
FUJITSU LIMITED
April 2016

Chapter 7
Tuning Tool

Copyright 2016 FUJITSU LIMITED

 Chapter 7

Contents
 Tuning Workflow

 Profiler Operation Flow

 Profiler Overview

 Profiler Visualization
 Summary View

 Topology View

 Source View

 Call Graph

 Profiler Use Examples
 General Use Examples

 PA Information Example

 MPI Information Example

 Tuning Examples
 Sequential Tuning Example

 MPI Tuning Example

 Precision PA Visibility Function (Excel Format)
 Data Collection (Execution)

 Data Analysis

 Aspects of Excel Sheets

Copyright 2016 FUJITSU LIMITED 1

 Chapter 7 Tuning Workflow

Tuning work and profiler utilization

To tune an application, perform a series of tasks,
including collecting tuning information, examining
means of improving the application, correcting the
application, and measuring performance.

Generally, identifying the places that take a long
time to execute in an application can have the
significant tuning effect of increasing the speed
there. You can obtain tuning information, such as
the distribution of execution times, by using a
profiler. We recommend you start tuning work by
analyzing the application with a profiler.

A profiler can collect tuning information for
applications created with the compiler of this
product.

Copyright 2016 FUJITSU LIMITED

 Tuning Workflow

Start tuning

Collect
tuning information

Select attention
point

Examine means of
improvement

Change source code
Select options

Measure
performance

End tuning

Satisfied with
performance?

Yes

No

2

 Chapter 7 Profiler Operation Flow

3

GUI visualization tool
started from user client

Data selected for visualization

3

Conceptual diagram of profiler

Profiling
data

Visualization
data

Data
conversion

Information
collection

Visualization

Counter/Timer interrupts, etc. used to collect, convert,
and visualize information on application to be analyzed

function do_work(units)
 integer :: i, j, units
 real :: x1, x2, do_work

 call fipp_START()
 do i=1,units
 do j=1,10000
 x1 = j * 3.1415;
 x2 = x1 * 42.0 * (x1 - 42.0);
 enddo
 enddo
 call fipp_STOP()
 do_work = x2
end function

subroutine step(id, tid, i)
 integer :: id, tid, i
 real :: w

 !write (*,*) id, ":", tid, ": step", i
 w = do_work(100)
end subroutine
 :

GUI visualization tool

 Profiler Operation Flow

Copyright 2016 FUJITSU LIMITED 3

 Chapter 7 Profiler Overview

 Profiler Overview
 Features of Each Component

 Information Retrieval and Analysis Procedure (Instant Profiler)

 Instant Profiler Use Example

 Retrievable Information (Instant Profiler)

 Information Retrieval and Analysis Procedure (Advanced Profiler)

 Advanced Profiler Use Example

 Retrievable Information (Advanced Profiler)
Copyright 2016 FUJITSU LIMITED 4

 Chapter 7 Profiler Overview

 Profiler Overview

Profiler configuration
 The provided profilers are the instant profiler and advanced profiler.

 Use each of the two profilers according to the required tuning information.

5 Copyright 2016 FUJITSU LIMITED

Profiler

Instant
profiler

fipp

Cost analysis based on sampling. The profiler can be
applied at low overhead to any program, but there are
some occasions where the profiler has difficulty
making a detailed analysis.

Advanced
profiler

fapp

Cost and behavior analysis based on the event counter.
The profiler can make a detailed analysis of an
application, though a measurement section must be
set in the program source.

* Sampling is a method of collecting information on the process, thread, procedure, loop, or line that is
currently being executed, by interrupting the application at a constant user CPU interval.

* The event counter is a function for collecting PA (Performance Analysis) information.

 Chapter 7 Profiler Overview

The instant profiler (fipp) collects general information by
sampling at a constant interval.

 Profiler Overview: Features of Each Component

6 Copyright 2016 FUJITSU LIMITED

The advanced profiler (fapp) collects precise
information by using a counter within a
measurement section.
However, it requires changes in the program.

 Chapter 7 Profiler Overview

 Profiler Overview: Information Retrieval and Analysis Procedure (Instant Profiler)

 The instant profiler analyzes the costs of an application by using
the following procedure.

7 Copyright 2016 FUJITSU LIMITED

Profiling
data

Source
program

Edit and
compile

Submit job Output information Analyze information

Login node Login node Job management node User client

Executable
module

Line-by-line cost analysis is
possible for every source file.

Submit a job with an
instruction to use the fipp

command during execution to
collect instant profiler

information.

Copy the output profiling data
on the job management node

to the login node.

(Unnecessary for a shared disk)

Analysis of every process

is possible.

fipp -C

The running application will
be analyzed as is.

Profiling
data

Visualization

 Chapter 7 Profiler Overview

 Profiler Overview: Instant Profiler Use Example

 The instant profiler can specify not only an entire application but
also the measurement region for cost information.

8 Copyright 2016 FUJITSU LIMITED

Lan
g

uag
e

type

Header
file

Function
name

Function

A
rg

um
en

t

Fortran

None

fipp_start
Start
information
measurement

None

fipp_stop
Stop
information
measurement

None

C/C++

fj_tool/
fipp.h

void
fipp_start

Start
information
measurement

None

void
fipp_stop

Stop
information
measurement

None

#include<fj_tool/fipp.h>

#define SIZE 3000
double a[SIZE][SIZE],b[SIZE][SIZE],c[SIZE][SIZE]

main()
{
 int i,j;

 fipp_start();

 for(i = 0; i < SIZE; i++){
 for(j = 0; j < SIZE; j++){
 a[i][j] = (double)(i+j*0.5);
 b[i][j] = (double)(i+j*1.5);
 c[i][j] = a[i][j] + b[i][j]
 }
 }

 fipp_stop();
 }
 :

To use the section specification function of the instant
profiler, specify the fipp a.out -Srange option.

 Chapter 7 Profiler Overview

 Profiler Overview: Retrievable Information (Instant Profiler)

 The instant profiler can retrieve the following information by:
Collecting tuning information from the entire program through sampling

Collecting the elapsed times, user CPU times, and system CPU times managed
by the OS (Linux)

9 Copyright 2016 FUJITSU LIMITED

Classification Details

Time statistical
information

Elapsed time, breakdown of user CPU time and system CPU
time, and other information

Cost information
Costs based on sampling in units of procedures, loops, or
lines, cost of waiting for inter-thread synchronization, and
MPI library communication cost

Hardware monitor
information

Processor behavior at application execution time

Call graph information Procedure call path and cost

Source code information
Each line of source code is output with cost information
added

 Chapter 7 Profiler Overview

 Profiler Overview: Information Retrieval and Analysis Procedure (Advanced Profiler)

 The advanced profiler analyzes the costs of an application by using
the following procedure.

