
FUJITSU LIMITED
April 2016

Copyright 2016 FUJITSU LIMITED

Chapter 1
Hardware

 Chapter 1 Hardware Features

Contents

 Hardware
 Hardware Configuration

 SPARC64™ XIfx Chip Overview

 Tofu Interconnect 2

 SPARC64™ XIfx Specifications

 Hardware Features
 Assistant Core

HPC-ACE2

 VISIMPACT

 Register Extensions

 Arithmetic Function Auxiliary Instructions

 Sector Cache

 SIMD
 SIMD Specifications

 SIMD Technologies

Copyright 2016 FUJITSU LIMITED 1

 Chapter 1 Hardware

Hardware

 Hardware Configuration

 SPARC64™ XIfx Chip Overview

 Tofu Interconnect 2

 SPARC64™ XIfx Specifications

Copyright 2016 FUJITSU LIMITED 2

 Chapter 1 Hardware

Hardware Configuration

Copyright 2016 FUJITSU LIMITED 3

32 operation cores
+ 2 assistant cores,

ICC embedded

CPU

CMU

Main unit
(Chassis)

Rack with 18 main units
(216 CPUs)

Tofu Interconnect 2

CPU-memory
board/unit

HMC
(Hybrid Memory Cube)

Rack

Standard 19-inch rack mount
4 CMUs (12 nodes)

mounted in 2U chassis

 Chapter 1 Hardware

SPARC64™ XIfx Chip Overview

Copyright 2016 FUJITSU LIMITED 4

 Architecture

 32 operation cores + 2 assistant cores

 24 MB shared L2 cache

 ICC (Inter Connect Controller) embedded

 8 HMCs (Hybrid Memory Cubes)

 CMG (Core Memory Group)

 16 operation cores + 1 assistant core

 12 MB shared L2 cache

 2 CMGs per chip

 20 nm CMOS

 Number of transistors: Approx. 3.75
billion

 Number of signal pins: 1001

 Peak performance

 Operation performance: 1 TFLOPS or more

 Memory throughput: 480 GB/s

Core5

Core4

Core1

Core0

Core7

Core6

Core3

Core2

D
D

R
3

in
te

rf
a

ce

D
D

R
3

in
te

rf
a

ce

L2$ Data

L2$ Data

HSIO

L2$ Control MAC
MAC

MAC
MAC

High performance and
high reliability

SPARC64™ XIfx

 Chapter 1 Hardware

Tofu Interconnect 2

Copyright 2016 FUJITSU LIMITED 5

Architecture
 6-dimensional mesh/torus

 Direct network with no external switch

Features
 Scalability (supported size of more than 100,000 nodes)

 Fault tolerance (operation can continue when a node fails)

 Communication performance
• 12.5 GB/s per link, bidirectional

• Acceleration by optical transmission
(Optical transmission by all links between the main units)

• Atomic Read Modify Write supported for RDMA communication

• High-speed barrier and collective communication(reduction operation)

 Chapter 1 Hardware

SPARC64™ XIfx Specifications
SPARC64™ XIfx SPARC64TM IXfx Acceleration function

Number of cores 32 + 2 16 Improved parallel processing
efficiency (because of addition of
assistant cores)

Instruction set HPC-ACE2 HPC-ACE Improved instruction-level
parallelism

Number of FP registers 128 x 4 128 x 2

Double-precision operation performance CPU clock : 1.975GHz
1011.2GFLOPS per chip

CPU clock : 1.88GHz

236 GFLOPS per chip

CPU clock : 1.975GHz
1126.4GFLOPS per chip

Single-precision operation performance CPU clock : 1.975GHz
2022.4GFLOPS per chip

CPU clock : 1.88GHz

236 GFLOPS per chip

CPU clock : 1.975GHz
2252.8GFLOPS per chip

Number of double-precision operations
executed per clock and core

16 8 Doubles the number of
concurrent-execution operation
instructions.

