
FUJITSU LIMITED
April 2016

Chapter 4
Fortran

Copyright 2016 FUJITSU LIMITED

 Chapter 4

Contents

 How to Compile/Execute a Program

 Aspects of Compile Information

 Typical Compiler Optimizations
 SIMD Optimization

 Software Pipelining

 Loop Optimization

 Automatic Parallelization

 Recommended Options (Effects and Impact)
 Description of Recommended Options

 Options with an Impact on Operation Results and Execution Results

 Other Compile Options

 Optimization Options

 Other Optimization Options

 Debug Functions

Copyright 2016 FUJITSU LIMITED 1

 Chapter 4 How to Compile/Execute a Program

How to Compile/Execute a Program

How to Compile a Program

How to Execute a Program

* See “Chapter 2 Compiling and Linking Fortran Programs” and “Chapter 3
Executing Fortran Programs” in the Fortran User‘s Guide for details.

Copyright 2016 FUJITSU LIMITED 2

 Chapter 4 How to Compile/Execute a Program

Format (cross): frtpx [option list] [file name list]

(own) : frt [option list] [file name list]

-Kparallel To use automatic parallelization

-Kopenmp To use OpenMP

Specify the following options when using thread parallelization processing:

Compile example:

$ frtpx sample.f90 (Compile with sequential processing)

$ frtpx -Kparallel sample.f90 (Compile with automatic parallelization)

How to Compile a Program

 Fortran

Copyright 2016 FUJITSU LIMITED 3

 Chapter 4 How to Compile/Execute a Program

#!/bin/sh

#PJM -L "node=1" # Number of nodes

./a.out

Example: Script for sequential execution

 Sequential execution

* The files for standard output and standard error output of the job are as follows:
 {pjm-script}.o{req-id}: Standard output
 {pjm-script}.e{req-id}: Standard error output

 pjm-script: PJM script name, req-id: Request number

./{executable module name} [argument]

Execute the executable module generated at compilation.

How to Execute a Program (Sequential)

Copyright 2016 FUJITSU LIMITED 4

 Chapter 4 How to Compile/Execute a Program

#!/bin/sh

#PJM -L "node=1" # Number of nodes

PARALLEL=16 ;export PARALLEL

./a.out

Example: Script for executing automatic parallelization

 Thread parallelization execution (automatic parallelization)

How to Execute a Program (Thread Parallelization Processing)

PARALLEL={number of threads} ;export PARALLEL

Specify the number of threads for parallel execution in the environment variable
PARALLEL, and execute the program.

#!/bin/sh

#PJM -L "node=1" # Number of nodes

OMP_NUM_THREADS=16 ;export OMP_NUM_THREADS

./a.out

Example: Script for OpenMP execution

 Thread parallelization execution (OpenMP)

OMP_NUM_THREADS={number of threads} ;export OMP_NUM_THREADS

Specify the number of threads for parallel execution in the environment variable
OMP_NUM_THREADS, and execute the program.

Copyright 2016 FUJITSU LIMITED 5

 Chapter 4 Aspects of Compile Information

Aspects of Compile Information

 Aspects of Compile Information

 Operation Confirmation for Optimization

* See “4.1.2 Compilation Information” in the Fortran User‘s Guide for details.

Copyright 2016 FUJITSU LIMITED 6

 Chapter 4 Aspects of Compile Information

- Program list
- Optimization information by loop
- Optimization information by line
- Statistical information
- Error message

The following information is output as compile
information:

Aspects of Compile Information

 subroutine sub

 do xxx

 yyy

 zzz

 enddo

 end

Optimization information
by loop

Statistical information

Optimization information
by line

 sample.lst is output as compile information.

Compile example

$ frtpx –Kfast,parallel –Nlst=t sample.f90

Compiler options format:

-Nlst[=lst_arg] lst_arg:{ a | d | i | m | p | t | x }

Aspects of compile information and an output example are described
below to provide prerequisite knowledge for compiler optimization.

Program list

Copyright 2016 FUJITSU LIMITED 7

 Chapter 4 Aspects of Compile Information

(line-no.)(nest)(optimize)

 1 subroutine sub(a, b, n)

 2 real*8 a(n), b(n)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 800

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 3 1 pp 8v do i=1,n

 4 1 p 8v a(i)=b(i)+b(i+1)+b(i+2)

 5 1 p 8v enddo

 6 end subroutine sub

Procedure information

 Lines : 6

 Statements : 6

 Stack(byte): 48

 Prefetch num: 0

Operation Confirmation for Optimization

Optimization information by line

 SIMD optimization information

 Parallelization information

 Number of loop unrollings

 Inline expansion information

Nesting

 Line Nos.

Optimization information by loop

 Loop optimization information
(loop fusion, loop interchange, etc.)

 SIMD optimization information

 Parallelization information

 Software pipelining

 Prefetch information

Statistical information

Copyright 2016 FUJITSU LIMITED 8

 Chapter 4 Typical Compiler Optimizations

 SIMD Optimization

 Software Pipelining

 Loop Optimization

 Automatic Parallelization

Typical Compiler Optimizations

9 Copyright 2016 FUJITSU LIMITED

 Chapter 4 SIMD Optimization(Single Instruction Multiple Data)

■ Basic Principles of SIMD Optimization

■ SIMD Optimization of Contiguous Data

■ Use of Single Precision and Double Width (8 SIMD)

■ SIMD Optimization of Stride and Indirect Access

■ SIMD Optimization of Complex Types

■ Masked SIMD Optimization

■ Confirmation of SIMD Optimization

■ Loops Suitable for SIMD Optimization

* See “9.1.1.7 SIMD” in the Fortran User‘s Guide for details.

SIMD Optimization
(Single Instruction Multiple Data)

Copyright 2016 FUJITSU LIMITED 10

 Chapter 4 SIMD Optimization(Single Instruction Multiple Data)

Cache

Basic Principles of SIMD Optimization

 SIMD (Single Instruction Multiple Data)

 Parallel processing of multiple operations from a
single instruction

 SIMD features of SPARC64TM XIfx

 Parallel processing of four operations from a single
instruction

 Support of multiply-add operations

 Capable of executing two SIMD instructions
concurrently with a single core (double-precision
instructions)

Copyright 2016 FUJITSU LIMITED 11

SIMD

Memory

Achieves "easy-to-use SIMD for applications"
and "acceleration of computing"

Capable of processing 16 operations
concurrently on a single core
 (512 operations by 1 chip) +

Program example

 do i=1,4

 c(i)=a(i)+b(i)

 enddo

A(1) A(2) A(3) A(4) B(1) B(2) B(3) B(4)

C(1) C(2) C(3) C(4)

Register A(1) A(3) A(4) B(1) B(2) B(3) B(4) A(2)

 Double-precision SIMD load acceptable even at the
8-byte boundary

 Capable of processing 32 operations concurrently,
in the case of single precision

 SIMD optimization also possible for the integer type

 Chapter 4 SIMD Optimization(Single Instruction Multiple Data)

Scalar
instructions

SIMD
instructions

SIMD Optimization of Contiguous Data

Copyright 2016 FUJITSU LIMITED 12

Conversion of the array elements of the innermost loop and the array elements
of the second, third, and fourth iterations into SIMD instructions reduces the
number of executed instructions to one-fourth, so processing is accelerated.

