

Chapter 7 Tuning Tool

FUJITSU LIMITED April 2016

Copyright 2016 FUJITSU LIMITED

Contents

- Tuning Workflow
- Profiler Operation Flow
- Profiler Overview
- Profiler Visualization
 - Summary View
 - Topology View
 - Source View
 - Call Graph
- Profiler Use Examples
 - General Use Examples
 - PA Information Example
 - MPI Information Example
- Tuning Examples
 - Sequential Tuning Example
 - MPI Tuning Example
- Precision PA Visibility Function (Excel Format)
 - Data Collection (Execution)
 - Data Analysis
 - Aspects of Excel Sheets

Tuning Workflow

Tuning work and profiler utilization

- To tune an application, perform a series of tasks, including collecting tuning information, examining means of improving the application, correcting the application, and measuring performance.
- □ Generally, identifying the places that take a long time to execute in an application can have the significant tuning effect of increasing the speed there. You can obtain tuning information, such as the distribution of execution times, by using a profiler. We recommend you start tuning work by analyzing the application with a profiler.

A profiler can collect tuning information for applications created with the compiler of this product.

Profiler Operation Flow

Profiler Overview

- Features of Each Component
- Information Retrieval and Analysis Procedure (Instant Profiler)
- Instant Profiler Use Example
- Retrievable Information (Instant Profiler)
- Information Retrieval and Analysis Procedure (Advanced Profiler)
- Advanced Profiler Use Example
- Retrievable Information (Advanced Profiler)

Profiler Overview

Profiler configuration

- The provided profilers are the instant profiler and advanced profiler.
- Use each of the two profilers according to the required tuning information.

* Sampling is a method of collecting information on the process, thread, procedure, loop, or line that is currently being executed, by interrupting the application at a constant user CPU interval.

* The event counter is a function for collecting PA (Performance Analysis) information.

Profiler Overview: Features of Each Component

The instant profiler (**fipp**) collects general information by sampling at a constant interval.

The advanced profiler (**fapp**) collects precise information by using a counter within a measurement section. However, it requires changes in the program.

The instant profiler analyzes the costs of an application by using the following procedure.

Profiler Overview: Instant Profiler Use Example

Language type	Header file	Function name	Function	Argument	<pre>#include<fj_tool fipp.h=""> #define SIZE 3000 double a[SIZE][SIZE],b[SIZE][SIZE],c[SIZE][SIZE]</fj_tool></pre>
For		fipp_start	Start information measurement	None	main() { int i,j;
fran None	None	fipp_stop	Stop information measurement	None	<pre>fipp_start(); for(i = 0; i < SIZE; i++){ for(j = 0; j < SIZE; j++){ a[i][i] = (double)(i+i*0.5); }; </pre>
C/C-	fj_tool/	void fipp_start	Start information measurement	None	b[i][j] = (double)(i+j*1.5); c[i][j] = a[i][j] + b[i][j] }
+	fipp.h	void fipp_stop	Stop information measurement	None	<pre>fipp_stop(); } </pre>

To use the section specification function of the instant profiler, specify the *fipp a.out -Srange* option.

Profiler Overview: Retrievable Information (Instant Profiler) Fujirsu

The instant profiler can retrieve the following information by:
 Collecting tuning information from the entire program through sampling
 Collecting the elapsed times, user CPU times, and system CPU times managed by the OS (Linux)

Classification	Details
Time statistical information	Elapsed time, breakdown of user CPU time and system CPU time, and other information
Cost information	Costs based on sampling in units of procedures, loops, or lines, cost of waiting for inter-thread synchronization, and MPI library communication cost
Hardware monitor information	Processor behavior at application execution time
Call graph information	Procedure call path and cost
Source code information	Each line of source code is output with cost information added

The advanced profiler analyzes the costs of an application by using the following procedure.

Profiler Overview: Advanced Profiler Use Example

The advanced profiler can collect execution performance information on the specified section of an application.

Language type	Header file	Function name	Function	Argument	<pre>#include<fj_tool fapp.h=""> #define SIZE 3000 double a[SIZE][SIZE],b[SIZE][SIZE],c[SIZE][SIZE]</fj_tool></pre>	
For	Nono	fapp_start	Start information measurement	(name,num ber, level)	<pre>main() { int i,j; fapp_start("region", ID1, 1); Nested measurement section can also be specified. </pre>	
tran	None	fapp_stop	Stop information measurement	(name,num ber, level)	for(i = 0; i < SIZE; i++){ fapp_start("region", ID2, 1); for(j = 0; j < SIZE; j++){	ID1
C/C++	fj_tool/	void fapp_start	Start information measurement	(const char *name, int number, int level)	a[i][j] = (double)(i+j*0.5); b[i][j] = (double)(i+j*1.5); c[i][j] = a[i][j] + b[i][j] } fapp_stop("region", ID2, 1);	ļ
	fapp.h	void fapp_stop	Stop information measurement	(const char *name, int number, int level)	<pre>} fapp_stop("region", ID1, 1); } :</pre>	ţ

FUÏTSU

Profiler Overview: Retrievable Information (Advanced Profiler)

- The advanced profiler can retrieve the following information by:
 - Collecting tuning information from a program measurement section by using a counter
 - Collecting the elapsed times, user CPU times, and system CPU times managed by the OS (Linux)

Classification	Details
Basic information	Number of calls, elapsed time, breakdown of user CPU time and system CPU time, and other information in measurement section
MPI information	MPI library execution information in measurement section
Hardware monitor information	Hardware monitor information in measurement section

Profiler Visualization

- Summary View
- Topology View
- Source View
- Call Graph

Profiler Visualization

First, start the programming support tool to display the main screen (launcher).

E	Login			_ 🗆 ×
	Server	:	system	
	Name	:	fsdt	
	Password	:	****	
				V Save login information
				Ok Cancel

- Login to a login node
 - Server: Enter the IP address or host name of the login node to which you are logging in.
 - Name: Enter the user name of your login account.
 - Password: Enter the password of your login account.

- Various development support functions
 - File operations (file explorer)
 - File editing (editor)
 - Application building (builder)
 - Application execution (executor)
 - Interactive debugger
 - Profiler visualization

Profiler Visualization: Starting the Profiler Visibility Function Fujirsu

Start profiler visualization from the main screen.After it starts, load profiling data.

Profiler Visualization: Selecting a GUI View (Mode)

Select a mode for analyzing profiling data.

Application View

This view displays information on the retrieved profiling data as a whole.

□<u>Rank View</u>

This view displays detailed information focusing on a single rank.

□ <u>Thread View</u>

This view displays detailed information focusing on a single thread.