Double-precision operation unit
configuration

2 FMA x 4 SIMD 2 FMA x 2 SIMD

Single-precision operation unit
configuration

2 FMA x 8 SIMD 2 FMA x 2 SIMD

L1 cache Specifications by core:
Instruction: 64 KB/4WAY
Data: 64 KB/4WAY

Specifications by core:
Instruction: 32 KB/2WAY
Data: 32 KB/2WAY

L2 cache 24 MB (Shared by cores: 12
MB/CMG)

Shared by cores: 12 MB

Copyright 2016 FUJITSU LIMITED 6

 Chapter 1 Hardware Features

Hardware Features

 Assistant Core

 HPC-ACE2

 VISIMPACT

 Register Extensions

 Arithmetic Function Auxiliary Instructions

 Sector Cache

Copyright 2016 FUJITSU LIMITED 7

 Chapter 1 Hardware Features

Assistant Core

Copyright 2016 FUJITSU LIMITED 8

 Two assistant cores are installed for 32 operation cores.

 The cores are not used by user applications but are responsible for OS
processing, etc.

 Purposes of use

 OS noise reduction

 Overlapping execution of operation and communication

 Routing of IO data (between Tofu and InfiniBand)

Core
31

Operation core
(x 16)

Core
16

Shared cache

Memory 1

Core
15

Operation core
(x 16)

Memory 0

Core
0

 Shared cache

CMG 0 CMG 1

Assistant core
(x 1)

Assistant core
(x 1)

Core
32

Core
33

 Chapter 1 Hardware Features

HPC-ACE2

 SPARC64TM Xifx ISA (Instruction Set Architecture)

 Compliance specifications

• SPARC-V9 specifications

• JPS (Joint Programmer’s Specification): SPARC-V9 extended
specifications

 HPC-ACE2: Second generation of HPC-ACE, which is Fujitsu's proprietary
extended instruction set for HPC

• Floating-point register extension

• Sector cache

• Arithmetic function auxiliary instructions

• SIMD (Single Instruction Multiple Data) instructions

• Stride SIMD load and store instructions

• SIMD indirect instructions

• VISIMPACT

(High Performance Computing - Arithmetic Computational Extensions 2)

Copyright 2016 FUJITSU LIMITED 9

 Chapter 1 Hardware Features

Concept
 Hardware barrier function realizing highly efficient thread parallelization processing

within a multi-core CPU

 Mechanism helping to realize a highly efficient hybrid parallelization execution model

 MPI + thread parallelization processing (automatic parallelization/OpenMP)

Purpose
 You can achieve following effects by treating a multi-core CPU as a single high-speed CPU

• reduces the number of MPI processes to 1/n cores

• improves the efficiency of thread parallelization processing

• reduces memory access

VISIMPACT - Mechanism Facilitating Hybrid Parallelization -
(Virtual Single Processor by Integrated Multi-core Parallel Architecture)

Copyright 2016 FUJITSU LIMITED 10

Process Thread

Process parallelization Hybrid parallelization

 Chapter 1 Hardware Features

Register Extensions

 Registers extended from V9

 Integer registers: 32 64

 Double-precision floating-point registers: 32
128 x 4 SIMD

•The floating-point registers are all the same.

•The extended floating-point registers are also
accessible from non-SIMD instructions.

 Extension reasons

 To improve instruction-level parallelism, which
was limited by the number of registers

 To reduce the overhead due to register spill/fill

V9

V9 V9

Integer registers
Floating-point

registers

Register
 window

32

96

32

32
160

Loop 0

Loop 1

Loop 0 Loop 1

Loop N

Loop unrolling
improves

parallelism

…

32

* Spill/Fill

Spill/Fill refers to the operation of temporarily saving
data to memory when the registers needed during an
operation are insufficient, and then restoring the data.

Copyright 2016 FUJITSU LIMITED 11

128
X 4 SIMD

 Chapter 1 Hardware Features

Arithmetic Function Auxiliary Instructions

Copyright 2016 FUJITSU LIMITED 12

 Extension of arithmetic function auxiliary instructions
 Instructions that assist the approximation of trigonometric functions

(sin and cos)

 Instructions for the approximation of reciprocals to accelerate division and
square root calculations

 Auxiliary instructions added in HPC-ACE2 and later
 Auxiliary instructions for exponential functions

 Rounding operations instructions

 Chapter 1 Hardware Features

Software-controlled Cache: Sector Cache

13

 Sector cache: Pseudo local memory
 Software can use sectors effectively according to

the reusability of data.
 Arrays for reuse Sector 1 used
 Others Sector 0 used
 Data on sector 1 is not forced out by other

data.
 The user can specify in a directive line that

the array be in sector 1.