 SIMD optimization of contiguous data

Source code

 subroutine sub(a, b, n)

 real*8 a(n,n), b(n,n)

 do j = 1 , n

 do i = 1 , n

 a(i, j) = b(i, j)*2.0

 enddo

 enddo

 end

A single instruction execute the data of four
elements, like b(i:i+3, j).

Without SIMD optimization

With SIMD optimization

Image of instructions

load b(i, j), %r1

mult %r1, 2.0, %r2

store %r2, a(i, j)

Image of instructions

vload b(i:i+3, j), %vr1

vmult %vr1, 2.0, %vr2

vstore %vr2, a(i:i+3, j)

 Chapter 4 SIMD Optimization(Single Instruction Multiple Data)

Source code

subroutine sub(a,b,c,n)

real(4),dimension(1:n) :: a,b,c

do i=1,n

 a(i) = b(i)  c(i)

enddo

end subroutine

Copyright 2016 FUJITSU LIMITED 13

Use of Single Precision and Double Width (8 SIMD)

The processor supports the use of double
width only for the following instructions
for single-precision floating-point
operations:
 FMA
 Add
 Subtract
 Multiply

Single-precision floating-point 4 SIMD load

Single-precision floating-point 8 SIMD load

a(i) 0 a(i+1) 0 a(i+2) 0 a(i+3) 0

a(i) a(i+1) a(i+2) a(i+3) a(i+4) a(i+5) a(i+6) a(i+7)

If an instruction other than the supported ones appears, 4 SIMD
execution is performed.

 Chapter 4 SIMD Optimization(Single Instruction Multiple Data) Copyright 2016 FUJITSU LIMITED 14

SIMD Optimization of Stride and Indirect Access

Source code

subroutine sub(a,b,m,n)

real(8),dimension(1:n) :: a,b

integer(4),dimension(1:n) :: m

do i=1,n,2

 a(i) = b(m(i))

enddo

end subroutine

Stride lengths ranging from 2 to 7 are available for stride load and
store. For a stride length greater than the upper limit, use indirect load
and store.

Image of instructions

vloadst m(i)@2,%vr1 Stride access for loading array m

vloadid b(%vr1),%vr2 Indirect access for loading array b

vstorest %vr2,a(i)@2 Stride access for storing array a

 Chapter 4 SIMD Optimization(Single Instruction Multiple Data) Copyright 2016 FUJITSU LIMITED 15

SIMD Optimization of Complex Types

Stride load/store used

Source code

subroutine sub(a,b,r,n)
complex(8),dimension(1:n) :: a,b
real(8) :: r
do i=1,n
 a(i) = b(i) * r
enddo
end subroutine

Without SIMD optimization

With SIMD optimization

 SIMD optimization of complex types

Image of instructions

ldd r, %r1
ldd b(i).r, %r2
ldd b(i).i, %r3
fmuld %r2, %r1, %r2
fmuld %r3, %r1, %r3
std %r2, a(i).r
std %r3, a(i).i

Image of instructions

vloadst r, %vr1
vloadst b(i:i+3).r, %vr2
vloadst b(i:i+3).i, %vr3
fmuld,s %vr2, %r1, %vr2
fmuld,s %vr3, %r1, %vr3
vstorest %vr2, a(i:i+3).r
vstorest %vr3, a(i:i+3).i

Stride
load/store
used

 Chapter 4 SIMD Optimization(Single Instruction Multiple Data) Copyright 2016 FUJITSU LIMITED 16

Masked SIMD Optimization

Use a masked instruction to enable optimization by software pipelining and to
increase the efficiency of execution of a loop containing an IF construct.

To use a masked SIMD instruction, the -Ksimd=2 option may be required.

Depending on the true ratio of the IF construct, execution performance may
deteriorate because of redundant execution of the instruction in the IF construct.

 Masked SIMD optimization

Source code

 subroutine sub(a, b, c, x, n)

 real*8 a(n), b(n), c(n), x(n)

 do i = 1 , n

 if (x(i) .gt. 0.0) then

 a(i) = b(i) * c(i)

 else

 a(i) = b(i) / c(i)

 endif

 enddo

 end

You can remove a conditional branch instruction by using a masked
instruction as follows.

(1) Compare FP registers, and write the results into the FP registers.
 (Create a mask.)

(2) Execute the operations.

(3) Selectively store FP register values in memory according to the FP
 register values.

Masked SIMD optimization available

(1)

(2)

(3)

Image of instructions

vgt x(i:i+3) , 0.0, %vr1

vnot1 %vr1, %vr2

: Operations

vmaskstore %vr3, %vr1, a(i:i+3)

vmaskstore %vr4, %vr2, a(i:i+3)

 Chapter 4 SIMD Optimization(Single Instruction Multiple Data)

(line-no.)(nest)(optimize)

 :

3 real*8 a(n,n), b(n,n)

4 1 do j = 1 , n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< Loop-information End >>>

5 2 v do i = 1 , n

6 2 v a(i, j) = b(i, j)*2.0

7 2 v enddo

8 1 enddo

 :

Confirmation of SIMD Optimization

DO loop SIMD optimization information

v: SIMD-optimized

m: Includes SIMD-optimized part and part that is not
SIMD-optimized

s: Not SIMD-optimized

Blank: Not subject to SIMD optimization

Executable statement SIMD optimization information

v: Can be SIMD-optimized

m: Includes part that can be SIMD-optimized and part that cannot be
SIMD-optimized

s: Cannot be SIMD-optimized

4 SIMD-optimized

Copyright 2016 FUJITSU LIMITED 17

 Example of compile information output

 Chapter 4 SIMD Optimization(Single Instruction Multiple Data)

Loops Suitable for SIMD Optimization

Copyright 2016 FUJITSU LIMITED 18

 Loop characteristics required for SIMD optimization by the compiler

 The compiler should be able to determine the number of loop iterations
before entering the loop.

