D
FUJITSU

Chapter 8
Intra-Node Tuning

FUJITSU LIMITED
April 2016

Contents (1/2) FUJITSU

® (PU Tuning
® What Is CPU Tuning (Intra-Node Tuning)?
® Positioning of CPU Tuning

® How to Effectively Use PA Information and Tuning Flows

Chapter 8 1 Copyright 2016 FUJITSU LIMITED

Contents (2/2) FUJITSU

B Navigation from PA Information to Tuning Techniques
¥ Tuning Map
B Tuning Technique List

M Scalar Tuning
® Improvement in Data Access Wait (Improvement in Thrashing)
® Improvement in Data Access Wait (Increase in Data Locality)
® Improvement in Data Access Wait (Latency Concealment)
® Improvement in Data Access Wait (Reduced Amount of Access)

® Improvement in Operation Wait (Instruction Scheduling
Improvement)

B Thread Parallelization Processing Tuning
M Thread Parallelization ratio Improvement

® Execution Efficiency Improvement of Thread Parallelization
Processing

Chapter 8 2 Copyright 2016 FUJITSU LIMITED

O
FUJITSU

CPU Tuning

What Is CPU Tuning (Intra-Node Tuning)?
Positioning of CPU Tuning

Chapter 8 CPU Tuning 3 Copyright 2016 FUJITSU LIMITED

What Is CPU Tuning (Intra-Node Tuning)? FUJITSU

CPU tuning (Intra-Node tuning) improves execution efficiency on a
multi-core CPU.

The types of CPU tuning are scalar tuning and thread
parallelization processing tuning.

Their various approaches to improvement include source tuning,
optimization control line tuning, and compiler options tuning.

W Scalar tuning

This tuning improves execution efficiency on a multi-core CPU by focusing
attention on the cores.

B Thread parallelization processing tuning

This tuning improves the thread parallelization ratio and execution efficiency of
thread parallelization processing on a multi-core CPU.

Chapter 8 CPU Tuning 4 Copyright 2016 FUJITSU LIMITED

Positioning of CPU Tuning

< il >

(o0
FUJITSU

This line represents the boundary between
automatic optimization by a compiler and
manual optimization by a user.

[~ | For efficient tuning work, you are

CPU tuning forms the basis of tuning.

recommended to leave the automatic
optimization done by the compiler.

bk e, e, R R
L o el O e e o el O e e o el O e e o el O e e
e o e o e o e o e
T e e e e
o o e O e O o e O e O o e O e O o e O e O
e A R A R A R A R
ey bbby bbby bbby bbby
o, A 2 L o e o D
R SR EoY ety bbbt 050 Rt -
S "] A
R, & & N i # i R,
A R i e i s R ey R, el S e Sl ie ik oy, S
e e
A b ety b ety b ety b T bbbk
o R 3 T R 3 A R 3 T R 3 o o o e 0
P e P e P e P e AL e e S
o e e e e e e e e e
bt e A hebetttet, e T hebetttet, et hebetttet, e T hebetttet, e A A
ey o A e o A e o A e o A G o e

-~ ~ Thread parallelization
processing tuning

CPU tuning

Sca

lar tuning

N

Compiler optimization

1ouny

isinbaial

suol

]

Compiler optimization is an important
prerequisite function supporting |
tuning work.

See "Chapter 4 Fortran" or
"Chapter 5 (/C++."

A\

<

Chapter 8 CPU Tuning 5

Copyright 2016 FUJITSU LIMITED

(o9,
FUJITSU

How to Effectively Use PA Information and Tuning

Flows

How to Effectively Use PA Information
Tuning Flow
Hot Spot Detection
PA Information Collection
Breakdown to the Level of Hot Spots
Analysis and Diagnosis: Hot Spot (1)
Measures and Effects: Hot Spot (1)

Chapter 8 How to Effectively Use PA Information and Tuning Flows 6

Copyright 2016 FUJITSU LIMITED

How to Effectively Use PA Information FUJiTSU

B Understanding bottlenecks

You can determine bottlenecks in the entire evaluation region under focus (except
input/output and communication), from PA information for the entire evaluation region.

[sed] Entire evaluation region

9.0E+00
Entire evaluation region under focus 8.0E400

7.0E+00

Procedures 6.0E400

5.0E+00

4.0E+00

3.0E+00 Bottleneck (2)

2.0E+00

1.0E+00

0.0E+00

B Effective use for tuning Before improvement

What measures are required for improvement in bottlenecks?
To what extent can bottlenecks be improved? To answer to these questions,
PA information must be broken down to the level of loops and analyzed.

Chapter 8 How to Effectively Use PA Information and Tuning Flows 7 Copyright 2016 FUJITSU LIMITED

1. Hot Spot Detection

D
FUJITSU

First, detect hot spots in the evaluation region under focus.
To detect hot spots, use the sampling region specification function of fipp.

B What is the sampling region specification function?

You can collect cost information for the specified region by using the sampling region
specification function. To specify a measurement section in the source code, insert C or C++
functions or Fortran subroutines at the start and end points of cost information measurement.

W [nsertion diagram

"Entire evaluation

Function name Function

fipp_start Measurement start

Measurement end

fipp_stop

call fipp_start()
Evaluation region

call fipp_stop()

region" enclosed by
sampling region
specification function

* If the evaluation region under focus is the entire program, the sampling region specification

function is not needed.

* For details on the sampling region specification function, see the tutorial in "Chapter 7 Tuning

Tool."

Chapter 8 How to Effectively Use PA Information and Tuning Flows

Copyright 2016 FUJITSU LIMITED

2. PA Information Collection

[0®)
FUJITSU

Here, collect PA information for detected hot spots. Use the advanced profiler routines of fapp
(precision PA) because analysis requires highly precise PA information.

m Advanced profiler routines (precision PA)

The routines are Cand C++ functions and Fortran subroutines for specifying a
measurement section for PA information. By specifying a collection section in the
source code, you can collect highly precise information.

Function name

Function

start_collection

Information
measurement start

stop_collection

Information
measurement end

Entire evaluation region

-

B [nsertion diagram

call start_collection("region_all")

call start_collection("region_1")
Hot spot (1)

call stop_collection("region_1")

call start_collection("region_2")
Hot spot (2)

call stop_collection("region_2")

call start_collection("region_3")
Hot spot (3)

call stop_collection("region_3")

call start_collection("region_4")
Hot spot (4)

call stop_collection("region_4")

call stop_collection("region_all")

"Each hot spot"
enclosed by
advanced profiler
routine functions

Chapter 8 How to Effectively Use PA Information and Tuning Flows

9

Copyright 2016 FUJITSU LIMITED

3. Breakdown to the Level of Hot Spots

The graph makes it possible to
understand the degree of a
bottleneck.

