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32 operation cores 
+ 2 assistant cores, 

ICC embedded 

CPU 

CMU 

Main unit 
(Chassis) 

Rack with 18 main units 
(216 CPUs) 

Tofu Interconnect 2 

CPU-memory 
board/unit 

HMC 
(Hybrid Memory Cube) 

Rack 

Standard 19-inch rack mount 
4 CMUs (12 nodes) 

mounted in 2U chassis 
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SPARC64™ XIfx Chip Overview 
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 Architecture 

 32 operation cores + 2 assistant cores 

 24 MB shared L2 cache 

 ICC (Inter Connect Controller) embedded 

 8 HMCs (Hybrid Memory Cubes) 

 CMG (Core Memory Group) 

 16 operation cores + 1 assistant core 

 12 MB shared L2 cache 

 2 CMGs per chip 

 20 nm CMOS 

 Number of transistors: Approx. 3.75 
billion 

 Number of signal pins: 1001  

 Peak performance 

 Operation performance: 1 TFLOPS or more 

 Memory throughput: 480 GB/s 
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High performance and  
high reliability 

SPARC64™ XIfx 



 Chapter 1 Hardware 

Tofu Interconnect 2 
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Architecture 
 6-dimensional mesh/torus 

 Direct network with no external switch 

Features 
 Scalability (supported size of more than 100,000 nodes) 

 Fault tolerance (operation can continue when a node fails) 

 Communication performance 
• 12.5 GB/s per link, bidirectional 

• Acceleration by optical transmission 
(Optical transmission by all links between the main units) 

• Atomic Read Modify Write supported for RDMA communication 

• High-speed barrier and collective communication(reduction operation) 
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SPARC64™ XIfx Specifications 
SPARC64™ XIfx SPARC64TM IXfx Acceleration function 

Number of cores 32 + 2 16 Improved parallel processing 
efficiency (because of addition of 
assistant cores) 

Instruction set HPC-ACE2 HPC-ACE Improved instruction-level 
parallelism 

Number of FP registers 128 x 4 128 x 2 

Double-precision operation performance CPU clock : 1.975GHz 
1011.2GFLOPS per chip 

CPU clock : 1.88GHz 

236 GFLOPS per chip 

CPU clock : 1.975GHz 
1126.4GFLOPS per chip 

Single-precision operation performance CPU clock : 1.975GHz 
2022.4GFLOPS per chip 

CPU clock : 1.88GHz 

236 GFLOPS per chip 

CPU clock : 1.975GHz 
2252.8GFLOPS per chip 

Number of double-precision operations 
executed per clock and core 

16 8 Doubles the number of  
concurrent-execution operation 
instructions. 

Double-precision operation unit 
configuration 

2 FMA x 4 SIMD 2 FMA x 2 SIMD 

Single-precision operation unit 
configuration 

2 FMA x 8 SIMD 2 FMA x 2 SIMD 

L1 cache Specifications by core: 
Instruction: 64 KB/4WAY 
Data: 64 KB/4WAY 

Specifications by core: 
Instruction: 32 KB/2WAY 
Data: 32 KB/2WAY 

L2 cache 24 MB (Shared by cores: 12 
MB/CMG) 

Shared by cores: 12 MB 
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Assistant Core 
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 Two assistant cores are installed for 32 operation cores. 

 The cores are not used by user applications but are responsible for OS 
processing, etc. 

 Purposes of use 

 OS noise reduction 

 Overlapping execution of operation and communication 

 Routing of IO data (between Tofu and InfiniBand) 

Core 
31 .... 

Operation core 
(x 16) 

Core 
16 

Shared cache 

Memory 1 

Core 
15 .... 

Operation core 
(x 16) 

Memory 0 

Core 
0 

   Shared cache 

CMG 0 CMG 1 

Assistant core 
(x 1) 

Assistant core 
(x 1) 

Core 
32 

Core 
33 
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HPC-ACE2 

 SPARC64TM Xifx ISA (Instruction Set Architecture) 

 Compliance specifications 

• SPARC-V9 specifications 

• JPS (Joint Programmer’s Specification): SPARC-V9 extended 
specifications 

 HPC-ACE2: Second generation of HPC-ACE, which is Fujitsu's proprietary 
extended instruction set for HPC 

• Floating-point register extension 

• Sector cache 

• Arithmetic function auxiliary instructions 

• SIMD (Single Instruction Multiple Data) instructions 

• Stride SIMD load and store instructions 

• SIMD indirect instructions 

• VISIMPACT 

(High Performance Computing - Arithmetic Computational Extensions 2) 
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Concept 
 Hardware barrier function realizing highly efficient thread parallelization processing 

within a multi-core CPU 

 Mechanism helping to realize a highly efficient hybrid parallelization execution model 

      MPI + thread parallelization processing (automatic parallelization/OpenMP) 

Purpose 
 You can achieve following effects by treating a multi-core CPU as a single high-speed CPU 

• reduces the number of MPI processes to 1/n cores 

• improves the efficiency of thread parallelization processing 

• reduces memory access 

VISIMPACT - Mechanism Facilitating Hybrid Parallelization - 
(Virtual Single Processor by Integrated Multi-core Parallel Architecture) 
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Process Thread 

Process parallelization Hybrid parallelization 
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Register Extensions 

 Registers extended from V9 

 Integer registers: 32       64 

 Double-precision floating-point registers: 32  
128 x 4 SIMD 

•The floating-point registers are all the same. 