 There should be no branches (e.g., if statement) in the loop. (*1)

 There should be no subroutine calls in the loop. (*2)

 There should be no overlap of array areas between the right-hand and

left-hand sides of an expression in the loop.

 Computation number n of the loop should not depend on the results of
computation number n-1.

(*1) In some cases, the effect of masked SIMD may depend on the true ratio of an if statement
or other conditions.

(*2) In some cases, inline expansion may enable SIMD optimization.

 Chapter 4 Software Pipelining

Software Pipelining

 Basic Principles of Software Pipelining

 Confirmation of Software Pipelining

* See “9.1.1.6 Software Pipelining” in the Fortran User‘s Guide for details.

Copyright 2016 FUJITSU LIMITED 19

 Chapter 4 Software Pipelining

Machine model assumed in
the conceptual description

Before optimization

After
optimization

Basic Principles of Software Pipelining
 Software pipelining improves parallelism at the instruction level in a kernel

loop by overlapping the next iteration of the loop.

Latency of load = 3 cycles
Latency of add = 3 cycles
Latency of store = 1 cycle
Number of operation units for load and store = 3
Number of commits = 4 (For load and store, up to
3 can be issued simultaneously.)

load load

add

store

Kernel entry

Kernel exit

Kernel

Epilogue

Prologue

Program example

do i=1,n
 a(i) = b(i) + c(i)
enddo

Kernel
Improvement from 7
cycles per iteration to
1 cycle per iteration

Copyright 2016 FUJITSU LIMITED 20

The loop that is the most
representative of the features of the
program is called the kernel loop.

load load

load load

load load

add

add

add

store

store

store

load load

load load

load load

load load

load load

load load

add

add

add

add

add

add

store

store

store

store

store

store

The kernel becomes able to execute four instructions in
one cycle. Also, waiting for an instruction to be
completed has been removed.
Performance has thus improved.

Instructions of the
same color are in
the same iteration.

 Chapter 4 Software Pipelining

 (line-no.)(nest)(optimize)

 :

2 real*8 a(n), b(n)

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

3 1 8v do i=1,n

4 1 8v a(i)=b(i)+b(i+1)+b(i+2)

5 1 8v enddo

 :

Confirmation of Software Pipelining

 Example of compile information output

Indicates that software pipelining
of loop was done

Copyright 2016 FUJITSU LIMITED 21

 Chapter 4 Loop Optimization

Loop Optimization
 Loop Optimization

 Loop Interchange

 Loop Fission

 Loop Fusion

 Loop Unrolling

 Loop Collapse
* See “12.2.3.1 Automatic Parallelization” in the Fortran User‘s Guide for details.

 Copyright 2016 FUJITSU LIMITED 22

 Chapter 4 Loop Optimization Copyright 2016 FUJITSU LIMITED 23

Loop Optimization
 Loop optimization

 The following table lists typical types of automatic loop optimization by the
compiler.

 Loop optimization and
transformation type

Effect

Loop interchange - Data localization
- Parallelization in the outer loop
 (coarse granularity)

Loop distribution or loop fission - Facilitation of optimization

Loop fusion - Data localization
- Improved parallelism at the instruction level

Loop unrolling - Reduction in instructions
- Improved parallelism at the instruction level

Loop collapse - Improved scheduling efficiency
- Improved load balancing

 Chapter 4 Loop Optimization Copyright 2016 FUJITSU LIMITED 24

Loop Interchange

Original source
Appearance after compiler

optimization

 subroutine sub(a, b, n, m)

 real*8 a(n, m), b(n, n, m)

 do j=1,n

 do k=1,n

 do i=1,m

 a(j,k)=a(j,k)+b(j,i,k)

 enddo

 enddo

 enddo

 end

 subroutine sub(a, b, n, m)

 real*8 a(n, m), b(n, n, m)

 do k=1,m

 do i=1,n

 do j=1,n

 a(j,k)=a(j,k)+b(j,i,k)

 enddo

 enddo

 enddo

 end

 Purpose

 Data localization

• Array b is accessed sequentialy, thereby improving cache use efficiency.

Stride access Sequential access

 Chapter 4 Loop Optimization

Confirmation of Loop Interchange

 Example of compile information output (loop interchange)

Loops were interchanged, Loops were interchanged, so

loop j becomes nest 3,

loop k becomes nest 1,

and loop i becomes nest 2

Copyright 2016 FUJITSU LIMITED 25

 (line-no.)(nest)(optimize)

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< INTERCHANGED(nest: 3)

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 3 1 8v do j=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< INTERCHANGED(nest: 1)

 <<< Loop-information End >>>

 4 2 8 do k=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< INTERCHANGED(nest: 2)

 <<< Loop-information End >>>

 5 3 8 do i=1,m

 6 3 8v a(j,k)=a(j,k)+b(j,i,k)

 7 3 8 enddo

 8 2 8 enddo

 9 1 8v enddo

 Chapter 4 Loop Optimization Copyright 2016 FUJITSU LIMITED 26

Loop Fission

Original source
Appearance after compiler

optimization

subroutine sub(a, b, c, d, n)

 real*8 a(n), b(n), c(n), d(n, n)

 do i=2,n

 a(i)=b(i)+c(i)

 do j=1,n

 d(i,j)=d(i-1,j)+a(i)

 enddo

 enddo

end subroutine sub

 subroutine sub(a, b, c, d, n)

 real*8 a(n), b(n), c(n), d(n, n)

 do i=2,n

 a(i)=b(i)+c(i)

 enddo

 do j=1,n

 do i=2,n

 d(i,j)=d(i-1,j)+a(i)

 enddo

 enddo

 end subroutine sub

 Parallel

 Parallel

 Parallel

 Purpose

 Facilitation of optimization

• The loop fission process interchanges loops too, and this enables parallelization
of the outer loop.