10 Copyright 2016 FUJITSU LIMITED

Profiling
data

Source
program

Submit job Output
information

Analyze information

Login node Job management
node

User client

Executable
module

Line-by-line cost analysis is
possible for every source file.

Copy the output profiling data
on the job management node

to the login node.

(Unnecessary for a shared disk)

Analysis of every
process is
possible.

Source
program
modified

Edit and
compile

Login node

Submit a job with an instruction
to use the fapp command
during execution to collect

advanced profiler information.

Add an advanced profiler
routine.

fapp -C

Profiling
data

Visualization

 Chapter 7 Profiler Overview

 The advanced profiler can collect execution performance information on
the specified section of an application.

11 Copyright 2016 FUJITSU LIMITED

Lan
g

uag
e

type

Header
file

Function
name

Function Argument

Fortran

None

fapp_start
Start
information
measurement

(name,num
ber, level)

fapp_stop
Stop
information
measurement

(name,num
ber, level)

C/C++

fj_tool/
fapp.h

void
fapp_start

Start
information
measurement

(const char
*name, int
number, int
level)

void
fapp_stop

Stop
information
measurement

(const char
*name, int
number, int
level)

ID1

#include<fj_tool/fapp.h>

#define SIZE 3000
double a[SIZE][SIZE],b[SIZE][SIZE],c[SIZE][SIZE]

main()
{
 int i,j;

 fapp_start("region", ID1, 1);

 for(i = 0; i < SIZE; i++){

 fapp_start("region", ID2, 1);
 for(j = 0; j < SIZE; j++){
 a[i][j] = (double)(i+j*0.5);
 b[i][j] = (double)(i+j*1.5);
 c[i][j] = a[i][j] + b[i][j]
 }
 fapp_stop("region", ID2, 1);

 }
 fapp_stop("region", ID1, 1);
 }
 :

ID2

 Profiler Overview: Advanced Profiler Use Example

Nested measurement
section can also be

specified.

 Chapter 7 Profiler Overview

 Profiler Overview: Retrievable Information (Advanced Profiler)

 The advanced profiler can retrieve the following information by:
Collecting tuning information from a program measurement section by using

a counter

Collecting the elapsed times, user CPU times, and system CPU times managed
by the OS (Linux)

12 Copyright 2016 FUJITSU LIMITED

Classification Details

Basic information
Number of calls, elapsed time, breakdown of user CPU time
and system CPU time, and other information in
measurement section

MPI information MPI library execution information in measurement section

Hardware monitor
information

Hardware monitor information in measurement section

 Chapter 7 Profiler Visualization Copyright 2016 FUJITSU LIMITED 13

 Profiler Visualization

 Summary View

 Topology View

 Source View

 Call Graph

 Chapter 7 Profiler Visualization

 Profiler Visualization

 First, start the programming support tool to display the main
screen (launcher).

14 Copyright 2016 FUJITSU LIMITED

 Various development support functions

 File operations (file explorer)

 File editing (editor)

 Application building (builder)

 Application execution (executor)

 Interactive debugger

 Profiler visualization

Main screen (launcher)

 Login to a login node

 Server: Enter the IP address or host name of
the login node to which you are logging in.

 Name: Enter the user name of your login
account.

 Password: Enter the password of your login
account.

 Chapter 7 Profiler Visualization

 Start profiler visualization from the main screen.

 After it starts, load profiling data.

15 Copyright 2016 FUJITSU LIMITED

Profiler screen

 Profiler Visualization: Starting the Profiler Visibility Function

Main screen

Load

 Chapter 7 Profiler Visualization

 Profiler Visualization: Selecting a GUI View (Mode)

 Select a mode for analyzing profiling data.
Application View

This view displays information on the retrieved profiling data as a whole.

Rank View

This view displays detailed information focusing on a single rank.

Thread View

This view displays detailed information focusing on a single thread.

16 Copyright 2016 FUJITSU LIMITED

 Chapter 7 Profiler Visualization

 The profiler screen provides the following views for each of the
application, rank, and thread modes.

 Select the Summary tab, Topology tab, or Source View tab to display
the corresponding view.

 Summary (summary view)

This view displays cost information.

Use the view to look for hot spots by focusing on the cost of
each procedure, loop, and line.

 Topology (topology view)

This view displays cost information along with the
corresponding topology view.

Use the view to look among all processes (ranks) and threads
for those that are hot spots, by focusing on the cost
information.

 Source View (source view)

This view displays cost information on the source code.

You can check what processing is performed at hot spots, by
focusing mainly on line costs.

Summary view

Topology view

Source view

 Profiler Visualization: GUI View Configuration

17 Copyright 2016 FUJITSU LIMITED

 Chapter 7 Summary View Copyright 2016 FUJITSU LIMITED 18

Summary View

 Chapter 7 Summary View

 This view displays cost information for the entire application.

 You can look by procedure, loop, or line for the places that are hot spots
based on the cost information.

 Summary View (1/2)

19 Copyright 2016 FUJITSU LIMITED

Summary view

 Chapter 7 Summary View

 Thread Barrier Cost lists the costs of waiting for inter-thread synchronization.

 MPI Library Cost lists MPI library costs.

 Summary View (2/2)

20 Copyright 2016 FUJITSU LIMITED

Thread Barrier Cost/MPI Library Cost

Thread Barrier Cost

MPI Library Cost

 Chapter 7 Topology View Copyright 2016 FUJITSU LIMITED 21

Topology View

 (1) Profiler Information List

 (2) Whole graph

 (3) Color Histogram

 (4) Zoom Information Panel

 (5) Display Unit Switching Buttons

 Chapter 7 Topology View

 This view displays cost information, by process, for an application.

 From the cost information on each process, you can check the information among all
processes which have varying times and check the rank of a process that is a hot spot.

 The figure below shows the names of the topology view areas.

 Topology View

22 Copyright 2016 FUJITSU LIMITED

(2) Whole graph

(4) Zoom
information
panel

(1) Profiler
information list

(5) Display
format
switch tabs

Topology view

(3) Color
histogram

Axis change
buttons

 Chapter 7 Topology View

 Procedure outputs information in units of user procedures and system functions.

 Loop displays information in units of loop equivalents within a user procedure.

 Line displays information in units of line equivalents within a user procedure.

 Topology View: (1) Profiler Information List

23 Copyright 2016 FUJITSU LIMITED

Procedure

Loop

Line

Procedure/Loop/Line

 Chapter 7 Topology View

 Topology View: (2) Whole Graph (1/2)

 This area displays the (A) information by process within the measurement
section selected in the profiler information list.

 The information by process appears in the shape of the topology specified at the
job submission time.

If a 3-dimensional shape is specified, the information is displayed as a

3-dimensional structure following the directions of the axes shown in (B).

 The color of each process in (A) corresponds to a color in the (C) color histogram.