Application View Rank View Thread View Profile Source View										
Summary Topology	Bar Cha	Bar Chart Data Compare								
Basic Procedure	Loop	Line								
Name	Start	End	Cost							
Application										
compute_rhs_	4	451								
x_solve_	5	566								
z_solve_	5	527								
y_solve_	5	533								

plication : User (S)			Basic Pro	cedure Loop	Line			
	Name	Value	News					
	Rank	9	Name	TOTAL	AVE.	MIN	HAX	TOTAL
	Elapsed (S)	43.1737	Application	43.3548	43.0445	37.7883	43.3548	39701.2734
	User (S)	38.9600						
	System (S)	4.1100						
	MFLOPS	780.5364						
	MFLOPS/PEAK (5	4.8784						
	MIPS	1712.2147						
	MIPS/PEAK (%)	21.4027						
	Memory access 1	2.0389						
	Memory access t	3.1858						
	SIMD (%)	24.4727						
		_						
		_						
		_						
		_	•	_				
N N N N N N N N								

Profiler Visualization: GUI View Configuration

- The profiler screen provides the following views for each of the application, rank, and thread modes.
- Select the Summary tab, Topology tab, or Source View tab to display the corresponding view.

Summary (summary view)

This view displays cost information.

Use the view to look for hot spots by focusing on the cost of each procedure, loop, and line.

Topology (topology view)

This view displays cost information along with the corresponding topology view.

Use the view to look among all processes (ranks) and threads for those that are hot spots, by focusing on the cost information.

Source View (source view)

This view displays cost information on the source code. You can check what processing is performed at hot spots, by focusing mainly on line costs.

Summary view

Source view

Summary View

Summary View (1/2)

This view displays cost information for the entire application.

You can look by procedure, loop, or line for the places that are hot spots based on the cost information.

			👖 FUJITSU Profiler						
nama wata									
Application Week Vision Vision	New Thread Ver	-	Application View Ran	nk View 🛛 T	hread View				
Realize Doorca View	<u> </u>								
Summary Tapalogy	Barchart G	aka Compare	Profile Source View	r					
first Passalare	Loop Line								
Asses 1	Bart End	Cont	Summary Topology	y 🛛 🛛 Bar Cha	art 🔰 Data Co	ompare			
Application									
ajaden.	3 3	08	Basic Procedure	Loop	Line				
e, ashe,	1 1	22							
aship, ripi,	3 2	44							
Pet,	7 3	17	Name	Start	End	Cost	Thread Barrier	MPI Library	
ney, tana,	1 2	15					Cost	Cost	TOTAL
Date,	9 3	12	a 11 11				1		
466_	8 1	14.	Application						3968983
bine,		12	compute rhs	4	451				833066
		-							
pine.		40	x_solve_	5	566				694241
Quarter stop		-	z solve	5	527				569017
Quowneruster,		-	2_301VE_	5	527				505017
and, toronto,		20	y_solve_	5	533				560477
4147,64,	3 3	58	to t	-					221102
BADA		04	setup_mpi_	5	64				231168
Daini,	327 2	60	lhsz_	5	127				212503
4754,76878,		64				-			
da Joshap y			copy_taces_	5	306				198594
_30_vfecanf_releval		-	lhsv	5	126				162714
_st_managy	**			_					
sines		**	lhsx_	5	123				161114
-	_		add_	5	31				64728
Cumma			tzetar_	5	60				64244
JUIIIIII	iy vie	W	txinvr_	5	57				64166
			_jwe_etbf						47201
			pinvr_	5	45				29606

Summary View (2/2)

Thread Barrier Cost/MPI Library Cost

Thread Barrier Cost lists the costs of waiting for inter-thread synchronization.
 MPI Library Cost lists MPI library costs.
 MPI Library Cost

FUJITSU Profiler												_ ×
Application View Ra	ank View 1	Thread Vie	w								Me	easured Information
Profile Source Vie	w											
Summary Topolog	ny Bar Ch	art D	ata Compare									
			-									
Basic Procedure	Loop	Line										
			Cost			1	'hread Barrier Cost			MPI Library	Cost	
Name	Start	End	AVE.	MIN	MAX	TOTAL	AVE.	MIN MAX	TOTAL	AVE.	MIN	MAX
Application			3875.9600	3653	4100	0	0.0000	0	619503	604.9834	351	887
compute_rhs_	4	4	51 813.5410	789	844	0	0.0000	0	0	0.0000	0	0
×_solve_	5	5	677.9697	621	742	0	0.0000	0	114311	111.6318	57	246
z_solve_	5	5	555.6807	494	640	0	0.0000	0	112086	109.4590	64	231
y_solve_	5	5	547.3408	497	623	0	0.0000	0	126344	123.3828	79	254
setup_mpi_	5		225.7500	5	447	0	0.0000	0	231168	225.7500	5	447
lhsz_	5	1	27 207.5225	129	255	0	0.0000	0	0	0.0000	0	0
copy_faces_	5	3	193.9395	174	217	0	0.0000	0	33920	33.1250	17	50
lhsy_	5	1	158.9004	96	202	0	0.0000	0	0	0.0000	0	0
nsx_		1	62 21 09	57	190	0	0.0000	0	0	0.0000	0	
tzetar	5		62,7383	30	90	0	0.0000	0	0	0.0000	0	0
txinvr	5		62,6621	44	78	0	0.0000	0	0	0.0000	0	0
jwe etbf			46.0947	42	49	0	0.0000	0	0	0.0000	0	0
pinvr_	5		45 28.9121	11	51	0	0.0000	0	0	0.0000	0	o -
ninvr_	5		15 27.0869		46	0	0.0000	0	0	0.0000	0	o 📕
fj_counter_stop_				7	33	0	0.0000	0	0	0.0000	0	0
fj_counter_start_			15.3789	5	28	0	0.0000	0	0	0.0000	0	0
exact_solution_	5		4.1673	1	7	0	0.0000	0	0	0.0000	0	o 🗧 🛛
adi_	5		4.2385	1	11	0	0.0000	0	71	0.0709	0	2
			2.0193	1	3	0	0.0000	0	0	0.0000	0	0
j Rattie	r los	J	1.4678	1	4	0	0.0000	0	1496	1.4609	1	3 📕
			1.4466	1	4	0	0.0000	0	0	0.0000	0	0
	_		1.0000	1	1	0	0.0000	0	0	0.0000	0	0
error_norm_	5		51 1.0000	1	1	0	0.0000	0	40	0.2516	0	1
rhs_norm_	65	1	1.0000	1	1	0	0.0000	0	63	0.7159	0	1
do_lookup_x			1.0494	1	2	0	0.0000	0	0	0.0000	0	0
_IO_vtscant_internal			1.0000	1	1	0	0.0000	0	0	0.0000	0	0
or_memcpy			1.0167	1	2	0	0.0000	0	0	0.0000	0	0
stropp			1.0000	1	1	0	0.0000	0	0	0.0000	0	
4	-	-	1.0000	1	- 1	0	0.0000		0	0.0000		

T

Topology View

- (1) Profiler Information List
- (2) Whole graph
- (3) Color Histogram
- (4) Zoom Information Panel
- (5) Display Unit Switching Buttons

Topology View

- This view displays cost information, by process, for an application.
- From the cost information on each process, you can check the information among all processes which have varying times and check the rank of a process that is a hot spot.
- The figure below shows the names of the topology view areas.

