08
FUJITSU

FUJITSU Software
Technical Computing Suite V2.0

Debugger User's Guide
(PRIMEHPC FX100)

J2UL-1897-02ENZ0(00)
November 2015

Preface

Purpose

This guide describes the features of the interactive Debugger (referred to as "the Debugger" in this guide) and explains how to use it for
Technical Computing Suite (referred to as "this system" in this guide).

The Debugger is provided with the FUJITSU Software Development Tools (FSDT), which is a GUI development environment. Refer to
the "fdb manual”, displayed by executing the man command, for information on using fdb commands on the command line.

This guide applies to the Debugger used on the Linux operating system.

Intended Readers

This guide is intended for those who want to debug programs using the Debugger. It is assumed that readers of this guide have working
knowledge of program development operations and related command operations in Linux.

Organization of This Guide
This manual is organized as follows:
Chapter 1 Overview of the Debugger
Provides an overview of the functionality of the Debugger
Chapter 2 Debugger Features
Describes the Debugger features that are commonly used while debugging
Chapter 3 Debugger Windows and Menus
Describes the elements in Debugger windows
Chapter 4 List of Debugger Operations

Lists the various debugging operations with their respective operating instruction

Appendix A Considerations for Using the Debugger
Describes the key points to consider when using the Debugger
Appendix B Notes on Migration from FX10 System to FX100 System
Describes notes on migrating from FX10 system to FX100 system
Appendix C Compatibility Information (FX10 System)
Describes compatibility information as notes on migrating
Appendix D Compatibility Information (FX100 System)

Describes compatibility information as notes on migrating

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country
and/or US export control laws.

Trademarks

- Linux is a registered trademark or trademark of Linus Torvalds in the United States and other countries.

OpenMP is a trademark of OpenMP Architecture Review Board.

Other trademarks and registered trademarks are trademarks or registered trademarks of their respective owners.

- Trademark symbols (TM, (R)) are not necessarily added to system name or product name, etc. published in this material.

Date of Publication and Version

Version Manual code
November 2015, 2nd Version J2UL-1897-02ENZ0(00)
February 2015, Version 1.1 J2UL-1897-01ENZ0(01)
October 2014, 1st Version J2UL-1897-01ENZ0(00)
Copyright

Copyright FUJITSU LIMITED 2014-2015

Update History

Changes Location Version
The article "Debugging COARRAY feature" is added. Appendix A 2nd Version
The article "Debugging in environment with effective job swap function" is added. Appendix A
Fixed the error in writing. -
The article "Using the tool runtime daemon for the Debugger" is changed. Appendix A Version 1.1
The article "Display the source file on source view panel™ is changed. Appendix A
The article "The how of debugging by fdb command” is added. Appendix A
The article "Start condition of Debugger" is added. Appendix A
"Notes on migrating from FX10 system to FX100 system™ is added. Appendix B
Compatibility information is added. Appendix C
Appendix D

Al rights reserved.

The information in this manual is subject to change w thout notice.

Contents

Chapter 1 OVErvieW Of the DEIUGQETuieiie ettt e e e e et e e e e st e e e e e e e b aa e e e e e s satbeeeeeesastaeseaesaasssreeeeeaannees 1
1.1 DIEDUGUET FRALUIES. ... cueteeeteeteeete ettt ettt et et e st e be e e bt e e st st e e e bt et ea e eb a2 e Rt e e e R e e bt AE e R £ e b e R e e b e AEeh £ e b e £ eb e A E e b £ e b e ne e bt b e b e e b e b ek e e b e s e et et et e s beneebenes 1
1.2 Operating ENVIronment Of the DEDUGGETcoviiiiiiiiiii ettt sttt sttt ettt b s et et be s b e st s be s ebe s b entebe b ebe st ensebesenesresaaren 1
1.3 Program Compilation...........cccouvieininieiinneseee e ettt ettt et en et teEehe Rt Ee bRt Ae Rt e R e e e Rt A e Rt Re e Rt et e Rt ebe e Reebe e be e ere s 2
IR o IR TH o4 1155 o o OSSR 2

Chapter 2 DEDUQGQET FEALUINES.eii ittt a et e s et e et e e s et e e ah b et e e b et e e s b e e e aa b e e e ebb e e e nnb e e e e nbreennneeennneas 3
2.1 SELLING OF STOP POSITIONS.i.viuiitiietiiteti sttt b et s bt e e ke b e te e b e s e et e b e be e b ese et e s e b e s ess e ke s e b e na e st et e e e ne et e s e e b e e ebe st e e ene e eteee 3
2.2 EXECULION CONTIOL. .. itttk s st et e et s te b st e s e e b e be e b e st b e e e b e b e s e e b e b e b e e b e e e b e b e b e e b e s s e b e et e st e b e s ebesaeneebeeenenein 4

2.2.1 Execution control for the temMPOrary SEOP SEALE..........ceiiieerieirteriee ettt ettt e et b et b e e bt b e e b e neene et 4
2.2.2 EXecution CONErol fOr ACtIVE PrOGIAMS.cuiiieiiriieieiteeetetete st ettt et et e st et et s et e e esessess e b e s esesbessebessese et e s ebesaeseabe e ebe st eseabe e ete e 4
2.2.3 SpecCifying the debUGGING ODJECT........c.iiiiit ittt b bbb bt bbbt b bbbt b s 5
2.3 DISPIAY FRAIUIE. ...ttt bbb E e h R bR R R R R AR R AR R R R Rt Rt 5
2.3.1 SEACK TraCE INFOIMALION. ... ettt etttk b e et b bt b et e b e b eh e e b e e e bt e b e Rt e b e e e Rt e b e Rt e ke bebt e b e ne e bt nbebesbe e abeneeneaben 7

2.3.2 Display feature

Chapter 3 Debugger WINAOWS AN IMENUS.oiiuiiiiie ettt ettt e e oo tb et e e e e e bbb e e e e e asnb b et e e e e aabbeeeeeeaanbbeeeaesaannbneeeeeeannee 9
3.1 Debugger Start SELHNG VWINGOW.ce ettt sttt ettt e et sbehe b e e ek e s b e st ee e e eE e e s eReeeemeebeeseneebensebeseeneebe e eneseeneabeeas 9
BN N B 1= o 10 To Lo JO OO TSSO TSSO TSP PRPRRRRPIN 10
TN A O =1 | [=0o <Y o0 o I - o OSSOSO 10
3.1.3.J0D ID AtTACH HEIUG TaD.c.euiiiciiie bbbk bbbkt 11
3.2 IMIAIN WWINOOW. ...tttk ekt bbb 4o RS E e e b e A8 e R e e b e £ e H £ 44 e R £ 4R e A Eeh £ 4 H e A £ e b e Ao e b e e b e e ek e ne e b e e b et e b e e b e st e ke e abenbeneanan 12
BL2 L IVIBNU DT ...ttt h 8RR RS h R h R 13
BT o To] |- OSSOSO 14
3.2.3 APPIICALION SIIUCTUIE PANEL....c.eiteiiiiieieeieesi et b bbb bt e bbbt e Rt n et 15
3.2, SOUICE VIBW PAINEL ...ttt b bbbt b b b e e £ e b e b e £ e ke EeE e e b e e e b e b e Rt ek e s e b e b emt e b e b eb e et e ne et e b enenbeneanen
3.2.5 Stack trace tab.............
3.2.6 Local variables tab
3.2.7 DebUGQING CONSOIE T8N ...ttt ettt b e e b e b e bt e b et e b e e b e Rt et et e b e eb e Rt sb e e e bt et entebe e eneseenees 22
3.3 ENtity INTOIMALION WINTOW.eiiiitiiitiieite ettt bbb bbbt e h e e b e b h b s bt e e b e e b et e bt e e bt e b e e et et eb e b e e ebs 22
3.3 L SHACK TrACE 18D, bbb bbb 23
3.3.2 ACHION POINS TAD. ...ttt E e E bRt e Rt R R e R R Rt R Rt 23
31302, BraKPOINTS DAttt ettt ettt b bt et b e e b e s b e b b e £ ekt b e e E e £ e b e b e R £ e R e b e b e b e Rt e b e R e Rt nR et ebe b et et nr b 23
3.3.2.2 WaALCNPOINTS ATcuititiitiicte ettt ettt st te b e s et e ab et e b e st et e st e b e s e s s et e s b e b e b eas e b e s e be st e s e e b et ene st e e be e ere e 24
3.3.2.3 BaITIEIPOINTS DTeeviiitetieietet etttk bbb e bbbk h e bt bbb e bbbt e bbb 25
BRI I o Lo Y - Ty oo [ty - o OSSR TRRRP 26
BRI o 101 = o OO OSSOSO 27
3.3.5 COMMEANGS T8Nt 28
B EXITING DEIUGGETttt bbb bbbt e bbb bRt e b b h R bR e R bRt bbb bbbt 29
(OaF=To) (=T g IS o)l BI=T o0 [fo [A @] o 1T =i o] o PP PRURPP 30
Appendix A Considerations for USING the DEDUGGET........ccouiiiiiiie ettt et e e e e s 34
Appendix B Notes on Migration from FX10 System t0 FX100 SYStEM.....cciiuuiiiiiiiiiiiieeeeeeiieee e e et e e e e e e e s enneeee e e e aneeeeeas 37
B.1 Start condition of Debugger is changed
Appendix C Compatibility INformation (FXL0 SYSIEIM)....ccoiiuiiiiiieiiiiiii et e e e s e e e e et e e e e s e ssbaa e e e e e s satbaeaeessasraeeaes 38
C.1 Migration to V2.0L10(GeNeration NUMDEI:LL).......ccciuriiueeiririeieiirinieteesisie ettt sttt sttt ettt b bt ne st b s 38
C.1.1 Start condition of DEDUGGEN IS CRANGED.cueiriiiiiiiiiteiee bbbttt et 38
Appendix D Compatibility Information (FXL100 SYSIEM)........uuiiiiiiiiiiiiie e ittt e e eerirt e e e e et r e e e s st e e e e e s s sbrr e e e e e ssatbaeeeessaaraeeaeas 39
D.1 Migration to V2.0L10(Generation NUMDEII02)........ccuiiieiiiiitiieie ettt sttt e bt e st b e e ebe st e s e e b et et e s b et s beneebesbe e ebe s 39
D.1.1 Start condition of DebUGYEr IS ChANGE.cciiiiiieiite ettt e bt e b e b e st e s et e e se st e e abe e eneee 39

