
FUJITSU LIMITED
April 2016

Chapter 3
Large Page

Copyright 2016 FUJITSU LIMITED

 Chapter 3

Contents 1

 What Are Large Pages?

 Functions of Large Pages

 Purpose of Large Pages

 Memory Address Conversion and TLB

 What Is the TLB? (Details)

 TLB Configuration

 Default Large Page Size

 Aspects of Each Page Size

 Page Size Selection Criteria

Copyright 2016 FUJITSU LIMITED 1

 Chapter 3

Contents 2

 Functions of Large Pages

 lpgparm Command

 Demand Paging

 Different Areas Allocated for Different Variable Types

 Arena Process

 Thread Heap

 Environment Variables Used for Tuning

 Evaluation Functions for Large Pages

 List of Evaluation Functions for Large Pages

 Large Page Memory Usage Information

 Large Page Statistics

Copyright 2016 FUJITSU LIMITED 2

 Chapter 3 What Are Large Pages?

What Are Large Pages?
 Functions of Large Pages

 Purpose of Large Pages

 Memory Address Conversion and TLB

 What Is the TLB? (Details)

 TLB Configuration

 Default Large Page Size

 Aspects of Each Page Size

 Page Size Selection Criteria

Copyright 2016 FUJITSU LIMITED 3

 Chapter 3 What Are Large Pages?

What are the functions of large pages?

For applications that handle large-scale data, memory is
assigned with a larger page size than the normal page size to...
 reduce the overhead of OS address conversion, and

 improve memory access performance.

The size of a normal page is 8 KB, and the size of a large page
may be 512 KB, 4 MB, or 32 MB.

Functions of Large Pages

Copyright 2016 FUJITSU LIMITED 4

 Chapter 3 What Are Large Pages?

Purpose of Large Pages

Copyright 2016 FUJITSU LIMITED 5

 Large pages expand the size of a page as the unit of memory
management from 8 KB to a larger size (512 KB, 4 MB, 32 MB, etc.)

The larger size pages provide wider coverage of the CPU address conversion
buffer (TLB), thereby reducing TLB misses.
 Improved execution performance

Normal pages (8KB) Large page

 Data access

 Unit of page
1 page

Memory

space

Conceptual diagram of normal and large pages

The normal pages have a TLB miss at each access of (4 times).

The large page has a TLB miss only at the initial access of (1 time).

 Use of large pages reduces TLB misses

 Chapter 3 What Are Large Pages?

Memory Address Conversion and TLB

6

 For memory access by a program, a virtual memory address must be converted to a
physical memory address.

 The address conversion uses an address conversion table residing on the main memory. It
also uses the TLB in the CPU for high-speed access. TLB stands for Translation Look-aside
Buffer, which is an address conversion buffer.

* The TLB associates the virtual memory space used by a program, with a physical memory
space.

 The TLB reconfiguration process (reloading of the address conversion table) is required
when a TLB miss occurs. The TLB reconfiguration process has a significant cost.

TLB mechanism

Miss

Virtual address

TLB

Physical address

Hit

Address
conversion

table

Address conversion
table reloaded

Large cost

1 TLB entry is equivalent to 1 page

Larger size of single page means reduced
number of TLB registered entries, so TLB hit
ratio improves

 Chapter 3 What Are Large Pages?

TLB

CPU

What Is the TLB? (Details)

7

 Address conversion by the TLB

The CPU receives a load and store
request for memory from a running
program.

(1) The physical memory address
corresponding to the virtual address
specified as the load and store
destination is determined from the TLB.
The TLB initially contains no information,
so (following TLB misses) the TLB will
store corresponding address conversion
information.

(2) The relevant physical memory address is
obtained from the TLB.

(3) Physical memory access begins at the
load and store destination address.

Conversion from virtual address to physical address by the TLB

TLB miss
Storing address
conversion information

Process flow

Application space

Process

Process
management
information

Kernel space

Memory
access

(virtual
addresses)

Page table

Address conversion
information

Address conversion
information

(1) Address conversion
information search

(2) Return of physical
address

Address conversion
information

Load and store
mechanism

(3) Physical memory
access

Physical memory

 Chapter 3 What Are Large Pages?