Topology View: (1) Profiler Information List

Procedure/Loop/Line

- Procedure outputs information in units of user procedures and system functions.
- Loop displays information in units of loop equivalents within a user procedure.
- Line displays information in units of line equivalents within a user procedure.

Topology View: (2) Whole Graph (1/2)

- This area displays the (A) information by process within the measurement section selected in the profiler information list.
- The information by process appears in the shape of the topology specified at the job submission time.
 - If a 3-dimensional shape is specified, the information is displayed as a
 - 3-dimensional structure following the directions of the axes shown in (B).
- The color of each process in (A) corresponds to a color in the (C) color histogram.

Topology View: (2) Whole Graph (2/2)

- The (D) white frame cursor appears as the mouse pointer is moved over the display area for (A) information by process.
- The (E) zoom information panel (4) zooms in on the process information within the range encompassed by the cursor.

Topology View: (3) Color Histogram

- This area displays the (A) histogram of performance-based distribution based on the process information displayed in the (2) whole graph.
- The horizontal axis represents the numeric values of retrieved information, and a vertical length in the graph represents the frequency of occurrence of the process with that numerical value.

Topology View: (4) Zoom Information Panel

- This area displays the (A) enlarged view of the extracted portion encompassed by the white frame cursor on the (2) whole graph.
- Move the mouse pointer over a process on the (A) enlarged display to select information on the process from the (1) instant profiler information list.

Zoom information panel

Topology View: (5) Display Unit Switching Buttons

Use these tabs to change the display format of the process displayed in the (2) whole graph and (4) zoom information panel.

Display unit switching buttons

•<u>Topology</u>

This tab displays the process in the form of a runtime topology. (Default display)

•<u>BarChart</u>

This tab displays a bar chart of performance information on each process.

•<u>DataCompare</u>

This tab arranges the display of data shown in the whole graph.

Тороlоду

Source View

- Source Information Screen
- (A) Line Information Display Area
- (B) Source Code Area
- 🔳 (C) Jump Map

Source View

- This view displays cost information for an entire application, on the source code.
- From the cost information displayed on the actual source code, you can check what processing is performed at hot spots.
- The figure below shows the names of the source view areas.

Source View: Source Information Screen

The source information screen consists of the following components.

Source View: (A) Line Information Display Area

- Select a source file name on the Source View tab to display the source information screen.
- This area displays source code line information and related information for the respective number of lines.
 - □ (1) Line number bar
 - This bar displays line numbers.
 - □ (2) Line cost display bar
 - This bar displays the costs of lines.
 - Significantly high display costs appear in red.

(1)

Line information display area

Source View: (B) Source Code Area

This area displays the target source code.

Thread parallelization parts appear in green, and high-cost parts appear in red.

Source code area

Ç						
C////.	///////////////////////////////////////	(11111111111111111111111111111111111111	///////////////////////////////////////	///////		
	subroutine	e subl()				
C////.	///////////////////////////////////////		///////////////////////////////////////	///////		
	implicit r	∙eal*8(a-h,o-z)				
С						
	include 'n	npif.h'				
	include 's	ample.h'				
C						
	do loop=1,	nn				
	bU=U.U					
	do k=1,1	100				
	do j=i	,100				
	do i	=1,100				
	1	1=aU(1, j, k)*				
	0	al(1,j,K)*				
	2	az(1, j, k)+				
	4	aJ(1, j, k)*				
	5	a4(1, J, K)*				
	6	ab(i i k)*				
	7	a0(1,),k)+				
	8	a8(i,i,k)*				
	ğ	a9(i,i,k)*				
	sc	ome=a1(i,i,k)+a5(i,i	.k))			
	bC]=b0+all+some				
	tn	np(i,j,k)=b0				
	endo	lo				
	enddo					
	enddo					
C						
	do k=1,	.100				
	do j	=1,100				
	C	lo i=1,100				
		total(i,j,k)=tmp(i,j,k)			
	e	enddo				
	endo	10				

Source View: (C) Jump Map

- This map shows the colored parts (high-cost places and thread parallelization places) of the (A) and (B) areas.
- You can jump to the intended line in the text area by clicking in the jump map.

Call Graph
Call Graph

Thread View has the Call Graph tab, which displays the procedure call relationship in the form of a tree.

	Applicat	tion View F	ank View Thre	ad View				Measured Information
	Profile	Source Vi	ew Call Grant	Rank 0 V	iread 0 V			
				-			Search:	Next Back
		ost Ci	3856 ¥ m	ain	Name	î	U.S.	
		1	3856	MAIN			MATN	ne
		251	251	setup mpi			MAIN_	
n tab		5	5	exact solution				
		2	2	exact rhs				
		4	3593	▼ adi				
		194	1021	▼ copv faces				
		810	821	▼ compute rhs				
		6	6	fi counter start				
		5	5	fi counter stop				
		4	4	fi counter stop				
		2	2	fi counter start				
		670	862	▼ × solve				
		182	185	V lbsx		=		
		2	2	fi counter start				
		1	1	fi counter stop				
		5	5	fi counter start				
		2	2	fi counter stop				Call
		554	710	V solve				
		149	151	V lbsv			Nai	ne
		2	2	fi counter stop			copy_taces_	
		5	5	fi counter start			x_solve_	
		542	833				y_solve_	
		198	207	V lbez			z_solve_	
		200	207	fi counter start			bcinvr_	
		6	6	fi counter_ston			ninvr_	
		79	79	tzetar			fj_counter_stop_	
		13		fi countor stop			add_	
		- 1	1	fi_counter_stop_			pinvr_	
		52	52	tvinyr				
		19	19	ninvr				
		15	19	fi counter stop				
		1	50	n_counter_stop_				
		20	30	adu_				
		33	33	Pariat-		· · · · · · · · · · · · · · · · · · ·		

Profiler Use Examples

- General Use Examples
- PA Information Example
- MPI Information Example

Profiler Use Examples

- This section describes the options specified in the following cases.
 <u>General use examples:</u>
 - Checking high-cost parts (high-cost parts at up to N places)
 - Checking the load balance
 - Checking the cost distribution that includes a call relationship
 - ■<u>PA information example:</u>
 - •Obtaining MFLOPS values and memory throughput values
 - MPI information example:
 - •Obtaining the ratio of MPI functions used across an entire program

The subsequent pages describe information collection command examples and visualization examples.