•The extended floating-point registers are also 
accessible from non-SIMD instructions. 

 

 Extension reasons 

 To improve instruction-level parallelism, which 
was limited by the number of registers 

 To reduce the overhead due to register spill/fill 

V9 

V9 V9 

Integer registers 
Floating-point  

registers 

Register 
 window 

32 

96 

32 

32 
160 

 

Loop 0 

Loop 1 

Loop 0 Loop 1 

Loop N 

Loop unrolling 
improves 

parallelism 

… 

32 

* Spill/Fill 

Spill/Fill refers to the operation of temporarily saving 
data to memory when the registers needed during an 
operation are insufficient, and then restoring the data. 
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128  
X 4 SIMD 
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Arithmetic Function Auxiliary Instructions 
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 Extension of arithmetic function auxiliary instructions 
 Instructions that assist the approximation of trigonometric functions  

(sin and cos) 

 Instructions for the approximation of reciprocals to accelerate division and 
square root calculations 

 

 Auxiliary instructions added in HPC-ACE2 and later 
 Auxiliary instructions for exponential functions 

 Rounding operations instructions 
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Software-controlled Cache: Sector Cache 
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 Sector cache: Pseudo local memory 
    Software can use sectors effectively according to 

the reusability of data. 
 Arrays for reuse       Sector 1 used 
 Others       Sector 0 used 
 Data on sector 1 is not forced out by other 

data. 
 The user can specify in a directive line that 

the array be in sector 1. 

L2 cache 

Data whose reusability  
is unknown 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

Pseudo local 
memory 

Data not to be reused Data to be reused 

Normal cache 

Sector 0 Sector 1 

Example of using a compiler directive line to specify a sector cache 

<Purpose> 
To prevent array a from being forced out of the cache 
by access to array b and array c in a loop. 

!OCL CACHE_SECTOR_SIZE(15,9)  
!OCL CACHE_SUBSECTOR_ASSIGN(a) 
do j=1,m 
    do i=1,n 
        a(i) = a(i) + b(i,j)＊c(i,j) 
    enddo 
enddo 
!OCL END_CACHE_SUBSECTOR 
!OCL END_CACHE_SECTOR_SIZE 
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SIMD Specifications (1/4) 
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SIMD (Single Instruction Multiple Data) 
A single instruction performs multiple operations. 

SIMD registers are used to manipulate multiple data. 

Instruction-level parallelism within a core is improved. 

SIMD instructions 
Instructions that use SIMD registers 

Operation instructions and memory  
access instructions 

How SIMD instructions apply acceleration 
Optimization by a compiler (SIMD optimization) 

Programming with intrinsic functions 

a(i)      = b(i)     + c(i) 
a(i+1) = b(i+1) + c(i+1) 
a(i+2) = b(i+2) + c(i+2) 
a(i+3) = b(i+3) + c(i+3) 

fadd,s f2 f4 f6 

Multiple operations by single 
SIMD instruction 
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SIMD Specifications (2/4) 
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Principles of SIMD optimization by the compiler 
Analyzing the direction of loop rotation and the similarity 

between instruction sequences 

Outputting SIMD instructions according to the application 
scenario 

do i=1,4 
  c(i) = a(i) + b(i) 
enddo 

ldd,s a(i:i+3) f2 
ldd,s b(i:i+3) f4 
fadd,s f2 f4 f2 
store,s f2 c(i:i+3) 

= 

A(1) A(2) A(3) A(4) B(1) B(2) B(3) B(4) 

C(1) C(2) C(3) C(4) 

Cache 

SIMD 

Memory 

Registers + A(1) A(3) A(4) B(1) B(2) B(3) B(4) A(2) 
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SIMD Specifications (3/4) 
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SIMD optimization by the compiler 

VSIMD (Vectorize SIMD) 

UXSIMD (Un-loop eXaminate SIMD) 
 

Hardware specifications for SIMD in the FX100 

256-bit wide SIMD 

 For details, see "SIMD Technologies (2/11)." 

Up to eight operations are processed simultaneously per 
SIMD instruction (single precision). 