 Chapter 4 Loop Optimization

2 real*8 a(n), b(n), c(n), d(n, n)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 1000

 <<< [OPTIMIZATION]

 <<< INTERCHANGED(nest: 2)

 <<< SPLIT

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

3 1 pp 8v do i=2,n

4 1 p 8v a(i)=b(i)+c(i)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 4

 <<< [OPTIMIZATION]

 <<< INTERCHANGED(nest: 1)

 <<< Loop-information End >>>

5 2 pp 8 do j=1,n

6 2 p 8s d(i,j)=d(i-1,j)+a(i)

7 2 p 8 enddo

8 1 p 8s enddo

Confirmation of Loop Fission

 Example of compile information output (loop fission)

Loop was split

Loops i and j were interchanged, so

loop i becomes nest 2,

loop j becomes nest 1,

and they are parallelized in j

Copyright 2016 FUJITSU LIMITED 27

 Chapter 4 Loop Optimization Copyright 2016 FUJITSU LIMITED 28

Loop Fusion

Original source
Appearance after compiler

optimization

 subroutine sub(a, b, c, d, e, n)

 real*8 a(n), b(n), c(n)

 real*8 d(n), e(n)

 do i=1,n

 a(i)=b(i)+c(i)

 enddo

 do i=1,n

 d(i)=a(i)+e(i)

 enddo

 end

 subroutine sub (a, b, c, d, e, n)

 real*8 a(n), b(n), c(n)

 real*8 d(n), e(n)

 do i=1,n

 a(i)=b(i)+c(i)

 d(i)=a(i)+e(i)

 enddo

 end

 Purpose

 Data localization

• Loop fusion enables reuse of array a.

 Improved parallelism at the instruction level

• Loop fusion increases the number of instructions in a loop and improves
parallelism at the instruction level through instruction scheduling.

 Chapter 4 Loop Optimization

(line-no.)(nest)(optimize)
 :
2 real*8 a(n), b(n), c(n)
3 real*8 d(n), e(n)
 <<< Loop-information Start >>>
 <<< [OPTIMIZATION]
 <<< FUSED(lines: 4,7)
 <<< SIMD(VL: 4)
 <<< SOFTWARE PIPELINING
 <<< Loop-information End >>>
4 1 8v do i=1,n
5 1 8v a(i)=b(i)+c(i)
6 1 8v enddo
 <<< Loop-information Start >>>
 <<< [OPTIMIZATION]
 <<< FUSED
 <<< Loop-information End >>>
7 1 do i=1,n
8 1 d(i)=a(i)+e(i)
9 1 enddo
 :

Confirmation of Loop Fusion

 Example of compile information output (loop fusion)

Loops in lines 4 and 7 Fused

Copyright 2016 FUJITSU LIMITED 29

 Chapter 4 Loop Optimization Copyright 2016 FUJITSU LIMITED 30

Loop Unrolling

Original source Appearance after compiler optimization

 subroutine sub(a, b, n)

 real*8 a(n), b(n)

 do i=1,n-2

 a(i)=b(i)+b(i+1)+b(i+2)

 enddo

 end

 subroutine sub(a, b, n)

 real*8 a(n), b(n)

 do i=1,n-2,2

 t = b(i+1)+b(i+2)

 a(i)=b(i)+t

 a(i+1)=t+b(i+3)

 enddo

 End

 Purpose

 Reduction in instructions

• Branch instructions are reduced because the number of iterations is halved.

• Instructions are reduced because b(i+1)+b(i+2) is used as a common expression.

 Improved parallelism at the instruction level

• The increased number of instructions per iteration increases the leeway for
scheduling and improves parallelism at the instruction level.

 Chapter 4 Loop Optimization

 (line-no.)(nest)(optimize)

 :

2 real*8 a(n), b(n)

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

3 1 8v do i=1,n-2

4 1 8v a(i)=b(i)+b(i+1)+b(i+2)

5 1 8v enddo

 :

Confirmation of Loop Unrolling

 Example of compile information output (loop unrolling)

Loop unrolled 8 times

Copyright 2016 FUJITSU LIMITED 31

 Chapter 4 Loop Optimization Copyright 2016 FUJITSU LIMITED 32

Loop Collapse

Original source Appearance after compiler optimization

 subroutine sub(a,n,m)

 real*8 a(n,m),c

 c=1.0

 do j=1,m

 do i=1,n

 a(i,j)=a(i,j)+c

 enddo

 enddo

 end subroutine sub

 subroutine sub(a,n,m)

 real*8 a(n,m),c, a1(n*m)

 equivalence (a1, a)

 c=1.0

 do ij=1,n*m

 a1(ij)=a1(ij) + c

 enddo

 end subroutine sub

 Purpose

 Improved software pipelining efficiency

• Loop collapsed increases the number of innermost loop iterations and improves
the effect of software pipelining.

 Improvement in load imbalance

• Loop collapsed increases the probability of improvement in load balancing,
regardless of the value of m. If the value of m is 1 or 2, for example,
parallelization outside of the original source has disadvantages.

 Chapter 4 Loop Optimization

(line-no.)(nest)(optimize)

 :

2 real*8 a(n,m),c

3 c=1.0

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

4 1 8v do j=1,m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

5 2 8v do i=1,n

6 2 8v a(i,j)=a(i,j)+c

7 2 8v enddo

8 1 8v enddo

 :

Confirmation of Loop Collapse

 Example of compile information output (loop collapse)

Loops collapsed

Copyright 2016 FUJITSU LIMITED 33

 Chapter 4 Automatic Parallelization

■ Simple Loop Slicing

■ Loop Slicing through Reduction

■ Determination of Whether Parallelization Is Possible

■ Confirmation of Automatic Parallelization

■ Pipeline Parallel Processing
* See “12.2.3.1 Automatic Parallelization” in the Fortran User‘s Guide for details.

Automatic Parallelization

Copyright 2016 FUJITSU LIMITED 34

 Chapter 4 Automatic Parallelization

Loop indexes are assigned to multiple threads to obtain
parallelization.

do i=n/2+1,n
 a(i)=a(i)+b(i)
enddo

do i=1,n/2
 a(i)=a(i)+b(i)
enddo

do i=1,n
 a(i)=a(i)+b(i)
enddo

The number of parallels is specified by an environment variable
(PARALLEL) at the execution time.

Core 1 Core 2

Sequential Automatic parallelization

Core 1

Simple Loop Slicing

Copyright 2016 FUJITSU LIMITED 35

(Example for 2 threads)

 Chapter 4 Automatic Parallelization

Parallelization in a way that avoids data races

do i=1,n
 s=s+a(i)
enddo

Core 1 Core 2

Sequential Automatic parallelization

Core 1

do i=n/2+1,n
 s2=s2+a(i)
enddo

do i=1,n/2
 s1=s1+a(i)
enddo

s=s+s1+s2

They have s1 and s2 as their respective thread-specific
(private) areas. If core 1 and core 2 perform updates
concurrently, no races are created.