0
1

:

15
16

TLB Configuration

Copyright 2016 FUJITSU LIMITED 8

 sTLB and fTLB

There are two types of TLB: sTLB and fTLB.

 sTLB: 512 entries, 4-way set associative

 fTLB: 16 entries, full associative

 A large number of entries in the sTLB reduces TLB misses and thus improves execution
performance. (fTLB is also available.)
At the address conversion time, the sTLB of the set associative method is searched first. If the search has no hits,
then the fTLB of the full associative method is searched.
The search sequentially browses the entries in the fTLB of the full associative method.

16entries

 sTLB fTLB

* How to calculate the TLB index of the sTLB:

 rounddown(mod(address page size, number of TLB entries),0)

128entries

4way

TLB
index

0
1
2

: :

125
126
127

TLB
index

*

 Chapter 3 What Are Large Pages?

Default Large Page Size

Copyright 2016 FUJITSU LIMITED 9

 Default lpgparm parameters

 If nothing is specified, the parameters are equivalent to:

 lpgparm –s 4MB –t 4MB –d 4MB –h 4MB –p 4MB –S 4MB a.out

 You can make more TLB entries available by specifying that the large page size for
the area used is the same as that for using the sTLB.

 A large page size of 4 MB can allocate a large amount of memory for use. (*1)

 The default large page size is 4 MB, which takes into consideration that
applications access memory continuously with little (or no) performance
degradation as a result. That large size provides high user convenience.

(*1) For a large page size of 32 MB, an area of 32 MB is allocated. Even if only 1 MB is used for the thread
stack, the remaining area is unused (31 MB). (If there are 16 threads, the unused area is multiplied by
16.)

You can reduce this unused, wasted area by changing the large page size to 4 MB.

 Improved TLB hit ratio

 Improved memory usage ratio

 Chapter 3 What Are Large Pages?

Aspects of Each Page Size

Copyright 2016 FUJITSU LIMITED 10

 Page size of 8 KB

 This size neither reduces TLB misses nor improves execution performance.

 Page size of 4 MB

 This size offers the best balance from the viewpoint of execution performance, memory
usage, and overhead.

 Page size of 32 MB

 This size uses a large amount of memory, so there is a possibility that some applications
cannot be executed. Memory is likely to become insufficient, especially with Flat MPI.

The following table shows advantages and disadvantages of page sizes of
8 KB, 4 MB, and 32 MB.

8 KB 512 KB
4 MB

(recommended)
32 MB

Execution performance
(percentage of TLB misses) Poor Good Good to excellent Excellent

Excellent Good Good Fair

Memory usage Excellent Good Good Fair

Overhead
(memory

initialization)

 Chapter 3 What Are Large Pages?

 Default page size of 4 MB
 This size offers the best balance from the viewpoint of execution performance,

memory usage, and overhead.

 Page size expansion guideline
 If the percentage of TLB misses exceeds the following value, expand the large page

size.

Guideline value of percentage of
mTLB misses

1.5% or over

Guideline value of percentage of
µTLB misses

2.5% or over

Page Size Selection Criteria

Copyright 2016 FUJITSU LIMITED 11

Generally, if the percentage of TLB misses exceeds the guideline value, even
local tuning of the data of applications themselves should be reviewed.

Reference values (relationship between execution performance
and the percentage of TLB misses during sequential access) Aspects of each page size

8 KB 512 KB
4 MB

(recommended)
32 MB

Execution performance
(percentage of TLB

misses)
Poor Good

Good to
Excellent

Excellent

Excellent Good Good Fair

Memory usage Excellent Good Good Fair

Large page size
Execution

performance ratio
(32 MB/page ratio)

Percentage of
TLB misses

512 KB 1.00 0.00139%

4 MB 1.00 0.00018%

32 MB 1.00 0.00001%

Overhead
(memory

initialization)

 Chapter 3 Functions of Large Pages

Functions of Large Pages
How to Use Large Pages

 lpgparm Command

 Demand Paging

Area Management

 Different Areas Allocated for Different Variable Types

 Arena Process

 Thread Heap

 Binning (bin Expansion)

Other

 Environment Variables Used for Tuning

Copyright 2016 FUJITSU LIMITED 12

 Chapter 3 Functions of Large Pages

lpgparm Command (1/4)

Copyright 2016 FUJITSU LIMITED 13

 lpgparm command
 You can specify a large page size from 8 KB, 512 KB, 4 MB, 32 MB, and default as

appropriate to application characteristics, for high-speed execution of applications.

 You can specify a large page size when executing an application with the lpgparm
command.