M PA graph of the entire evaluation region

[sec]

8.0E+00
7.0E+00
6.0E+00
5.0E+00
4.0E+00
3.0E+00
2.0E+00
1.0E+00

0.0E+00

Entire evaluation region

Four instructions
commit

Two or three

instructions
commit

No
instruction
commit
waiting for a

floating-point
instruction to
be completed

Before improvement

[0®)
FUJITSU

M PA graphs of hot spots (1) to (4)

— [sec] [sec]
Hot spot (1) Hot spot (2)
3.0E+00 3.5E+00
2.5E+00 F 3.0E+00
2 0E+00 2.5E+00
B 2.0E+00
Breakdown to PE 1 5E+00
Ievetl of hot 1.0E+00 | OE+00
spots _
L 5.0E-01 5.0E-01
0.0E+00 0.0E+00
Before Vimrprm\rlerment Before improvement
[sec]
Hot t (4
The CPU status after the Hotset © |17 0E-01 otspot
breakdown proves that each 6.0E-01 o
hot spot (loop) has different 5.0E-01
tendencies! 4.0E-01 ;
- 3.0E-01
20801 2.0E-01
1.0E-01 1.0E-01
0.0E+00 0.0E+00
- Before improvement Before improvement

From entire evaluation region to level of hot spots

Chapter 8 How to Effectively Use PA Information and Tuning Flows 10

Copyright 2016 FUJITSU LIMITED

o [) [] o - 0’)
4. Analysis and Diagnosis: Hot Spot (1) FUjiTSU
B IF construct in the innermost loop Analysis
W PA graph M Source list Facilitation of software pipelining
and SIMD optimization is not
[sec] Hot spot (1 possible because the innermost
3.0E+00 ot spot (1) Event 151 1 loop contains an IF construct.
N for operation .
2.5E+00 — <<< PREFETCH :24 0L
inig;c[:ﬁns <<< a: 12’ b:12 True ra!io already
2 0E+00 . . determined to be 90%
. <k< Loop-lnformatlon End >>> for IF construct
152 2 p 6bs do i=1,n1
1.5E+00 ‘o 153 3 p 6m if (p(i) > 0.0) then
instiuctio 154 3 p 6s b(i) = c0 + a(i)*(c1 + a(i)*(c2 +[a(i) *(3 + a(i)*
1.0E+00 W?iting 155 3 & (ch4 +a(i)*(c5 +a(i)*(c6 + a(+a(i)*
foating: 156 3 & (8 + a(i)*c9))))))))
5.0F-01 indtutto 157 3 p 6v endif
co%tglgfed 158 2 p 6v enddo
00E+00 . =~ | 159 1 1$omp enddo
Before improvement Diagnosis
\

CPU tuning is necessary.
—> Optimization by the tuning w
conditional branch instruction in

ill lead to removal of the
the innermost loop.

Chapter 8 How to Effectively Use PA Information and Tuning Flows

Copyright 2016 FUJITSU LIMITED

5. Measures and Effects: Hot Spot (1) FUjfTsu

B IF construct in the innermost loop ~ |Measure

B Source list Utilization of masked instructions M PA graph
/ Apply SIMD optimization by using the |
151 1 1Somp do mask method since the true ratio of the [sec]
. IF construct is high at 90%. This Hot spot (1 Hot spot (1
152 1 ocl simd measure is also intended to facilitate 3.0E+00 pot (1) pot (1)
<<< Loop-informatjon Star| software pipelining.
<<< [OPTIMIZATION 2.5E+00
True ratio of 90% [<_ SIMD(VL: 4) The specification of !ocl simd is i | N
for IF truct equivalent to specifying the ot \
or I construc < ROFTWARE PIPELINING compiler options -Ksimd=2. The 2.0E+00 \
<<< PREFETCH :12 SIMD optimization uses the \\
mask method.
<< 1.5E+00
\ . Greatly reduced
<<< Loop-information End >>> w waiting for operation
153 2 p 6bv i=1,n1 1.0E+00 Sl .
156 3 p 6v if (p(i) > 0.0) then o b
155 3 p 6v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)* 5.0E-01 v
156 3 & (ch +a(i)*(c5 +a(i)*(c6 + a(i)*(c7 + a(i)* E
. +00
157 3 & (c8 +a(i)*c9)))))))) OO0 , .
. Effect Before improvement After improvement
158 3 p 6v endif
159 2 p 6bv enddo Performance increased
160 1 1$omp enddo /_ by 8.55 times
Execution time Wpoint operation peak SIMD instruction rate Total number of valid
(sec) rate (effective instruction) operations
Before improvement ZEEN 5.93% 0.00% 9.46E+10
After improvement (0.29 } 55.58%‘ 87.1 %‘ 1.89E+10
7

Chapter 8 How to Effectively Use PA Information and Tuning Flows 12 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Analysis and Tuning of Each Hot Spot

(Duplicate) Hot Spot (1): IF Construct in the Innermost Loop (Analysis and Diagnosis)
(Duplicate) Hot Spot (1): IF Construct in the Innermost Loop (Measures and Effects)
Hot Spot (2): Stride Access (Analysis and Diagnosis)

Hot Spot (2): Stride Access (Measures and Effects)

Hot Spot (3): Ideal Operation (Analysis and Diagnosis)

Hot Spot (4): Data Dependency (Analysis and Diagnosis)

Entire Evaluation Region (Measures and Effects)

Summary

Chapter 8 Analysis and Tuning of Each Hot Spot 13 Copyright 2016 FUJITSU LIMITED

Hot Spot (1): IF Construct in the Innermost Loop (Analysis and Diagnosis)

B IF construct in the innermost loop

[0®)
FUJITSU

Analysis

B PA graph M Source list Facilitation of software pipelining
and SIMD optimization is not
[sec] possible because the innermost
Hot spot (1) Event | 151 1 loop contains an IF construct.
3.0E+00
Frequent wating e
for operation <<< [OPTIMIZATION] (effective instruction)
2.5E+00 <<< PREFETCH :24 0.00%
<<< a:12,b:12 True ratio of 90%
2.0E+00 <<< Loop_information End >>> for IF construct
152 2 p 6bs do i=1,n1

1.5E+00 153 3 p 6m if (p(i) > 0.0) then

i 154 3 p 6s b(i) = c0 + a(i)*(c1 +a(i)*(c2 +|a(i)*3 + a(i)*
1.0E+00 — 155 3 & (ch4 +a(i)*(c5 +a(i)*(c6 + a(+a(i)*

Ry 156 3 & (c8 + a(i)*c9))))))))
5.0E-01 s frerion 157 3 p 6v endif

Sl 158 2 p 6v enddo
0.0E+00 e | 159 1 1$omp enddo

Before improvement Di .
iagnosis \/

CPU tuning is necessary.
—> Optimization by the tuning w
conditional branch instruction in

ill lead to removal of the
the innermost loop.

Chapter 8 Analysis and Tuning of Each Hot Spot

Copyright 2016 FUJITSU LIMITED

Hot Spot (1): IF Construct in the Innermost Loop (Measures and Effects)

B IF construct in the innermost loop

B Source list

—

Measure

151 1
152 1

1$omp do
locl simd

<<< Loop-informatjon Star

<<< [OPTIMIZATION
True ratio of 90% <_ SIMD(VL: 4)
for IF construct < SOFTWARE PIPELINING

<<< PREFETCH

<

112

Utilization of masked instructions
Apply SIMD optimization by using the
mask method since the true ratio of the
IF construct is high at 90%. This
measure is also intended to facilitate
software pipelining.