Note: The different order of operations than in sequential processing may occur calculation errors.
 If -Knoeval is specified, -Knoreduction is enabled and parallelization is not possible.

Loop Slicing through Reduction

Copyright 2016 FUJITSU LIMITED 36

 Chapter 4 Automatic Parallelization

The following cases are excluded from parallelization:
(1) Loop cost found to be low at the compile time
(2) Loop cost found to be low at the execution time

* The compiler outputs dynamic control only for
parallelization at times of high loop costs.

real*8 a(3,3),b(3,3)

do j=1,3

 do i=1,3

 a(i,j)=a(i,j)+1.0

 enddo

enddo

read*8 a(3),b(3)

call sub(a,b,3)

 :

subroutine sub(a,b,n)

 real*8 s(n),b(n)

 do i=1,n

 a(i)=b(i)+1.0

 enddo

end subroutine

(1) (2)

Determination of Whether Parallelization Is Possible

Copyright 2016 FUJITSU LIMITED 37

 Chapter 4 Automatic Parallelization

Confirmation of Automatic Parallelization
 Example of compile information output

(line-no.)(nest)(optimize)

 :

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 1778

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< Loop-information End >>>

4 1 pp v do i=1,n

5 1 p v a(i)=cnst

6 1 p v enddo

 :

DO loop parallelization information

 pp: Parallelized

 m: Includes parallelized part and part that is not parallelized

 s: Not parallelized

 Blank: Not subject to parallelization

Number of loop iterations

1,778 or greater: Parallel execution

Less than 1,778: Sequential execution

Executable statement parallelization information

 p: Can be parallelized

 m: Includes part that can be parallelized and part that cannot be parallelized

 s: Cannot be parallelized

Copyright 2016 FUJITSU LIMITED 38

 Chapter 4 Automatic Parallelization

do j=1,n
 do i=1,39
 a(i, j) = a(i+1, j)+a(i, j+1)
 enddo
enddo

Dependency on data across iterations
 Normal parallelization impossible

No data dependency in the diagonal direction
 Parallelization by diagonally slicing the inner loop

J=1
I=1 to 10

J=2
I=1 to 10

J=3
I=1 to 10

J=1
I=11 to 20

J=2
I=11 to 20

J=3
I=11 to 20

J=1
I=21 to 30

J=2
I=21 to 30

J=1
I=31 to 39

barrier

barrier

barrier

barrier

 thread-0 thread-1 thread-2 thread-3

J=4
I=1 to 10

Pipeline Parallel Processing
 Pipeline Parallel Processing (Special parallelization)

Copyright 2016 FUJITSU LIMITED 39

 Chapter 4 Recommended Options (Effects and Impact)

■ Recommended Options

■ Options with an Impact on Operation Results and Execution

■ Other Compile Options

■ Optimization Options

Recommended Options (Effects and Impact)

Copyright 2016 FUJITSU LIMITED 40

 Chapter 4 Recommended Options (Effects and Impact)

The recommended optimization option when seeking higher execution
performance with the frtpx command is -Kfast.
Compilation with this option triggers the following options internally.

Option Meaning

-O3 Compile at optimization level 3.

-Kdalign Generate an instruction with an assumption of alignment on a double-word
boundary.

-Kns * Initialize the FPU in non-standard floating-point mode.

-Keval * Apply optimization to change the method of mathematical evaluation.

-Kmfunc * Apply multi-operation functionalization.

-Kprefetch_conditional Use the prefetch instruction for the array data included in if and case constructs.

-Kfp_contract * Optimize by using FMA arithmetic instructions.

-Kfp_relaxed * Execute reciprocal approximation operations.

-Kilfunc * Inline expand an intrinsic function of the single/double-precision real type.

-Komitfp Instruct whether to guarantee the frame pointer register for a procedure call.

Recommended Options (Sequential)

The * mark indicates an option that may cause a difference in precision.

Copyright 2016 FUJITSU LIMITED 41

 Chapter 4 Recommended Options (Effects and Impact)

The recommended optimization options when seeking higher execution
performance with the frtpx command are -Kfast,parallel .

Compilation with this option triggers the following options internally.

Option Meaning

-Kfast * Apply the sequential optimization described on the previous page.

-Kparallel Apply automatic parallelization.

Recommended Options (Automatic Parallelization)

The * mark indicates an option that may cause a difference in precision.

Copyright 2016 FUJITSU LIMITED 42

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 43

Compile option Function Impact of optimization

-Knf
Instruction of whether to
optimize using Non-Faulting
mode

Failure to detect exceptions
to the load instruction

Compile option Function Impact of optimization

-Kpreex

Preliminary evaluation of
invariant expressions

(Invariant expressions are
moved from IF construct in the
loop to outside the loop.)

Abnormal end of execution

-Ksimd=2
SIMD optimization of an IF
construct

Abnormal end of execution

The following table lists the commonly used compiler options that may cause the
abnormal end of execution because of instruction movement involving speculative
execution.

If execution is abnormally terminated, specify -Knf together with -Kpreex or -Ksimd=2
to run the compiler in Non-Faulting mode so that the abnormal end of execution of
the load instruction for speculative execution can be avoided.

Options with an Impact on Execution

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 44

Other Compile Options (1)

 Optimization options (optimization level specification)

 -O0, -O1, -O2, -O3, -O

 Optimization options (inline expansion)

 -x-, -xproc_name, -xstmt_no, -x0

 Optimization options (optimization involving rounding errors)

 -K[no]eval, -K[no]fp_contract, -K[no]fp_relaxed, -K[no]ilfunc

 Optimization options (optimization involving speculative execution)

 -K[no]preex, -K[no]nf

 Optimization options (prefetch)

 -Kprefetch_[no]indirect, -Kprefetch_[no]stride

 Optimization options (SIMD)

 -Ksimd[={1|2|auto}], -Knosimd

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 45

Other Compile Options (2)

 Optimization options (other)
 -K[no]dalign, -K[no]auto, -K[no]ocl

 Thread parallelization processing options
 -K[no]openmp, -K[no]dynamic_iteration,

-Kparallel_strong, -K[no]region_extension,
-K[no]array_private

 Other options
 -fs , -NR[no]trap, -K[no]striping[=N], -K[no]unroll[=N]

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 46

Optimization Options (Optimization Level Specification)

Default Option format Function overview/Use example

- -O0

Gives an instruction to disable optimization.

[Use example]

Specify this option if you do not want to optimize the compiler.

- -O1

Gives an instruction for basic optimizations except loop-related optimizations.