 How to use the command

 lpgparm [-s process stack page size] [-t thread stack page size]

 [-d data page size] [-h heap page size]

 [-S shared memory page size]

 [-p sTLB page size]

 [-f floating-point register save and restore mode]

 [-l large page paging mode]

 [--help] program name program argument

 Default large page size values

 The default value of -s, -t, -d, -h, -p, and –S is 4 MB.

 Note: Executing only a.out is equivalent to executing lpgparm with the default value.
 a.out is assumed to be a load module created with -Klargepage specified
 at the compile time.

 Chapter 3 Functions of Large Pages

lpgparm Command (2/4)

Copyright 2016 FUJITSU LIMITED 14

 Specifying a page size for each area

 Option: -s pagesize -t pagesize -d pagesize -h pagesize –S pagesize

• You can specify any of the values shown between the curly braces (default:
4MB):
-s pagesize -t pagesize -d pagesize -h pagesize –S pagesize

 { 8KB | 512KB | 4MB | 32MB | default| auto }
* auto can be specified only with -d.

Function: Uses a stack segment area, thread stack area, data segment area, heap
segment area, and shared memory area of the size specified in the
respective pagesize.

Effect: Increases the size to reduce TLB misses and thus improve execution
performance.

 Note 1: Shared memory is related to the following interface.
 System V IPC shared memory shmget(2)/shmat(2)/shmdt(2)/shmctl(2)
 POSIX shared memory shm_open(3)/shm_unlink(3)

 Note 2: For downward compatibility, you can specify that the page size be 256 MB.

 When the specified page size is 256 MB, it works like it is 32 MB.

 Chapter 3 Functions of Large Pages

lpgparm Command (3/4)

Copyright 2016 FUJITSU LIMITED 15

 Specifying a page size for use with the sTLB

 Option: -p pagesize

• You can specify any of the values shown between the curly braces (default:
4MB):
-p pagesize { 8KB | 512KB | 4MB | 32MB }

Function: Uses the sTLB of the size specified in pagesize.
 (Only a single page size can be used at a time.)

Effect: Uses the sTLB with many TLB entries to reduce TLB misses and thus improve
execution performance.

 Example: lpgparm –s 32MB –t 32MB –d 32MB –h 32MB –p 32MB –S 32MB a.out

 Chapter 3 Functions of Large Pages

lpgparm Command (4/4)

Copyright 2016 FUJITSU LIMITED 16

 Specifying paging when acquiring memory

 Option: -l pagingmode

• You can specify any of the values shown between the curly braces (default: use):
-l pagingmode { none | use | demand | prepage }

 Function: If use or prepage is specified, use large pages and acquire memory by
prepaging.

 If demand is specified, use large pages and acquire memory by demand
paging.

 If none is specified, use normal pages and acquire memory by demand
paging.

 Effect: Improves execution performance through paging appropriate for memory
acquisition.

 Example: lpgparm –l demand a.out

* For details on demand paging, see the next page (Demand Paging).

 Chapter 3 Functions of Large Pages

 Example of demand paging when allocating a dynamic area (lpgparm –l demand)
 Prepaging (default)

 Area acquired at the allocate time

 Demand paging (-l demand specified)

 Area acquired at the initial area access time

Demand Paging

Copyright 2016 FUJITSU LIMITED 17

 program main

 integer, parameter::N=(10*1024*1024+384)

 real*8,allocatable::a(:),b(:),c(:)

 …

 allocate(a(N),b(N),c(N))

 …

!$omp parallel do

 do i=1,N

 c(i)=a(i)+b(i)*d

 enddo

!$omp end parallel do

 …

 end

Prepaging allocates the
array a, b, and c areas here.

The areas are allocated on
the CMG side where the
allocate statement is
executed.

Demand paging allocates the
array a, b, and c areas here.

Areas are also allocated on
the CMG where each thread
will be executed.

When dynamically acquiring an area, demand paging
can be expected to improve performance for a 32-core
thread parallelization program in some cases.

Core
31 ...

Operation core (x 16)

Core
16

Shared cache

Memory 1

Core
15 ...

Operation core (x 16)

Shared cache

Memory 0

Core
0

CMG0 side CMG1 side

Core
31 ...

Operation core (x 16)

Core
16

Shared cache

Memory 1

Core
15 ...