The specification of !ocl simd is
equivalent to specifying the
compiler options -Ksimd=2. The
SIMD optimization uses the
mask method.

b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*
(c& +a(i)*(c5+a(i)*(c6 + a(i)*(c7 +a(i)*

Effect

D
FUJITSU

M PA graph
[sec]
Hot spot (1 Hot spot (1

30E+00 pot (1) pot (1)
2.5E+00

Four \

instructions \

commit
2.0E+00 \

\
1.5E+00 —
Greatly reduced

Mo waiting for operation
1.0E+00 “ommit |1 |

waitingfor \

e \

instruction \
5 0 E‘O 1 co:p'ljeeted \
0.0E+00 — | |

Before improvement After improvement

153 2 p 6bv i=1,n1

154 3 p 6v if (p(i) > 0.0) then
155 3 p 6v

156 3 &

157 3 & (c8 +a(i)*c9))))))))
158 3 p 6v endif

159 2 p 6v enddo

160 1 1$omp enddo

—

Performance increased
by 8.55 times

/

Execution time }éting-point operation peak SIMD instruction rate Total number of valid
(sec) rate (effective instruction) operations
Before improvement . \ 5.93% 0.00% 9.46E+10
After improvement (0.29 / 55.58%‘ 87.1 %‘ 1.89E+10
\—

Chapter 8 Analysis and Tuning of Each Hot Spot

Copyright 2016 FUJITSU LIMITED

Hot Spot (2): Stride Access (Analysis and Diagnosis) FUjITSU

B Stride access

M PA graph M Source list
grap The cache use efficiency is low
since array b is accessed
[sec] contiguously and access to array a
3.5E+00 Hot spot (2) | "Fyept | 176 1 is stride access. The result is a
bt 1322 throughput bottleneck.
3 0E+00 Frequent waiting for [<<< Loop-information Start >>
) memory access <<< [OpT'M'ZA‘"ON] L1D miss rate L2 miss rate
(/Load-store instruction) |(/Load-store instruction)
2.5E+00 <<< SIMD(VL: 4) 5131% 51.34%
<<< SOFTWARE PIPELINING
2.0E+00 <<< Loop-information End >>
178 3 6v do i=1,n1
1.5E+00 179 3 p 6v b(i,j) = €0 + a(j,i)*(c1 +a(j,i)*(c2 + a(ji) *(c3 + a(j,i)*
180 3 & (c& +a(j,i)*(c5 + a(j,i)*(c6 + a(j,i)*|(c7 + p(j,i)*
1000 181 3 & (@+a(ii)*))))
5 0E-0] 182 3 6v enddo
183 2 enddo
0.0E+00 i 184 1 1$omp enddo \ /
Before improvement Diagnosis v

Analysis

CPU tuning is necessary.
—> Improve the cache use efficiency of array a.

Chapter 8 Analysis and Tuning of Each Hot Spot

Copyright 2016 FUJITSU LIMITED

L] M &
Hot Spot (2): Stride Access (Measures and Effects) FUJITSU
B Stride access Measure o oA araoh
. ra
M Source list Application of loop blocking grap
177 1 1$omp do The size of one block is 12 KB (96 (seq]
178 2 p .. x16 X 8). The memory area size Hot spot (2) Hot spot (2)
required for processing one block (3.5+00

179 3 p is 24 KB (12x 2).
180 &4 p do j=jj,min(jj+16-1, The measure is intended to 3.0E+00

<<< Loop-information Start >{ improve the L1D and L2 cache use

<<< [OPTIMIZATION] ARG 256400 S

<<< SIMD(VL: 4) ‘\

<<< SOFTWARE PIPELINING 2.0E+00 ‘\

<<< Loop-information End >>> Greatly reduced
181 5 p 6v do i=ii,min(ii+96-1,n1) 1.2E+00 waiting for memory
182 5 p 6v b(i,j) = c0 + a(j,i)*(c1 + a(j,i)*(c2 + a(j,i) *(3 + a(j,i) * R access

.OE+
183 5 & (c& +a(j,i)*(c5 + a(j,i)*(c6 + a(j,i)*(c7 + a(j,i)*
184 5 & (c8 +a(ji)*c9)))))))) 5.0E-01
185 5 p 6v enddo
186 4 p enddo 0.0E+00
187 3 P enddo Effect Before improvement After improvement
188 2 p enddo :
189 1 $omp enddo Performance increased
->omp / by 6.6 times
7

Execution time (sec)

peak rate

Floating-point operation

L1D miss rate(/Load-store

instruction)

L2 miss rate(/Load-store
instruction)

Before improvement

/7310

1 .28%|

51.31 %l 51 .34%|

After improvement

\ 0.47

/

8.54%‘

6.66% 6.12%

e —

Chapter 8 Analysis and Tuning of Each Hot Spot

17

Copyright 2016 FUJITSU LIMITED

Hot Spot (3): Ideal Operation (Analysis and Diagnosis)

B Ideal operation

Analysis

o)
FUJITSU

B PA graph M Source list Both the SIMD instruction rate and
percentage of SIMD multiply-add
[se operation instructions are high. The
sec operation peak ratio also shows a very
6.0E-01 Hot spot (3) Event 201 1 1$a{np do high performance value of 78%.
- - . ormation Start >>> |
/_ Instruc.tlo.n (On.]mlt accountl.ng IMIZATION SIMD instruction rate [SIMD floating-point Floating-point
5 0E-01 for majority, with many having] (effective instruction) | multiply-and-add Operatign"peak
' two or more instructions D(VL: 4) (effective instruction) rate
| << SUFTWARE PIPELINING - o TEET
4.0E-01 <<< Loop-information End >>> 95:31% 77.35% S
202 2 p 6v do i=1,n1
3.0E-01 203 2 p 6v b(i) = c0 +a(i)*(c1 +a(i)*(c2 +a(i)*(3 +a(i)*
h
msfm'&?ins 204 2 & (c& +a(i)*(c5 +a(i)*(c6 +a(i)*(c7 + a(i)*
commi o\ %
5 0E-01 205 2 & (c8+a(i)*c9))))))))
206 2 p 6v enddo
207 1 1$omp enddo
1.0E-01
0.0E+00))
Diagnosis
Before improvement

Chapter 8 Analysis and Tuning of Each Hot Spot

CPU tuning is not necessary.
—> Instruction-level parallelization can reach very high levels.

Copyright 2016 FUJITSU LIMITED

Hot Spot (4): Data Dependency (Analysis and Diagnosis) FUjITSU

B Data Dependency

Analysis

Neither facilitation of software

M PA graph M Source list
[sec]
7 0E-01 Hot spot (4) Event
Frequent waiting
6.0E-01 One for operation
3 '
5.0E-01 EE—
4.0E-01 — 225 2 6s do i=2,n1
instr’tljgtilon 226 2 6s
3.0E-01 waitngfor | 227 2
a floating-
2 OE O] inslirouicnttion 228 2
' e 229 2 6s enddo
1.0E-01 "
0.0E+00
Before improvement

& (ch4 +a(i-1)*(c5+a(i-1)*(c6 + a(i-1)* a(i-1)*
& (B+a(i-1)*c9))))))))

pipelining and SIMD optimization
nor parallelization is possible
because the processing shown as
a(i)=a(i-1) for array a causes data
dependency between iterations.

a(i) =c0+a(i-1)*(c1 +a(i-1)*(c2 + a(i-1 b+ a(i-1)*

Diagnosis \/

CPU tuning is impossible.
—> The operation algorithm must be reviewed.