[Use example]

Specify this option to prevent optimizations from increasing the size of the executable
module. Specifically, optimizations that improve execution performance, such as loop
unrolling, software pipelining, and SIMD optimization, will be stopped. In addition, specify
this option when you want a shorter compile time.

Default -O2

Gives an instruction for optimizations that improve execution performance, such as loop
unrolling, software pipelining, SIMD optimization, and prefetch generation for sequential
access, in addition to the optimizations of -O1.

[Use example]

A precision error occurs when -Kfast is specified. So if you want to improve performance
without causing precision errors to occur, specify -O2 or -O3. Specify -Kdalign at the same
time to further facilitate SIMD optimization.

- -O3 (-O) *
Gives an instruction for optimizations that further increase the compile time compared
with that of -O2. The optimizations include full unrolling of multiple loops and loop fission
for facilitation of loop interchange, in addition to the optimizations of -O2.

The * mark indicates an option that is enabled when -Kfast is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 47

Optimization Options (Inline Expansion)

Default Option format Function overview/Use example

- -x-

Gives an instruction to inline expand a user-defined procedure.

[Use example]

Specify this option to facilitate optimization through inline expansion of a user-defined
procedure. Use this option to have the compiler select the user-defined procedure to be
inline expanded.

- -xproc_name

Gives an instruction to inline expand the user-defined procedure proc_name.

[Use example]

Specify this option to facilitate optimization through inline expansion of the procedure
proc_name that is called from within a high-cost loop.

-
-xstmt_no

(-x0 *)

Gives an instruction to inline expand user-defined procedures whose number of
executable statements is equal to or less than stmt_no.

-x0 gives an instruction to disable inline expansion.

[Use example]
Specify this option to inline expand all the user-defined procedures whose number of
executable statements is equal to or less than stmt_no when there are too many

user-defined procedures to specify function names one by one.

The * mark indicates an option that is enabled when -Kfast is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 48

Optimization Options (Optimization Involving Rounding errors (1))

Default Option format Function overview/Use example

-

Default

-Keval *

-Knoeval

Gives an instruction on whether to change the method of mathematical evaluation.

[Use example]

When -Kfast is specified, -Keval is triggered, which executes optimization that involves
changing the method of mathematical evaluation as shown above. To prevent this
rounding error from occurring, specify -Knoeval after -Kfast.

-

Default

-Kfp_contract *

-Knofp_contract

Gives an instruction on whether to output the multiply add/subtract floating-point
instruction.

[Use example]

When -Kfast is specified, -Kfp_contract is triggered, which outputs the multiply
add/subtract floating-point instruction. To prevent this precision error from occurring,
specify -Knofp_contract after -Kfast.

-

Default

-Kfp_relaxed *

-Knofp_relaxed

Gives an instruction on whether to execute reciprocal approximation operations for
floating-point division or the SQRT function.

[Use example]

When -Kfast is specified, -Kfp_relaxed is triggered, which outputs the reciprocal
approximation instruction. To prevent this precision error from occurring, specify

-Knofp_relaxed after -Kfast.

Example of -Keval optimization of a = b + c + d + e

a = (((b + c) + d) + e) => -Keval => a = ((b + c) + (d + e))

The * mark indicates an option that is enabled when -Kfast is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 49

Optimization Options (Optimization Involving Rounding errors (2))

Default Option format Function overview/Use example

-

Default

-Kilfunc *

-Knoilfunc

Gives an instruction on whether to inline expand intrinsic functions.

[Use example]

When -Kfast is specified, -Kilfunc is triggered, which inline expands
intrinsic functions. The argument error check is omitted from the inline
expansion of intrinsic functions. Consequently, a precision error may
occur. To prevent this error from occurring, specify -Knoilfunc after -Kfast.

The * mark indicates an option that is enabled when -Kfast is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 50

Optimization Options (Optimization Involving Speculative Execution)

Default Option format Function overview/Use example

-

Default

-Kpreex

-Knopreex *

Enables optimization through preliminary evaluation of invariant expressions.

[Use example]

The aim of the -Kpreex option is to improve execution performance through a
preliminary evaluation (speculative execution beyond IF statements) of invariant
expressions for the object program. However, execution may be abnormally
terminated because instructions that are not supposed to be executed from the
perspective of program logic are speculatively executed.

-

Default

-Knf

-Knonf *

Gives an instruction on whether to optimize the object program by using Non-Faulting
mode.

[Use example]

Specify -Knf to use Non-Faulting mode so that the load that is speculatively executed
by -Kpreex or -Ksimd=2 is not abnormally terminated.

The * mark indicates an option that is enabled when -Kfast is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 51

Optimization Options (Prefetch (1))

Default Option format Function overview/Use example

-

Default

-Kprefetch
 _indirect

-Kprefetch
 _noindirect *

Gives an instruction on whether to generate an object that uses a prefetch
instruction for indirectly accessed (list access) array data used inside a loop.

[Use example]

As shown in the optimization control lines below, specify -Kprefetch_indirect
to output prefetch instructions for list access for which subscripts specify an
array, such as a(m(i)) in the following program. However, execution
performance may deteriorate depending on the cache efficiency of loops,
whether branches are used, and the complexity of subscripts.

 do i=1,N

 /* Output an L2 prefetch instruction for a(m(i+α)) */

 /* Output an L1 prefetch instruction for a(m(i+β)) */

 b(i) = b(i) + a(m(i))

 enddo

The * mark indicates an option that is enabled when -Kfast is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 52

Optimization Options (Prefetch (2))
Default Option format Function overview/Use example

-

Default

-Kprefetch
 _stride

-Kprefetch
 _nostride *

Gives an instruction on whether to generate an object that uses a
prefetch instruction for array data accessed with a longer stride than the
line size of the cache used inside a loop.

[Use example]

The program below shows stride access for which an array element
accessed in the current iteration and the one accessed in the next
iteration are not on the same cache line because the loop incremental
value is large. For such stride access, specify -Kprefetch_stride to output
prefetch instructions, as shown in the optimization control lines below.
However, execution performance may deteriorate depending on the
cache efficiency of loops and whether branches are used.

 do i=1,N,100

 /* Output an L2 prefetch instruction for a(i+100*a) */

 /* Output an L1 prefetch instruction for a(i+100*β) */

 /* Output an L2 prefetch instruction for b(i+100*a) */

 /* Output an L1 prefetch instruction for b(i+100*β) */

 b(i) = a(i) + 1.0

 enddo

The * mark indicates an option that is enabled when -Kfast is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 53

Optimization Options (SIMD)

Default Option format Function overview/Use example

-

-

Default

-

-Ksimd=1

-Ksimd=2

-Ksimd=auto *

-Knosimd

Gives an instruction on whether to perform SIMD optimization.