24 Copyright 2016 FUJITSU LIMITED

x
z

y

(A)

(B)

(C) Whole graph

 Chapter 7 Topology View

 Topology View: (2) Whole Graph (2/2)

 The (D) white frame cursor appears as the mouse pointer is moved
over the display area for (A) information by process.

 The (E) zoom information panel (4) zooms in on the process
information within the range encompassed by the cursor.

25 Copyright 2016 FUJITSU LIMITED

(A)

(E)

Whole graph

Zoom information panel

(D)

 Chapter 7 Topology View

 Topology View: (3) Color Histogram

 This area displays the (A) histogram of performance-based distribution
based on the process information displayed in the (2) whole graph.

 The horizontal axis represents the numeric values of retrieved
information, and a vertical length in the graph represents the frequency
of occurrence of the process with that numerical value.

26 Copyright 2016 FUJITSU LIMITED

Example: If you select a user CPU time
from the (B) profiler
information list, a histogram
of the occurrence frequency of
the retrieved user CPU time
appears. You can see the
greater number of processes
that have numerical values
around the average.

(A)

Color histogram

(B) Profiler information list

 Chapter 7 Topology View

 Topology View: (4) Zoom Information Panel

 This area displays the (A) enlarged view of the extracted portion
encompassed by the white frame cursor on the (2) whole graph.

Move the mouse pointer over a process on the (A) enlarged display
to select information on the process from the (1) instant profiler
information list.

27 Copyright 2016 FUJITSU LIMITED

(A)

Zoom information panel

 Chapter 7 Topology View

 Topology View: (5) Display Unit Switching Buttons

 Use these tabs to change the display format of the process displayed in the (2)
whole graph and (4) zoom information panel.

•Topology

 This tab displays the process in the form of a runtime

topology. (Default display)

•BarChart

 This tab displays a bar chart of performance

information on each process.

•DataCompare

 This tab arranges the display of data shown in the

whole graph.

28 Copyright 2016 FUJITSU LIMITED

Display unit switching buttons Topology

BarChart

DataCompare

 Chapter 7 Source View Copyright 2016 FUJITSU LIMITED 29

Source View

 Source Information Screen

 (A) Line Information Display Area

 (B) Source Code Area

 (C) Jump Map

 Chapter 7 Source View

 Source View

 This view displays cost information for an entire application, on
the source code.

 From the cost information displayed on the actual source code, you
can check what processing is performed at hot spots.

 The figure below shows the names of the source view areas.

30 Copyright 2016 FUJITSU LIMITED

Source file list
area

Source View tab Source information screen

 Chapter 7 Source View

 Source View: Source Information Screen

 The source information screen consists of the following
components.

31 Copyright 2016 FUJITSU LIMITED

B. Source code area

C. Jump map A. Line
information
display area

 Chapter 7 Source View

Source View: (A) Line Information Display Area

 Select a source file name on the Source View tab to display the source
information screen.

 This area displays source code line information and related information for the
respective number of lines.

 (1) Line number bar

This bar displays line numbers.

 (2) Line cost display bar

This bar displays the costs of lines.

Significantly high display costs appear in red.

32 Copyright 2016 FUJITSU LIMITED

(1) (2)

Line information display area

 Chapter 7 Source View

Source View: (B) Source Code Area

 This area displays the target source code.

 Thread parallelization parts appear in green, and high-cost parts appear in red.

33 Copyright 2016 FUJITSU LIMITED

Source code area

 Chapter 7 Source View

Source View: (C) Jump Map

 This map shows the colored parts (high-cost places and
thread parallelization places) of the (A) and (B) areas.

 You can jump to the intended line in the text area by
clicking in the jump map.

34 Copyright 2016 FUJITSU LIMITED

Jump map

 Chapter 7 Call Graph Copyright 2016 FUJITSU LIMITED 35

Call Graph

 Chapter 7 Call Graph

 Thread View has the Call Graph tab, which displays the procedure
call relationship in the form of a tree.

36 Copyright 2016 FUJITSU LIMITED

Call Graph tab

Call Graph

 Chapter 7 Profiler Use Examples Copyright 2016 FUJITSU LIMITED 37

Profiler Use Examples

 General Use Examples

 PA Information Example

 MPI Information Example

 Chapter 7 Profiler Use Examples

Profiler Use Examples

 This section describes the options specified in the following cases.

General use examples:

•Checking high-cost parts (high-cost parts at up to N places)

•Checking the load balance

•Checking the cost distribution that includes a call relationship

PA information example:

•Obtaining MFLOPS values and memory throughput values

MPI information example:

•Obtaining the ratio of MPI functions used across an entire program

The subsequent pages describe information collection command examples and
visualization examples.

 To use the profilers, specify the required options to output information
from profiler visualization based on collected profiling data.

38 Copyright 2016 FUJITSU LIMITED

 Chapter 7 General Use Examples Copyright 2016 FUJITSU LIMITED 39

General Use Examples

 Checking High-cost Parts

 Checking the Load Balance

 Checking Cost Distribution

 Accuracy of sampling (fipp)

 Chapter 7 General Use Examples

 General Use Examples: Checking High-cost Parts

Checking high-cost parts

40 Copyright 2016 FUJITSU LIMITED

fipp -C -d data a.out
Information collection

command example

Visualization
example

The values of high-cost parts are shown here.

 Chapter 7 General Use Examples

 General Use Examples: Checking the Load Balance

Checking the load balance

41 Copyright 2016 FUJITSU LIMITED

fipp -C -d data a.out

The bar chart can show the cost balance.

Information collection
command example

Visualization
example

 Chapter 7 General Use Examples

 General Use Examples: Checking Cost Distribution

Checking cost distribution with a call relationship

42 Copyright 2016 FUJITSU LIMITED

fipp -C -Icall -d data a.out

The call relationship is represented with nesting, with costs displayed by call path.

Information
collection

command example

Visualization
example

 Chapter 7 General Use Examples

Accuracy of sampling (fipp)

43 Copyright 2016 FUJITSU LIMITED

Following phenomena may occur if the execution time of
1 invocation of a procedure is less than sampling interval
time(the execution times for one occurrence are 150
microseconds) that can be specified by fipp.

Time measured by timer routine may differ from time measured
by fipp.

A load imnalance may occur between threads, or barrier time
may increase.(Those are different from results by precision PA)

In case that the execution time of 1 invocation of a procedure is less than
sampling interval time that can be specified by fipp, correct data may not be
obtained by fipp.
(In such case, please use precision PA)

 Chapter 7 PA Information Example Copyright 2016 FUJITSU LIMITED 44

PA Information Example

 Chapter 7 PA Information Example

 PA Information Example: MFLOPS Values and Memory Throughput Values

Checking MFLOPS values (operation performance) and memory
throughput values (memory access performance)

45 Copyright 2016 FUJITSU LIMITED

MFLOPS values

Visualization example

Memory throughput:

 fipp -Ihwm -Hevent=MEM_access -d data -C a.out

Memory throughput values

MFLOPS: fipp -Ihwm -d data -C a.out

Information collection command example

 Chapter 7 MPI Information Example Copyright 2016 FUJITSU LIMITED 46

MPI Information Example

 Chapter 7 MPI Information Example

 MPI Information Example: Ratio of MPI Functions
Checking the ratio of MPI functions used across an entire program

47 Copyright 2016 FUJITSU LIMITED

fapp -Impi -d data -C mpiexec a.out

Information collection command example

Visualization
example

The total values (elapsed time and number of MPI calls) and average message length across all
processes are displayed for each MPI function.