Chapter 8 Analysis and Tuning of Each Hot Spot

Copyright 2016 FUJITSU LIMITED

Entire Evaluation Region (Measures and Effects) FUJITSU

M PA graph
Before improvement After improvement
[sec] Entire evaluation region [sec] Entire evaluation region
8.0E+00 8.0E+00
7.0E+00 7.0E+00
:
commit ~ ~

6.0E+00) Two or three ~ 6.0E+00

instructions commit ~

~
~ ~

5.0E+00 5.0E+00

. Performance increased by

cor?\mistvl\j;it(i)ng 3.55 timeS
4.0E+00 poin Insaucton ~T 4.0E+00

to be completed ~

~
> ~
3.0E+00 N 3.0E+80(C
— (CPU tuning AR
2.0E+00 2.0E+00 =
— completed i
1.0E+00 1.0E+00
0.0E+00 e e —_— 00F+08 &+ —— T 00000
Before improvement After improvement

Chapter 8 Analysis and Tuning of Each Hot Spot 20 Copyright 2016 FUJITSU LIMITED

Summary

[0®)
FUJITSU

B You can determine bottlenecks from the PA graph of an entire evaluation region.

B The bottleneck factors are often different for every loop. For this reason, a breakdown to
the level of loops is necessary to analyzing and determining whether CPU tuning is

possible and how to take measures for problems.

[sec] [sec]
[sec] Entire evaluation region 306400 Hotspot(l) 356400 —1OtsPOt(2)
8.0E+00 2.5E+00 3.0E+00
5 0E+00 2.5E+00
7.0E+00 2.0E+00
Four instructions 1.5E+00
1.5E+00
6.0E+OO 0 or three 10E+00 1.0E+00
5.0E-01 5.0E-01
5.0E+00
0.0E+00 0.0E+00
No instruction . .
commit waiting Before improvement Before improvement
4.0E+00 polncnemicion
to be completed [SEC] Hot t [SEC] Hot t (4
Breakdown) |socor o sporl 7.06-01 oo &)
+
3.0E+00 5 0E-01 6.0E-01
5.0E-01
4.0E-01
2.0E+00 4,0E-01
3.0E-01
1 OE+00 3.0E-01
+ —
.OE 2.0E-01 5 0E-01
0.0E+00 1.08-01 1.0E-01
+ L
) 0.0E+00 0.0E+00
Before improvement Before improvement Before improvement
Chapter 8 Analysis and Tuning of Each Hot Spot 21

Copyright 2016 FUJITSU LIMITED

Navigation from PA Information to Tuning Techniques

Tuning Map
Tuning Technique List

Chapter 8 Navigation from PA Information to Tuning Techniques 22 Copyright 2016 FUJITSU LIMITED

Navigation from PA Information to Tuning Techniques FUJITSU

B The tuning map is useful for determining a specific tuning method from PA
information.
® Tuning map

® The tuning map is a list showing tuning proposals by bottleneck type.
The list clearly shows what PA information to check and bottleneck factors
(conditions) that occur by bottleneck classification, and summarizes the measures
(tuning proposals: what to improve) for solving them.

= 1. Identify bottleneck factors from PA information.
—> 2. Present measures (tuning proposals) for removing bottlenecks.
B Tuning technique list

® This list summarizes various tuning techniques by tuning proposal.
—> Select an effective tuning technique for improvement.

B For examples of actual measures, see the scalar tuning examples.

Chapter 8 Navigation from PA Information to Tuning Techniques 23 Copyright 2016 FUJITSU LIMITED

‘uning Map (1/12)

Entire tuning map

(o0
FUJITSU

Bottleneck classification

h cost as seen from PA graph

Memory bottleneck

No instruction commit due to memory and cache busy

High cost as seen from PA information

Condition

Tuning proposal

Memory latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Prefetch-related improvement

Memory latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array

- Prefetch-related improvement

he store instruction cost is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Prefetch-related improvement
- High-speed store (XFILL)

Memory throughputiis a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Loop blocking
- High-speed store (XFILL)

High memory busy rate

Memory throughputiis a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Loop blocking
- High-speed store (XFILL)

High percentage of L2 misses
High percentage of L2 misses due to dm

Memory latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Loop blocking
- Prefetch-related improvement

- Thrashing

L2 cache bottleneck

No instruction commit due to L2 access for a floating-point
oad instruction

L2 cache latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array

- Prefetch-related improvement

L2 cache latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array

- Prefetch-related improvement

High L2 busy rate

L2 cache throughputis a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Loop blocking

High percentage of L1D misses
High percentage of L1D misses due to dm

L2 cache latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Thrashing

L1 cache bottleneck

No instruction commit due to L1D access for a floating-
oint load instruction

LT cache latency is a bottleneck.

Instruction scheduling improvement

o instruction commit due to L1D access for an integer load
nstruction

LT cache latency is a bottleneck.

Instruction scheduling improvement

High L1 busy rate

LT cache throughputis a bottleneck.

improvement in data access wait
- Algorithm review

Scheduling
bottleneck

No instruction commit waiting for a floating-point instruction to be
completed

No instruction commit waiting for an integer instruction to be
completed

No instruction commit waiting for a branch instruction to be
completed

Parallelization bottleneck

Synchronous waiting time between threads

Load imbalance bottleneck

Synchronous waiting time between threads

TLB bottleneck

Operation instruction Tatency is a bottleneck.

Instruction scheduling improvement

Operation instruction Tatency is a bottleneck.

Instruction scheduling improvement

A branch instruction is a bottleneck.

Instruction scheduling improvement
- IF statement removal
- Masked SIMD

A part that is not thread parallelization is a bottleneck

Thread parallelization ratio improvement

Large difference in the instruction balance
between max and min

/A Toad imbalance between threads is a bottleneck.

Execution efficiency improvement of thread
parallelization processing

High percentage of mDTLB misses

LB misses and TLB thrashing are a bottleneck.

Improvement in the TLB bottleneck
- Elimination of thrashing
- Change of areas used
- Optimization using large page options

High percentage of uDTLB misses

LB misses are a bottleneck.

Improvement in the TLB bottleneck
- Page size expansion

Instruction fetch

INo instruction commit waiting for an instruction to be
fetched

Instruction count
bottleneck

USUVRUDR T, o three instructions commit

commit One instruction commit

Other

No instruction commit for other reasons

Instruction cache misses and thrashing are a
bottleneck.

Improvement in instruction fetch
- Reduction in the loop body
- Algorithm review
- Elimination of thrashing

he number of instructions is a bottleneck.

Improvement in the instruction count bottleneck
- Facilitation of SIMD optimization
- Prefetch-related improvement
- Inline expansion

PA may have not been collected correctly.