-Ksimd=1: Output an SIMD instruction.

-Ksimd=2: Output a masked SIMD instruction in addition to that of -Ksimd=1.

-Ksimd=auto: The compiler automatically determines whether to SIMD-optimize loops.

[Use example]

Specify -Ksimd=2 to SIMD-optimize high-cost loops containing an IF statement that
meets either of the following conditions:

 The IF conditional clause has a high true ratio.

 The true ratio of the IF conditional clause is unclear, but the number of executable
statements in the THEN/ELSE clause of the IF conditional clause is small compared
to that in the entire loop.

Doing so can facilitate software pipelining to improve instruction-level parallelization by
eliminating branch instructions from the loop.

The * mark indicates an option that is enabled when -Kfast is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 54

Optimization Options (Other)
Default Option format Function overview/Use example

-

Default

-Kdalign *

-Knodalign

Gives an instruction on whether to generate an instruction with an
assumption that the data type of 8 bytes or more referenced by a dummy
argument or pointer is aligned with the 8-byte boundary.

[Use example]

When -Kfast is specified, -Kdalign is triggered, so there is no need to be
aware of this option. If you want to promote execution performance by
specifying the -O2 or -O3 option without specifying -Kfast, specify -Kdalign
to facilitate SIMD optimization, which improves execution performance.

-

Default

-Kauto

-Knoauto *

Gives an instruction on whether to use a local variable as an automatic
variable.

-

Default

-Kocl

-Knoocl *

Gives an instruction on whether to enable optimization control lines.

The * mark indicates an option that is enabled when -Kfast is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 55

Thread Parallelization Processing Options (1)
Default Option format Function overview/Use example

-

Default

-Kopenmp

-Knoopenmp *
Gives an instruction on whether to enable OpenMP Fortran directives.

-

Default

-Kdynamic
 _iteration

-Knodynamic

 _iteration *

Outputs code for parallel execution with a parallelization method that dynamically
selects which loop (outer or inner) to use by considering the parallelization effect on
multiple loops. (Normally, the parallelization method uses the one that is as far out as
possible for parallelization.)

[Use example]

If the sizes of nk, nj, and ni are unclear and their values are likely small,
parallelization with so few iterations may degrade performance. In such cases, specify
-Kdynamic_iteration to output code for parallelization in the k dimension if nk is the
largest, in the j dimension if nj is the largest, or in the i dimension if ni is the largest.

 do k=1,nk

 do j=1,nj

 do i=1,ni

 process

 enddo

 enddo

 enddo

Output of code that can
dynamically select
dimension used for
parallelization

The * mark indicates an option that is enabled when -Kfast is specified. (The default of -Kparallel is also -Knodynamic_iteration.)

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 56

Thread Parallelization Processing Options (2)

Default Option format Function overview/Use example

-

Default

-Kparallel
 _strong

- *

Gives an instruction to parallelize all the loops that have been analyzed and
determined as capable of being automatically parallelized without estimating the
parallelization effect.

[Use example]

You can expect execution performance to improve by specifying -Kparallel_strong
when you know that the number of iterations of a high-cost loop in a procedure is
large.

Normally, automatic parallelization considers also the cases where there are a few
iterations. The output object contains such dynamic control that it executes either a
sequential loop without thread processing if the number of iterations is small or
thread parallelization processing if it exceeds a given threshold. -Kparallel_strong
outputs an object that parallelizes threads no matter how few iterations there are,
without outputting a control to handle cases where there are few iterations.

Therefore, if there are actually few iterations, the overhead of thread parallelization
may become larger, resulting in degraded execution performance.

The * mark indicates an option that is enabled when -Kparallel is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 57

Thread Parallelization Processing Options (3)
Default Option format Function overview/Use example

-

Default

-Kregion

 _extension *

-Knoregion

 _extension

Gives an instruction on whether to extend a parallel region.

[Use example]

The figure on the right is an OpenMP

representation of the parallel region

extended by -Kregion_extension,

which is triggered by -Kparallel,

to include multiple loops.

As with -Kparallel_strong,

-Kregion_extension does not execute

generation of multiple version that

considers the cost of the loops.

Therefore, if the number of n1 and

n2 iterations is small and extending

the region affects the overall execution

performance, specify -Knoregion_extension

to prevent performance degradation.

!$omp parallel

!$omp do

 do i=1,n1

 process A

 enddo

!$omp enddo

!$omp master

 process B

!$omp end master

!$omp do

 do i=1,n2

 process C

 enddo

!$omp enddo

!$omp end parallel

O
rig

in
a

l co
d

e

The * mark indicates an option that is enabled when -Kparallel is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 58

Thread Parallelization Processing Options (4)

Default Option format Function overview/Use example

-

Default

-Karray_private

-Knoarray_private*

Gives an instruction on whether to privatize arrays in a loop.

[Use example]

-Karray_private privatizes any arrays that can be privatized in each
thread when multi-dimensional loops are subject to automatic
parallelization. This enables you to use a loop located as far out as
possible for automatic parallelization. The overhead of
parallelization can be reduced as a result.

However, stack usage increases by the size of the privatized arrays.

The * mark indicates an option that is enabled when -Kfast is specified.
(The default of -Kparallel is also -Knoarray_private.)

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 59

Other Options (1)

Default Option format Function overview/Use example

-

Default

-fs

 - *

Gives an instruction to disable output of i- and w-level messages.

[Use example]

Specify this option to prevent output of a large number of compile
messages.

-

Default

-NRtrap

-NRnotrap *

Gives an instruction on whether to output intrinsic operation diagnosis
messages during execution and detect interrupt events during floating-point
operations.

[Use example]

Specify this option to detect any unexpected operation exceptions in the
program. When the -NRtrap option is enabled, performance may deteriorate
because the optimization that converts the SQRT function into a reciprocal
approximation operation is disabled.

* For descriptions of other commonly used debug options, see "Debug Functions"
below.

The * mark indicates an option that is enabled when -Kfast is specified.

 Chapter 4 Recommended Options (Effects and Impact) Copyright 2016 FUJITSU LIMITED 60

Other Options (2)
Default Option format Function overview/Use example

-

Default

-Kstriping[=N]

-Knostriping *

Gives an instruction to optimize loop striping.

