1.2 Operating Environment of the Debugger
Debugging processes using the Debugger involves compiling programs using the Fujitsu compiler and executing jobs using the job
operation software on this system.

Therefore, a correct environment for compilation and job execution is necessary.

Note that the Debugger is started from FSDT, which is the GUI support environment.

This guide explains how to use the Debugger after it has been started from FSDT. Refer to the "Programming Workbench User's Guide"
for information on FSDT operations.

Additionally, refer to the chapter of the launcher feature in the "Programming Workbench User's Guide" for information on how to start
the Debugger using the launcher feature of FSDT.

This guide relates to the following manuals, and so you may also reference these manuals.

- Fortran Language Reference

- 1 -

- Fortran User's Guide

- Fortran Compiler Messages

- C User's Guide

- C++ User's Guide

- C/C++ Compiler Optimization Messages

- MPI User's Guide

- XPFortran User's Guide

- Programming Workbench User's Guide

- Job Operation Software First Step Guide

- Job Operation Software End User's Guide

1.3 Program Compilation

Program compilation

Compile using the Fortran, C, or C++ processing system, and specify the -g option on compilation.

The -g option generates the debug information. If this option is not specified, the variable values cannot be referenced as there is no
correspondence with the source program while debugging it.

Refer to the "Fortran User's Guide", the "C User's Guide", the "C++ User's Guide", and the "MPI User's Guide" for information on this
option and program compilation.

Debugging XPFortran programs

The Debugger cannot debug an XPFortran program as it is.

An XPFortran program is compiled to an MPI program by the XPFortran compile and linkage command (xpfrtpx), and then executed by
the MPI program execution command (mpiexec).

A user debugs an XPFortran program as if debugging an MPI program while referring to the Debug/Tuning Support Data generated by
the XPFortran compile and linkage command.

Refer to the "XPFortran User's Guide" for information on how to compile an XPFortran program, and how to generate the Debug/Tuning
Support Data.

1.4 Job Submission
The Debugger debugs a job submitted on the job operation software of this system.

For the job submission command, pjsub, specified by normal debug, the Debugger adds the -X option.

When this option is specified, all environment variables, including the environment variable necessary for the Debugger to start, are
forwarded with the batch request.

- 2 -

Chapter 2 Debugger Features
This chapter explains the Debugger features that are commonly used while debugging.

Refer to "Chapter 3 Debugger Windows and Menus" and "Chapter 4 List of Debugger Operations" for information on the windows and
operation menus in the Debugger.

The Debugger provides three debugging modes that resolve the following problems:

- Incorrect results of a program

- Abnormal termination of a program

- Active program does not terminate (for example, enters an endless loop or a deadlock)

Normal debug (Incorrect results of a program)

The normal debug mode submits a job from the user terminal of the Debugger, executes a program from the top, displays the expressions
and variables of the program, controls the program's execution, and sets the execution stop position.

As this mode debugs a program by executing it from the top, it is ideal for verifying the logic of a program with incorrect execution results.
The user executes the source code lines to confirm a program's behavior. The program is executed line-by-line or till the stop position set
for a program, enabling you to verify the logic and detect the reason for incorrect execution results.

Corefile debug (Abnormal termination of a program)

The corefile debug mode statically verifies the state at program termination by using the corefile that is output when a job abnormally
terminates.

The user submits a job after setting up the program to output the corefile in case of abnormal termination. If the job terminates abnormally,
the corefile is generated, and then forwarded to the login node for collection. Refer to the description of job staging in the "Job Operation
Software End User's Guide" for information on corefile collection. The staging function appends the rank number of a process to the
corefile name and forwards that corefile. Using this rank number, you can identify the process that generated the corefile. After the corefile
is collected, the Debugger is started, the corefile, the program, and working directory are specified on the Corefile debug tab, and the
abnormal termination state is analyzed. Two or more corefiles cannot be specified at the same time. The analyzed content contains the
variable values, the process ID, the generated signal, the part (line/instruction) that caused abnormal termination, and the register (including
the expanded register) and the space map information of the process.

Job ID attach debug (Active program does not terminate)

This captures all the processes of a job by specifying the job ID.

Job ID attach debug is useful if you want to verify the state of a program when the active job specified by the job ID does not exit.

When debugging starts, the program stops at a source code line as soon as the Debugger detects the program to be debugged. You may
then start debugging the program by controlling the program's execution by using stop positions or executing the program line-by-line,
and verify the program's behavior. Note that when the Debugger detects the program to be debugged, you can verify the values of variables
and also check if there is a deadlock.

After debugging, you can either forcibly end or continue running the job.

2.1 Setting of Stop Positions
The Debugger can stop the program execution at any point in a program. You can stop a program, and perform various operations, such
as display variable values, to confirm whether the program is operating as intended. By default, the stop position setting is enabled during
debugging, but you may disable it if you do not want to stop a program.

The following stop positions are available.

Breakpoints

A breakpoint determines where to temporarily stop in a program while debugging.

If a breakpoint is set for all processes in a program, the process execution temporarily stops in an MPI program when an individual process
reaches the breakpoint.

- 3 -

Additionally, if a breakpoint is set for a process with threads and if a thread reaches a breakpoint, each thread in the process stops executing
temporarily.

The Debugger also provides the "Temporary breakpoint" that works only once.

Barrierpoints

A barrierpoint is the stop position that only applies to processes with threads.

When all threads in a process reach the barrierpoint, the execution is temporarily stopped. The Debugger cannot be operated for the process
till all threads reach the barrierpoint.