IChapter 1 Overview of the Debugger

This chapter provides an overview of the Debugger, explaining its functionality.

The Debugger enables debugging of Fortran, C/C++, MPI, and XPFortran programs for which a job is submitted to this system.

For normal debug and corefile debug of MPI and XPFortran programs, up to 192 parallel processes of MPI programs can be debugged.

If the number of parallel processes of programs to be debugged is more than 192, limit the count to 192 or less, and then debug it.

1.1 Debugger Features

The Debugger provides the following three debugging modes.

Normal debug

Normal debug submits a job using the debugging feature of the FUJITSU Software Development Tools (FSDT) with the user terminal,
executing from the start of a program and debugging it. It displays the expressions and variables of a program, controls the execution,
and also sets the execution stop position while debugging.

Corefile debug

Corefile debug statically verifies the abnormal termination state by using the corefile that is output when a job terminates abnormally.
The Debugger can handle only one corefile at a time.

Job ID attach debug
This captures all the processes of a job by specifying the job ID.

Job 1D attach debug is useful if you want to verify the state of a program when the active job specified by the job 1D does not exit.

Additionally, using the Debugger GUI, you can perform the following operations for Fortran, C/C++, MPI, and XPFortran programs.

Control a program'’s execution

It is possible to restart a program and run it till the next stop position, or execute it line-by-line.
Set the execution stop position for a program

Breakpoints, watchpoints, and barrierpoints can be set.

Display the expressions and variable values

The expressions, variable values, and local variables can be displayed.

Display and select the stack trace

By displaying the stack trace and selecting the stack position, a function call can be traced.

The command that displays the debug information of the debugging engine (fdb) can also be executed by using the command line interface
from the GUI.

1.2 Operating Environment of the Debugger

Debugging processes using the Debugger involves compiling programs using the Fujitsu compiler and executing jobs using the job
operation software on this system.

Therefore, a correct environment for compilation and job execution is necessary.

Note that the Debugger is started from FSDT, which is the GUI support environment.

This guide explains how to use the Debugger after it has been started from FSDT. Refer to the " Programming Workbench User's Guide"
for information on FSDT operations.

Additionally, refer to the chapter of the launcher feature in the " Programming Workbench User's Guide" for information on how to start
the Debugger using the launcher feature of FSDT.

This guide relates to the following manuals, and so you may also reference these manuals.

Fortran Language Reference

- Fortran User's Guide

- Fortran Compiler Messages

- C Users Guide

- C++ User's Guide

- C/C++ Compiler Optimization Messages
- MPI User's Guide

- XPFortran User's Guide

- Programming Workbench User's Guide
- Job Operation Software First Step Guide

- Job Operation Software End User's Guide

1.3 Program Compilation

Program compilation
Compile using the Fortran, C, or C++ processing system, and specify the -g option on compilation.

The -g option generates the debug information. If this option is not specified, the variable values cannot be referenced as there is no
correspondence with the source program while debugging it.

Refer to the " Fortran User's Guide', the "' C User's Guide', the " C++ User's Guide', and the "MPI User's Guide" for information on this
option and program compilation.

Debugging XPFortran programs
The Debugger cannot debug an XPFortran program as it is.

An XPFortran program is compiled to an MPI program by the XPFortran compile and linkage command (xpfrtpx), and then executed by
the MPI program execution command (mpiexec).

A user debugs an XPFortran program as if debugging an MPI program while referring to the Debug/Tuning Support Data generated by
the XPFortran compile and linkage command.

Refer to the " XPFortran User's Guide' for information on how to compile an XPFortran program, and how to generate the Debug/Tuning
Support Data.

1.4 Job Submission

The Debugger debugs a job submitted on the job operation software of this system.

For the job submission command, pjsub, specified by normal debug, the Debugger adds the -X option.

When this option is specified, all environment variables, including the environment variable necessary for the Debugger to start, are
forwarded with the batch request.

|Chapter 2 Debugger Features

This chapter explains the Debugger features that are commonly used while debugging.

Refer to "Chapter 3 Debugger Windows and Menus" and "Chapter 4 List of Debugger Operations" for information on the windows and
operation menus in the Debugger.

The Debugger provides three debugging modes that resolve the following problems:
- Incorrect results of a program
- Abnormal termination of a program

- Active program does not terminate (for example, enters an endless loop or a deadlock)

Normal debug (Incorrect results of a program)

The normal debug mode submits a job from the user terminal of the Debugger, executes a program from the top, displays the expressions
and variables of the program, controls the program's execution, and sets the execution stop position.

As this mode debugs a program by executing it from the top, it is ideal for verifying the logic of a program with incorrect execution results.
The user executes the source code lines to confirm a program'’s behavior. The program is executed line-by-line or till the stop position set
for a program, enabling you to verify the logic and detect the reason for incorrect execution results.

Corefile debug (Abnormal termination of a program)

The corefile debug mode statically verifies the state at program termination by using the corefile that is output when a job abnormally
terminates.

The user submits a job after setting up the program to output the corefile in case of abnormal termination. If the job terminates abnormally,
the corefile is generated, and then forwarded to the login node for collection. Refer to the description of job staging in the "'Job Operation
Software End User's Guide" for information on corefile collection. The staging function appends the rank number of a process to the
corefile name and forwards that corefile. Using this rank number, you can identify the process that generated the corefile. After the corefile
is collected, the Debugger is started, the corefile, the program, and working directory are specified on the Corefile debug tab, and the
abnormal termination state is analyzed. Two or more corefiles cannot be specified at the same time. The analyzed content contains the
variable values, the process ID, the generated signal, the part (line/instruction) that caused abnormal termination, and the register (including
the expanded register) and the space map information of the process.

Job ID attach debug (Active program does not terminate)
This captures all the processes of a job by specifying the job ID.
Job 1D attach debug is useful if you want to verify the state of a program when the active job specified by the job ID does not exit.

When debugging starts, the program stops at a source code line as soon as the Debugger detects the program to be debugged. You may
then start debugging the program by controlling the program's execution by using stop positions or executing the program line-by-line,
and verify the program's behavior. Note that when the Debugger detects the program to be debugged, you can verify the values of variables
and also check if there is a deadlock.

After debugging, you can either forcibly end or continue running the job.

2.1 Setting of Stop Positions

The Debugger can stop the program execution at any point in a program. You can stop a program, and perform various operations, such
as display variable values, to confirm whether the program is operating as intended. By default, the stop position setting is enabled during
debugging, but you may disable it if you do not want to stop a program.

The following stop positions are available.

Breakpoints
A breakpoint determines where to temporarily stop in a program while debugging.

If a breakpoint is set for all processes in a program, the process execution temporarily stops in an MPI program when an individual process
reaches the breakpoint.

Additionally, if a breakpoint is set for a process with threads and if a thread reaches a breakpoint, each thread in the process stops executing
temporarily.

The Debugger also provides the "Temporary breakpoint” that works only once.

Barrierpoints
A barrierpoint is the stop position that only applies to processes with threads.

When all threads in a process reach the barrierpoint, the execution is temporarily stopped. The Debugger cannot be operated for the process
till all threads reach the barrierpoint.