To use the profilers, specify the required options to output information from profiler visualization based on collected profiling data.

General Use Examples

- Checking High-cost Parts
- Checking the Load Balance
- Checking Cost Distribution
- Accuracy of sampling (fipp)

General Use Examples: Checking High-cost Parts

Checking high-cost parts

Information collection command example

Visualization example

Basic Procedure	Loop	Line	The value	s of high-	cost parl	ts are showr
Name	Start	End	TOTAL	Cost	MIN MA	x
Application			4707	45.9697	39	52 🗏
conj_grad_	975	1412	28070	27.4121	18	35
_jwe_etbf			4047	3.9521	3	4
fapp_stop_			4038	3.9941	1	10
fapp_start_			3910	3.8944	1	12
randlc_	1	35	2155	2.2216	1	5
initialize_mpi_	621	635	1279	1.4959	1	5
sprnvc_	1671	173	992	1.4398	1	4
icnvrt_	1745	175	756	1.3171	1	4
makea_	1418	153.	360	1.1465	1	3
MAIN	49	613	187	1.0108	1	2
_IO_vfprintf_internal		1	136	1.0000	1	1
libc_poll			121	1.1415	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
pthread_mutex_unlock_			84	1.0120	1	2
GIsched_yield			80	1.0667	1	2
vecset_	1765	1793	72	1.0588	1	2
xos mmm l list remove			17	1.0179	1 1 1	2 -
		_				•

fipp -C -d data a.out

General Use Examples: Checking the Load Balance

Checking the load balance

Information collection command example

fipp -C -d data a.out

FUITSU

General Use Examples: Checking Cost Distribution

Checking cost distribution with a call relationship

Information collection command example		fip	o -C -l	call -	d data	a.oul	<u>-</u>				
Visualization	i FUJITSU	Profiler									
example	Applicati Profile	ion View Sourc	Rank View e View Call	Thread Vie w Graph	Rank 0	▼ Thread 0	•				
		he cal	l relations	hip is repr	esented wi	ith nesting,	, with c	osts dis	played b	y call pat	h.
	Co	st	Cumulative	-			Name				
		4	49	V main							
		5	5	initializ	e_mpi_						
			1	▼_jwe_i	sfm						
			1	▼_dl_	runtime_resolve_1						
			1	Ψ_	dl_fixup						
			1		▼ _dl_lookup_symt	bol_x					
		1	1		do_lookup_x						
			4	▼ makea	_						
		2	4	v sprr	andle						
		1	1	i	cnvrt						
	•	30	34	► conj_gr	ad_						
		1	1	fapp_st	top_						

Accuracy of sampling (fipp)

Following phenomena may occur if the execution time of 1 invocation of a procedure is less than sampling interval time(the execution times for one occurrence are 150 microseconds) that can be specified by fipp.

- Time measured by timer routine may differ from time measured by fipp.
- A load imnalance may occur between threads, or barrier time may increase. (Those are different from results by precision PA)

In case that the execution time of 1 invocation of a procedure is less than sampling interval time that can be specified by fipp, correct data may not be obtained by fipp. (In such case, please use precision PA)

PA Information Example

PA Information Example: MFLOPS Values and Memory Throughput Values Fuirsu

Checking MFLOPS values (operation performance) and memory throughput values (memory access performance)

Information collection command example

MFLOPS: fipp -Ihwm -d data -C a.out

Memory throughput:

fipp -Ihwm -Hevent=MEM_access -d data -C a.out

Visualization example

Chapter 7 PA Information Example

MPI Information Example

MPI Information Example: Ratio of MPI Functions

Checking the ratio of MPI functions used across an entire program

Information collection command example

fapp -Impi -d data -C mpiexec a.out

Visualization example

					Elapsed (S)		
Name	Number		MPI	AVE.	MIN	мах	AVE
▼ all		0		4222		R	
			mpi_comme	0.3411	0.1836	0.4482	
			mpi_cc_m_rank	7.9950	7.7690	8.1058	
			mp <u>f</u> omm_size	0.0000	0.0000	0.0000	
			pi_comm_split	0.0863	0.0510	0.1058	
			.mpi_irecv_	0.2762	0.2070	0.3527	
		4	mpi_isend_	0.7746	0.4758	3.2164	
		4	mpi_finalize_	1.0418	0.1425	1.1787	4
		1	mpi_init_	0.4668	0.2198	0.8414	1
		4	mpi_waitall_	20.7130	12.2431	35.1483	1
		4	mpi_wait_	0.4874	0.0002	3.1617	1
			mpi_allgather_	2.3975	2.3128	2.4263	1
			n pi_allgatherv_	2.5634	2.1182	3.0423	1
			mpi_allreduce_	352.2980	64.5888	605.4956	3
			mpi_banier_	633.5305	478.9347	804.1.52	
			mpi bcast	68.3487	9.3735		

The total values (elapsed time and number of MPI calls) and average message length across all processes are displayed for each MPI function.

Tuning Examples

- Tuning Procedure
- Sequential Tuning
- MPI Tuning

Tuning Examples: Tuning Procedure

This section describes the tuning procedure using fipp/fapp.

1. Identifying a high-cost loop

- \cdot Collecting information with the instant profiler (fipp)
- \cdot Text output of visualization and basic information
- \cdot GUI output of visualization and basic information

2. Detailed analysis of a high-cost loop

- \cdot Inserting the fapp information collection routines into a source file
- \cdot Collecting information with the advanced profiler (fapp)
- \cdot Text output of visualization and detailed information
- \cdot GUI output of visualization and detailed information

<u>3. Tuning work</u>

 \cdot Source tuning, option tuning, and optimization control line tuning

4. Verifying tuning results

• Collecting information and checking results with the advanced profiler (fapp) The subsequent pages describe examples of <sequential tuning> and <MPI tuning>.

Sequential Tuning

- Identifying a High-cost Loop
- Detailed Analysis of a High-cost Loop
- Tuning Work
- Verifying Tuning Results

<Sequential tuning example>

Collecting information with the instant profiler (fipp)

Information collection command example

fipp -C -Ihwm -d prof_fipp a.out

 \cdot -*C* : Gives an instruction to collect instant profiling data.

- -*Ihwm* : Gives an instruction to collect hardware monitor information. (By default, cost information is collected.)
- \cdot -d : Specifies the instant profiling data name (name of the directory storing instant profiling data files).

Text output of visualization and basic information

Visualization command example

This is executed on a login node.

fipppx -A –lcpu,hwm -d prof_fipp –o cost.txt

- \cdot -A : Gives an instruction to output instant profiler information.
- ·-*Icpu,hwm* : Gives an instruction to output cost information and hardware monitor information.
- \cdot -d : Specifies the instant profiling data name (name of the directory storing instant profiling data files).
- \cdot -o : Gives an instruction on the output destination of instant profiler information.