Operation core (x 16)

 Shared cache

Memory 0

Core
0

CMG0 side CMG1 side

 Chapter 3 Functions of Large Pages

Different Areas Allocated for Different Variable Types (1/3)

Copyright 2016 FUJITSU LIMITED 18

"a" is in the data area (-d). However, for an executable program compiled with -Kauto or
–Kthreadsafe specified, "a" is in the process stack area (-s).

"b" is in the data area (-d).

"c" is in the heap area (-h).

Note: Data in the process stack area (-s) at the parallel execution time also uses the thread
stack area (-t).

 Different areas allocated for different variable types (Fortran)

 program main

 integer*8, parameter::N=(1024_8)

 real*8 a(N) !a is local array with no initial value

 real*8 :: b (N)=1.0 !b is array with initial value

 real*8,allocatable::c(:) !c is allocated array

 allocate(c(N))

 …

 end

 Chapter 3 Functions of Large Pages

Different Areas Allocated for Different Variable Types (2/3)

Copyright 2016 FUJITSU LIMITED 19

"a" is in the data area (-d).

"b" is in the data area (-d).

"c" is in the heap area (-h).

"d" is in the process stack area (-s).

Note: Suppose you specify an executable program that is compiled with array_private specified
together with –Kparallel or -Kopenmp at the parallel execution time. Then, data in the
process stack area (-s) uses the thread stack (-t) as well.

 Different areas allocated for different variable types (C language)
 #define N 1024

 double a[N]; //a is global variable with no initial value

 double b[N]={0.0}; //b is global variable with initial value

 double *c; //c is pointer variable

 int main(void) {

 double d[N]; //d is local variable

 c=(double *)malloc(sizeof(double)*N);

 …

 }

 Chapter 3 Functions of Large Pages

Different Areas Allocated for Different Variable Types (3/3)

Copyright 2016 FUJITSU LIMITED 20

"a," "b," and "c" are in the heap area (-h).

Note: The areas allocated for variables are basically the same as in the C language, except that the
vector class and other dynamically obtained areas are allocated in the heap area.

For example, variable a in the above example is allocated to the data area, but the content of
"a" includes only information such as the beginning address and ending address of an array. The
Klass-type array of the N element is allocated in the heap area.

 Different areas allocated for different variable types (C++)

 const int N = 1024;

 struct Klass {

 double k;

 Klass() : k (0.0) {}

 Klass(double K) : k (K) {}

 };

 std::vector<Klass> a(N); //Area reservation by vector class

 int main(){

 Klass* b = new Klass[N]; //Area reservation by new operator

 std::vector<double> c(N); //Area reservation by vector class

 return 0;

 }

 Chapter 3 Functions of Large Pages

Arena Process (1/2)

Copyright 2016 FUJITSU LIMITED 21

 What is an arena?

 A memory area allocated in advance (memory pool) is used to improve processing
performance for memory acquisition/deallocation requests. An arena is the
combination of that memory pool and its management.

 What is the arena process?

 The arena process is the overall process for management (including reuse), etc. of the
memory pool.

 Effect of the arena process
 Reduction in the overhead of initialization

 Address tuning to prevent cache thrashing

 Memory allocation process
 Memory is allocated from the memory pool (heap area) when there is a memory

request from a user.

 For memory requested during thread execution, a memory pool (heap area) is
allocated for every thread. (Thread heap)

 If the memory pool does not have an area of the requested size, the heap area is
extended to allocate a sufficient area.

 Chapter 3 Functions of Large Pages

Arena Process (2/2)

Copyright 2016 FUJITSU LIMITED 22

 Arena deallocation process function
 The function instructs whether to deallocate an arena in response to
 a memory deallocation request.

 XOS_MMM_L_ARENA_FREE=1(default)

Function: Deallocates an arena in response to a memory deallocation
request.

Effect: Can reduce memory usage.

 XOS_MMM_L_ARENA_FREE=2

Function: Does not deallocate an arena in response to a memory
deallocation request.

Effect: Can save the cost of memory acquisition/deallocation.

* To reduce memory usage,

 specify XOS_MMM_L_ARENA_FREE=1.

 To achieve acceleration,

 specify XOS_MMM_L_ARENA_FREE=2.

 Chapter 3 Functions of Large Pages

Thread Heap (1/2)

Copyright 2016 FUJITSU LIMITED 23

 Allocating available memory in a heap (extensible memory space)

 Managing deallocated memory areas with separate lists for each size. This results in high speed
in searches for the next available memory of the same size (binning).