 Chapter 7 Tuning Examples Copyright 2016 FUJITSU LIMITED 48

Tuning Examples

 Tuning Procedure

 Sequential Tuning

MPI Tuning

 Chapter 7 Tuning Examples

 This section describes the tuning procedure using fipp/fapp.

 1. Identifying a high-cost loop

 · Collecting information with the instant profiler (fipp)

 · Text output of visualization and basic information

 · GUI output of visualization and basic information

 2. Detailed analysis of a high-cost loop

 · Inserting the fapp information collection routines into a source file

 · Collecting information with the advanced profiler (fapp)

 · Text output of visualization and detailed information

 · GUI output of visualization and detailed information

 3. Tuning work

 · Source tuning, option tuning, and optimization control line tuning

 4. Verifying tuning results

 · Collecting information and checking results with the advanced profiler (fapp)

 The subsequent pages describe examples of <sequential tuning> and <MPI tuning>.

49 Copyright 2016 FUJITSU LIMITED

Tuning Examples: Tuning Procedure

 Chapter 7 Sequential Tuning Copyright 2016 FUJITSU LIMITED 50

Sequential Tuning

 Identifying a High-cost Loop

 Detailed Analysis of a High-cost Loop

 Tuning Work

 Verifying Tuning Results

 Chapter 7 Sequential Tuning

<Sequential tuning example>

 Collecting information with the instant profiler (fipp)

 · -C : Gives an instruction to collect instant profiling data.

 · -Ihwm : Gives an instruction to collect hardware monitor information.

 (By default, cost information is collected.)

 · -d : Specifies the instant profiling data name
 (name of the directory storing instant profiling data files).

51 Copyright 2016 FUJITSU LIMITED

Sequential Tuning: Identifying a High-cost Loop

 fipp -C –Ihwm -d prof_fipp a.out

Information collection command example

 Chapter 7 Sequential Tuning

 Text output of visualization and basic information

 · -A : Gives an instruction to output instant profiler information.

 · -Icpu,hwm : Gives an instruction to output cost information and hardware
monitor information.

 · -d : Specifies the instant profiling data name (name of the directory storing
instant profiling data files).

 · -o : Gives an instruction on the output destination of instant profiler
information.

 fipppx -A –Icpu,hwm -d prof_fipp –o cost.txt

· The default of -I is -Icpu. cpu means to output cost information.

Visualization command example

Sequential Tuning: Identifying a High-cost Loop

52 Copyright 2016 FUJITSU LIMITED

This is executed on a login node.

 Chapter 7 Sequential Tuning

Loops profile

 Thread 0 - loops

 Cost % Operation (S) Barrier % Nest Kind Exec Start End
 --
 85 100.0000 8.6466 19 22.3529 -- -- -- -- -- Thread 0
 --
 55 64.7059 5.5949 0 0.0000 1 DO AUTO 72 75 sub3._PRL_1_
 5 5.8824 0.5086 5 100.0000 1 DO SERIAL 34 37 init_
 5 5.8824 0.5086 5 100.0000 -- ARRAY SERIAL 32 32 init_
 5 5.8824 0.5086 0 0.0000 1 DO AUTO 57 61 sub2._PRL_1_
 4 4.7059 0.4069 4 100.0000 1 DO SERIAL 57 61 sub2_
 3 3.5294 0.3052 0 0.0000 1 DO AUTO 45 49 sub1._PRL_1_
 3 3.5294 0.3052 3 100.0000 1 DO SERIAL 72 76 sub3_
 2 2.3529 0.2034 2 100.0000 1 DO SERIAL 45 49 sub1_

 You can see that the loop from line number 72 to 75 has a high cost of about
64.7%.

 Next, collect data with the advanced profiler to investigate the high-cost loop
in detail.

53 Copyright 2016 FUJITSU LIMITED

Low cost

High cost

Text visualization example

Sequential Tuning: Identifying a High-cost Loop

 Chapter 7 Sequential Tuning

 You can see that the loop from line number 72 to 75 has a high cost.

 Next, collect data with the advanced profiler to investigate the high-cost loop
in detail.

54 Copyright 2016 FUJITSU LIMITED

GUI output of visualization and basic information (high-cost loop)

GUI visualization example
Loop cost

Sequential Tuning: Identifying a High-cost Loop

 Chapter 7 Sequential Tuning

 Inserting the fapp information collection routines into a source file

 Insert the advanced profiler routines (fapp_start and fapp_stop) before and
after the high-cost part (line number 72 to 75) in the source file.

55 Copyright 2016 FUJITSU LIMITED

Sequential Tuning: Detailed Analysis of a High-cost Loop

 70 call fapp_start("region", 1, 0)
 71
 <<< Loop-information Start >>>
 <<< [PARALLELIZATION]
 <<< Standard iteration count: 422
 <<< [OPTIMIZATION]
 <<< COLLAPSED
 <<< SIMD(VL: 4)
 <<< SOFTWARE PIPELINING
 <<< Loop-information End >>>
 72 1 pp 6v do j = 1 , m
 <<< Loop-information Start >>>
 <<< [OPTIMIZATION]
 <<< COLLAPSED
 <<< Loop-information End >>>
 73 2 p 6 do i = 1 , n
 74 2 p 6v a(i, j) = b(i, j) + c(i, j) + d(i, j)+e(i,j)+f(i,j)+g(i,j)+h(i,j)
 75 2 p 6v enddo
 76 1 p enddo
 77
 78 call fapp_stop("region", 1, 0)

High-cost loop
subject to tuning

 Chapter 7 Sequential Tuning

 Collecting information with the advanced profiler (fapp)

 · -C : Gives an instruction to collect advanced profiling data.

 · -Ihwm : Gives an instruction to collect hardware monitor information.

 · -Hevent=Cache : Gives an instruction to collect cache miss ratios.
For this event, change the specification depending on the purpose of collection. (Multiple
specifications are not allowed.)

(MEM_access: Memory access status, Instructions _SIMD: Execution instruction details
(SIMD), Instructions_NOSIMD: Execution instruction details (NOSIMD), Performance:
Instruction execution efficiency, Statistics: CPU core activity status, TLB: TLB miss rate)

 · -d : Specifies the advanced profiling data name (name of the directory storing
advanced profiling data files).