Watchpoints

A watchpoint focuses on a specific variable and temporarily stops the program execution when the variable is accessed (referenced,
changed, or referenced and changed). Note that though watchpoints are a powerful feature for monitoring variable access, they compromise
the performance because they also monitor memory access.

2.2 Execution Control

2.2.1 Execution control for the temporary stop state
The methods for executing a program that has temporarily stopped are described below.

Continue

The program execution is resumed. The program continues execution till it reaches a stop position, or it terminates.

Step

The current line is executed. For a function call or a procedure call, the execution stops at the first line of the called function or procedure.

Next

The current line is executed. For a function call or a procedure call, the function or the procedure is executed as one sentence, and then
the execution stops at the next line. The execution does not stop at a stop position, such as a breakpoint, till it returns from the function/
procedure call, even if there are breakpoints within the called function/procedure.

Finish

The program is executed till the return of a current function or procedure. After the current function or procedure returns, the program
execution stops at the first line immediately after the function/procedure call. The execution does not stop at a stop position, such as a
breakpoint, till it returns from the function/procedure, even if there are breakpoints within the function/procedure.

Rerun

The program is re-executed from the top. The information regarding breakpoints set for the group is not changed.

2.2.2 Execution control for active programs
The methods for stopping an active program are described below.

Stop

The program execution is temporarily interrupted. Debug operations, such as display of variables and restarting program execution, can
be continued.

Kill

The program execution is interrupted, and the program terminates. The program execution cannot be controlled in this case. Use "Rerun"
to resume debugging.

- 4 -

2.2.3 Specifying the debugging object
Using the Debugger, you can debug an entire program, a process, or a thread.

The program structure is displayed in the Application structure panel in the main window.

Figure 2.1 Main window (Application structure panel)

The item selected in the Application structure panel is called the active entity, and it is the object for debugging.

Note that the menus that can be used differ depending on the active entity object (an entire program, a process, or a thread).

2.3 Display Feature
When a program's execution temporarily stops, the Debugger displays the following information:

- Position where the program stopped (a single process or a single thread is displayed)

- Stack trace information (trace back)

- Local variables (values at the time of a stop are displayed)

In the main window where debugging is performed, information on the active entity object is displayed.

Use the Entity information window (that displays information on processes and threads) to view the stack trace information and the local
variable information for a process or a thread that is not currently active.

- 5 -

Figure 2.2 Main window (stop position, stack trace information, and local variables)

Figure 2.3 Entity information window (stack trace information)

Figure 2.4 Entity information window (local variables)

- 6 -

2.3.1 Stack trace information
The Debugger allows you to check the values of arguments and the values of local variables in functions by tracing the stack trace (by
changing the frame). In case an argument contains an incorrect value, use the stack trace information to find which part of the stack trace
path introduced the incorrect argument.

Figure 2.5 Main window (stack trace information)

Figure 2.6 Entity information window (stack trace information)

Refer to the stack trace information in the main window or the Entity information window, and select the call position (frame) for which
you want to see detailed information. The information regarding local variables for the selected call position is displayed.

If you select a call position in the stack trace in the main window while the Entity information window for the active entity is displayed,
the position of the stack trace is automatically updated.

2.3.2 Display feature
The Debugger also provides the feature to display the values of variables when a program's execution temporarily stops.

Up to 10 scalar variables can be displayed.

- 7 -

The variables are displayed in the Application structure panel.

Note that the value of a local variable, which is out of scope, is not displayed.

Figure 2.7 Main window (values of variables)

- 8 -

Chapter 3 Debugger Windows and Menus
This chapter describes the windows in the Debugger.

The Debugger comprises three windows:

- Debugger start setting window: Starts the Debugger

- Main window: Operates the Debugger

- Entity information window: Displays the debugging information, for example, stop positions

3.1 Debugger start setting Window
This is the window that starts the debugging.

When the Debugger starts from the FUJITSU Software Development Tools, the Debugger start setting window is displayed.

Figure 3.1 Debugger start setting window

The following table describes the elements in the Debugger start setting window.

Table 3.1 Debugger start setting window elements

Element Description

Debug Allows debugging from the top of a program

The working directory, the script file to be debugged, and the job submission options must be
specified.

Corefile debug Allows debugging the corefile that is output when a program abnormally terminates

The working directory, the executable file, and the core image file must be specified.

Job ID attach debug Allows debugging a program, which is already running. The job identifier must be specified to
start the debugging. Use the pjstat command to confirm the job identifier of an active program.

Ok Starts the debugging by using the information specified on the selected tab

The job is submitted, and the main window is displayed.

Cancel Closes the Debugger start setting window

- 9 -

3.1.1 Debug tab
Starts the debugging from the top of a program

The job is submitted in the specified directory.

Figure 3.2 Debugger start setting window (Debug tab)

The following table describes the elements on the Debug tab.

Table 3.2 Debug tab elements

Element Description

Working directory The directory which the Debugger submits the job at is specified.

This is not optional and must be specified.

Script file Specify a script file that starts the program to be debugged. This is not optional and must be specified.

Click the [...] button to select the script file from the displayed file selection dialog box.

Job submit command Provide the command to submit the specified job. If this element appears gray, it means it is disabled
and cannot be edited.

Interactive job option Select this check box to submit an interactive job.

Thread enable option Select this check box to display the thread information in the Debugger, in case of a multi-thread
program.

3.1.2 Corefile debug tab
Allows debugging the corefile that is output when a program abnormally terminates

The following table describes the elements on the Corefile debug tab.