PA re-collection

Chapter 8 Navigation from PA Information to Tuning Techniques

24

Copyright 2016 FUJITSU LIMITED

Tuning Map (2/12) FUjiTSU

B Bottleneck classifications

Left: Bottleneck
classifications
Right: Costs as seen
from PA graph

Memory bottleneck

No instruction commit due to memory and cache busy

No instruction commit due to L2 access for a floating-point load instruction
L2 cache bottleneck

No instruction commit due to L1D access for a floating-point load instruction

L1 cache bottleneck
No instruction commit due to L1D access for an integer load instruction

No instruction commit waiting for a floating-point instruction to be completed
Scheduling bottleneck No instruction commit waiting for an integer instruction to be completed

No instruction commit waiting for a branch instruction to be completed

TN 2] eT Mo Toldd [T I<Td QI Sy nchronous waiting time between threads

Load imbalance bottleneck SalElte yIERE T RE T ER TN [E S

TLB bottleneck -

Instruction fetch No instruction commit waiting for an instruction to be fetched

Instruction count bottleneck [Instruction commit Two or three instructions commit
One instruction commit

Other No instruction commit for other reasons

Chapter 8 Navigation from PA Information to Tuning Techniques 25 Copyright 2016 FUJITSU LIMITED

Tuning Map (3/12)

B Memory bottleneck

(o0
FUJITSU

High cost as seen from PA
graph

No instruction commit due to
memory and cache busy

High cost as seen from PA
information

Condition

Tuning proposal

Memory latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Prefetch-related improvement

Memory latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Prefetch-related improvement

The store instruction cost is a
bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Prefetch-related improvement
- High-speed store (XFILL)

Memory throughput is a
bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Loop blocking
- High-speed store (XFILL)

High memory busy rate

Memory throughput is a
bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Loop blocking
- High-speed store (XFILL)

High percentage of L2 misses
High percentage of L2 misses
due to dm

Memory latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an array
- Loop blocking
- Prefetch-related improvement
- Thrashing

Chapter 8 Navigation from PA Information to Tuning Techniques

26

Copyright 2016 FUJITSU LIMITED

Tuning Map (4/12)

M L2 cache bottleneck

[0®)
FUJITSU

High cost as seen from
PA graph

High cost as seen from
PA information

Condition

Tuning proposal

No instruction commit
due to L2 access for a
floating-point load
instruction

L2 cache latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an
array
- Prefetch-related improvement

No instruction commit
due to L2 access for an
integer load instruction

L2 cache latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an
array
- Prefetch-related improvement

High L2 busy rate

bottleneck.

L2 cache throughput is a

Improvement in data access wait
- Dimensional displacement of an
array
- Loop blocking

High percentage of L1D
misses
High percentage of L1D

misses due to dm

L2 cache latency is a bottleneck.

Improvement in data access wait
- Dimensional displacement of an
array

- Thrashing

Chapter 8 Navigation from PA Information to Tuning Techniques

27

Copyright 2016 FUJITSU LIMITED

Tuning Map

(5/12)

® L1 cache bottleneck

[0®)
FUJITSU

High cost as seen from PA
graph

High cost as seen from
PA information

Condition

Tuning proposal

No instruction commit due
to L1D access for a
floating-point load
instruction

L1 cache latency is a bottleneck.

Instruction scheduling
improvement

No instruction commit due
to L1D access for an
integer load instruction

L1 cache latency is a bottleneck.

Instruction scheduling
improvement

High L1 busy rate

L1 cache throughput is a
bottleneck.

Improvement in data access wait
- Algorithm review

Chapter 8 Navigation from PA Information to Tuning Techniques

28

Copyright 2016 FUJITSU LIMITED

Tuning Map (6/12) FUjfTsu
B Scheduling bottleneck

High cost as seen from | High cost as seen from Conditi Tuni |
PA graph PA information ondition UniNg proposa

No instruction commit Operation instruction latency is a [Instruction scheduling
waiting for a floating- bottleneck. improvement
point instruction to be)
completed
No instruction commit Operation instruction latency is a [Instruction scheduling
waiting for an integer bottleneck. improvement
instruction to be)
completed
No instruction commit A branch instruction is a Instruction scheduling
waiting for a branch) bottleneck. improvement
instruction to be - IF statement removal
completed - Masked SIMD

Chapter 8 Navigation from PA Information to Tuning Techniques 29 Copyright 2016 FUJITSU LIMITED

Tuning Map (7/12) FUjiTSU

® Parallelization bottleneck

High cost as seen from PA| High cost as seen from . :
: : Condition Tuning proposal
graph PA information
0Na aiting time A part that is not thread Thread parallelization ratio
betwee ead) parallelization is a bottleneck. improvement

Chapter 8 Navigation from PA Information to Tuning Techniques 30 Copyright 2016 FUJITSU LIMITED

Tuning Map (8/12)

B Load imbalance bottleneck

(o0
FUJITSU

High cost as seen from | High cost as seen from PA
PA graph information

Condition

Tuning proposal

ONC [l sB arge difference in the
e betwee L[Sinstruction balance
between max and min

A load imbalance between
threads is a bottleneck.

Execution efficiency
improvement of thread
parallelization processing

Chapter 8 Navigation from PA Information to Tuning Techniques

31

Copyright 2016 FUJITSU LIMITED

Tuning Map (9/12)
H TLB bottleneck

[0®)
FUJITSU

High cost as seen from
PA graph

High cost as seen from
PA information

Condition

Tuning proposal

High percentage of
mDTLB misses

TLB misses and TLB thrashing
are a bottleneck.

Improvement in the TLB bottleneck
- Elimination of thrashing
- Change of areas used
- Optimization using large page options

High percentage of
uDTLB misses

TLB misses are a bottleneck.

Improvement in the TLB bottleneck
- Page size expansion

Chapter 8 Navigation from PA Information to Tuning Techniques

32

Copyright 2016 FUJITSU LIMITED

Tuning Map (10/12)

B Instruction fetch

[0®)
FUJITSU

High cost as seen from
PA graph

High cost as seen from PA
information

Condition

Tuning proposal

No instruction commit
waiting for an instruction
to be fetched

Instruction cache misses and
thrashing are a bottleneck.

Improvement in instruction fetch
- Reduction in the loop body
- Algorithm review
- Elimination of thrashing

Chapter 8 Navigation from PA Information to Tuning Techniques

33

Copyright 2016 FUJITSU LIMITED

Tuning Map (11/12)

B Instruction count bottleneck

(o0
FUJITSU

High cost as seen

High cost as seen from PA graph from PA information

Condition

Tuning proposal

DNV Structions commit
commit

One instruction
commit

The number of
instructions is a
bottleneck.

Improvement in the instruction
count bottleneck
- Facilitation of SIMD optimization
- Prefetch-related improvement
- Inline expansion

Chapter 8 Navigation from PA Information to Tuning Techniques

34

Copyright 2016 FUJITSU LIMITED

Tuning Map (12/12)

B Other

[0®)
FUJITSU

High cost as seen from
PA graph

High cost as seen from
PA information

Condition

Tuning proposal

No instruction commit
for other reasons

PA may have not been collected correctly.