 56 Copyright 2016 FUJITSU LIMITED

Sequential Tuning: Detailed Analysis of a High-cost Loop

fapp -C –Ihwm –Hevent=Cache -d prof_fapp a.out

Information collection command example Cache miss rate

 Chapter 7 Sequential Tuning

 Text output of visualization and detailed information

· -A : Gives an instruction to output advanced profiling data.

· -Ihwm : Gives an instruction to output hardware monitor information.

· -d : Specifies the advanced profiling data name.

· -o : Gives an instruction on the output destination of advanced profiler
information.

57 Copyright 2016 FUJITSU LIMITED

Sequential Tuning: Detailed Analysis of a High-cost Loop

 fapppx -A –Ihwm -d prof_fapp –o mem.txt

Visualization command example Cache miss rate This is executed on a login node.

 Chapter 7 Sequential Tuning

Performance monitor : Cache

 Application

 Kind Elapsed(s) Inst L1I miss(%) L1D miss(%)
 --
 AVG 9.1036 27116915236 0.1074 13.9141 all 0
 MAX 9.1036 27116915236 0.1074 13.9141
 MIN 9.1036 27116915236 0.1074 13.9141

 Kind Elapsed(s) Inst L1I miss(%) L1D miss(%)

 AVG 6.0335 9648402545 0.1795 28.1288 region 1
 MAX 6.0335 9648402545 0.1795 28.1288
 MIN 6.0335 9648402545 0.1795 28.1288

 You can see that the L1D cache miss rate of an advanced profiler routine,
region 1, is about 28%.

Text visualization example

Sequential Tuning: Detailed Analysis of a High-cost Loop

58 Copyright 2016 FUJITSU LIMITED

 Chapter 7 Sequential Tuning

 GUI output of visualization and detailed information (Cache)

59 Copyright 2016 FUJITSU LIMITED

GUI visualization example

L1 cache miss rate

Sequential Tuning: Detailed Analysis of a High-cost Loop

 You can see that the L1D cache miss rate of an advanced profiler routine,
region 1, is about 28%.

 Chapter 7 Sequential Tuning

 Perform tuning based on the profiler results.
 L1D cache thrashing occurs because each array is located on a 16-KB boundary.

Consequently, the following is a frequent event: No instruction commit due to L2
cache for a floating-point load instruction.

60 Copyright 2016 FUJITSU LIMITED

Sequential Tuning : Tuning Work

 66 parameter(n=256,m=256)
 67 real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),f(n,m),g(n,m),h(n,m)
 68 common /test/a,b,c,d,e,f,g,h
 :
 <<< Loop-information Start >>>
 <<< [PARALLELIZATION]
 <<< Standard iteration count: 422
 <<< [OPTIMIZATION]
 <<< COLLAPSED
 <<< SIMD(VL: 4)
 <<< SOFTWARE PIPELINING
 <<< Loop-information End >>>
 72 1 pp 6v do j = 1 , m
 <<< Loop-information Start >>>
 <<< [OPTIMIZATION]
 <<< COLLAPSED
 <<< Loop-information End >>>
 73 2 p 6 do i = 1 , n
 74 2 p 6v a(i, j) = b(i, j) + c(i, j) + d(i, j)+e(i,j)+f(i,j)+g(i,j)+h(i,j)
 75 2 p 6v enddo
 76 1 p enddo

Array size
256 x 256 x 8 B = 32 x 16 KB

(16-KB boundary)

 Chapter 7 Sequential Tuning

 As a solution, array merging reduces to reduce the number of streams from eight to two,
thereby preventing L1D cache thrashing.

61 Copyright 2016 FUJITSU LIMITED

 70 parameter(n=256,m=256)
 71 real*8 abcd(4,n,m),efgh(4,n,m)
 72 common /test/abcd,efgh
 :
 <<< Loop-information Start >>>
 <<< [PARALLELIZATION]
 <<< Standard iteration count: 2
 <<< Loop-information End >>>
 76 1 pp do j = 1 , m
 <<< Loop-information Start >>>
 <<< [OPTIMIZATION]
 <<< SIMD(VL: 4)
 <<< SOFTWARE PIPELINING
 <<< Loop-information End >>>
 77 2 p 4v do i = 1 , n
 78 2 p 4v abcd(1,i,j)=abcd(2,i,j)+abcd(3,i,j)+abcd(4,i,j)+efgh(1,i,j)+efgh(2,i,j)+efgh(3,i,j)+efgh(4,i,j)
 79 2 p 4v enddo
 80 1 p enddo

8 array merging reduces in units of 4.

Sequential Tuning : Tuning Work

 Chapter 7 Sequential Tuning

Performance monitor : Cache

 Application

 Kind Elapsed(s) Inst L1I miss(%) L1D miss(%)
 --
 AVG 4.0285 26906348505 0.1053 2.2465 all 0
 MAX 4.0285 26906348505 0.1053 2.2465
 MIN 4.0285 26906348505 0.1053 2.2465

 Kind Elapsed(s) Inst L1I miss(%) L1D miss(%)

 AVG 0.8705 9437208662 0.1797 3.4596 region 1
 MAX 0.8705 9437208662 0.1797 3.4596
 MIN 0.8705 9437208662 0.1797 3.4596

 You can see that the L1D cache miss rate has improved from about 28%
(before improvement) to about 3.46%.

62 Copyright 2016 FUJITSU LIMITED

Text visualization example

Sequential Tuning: Verifying Tuning Results
 To check the tuning effect, collect information and check the

visualization with the profilers again.

 Chapter 7 Sequential Tuning

 GUI output of visualization and detailed information (Cache)

63 Copyright 2016 FUJITSU LIMITED

GUI visualization example

L1D cache miss rate

Sequential Tuning: Detailed Analysis of a High-cost Loop

 You can see that the L1D cache miss rate has improved from about 28%
(before improvement) to about 3.46%.

 Chapter 7 Sequential Tuning

 Check execution times before and after the tuning.

64 Copyright 2016 FUJITSU LIMITED

Text visualization example

(Before improvement of target loop)
 Basic profile

 Kind Elapsed(s) User(s) System(s) Call
 --
 AVG 5.7754 89.6100 0.0700 25600.0000 region 1

(After improvement of target loop)
 Basic profile

 Kind Elapsed(s) User(s) System(s) Call
 --
 AVG 0.6079 9.1600 0.0500 25600.0000 region 1

After improvement: 0.6079 sec and resulting 9.5-fold improvement

Before improvement: 5.7754 sec

 Summary of tuning results

 Array merging reduced the number of streams and prevented L1D cache thrashing.
The result was an improvement in cache efficiency.

 A comparison between execution times before and after the improvement shows a
resulting 9.5-fold improvement at the target loop.