L2 cache

Data whose reusability
is unknown

Pseudo local
memory

Data not to be reused Data to be reused

Normal cache

Sector 0 Sector 1

Example of using a compiler directive line to specify a sector cache

<Purpose>
To prevent array a from being forced out of the cache
by access to array b and array c in a loop.

!OCL CACHE_SECTOR_SIZE(15,9)
!OCL CACHE_SUBSECTOR_ASSIGN(a)
do j=1,m
 do i=1,n
 a(i) = a(i) + b(i,j)＊c(i,j)
 enddo
enddo
!OCL END_CACHE_SUBSECTOR
!OCL END_CACHE_SECTOR_SIZE

 Chapter 1 SIMD

SIMD

 SIMD Specifications

 SIMD Technologies

Copyright 2016 FUJITSU LIMITED 14

 Chapter 1 SIMD

SIMD Specifications (1/4)

Copyright 2016 FUJITSU LIMITED 15

SIMD (Single Instruction Multiple Data)
A single instruction performs multiple operations.

SIMD registers are used to manipulate multiple data.

Instruction-level parallelism within a core is improved.

SIMD instructions
Instructions that use SIMD registers

Operation instructions and memory
access instructions

How SIMD instructions apply acceleration
Optimization by a compiler (SIMD optimization)

Programming with intrinsic functions

a(i) = b(i) + c(i)
a(i+1) = b(i+1) + c(i+1)
a(i+2) = b(i+2) + c(i+2)
a(i+3) = b(i+3) + c(i+3)

fadd,s f2 f4 f6

Multiple operations by single
SIMD instruction

 Chapter 1 SIMD

SIMD Specifications (2/4)

Copyright 2016 FUJITSU LIMITED 16

Principles of SIMD optimization by the compiler
Analyzing the direction of loop rotation and the similarity

between instruction sequences

Outputting SIMD instructions according to the application
scenario

do i=1,4
 c(i) = a(i) + b(i)
enddo

ldd,s a(i:i+3) f2
ldd,s b(i:i+3) f4
fadd,s f2 f4 f2
store,s f2 c(i:i+3)

=

A(1) A(2) A(3) A(4) B(1) B(2) B(3) B(4)

C(1) C(2) C(3) C(4)

Cache

SIMD

Memory

Registers + A(1) A(3) A(4) B(1) B(2) B(3) B(4) A(2)

 Chapter 1 SIMD

SIMD Specifications (3/4)

Copyright 2016 FUJITSU LIMITED 17

SIMD optimization by the compiler

VSIMD (Vectorize SIMD)

UXSIMD (Un-loop eXaminate SIMD)

Hardware specifications for SIMD in the FX100

256-bit wide SIMD

 For details, see "SIMD Technologies (2/11)."

Up to eight operations are processed simultaneously per
SIMD instruction (single precision).

Two SIMD operation instructions are performed
simultaneously within a core.

 Chapter 1 SIMD

SIMD Specifications (4/4)

Copyright 2016 FUJITSU LIMITED 18

FX10 FX100

Double-precision real
(operation instruction, load and store

instruction)
2 SIMD 2 SIMD, 4 SIMD

Single-precision real
(operation instruction, load and store

instruction)
2 SIMD 2 SIMD, 4 SIMD, 8 SIMD

Integer
(operation instruction, load and store

instruction)
- 2 SIMD, 4 SIMD

Masked instruction Real Real, integer

Data boundary (load) Type size Type size

Data boundary (store) Type size x 2 Type size

Non-sequential data access instruction
(stride)

- Load and store

Non-sequential data access instruction
(indirect)

- Load, store, prefetch

Comparison of SIMD instruction specifications and functions

 Chapter 1 SIMD

SIMD Technologies (1/11)

Copyright 2016 FUJITSU LIMITED 19

Technology list

1. 256 bit wide SIMD

2. Stride memory access

3. Indirect memory access

4. Loop Fission

5. Unaligned SIMD store

6. Integer condition branch

7. New complex-number model

8. Concatenation shift

9. Element compress

10. Masking loop SIMD

Representative SIMD technologies

 Chapter 1 SIMD

SIMD Technologies (2/11)

Copyright 2016 FUJITSU LIMITED 20

256 bit wide SIMD

Double-precision floating-point data x 4
Single-precision floating-point data x 4, dual single-precision

floating-point data x 4
64-bit integer data x 4

The SIMD width is 2 and 4 times wider in double and single precision,
respectively, compared with the FX10.