PA re-collection

Chapter 8 Navigation from PA Information to Tuning Techniques

35

Copyright 2016 FUJITSU LIMITED

Tuning Technique List (1/2)

B Major classifications

(o0
FUJITSU

Thread parallelization ratio
improvement

Execution efficiency

improvement of

thread parallelization
rocessing

Improvement in data
access wait

Instruction scheduling
improvement

Improvement in the TLB
bottleneck

Improvementin
instruction fetch

Improvement in the
instruction count
bottleneck

NORECURRENCE specifier
(Facilitation of automatic
arallelization)

False sharing

Dimensional
displacement of an array

Software pipelining

Page size expansion

body

Reduction in the loop

Facilitation of SIMD
optimization

NOALIAS specifier
(Facilitation of automatic
arallelization)

Parallelized
dimension change

Prefetch-related
improvement

Unrolling

Elimination of thrashing

Algorithm review
(Expansion of the
problem scale)

Prefetch-related
improvement

Peeling
(Facilitation of automatic
arallelization)

Division method
change (Cyclic)

High-speed store (XFILL)

Facilitation of SIMD optimization

Change of areas used

Elimination of thrashing

Inline expansion

OpenMP parallelization

Division method
change (Dynamic)

Loop blocking

IF statement removal

Optimization using
large page options

Parallelization
algorithm review

Elimination of thrashing

Masked SIMD

Algorithm review
(Reducing the memory
access instruction ratio)

Outer unrolling

Array division

Suppression of software
pipelining & specification of the
number of unrollings (Loop with
a few iterations)

Loop fission Rerolling
Strip mining Peeling
Sector cache NORECURRENCE specifier

Loop interchange

NOALIAS specifier

Loop fusion

Array merging

* The colored items represent medium classifications. If applicable, go to the next page.

Chapter 8 Navigation from PA Information to Tuning Techniques

36

Copyright 2016 FUJITSU LIMITED

Tuning Technique List (2/2) FUjiTSU

B Medium classifications

Prefetch-related improvement Facilitation of SIMD optimization Elimination of thrashing [Reduction in the loop body
Addition of prefetching Changing arrays to simple variables Padding Suppression of software pipelining
Deletion of unnecessary prefetching [Loop unswitching Dimensional Suppression of unrolling
displacement of an array
Prefetching toward the outer loop |IF statement removal Array merging Suppression of loop fusion
Indirect access prefetching Rerolling Reduction in the loop [Loop fission
body

Inline expansion

Loop fission (separating dependent
accesses)

Loop fission (loop extraction) for a part
with a high true ratio

Cloning

NORECURRENCE specifier

NOALIAS specifier

Chapter 8 Navigation from PA Information to Tuning Techniques 37 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Scalar Tuning

Improvement in Data Access Wait (Improvement in Thrashing)
Improvement in Data Access Wait (Increase in Data Locality)
Improvement in Data Access Wait (Latency Concealment)
Improvement in Data Access Wait (Reduced Amount of Access)
Improvement in Operation Wait (Instruction Scheduling Improvement)

Chapter 8 Scalar Tuning 38 Copyright 2016 FUJITSU LIMITED

Improvement in Data Access Wait
(Improvement in Thrashing)

Improvement in Cache Thrashing
Improvement in TLB Thrashing

Chapter 8 Improvement in Data Access Wait 39

(o8,
FUJITSU

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Improvement in Cache Thrashing

What Is Cache Thrashing?
Tuning Approach to Cache Thrashing (Basics)
Tuning Approach to Cache Thrashing (Application)

Chapter 8 Improvement in Cache Thrashing 40 Copyright 2016 FUJITSU LIMITED

What Is Cache Thrashing? FUJiTSU

Cache thrashing is a phenomenon in which only data of specific indexes of
cache memory (location information in cache memory) is frequently
overwritten. This phenomenon is due to the size of 1 WAY being 16 KB. It
is likely to occur when the array size is a power of 2 (multiple of 16 KB) or
when a loop contains many streams.

Note: A stream is a series of data defined in references corresponding to loop iterations,

Execution
(Data alignment in memory) order

a(1, 1,1) (1)

\ 256x256x8 B
=32x16 KB
K Discrete access

a(32, 1, 1)

T I SR)

AN

(L1D cache) = = \‘l 256x256x 8 B
Source code example 1WAY JWAY ﬁVVAY AWAY a.(32: 1, .2) / ;;fr)e(t1e6aKcI:ess
subroutine sub(a, n, m) 3n=256, m=256 ('
real*8 a(n,m,8) v)
M, \ 256x256x88B
doj=1,m ! =32x16kB
doi=1,n 64 < \ . . . ,/ Discrete access
I . A/
a(i,j8)=a(ij,1)+a(i,ji2) +a(iji3)+a(ij4)+ entries ; : : : al 1, 1.4 1™ (4)
a(i,j,5)+a(i,j,6)+a(i,j,7) ; : ; E - - - \ 256x256x8 B
enddo L = a(32 1,4 ,'I =32x16K8
enddo . (: -‘I 5)- A// Discrete access
a(1, 1,5 N
end - = - \ (5)
a(32 1,5 | 256x256x8B
)y Storing data in cache , . .) =32x16KB
. . . ,/ Discrete access
B Rough standard for L1D cache thrashing sl Storing data in cache (conflict) a(1,1,6) A
------ & Execution order (1) to (7) . . . \ (6)
Percentage of L1D ! 256x256x8B
misses due to dm all’ 3%, 6 ! =32x16KB
L1D miss rate(/Load-store instruction) . In this example, a(1,1,1) to a(1,1,8) S S ;/ Discrete access
(;‘f*'ats’flﬁ;’sg;‘)'“be’ are placed at an interval of 32 x 16 X
KB (on a 16-KB boundary), so the vo(7)
Single-precision: 1.5625% or higher |, (. eight of them are assigned to the ! 256x256x88B
Double-precision: 3.125% or higher ? 9 same index. Therefore' the first and - (3 - 3 8). A'I =32x16 KB
. a]] iscrete access
\ second points of data are — piscret
| Single-precision: 1/64 (one miss for every 64 times) overwritten by the fifth and sixth a(32, 1,9
Double-precision: 1/32 (one miss for every 32 times) points of data, respectively. - : L -

Chapter 8 Improvement in Cache Thrashing 4 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Tuning Approach to
Cache Thrashing (Basics)

Tuning Approach (Basics)

Array Merging

Dimensional Displacement of an Array
Loop Fission

Padding

Chapter 8 Tuning Approach to Cache Thrashing (Basics) 42 Copyright 2016 FUJITSU LIMITED

Tuning Approach (Basics) FUjiTSU

B Array merging

doi=1,n doi=1,n
.. =ali) + b(i) - =2(1,i) +z(2,i)
enddo = enddo A resolution approach improves thrashing risks
themselves by reducing the number of streams.
. . . \
B Dimensional displacement of an array N
doi=1,n doi=1,n Advantage: Can accommodate shifts in the problem
~=a(l,1) +a(12) :> ~=a(1,i) +a(2,i) scale such as parameter changes.
enddo enddo
Disadvantage: Requires many corrections. SIMD
m| fissi optimization is complex.
O_Op Isston _ Note: This does not pertain to loop fission.
doi=1,n doi=1,n
~.=ali) + bfi ~.=ali) + bl
_ () () () () Advantage: Corrections are few, and SIMD
- = (i) + dfi) :> enddo B optimization is easy.
enddo doi=1,n
.. = (i) +d(i) Disadvantage: Adjustments are necessary for every
shift in the problem scale such as a
enddo / parameter change.
B Padding ,
common //a{n),b{n) common //a{n),p(64),b(n) An avoidance approach for improvement
doi=1.n doi=1,n shifts array addresses through padding.
~=al)+b() B ..=ali)+b(i)
enddo enddo

Chapter 8 Tuning Approach to Cache Thrashing (Basics) 43 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Array Merging

What Is Array Merging?