Watchpoints

A watchpoint focuses on a specific variable and temporarily stops the program execution when the variable is accessed (referenced,
changed, or referenced and changed). Note that though watchpoints are a powerful feature for monitoring variable access, they compromise
the performance because they also monitor memory access.

2.2 Execution Control

2.2.1 Execution control for the temporary stop state

The methods for executing a program that has temporarily stopped are described below.

Continue

The program execution is resumed. The program continues execution till it reaches a stop position, or it terminates.

Step

The current line is executed. For a function call or a procedure call, the execution stops at the first line of the called function or procedure.

Next

The current line is executed. For a function call or a procedure call, the function or the procedure is executed as one sentence, and then
the execution stops at the next line. The execution does not stop at a stop position, such as a breakpoint, till it returns from the function/
procedure call, even if there are breakpoints within the called function/procedure.

Finish
The program is executed till the return of a current function or procedure. After the current function or procedure returns, the program

execution stops at the first line immediately after the function/procedure call. The execution does not stop at a stop position, such as a
breakpoint, till it returns from the function/procedure, even if there are breakpoints within the function/procedure.

Rerun

The program is re-executed from the top. The information regarding breakpoints set for the group is not changed.

2.2.2 Execution control for active programs

The methods for stopping an active program are described below.

Stop

The program execution is temporarily interrupted. Debug operations, such as display of variables and restarting program execution, can
be continued.

Kill

The program execution is interrupted, and the program terminates. The program execution cannot be controlled in this case. Use "Rerun™
to resume debugging.

2.2.3 Specifying the debugging object

Using the Debugger, you can debug an entire program, a process, or a thread.

The program structure is displayed in the Application structure panel in the main window.

Figure 2.1 Main window (Application structure panel)

[e——
. DT S Sy p—y ppp—— |
BLL WPI_INITI iwrrar)

1L W] O FAAR] NP O0MM PORLD, rasi. ornor 1
LL WP[_COMM_E17E0 WPL_OOMM FORLD, aicas lmreee |

IF © rerd (EQ. 0] FRE

BAITECE, 7] "NF] comwanicst lon atarl. cize=" xize

1, 1, NPD_DRTEER, W] SEN. rool.
GO _TORLD, wrrar 2

2e=lghck it remal 1, ")

The item selected in the Application structure panel is called the active entity, and it is the object for debugging.

Note that the menus that can be used differ depending on the active entity object (an entire program, a process, or a thread).

2.3 Display Feature

When a program'’s execution temporarily stops, the Debugger displays the following information:

- Position where the program stopped (a single process or a single thread is displayed)
- Stack trace information (trace back)
- Local variables (values at the time of a stop are displayed)
In the main window where debugging is performed, information on the active entity object is displayed.

Use the Entity infor mation window (that displays information on processes and threads) to view the stack trace information and the local
variable information for a process or a thread that is not currently active.

Figure 2.2 Main window (stop position, stack trace information, and local variables)

Y Sy E——— |

[e—— AT CELL WPI_IMITT dwrrar)

3 1 N
s FHLL] G FAsR] NP[COMM WORLD, ras

merehklins

(L]

rgaldy 1y BPD_[RIEGER, W] SO0, moal.
_COfd_FORLD, imrrar)

Hoghck realt | aremalt, 'l

Entity infornanticn [process0 / Rank 0)
Stack trace Action poinks Local varnisblss Print Conmnmuands=

Addrass Subroutins Filu

id16&8 HALK__ Frarferaahy Rdbf samalafsamalal.f
iddaic rain

fifffenL2a43bal. _ libc_start_main

1n348c _start

Figure 2.4 Entity information window (local variables)

Entity infarmation [process0 [Rank 0)

Action poinks Lescal variables Frint Conmands

CHaTA,
IERROR
ROOT
SIZE

FAHK

IMPI_#OsT_COLaR

IMPI_=35T_S1ZE

TMPT_OLIENT _COLOR

TMPI_CLIENT_SIZE

QMPI_EVH_VERSION ‘rigsg

QMPI_GREEK_VERSITM red

2.3.1 Stack trace information

The Debugger allows you to check the values of arguments and the values of local variables in functions by tracing the stack trace (by
changing the frame). In case an argument contains an incorrect value, use the stack trace information to find which part of the stack trace

path introduced the incorrect argument.

Figure 2.5 Main window (stack trace information)

S Y Y S————— |

CELL WPL_IHITI iwrrer)
CELL W2 M Fasw{ P] OB WRLD, rasi. ferror 1
C3LL WP _Cosl Z17E] 871 OO FORLD, slces larses |1

IF ¢ rard JE0. 01 TAEA
BAITECE,] "NF] camwanics? ion atarl. cize" xize

CRLL W] FEDKE D dala. rezaild, 1, NPD_INTEGER, W1 SEN. eool.
L WPD_C0dd_POFLD, fwrrar

IF fravk -EQ. 01 TREY
BAITECE a1 "NF] cameanics? ion erd’

el DwAREEsY MEIN_ [ivesowa bbb s plseroles BT
e
#3 CubSHRIRI4IRES _Nheuiet_rrain
=) Dealzdb: e

Figure 2.6 Entity information window (stack trace information)

Emlity information | processd [Rank@)

Stack brace Action poinks Local variables Commands

Address Subroutine File
LOiSaE MAIN__ fwarferashffedy'sampla/samplaz.f
10ia5e main

FFFE0LE242b81. _ libc_start_main

LDil48: _start

Refer to the stack trace information in the main window or the Entity infor mation window, and select the call position (frame) for which
you want to see detailed information. The information regarding local variables for the selected call position is displayed.

If you select a call position in the stack trace in the main window while the Entity infor mation window for the active entity is displayed,
the position of the stack trace is automatically updated.

2.3.2 Display feature

The Debugger also provides the feature to display the values of variables when a program's execution temporarily stops.

Up to 10 scalar variables can be displayed.

The variables are displayed in the Application structur e panel.

Note that the value of a local variable, which is out of scope, is not displayed.

Figure 2.7 Main window (values of variables)

el
l 5) [T T ———]

wult = -100
napheZ 1134
HeTOl N4 [(AL WM _DRETE Gerroe
parpinid M I CALL NFT_COW WF_CO0 BRLD, raky arvar
awrghdliza 5 GALL NFI_C0de EITED NF]_C0N0 LD, wize,
IF | rask 23 0 | THEW

BRI .) "WP] comsenipalion siset.
EMDIF
ika =
ook =
CALL WFI_AEWXET difte, rasalle |, WPI_IWTEEER. WPI_TIM, reel.

WP _COnn _BDALD, lever)

@ OF THEM
o) W) comsenipnlion end’

w34 e s Tl m b, w3
vl 30 b TR TR R TR a1 .
nihfed s rolatinmatal 1,
r Feariera b Ve n e ol i F

IChapter 3 Debugger Windows and Menus

This chapter describes the windows in the Debugger.

The Debugger comprises three windows:

- Debugger start setting window: Starts the Debugger

- Main window: Operates the Debugger

- Entity information window: Displays the debugging information, for example, stop positions

3.1 Debugger start setting Window

This is the window that starts the debugging.

When the Debugger starts from the FUJITSU Software Development Tools, the Debugger start setting window is displayed.

Figure 3.1 Debugger start setting window

.] Debugger start setting

Debug Corefile debug

Job 1D attach debug

Please specify the working directory, script file and job submit command.

Working directory : fhome/fsdt/sample
Script file @ fhome/fsdt/sample/sample.sh [!

|

Interactive job option

[T Thread enable option

The following table describes the elements in the Debugger start setting window.

Table 3.1 Debugger start setting window elements

Element Description
Debug Allows debugging from the top of a program
The working directory, the script file to be debugged, and the job submission options must be
specified.
Corefile debug Allows debugging the corefile that is output when a program abnormally terminates

The working directory, the executable file, and the core image file must be specified.

Job ID attach debug

Allows debugging a program, which is already running. The job identifier must be specified to
start the debugging. Use the pjstat command to confirm the job identifier of an active program.

Ok Starts the debugging by using the information specified on the selected tab
The job is submitted, and the main window is displayed.
Cancel Closes the Debugger start setting window

3.1.1 Debug tab

Starts the debugging from the top of a program

The job is submitted in the specified directory.

Figure 3.2 Debugger start setting window (Debug tab)

.] Debugger start setling

Debug Corefile debug Job 1D attach debug

Please specify the working directory, script file and job submit command.

Working directory : fhome/fsdt/sample
Script file fhome/fsdt/sample/sample.sh []

[T Interactive job option

[T Thread enable option

The following table describes the elements on the Debug tab.

Table 3.2 Debug tab elements

Element Description

Working directory The directory which the Debugger submits the job at is specified.

This is not optional and must be specified.

Script file Specify ascript file that starts the program to be debugged. This is not optional and must be specified.