Sequential Tuning: Verifying Tuning Results

 Chapter 7 MPI Tuning Copyright 2016 FUJITSU LIMITED 65

MPI Tuning

 Cost Information Collection and Simple Analysis

 Detailed Analysis of MPI Information

 Tuning Work

 Verifying Tuning Results

 Chapter 7 MPI Tuning 66 Copyright 2016 FUJITSU LIMITED

<MPI tuning example>

 Collecting information with the instant profiler (fipp)
 Use the fipp and fipppx commands of the instant profiler in the same way

as described for sequential tuning.

MPI Tuning: Cost Information Collection and Simple Analysis

Procedures profile

 Application - procedures

 Cost % Operation (S) Start End

 46679 100.0000 466.7900 -- -- Application

 46538 99.6979 465.3800 36 56 sub_
 44 0.0943 0.4400 1 24 MAIN__
 (snip)

 MPI % Communication (S) Start End

 24369 52.2055 243.6900 -- -- Application

 24333 52.2863 243.3300 36 56 sub_

 You can see that the MPI cost is high since the MPI percentage of the overall application
execution time is about 52%.

 Collect data with the advanced profiler to investigate the use conditions of the MPI cost.

Text visualization example

 Chapter 7 MPI Tuning

 GUI output of visualization and basic information

GUI visualization example

Procedure costs

MPI Tuning: Cost Information Collection and Simple Analysis

Total application execution
time across all processes

 Check the total application execution time and total MPI time across all
processes, and you can see that the MPI percentage is high at about 52%.

 Collect data with the advanced profiler to investigate the use conditions of
the MPI cost.

Total MPI time across all
processes

67 Copyright 2016 FUJITSU LIMITED

 Chapter 7 MPI Tuning 68 Copyright 2016 FUJITSU LIMITED

 Collecting information with the advanced profiler (fapp)

 · -C : Gives an instruction to collect advanced profiling data.

 · -Impi : Gives an instruction to collect MPI information.

 · -d : Specifies the advanced profiling data name (name of the directory
storing advanced profiling data files).

fapp -C –Impi -d prof_fapp mpiexec a.out

MPI Tuning: Detailed Analysis of MPI Information

Information collection command example

 Chapter 7 MPI Tuning 69 Copyright 2016 FUJITSU LIMITED

 Text output of visualization and detailed information
(MPI information)

· -A : Gives an instruction to output advanced profiler information.

· -d : Specifies the advanced profiling data name.

· -o : Gives an instruction on the output destination of advanced profiler
information.

fapppx -A -d prof_fapp –o mpi.txt

For an MPI application, the default of -I is -Impi.
mpi means to output MPI information.

MPI Tuning: Detailed Analysis of MPI Information

Visualization command example

 Chapter 7 MPI Tuning

MPI profile

 Application

 Kind Elapsed(s) Wait(s) Byte Call (0-4K 4K-64K 64K-1024K 1024KByte-)

 242.1321 160.1422 ---- 3200064 3200064 0 0 0 all 0

 AVG 0.0017 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 mpi_finalize_
 MAX 0.0019 0.0000 0.0000 1 1 0 0 0
 MIN 0.0016 0.0000 0.0000 1 1 0 0 0

 AVG 0.0368 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 mpi_init_
 MAX 0.0458 0.0000 0.0000 1 1 0 0 0
 MIN 0.0296 0.0000 0.0000 1 1 0 0 0

 AVG 15.0948 10.0089 16.0000 200000.0000 200000.0000 0.0000 0.0000 0.0000 mpi_allreduce_
 MAX 26.6771 21.5743 16.0000 200000 200000 0 0 0
 MIN 5.6535 0.5441 16.0000 200000 200000 0 0 0
 --

70 Copyright 2016 FUJITSU LIMITED

• MPI_Allreduce has the highest cost among MPI functions.

• The communication wait time of MPI_Allreduce accounts for a large percentage of the elapsed time.

• You can also see that the large differences between the maximum and minimum values of elapsed
time and latency has resulted in non-uniform elapsed times and latencies among processes.

• Next, check the cost information for the MPI functions of each process in the same text data to check
the MPI_Allreduce status in each process.

Text visualization example
The communication wait time of 21.6 seconds accounts for a
large percentage of the elapsed time of 26.7 seconds.

MPI Tuning: Detailed Analysis of MPI Information

Across all processes, max. elapsed time: 26.7 seconds; min. elapsed
time: 5.7 seconds; max. communication wait time: 21.6 seconds; min.
communication wait time: 0.5 seconds
 The large differences between the max. and min. values of elapsed
time and communication wait time has resulted in non-uniform
elapsed times and communication wait times among processes.

 Chapter 7 MPI Tuning

MPI profile

 Application

 (snip)

 Process 0

 Elapsed(s) Wait(s) Byte Call (0-4K 4K-64K 64K-1024K 1024KByte-)
 5.6535 0.5441 16.0000 200000 200000 0 0 0 mpi_allreduce_

 (snip)

 Process 15

 Elapsed(s) Wait(s) Byte Call (0-4K 4K-64K 64K-1024K 1024KByte-)
 26.6771 21.5743 16.0000 200000 200000 0 0 0 mpi_allreduce_

71 Copyright 2016 FUJITSU LIMITED

• Both the elapsed time and communication wait time of process 0 are short, while both the
elapsed time and communication wait time of process 15 are long.

• A load imbalance has occurred between the processes. Process 15 is waiting for process 0 to finish
operation and execute MPI_Allreduce.

Text visualization example

MPI Tuning: Detailed Analysis of MPI Information

 Chapter 7 MPI Tuning 72 Copyright 2016 FUJITSU LIMITED

 From the bar charts showing the balance between elapsed times and balance
between communication wait time, you can see that the elapsed time and
communication wait time of MPI_Allreduce vary among processes.

 Example of GUI output of visualization and detailed
information (MPI information)

GUI visualization example

MPI information

Elapsed value of MPI_Allreduce is
selected to display balance of

elapsed times among processes as
bar chart

Wait value of MPI_Allreduce is
selected to display balance of

communication wait time among
processes as bar chart

MPI Tuning: Detailed Analysis of MPI Information

 Chapter 7 MPI Tuning 73 Copyright 2016 FUJITSU LIMITED

 Perform tuning based on the profiler results.
 The elapsed time and communication wait time of an MPI function vary among

processes, so consider how the operation load imbalance among the processes can be
resolved.

 After checking the source, you will see that a triangular loop (*) before the high-cost
MPI function has been divided into blocks for process parallelization processing.
Consequently, the amount of operation calculation varies among processes.

 subroutine sub(ista, iend)
 include 'mpif.h'
 integer*8 i,j,n
 parameter(n=1024)
 real*8 a(n+1,n),b(n+1,n),c(n+1,n)
 integer ista, iend
 integer ierr
 common a,b,c

 do j=ista, iend
 do i=j, n
 a(i,j)=b(i,j)/c(i,j)
 enddo
 enddo

 call MPI_Allreduce(a(i-1,j), a(i,j), 1, MPI_REAL8,
 & MPI_MAX, MPI_COMM_WORLD, ierr)

 end

Triangular loop
(Initial value of inner loop

is control variable of outer loop)

High-cost MPI function

* Triangular loop
A loop in which the initial value of an inner
loop is determined by the control variable
of an outer loop. Dividing this loop into
blocks causes a load imbalance to occur.