Array Merging (Before Improvement)

Effects of Array Merging (Source Tuning)

Array Merging (in C Language) (Before Improvement)
Effects of Array Merging (in C Language) (Source Tuning)
Effects of Array Merging (Compiler Options Tuning)

Chapter 8 Array Merging by Copyright 2016 FUJITSU LIMITED

What Is Array Merging?

Array merging is tuning that merges multiple arrays into one array.

D
FUJITSU

B Use conditions

® Each array to be merged has the same number

of elements.

H Purpose

® The purpose is to reduce the number of streams.

B Adverse effect

¥ Load and store instructions become stride or indirect instructions.

® Before improvement

(Data alignment in memory)

B After improvement line.

Data can be used effectively because
all eight arrays are on the same cache

- -

7\
N,

AVAY AR
N, N

1

I

\

1

A

1, 1 \
a) ' (L1D cache)
a(2,1) |
(L1D cache) \ 256x256x8 B
- — - .';”f‘”“ = (Dgta alignment in memory)
\ a(256, 256) S abcd(1, 1,1)
b(1, 1) [2s6x2s6xs8 abcd(2, 1,1)
Occurrence of L1D \ e /‘ SIx10K0 abcd(3, 1,1)
cache thrashing A\’\ 256 x 256 x 8 B abcd(4, 1,1)
L [o efgh(1, 1,1)
Example of source code before improvemen d(1,1) ‘(\ Example of source code after improvement efgh(2, 1,1)
y 256x256x8B
subroutine sub() .] =32x16KB subroutine sub() efgh(3, 1,1)
parameter(n=256,m=256) e(1,1) [oicereaces parameter(n=256,m=256)] efgh(4, 1,1)
real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m), . s ‘: 256x256x8 B real*8 abcd(4,n,m),efgh(4,n,m) ab(d(], 2,])
f(n,m),g(n,m),h(n,m) (1, 1)) ;sje’::i(':?s common /test/abcd,efgh - o
common /test/a,b,c,d,e,f,g,h .. \\‘256 S doj=1,m abcd(1,256, 1)
doj=1,m 20X 2D X doi=1,n
' ;1=32x16 KB . . . abcd (2,256, 1)
doi=1,n , Discrete access abcd(1,i,j)=abcd(2,i,j) +abed (3,i,j) +
a(i, j) =b(i,j) + (i, j) + d(i, j) +e(i,j)+F(i,j)+g(ij)+h(ij) e ! abed(4,i,j)+efgh(1,ij) +efgh(2,i)+ abcd (3,256, 1)
enddo h(1,1) & 256x256x8B efgh(3,i,j)+efgh (&,i,j) abcd (4,256, 1)
enddo - ;)iifr::eﬁalilzess enddo .
End h(256, 256) enddo abcd (4,256,256)
| wemmmlp Storing data in cache ~ =======P» Storing data in cache (conflict) ------- » Order of memory access | -

N, N/ NNy

Chapter 8 Array Merging

45

Copyright 2016 FUJITSU LIMITED

Array Merging (Before Improvement)

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the
following is a frequent event: No instruction commit due to L2 access for a fFloating-point load instruction.

o)
FUJITSU

Source code before improvement sed]
40 parameter(n=256,m=256)
* 3.5E+00
4 real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),f(n,m),g(n,m),h(n,m)
42 common /test/a,b,c,d,e,f,g,
<<< Loop-information Start >>> . 3.0E+00
<< [PARALLELIZATION] Array Slze No instruction commit waiting
<<< Standard iteration count: 422 256 x256x8 B = for an instruction to be fetched
<<< [OPTIMIZATION] 32x16 KB 2.5E+00
<<< COLLAPSED (—I 6-KB boundary)
<<< SIMD(VL: &) 2.0E+00
<<< SOFTWARE PIPELINING No i)
<<< Loop-information End >>> 0 |nstr.uct|0n
43 1pp 6v doj=1,m 1.5E+00 commit due
<<< Loop-information Start >>> to L2 access
<<< [OPTIMIZATION] 1.0E+00 for a floating-
<<< COLLAPSED point load
<<< Loop-information End >>> instruction
4 2 p6 doi=1,n 5.0E-01
45 2 p 6v a(i,j) =b(ij) + (i, j) + d(i, j)+e(ij)+F(ij)+g (ij)+h(ij)
46 2 p 6v enddo 0.0E+00
47 1 p enddo .
Before improvement
Cache
. . L1D miss rate
L11 miss rate(/Effective (/Load-store L1D miss L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- |[Memory throughput |L2 throughput
instruction) : ; m{/UD\miss) rate(/L1D miss) rate(/L1D miss) store instruction) (GB/sec) (GB/sec)
Before 0 0 0 0 0 0
o ement 0.60% 2321% 3.12E+09 91.66% 8.34% 0.00% 0.00% 0.00 261.73

.

The percentage of L1D misses is high and the L1 miss dm percentage is high,
despite the fact that the array is accessed sequentialy.

I:> L1D cache thrashing has occurred.

Chapter 8 Array Merging

46

Copyright 2016 FUJITSU LIMITED

Effects of Array Merging (Source Tuning) FUjiTSU

Array merging reduced the number of streams from eight to two, so L1D cache thrashing was avoided. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

. . sec
Source code after improvement (source tuning) [sec]
3.5E+00
Lk parameter(n=256,m=256) 3.0E+00
45 real*8 abcd(4,n,m),efgh(4,n,m) —
46 common /test/abcd, efgh 2.5E+00
<<< Loop-information Start >>> Merging 8 arrays in 5 OE+00
<<< [PARALLELIZATION units of 4 UE Mo -
<<< [Standard iteration] count: 2 neommi 9.24-fold effect
: 1.5E+00 dueto L2 - —
<<< Loop-information End >>> access for \
47 1 pp doj=1,m 1.0E+00 ﬂoa;ng- \
<<< Loop-information Start >>> rljgégt \
<<< [OPTIMIZATION] 5 0E-01 T2 \
<<< SIMD(VL: 4) =
<<< SOFTWARE PIPELINING 0.0E+00 —_
<<< Loop-information End >>> Before improvement After improvement
48 2 p v doi=1,n
49 2 p hv abcd(1,i,j)=abcd(2,i,j)+abcd(3,i,j)+abcd (4,i,j) +efgh(1,i,j) +efgh(2,i,j) +efgh(3,i,j) +efgh (4,i,j)
50 2 p 4v enddo
51 1 p enddo
Cache
LTI miss L1D miss rate Memory
rate(/Effective (/Load-store L1D miss L1D miss d.m L1D miss hvypf L1D miss svypf L2 miss rate(/ltoad— throughput L2 throughput (GB/sec)
instruction) instruction) ——— rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) store instruction) (GBfseq)
?nﬁg’rfvement 0.00%1/ 23.21% 3.12E+09 91 m\ 8.34% 0.00% 0.00% 0.00 261.73
liAnf'ntSrrovement 0.00% 3.19% 4.29E+08 /25.52/"/6| 74.48% 0.00% 0.00% 0.01 335.65
\ The percentage of L1D cache misses decreased from 23.21% to 3.19%, and

the L1D miss dm percentage decreased too from 91.66% to 25.52%.