Click the [...] button to select the script file from the displayed file selection dialog box.

Job submit command Provide the command to submit the specified job. If this element appears gray, it means it is disabled
and cannot be edited.

Interactive job option Select this check box to submit an interactive job.
Thread enable option Select this check box to display the thread information in the Debugger, in case of a multi-thread
program.

3.1.2 Corefile debug tab

Allows debugging the corefile that is output when a program abnormally terminates

The following table describes the elements on the Cor efile debug tab.

-10 -

Figure 3.3 Debugger start setting window (Corefile debug tab)

.J Debugger start setting

Debug

Corefile debug Job 1D attach debug

Please specify the working directory, executable file and corefile.

Working directory :

Exacutable file :

Corefile :

Table 3.3 Corefile debug

Jhome/fsdt/sample

Jhome/fsdt/sample/a.out

Jhome/fsdt/sample/core.6145|

[Thread enable option

tab elements

Element

Description

Working directory

Specify a directory that is used as the current directory while performing a corefile debug session.

This is not optional and must be specified.

Executablefile

Specify the executable file. This is not optional and must be specified. Click the [...] button to select the
executable file from the displayed file selection dialog box.

Coré€file

Specify the core image file to be output when the file specified in Executablefileabnormally terminates.
This is not optional and must be specified.

Click the [...] button to select the core image file from the displayed file selection dialog box.

Thread enable option

Select this check box to display the thread information in the Debugger, in case of a multi-thread program.

3.1.3 Job ID attach debug tab

Allows debugging a program, which is already running.

You cannot perform job ID attach debug for a program for which you do not have appropriate access rights.

The following table describes the elements on the Job I D attach debug tab.

-11 -

Figure 3.4 Debugger start setting window (Job ID attach debug tab)

.J Debugger start setting

Debug Corefile debug Job ID attach debug

Please specify the Job ID you want to debug.

Job ID G124

[T Thread enable option

Table 3.4 Job ID attach debug tab option
Element

Job ID
Thread enable option

Description

Specify the job identifier of the job to be debugged. This is not optional and must be specified.

Select this check box to display the thread information in the Debugger, in case of a multi-thread program.

3.2 Main Window

When the debugging starts, the main window is displayed.

Figure 3.5 Main window

[r—
BT [P Sy ey ——ry |
CELL WPI_IMITT dwrrar)
CHLL W9 e FAkE] NPL O0MM WELD, rask. foreer 1
TALL WPL_COM_E12E] NP1_COM_MOFLD, sica, farroe |
IF © rard .EN. D B
BAITECE =1 "¥F] camwnicst ion starl. cize="xiz
EBALE

daln & rank

reat = 0

[HLL #°] PEDINE D dala. eezasld, 1, WPD_[RIEGER, WP]_EDN., rool.
i WFI_COd_WORLD, fsrrar J

IF {rask .EN. D TRER
BAITET, 71 "NF] camwanicstion sed”
BLIEG 41 "regall ia Dbl gize-Tothock roesalt " oremsld,

p oWt e 13 0n feac b Tedn memobatamala 1
raa el e pl e obei |
sy e m e pled 4

The following table describes the elements in the main window.

-12 -

Table 3.5 Main window elements

Element Description
Menu bar Provides options to enable debugging operations
Toolbar Contains buttons for the most frequently used debugging operations, such as execution control

and setting stop positions

Application structure panel

Displays the processes and the threads of the program being debugged in a tree structure; the

entity that is selected becomes the active entity

Source view panel

Displays the source and stop position related information, such as the current stop line

Debug console tab

Displays messages output from the Debugger

Local variablestab

Displays the local variables and their values

Stack tracetab

Displays the stack trace information

3.2.1 Menu bar

The menu bar enables debugging operations.

Table 3.6 Debugging operations menu

Action points

Menu Submenu/Command Description
File Exit Exits the Debugger
Information Stack trace... Displays the Entity infor mation window that contains information regarding the

active entity

Refer to "3.3 Entity Information Window" for details.

Breakpoints...
Watchpoints...
Barrierpoints
Local variables...
Print ...
Commands...
Execution Rerun Re-executes a program from the top
The breakpoint-related information set for the group is carried over.
Continue Restarts the program execution
The program executes till a stop position, or till it terminates.
Stop Temporarily interrupts the program execution
However, debug operations, for example, the display of program variables and
restarting program execution can be continued.
Kill Interrupts the program execution and terminates the program
In this case, you cannot control the program execution. To resume debugging, use
Rerun.
Step Executes the current line
For a function call or a procedure call, it stops at the first line of the called function
or procedure.
Next Executes the current line

For a function call or a procedure call, the function or the procedure call is executed
as one sentence and the execution stops at the next line. The execution does not stop
at a stop position, such as a breakpoint, till it returns from the previous called
function.

-13-

Menu Submenu/Command Description
Finish Executes till the return of the current function or procedure
After the current function or procedure returns, it stops at the line that will be
executed first. The execution does not stop at a stop position, such as a breakpoint,
till it returns from the previous called function.
Help About Debugger Displays information about the Debugger

3.2.2 Toolbar

The toolbar contains icons for the most frequently used debugging operations, such as execution control.

Figure 3.6 Toolbar

BT

RTR TR R TORR T ol E
b o

s ranh |l sa sl s maphe 110

BLL WPI_INITI iwrrar)
SLL W] B FAAR] NP O0MM NORLD, rasi. iornoe 1
LL P [_Conl_Z17E0 BPL_O0MM WORLD, aica. farree |

IF ¢ ek E0. O]

BAITECs 3] "WF] camwnication starl. size’ xize

o1, NP _ITEGER, WP SEN. raol.
FI_COM_WORLD, fsrrar J

ze-1 <chak: resuilt " oremal 1,1

The following table describes the toolbar icons.

Table 3.7 Toolbar icons with their description

Name

Icon

Function

Return

]

Returns from the head of the program. Information on the breakpoint set to the group is
succeeded.

Continue

[]

The program execution is resumed. The program continues executing until reaching to
the stop position or terminating.

Stop

i1

The program execution is temporarily interrupted. The debug operations of the display of
the variable and the restart of the program execution, etc. can be continued.

Kill

The program execution is interrupted, and it cancels. The program execution control
cannot be done at the following. When the debug operation is continued, it is necessary
to di Return.

Step

The current line is executed. In the line of the function or the procedure call, it stops by
the first line of the call function or procedure.

Next

o

The current line is executed. In the line of the function or the procedure call, the function
or the procedure call is executed as one sentence, and it stops by the next line. Execution
does not stop at the stop position when there is a stop position like the breakpoint etc.
before it returns from a call function.

-14 -

Name

Icon

Function

Finish

Execute until the return of a current function or procedure. After a current function or
procedure returns, it stops by the line executed first. The execution stop is not done at the
stop position when there is a stop position like the breakpoint etc. before it returns from
the function.

Entity information
. =
window =

The entity information window is displayed.

10:0 ratio display - The ratio of the displays of the application structure panel and the source view panel is
made 10:0.

7:3 ratio display o The ratio of the displays of the application structure panel and the source view panel is
made 7:3.

3:7 ratio display L The ratio of the displays of the application structure panel and the source view panel is
made 3:7.

0:10 ratio display - The ratio of the displays of the application structure panel and the source view panel is

made 0:10.

3.2.3 Application structure panel

Displays the processes and threads of a program (It is called the application structure at the following) in a tree structure.

Figure 3.7 Application structure panel

[P Sy pp—y p——y |
BLL WPI_INITI iwrrar)
UL] M PR WP COMM WORLE, rasi. foregr 1
LL WP[_COMM_E17E0 WPL_OOMM FORLD, aicas lmreee |
IF ¢ rack E0. 0) TAEN
BAITE®, 71 "NF] cawwnicstion starl. size=" xize
ERRLF

daln & rank

reat = 0

CELL 7] FEDINE D dalm. rosaild, 1, NPD_[RIEGER, W] SO0, roal.
[NFL_COM_WFLD, inrrar

IF Crade .EX. D1 THER
BAITET, 7] "NF] camwanicst ion sed”
BTG, "regell iu Qb . gizesloohck el reml 1,)

Sirmibe Vel d e s e w3 1

L = mheTrdrasTolniinmaa f,
Pemri W B ek
e

tdyraral s pled

The following table describes the types of nodes (referred to as "entity") in the tree structure.

Table 3.8 Entity types

Entity name

Description

Group entity

This is the root component of the tree. The entire program that is executed is displayed. The executed
program’s name is displayed as an entity name.

Process entity

This is the first level of the tree. The processes in the executed program are displayed, and the number
allocated in the process as entity name is displayed.

Thread entity

This is the second level of the tree. The thread in each process is displayed, and the number allocated
in the thread as entity name is displayed.

Note that the icon changes depending on the run state (status) of each entity.