- 10 -

Figure 3.3 Debugger start setting window (Corefile debug tab)

Table 3.3 Corefile debug tab elements

Element Description

Working directory Specify a directory that is used as the current directory while performing a corefile debug session.

This is not optional and must be specified.

Executable file Specify the executable file. This is not optional and must be specified. Click the [...] button to select the
executable file from the displayed file selection dialog box.

Corefile Specify the core image file to be output when the file specified in Executable file abnormally terminates.
This is not optional and must be specified.

Click the [...] button to select the core image file from the displayed file selection dialog box.

Thread enable option Select this check box to display the thread information in the Debugger, in case of a multi-thread program.

3.1.3 Job ID attach debug tab
Allows debugging a program, which is already running.

You cannot perform job ID attach debug for a program for which you do not have appropriate access rights.

The following table describes the elements on the Job ID attach debug tab.

- 11 -

Figure 3.4 Debugger start setting window (Job ID attach debug tab)

Table 3.4 Job ID attach debug tab option

Element Description

Job ID Specify the job identifier of the job to be debugged. This is not optional and must be specified.

Thread enable option Select this check box to display the thread information in the Debugger, in case of a multi-thread program.

3.2 Main Window
When the debugging starts, the main window is displayed.

Figure 3.5 Main window

The following table describes the elements in the main window.

- 12 -

Table 3.5 Main window elements
Element Description

Menu bar Provides options to enable debugging operations

Toolbar Contains buttons for the most frequently used debugging operations, such as execution control
and setting stop positions

Application structure panel Displays the processes and the threads of the program being debugged in a tree structure; the
entity that is selected becomes the active entity

Source view panel Displays the source and stop position related information, such as the current stop line

Debug console tab Displays messages output from the Debugger

Local variables tab Displays the local variables and their values

Stack trace tab Displays the stack trace information

3.2.1 Menu bar
The menu bar enables debugging operations.

Table 3.6 Debugging operations menu

Menu Submenu/Command Description

File Exit Exits the Debugger

Information Stack trace ... Displays the Entity information window that contains information regarding the
active entity

Refer to "3.3 Entity Information Window" for details.

Action points

Breakpoints ...

Watchpoints ...

Barrierpoints

Local variables ...

Print ...

Commands ...

Execution Rerun Re-executes a program from the top

The breakpoint-related information set for the group is carried over.

Continue Restarts the program execution

The program executes till a stop position, or till it terminates.

Stop Temporarily interrupts the program execution

However, debug operations, for example, the display of program variables and
restarting program execution can be continued.

Kill Interrupts the program execution and terminates the program

In this case, you cannot control the program execution. To resume debugging, use
Rerun.

Step Executes the current line

For a function call or a procedure call, it stops at the first line of the called function
or procedure.

Next Executes the current line

For a function call or a procedure call, the function or the procedure call is executed
as one sentence and the execution stops at the next line. The execution does not stop
at a stop position, such as a breakpoint, till it returns from the previous called
function.

- 13 -

Menu Submenu/Command Description

Finish Executes till the return of the current function or procedure

After the current function or procedure returns, it stops at the line that will be
executed first. The execution does not stop at a stop position, such as a breakpoint,
till it returns from the previous called function.

Help About Debugger Displays information about the Debugger

3.2.2 Toolbar
The toolbar contains icons for the most frequently used debugging operations, such as execution control.

Figure 3.6 Toolbar

The following table describes the toolbar icons.

Table 3.7 Toolbar icons with their description

Name Icon Function

Return Returns from the head of the program. Information on the breakpoint set to the group is
succeeded.

Continue The program execution is resumed. The program continues executing until reaching to
the stop position or terminating.

Stop The program execution is temporarily interrupted. The debug operations of the display of
the variable and the restart of the program execution, etc. can be continued.

Kill The program execution is interrupted, and it cancels. The program execution control
cannot be done at the following. When the debug operation is continued, it is necessary
to di Return.

Step The current line is executed. In the line of the function or the procedure call, it stops by
the first line of the call function or procedure.

Next The current line is executed. In the line of the function or the procedure call, the function
or the procedure call is executed as one sentence, and it stops by the next line. Execution
does not stop at the stop position when there is a stop position like the breakpoint etc.
before it returns from a call function.

- 14 -

Name Icon Function

Finish Execute until the return of a current function or procedure. After a current function or
procedure returns, it stops by the line executed first. The execution stop is not done at the
stop position when there is a stop position like the breakpoint etc. before it returns from
the function.

Entity information
window

The entity information window is displayed.

10:0 ratio display The ratio of the displays of the application structure panel and the source view panel is
made 10:0.

7:3 ratio display The ratio of the displays of the application structure panel and the source view panel is
made 7:3.

3:7 ratio display The ratio of the displays of the application structure panel and the source view panel is
made 3:7.

0:10 ratio display The ratio of the displays of the application structure panel and the source view panel is
made 0:10.

3.2.3 Application structure panel
Displays the processes and threads of a program (It is called the application structure at the following) in a tree structure.

Figure 3.7 Application structure panel

The following table describes the types of nodes (referred to as "entity") in the tree structure.

Table 3.8 Entity types

Entity name Description

Group entity This is the root component of the tree. The entire program that is executed is displayed. The executed
program's name is displayed as an entity name.

Process entity This is the first level of the tree. The processes in the executed program are displayed, and the number
allocated in the process as entity name is displayed.