• The default of *-I* is *-Icpu*. *cpu* means to output cost information.

Text visualization example

	Loops	profile							
	***** Thre *****	********* ead 0-1	********** 00ps *********	*****	*******	*****	*****	********	***************************************
	Cost	% Оре	eration (S) B	arrier	%	Nest	Kind	Exec Sta	art End
	85	100.0000	8.6466	19	22.352	9			Thread O
High cost	55	64.7059	5.5949	0	0.0000	1	DO	AUTO	72 75 sub3PRL_1_
$\widehat{1}$	5	5.8824	0.5086	5	100.0000) 1	DO	SERIAL	34 37 init_
	5	5.8824	0.5086	5	100.0000)	ARRAY	(SERIAL	32 32 init_
	5	5.8824	0.5086	0	0.0000		DO	AUIO	57 61 sub2PRL_1_
	4	4./059	0.4069	4	100.0000) 1	DO	SERIAL	57 61 sub2_
	3	3.5294	0.3052	0	0.0000) 1	DO	AUTO	45 49 sub1PRL_1_
	3	3.5294	0.3052	3	100.0000) 1	DO	SERIAL	72 76 sub3_
LOW COST	2	2.3529	0.2034	2	100.0000) 1	DO	SERIAL	45 49 sub1_

- You can see that the loop from line number 72 to 75 has a high cost of about 64.7%.
- Next, collect data with the advanced profiler to investigate the high-cost loop in detail.

GUI output of visualization and basic information (high-cost loop)

You can see that the loop from line number 72 to 75 has a high cost.

Next, collect data with the advanced profiler to investigate the high-cost loop in detail.

Sequential Tuning: Detailed Analysis of a High-cost Loop Fujitsu

Inserting the fapp information collection routines into a source file

Insert the advanced profiler routines (fapp_start and fapp_stop) before and after the high-cost part (line number 72 to 75) in the source file.

Sequential Tuning: Detailed Analysis of a High-cost Loop Fujirsu

Collecting information with the advanced profiler (fapp)

Information collection command example

Cache miss rate

fapp -C -Ihwm -Hevent=Cache -d prof_fapp a.out

- \cdot -*C* : Gives an instruction to collect advanced profiling data.
- \cdot -*lhwm* : Gives an instruction to collect hardware monitor information.
- \cdot -Hevent=Cache : Gives an instruction to collect cache miss ratios.

For this event, change the specification depending on the purpose of collection. (Multiple specifications are not allowed.)

(MEM_access: Memory access status, Instructions _SIMD: Execution instruction details (SIMD), Instructions_NOSIMD: Execution instruction details (NOSIMD), Performance: Instruction execution efficiency, Statistics: CPU core activity status, TLB: TLB miss rate)

 \cdot -d : Specifies the advanced profiling data name (name of the directory storing advanced profiling data files).

Sequential Tuning: Detailed Analysis of a High-cost Loop

Text output of visualization and detailed information

Visualization command example Cache miss rate This

This is executed on a login node.

fapppx -A -Ihwm -d prof_fapp -o mem.txt

- \cdot -A : Gives an instruction to output advanced profiling data.
- \cdot -*lhwm* : Gives an instruction to output hardware monitor information.
- \cdot -*d* : Specifies the advanced profiling data name.
- \cdot -o : Gives an instruction on the output destination of advanced profiler information.

Sequential Tuning: Detailed Analysis of a High-cost Loop

Text visualization example

rforma	ance monito	or : Cache			
***** Appli *****	********** cation ********	**********	************	************	*******************************
Kind	Elapsed(s)	Inst	L1I miss(%)	L1D miss(%)	_
AVG	9.1036	27116915236	0.1074	13.9141	all 0
MAX	9.1036	27116915236	0.1074	13.9141	
Kind	Elapsed(s)	Inst	L1I miss(%)	L1D miss(%)	
AVG MAX MIN	6.0335 6.0335 6.0335	9648402545 9648402545 9648402545	0.1795 0.1795 0.1795	28.1288 28.1288 28.1288	region 1
	rforma Appli ***** Kind AVG MAX MIN Kind AVG MAX MIN	rformance monito Application *********************** Kind Elapsed(s) AVG 9.1036 MAX 9.1036 MIN 9.1036 Kind Elapsed(s) 9.1036 MAX 9.1036 MIN 9.1036	Application ************************************	rformance monitor : Cache ************************************	rformance monitor : Cache Application ************************************

You can see that the L1D cache miss rate of an advanced profiler routine, region 1, is about 28%.

Sequential Tuning: Detailed Analysis of a High-cost Loop Fujitsu

GUI output of visualization and detailed information (Cache) GUI visualization example

👔 FUJITSU Profiler L1 cache miss rate Rank View Application View Thread View Measured Information Profile Bar Chart Data Compare Topology Basic Hardware all : 0 : Call Count Value Name L1 operand miss (%) Number Name AVE. MIN MAX AVE. all 13.9141 13.9141 13.9141 0.0 28,1288 28,1288 28.1288 regior ο.

You can see that the L1D cache miss rate of an advanced profiler routine, region 1, is about 28%.

Sequential Tuning : Tuning Work

Perform tuning based on the profiler results.

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the following is a frequent event: No instruction commit due to L2 <u>cache for a floating-point load instruction.</u>

Sequential Tuning : Tuning Work

As a solution, array merging reduces to reduce the number of streams from eight to two, thereby preventing L1D cache thrashing.

Sequential Tuning: Verifying Tuning Results

To check the tuning effect, collect information and check the visualization with the profilers again.

Text visualization example

Pe	erforma	ance monit	or : Cache			
*	***** Appli *****	********** ication *********	***********	********	*********	******
	Kind	Elapsed(s)	Inst	L1I miss(%)	L1D miss(%)	
-	AVG MAX MIN	4.0285 4.0285 4.0285	26906348505 26906348505 26906348505	0.1053 0.1053 0.1053	2.2465 2.2465 2.2465	all 0
	Kind	Elapsed(s)	Inst	L1I miss(%)	L1D miss(%)	
-	avg Max Min	0.8705 0.8705 0.8705	9437208662 9437208662 9437208662	0.1797 0.1797 0.1797	3.4596 3.4596 3.4596	- region 1

You can see that the L1D cache miss rate has improved from about 28% (before improvement) to about 3.46%.

Sequential Tuning: Detailed Analysis of a High-cost Loop Fujitsu

GUI output of visualization and detailed information (Cache)

GUI visualization example

FUJITSU Profiler								
Application View Rank View Thread View			L1D ca	che miss	rate	Measured In	formation	
Profile								
Topology Bar Chart Data Compare								
all : 0 : Call Count	Ваяс	Hardware		V				
Nam	ne Value		Number	L1	operand miss (%)			
	Na	me	Number	AVE.	MIN	MAX	AVE.	
	all		0	2.2465	2.2465	2.2465	0.0	
	region		1	3.4596	3.4596	3.4596	0.0	
			_		_			

You can see that the L1D cache miss rate has improved from about 28% (before improvement) to about 3.46%.