-15-

Table 3.9 Entity status icons

Status Icon

running

stop (suspend)

o

finished

o

In the Application structure panel, right-click an entity to display a right-click menu that allows you to perform various debugging

operations.

Table 3.10 Right-click menu in the Application structure panel

Command Description

Display ... Adds a variable to the display feature
Use this option to display a dialog box where you can specify the variable to be added to the display
feature.

Delete display Deletes the variable set for the display feature
Use this option to display a list of variables set for the display feature, and then delete the variables
individually.

Change current Sets the entity that is currently selected as the current entity of the parent entity

For example, if a process entity is selected, it is set as the current entity of the group entity, which is the
parent entity. Similarly, if a thread entity is selected, it is set as the current entity of the process entity,
which is the parent entity.

Show rank number

Changes the display of the Name column in the Application structure panel to the rank number

Show process number

Changes the display of the Name column in the Application structure panel to the process number

Entity information ...

Displays the Entity infor mation window

The entity that is selected in the Application structure panel for debugging is called the active entity.

The contents of the source view panel, the L ocal variablestab, and the Stack trace tab are updated according to the active entity that is

selected.

Display feature

The display feature updates the values of displayed variables whenever the situation changes, for example, when the execution stops at a
function. As a result, it enables monitoring of variables values.

The variables for each process entity are displayed to the right of the table in the Application structure panel.

Haoirmee
v i a.out
= () procasso
* (D process1
kD procassz

* (D) preces=2

Application Structore

Figure 3.8 Application structure panel (display feature)

Status

skop
Stop
stop
stop

stop

Location DATA S1ZE
sampla2.fi24 o 4
sampla.fi2d 1 Bl
sampla2.fi2d4 z &
sample2.fi24 2 4

-16 -

Up to 10 variables can be displayed using the display feature.
Use any of the following methods to add a variable to monitor it.
- Use the right-click menu in the Application structure panel.

Use the right-click menu on the L ocal variablestab.

- Use the right-click menu in the source view panel.

Use the right-click menu on the Local variablestab in the Entity information window.

You can delete a displayed variable by using the right-click menu in the Application structure panel.

3.2.4 Source view panel

Displays the source and the execution stop positions, such as breakpoints

When the Debugger starts, the source file with the stop positions included is displayed in the source view panel.

Figure 3.9 Source view panel

CELL EBI_IHITT dwrrer)
CHLL 2] MM FAKK] BP) COMM WORLD, rasi. foror 1
C2LL WP _ColM Z17E] W7 [_OOM FORLD, alcas larses |

IF © rark (EQ. D) FEEN
BAITECs 3] "WF] camwnication starl. size’ xiz
ERRLF

galn & rank
real = 0

CELL W7 FEDINED dala. roculd, 1, BP]_[RIEGEE, W] ZE0, raol.
i WFI_COd_WORLD, fsrrar J

IF frad .EX. D1 THEN
BITECE 3] "NF] camwanicat ion and”
BLTED 0] "regall s Qb4 o ogize-lacheck noalt | "oreslt, ']

Source file selection box
Use the source file selection box to select the source file to be displayed.

This allows you to open the other program source file, so that you can browse the source code and set a new breakpoint.

-17 -

Figure 3.10 Source file selection box

Swarferazh ffedt fsamples fsample2. F

CALL WPI_IMIT(ierrar)
CALL WP1_COWY_RANKC MPT_COMM_ROBLD, ramk. ierrer)
CALL W] _Cown SETEC WPI_COMM_RORLD, size, lerror)

IF § rank .EQ. 0O) THEW
YRITE(x,+) 'WFI commumicstion start. size=",size

EMDIF
data

roai = 0
CALL WP1_REDUCE(data. result, 1, WPI_INTEGER. WPI_SUM, root,
& WPI_COMN_WORLD, ierrar)

IF (rank .EO. 00 THEM

WRITE(=,+} "HWP] commumication end’

YRITE(=.*) 'result is 0+I+...size=1.check result{*,rasult,']’
TN

Action point selection icons
In the Debugger, breakpoints, temporary breakpoints, barrierpoints, and watchpoints are referred to as action points.
Click the margin area in the source view panel (as described below) to set an action point (breakpoint, temporary breakpoint, or barrierpoint)

for a source line.

Figure 3.11 Action point selection icons

Swarferazh ffedt fsamples fsample2. F

CALL WPI_INIT(ferror)
CELL P?]_Cm"l_ﬂ-‘-'-”ﬂl: WP _COMW_RORLD, rank. ierror]
CALL WP _Coud SETEC WPL_COWW_NCORLD, size. lerror)

IF rank -EQ. 0O) THEW
YRITE(=,%) 'WPI commumicaiion start. size=".size
EMDIF
data
rooi = 0

CHLL WPI_REDUCE] data. result, 1, WPI_INTEGER. WPI_SUM, root,
& WP1_COMN _WORLD, ierrar)

IF (renk .E0. O) THEW

VRITE(=,+} "MPI commumication end’

YRITE[=.*) 'result is 0#I+...gize=1.check result(’.rasult,'])’
NN T

Table 3.11 Action point selection icons

Name Icon Function
Breakpoint —\ The breakpoint can be set by clicking the margin area.
L
Temporary breakpoint Ty The temporary breakpoint (cleared automatically when the program stops) can
= be set by clicking the margin area.

-18 -

Name Icon Function

When an active entity is a group and a thread, it becomes deactivated and cannot
to use.

Barrier point The barrier point can be set by clicking the margin area.

¥

When an active entity is a group and a thread, it becomes deactivated and cannot
to use.

Margin area

The area (left of the source row number) where the stop position is displayed is called the margin area. When the margin area is clicked,
the position where the cursor stops is set as the action point. The set action point is identified by the action point icon (described in the
table below). The action point can be released by clicking the action point icon.

Figure 3.12 Margin area

Swarferazh ffedt fsamples fsample2. F

CALL WPI_IMIT(ierrar)
CALL WP1_COMM_RANKC WPT_COMM_ROBLD, ramk. ierrer)
CALL W] _Cown SETEC WP _COMM_RORLD, size, lerror)

IF § rank .EQ. 0O) THEN
YRITE(x,*) 'WFI] commumication start. size=",size
EMDIF

data

roai = 0
CALL WPT_REDUCEY data. result, 1, WPI_INTEGER. WP1_SUM, root,
& WPI_COMN_WORLD, ierrar)

IF {rank .EG. O) THEW

VRITE(=,+} "HPI commumication end’

YRITE(=.*} 'result is 0+I+...size=1.check result{".result,']"
EMMT

The following table shows the icons displayed in the margin area.

Table 3.12 Margin area icons

Display item Status Icon

Application stop position Always »
Breakpoint Enabled —
"

Disabled —,

Temporary breakpoint Enabled —
-'._1’,

Disabled o

Barrier point Enabled =
Disabled T

-19-

When you right-click a breakpoint, a temporary breakpoint, or a barrierpoint displayed in the margin area, a right-click menu is displayed.

Table 3.13 Right-click menu in the margin area

Command Description
Delete The breakpoint or the barrierpoint is deleted.
Disable The breakpoint or the barrierpoint is disabled.
Enable The breakpoint or the barrierpoint is enabled.

Debug operations in the source view panel

When you right-click a source, a right-click menu is displayed. The action corresponding to the selected menu option will be performed
for the string selected in the source view window.

Table 3.14 Right-click menu in the source view panel

Command Description
Print Displays the values of program variables; the result is displayed in the Entity infor mation window. When the
entity information window of an active entity is not displayed, it is newly displayed.
Set ... Sets the value for a variable; a dialog box is displayed where you can set the value for the variable
Display Adds a variable to the display feature

Refer to "3.2.3 Application structure panel” for details.

Watch Sets a watchpoint (for updating)

The program execution stops at the point where the specified variable was changed.

Refer Sets a watchpoint (for referencing)

The program execution stops at the point where the specified variable was referred.

Referwatch Sets a watchpoint (for updating or referencing)

The program execution stops at the point where the specified variable was changed or was referred.

3.2.5 Stack trace tab

Displays the list of stack frames for a program

The frame number, the address, the function identifier, the source line, and the source file name are displayed in each line.

Clicking a frame in the Stack trace tab will change the current frame. Note that changing the frame is only possible if the active entity is
a process entity.

-20 -

Figure 3.13 Stack trace tab

Y Sy E——— |

BLL WPI_IHITI dwrrar)
BLL Y] MM RAKE WP COMM OWORLD, rasi. jermor 1
LL 7 _Coml_E17E0 BP[_C0MM WOFLD, sicas fareee |

IF ¢ rard JE0. 01 TAEA
BAITECE,] "NF] camwanics? ion starl. size=" xize

CHLL W] PEDIKED dala. resuli, 1, WPQ_[RIEGER, &1 500, rol.
¢ NPD_COM_PORLD, dwrrar)

IF fra .EX. 00 THEW
BAITEw, 71 "NF] cawwanicst ion sed”

el CeiBbed MEIN_ [ivesiosa kbt e plverolds DT

L CeELEH rAEE
#3 CubSHRIRI4IRES _Nheuiet_rrain
=) Dvalzdb ez

3.2.6 Local variables tab

Displays the values of local variables of the current frame.