Thread entity This is the second level of the tree. The thread in each process is displayed, and the number allocated
in the thread as entity name is displayed.

Note that the icon changes depending on the run state (status) of each entity.

- 15 -

Table 3.9 Entity status icons

Status Icon

running

stop (suspend)

finished

In the Application structure panel, right-click an entity to display a right-click menu that allows you to perform various debugging
operations.

Table 3.10 Right-click menu in the Application structure panel

Command Description

Display ... Adds a variable to the display feature

Use this option to display a dialog box where you can specify the variable to be added to the display
feature.

Delete display Deletes the variable set for the display feature

Use this option to display a list of variables set for the display feature, and then delete the variables
individually.

Change current Sets the entity that is currently selected as the current entity of the parent entity

For example, if a process entity is selected, it is set as the current entity of the group entity, which is the
parent entity. Similarly, if a thread entity is selected, it is set as the current entity of the process entity,
which is the parent entity.

Show rank number Changes the display of the Name column in the Application structure panel to the rank number

Show process number Changes the display of the Name column in the Application structure panel to the process number

Entity information ... Displays the Entity information window

The entity that is selected in the Application structure panel for debugging is called the active entity.

The contents of the source view panel, the Local variables tab, and the Stack trace tab are updated according to the active entity that is
selected.

Display feature

The display feature updates the values of displayed variables whenever the situation changes, for example, when the execution stops at a
function. As a result, it enables monitoring of variables values.

The variables for each process entity are displayed to the right of the table in the Application structure panel.

Figure 3.8 Application structure panel (display feature)

- 16 -

Up to 10 variables can be displayed using the display feature.

Use any of the following methods to add a variable to monitor it.

- Use the right-click menu in the Application structure panel.

- Use the right-click menu on the Local variables tab.

- Use the right-click menu in the source view panel.

- Use the right-click menu on the Local variables tab in the Entity information window.

You can delete a displayed variable by using the right-click menu in the Application structure panel.

3.2.4 Source view panel
Displays the source and the execution stop positions, such as breakpoints

When the Debugger starts, the source file with the stop positions included is displayed in the source view panel.

Figure 3.9 Source view panel

Source file selection box

Use the source file selection box to select the source file to be displayed.

This allows you to open the other program source file, so that you can browse the source code and set a new breakpoint.

- 17 -

Figure 3.10 Source file selection box

Action point selection icons

In the Debugger, breakpoints, temporary breakpoints, barrierpoints, and watchpoints are referred to as action points.

Click the margin area in the source view panel (as described below) to set an action point (breakpoint, temporary breakpoint, or barrierpoint)
for a source line.

Figure 3.11 Action point selection icons

Table 3.11 Action point selection icons

Name Icon Function

Breakpoint The breakpoint can be set by clicking the margin area.

Temporary breakpoint The temporary breakpoint (cleared automatically when the program stops) can
be set by clicking the margin area.

- 18 -

Name Icon Function

When an active entity is a group and a thread, it becomes deactivated and cannot
to use.

Barrier point The barrier point can be set by clicking the margin area.

When an active entity is a group and a thread, it becomes deactivated and cannot
to use.

Margin area

The area (left of the source row number) where the stop position is displayed is called the margin area. When the margin area is clicked,
the position where the cursor stops is set as the action point. The set action point is identified by the action point icon (described in the
table below). The action point can be released by clicking the action point icon.

Figure 3.12 Margin area

The following table shows the icons displayed in the margin area.

Table 3.12 Margin area icons

Display item Status Icon

Application stop position Always

Breakpoint Enabled

Disabled

Temporary breakpoint Enabled

Disabled

Barrier point Enabled

Disabled

- 19 -

When you right-click a breakpoint, a temporary breakpoint, or a barrierpoint displayed in the margin area, a right-click menu is displayed.

Table 3.13 Right-click menu in the margin area

Command Description

Delete The breakpoint or the barrierpoint is deleted.

Disable The breakpoint or the barrierpoint is disabled.

Enable The breakpoint or the barrierpoint is enabled.

Debug operations in the source view panel

When you right-click a source, a right-click menu is displayed. The action corresponding to the selected menu option will be performed
for the string selected in the source view window.

Table 3.14 Right-click menu in the source view panel

Command Description

Print Displays the values of program variables; the result is displayed in the Entity information window. When the
entity information window of an active entity is not displayed, it is newly displayed.

Set ... Sets the value for a variable; a dialog box is displayed where you can set the value for the variable

Display Adds a variable to the display feature

Refer to "3.2.3 Application structure panel" for details.

Watch Sets a watchpoint (for updating)

The program execution stops at the point where the specified variable was changed.

Refer Sets a watchpoint (for referencing)

The program execution stops at the point where the specified variable was referred.

Referwatch Sets a watchpoint (for updating or referencing)

The program execution stops at the point where the specified variable was changed or was referred.

3.2.5 Stack trace tab
Displays the list of stack frames for a program

The frame number, the address, the function identifier, the source line, and the source file name are displayed in each line.

Clicking a frame in the Stack trace tab will change the current frame. Note that changing the frame is only possible if the active entity is
a process entity.

- 20 -

Figure 3.13 Stack trace tab

3.2.6 Local variables tab
Displays the values of local variables of the current frame.

Figure 3.14 Local variables tab

When you right-click a local variable, a right-click menu is displayed.

Table 3.15 Right-click menu on the Local variables tab

Command Description

Print Displays the values of program variables; the result is displayed in the Entity information window. Refer
to the Print tab in the Entity information window for the display.