Sequential Tuning: Verifying Tuning Results

Check execution times before and after the tuning.

Text visualization example

(Before improveme	nt of target loop)	
Basic profile	Before improvement: 5.7754 sec	
Kind Elapsed(s)	User(s) System(s) Call	
AVG 5.7754	89.6100 0.0700 25600.0000 region 1	
(After improvemen	t of target loop)	
Basic profile	After improvement: 0.6079 sec and result	ing 9.5-fold improvement
Kind Elapsed(s)	User(s) System(s) Call	
AVG 0.6079	9.1600 0.0500 25600.0000 region 1	

Summary of tuning results

- Array merging reduced the number of streams and prevented L1D cache thrashing. The result was an improvement in cache efficiency.
- A comparison between execution times before and after the improvement shows a resulting 9.5-fold improvement at the target loop.

MPI Tuning

- Cost Information Collection and Simple Analysis
- Detailed Analysis of MPI Information
- Tuning Work
- Verifying Tuning Results

MPI Tuning: Cost Information Collection and Simple Analysis Fuirsu

<MPI tuning example>

Collecting information with the instant profiler (fipp)

Use the fipp and fipppx commands of the instant profiler in the same way as described for sequential tuning.

Text visualization example

rocedures pr	rofile	
********* Application ********	**************************************	****
Cost	% Operation (S) Start End	
46679	100.0000 466.7900 Application	
46538 44 (snip	99.6979 465.3800 36 56 sub_ 0.0943 0.4400 1 24 MAIN)	
MPI	% Communication (S) Start End	
24369	52.2055 243.6900 Application	
24333	52.2863 243.3300 36 56 sub_	

You can see that the MPI cost is high since the MPI percentage of the overall application execution time is about 52%.

Collect data with the advanced profiler to investigate the use conditions of the MPI cost.

MPI Tuning: Cost Information Collection and Simple Analysis Fujitsu

GUI output of visualization and basic information

👔 FUJITSU Profiler **Procedure costs Application View Rank View** Thread Profile Source View Bar Chart Data Compare Summary Topology Basic Procedure Loop Line Operation (S) Communication (\$) Start Name End AVE. MIN MAX UTAL AVE. MIN MAX UTAL 466.2701 29.1419 29.0900 29,1700 243.4286 15.2143 3.6438 Application ---64.8616 243,0691 36 56 29.0539 28.9703 29.1100 15.1918 3.5938 sub_ MAIN 24 0.4394 0.0366 0.0100 0.0798 0.3595 0.0300 0.0100 _libc_poll 0.3994 0.0307 0.0100 0.0599 0.0000 00000 0.0000 0.0211 0.0000 0.0000 _GI___sched_y **Total application execution** Total MPI time across all 0.0000 0.0120 0.0000 _GI_memcpy time across all processes processes

- Check the total application execution time and total MPI time across all processes, and you can see that the MPI percentage is high at about 52%.
- Collect data with the advanced profiler to investigate the use conditions of the MPI cost.

GUI visualization example

FUĴITSU

Collecting information with the advanced profiler (fapp)

Information collection command example

fapp -C -Impi -d prof_fapp mpiexec a.out

- \cdot -*C* : Gives an instruction to collect advanced profiling data.
- ·-*Impi* : Gives an instruction to collect MPI information.
- \cdot -d : Specifies the advanced profiling data name (name of the directory storing advanced profiling data files).

FUjitsu

Text output of visualization and detailed information (MPI information)

Visualization command example

fapppx -A -d prof_fapp -o mpi.txt

- \cdot -A : Gives an instruction to output advanced profiler information.
- \cdot -*d* : Specifies the advanced profiling data name.
- \cdot -o : Gives an instruction on the output destination of advanced profiler information.

For an MPI application, the default of *-I* is *-Impi*. *mpi* means to output MPI information.

t vis	ualizati	on exar	nple				The large	commur e percen	ication w tage of tl	ait tim 1e elap:	e of 21.6 seconds accounts for a sed time of 26.7 seconds.
PI profi ***** Appl *****	le ********* lication *********	*********	*******	*******	*******	*****	*****	Across time: s comme Th time a elapse	all proces 5.7 second unication e large dif nd commu d times ar	ses, max s; max. c wait tim ference: inication id comm	x. elapsed time: 26.7 seconds; min. elapsed communication wait time: 21.6 seconds; min. ne: 0.5 seconds s between the max. and min. values of elapsed n wait time has resulted in non-uniform nunication wait times among processes.
Kind	Elapsed(s)	Wait(s)	Byte	call (0-4K	4K-64	K 64	K-1024K	1024KByte-	-)	
 2	242.1321	160.1422	7	200064	3200064		0	0	0 all 0		
AVG	0.0017	0.0000	0.0000	1.0000	1.0000	0.	0000	0.0000	0.0000	mpi_fina	alize_
MAX MIN	0.0019 0.0016	0.0000 0.0000	0.0000	1	1 1	0 0	0 0	0 0			
AVG	0.0368	0.0000	0.0000	1.0000	1.0000	0.	0000	0.0000	0.0000	mpi_ini	t_
MAX MIN	0.0458 0.0296	0.0000 0.0000	0.0000 0.0000	1 1	1 1	0 0	0 0	0 0			
AVG	15 0948	10,0089	16.0000	200000.0	000 2000	00.00		0.0000	0.0000	0.0000	mpi_allreduce_
MAX MIN	26.6771 5.6535	21.5743 0.5441	16.0000 16.0000	20000 20000 20000	0 2000 20000	000 00	0 0	0 0	0 0		-

• MPI_Allreduce has the highest cost among MPI functions.

- The communication wait time of MPI_Allreduce accounts for a large percentage of the elapsed time.
- You can also see that the large differences between the maximum and minimum values of elapsed time and latency has resulted in non-uniform elapsed times and latencies among processes.
- Next, check the cost information for the MPI functions of each process in the same text data to check the MPI_Allreduce status in each process.