MPI Tuning: Tuning Work

 Chapter 7 MPI Tuning 74 Copyright 2016 FUJITSU LIMITED

 To improve the imbalance in the amount of calculation among processes,
change the method of data division for a triangular loop from block
division to cyclic division.

 For cyclic division in a triangular loop, correct the initial and final values
and specify the incremental value of the control variable.

 subroutine sub(isize, irank)
 include 'mpif.h'
 integer*8 i,j,n
 parameter(n=1024)
 real*8 a(n+1,n),b(n+1,n),c(n+1,n)
 integer ierr, isize, irank
 common a,b,c

 do j=irank+1, n, isize
 do i=j, n
 a(i,j)=b(i,j)/c(i,j)
 enddo
 enddo

 call MPI_Allreduce(a(i-1,j), a(i,j), 1, MPI_REAL8,
 & MPI_MAX, MPI_COMM_WORLD, ierr)

 end

Correct the initial value according to the
MPI process number, and revise the final
value to the last array element number.
Add the number of MPI processes as the
incremental value.

MPI Tuning: Tuning Work

 Chapter 7 MPI Tuning 75 Copyright 2016 FUJITSU LIMITED

 To check the tuning effect, collect information and check the
visualization with the profilers again.

MPI Tuning: Verifying Tuning Results

 You can see that the elapsed time (maximum value) of the MPI_Allreduce
function has improved from 26.7 seconds (before improvement) to 6.8 seconds.
Also, the communication wait time (maximum value) has improved from 21.6
seconds (before improvement) to 1.7 seconds (after improvement).

MPI profile

 Application

 Kind Elapsed(s) Wait(s) Byte Call (0-4K 4K-64K 64K-1024K 1024KByte-)
 --
 100.9875 18.3668 ---- 3200064 3200064 0 0 0 all 0
 --
 AVG 0.0019 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 mpi_finalize_
 MAX 0.0021 0.0000 0.0000 1 1 0 0 0
 MIN 0.0017 0.0000 0.0000 1 1 0 0 0
 --
 AVG 0.0400 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 mpi_init_
 MAX 0.0460 0.0000 0.0000 1 1 0 0 0
 MIN 0.0309 0.0000 0.0000 1 1 0 0 0
 --
 AVG 6.2698 1.1479 16.0000 200000.0000 200000.0000 0.0000 0.0000 0.0000 mpi_allreduce_
 MAX 6.8456 1.7255 16.0000 200000 200000 0 0 0
 MIN 5.7971 0.6905 16.0000 200000 200000 0 0 0

Text visualization example

 Chapter 7 MPI Tuning

MPI Tuning: Verifying Tuning Results

 Before improvement, the large differences in the elapsed time and
communication wait time between processes 0 and 15 are due to the
effect of operation load imbalance.

 After tuning, the improvement in operation load imbalance reduces
variations in the elapsed time and communication wait time between
the processes.

Text visualization example

 Process 0

 Elapsed(s) Wait(s) Byte Call (0-4K 4K-64K 64K-1024K 1024KByte-)
 6.1651 1.0238 16.0000 200000 200000 0 0 0 mpi_allreduce_

 (snip)

 Process 15

 Elapsed(s) Wait(s) Byte Call (0-4K 4K-64K 64K-1024K 1024KByte-)
 6.4339 1.3079 16.0000 200000 200000 0 0 0 mpi_allreduce_

Before improvement: 5.7 seconds

Before improvement: 0.5 seconds

Before improvement: 26.7 seconds

Before improvement: 21.6 seconds

76 Copyright 2016 FUJITSU LIMITED

 Chapter 7 MPI Tuning 77 Copyright 2016 FUJITSU LIMITED

 Check the execution times before tuning and after improvement.

Profiler output example

(Entire application before improvement)
Basic profile

 Kind Elapsed(s) User(s) System(s) Call
 --
 AVG 29.9379 29.9069 0.0256 1.0000 all 0

(Entire application after improvement)
Basic profile

 Kind Elapsed(s) User(s) System(s) Call
 --
 AVG 21.1919 21.1575 0.0294 1.0000 all 0

After improvement: 21.19 sec and resulting 1.41-fold improvement

Before improvement: 29.94 sec

 Summary of tuning results
 The method of division for a triangular loop that causes a communication

wait for an MPI function was changed from block division to cyclic division.
The result was an improvement in load imbalance between processes.

 A comparison between execution times before and after the improvement
shows a resulting 1.41-fold improvement in the entire application.

MPI Tuning: Verifying Tuning Results

 Chapter 7 Precision PA Visibility Function (Excel Format) Copyright 2016 FUJITSU LIMITED 78

 Data Collection (Execution)

 Data Analysis

 Aspects of Excel Sheets

Precision PA Visibility Function (Excel Format)

 Chapter 7 PA Information Example

Overview

79 Copyright 2016 FUJITSU LIMITED

 The precision PA visibility function (Excel format) can analyze data
collected in a certain format by importing it to an Excel sheet, and display
the results in graphs and tables.

 This analysis requires that the fapp command be executed eleven times. The
reason for that requirement is that hardware counter information of that
amount is needed. Consequently, the execution time may differ slightly. Those
differences may have the effect of negative numerical values for some
information.

 The operation of the profiler follows the procedure below.

1. Determine a measurement section, and insert information collection routines in a
program.

2. Compile the source code.

3. Collect data.

4. Convert data.

5. Analyze data by using the Excel sheet.

 Chapter 7 Data Collection (Execution) Copyright 2016 FUJITSU LIMITED 80

 Measurement Section Specification

 Compilation

 Information Collection by fapp

 Information Collection Command Example

* For details, see the Profiler Usage Guide “3.2.4 Compilation”.

Data Collection (Execution)

 Chapter 7 Data Collection (Execution)

Data Collection (Execution) (1)

81 Copyright 2016 FUJITSU LIMITED

 Inserting information collection routines for a measurement section

 Determine a measurement section and section name for a program.

 Insert information collection routines (start_collection/stop_collection) for the
measurement target section.

 Specify the section name in an argument.

 program
 call start_collection("region1")
 call sub1()
 call sub2()
 call stop_collection("region1")
end

Measurement section enclosed

(Precision PA information in this
section is collected.)

 Compilation

 Program compilation requires a tool library option (-Ntl_trt), but since the
option is specified by default, users do not need to pay special attention
to it.

 Chapter 7 Data Collection (Execution)

Data Collection (Execution) (2)

82 Copyright 2016 FUJITSU LIMITED

 Information collection by fapp

 Use the fapp command to collect data.