Print(Pointer) If the program variable is a pointer, the destination of the pointer is displayed. The result is displayed on the
Print tab in the Entity Information window. Refer to the Print tab in the Entity information window for the
display.

- 21 -

Command Description

Set ... Sets the value for a variable; a dialog box is displayed where you can set the value for the variable

Display Adds a variable to the display feature

Refer to "3.2.3 Application structure panel".

Watch Sets a watchpoint (for updating)

The program execution stops at the point where the specified variable was changed.

Refer Sets a watchpoint(for referencing)

The program execution stops at the point where the specified variable was referred.

Referwatch Sets a watchpoint(for updating or referencing)

The program execution stops at the point where the specified variable was changed or was referred.

3.2.7 Debugging console tab
Displays the execution log of the Debugger.

Figure 3.15 Debugging log display area

3.3 Entity Information Window
For each entity, you can configure the following display/settings using the Entity information window.

When the situation of a program changes by the debugging operations in the main window, the contents of the displayed Entity information
window are automatically updated to the latest information.

Table 3.16 Entity information window display/settings

Tab name Description

Stack trace Displays the stack trace information and allows change of frame

Action points Displays the list of breakpoints, watchpoints, and barrierpoints and allows related operations

Local variables Displays the local variables with their respective values

Print Displays program variables

Commands Issues the fdb command

- 22 -

Select an entity in the Application structure panel, and then click the Properties button on the toolbar to display the Entity information
window.

3.3.1 Stack trace tab
Traces of the called function and the call position are displayed. The display is the same as the Stack trace tab in the main window.

Figure 3.16 Entity information window (Stack trace tab)

Change of frame

Right-click the call position you want to change, and then click Change frame.

However, this can only be done for process entities.

3.3.2 Action points tab
All action points are collectively displayed on the Action points tab.

Click the Breakpoints bar, the Watchpoints bar, or the Barrierpoints bar to display the list of breakpoints, watchpoints, and barrierpoints,
respectively.

3.3.2.1 Breakpoints bar
Displays breakpoint and temporary breakpoints, and allows you to perform various operations, such as set/delete breakpoints

The temporary breakpoint is displayed in the Type column as "Once".

- 23 -

Figure 3.17 Entity information window (Action points tab, Breakpoints bar)

Set

To set a breakpoint, specify the function identifier and the row number in the input box, and then click Set.

In the input box, specify arguments of the break command of fdb.

When debugging C++ programs, if a breakpoint is set by specifying the function identifier in the input box, an overload (two or more
corresponding functions exist) may occur. In this case, a window with multiple candidates that can be set as breakpoints is displayed.
Select the items you want to set as breakpoints.

Delete

To delete a breakpoint or a temporary breakpoint, right-click the breakpoint, and then click Delete breakpoint.

Enable/Disable

It is possible to temporarily disable a breakpoint or temporary breakpoint without deleting it.

For this, right-click a breakpoint, and then click Enable breakpoint or Disable breakpoint to switch to the enabled or disabled state,
respectively.

3.3.2.2 Watchpoints bar
Displays a list of watchpoints and allows you to set/delete watchpoints.

- 24 -

Figure 3.18 Entity information window (Action points tab, Watchpoints bar)

The Kind column displays the following attributes:

- Watch

Stops the program execution when the value is changed; can be set by selecting Watch for the watchpoint

- Refer

Stops the program execution when the value is referred; can be set by selecting Refer for the watchpoint

- Referwatch

Stops the program execution when the value is changed or is referred; can be set by selecting Referwatch for the watchpoint

Set

To set a watchpoint, specify the variable identifier in the input box, select an attribute (Watch, Refer, or Referwatch) from the list, and
click Set.

In the input box, specify arguments of the watch, refer, or referwatch commands of fdb.

Delete

To delete a watchpoint, right-click the watchpoint, and then click Delete watchpoint.

Enable/Disable

It is possible to temporarily disable a watchpoint without deleting it.

For this, right-click the watchpoint, and then click Enable watchpoint or Disable watchpoint to switch to the enabled/disabled state,
respectively.

3.3.2.3 Barrierpoints bar
Displays a list of barrierpoints and allows you to set/delete barrierpoints

Barrierpoints can only be set for a process entity of the entity being displayed. The display area of the window is disabled if the current
entity is a group entity or a thread entity.

A barrierpoint continues executing till all threads in the process reach the barrierpoint.

- 25 -

Figure 3.19 Entity information window (Action points tab, Barrierpoints bar)

Set

To set a barrierpoint, specify the function identifier and the row number in the input box, and then click Set.

In the input box, specify arguments of the barrier command of fdb.

Delete

To delete a barrierpoint, right-click the barrierpoint, and then click Delete barrierpoint.

Enable/Disable

It is possible to temporarily disable a barrierpoint without deleting it.

For this, right-click a barrierpoint, and then click Enable barrierpoint or Disable barrierpoint to switch to the enabled/disabled state,
respectively.

3.3.3 Local variables tab
Displays a list of local variables with their respective values for the entity that is currently selected.

The display of this tab is the same as the Local variables tab in the main window.

- 26 -

Figure 3.20 Entity information window (Local variables tab)

When you right-click a local variable, a right-click menu with the following options is displayed.

Table 3.17 Right-click menu on the Local variables tab

Command Description

Print Displays the values of program variables; the result is displayed on the Print tab

Print(Pointer) If the program variable is a pointer, the destination of the pointer is displayed. The result is displayed on the
Print tab.