Figure 3.14 Local variables tab

[Y T ————

BLL EP[_INITE twerer)
BLL Y] R RANE WP COMMOWERLD, rasi. jerer 1
LL 8P _Comd Z1TE0 871 _O0eM_POFLD, sice. farses |

IF ¢ rard JE0. D1 TEEA
BAITECE, 1] "NF] camenics? ion atarl. size>" xixe

CRLL B*] FEDKE D daln. rezaild, 1, NPD_[STEGR, W1 SEN. eaol.
& WP _COdd_WOFLD, fsrrar J

When you right-click a local variable, a right-click menu is displayed.

Table 3.15 Right-click menu on the Local variables tab

Command

Description

Print

Displays the values of program variables; the result is displayed in the Entity infor mation window. Refer
to the Print tab in the Entity information window for the display.

Print(Pointer)

If the program variable is a pointer, the destination of the pointer is displayed. The result is displayed on the
Print tab in the Entity I nformation window. Refer to the Print tab in the Entity information window for the

display.

-21-

Command Description
Set ... Sets the value for a variable; a dialog box is displayed where you can set the value for the variable
Display Adds a variable to the display feature
Refer to "3.2.3 Application structure panel".
Watch Sets a watchpoint (for updating)
The program execution stops at the point where the specified variable was changed.
Refer Sets a watchpoint(for referencing)
The program execution stops at the point where the specified variable was referred.
Referwatch Sets a watchpoint(for updating or referencing)
The program execution stops at the point where the specified variable was changed or was referred.

3.2.7 Debugging console tab

Displays the execution log of the Debugger.

Figure 3.15 Debugging log display area

e

. o T Sy p——y pp—— |

CBLL WPI_IMITE fwrrar §
FRLL W9 e Fasnd WP COMM WORLD, rasi. jorroe 1
CHLL WP _0nM_B17E] PL_O0MM_WORLD, sicas fmrree |

IF o vark (E0. D) FAEX
BAITE®, 7] "NF] cawwnicstion starl. size=" xize

ERRLE
dala & rank

reat = 0
[HLL #°] PEDINE D dala. eezasld, 1, WPD_[RIEGER, WP]_EON. rool.
i WFI_COd_WORLD, fsrrar J

IF {rask .EX. D TRER
BAITET, 71 "NF] camwanicst ion sed”
BLIEG 41 "regall ia Dbl gize-Tothock roesalt " oremsld,

3.3 Entity Information Window

For each entity, you can configure the following display/settings using the Entity infor mation window.

When the situation of a program changes by the debugging operations in the main window, the contents of the displayed Entity information
window are automatically updated to the latest information.

Table 3.16 Entity information window display/settings

Tab name Description
Stack trace Displays the stack trace information and allows change of frame
Action points Displays the list of breakpoints, watchpoints, and barrierpoints and allows related operations

Local variables

Displays the local variables with their respective values

Print

Displays program variables

Commands

Issues the fdb command

-22-

Select an entity in the Application structur e panel, and then click the Properties button on the toolbar to display the Entity information
window.

3.3.1 Stack trace tab

Traces of the called function and the call position are displayed. The display is the same as the Stack trace tab in the main window.

Figure 3.16 Entity information window (Stack trace tab)

Emlity information | processd { Rank 0)

Stack brace Ackion poinks Local variables Commands

Address Sobroutine File
LOi5aE MALIN__ fearferash/fsdy'sampla/samplaz. f
101a5c main

FHFE0LB2423b21. _ libc_start_main

L0148 start

Change of frame

Right-click the call position you want to change, and then click Change frame.

However, this can only be done for process entities.

3.3.2 Action points tab

All action points are collectively displayed on the Action pointstab.

Click the Breakpointsbar, the Watchpointsbar, or the Barrier pointshbar to display the list of breakpoints, watchpoints, and barrierpoints,
respectively.

3.3.2.1 Breakpoints bar

Displays breakpoint and temporary breakpoints, and allows you to perform various operations, such as set/delete breakpoints

The temporary breakpoint is displayed in the Type column as "Once".

-23-

Figure 3.17 Entity information window (Action points tab, Breakpoints bar)

Emtity information [precess0 [Rank @)

Stack trace Action points Local variables Commansds
Braakpoints
&=
Address Subroutine Fila Lz Enable Type

1L0158akB MATN__ fwarfcrashffsdtfsamplafsampla 17 brua once

101708 MATH__ fearerashffsdi/sampla/sampla 24 Erus -

Watchpoint=

i
Barrierpoints

Set
To set a breakpoint, specify the function identifier and the row number in the input box, and then click Set.
In the input box, specify arguments of the break command of fdb.

When debugging C++ programs, if a breakpoint is set by specifying the function identifier in the input box, an overload (two or more
corresponding functions exist) may occur. In this case, a window with multiple candidates that can be set as breakpoints is displayed.
Select the items you want to set as breakpoints.

Delete
To delete a breakpoint or a temporary breakpoint, right-click the breakpoint, and then click Delete breakpoint.

Enable/Disable
It is possible to temporarily disable a breakpoint or temporary breakpoint without deleting it.

For this, right-click a breakpoint, and then click Enable breakpoint or Disable breakpoint to switch to the enabled or disabled state,
respectively.

3.3.2.2 Watchpoints bar

Displays a list of watchpoints and allows you to set/delete watchpoints.

-24 -

Figure 3.18 Entity information window (Action points tab, Watchpoints bar)

Emtity information [precess0 [Rank @)

Stack trace Action points Local variables Commands

Braakpoints
| Watchpoints

T+ CE

Addrass Enalla
20000620 true

The Kind column displays the following attributes:
- Watch
Stops the program execution when the value is changed; can be set by selecting Watch for the watchpoint
- Refer
Stops the program execution when the value is referred; can be set by selecting Refer for the watchpoint
- Referwatch

Stops the program execution when the value is changed or is referred; can be set by selecting Referwatch for the watchpoint

Set

To set a watchpoint, specify the variable identifier in the input box, select an attribute (Watch, Refer, or Referwatch) from the list, and
click Set.

In the input box, specify arguments of the watch, refer, or referwatch commands of fdb.

Delete

To delete a watchpoint, right-click the watchpoint, and then click Delete watchpoint.

Enable/Disable
It is possible to temporarily disable a watchpoint without deleting it.

For this, right-click the watchpoint, and then click Enable watchpoint or Disable watchpoint to switch to the enabled/disabled state,
respectively.

3.3.2.3 Barrierpoints bar
Displays a list of barrierpoints and allows you to set/delete barrierpoints

Barrierpoints can only be set for a process entity of the entity being displayed. The display area of the window is disabled if the current
entity is a group entity or a thread entity.

A barrierpoint continues executing till all threads in the process reach the barrierpoint.

-25-

Figure 3.19 Entity information window (Action points tab, Barrierpoints bar)

Emtity information [precess0 [Rank @)

Stack trace Action points Local variables Commands

Breakpoints
Watchpoints
Barrsrpoints

Subrowtine Filz
MATN__ fvarfcrashifsdtfsamplefsampla 22

MATH__ fvarferash/fzdi/samplefsampla 27

Set
To set a barrierpoint, specify the function identifier and the row number in the input box, and then click Set.

In the input box, specify arguments of the barrier command of fdb.

Delete

To delete a barrierpoint, right-click the barrierpoint, and then click Delete barrierpoint.

Enable/Disable
It is possible to temporarily disable a barrierpoint without deleting it.

For this, right-click a barrierpoint, and then click Enable barrierpoint or Disable barrier point to switch to the enabled/disabled state,
respectively.

3.3.3 Local variables tab

Displays a list of local variables with their respective values for the entity that is currently selected.

The display of this tab is the same as the L ocal variablestab in the main window.

-26 -

Figure 3.20 Entity information window (Local variables tab)

Emtity information [process0 [Rank 0)

Stack trace Ackion poinks Loacal variables Print Commands

Hame

RESULT

DATA

1ERROR

RCOT

SIZE

FLANE
IMPI_HOST_COLOR
IMPI_HOST_SIZE
IMPI_CLIENT_COLOR
IMPI_CLIENT_SIZE
CMPI_SWN_VERSION

CMPI_GREE¥_VEREION

When you right-click a local variable, a right-click menu with the following options is displayed.

Table 3.17 Right-click menu on the Local variables tab

Command

Description

Print

Displays the values of program variables; the result is displayed on the Print tab

Print(Pointer)

If the program variable is a pointer, the destination of the pointer is displayed. The result is displayed on the
Print tab.