r8(i) r8(i+1) r8(i+2) r8(i+3)
Double-precision

floating-point data

r4(i) r4(i+1) r4(i+2) r4(i+3)
Single-precision

floating-point data

256 bit

i8(i) i8(i+1) i8(i+2) i8(i+3) 64-bit integer data

r4(i) r4(i+1) r4(i+2) r4(i+3) r4(i+4) r4(i+5) r4(i+6) r4(i+7) dual single precision

 Chapter 1 SIMD

SIMD Technologies (3/11)

Copyright 2016 FUJITSU LIMITED 21

Stride memory access

Applicable to stride lengths of 2 to 7

Effective performance in stride access to continuum code, etc.

Stride load performance (1 core) Load instruction with stride length of 3

0.0

1.0

2.0

3.0

4.0

ストライド幅3 ストライド幅4

Pe
rf

or
m

an
ce

 r
at

io

FX10 Post-FX10

Stride length: 3 Stride length: 4

i[0] i[1] i[2] i[3]

lddst,s [%l0]@3, %f0

i[0] i[1]
i[2]

i[3]

%l0+0
+32

+64

%f0

Memory

Register

Effect of new
instruction

Effect of
256-bit wide SIMD

FX100

 Chapter 1 SIMD

SIMD Technologies (4/11)

Copyright 2016 FUJITSU LIMITED 22

Indirect memory access
Address calculation also uses SIMD instructions for parallel

computation.

Effective performance in list access, such as for fluid analysis or FEM

Indirect access performance (1 core) Indirect load instruction

0.0

0.5

1.0

1.5

2.0

インダイレクトロード インダイレクトストア

Pe
rf

or
m

an
ce

 r
at

io

FX10 Post-FX10

Indirect load Indirect store

lddid,s [%f0], %f2

A D B C

i[2]
i[0]

i[1]

C

i[3]

%f0

A

B D

Memory

i[0] i[1] i[2] i[3] %f2

Register (for memory-address)

Register

FX100

 Chapter 1 SIMD

SIMD Technologies (5/11)

Copyright 2016 FUJITSU LIMITED 23

Loop Fission

Mix of single- and double-precision floating-point operations

Loop fission resulting in different SIMD widths

subroutine sub(a,b,c,d,e,f,n)
real(4),dimension(1:n) :: a,b,c
real(8),dimension(1:n) :: d,e,f
do i=1,n
 a(i) = b(i) + c(i)
 d(i) = e(i) + f(i)
enddo
end subroutine

do i=1,n
 a(i) = b(i) + c(i)
enddo

do i=1,n
 d(i) = e(i) + f(i)
enddo

8 SIMD

4 SIMD

Effective use of 256-bit wide SIMD

For a loop containing a mix of single- and double-precision floating-point operations, the
result will be 4 SIMD.

To turn the single-precision floating-point operations into 8 SIMD, divide the loop by different
SIMD widths.

 Chapter 1 SIMD

SIMD Technologies (6/11)

Copyright 2016 FUJITSU LIMITED 24

Unaligned SIMD store
Store instructions are not affected by differences in data boundaries.

The boundary corrections output by FX10 is eliminated.

Reduced code size and more efficient instruction cache

subroutine sub(a,b,c,n)
do i=1,n
 a(i) = b(i) + c(i)
enddo
end subroutine

Eliminated boundary
correction

Appearance of FX100 object
i=1
do j=i,n,4
 a(j:j+3) = b(j:j+3) + c(j:j+3)
enddo
…

Appearance of FX10 object
i=1
if (and(loc(a(1)),0xf) .ne. 0) goto 10
a(1) = b(1) + c(1)
i=2
10 conitnue
do j=i,n,4
 a(j:j+3) = b(j:j+3) + c(j:j+3)
enddo
…

 Chapter 1 SIMD

if (real(m(i:i+1),kind=8) .gt. 0.0) then
 a(i:i+1) = b(i:i+1) + c(i:i+1)

SIMD Technologies (7/11)

Copyright 2016 FUJITSU LIMITED 25

Integer condition branch
 SIMD optimization of loops containing IF construct for integer-type condition

determination

 FX10 converts data into floating-point type data.