FUJITSU

Text visualization example

MPI profile ***********	*******	******	******	****	*******	****
Application	*******	*******	*****	*******	********	*****
(snip)						
**********	*******	*******	******	********	********	*****
Process 0 ***********	*******	*******	*******	*****	*******	*****
Elapsed(s) <mark>5.6535</mark>	Wait(s) <mark>0.5441</mark>	Byte 16.0000	Call (0- 200000	4K 4K-64K 200000	64K-1024K 0 0	1024KByte-) 0 mpi_allreduce_
(snip)						
**********	*******	*******	******	*******	********	*****
Process 15 ***********	*******	*******	*******	******	********	*****
Elapsed(s) 26.6771	Wait(s) <mark>21.5743</mark>	Byte 16.0000	Call (0- 200000	4K 4K-64K 200000	64K-1024K 0 0	1024KByte-) 0 mpi_allreduce_

- Both the elapsed time and communication wait time of process 0 are short, while both the elapsed time and communication wait time of process 15 are long.
- A load imbalance has occurred between the processes. Process 15 is waiting for process 0 to finish operation and execute MPI_Allreduce.
MPI Tuning: Detailed Analysis of MPI Information

Example of GUI output of visualization and detailed information (MPI information)

GUI visualization example

FUJITSU Profiler	. 110	······································	o , loo , la	100 · 1410	mpi_init_e	130, 14 <u>0</u>
Application View ドューニングツール線		MPI	informat	ion		Measured Inform
Profile <u>アニメーション スライド</u>	<u>ショー 校閲 表示</u>					
Topology Bar Chart Data Co	mpa re					
all : 0 : mpi_allreduce_ : Elapsed (S)		Basic MPI				
	Name Value				Elapsed (S)	
	Rank 0	Name Number	MPI			
	Total 200000			AVE.	MIN	MAX
	0KB <= messag- 200000	all	0			
	4KB <= messagi 0		mpi_comm_rank	0.0000	0.0000	0.0000
	64KB <= messar 0		mpi_comm_size,	0.0000	0.0000	0.0000
	1024KB <= mes 0		mpi_finalize_	0.0017	0.0016	0.0019
	Elapsed (S) 5.6535		mpi_init_	0.0368	0.0296	0.0458
	Wait (S)		mpi_allreduce_	15.0948	5.6535	26.6771
	Average r Elapsed Value O	MPI_AIIreduce is				
	solocted to dis	nlav halance of				
		piay balance of				
	elansed times ar					
	ciupsed times di					
	bar	chart				
0 0 0						
Application View Fューニングツール福 Profile アニメーション スライド 3	.pptx - Microsoft PowerPoint 如一 校開 表示		22		M	leasured Information
Topology Bar Chart Data Com	пране					
all : 0 : mpi_allreduce_ : Wait (S)	Bat	ic MPI				
	Name Value			Wa	it (s)	
	Rank 0	Name Number	MPI	AVE.		AX AVE.
	Total 200000					
	0KB <= messagi 200000 v all		0			
- 100	4KB <= messagi 0		mpi_comm_rank	0.0000	0.0000	0.0000
			mpi_comm_size	0.0000	0.0000	0.0000
	Flanced (2)		mpi_finalize_	0.0000	0.0000	0.0000
	Walt (S)		mpi_init_	0.0000	0.0000	0.0000
	Wait value of Mait value of Ma	API Allreduce is	mpi_allreduce	10.0089	0.5441	21.5743 1
	selected to dis	play balance of				
	communication					
	communication	wait time among				
		as har chart				
	processes	as bar chart				

From the bar charts showing the balance between elapsed times and balance between communication wait time, you can see that the elapsed time and communication wait time of MPI_Allreduce vary among processes.

MPI Tuning: Tuning Work

Perform tuning based on the profiler results.

- The elapsed time and communication wait time of an MPI function vary among processes, so consider how the operation load imbalance among the processes can be resolved.
- After checking the source, you will see that a triangular loop (*) before the high-cost MPI function has been divided into blocks for process parallelization processing. Consequently, the amount of operation calculation varies among processes.

MPI Tuning: Tuning Work

- To improve the imbalance in the amount of calculation among processes, change the method of data division for a triangular loop from block division to cyclic division.
- For cyclic division in a triangular loop, correct the initial and final values and specify the incremental value of the control variable.

MPI Tuning: Verifying Tuning Results

To check the tuning effect, collect information and check the visualization with the profilers again.

PI prol	file					—	Text vis	Sualizatio	on example
*****	*******	******	*******	******	******	******	*****	********	***
Арр *****	lication ********	******	******	*******	******	******	********	*******	****
Kind	Elapsed(s)	Wait(s)	Byte	Call (0-4K	4K-64K	64K-1024K	1024KByte-)	
	100.9875	18.3668		3200064	3200064	0	0	0 al	0
AVG	0.0019	0.0000	0.0000	1.0000	1.0000	0.0000	0.0000	0.0000	mpi_finalize_
MAX	0.0021	0.0000	0.0000	1	1	0	0	0	•
MIN	0.0017	0.0000	0.0000	1	1	0	0	0	
AVG	0.0400	0.0000	0.0000	1.0000	1.0000	0.0000	0.0000	0.0000	mpi_init_
MAX	0.0460	0.0000	0.0000	1	1	0	0	0	
MIN	0.0309	0.0000	0.0000	1	1	0	0	0	
AVG	6.2698	1.1479	16.0000	200000.0000	200000.0000	0.000	0.0000	0.000	mpi_allreduce
MAX	6.8456	1.7255	16.0000	200000	200000	0	0	0	-
MIN	5.7971	0.6905	16.0000	200000	200000	0	0	0	

You can see that the elapsed time (maximum value) of the MPI_Allreduce function has improved from 26.7 seconds (before improvement) to 6.8 seconds. Also, the communication wait time (maximum value) has improved from 21.6 seconds (before improvement) to 1.7 seconds (after improvement).

MPI Tuning: Verifying Tuning Results

Text visualization example

- Before improvement, the large differences in the elapsed time and communication wait time between processes 0 and 15 are due to the effect of operation load imbalance.
- After tuning, the improvement in operation load imbalance reduces variations in the elapsed time and communication wait time between the processes.

MPI Tuning: Verifying Tuning Results

Check the execution times before tuning and after improvement.

Profiler output example

Summary of tuning results

- The method of division for a triangular loop that causes a communication wait for an MPI function was changed from block division to cyclic division. The result was an improvement in load imbalance between processes.
- A comparison between execution times before and after the improvement shows a resulting 1.41-fold improvement in the entire application.

Precision PA Visibility Function (Excel Format)

- Data Collection (Execution)
- Data Analysis
- Aspects of Excel Sheets

Overview

- The precision PA visibility function (Excel format) can analyze data collected in a certain format by importing it to an Excel sheet, and display the results in graphs and tables.
 - This analysis requires that the fapp command be executed eleven times. The reason for that requirement is that hardware counter information of that amount is needed. Consequently, the execution time may differ slightly. Those differences may have the effect of negative numerical values for some information.
 - The operation of the profiler follows the procedure below.
 - 1. Determine a measurement section, and insert information collection routines in a program.
 - 2. Compile the source code.
 - 3. Collect data.
 - 4. Convert data.
 - 5. Analyze data by using the Excel sheet.