Set Sets the value for a variable; a dialog box is displayed where you can set the value for the variable
Display Adds a variable to the display feature
Refer to "3.2.3 Application structure panel”.
Watch Sets a watchpoint (for updating)
The program execution stops at the point where the specified variable was changed.
Refer Sets a watchpoint (for referencing)
The program execution stops at the point where the specified variable was referred.
Referwatch Sets a watchpoint (for updating or referencing)

The program execution stops at the point where the specified variable was changed or was referred.

3.3.4 Print tab

Displays the values of program variables.

-27 -

Figure 3.21 Entity information window (Print tab)

Emtity information [process0 [Rank @)

Stack trace Ackion poinks Local variables Commands

[DATA]
Praeld Result = 0

Display
To display a value, specify the name of the program variable in the input box, and then click Print.

When the variable is an array and the same value appears consecutively, the value may be displayed only once (merged as a single
item).

In the input box, specify arguments of the print command of fdb.
Initialization

Right-click in the Print tab, and then click Clear to delete the displayed content.

3.3.5 Commands tab

Issues fdb commands for the entity that is currently selected.

Only a few of the fdb commands can be issued from the Debugger. Either select or type the command to be issued in the box, and then
click Send. The command is sent to the entity of the Entity information window, and the result is displayed on the Commands tab.

Figure 3.22 Entity information window (Commands tab)

Entity information | processd [Rank 0)

Stack trace Action poinks Local variables Commands

[L.0rshowrag]

Procd $g0

Procl gl

ProoD $g2 Oe<40000000 LOT3T4LE24)
Procd $83 DxFFFFS01eaBan ~2B50764416)
Proch Sp4 O=fEFFFFFF2008acad | -2485082540)
Procd $g5 DocFFFFFFFF [4234967293
Procl $g6 OxfFFFFS0 leaBan =2BE0T764416)
Proch $g7 Oufffffadlz0ladact | -475L2594960898)
Prood o0 Oxi0ilesd LO5534E])
Procd $ol Oe=20000b14 | S3GATIT4A)
Procd $o2 Onc20000blc | S36ETITSE)
Precd $o3 g a)

Procd $o4 O=fEFFFFFFbO 7S50 (=1333EI2224)
Prood $o035 Oxzaz0 102800)
Prael fap Ox7lefiffazry ET9179E047361)

-28 -

The fdb commands that can be selected from the box are listed below. Refer to the fdb manual, which can be displayed by executing the
man command, for information on fdb commands.

show args, show barrier, show break, show break-t, show ffile, show fopt, show frame, show freg
show function, show | eak, show | ocals, show map, show nanmespace, show reg, show regs, show sfreg
show si gnal, show source, show sources, show thread, show variable, show watch, show watch-t
show xfreg, param execpath, param | eak, param srcpath, condition, disas, dunp, traceback
traceback-t

Initialization

Right-click on the Commands tab, and then click Clear to delete the displayed content.

3.4 Exiting Debugger

On the Filemenu, click Exit to exit the Debugger.

If you try to exit the Debugger during program execution on normal debug/corefile debug, the Debugger exit confirmation dialog box (for
normal debug/corefile debug) that confirms if you want to exit the Debugger is displayed.

Click Yesbutton to exit the Debugger. The submitted job is also terminated.

Click No button to continue using the Debugger.

Figure 3.23 Debugger exit confirmation dialog box (normal debug/corefile debug)

Debugger

Do you really want to exit?

. Yes || No |

If you try to exit the Debugger during the job ID attach debug, the following Debugger exit confirmation dialog box (job ID attach debug)
is displayed.

Click Yesbutton to exit the Debugger, and terminate the active program.
Click Yes (Detach) button to exit the Debugger, while the program execution continues.

Click No button to continue using the Debugger.

Figure 3.24 Debugger exit confirmation dialog box (Job ID attach debug).

Debugger

Do you really want to exit?

 Yes || Yes(Detach) || = No |

-29-

|Chapter 4 List of Debugger Operations

The following table lists the various debug operations with their respective operating instructions.

Table 4.1 List of debugging operations

Debug operation

Instruction

Execution
control

Re-execution (Rerun)

Rerun button on the toolbar

Execution > Rerun on the menu bar

Continue execution (Continue)

Continue button on the toolbar

Execution > Continue on the menu bar

Source level
execution

Step

Step button on the toolbar

Execution > Step on the menu bar

Next

Next button on the toolbar

Execution > Next on the menu bar

Finish

Finish button on the toolbar

Execution > Finish on the menu bar

Temporary
stop/forced
termination

Stop

Stop button on the toolbar

Execution > Stop on the menu bar

Kill

Kill button on the toolbar

Execution > Kill on the menu bar

Stop position
operations

Breakpoint

List display

Information > Action points> Breakpoints... of debugging operation menu
on the menu bar

In the Entity information window, on the Action points tab, click the
Breakpoints bar.

Set

Click the margin area of the source view panel.

In the Entity information window, on the Action points tab, click the
Breakpointsbar. Next, specify the stop position information in the input box,
and then click Set.

Delete

Click the breakpoint in the margin area of the source view panel.

Right-click the breakpoint in the margin area of the source view panel, and
then click Delete.

In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the breakpoint, and then click Delete
breakpoint.

Enable

Right-click the disabled breakpoint in the margin area of the source view
panel, and then click Enable.

In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the disabled breakpoint, and then click
Enable breakpoint.

Disable

Right-click the breakpoint in the margin area of the source view panel, and
then click Disable.

In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the breakpoint, and then click Disable
breakpoint.

-30-

Debug operation

Instruction

Temporary
breakpoint

List Display

Information > Action points > Breakpoints ... on the menu bar

In the Entity information window, on the Action points tab, click the
Breakpoints bar.

Set

Click the action point icon for the temporary breakpoint in the source view
panel, and then click the margin area.

Delete

Click the temporary breakpoint in the margin area of the source view panel.

Right-click the temporary breakpoint in the margin area of the source view
panel, and then click Delete.

In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the temporary breakpoint, and then click
Delete breakpoint.

Enable

Right-click the disabled temporary breakpoint in the margin area of the source
view panel, and then click Enable.

In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the disabled temporary breakpoint, and
then click Enable breakpoint.

Disable

Right-click the temporary breakpoint in the margin area of the source view
panel, and then click Disable.

In the Entity information window, on the Action points tab, click the
Breakpoints bar. Next, right-click the breakpoint, and then click Disable
breakpoint.

Watchpoint

List Display

Information > Action points > Watchpoints ... on the menu bar

In the Entity information window, on the Action points tab, click the
Watchpoints bar.

Set

Right-click the variable in the source view panel, and then click Watch,
Refer, or Referwatch.

Right-click the local variable on the Local variables tab, and then click
Watch, Refer, or Referwatch.

In the Entity information window, on the Local variables tab, right-click
the local variable, and then click Watch, Refer, or Referwatch.

In the Entity information window, on the Action points tab, click the
Watchpoints bar. Next, specify the variable identifier in the input box, and
then click Set.

Delete

In the Entity information window, on the Action points tab, click the
Watchpoints bar. Next, right-click the watchpoint, and then click Delete
watchpoint.

Enable

In the Entity information window, on the Action points tab, click the
Watchpoints bar. Next, right-click the disabled watchpoint, and then click
Enable watchpoint.

Disable

In the Entity information window, on the Action poaints tab, click the
Watchpoints bar. Next, right-click the watchpoint, and then click Disable
watchpoint.

Barrierpoint

List Display

Information > Action points> Barrierpoints... on the menu bar

In the Entity information window, on the Action points tab, click the
Barrierpointsbar.

-31-

Debug operation

Instruction

Set

Click the action point icon for the barrierpoint in the source view panel, and
then click the margin area.

In the Entity information window, on the Action points tab, click the
Barrierpoints bar. Next, specify the stop position information in the input
box, and then click Set.

Delete

Click the barrierpoint in the margin area of the source view panel.

Right-click the barrierpoint in the margin area of the source view panel, and
then click Delete.

In the Entity information window, on the Action points tab, click the
Barrierpoints bar. Next, right-click the barrierpoint, and then click Delete
barrierpoint.

Enable

Right-click the disabled barrierpoint in the margin area of the source view
panel, and then click Enable.

In the Entity information window, on the Action points tab, click the
Barrierpointsbar. Next, right-click the disabled barrierpoint, and then click
Enable barrierpoint.

Disable

Right-click the barrierpoint in the margin area of the source view panel, and
then click Disable.

In the Entity information window, on the Action points tab, click the
Barrierpointsbar. Next, right-click the barrierpoint, and then click Disable
barrierpoint.

Variable
operations

Display of value (print)

Right-click the variable in the source view panel, and then click Print.

Right-click the local variable on the Local variables tab, and then click
Print.