Set Sets the value for a variable; a dialog box is displayed where you can set the value for the variable

Display Adds a variable to the display feature

Refer to "3.2.3 Application structure panel".

Watch Sets a watchpoint (for updating)

The program execution stops at the point where the specified variable was changed.

Refer Sets a watchpoint (for referencing)

The program execution stops at the point where the specified variable was referred.

Referwatch Sets a watchpoint (for updating or referencing)

The program execution stops at the point where the specified variable was changed or was referred.

3.3.4 Print tab
Displays the values of program variables.

- 27 -

Figure 3.21 Entity information window (Print tab)

Display

To display a value, specify the name of the program variable in the input box, and then click Print.

When the variable is an array and the same value appears consecutively, the value may be displayed only once (merged as a single
item).

In the input box, specify arguments of the print command of fdb.

Initialization

Right-click in the Print tab, and then click Clear to delete the displayed content.

3.3.5 Commands tab
Issues fdb commands for the entity that is currently selected.

Only a few of the fdb commands can be issued from the Debugger. Either select or type the command to be issued in the box, and then
click Send. The command is sent to the entity of the Entity information window, and the result is displayed on the Commands tab.

Figure 3.22 Entity information window (Commands tab)

- 28 -

The fdb commands that can be selected from the box are listed below. Refer to the fdb manual, which can be displayed by executing the
man command, for information on fdb commands.

show args, show barrier, show break, show break-t, show ffile, show fopt, show frame, show freg,

show function, show leak, show locals, show map, show namespace, show reg, show regs, show sfreg,

show signal, show source, show sources, show thread, show variable, show watch, show watch-t,

show xfreg, param execpath, param leak, param srcpath, condition, disas, dump, traceback,

traceback-t

Initialization

Right-click on the Commands tab, and then click Clear to delete the displayed content.

3.4 Exiting Debugger
On the File menu, click Exit to exit the Debugger.

If you try to exit the Debugger during program execution on normal debug/corefile debug, the Debugger exit confirmation dialog box (for
normal debug/corefile debug) that confirms if you want to exit the Debugger is displayed.

Click Yes button to exit the Debugger. The submitted job is also terminated.

Click No button to continue using the Debugger.

Figure 3.23 Debugger exit confirmation dialog box (normal debug/corefile debug)

If you try to exit the Debugger during the job ID attach debug, the following Debugger exit confirmation dialog box (job ID attach debug)
is displayed.

Click Yes button to exit the Debugger, and terminate the active program.

Click Yes (Detach) button to exit the Debugger, while the program execution continues.

Click No button to continue using the Debugger.

Figure 3.24 Debugger exit confirmation dialog box (Job ID attach debug).

- 29 -

Chapter 4 List of Debugger Operations
The following table lists the various debug operations with their respective operating instructions.

Table 4.1 List of debugging operations

Debug operation Instruction

Execution
control

Re-execution (Rerun) - Rerun button on the toolbar

- Execution > Rerun on the menu bar

Continue execution (Continue) - Continue button on the toolbar

- Execution > Continue on the menu bar

Source level
execution

Step - Step button on the toolbar

- Execution > Step on the menu bar

Next - Next button on the toolbar

- Execution > Next on the menu bar

Finish - Finish button on the toolbar

- Execution > Finish on the menu bar

Temporary
stop/forced
termination

Stop - Stop button on the toolbar

- Execution > Stop on the menu bar

Kill - Kill button on the toolbar

- Execution > Kill on the menu bar

Stop position
operations

Breakpoint List display - Information > Action points > Breakpoints ... of debugging operation menu
on the menu bar

- In the Entity information window, on the Action points tab, click the
Breakpoints bar.

Set - Click the margin area of the source view panel.

- In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, specify the stop position information in the input box,
and then click Set.

Delete - Click the breakpoint in the margin area of the source view panel.

- Right-click the breakpoint in the margin area of the source view panel, and
then click Delete.

- In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the breakpoint, and then click Delete
breakpoint.

Enable - Right-click the disabled breakpoint in the margin area of the source view
panel, and then click Enable.

- In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the disabled breakpoint, and then click
Enable breakpoint.

Disable - Right-click the breakpoint in the margin area of the source view panel, and
then click Disable.

- In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the breakpoint, and then click Disable
breakpoint.

- 30 -

Debug operation Instruction

Temporary
breakpoint

List Display - Information > Action points > Breakpoints ... on the menu bar

- In the Entity information window, on the Action points tab, click the
Breakpoints bar.

Set - Click the action point icon for the temporary breakpoint in the source view
panel, and then click the margin area.

Delete - Click the temporary breakpoint in the margin area of the source view panel.

- Right-click the temporary breakpoint in the margin area of the source view
panel, and then click Delete.

- In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the temporary breakpoint, and then click
Delete breakpoint.

Enable - Right-click the disabled temporary breakpoint in the margin area of the source
view panel, and then click Enable.

- In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the disabled temporary breakpoint, and
then click Enable breakpoint.

Disable - Right-click the temporary breakpoint in the margin area of the source view
panel, and then click Disable.

- In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the breakpoint, and then click Disable
breakpoint.

Watchpoint List Display - Information > Action points > Watchpoints ... on the menu bar

- In the Entity information window, on the Action points tab, click the
Watchpoints bar.

Set - Right-click the variable in the source view panel, and then click Watch,
Refer, or Referwatch.

- Right-click the local variable on the Local variables tab, and then click
Watch, Refer, or Referwatch.