Two SIMD operation instructions are performed 
simultaneously within a core. 
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SIMD Specifications (4/4) 
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FX10 FX100 

Double-precision real 
(operation instruction, load and store 

instruction) 
2 SIMD 2 SIMD, 4 SIMD 

Single-precision real 
(operation instruction, load and store 

instruction) 
2 SIMD 2 SIMD, 4 SIMD, 8 SIMD 

Integer 
(operation instruction, load and store 

instruction) 
- 2 SIMD, 4 SIMD 

Masked instruction Real Real, integer 

Data boundary (load) Type size Type size 

Data boundary (store) Type size x 2 Type size 

Non-sequential data access instruction 
(stride) 

- Load and store 

Non-sequential data access instruction 
(indirect) 

- Load, store, prefetch 

Comparison of SIMD instruction specifications and functions 
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SIMD Technologies (1/11) 
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Technology list 

1. 256 bit wide SIMD 

2. Stride memory access 

3. Indirect memory access 

4. Loop Fission 

5. Unaligned SIMD store 

6. Integer condition branch 

7. New complex-number model 

8. Concatenation shift 

9. Element compress 

10. Masking loop SIMD 

Representative SIMD technologies 
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SIMD Technologies (2/11) 
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256 bit wide SIMD 

Double-precision floating-point data x 4 
Single-precision floating-point data x 4, dual single-precision 

floating-point data x 4 
64-bit integer data x 4 

 

The SIMD width is 2 and 4 times wider in double and single precision, 
respectively, compared with the FX10. 

r8(i) r8(i+1) r8(i+2) r8(i+3) 
Double-precision  

floating-point data 

r4(i) r4(i+1) r4(i+2) r4(i+3) 
Single-precision  

floating-point data 

256 bit 

i8(i) i8(i+1) i8(i+2) i8(i+3) 64-bit integer data 

r4(i) r4(i+1) r4(i+2) r4(i+3) r4(i+4) r4(i+5) r4(i+6) r4(i+7) dual single precision 
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SIMD Technologies (3/11) 
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Stride memory access 

Applicable to stride lengths of 2 to 7 

Effective performance in stride access to continuum code, etc. 

Stride load performance (1 core) Load instruction with stride length of 3 

0.0

1.0

2.0

3.0

4.0

ストライド幅3 ストライド幅4 
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FX10 Post-FX10

Stride length: 3 Stride length: 4 

i[0] i[1] i[2] i[3] 

lddst,s  [%l0]@3, %f0 

i[0] i[1] 
i[2] 

i[3] 

%l0+0 
+32 

+64 

%f0 

Memory 

Register 

Effect of new 
instruction 

Effect of 
256-bit wide SIMD 

FX100 
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SIMD Technologies (4/11) 
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Indirect memory access 
Address calculation also uses SIMD instructions for parallel 

computation. 

Effective performance in list access, such as for fluid analysis or FEM 

Indirect access performance (1 core) Indirect load instruction 

0.0
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FX10 Post-FX10

Indirect load Indirect store 

lddid,s  [%f0], %f2 

A D B C 

i[2] 
i[0] 

i[1] 

C 

i[3] 

%f0 

A 

B D 

Memory 

i[0] i[1] i[2] i[3] %f2 

Register (for memory-address) 

Register 

FX100 
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SIMD Technologies (5/11) 
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Loop Fission 

Mix of single- and double-precision floating-point operations 

Loop fission resulting in different SIMD widths 

subroutine sub(a,b,c,d,e,f,n) 
real(4),dimension(1:n) :: a,b,c 
real(8),dimension(1:n) :: d,e,f 
do i=1,n 
  a(i) = b(i) + c(i) 
  d(i) = e(i) + f(i) 
enddo 
end subroutine 

do i=1,n 
  a(i) = b(i) + c(i) 
enddo 
 
do i=1,n 
  d(i) = e(i) + f(i) 
enddo 

8 SIMD 

4 SIMD 

Effective use of 256-bit wide SIMD 

For a loop containing a mix of single- and double-precision floating-point operations, the 
result will be 4 SIMD. 

To turn the single-precision floating-point operations into 8 SIMD, divide the loop by different 
SIMD widths. 
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SIMD Technologies (6/11) 
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Unaligned SIMD store 
Store instructions are not affected by differences in data boundaries. 

The boundary corrections output by FX10 is eliminated. 

Reduced code size and more efficient instruction cache 

subroutine sub(a,b,c,n) 
do i=1,n 
  a(i) = b(i) + c(i) 
enddo 
end subroutine 

Eliminated boundary 
correction 

Appearance of FX100 object 
i=1 
do j=i,n,4 
  a(j:j+3) = b(j:j+3) + c(j:j+3) 
enddo 
… 
 

Appearance of FX10 object 
i=1 
if (and(loc(a(1)),0xf) .ne. 0) goto 10  
a(1) = b(1) + c(1) 
i=2 
10 conitnue 
do j=i,n,4 
  a(j:j+3) = b(j:j+3) + c(j:j+3) 
enddo 
… 
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if (real(m(i:i+1),kind=8) .gt. 0.0) then 
    a(i:i+1) = b(i:i+1) + c(i:i+1) 

SIMD Technologies (7/11) 
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Integer condition branch 
 SIMD optimization of loops containing IF construct for integer-type condition 

determination 

 FX10 converts data into floating-point type data. 