In the Entity information window, on the Local variables tab, right-click
the local variable, and then click Print.

In the Entity infor mation window, specify the variable on the Print tab.

Change value (set)

Right-click the variable in the source view panel, and then click Set

Right-click the local variable on the Local variables tab, and then click

In the Entity infor mation window, right-click the local variable on the L ocal
variablestab, and then click Set

Display List display

Refer to the Application structure panel in the main window.

feature Set

Right-click the variable in the source view panel, and then click Display.

Right-click the local variable on the Local variables tab, and then click
Display.

In the Entity infor mation window, right-click the local variable on the L ocal
variablestab, and then click Display.

Right-click in the Application structure panel, and then click Display

Delete

Right-click the variable in the Application structure panel, and then click
Delete display.

Information
display

Local variables

Click the Local variablestab in the main window.
Information > Local variables...on the menu bar

Click the Local variablestab in the Entity information window.

-32-

Debug operation Instruction

Call route - Click the Stack tracetab in the main window.

Information > Stack trace ...on the menu bar

- Click the Stack tracetab in the Entity I nformation window.

Detailed entity information Use the Information menu on the menu bar.

Click the Entity information window button on the toolbar.

-33-

Appendix A Considerations for Using the Debugger

This appendix explains the considerations for using the Debugger.

Environment variable names

Environment variables that start with "TRT_" are used by the Debugger. Do not use these environment variables.

Variables display
There might be a delay in the GUI display response in the following cases:
- When the entire value of a large array is to be displayed by using the print feature

- When a program uses a large number of local variables

Debugging jobs that run two or more programs
Jobs (MPMD) that run two or more programs and the process of dynamically generating the MPI cannot be debugged.

Japanese character strings

Japanese character strings must not be specified in windows or dialog boxes of the Debugger. Note that Japanese characters may appear
distorted when displayed in the console or the source view panel.

Using the tool runtime daemon for the Debugger

The Debugger uses communication modules, such as the tool runtime daemon, to establish communication between the user terminal and
the job process. When a problem occurs in communication processing of the runtime daemon tool, an error message is displayed.

This could be because of the following reasons, so contact the system administrator.
- The runtime daemon tool is not active.

- The port number on which the runtime daemon tool can be run has exhausted.

Job submission
If the Debugger has terminated while a job is submitted and is waiting, the job remains in the waiting state.

The waiting job is terminated at once and starts again. If a problem occurs, delete the job.

Execution time of the job to be debugged

In case of the normal debug mode of the Debugger, the debug process runs as part of the job. The operation time of the Debugger is affected
by the execution time of the job. Therefore, if the duration set for the job being debugged expires, the Debugger also terminates.

Corefile debug

When corefile debug is started, the Debugger submits a job to start the debug process internally. This job starts the debugging engine on
the compute node as well as the job that the user submits using the pjsub command. The execution time of this job is 24 hours (depending
on the system settings). The cost of this job is similar to when a Debugger user submits a typical job.

Attach debug

You cannot use the attach debug mode with a job ID if the job is a sequential program or a parallel MPI program.

Debugging XPF programs
Refer to the " XPFortran User's Guide' for information on debugging XPFortran (XPF) programs.

-34-

Considerations and limitations of fdb

When started, the Debugger starts the debugging engine (fdb) on the compute node. Therefore, the considerations and the limitations of
the fdb also apply to the Debugger. Refer to the document that describes the considerations and limitations of fdb by using the method
given below.

Execute the following command on the login node.

$ export MANPATH=/ $install-dir/ man: SMANPATH
$ man fdb

$install-dir. Directory where the document is stored

Debugger and the abnormal state of the system

If a job is interrupted during debugging, for example, the job execution environment stops or the system is in the abnormal state, the job
submitted by the Debugger is terminated. When this happens, the job which was earlier running can restart automatically provided the
necessary system settings are configured. However, the Debugger cannot restart debugging the job again.

Therefore, when you start the Debugger on the system that restarts jobs in the abnormal state, specify the --norestart option of the pjsub
command in the Job submit command box in the Debugger start setting window or the job script. This restricts the job to be debugged
from being restarted if the system is in the abnormal state.

Display the source file on source view panel

The source file displayed on the source view panel should be placed in the directory at compiling it. And the directory is accessible from
the login node.

Please check that the source file is in the directory at compiling it to display it on the source view panel.

The how of debugging by fdb command

You can use the fdb command on the interactive job by the following order.

1. Start the interactive job on the login node by the pjsub command.
Do not specify the script file.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

$ pjsub --interact

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

2. Run the target program in the submitted job in the background.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

$ npi exec a.out &

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

3. Confirm the ID of the process which you want to debug.
You can check it by the ps command in the submitted job.

4. Execute the fdb command by specifying the process ID.
"pid" specifies the process ID of the running process.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

$ fdb -p pid

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

Start condition of Debugger

In both cases of the following, the Debugger does not start:

-35-

- -z option or --help option is specified for pjsub command

- The output message of pjsub command is changed by the script

Debugging COARRAY feature
In the Debugger, each image of COARRAY program is called "rank".

Ranks have a non-negative integer number which starts at 0 and Images have a positive integer number which starts at 1, so "rank number
= image index - 1".

Refer to "Fortran User's Guide Additional Volume COARRAY" for details.

Debugging in environment with effective job swap function

Please put the check in the [Interactive job option] check button when debugging begins from the [Debug] tab in the debugger start setting
window in the environment with effective job swap function.

It might become impossible to do the debugging operation when debugging starting without putting the check.

-36 -

Appendix B Notes on Migration from FX10 System to
FX100 System

This appendix provides notes on migrating from FX10 system (Generation Number:09 or later) to FX100 system.

For migrating from FX10 system (Generation Number:08 or earlier), refer to "Appendix C Compatibility Information (FX10 System)"
also.

B.1 Start condition of Debugger is changed

Refer to "C.1.1 Start condition of Debugger is changed".

-37-

Appendix C Compatibility Information (FX10 System)

C.1 Migration to V2.0L10(Generation Number:11)

C.1.1 Start condition of Debugger is changed

a. Changes
The start condition of the Debugger was changed.
[Previous version]
In the following cases, the Debugger starts.
- -z option or --help option is specified for pjsub command
- The output message of pjsub command is changed by the script
[This version]
In the following cases, the Debugger not start.
- -z option or --help option is specified for pjsub command
- The output message of pjsub command is changed by the script
b. Influence
In the following cases, the Debugger not start.
- -z option or --help option is specified for pjsub command
- The output message of pjsub command is changed by the script
c. Coping
Do not start the Debugger specifying -z option and --help option for pjsub command.

Do not start the Debugger changing the output message of pjsub command by the script.

-38 -

Appendix D Compatibility Information (FX100 System)

D.1 Migration to V2.0L10(Generation Number:02)

D.1.1 Start condition of Debugger is changed

Refer to "C.1.1 Start condition of Debugger is changed".

-39 -

	Title Page
	Preface
	Update History
	Contents
	Chapter 1 Overview of the Debugger
	1.1 Debugger Features
	1.2 Operating Environment of the Debugger
	1.3 Program Compilation
	1.4 Job Submission

	Chapter 2 Debugger Features
	2.1 Setting of Stop Positions
	2.2 Execution Control
	2.2.1 Execution control for the temporary stop state
	2.2.2 Execution control for active programs
	2.2.3 Specifying the debugging object

	2.3 Display Feature
	2.3.1 Stack trace information
	2.3.2 Display feature

	Chapter 3 Debugger Windows and Menus
	3.1 Debugger start setting Window
	3.1.1 Debug tab
	3.1.2 Corefile debug tab
	3.1.3 Job ID attach debug tab

	3.2 Main Window
	3.2.1 Menu bar
	3.2.2 Toolbar
	3.2.3 Application structure panel
	3.2.4 Source view panel
	3.2.5 Stack trace tab
	3.2.6 Local variables tab
	3.2.7 Debugging console tab

	3.3 Entity Information Window
	3.3.1 Stack trace tab
	3.3.2 Action points tab
	3.3.2.1 Breakpoints bar
	3.3.2.2 Watchpoints bar
	3.3.2.3 Barrierpoints bar

	3.3.3 Local variables tab
	3.3.4 Print tab
	3.3.5 Commands tab

	3.4 Exiting Debugger

	Chapter 4 List of Debugger Operations
	Appendix A Considerations for Using the Debugger
	Appendix B Notes on Migration from FX10 System to FX100 System
	B.1 Start condition of Debugger is changed

	Appendix C Compatibility Information (FX10 System)
	C.1 Migration to V2.0L10(Generation Number:11)
	C.1.1 Start condition of Debugger is changed

	Appendix D Compatibility Information (FX100 System)
	D.1 Migration to V2.0L10(Generation Number:02)
	D.1.1 Start condition of Debugger is changed