- In the Entity information window, on the Local variables tab, right-click
the local variable, and then click Watch, Refer, or Referwatch.

- In the Entity information window, on the Action points tab, click the
Watchpoints bar. Next, specify the variable identifier in the input box, and
then click Set.

Delete - In the Entity information window, on the Action points tab, click the
Watchpoints bar. Next, right-click the watchpoint, and then click Delete
watchpoint.

Enable - In the Entity information window, on the Action points tab, click the
Watchpoints bar. Next, right-click the disabled watchpoint, and then click
Enable watchpoint.

Disable - In the Entity information window, on the Action points tab, click the
Watchpoints bar. Next, right-click the watchpoint, and then click Disable
watchpoint.

Barrierpoint List Display - Information > Action points > Barrierpoints ... on the menu bar

- In the Entity information window, on the Action points tab, click the
Barrierpoints bar.

- 31 -

Debug operation Instruction

Set - Click the action point icon for the barrierpoint in the source view panel, and
then click the margin area.

- In the Entity information window, on the Action points tab, click the
Barrierpoints bar. Next, specify the stop position information in the input
box, and then click Set.

Delete - Click the barrierpoint in the margin area of the source view panel.

- Right-click the barrierpoint in the margin area of the source view panel, and
then click Delete.

- In the Entity information window, on the Action points tab, click the
Barrierpoints bar. Next, right-click the barrierpoint, and then click Delete
barrierpoint.

Enable - Right-click the disabled barrierpoint in the margin area of the source view
panel, and then click Enable.

- In the Entity information window, on the Action points tab, click the
Barrierpoints bar. Next, right-click the disabled barrierpoint, and then click
Enable barrierpoint.

Disable - Right-click the barrierpoint in the margin area of the source view panel, and
then click Disable.

- In the Entity information window, on the Action points tab, click the
Barrierpoints bar. Next, right-click the barrierpoint, and then click Disable
barrierpoint.

Variable
operations

Display of value (print) - Right-click the variable in the source view panel, and then click Print.

- Right-click the local variable on the Local variables tab, and then click
Print.

- In the Entity information window, on the Local variables tab, right-click
the local variable, and then click Print.

- In the Entity information window, specify the variable on the Print tab.

Change value (set) - Right-click the variable in the source view panel, and then click Set

- Right-click the local variable on the Local variables tab, and then click
Set

- In the Entity information window, right-click the local variable on the Local
variables tab, and then click Set

Display
feature

List display - Refer to the Application structure panel in the main window.

Set - Right-click the variable in the source view panel, and then click Display.

- Right-click the local variable on the Local variables tab, and then click
Display.

- In the Entity information window, right-click the local variable on the Local
variables tab, and then click Display.

- Right-click in the Application structure panel, and then click Display

Delete - Right-click the variable in the Application structure panel, and then click
Delete display.

Information
display

Local variables - Click the Local variables tab in the main window.

- Information > Local variables ...on the menu bar

- Click the Local variables tab in the Entity information window.

- 32 -

Debug operation Instruction

Call route - Click the Stack trace tab in the main window.

- Information > Stack trace ...on the menu bar

- Click the Stack trace tab in the Entity Information window.

Detailed entity information - Use the Information menu on the menu bar.

- Click the Entity information window button on the toolbar.

- 33 -

Appendix A Considerations for Using the Debugger
This appendix explains the considerations for using the Debugger.

Environment variable names

Environment variables that start with "TRT_" are used by the Debugger. Do not use these environment variables.

Variables display

There might be a delay in the GUI display response in the following cases:

- When the entire value of a large array is to be displayed by using the print feature

- When a program uses a large number of local variables

Debugging jobs that run two or more programs

Jobs (MPMD) that run two or more programs and the process of dynamically generating the MPI cannot be debugged.

Japanese character strings

Japanese character strings must not be specified in windows or dialog boxes of the Debugger. Note that Japanese characters may appear
distorted when displayed in the console or the source view panel.

Using the tool runtime daemon for the Debugger

The Debugger uses communication modules, such as the tool runtime daemon, to establish communication between the user terminal and
the job process. When a problem occurs in communication processing of the runtime daemon tool, an error message is displayed.

This could be because of the following reasons, so contact the system administrator.

- The runtime daemon tool is not active.

- The port number on which the runtime daemon tool can be run has exhausted.

Job submission

If the Debugger has terminated while a job is submitted and is waiting, the job remains in the waiting state.

The waiting job is terminated at once and starts again. If a problem occurs, delete the job.

Execution time of the job to be debugged

In case of the normal debug mode of the Debugger, the debug process runs as part of the job. The operation time of the Debugger is affected
by the execution time of the job. Therefore, if the duration set for the job being debugged expires, the Debugger also terminates.

Corefile debug

When corefile debug is started, the Debugger submits a job to start the debug process internally. This job starts the debugging engine on
the compute node as well as the job that the user submits using the pjsub command. The execution time of this job is 24 hours (depending
on the system settings). The cost of this job is similar to when a Debugger user submits a typical job.

Attach debug

You cannot use the attach debug mode with a job ID if the job is a sequential program or a parallel MPI program.

Debugging XPF programs

Refer to the "XPFortran User's Guide" for information on debugging XPFortran (XPF) programs.

- 34 -

Considerations and limitations of fdb

When started, the Debugger starts the debugging engine (fdb) on the compute node. Therefore, the considerations and the limitations of
the fdb also apply to the Debugger. Refer to the document that describes the considerations and limitations of fdb by using the method
given below.

Execute the following command on the login node.