Elimination of unnecessary conversion instructions
and improvement of scheduling

real(8),dimension(1:n) :: a,b,c
integer(4),dimension(1:n) :: m
do i=1,n
 if (m(i) .gt. 0) then
 a(i) = b(i) + c(i)
 endif
enddo

! integer-type SIMD load
ldsw,s m(i:i+3),%f32

! integer-type SIMD compare
fzero,s %f34
fpcmpgtw,s %f32,%f34,%f36

New instructions for FX100 integer type

Appearance of conversion instruction output in FX10

Type conversion (8-byte real conversion)
not necessary

 Chapter 1 SIMD

New complex-number model
Instruction output using stride memory access
SIMD optimization of adjacent memory by FX10

subroutine sub(a,b,r,n)
complex(8),dimension(1:n) :: a,b
real(4) :: r
do i=1,n
 a(i) = b(i) * r
enddo
end subroutine

Stride memory access used

because it is of complex type

SIMD Technologies (8/11)

Copyright 2016 FUJITSU LIMITED 26

Number of instructions reduced to accelerate
operations of complex type

7 instructions in total
ldd [%o2], %f2 !argument r
lddst,s b(i:i+3).r, %f4
lddst,s b(i:i+3).r, %f6
fmuld,s %f4, %f2, %f4
fmuld,s %f6, %f2, %f6
stdst,s %f4, a(i:i+3).r
stdst,s %f6, a(i:i+3).i

11 instructions in total
 Load x 4, store x 2, operation x 4, and initialization x 2

New instructions for FX100
instruction output integer type

Number of instructions in FX10

 Chapter 1 SIMD

SIMD Technologies (9/11)

Copyright 2016 FUJITSU LIMITED 27

Concatenation shift
Concatenation of memory references in the loop rotation

direction
do i=1, n
 a(i) = b(i) + b(i+1) + b(i+2) + b(i+3)
enddo

T1 = b(1:4)
do i=1, n-4, 4

T2 = b(i+4:i+7) * Preceding LOAD
T3 = concatenate_shift(T1, T2, 1) * Converts the LOAD instruction for b(i+1:i+4).
T4 = concatenate_shift(T1, T2, 2) * Converts the LOAD instruction for b(i+2:i+5).
T5 = concatenate_shift(T1, T2, 3) * Converts the LOAD instruction for b(i+3:i+6)
T6 = T1 + T3
T7 = T4 + T5
a(i:i+3) = T6 + T7
T1 = T2

enddo

Output of only single SIMD load instruction in loop
b(i+4:i+7)

Reduced load instructions from adjacent access, such as in stencil code

Image of concatenation
shift (shift amount: 2)
fecsld,s %f34,%f35,2,%f32

 Chapter 1 SIMD

SIMD Technologies (10/11)

Copyright 2016 FUJITSU LIMITED 28

Element compress
Compression using masks and output of horizontal addition

instructions
Reduced branches in a loop

Acceleration of array compression code, etc.

Appearance of FX100 instruction output

fecpd: Mask assignment shown here
fesummd: Mask addition shown here

j=1
do i=1,10000
 if (x(I) .gt. 0.d0) then
 a(j)=b(i)
 j=j+1
 endif
enddo

j=1
do i=1,10000,4
 mask = x(i:i+3) .gt. 0d0
 vtd = b(i:i+3)
 cvtd=fecpd(vtd,mask)
 a(j:j+3)=cvtd
 j=j+int(fesummd(mask),kind=4)
enddo

 Chapter 1 SIMD

SIMD Technologies (11/11)

Copyright 2016 FUJITSU LIMITED 29

Masking loop SIMD
SIMD optimization of short loops using mask operations
Applied using optimization options because operations would

otherwise be performed redundantly

do i=1,n
 a(i) = b(i) + c(i)
enddo

Acceleration for loops with fewer rotations

Loop:
 nn = remaining number of
 rotations/4
 idx = (nn>=1) ?4:nn
 ldd,s mtbl[idx], %f8
 ldd,s b(i:i+3), %f2
 ldd,s c(i:i+3), %f4
 faddd,s %f2, %f4, %f6
 stdfr,s %f6, %f8, a(i:i+3)
 branch Loop, cond

Appearance of FX100 instruction output

mtbl[0]={F,F,F,F}
mtbl[1]={T,F,F,F}
mtbl[3]={T,T,T,F}
mtbl[4]={T,T,T,T}

 Chapter 1

Revision History

Copyright 2016 FUJITSU LIMITED 30

Version Date Revised section Details
2.0 April 25, 2016 - - First published