 Execute the fapp command a total of eleven times.

 The following fapp command options must be specified.

•-C : Gives an instruction to output advanced profiler information.

•-Hpa=no : Outputs in the precise PA format or measurement event number

 specification.

•-d profiling_data : Specifies a profiling data name.

 Options at the data collection time

•–C –d Fapp_pa -Hpa=n a.out

Specify a number between 1 and 11 in n.

1st time: -Hpa=1, 2nd time: -Hpa=2, 3rd time: -Hpa=3, 4th time: -Hpa=4, 5th time: -Hpa=5,
6th time: -Hpa=6, 7th time: -Hpa=7, 8th time: -Hpa=8, 9th time: -Hpa=9, 10th time: -Hpa=10,
11th time: -Hpa=11

 Chapter 7 Data Collection (Execution)

Data Collection (Execution) (3)

83 Copyright 2016 FUJITSU LIMITED

 Information collection command example

#PA1
fapp –C –d pa1 -Hpa=1 a.out
#PA2
fapp –C –d pa2 -Hpa=2 a.out
#PA3
fapp –C –d pa3 -Hpa=3 a.out
#PA4
fapp –C –d pa4 -Hpa=4 a.out
#PA5
fapp –C –d pa5 -Hpa=5 a.out
#PA6
fapp –C –d pa6 -Hpa=6 a.out
#PA7
fapp –C –d pa7 -Hpa=7 a.out
#PA8
fapp –C –d pa8 -Hpa=8 a.out
#PA9
fapp –C –d pa9 -Hpa=9 a.out
#PA10
fapp –C –d pa10 -Hpa=10 a.out
#PA11
fapp –C –d pa11 -Hpa=11 a.out

 The following example shows the information collection command executed eleven
times.
The fapp command is executed on a compute node.

 Chapter 7 Data Analysis

 Information Output by fapppx
 Information Output Command Example
 Operations in Excel

Data Analysis

Copyright 2016 FUJITSU LIMITED 84

 Chapter 7 Data Analysis

Data Analysis (1)

85 Copyright 2016 FUJITSU LIMITED

 Information output by fapppx

The data output by fapppx must be converted to CSV format before
analysis on an Excel sheet.

The following fapppx options must be specified.

•-A: Gives an instruction to output advanced profiler information.

•-tcsv: Outputs collected information as a CSV file.

•-H hardmon : Specifies output in the format for hardware monitor
information (precision PA).

•-d profiling_data : Specifies the profiling data to be analyzed.

The precision PA information file to be output for importing tabulated
results must have the following name:

•output_prof_1.csv to output_prof_11.csv

 Chapter 7 Data Analysis

#PA1
fapppx –A –d pa1 -o output_prof_1.csv –tcsv -Hpa
#PA2
fapppx –A –d pa2 -o output_prof_2.csv –tcsv -Hpa
#PA3
fapppx –A –d pa3 -o output_prof_3.csv –tcsv -Hpa
#PA4
fapppx –A –d pa4 –o output_prof_4.csv –tcsv -Hpa
#PA5
fapppx –A –d pa5 -o output_prof_5.csv –tcsv -Hpa
#PA6
fapppx –A –d pa6 –o output_prof_6.csv –tcsv -Hpa
#PA7
fapppx –A –d pa7 –o output_prof_7.csv –tcsv –Hpa
#PA8
fapppx –A –d pa8 –o output_prof_8.csv –tcsv -Hpa
#PA9
fapppx –A –d pa9 -o output_prof_9.csv –tcsv -Hpa
#PA10
fapppx –A –d pa10 –o output_prof_10.csv –tcsv -Hpa
#PA11
fapppx –A –d pa11 –o output_prof_11.csv –tcsv –Hpa

Data Analysis (2)

86 Copyright 2016 FUJITSU LIMITED

 Information output command example
 Collected data is converted into CSV data.

The fapppx command is executed on a login node at the front end.

 Chapter 7 Data Analysis

Data Analysis (3)

87 Copyright 2016 FUJITSU LIMITED

 Operations in Excel
 Arranging data

 Prepare an Excel worksheet for importing data.

 Place each CSV file (output_prof_1.csv to output_prof_11.csv) output by the
fapppx command in the same folder as the above Excel worksheet.

 Double-click the Excel sheet to start Excel, and a macro runs automatically to
start reading the CSV file.

 Removing the security warning

This Excel sheet uses a macro. Therefore, if macros are disabled in your security
settings, enable macros.

If macros cannot run in Excel, change the Excel macro security level.

The operations to enable macros vary depending on the Excel version.

 Chapter 7 Data Analysis

Data Analysis (4)

88 Copyright 2016 FUJITSU LIMITED

 Specifying a process number
A process number specification dialog box appears
automatically when the macro starts. Specify the
process number of the process to analyze.

 Specifying a section name
(measurement section)
A region name specification dialog box appears
when there are no process specification errors.
Specify the name of the section to analyze.

Note: If the folder does not contain the target
file (output_prof_1.csv to output_prof_11.csv) or
if the specified process number is wrong,
processing stops and Excel quits.

 Chapter 7 Data Analysis

Data Analysis (5)

89 Copyright 2016 FUJITSU LIMITED

 Generating an Excel sheet

 Excel sheet generation begins when there are no measurement section specification
errors.

 Notice:

 Data is collected eleven times, and the resulting data contains some differences.
These differences appear at the bottom of the second Excel sheet.

 If the execution time differs from the first execution time by 5% or more (shown as
95% or less or 105% or more), a warning dialog box appears.

 If the difference is large and high precision is required, you are recommended to check
this execution time difference and collect data again in order to use data with
insignificant differences.

 Chapter 7 Aspects of Excel Sheets

 Tabulated Result Example

Aspects of Excel Sheets

Copyright 2016 FUJITSU LIMITED 90

 Chapter 7 Aspects of Excel Sheets

Aspects of Excel Sheets

91 Copyright 2016 FUJITSU LIMITED

 Tabulated result example (1)
 The tabulated results are output to an Excel sheet (two A4 pages when printed).

 The following information is tabulated on the first page.

Instruction count information

Cache miss information

Memory throughput
information and Cache
throughput information

Performance information

SIMD instruction
information

Indicator XFILL flag

 Chapter 7 Aspects of Excel Sheets

Aspects of Excel Sheets

92 Copyright 2016 FUJITSU LIMITED

 Tabulated result example (2)
 The second pages contains a graph and the tabulated time information from which

the graph was generated.

* For details on the contents, see "PA Information Lists" in "Chapter 6 PA Event."

Cycle accounting

Load balance
information

 Chapter 7

Revision History

Copyright 2016 FUJITSU LIMITED 93

Version Date Revised section Details

2.0 April 25, 2016 - - First published

 Chapter 7 Tuning Workflow Copyright 2016 FUJITSU LIMITED