 Creating a separate heap area for each thread. The result is an on-board mechanism (thread
heap) for parallel memory search even in cases of contention for malloc between threads.

 Large memory (128 MiB or more) is allocated by mmap, and the memory is instantly deallocated
(mmap chunk) at the time of free.

* With the environment variable MALLOC_MMAP_THRESHOLD_, you can specify the threshold of
memory allocation by mmap. (The default is 134209536 (128 MiB - 8 KiB).)

 Basic operation of glibc malloc

heap

Available memory Memory used

Management of available areas by
using separate lists for each size
(binning)

Extensible

heap heap heap heap heap

Separate heap created for each thread (generated when contention occurs)
 Preferential search for available area from thread-specific heap

thr1 thr2 thr3 thr4 thr5
Conceptual diagram of binning Conceptual diagram of a thread heap

 Chapter 3 Functions of Large Pages

Binning (bin Expansion)

24

 Large page libraries use memory areas of various sizes, including small areas for
communication and large areas for computing.

 Sizes of available memory are categorized into nine steps (classes). Each class is
provided with a memory management list of its own stride. This arrangement
realizes high-speed search for available memory.

Size of available
memory

Stride of available memory
management list

32 B to 80 B 8 B

80 B to 1 KB 16 B

1 KB to 3 KB 64 B

3 KB to 10 KB 512 B

10 KB to 44 KB 4 KB

44 KB to 256 KB 32 KB

256 KB to 4 MB 256 KB

4 MB to 64 MB 4 MB

64 MB to 512 MB 64 MB

512 MB or more None (management with single list)

 Chapter 3 Functions of Large Pages

Thread Heap (2/2)

Copyright 2016 FUJITSU LIMITED 25

 The use of thread heaps by an HPC application as in (a) will produce many unused
areas.

 There are fewer cases of simultaneous acquisition between threads (for an area for long-term use).

 (Most cases of contention between threads occur in temporary area acquisition.)

 By default, large page libraries are configured like in (b) to not generate a thread heap.

 This is because large page sizes significantly affect memory efficiency.

* With the environment variable XOS_MMM_L_ARENA_LOCK_TYPE, you can specify whether to
generate thread heaps. (The default is 1 (setting to not generate thread heaps).)

 How to specify a thread heap

Heap

Heap

Heap

Heap
Heap

thr1 thr2 thr3 thr4 thr5 thr1 thr2 thr3 thr4 thr5

(b) Use of heap shared among threads
XOS_MMM_L_ARENA_LOCK_TYPE=1

(a) Separate heaps allocated for individual threads
XOS_MMM_L_ARENA_LOCK_TYPE=0

 Chapter 3 Functions of Large Pages

Environment Variables Used for Tuning (1/3)

Copyright 2016 FUJITSU LIMITED 26

Variable name
(default value)

Meaning Purpose

MALLOC_MMAP_TH
RESHOLD_(134209
536(128MiB-8KiB))

Threshold size
for
generating
mmapped
chunk

An mmapped chunk is created for a memory request to allocate memory of at least the
size specified in this environment variable.

MALLOC_TRIM_THR
ESHOLD_
(134217728(128Mi
B))

Specification
of arena
contraction
baseline
value

The arena contraction process takes place when the size of an available area retaining an
arena (heap or thread heap) exceeds the value specified in this variable. If memory of 128
MiB or more is repeatedly acquired and deallocated, a setting value of 128 MiB or more in
this variable can improve memory acquisition performance.

MALLOC_TOP_PAD_

(131072)

Specification
of extension
size of heap
area (in
bytes)

An extension size is set for each extension of the heap area.
The rolled-up value in the page size is applied.
You can reduce page allocation and deallocation costs and improve performance by
setting a value larger than the size of memory acquired and deallocated at one time by
applications. (See also the description of MALLOC_TRIM_THRESHOLD_.)

 Chapter 3 Functions of Large Pages

Environment Variables Used for Tuning (2/3)

Copyright 2016 FUJITSU LIMITED 27

Variable name
(default value)

Meaning Purpose

XOS_MMM_L_AR
ENA_FREE

(1)

1: Deallocatable
memory pages
instantly
deallocated at
the time of free

2: Memory
pages not
deallocated

The setting relates to the handling of heap areas deallocated by free or cfree.
"1" gives priority to memory usage efficiency, and "2" gives priority to memory acquisition
performance. The default value is 1. Values other than “1” and “2” are regarded as “1”.
For the value of 1, the area reserved in an mmapped chunk is instantly deallocated. A
memory request for a size of less than 128 MiB has memory allocated from a heap area.
That memory is not subject to instant deallocation. The deallocation process is executed for
each available area of a size of more than 128 MiB retained in a heap area.
For the value of “2”, a memory request for a size of 128 MiB or more has memory allocated
from a heap area. That memory will be retained as an available memory area even after
being deallocated. The deallocation process is not executed for heap areas. Thread-specific
heaps are not used because memory of all sizes must be allocated in a single heap area to
prevent inefficient memory usage.