Data Collection (Execution)

- Measurement Section Specification
- Compilation
- Information Collection by fapp
- Information Collection Command Example

* For details, see the *Profiler Usage Guide "3.2.4 Compilation"*.

Data Collection (Execution) (1)

- Inserting information collection routines for a measurement section
 - Determine a measurement section and section name for a program.
 - Insert information collection routines (start_collection/stop_collection) for the measurement target section.

Specify the section name in an argument.

```
program

call start_collection("region1")

call sub1()

call sub2()

call stop_collection("region1")

end
```

Measurement section enclosed

(Precision PA information in this section is collected.)

Compilation

Program compilation requires a tool library option (-Ntl_trt), but since the option is specified by default, users do not need to pay special attention to it.

Data Collection (Execution) (2)

- Information collection by fapp
 - Use the fapp command to collect data.
 - Execute the fapp command a total of eleven times.
 - The following fapp command options must be specified.
 - -C : Gives an instruction to output advanced profiler information.
 - -Hpa=no : Outputs in the precise PA format or measurement event number specification.
 - -d *profiling_data* : Specifies a profiling data name.

Options at the data collection time

•-C -d Fapp_pa -Hpa=*n* a.out

Specify a number between 1 and 11 in n.

1st time: -Hpa=1, 2nd time: -Hpa=2, 3rd time: -Hpa=3, 4th time: -Hpa=4, 5th time: -Hpa=5, 6th time: -Hpa=6, 7th time: -Hpa=7, 8th time: -Hpa=8, 9th time: -Hpa=9, 10th time: -Hpa=10, 11th time: -Hpa=11

Data Collection (Execution) (3)

Information collection command example

The following example shows the information collection command executed eleven times.

The fapp command is executed on a compute node.

```
#PA1
fapp –C –d pa1 -Hpa=1 a.out
#PA2
fapp –C –d pa2 -Hpa=2 a.out
#PA3
fapp –C –d pa3 -Hpa=3 a.out
#PA4
fapp –C –d pa4 -Hpa=4 a.out
#PA5
fapp –C –d pa5 -Hpa=5 a.out
#PA6
fapp –C –d pa6 -Hpa=6 a.out
#PA7
fapp –C –d pa7 -Hpa=7 a.out
#PA8
fapp –C –d pa8 -Hpa=8 a.out
#PA9
fapp –C –d pa9 -Hpa=9 a.out
#PA10
fapp -C -d pa10 -Hpa=10 a.out
#PA11
fapp -C -d pa11 -Hpa=11 a.out
```


Data Analysis

- Information Output by fapppx
- Information Output Command Example
- Operations in Excel

Data Analysis (1)

- Information output by fapppx
 - The data output by fapppx must be converted to CSV format before analysis on an Excel sheet.
 - The following fapppx options must be specified.
 - -A: Gives an instruction to output advanced profiler information.
 - -tcsv: Outputs collected information as a CSV file.
 - -H *hardmon* : Specifies output in the format for hardware monitor information (precision PA).
 - -d *profiling_data* : Specifies the profiling data to be analyzed.
 - The precision PA information file to be output for importing tabulated results must have the following name:

•output_prof_1.csv to output_prof_11.csv

Data Analysis (2)

Information output command example

Collected data is converted into CSV data. The fapppx command is executed on a login node at the front end.

#PA1 fapppx -A -d pa1 -o output_prof_1.csv -tcsv -Hpa **#PA2** fapppx -A -d pa2 -o output prof 2.csv -tcsv -Hpa #PA3 fapppx -A -d pa3 -o output prof 3.csv -tcsv -Hpa **#PA4** fapppx -A -d pa4 -o output prof 4.csv -tcsv -Hpa #PA5 fapppx -A -d pa5 -o output_prof_5.csv -tcsv -Hpa **#PA6** fapppx -A -d pa6 -o output_prof_6.csv -tcsv -Hpa **#PA7** fapppx -A -d pa7 -o output prof 7.csv -tcsv -Hpa **#PA8** fapppx -A -d pa8 -o output prof 8.csv -tcsv -Hpa **#PA9** fapppx -A -d pa9 -o output prof 9.csv -tcsv -Hpa **#PA10** fapppx -A -d pa10 -o output_prof_10.csv -tcsv -Hpa **#PA11** fapppx -A -d pa11 -o output prof 11.csv -tcsv -Hpa

Data Analysis (3)

FUjitsu

Operations in Excel

- Arranging data
 - Prepare an Excel worksheet for importing data.
 - Place each CSV file (output_prof_1.csv to output_prof_11.csv) output by the fapppx command in the same folder as the above Excel worksheet.
- Double-click the Excel sheet to start Excel, and a macro runs automatically to start reading the CSV file.
- Removing the security warning
 - This Excel sheet uses a macro. Therefore, if macros are disabled in your security settings, enable macros.
 - If macros cannot run in Excel, change the Excel macro security level.
 - The operations to enable macros vary depending on the Excel version.

Data Analysis (4)

Specifying a process number

A process number specification dialog box appears automatically when the macro starts. Specify the process number of the process to analyze.

Microsoft Excel			
Please input Process No.(0-).	ОК		
	キャンセル		
0			

Microsoft Excel

There is no specified process.

ΟK

Note: If the folder does not contain the target file (output_prof_1.csv to output_prof_11.csv) or if the specified process number is wrong, processing stops and Excel quits.

Specifying a section name (measurement section)

A region name specification dialog box appears when there are no process specification errors. Specify the name of the section to analyze.

Please input th	e section name.	X
region1 region2 region3 region4 region5		
	ок	

Microsoft Excel

Processing is ended.

C:¥output_prof_1.csv There is no file

OK

 \mathbf{X}

Data Analysis (5)

Generating an Excel sheet

Excel sheet generation begins when there are no measurement section specification errors.

Notice:

Data is collected eleven times, and the resulting data contains some differences. These differences appear at the bottom of the second Excel sheet.

If the execution time differs from the first execution time by 5% or more (shown as 95% or less or 105% or more), a warning dialog box appears.

If the difference is large and high precision is required, you are recommended to check this execution time difference and collect data again in order to use data with insignificant differences.

Aspects of Excel SheetsTabulated Result Example

Aspects of Excel Sheets

- Tabulated result example (1)
 - The tabulated results are output to an Excel sheet (two A4 pages when printed).
 - The following information is tabulated on the first page.

Aspects of Excel Sheets

Tabulated result example (2)

The second pages contains a graph and the tabulated time information from which the graph was generated.

* For details on the contents, see "PA Information Lists" in "Chapter 6 PA Event."

Revision History

Version	Date	Revised section	Details
2.0	April 25, 2016	-	- First published

FUJTSU

shaping tomorrow with you