[Use example]

The effects of loop expansion can be expected to, for example, reduce
the overhead caused by loop iterations and facilitate instruction
scheduling.

-O2 or
greater

-O1 or less

-Kunroll[=N] *

-Knounroll

Gives an instruction to optimize loop unrolling.

[Use example]

The effects of loop expansion can be expected to, for example, reduce
the overhead caused by loop iterations and facilitate instruction
scheduling.

The * mark indicates an option that is enabled when -Kfast is specified.

DO I=1,N
 A(I) = B(I) + C(I)
ENDDO

DO I=1,N,2
 TMP_B1 = B(I)
 TMP_B2 = B(I+1)
 TMP_C1 = C(I)
 TMP_C2 = C(I+1)
 TMP_A1 = TMP_B1 + TMP_C1
 TMP_A2 = TMP_B2 + TMP_C2
 A(I) = TMP_A1
 A(I+1) = TMP_A2
ENDDO

 Striping: Appearance after
expanded 2 times

DO I=1,N,2
 TMP_B1 = B(I)
 TMP_C1 = C(I)
 TMP_A1 = TMP_B1 + TMP_C1
 A(I) = TMP_A1
 TMP_B2 = B(I+1)
 TMP_C2 = C(I+1)
 TMP_A2 = TMP_B2 + TMP_C2
 A(I+1) = TMP_A2
ENDDO

 Unrolling: Appearance after
expanded 2 times

Difference between unrolling and striping

Different expansion methods

Red:1st expansion
Blue: 2nd expansion

 Chapter 4 Debug Functions

Debug Functions

 Overview of Debug Functions

 Overview of the -Nquickdbg Option

 Overview of the -Haefosux Option

 Overview of the Hook Function

* See the Fortran User‘s Guide for details.

• In the case of “Overview of the -Haefosux Option” : “1.2.4 Some Compilation Options”

• Others : “8.2 Debugging Functions”

 Copyright 2016 FUJITSU LIMITED 61

 Chapter 4 Debug Functions Copyright 2016 FUJITSU LIMITED 62

Overview of Debug Functions

-Nquickdbg -Haefosux

Execution
performance

Excellent
Reduced impact on performance

Poor

Check item Good
undef, undefnan
argchk, subchk

Excellent

undef, argchk, subchk

shapechk, extchk,

overlapchk, I/O chk

Output information Excellent
Error identification number
Line number at error occurrence
Variable name, subscript
Procedure name, argument
number

Excellent
Error identification number
Line number at error occurrence
Variable name, subscript
Procedure name, argument number,
argument size

Support of thread
parallelization
processing

Excellent
OpenMP and automatic
parallelization supported

Poor

The following two debug functions are available for the Fujitsu Fortran compiler.

We recommend the -Nquickdbg option for medium- to large-scale programs and
the -Haefosux option for small-scale programs.

 Chapter 4 Debug Functions Copyright 2016 FUJITSU LIMITED 63

Overview of the -Nquickdbg Option

 How to use the option
Specify the compiler options as follows:

* If no subparameter is specified, the option is equivalent to:
-Nquickdbg=argchk –Nquickdbg=subchk –Nquickdbg=undef

 Check items

 Features

 The check is limited to the items that frequently have problems, so that
the check has a lower impact on performance. (Compared with the -H
option)

 Checking of OpenMP and automatic parallelization processing
programs is already supported.

Argument Check details

argchk Validity check of undefined references (number of references, types of
references, types of functions)

subchk Bound check when referencing an array

undef Undefined data reference check

undefnan Undefined data reference check due to floating-point exception

-Nquickdbg [=argchk|subchk|undef|undefnan]

 Chapter 4 Debug Functions Copyright 2016 FUJITSU LIMITED 64

Overview of the -Haefosux Option
 How to use the option

Specify the compiler options as follows:

* You can specify any check as needed by combining parameters.

 Check items

 Features
 Debugging is limited to sequential programs.
 Many check items are available.

-H{a|e|f|o|s|u|x}

Parameter Argument Check details

a argchk
Validity check of procedure references (number of arguments, argument type, argument
attribute, argument size, number of dimensions of arrays of the assumed shape, function
type)

e shapechk Shape compatibility check

f I/O chk Checking Connection of a File to A Unit, I/O Recursive Call Check

o overlapchk Overlapping Dummy Arguments Check , SAVE attribute undefined check

s subchk Bound check for array references (array references, subscript overflow)

u undef Undefined data reference check

x extchk Check of undefined data in a module and common block, Checking for Unassociated Pointer

 Chapter 4 Debug Functions Copyright 2016 FUJITSU LIMITED 65

 Overview of the Hook Function (1)

compiler options -Nhook_func

User-defined
function name

user_defined_proc

User-defined
function argument

FLAG: User-defined function call source information

NAME: Call source function name

LINE: Call source line number

THREAD: Thread identification number (for OpenMP/automatic
parallelization)

Location from
which user-defined
function is called

- Program entry/exit

- Function entry/exit

When -Kopenmp or -Kparallel is enabled, a call can be made
from the following location too:

- Parallel region (OpenMP/automatic parallelization) entry/exit

You can use this function to check the operation of a program by calling a
user-defined function from a specific location in the program.

 Chapter 4 Debug Functions

 How to use the function
Specify the compiler options as follows:

 Format of user-defined functions
 Format

 Arguments

-Nhook_func

Copyright 2016 FUJITSU LIMITED 66

 Overview of the Hook Function (2)

SUBROUTINE USER_DEFINED_PROC(FLAG, NAME, LINE, THREAD)

INTEGER(KIND=4),INTENT(IN):: FLAG, LINE, THREAD

CHARACTER(LEN=*),INTENT(IN):: NAME

FLAG: Shows calling source for the user-defined subroutine.

 0: Program entry 1: Program exit 2: Procedure entry 3: Procedure exit

 4: Parallel region entry 5: Parallel region exit

 6: Regular interval 7 to 99: System reserved 100 or greater: Available to users

NAME: Shows the call source procedure name.

 This can be referenced only when FLAG is 2, 3, 4, 5, 100, or greater.

LINE: Shows the call source line number.

 This can be referenced only when FLAG is 2, 3, 4, 5, 100, or greater.

THREAD: Shows the identification number of the thread that called the user-defined subroutine.

 (OpenMP/automatic parallelization)

 This can be referenced only when FLAG is 2, 3, 4, 5, 100, or greater.

 Chapter 4 Copyright 2016 FUJITSU LIMITED 67

Revision History

Version Date Revised section Details

2.0 April 25,
2016

- - First published