$ export MANPATH=/$install-dir/man:$MANPATH
$ man fdb

$install-dir: Directory where the document is stored

Debugger and the abnormal state of the system

If a job is interrupted during debugging, for example, the job execution environment stops or the system is in the abnormal state, the job
submitted by the Debugger is terminated. When this happens, the job which was earlier running can restart automatically provided the
necessary system settings are configured. However, the Debugger cannot restart debugging the job again.

Therefore, when you start the Debugger on the system that restarts jobs in the abnormal state, specify the --norestart option of the pjsub
command in the Job submit command box in the Debugger start setting window or the job script. This restricts the job to be debugged
from being restarted if the system is in the abnormal state.

Display the source file on source view panel

The source file displayed on the source view panel should be placed in the directory at compiling it. And the directory is accessible from
the login node.

Please check that the source file is in the directory at compiling it to display it on the source view panel.

The how of debugging by fdb command

You can use the fdb command on the interactive job by the following order.

1. Start the interactive job on the login node by the pjsub command.
Do not specify the script file.

 Example

$ pjsub --interact

2. Run the target program in the submitted job in the background.

 Example

$ mpiexec a.out &

3. Confirm the ID of the process which you want to debug.
You can check it by the ps command in the submitted job.

4. Execute the fdb command by specifying the process ID.
"pid" specifies the process ID of the running process.

 Example

$ fdb -p pid

Start condition of Debugger

In both cases of the following, the Debugger does not start:

- 35 -

- -z option or --help option is specified for pjsub command

- The output message of pjsub command is changed by the script

Debugging COARRAY feature

In the Debugger, each image of COARRAY program is called "rank".

Ranks have a non-negative integer number which starts at 0 and Images have a positive integer number which starts at 1, so "rank number
= image index - 1".

Refer to "Fortran User's Guide Additional Volume COARRAY" for details.

Debugging in environment with effective job swap function

Please put the check in the [Interactive job option] check button when debugging begins from the [Debug] tab in the debugger start setting
window in the environment with effective job swap function.

It might become impossible to do the debugging operation when debugging starting without putting the check.

- 36 -

Appendix B Notes on Migration from FX10 System to
FX100 System

This appendix provides notes on migrating from FX10 system (Generation Number:09 or later) to FX100 system.

For migrating from FX10 system (Generation Number:08 or earlier), refer to "Appendix C Compatibility Information (FX10 System)"
also.

B.1 Start condition of Debugger is changed
Refer to "C.1.1 Start condition of Debugger is changed".

- 37 -

Appendix C Compatibility Information (FX10 System)

C.1 Migration to V2.0L10(Generation Number:11)

C.1.1 Start condition of Debugger is changed
a. Changes

The start condition of the Debugger was changed.

[Previous version]

In the following cases, the Debugger starts.

- -z option or --help option is specified for pjsub command

- The output message of pjsub command is changed by the script

[This version]

In the following cases, the Debugger not start.

- -z option or --help option is specified for pjsub command

- The output message of pjsub command is changed by the script

b. Influence

In the following cases, the Debugger not start.

- -z option or --help option is specified for pjsub command

- The output message of pjsub command is changed by the script

c. Coping

Do not start the Debugger specifying -z option and --help option for pjsub command.

Do not start the Debugger changing the output message of pjsub command by the script.

- 38 -

Appendix D Compatibility Information (FX100 System)

D.1 Migration to V2.0L10(Generation Number:02)

D.1.1 Start condition of Debugger is changed
Refer to "C.1.1 Start condition of Debugger is changed".

- 39 -

	Title Page
	Preface
	Update History
	Contents
	Chapter 1 Overview of the Debugger
	1.1 Debugger Features
	1.2 Operating Environment of the Debugger
	1.3 Program Compilation
	1.4 Job Submission

	Chapter 2 Debugger Features
	2.1 Setting of Stop Positions
	2.2 Execution Control
	2.2.1 Execution control for the temporary stop state
	2.2.2 Execution control for active programs
	2.2.3 Specifying the debugging object

	2.3 Display Feature
	2.3.1 Stack trace information
	2.3.2 Display feature

	Chapter 3 Debugger Windows and Menus
	3.1 Debugger start setting Window
	3.1.1 Debug tab
	3.1.2 Corefile debug tab
	3.1.3 Job ID attach debug tab

	3.2 Main Window
	3.2.1 Menu bar
	3.2.2 Toolbar
	3.2.3 Application structure panel
	3.2.4 Source view panel
	3.2.5 Stack trace tab
	3.2.6 Local variables tab
	3.2.7 Debugging console tab

	3.3 Entity Information Window
	3.3.1 Stack trace tab
	3.3.2 Action points tab
	3.3.2.1 Breakpoints bar
	3.3.2.2 Watchpoints bar
	3.3.2.3 Barrierpoints bar

	3.3.3 Local variables tab
	3.3.4 Print tab
	3.3.5 Commands tab

	3.4 Exiting Debugger

	Chapter 4 List of Debugger Operations
	Appendix A Considerations for Using the Debugger
	Appendix B Notes on Migration from FX10 System to FX100 System
	B.1 Start condition of Debugger is changed

	Appendix C Compatibility Information (FX10 System)
	C.1 Migration to V2.0L10(Generation Number:11)
	C.1.1 Start condition of Debugger is changed

	Appendix D Compatibility Information (FX100 System)
	D.1 Migration to V2.0L10(Generation Number:02)
	D.1.1 Start condition of Debugger is changed