XOS_MMM_L_AR
ENA_LOCK_TYPE

(1)

Default value of
1 (sequential
processing)

The setting relates to memory allocation policies. "0" gives priority to memory acquisition
performance, and "1" gives priority to memory usage efficiency. The default value is “1”.
Values other than “0” and “1” are regarded as “1”. For the value of “0”, new mmapped arenas
are created to process malloc requests in parallel when multiple malloc requests are called
simultaneously. Consequently, memory usage efficiency may decrease. For the value of “1”,
the available search time of existing arenas may increase because of the sequential
processing.

XOS_MMM_L_MA
X_ARENA_NUM

(1)

Specification of
maximum
number of
arenas that can
be generated
(total number of
process and
thread heaps)

This variable is effective only when XOS_MMM_L_ARENA_LOCK_TYPE=1. You can set the
number of arenas (the sum of the numbers of heaps and thread heaps) that can be
generated. (The value of “1” specifies the use of only heap areas, so thread heaps are not
generated.)
Use this variable when you want to limit the number of thread heaps created. (The setting
of XOS_MMM_L_ARENA_LOCK_TYPE=0 does not limit the number of thread heaps
generated.)
Note that using thread heaps improves memory acquisition performance through parallel
processing of malloc but may degrade memory efficiency. Therefore, use this variable after
studying the balance between performance and efficiency.

 Chapter 3 Functions of Large Pages

Environment Variables Used for Tuning (3/3)

Copyright 2016 FUJITSU LIMITED 28

Variable name
(default value)

Meaning Purpose

XOS_MMM_L_H
EAP_SIZE_MB

(128)

Specification
of expansion
size of thread
heaps

For use of thread heaps, this variable sets the size of memory acquired for thread heap
generation and expansion.
The default value is 128 MiB. A memory request for a size of 128 MiB or less has memory
allocated from a thread heap. If the size of memory acquired from any thread is less than 128
MiB, you can improve the memory efficiency of the thread heap by setting a value of less
than 128 in this environment variable.

 Chapter 3 Evaluation Functions for Large Pages

Evaluation Functions for Large Pages

 List of Evaluation Functions for Large Pages

 Large Page Memory Usage Information

 Large Page Statistics

Copyright 2016 FUJITSU LIMITED 29

 Chapter 3 Evaluation Functions for Large Pages

List of Evaluation Functions for Large Pages

Copyright 2016 FUJITSU LIMITED 30

 The advanced profiler (fapp) can collect and output the following large page
information by:

 Outputting large page memory usage information

 Outputting large page statistics

Option name Function and specification unit Function
overview

-I lpgusage |
nolpgusage

Gives an instruction to collect large page memory usage
information.
· lpgusage: Collect large page memory usage information.
· nolpgusage: Do not collect large page memory usage
information.
The default of this option is nolpgusage.
This option cannot be specified together with the -Impi, -Ihwm,
-Ilpgstats, or -H option.

Analyze the use
conditions of memory
in detail.
Output the use
conditions of the
internal memory of
each heap (arena).

-I lpgstats |
nolpgstats

Gives an instruction to collect large page statistics.
· lpgstats: Collect large page statistics.
· nolpgstats: Do not collect large page statistics.
The default of this option is nolpgstats.
This option cannot be specified together with the -Impi, -Ihwm,
-Ilpgusage, or-H option.

Identify whether a
performance problem
is due to a large page.
Output statistics, such
as the malloc issuance
count and processing
time.

 Chapter 3 Large Page Memory Usage Information

Large Page Memory Usage
Information

 How to Use Large Page Memory Usage Information

Copyright 2016 FUJITSU LIMITED 31

 Chapter 3 Large Page Memory Usage Information

How to Use Large Page Memory Usage Information

Copyright 2016 FUJITSU LIMITED 32

 Function: Output the use conditions of memory for each process in detail.