 

Elimination of unnecessary conversion instructions  
and improvement of scheduling 

real(8),dimension(1:n) :: a,b,c 
integer(4),dimension(1:n) :: m 
do i=1,n 
  if (m(i) .gt. 0) then 
    a(i) = b(i) + c(i) 
  endif 
enddo 

! integer-type SIMD load 
ldsw,s      m(i:i+3),%f32 
 
! integer-type SIMD compare 
fzero,s     %f34 
fpcmpgtw,s  %f32,%f34,%f36 

New instructions for FX100 integer type 

Appearance of conversion instruction output in FX10 

Type conversion (8-byte real conversion) 
not necessary 
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New complex-number model 
Instruction output using stride memory access 
SIMD optimization of adjacent memory by FX10 

subroutine sub(a,b,r,n) 
complex(8),dimension(1:n) :: a,b 
real(4) :: r 
do i=1,n 
  a(i) = b(i) * r 
enddo 
end subroutine 

Stride memory access used  

because it is of complex type 

SIMD Technologies (8/11) 
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Number of instructions reduced to accelerate  
operations of complex type 

7 instructions in total 
ldd      [%o2], %f2  !argument r 
lddst,s  b(i:i+3).r, %f4 
lddst,s  b(i:i+3).r, %f6 
fmuld,s %f4, %f2, %f4 
fmuld,s %f6, %f2, %f6 
stdst,s  %f4, a(i:i+3).r 
stdst,s  %f6, a(i:i+3).i 

11 instructions in total 
    Load x 4, store x 2, operation x 4, and initialization x 2 

New instructions for FX100  
instruction output integer type 

Number of instructions in FX10 
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SIMD Technologies (9/11) 
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Concatenation shift 
Concatenation of memory references in the loop rotation 

direction 
do i=1, n 
  a(i) = b(i) + b(i+1) + b(i+2) + b(i+3) 
enddo 

T1 = b(1:4) 
do i=1, n-4, 4 

T2 = b(i+4:i+7)    * Preceding LOAD 
T3 = concatenate_shift(T1, T2, 1)  * Converts the LOAD instruction for b(i+1:i+4). 
T4 = concatenate_shift(T1, T2, 2)  * Converts the LOAD instruction for b(i+2:i+5). 
T5 = concatenate_shift(T1, T2, 3)  * Converts the LOAD instruction for b(i+3:i+6) 
T6 = T1 + T3 
T7 = T4 + T5 
a(i:i+3) = T6 + T7 
T1 = T2 

enddo 

Output of only single SIMD load instruction in loop 
b(i+4:i+7) 

Reduced load instructions from adjacent access, such as in stencil code 

Image of concatenation 
shift (shift amount: 2) 
fecsld,s  %f34,%f35,2,%f32 
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SIMD Technologies (10/11) 
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Element compress 
Compression using masks and output of horizontal addition 

instructions 
Reduced branches in a loop 

Acceleration of array compression code, etc. 

Appearance of FX100 instruction output 

fecpd: Mask assignment shown here 
fesummd: Mask addition shown here 

j=1 
do i=1,10000 
  if (x(I) .gt. 0.d0) then 
    a(j)=b(i) 
    j=j+1 
  endif 
enddo 

j=1 
do i=1,10000,4 
  mask = x(i:i+3) .gt. 0d0 
  vtd = b(i:i+3) 
  cvtd=fecpd(vtd,mask) 
  a(j:j+3)=cvtd 
  j=j+int(fesummd(mask),kind=4) 
enddo 
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Masking loop SIMD  
SIMD optimization of short loops using mask operations 
Applied using optimization options because operations would 

otherwise be performed redundantly 

 
do i=1,n 
  a(i) = b(i) + c(i) 
enddo 

Acceleration for loops with fewer rotations 

Loop: 
  nn = remaining number of  
 rotations/4 
  idx = (nn>=1) ?4:nn 
  ldd,s  mtbl[idx], %f8  
  ldd,s  b(i:i+3), %f2 
  ldd,s  c(i:i+3), %f4 
  faddd,s  %f2, %f4, %f6 
  stdfr,s  %f6, %f8, a(i:i+3) 
  branch Loop, cond 

Appearance of FX100 instruction output 

mtbl[0]={F,F,F,F} 
mtbl[1]={T,F,F,F} 
mtbl[3]={T,T,T,F} 
mtbl[4]={T,T,T,T} 
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