 Purpose: You can use the information to check for disparities in memory usage ratio
between processes, such as if an application fails only in a specific process.

 How to use

 (1) Specify the -I lpgusage option in the fapp command to collect advanced profiling data.

 (2) Specify the -I lpg option in the fapppx command to analyze the collected advanced
profiling data.

 Collecting large page statistics (Write the following command in a job script.)

fapp -C -d data_lpgusage -I lpgusage a.out

 Outputting large page statistics (Execute the following command on a login node.)

 fapppx -A -I lpg -d data_lpgusage

The output advanced profiling data is assumed to be data_lpgusage.

 Chapter 3 Large Page Statistics

Large Page Statistics

 How to Use Large Page Statistics

 Usage Example of Large Page Statistics

Copyright 2016 FUJITSU LIMITED 33

 Chapter 3 Large Page Statistics

How to Use Large Page Statistics

Copyright 2016 FUJITSU LIMITED 34

 Function: Output statistics, such as the malloc issuance count and processing time.

 Purpose: Identify whether a performance problem is due to a large page.

 How to use
 (1) Specify the -I lpgstats option in the fapp command to collect advanced profiling data.

 (2) Specify the -I lpg option in the fapppx command to analyze the collected advanced profiling data.

 Collecting large page statistics (Write the following command in a job script.)

fapp -C -d data_lpgstats -I lpgstats a.out

 Outputting large page statistics (Execute the following command on a login node.)

fapppx -A -I lpg -d data_lpgstats

The output advanced profiling data is assumed to be data_lpgstats.

 Chapter 3 Large Page Statistics

Usage Example of Large Page Statistics (1/2)

Copyright 2016 FUJITSU LIMITED 35

 Phenomenon

 Deterioration of application performance

 Data to collect
 Collect and analyze large page statistics.

 Analysis step
 Check whether AVG of malloc is within several tens of microseconds.

 Kind Count TimeMin TimeMax TimeAvg SizeMin SizeMax SizeAvg

 AVG 100417 0 96101 174 1 405798912 1351723 malloc all 0
 MAX 100417 0 96101 174 1 405798912 1351723
 MIN 100417 0 96101 174 1 405798912 1351723

 AVG 0 0 0 0 0 0 0 calloc
 MAX 0 0 0 0 0 0 0
 MIN 0 0 0 0 0 0 0
 - snip -
 Kind NewHeap DelHeap Expbrk Expmmap Newmmap Delmmap
 --
 AVG 0 0 3903 0 0 0 all 0
 MAX 0 0 3903 0 0 0
 MIN 0 0 3903 0 0 0

Value of over 100 microseconds indicates potential
deterioration in memory acquisition performance

Possible frequent heap expansion/contraction

 Chapter 3 Large Page Statistics

Usage Example of Large Page Statistics (2/2)

Copyright 2016 FUJITSU LIMITED 36

 Means of improvement
Thrashing may be occurring because of frequent heap expansion/contraction, so expand the
available areas retained for the library. Set the value of the environment variable
MALLOC_TRIM_THRESHOLD_ to 128 MB or more.

 Execution example
 256 MB is set in MALLOC_TRIM_THRESHOLD_ with the following line added to the job script.

 Check whether AVG of malloc is within several tens of microseconds.

 Important point
 Raising the MALLOC_TRIM_THRESHOLD_ setting value may increase memory usage.

Perform tuning with consideration of the balance with acquisition performance.

 Kind Count TimeMin TimeMax TimeAvg SizeMin SizeMax SizeAvg
 --
 AVG 100417 0 96101 10 1 405798912 1351723 malloc all 0
 MAX 100417 0 96101 10 1 405798912 1351723
 MIN 100417 0 96101 10 1 405798912 1351723
 --
 AVG 0 0 0 0 0 0 0 calloc
 MAX 0 0 0 0 0 0 0
 MIN 0 0 0 0 0 0 0
 - snip -
 Kind NewHeap DelHeap Expbrk Expmmap Newmmap Delmmap

 AVG 0 0 6 0 0 0 all 0
 MAX 0 0 6 0 0 0
 MIN 0 0 6 0 0 0

Within 10 microseconds

 export MALLOC_TRIM_THRESHOLD_=268435456

Heap expansion/contraction count
decreased

 Chapter 3

Revision History

Version Date Revised section Details
2.0 April 25, 2016 - - First published

Copyright 2016 FUJITSU LIMITED 37