Chapter 8 Array Merging 47 Copyright 2016 FUJITSU LIMITED

Array Merging (in C Language) (Before Improvement) rujirsu

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the
following is a frequent event: No instruction commit due to L2 access for a fFloating-point load instruction.

Source code before improvement [sed]
5 #define N 256
6 #define M256 3.5E+00
7
8 double a[M][N],b[M][N],cIM][N],d[M]IN],e[M][N] F[M][N],g[M]IN]h[M]N]; 3.0E+00 ——
: wating oran instuction
<<< Loop-information Start >>> ; —
<<< [PARALLELIZATION] Array size 2.5E+00
<<< Standard iteration count: 433 256 x 256 x 8 B =
<<< [OPTIMIZATION] 32x16 KB
2.0E+00
<<< COLLAPSED (16-KB boundary) Mo
<<< SIMD(VL: 4) instruction
<<< SOFTWARE PIPELINING 1.5E+00 commit due
<<< Loop-information End >>> to L2 access
47 pp 6v for(j=0;j<M;j++){ for a
b ot o> o eting,
<<< COLLAPSED point load
. . 5.0E-01 instruction
<<< Loop-information End >>>
48 p 6v for(i=0;i<N;i++){
49 p 6v a[jllil = b[jILi] + cLjl[i] + d[j1Li] + e[i10i] + FIGTLD + g1 Li] + REGILL: 0.0E+00
5 p 6v }
Before improvement
Cache
. . |L1D miss rate
L11 miss rate(/Effective . L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- |Memory throughput |L2 throughput
instruction) i(r/]I;(srad—store L1D miss rate(/L1D miss) |rate(/L1D miss) rate(/L1D miss) store instruction) (GB/sec) (GB/sec)
Before
el ment 0.0043 21.95% 2.95E+09 91.96% 8.04% 0.00% 0.00% 0.00 235.97

Chapter 8 Array Merging

The percentage of L1D misses is high and the L1 miss dm percentage is
high, despite the fact that the array is accessed sequentialy.

L1D cache thrashing has occurred.

48

Copyright 2016 FUJITSU LIMITED

Effects of Array Merging (in C Language) (Source Tuning) Frujitsu

Array merging reduced the number of streams from eight to two, so L1D cache thrashing was avoided. This results in improvement
of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Source code after improvement (source tuning) [sec]
5 #define N 256
6 #define M256 3.5E+00
7
8 double abcd[M.][N][4],efgh[M][N][4]; —_— 3. 0E+00
<<< Loop-information Start >>> . .
<<< [PARALLELIZATION] Me.rglng 8 arrays in 2 5E+00 \
<<< Standard iteration count: 2 units of 4) \
<<< Loop-information End >>> No \
43pp for(=0;j<Mij++){ 2.0E+00 instructi \
<<< Loop-information Start >>> on \
<<< [OPTIMIZATION] commit \
<<< SIMD(VL: 4) 1.5E+00 due to
<<< SOFTWARE PIPELINING L2
<<< Loop-information End >>> dCCEsS 1 1 'O3-f0|d eﬂ:ECt
44 p 4v For(i=0;i<N;i++){ 1.0E+00 f ggrti?]
45 p 4v abcd[j][i][0] = abcd[j][i][1] + abcd[j][i]1[2] + abcd[j][i][3] + efgh[j][i][0] + -pointg \
efgh[jl[i1[1] + efgh[j][i][2] + efgh[jI[i] [3]; load \\
46 p 4v } 5.0E-01 instructi \
47 } on ﬁ
0.0E+00 o
Cache Before improvement After improvement
.) L1D miss rate Memory
LTI m:s;]sstr?utcet(iloE[gectlve (i/nLS(;ad’S,tore L1D miss ral_tlel?”r_r]nssnc:irzs) L1D miss f[lnv:lspsf) rate(/L1D | L1D miss rSnV\i/é)Sf)rate(/U D Lgt(r)r:‘l:isnr:ttri(c/tl}g?];i th(gé'/‘JSZE)”t L2 EI&IBO/ggSput
Before improvement 0.09% 21.95% 2.95E+09 91.96%L., 8.04% 0.00% 0.00% 0.00 235.97
After improvement 0.00%-__ 3.18% 4.27E+08 27.49% 72.51% 0.00% 0.00% 0.01 377.36
The percentage of L1D cache misses decreased from 21.95% to 3.18%,
and the L1D miss dm percentage decreased too from 91.96% to 27.49%.
49 Copyright 2016 FUJITSU LIMITED

Chapter 8 Array Merging

Effects of Array Merging (Compiler Options Tuning) FUJITSU

You can achieve effects similar to source tuning by specifying the following
compiler options.

Compiler options Description of function
-Karray_merge_common Gives an instruction to merge multiple arrays in a common block. You can

- - specify a common block name for name. If name is omitted, the arrays in all
[=name] the named common blocks are targets.
-Karray_merge local Gives an instruction to merge multiple local arrays.

-Karray_merge_local_size=1000000 is also valid at the same time.

-Karray_merge This option is equivalent to specifying the -Karray_merge_local
and -Karray_merge_common options.

B Use example (source code before improvement)

$ frtpx -KFfast,parallel sample.f90 -Karray_merge_common

¥ Notes
®(Options must be specified for all source code that uses the target arrays.

®The effects of array merging vary depending on the program.
®Incorrect use may result in different computational results.
®These options cannot be used with debug options (-g and -Haesux).

Chapter 8 Array Merging 50 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Dimensional Displacement of an Array

What Is Dimensional Displacement of an Array?

Dimensional Displacement of an Array (Before Improvement)

Effects of Dimensional Displacement of an Array (Source Tuning)

Dimensional Displacement of an Array (in C Language) (Before Improvement)
Effects of Dimensional Displacement of an Array (in C Language) (Source Tuning)
Effects of Dimensional Displacement of an Array (Compiler Options Tuning)

Chapter 8 Dimensional Displacement of an Array 51 Copyright 2016 FUJITSU LIMITED

What Is Dimensional Displacement of an Array?

D
FUJITSU

Dimensional displacement of an array is a tuning method where multiple streams of the same array become one stream.

B Use conditions

M Purpose

B Multiple streams exist in the same array.
*a(1,1,1) to a(1,1,8) are shown as multiple streams.

® The purpose is to reduce the number of streams.

B Adverse effect

= SIMD optimization of load and store instructions is more difficult.

(Data alignment in memory)

a(1, 1,1)

T\, 256x256x8B

% =32x16 KB

® Before improvement
/ a(256, 256, 1)
[a(1,1,2) [*
iLchache) —

Occurrence of L1D \

cache thrashing

Source code example

a(2' 1'1)

\Discrete access
1

1
1
7

~\ 256x256x8B

\=32x16KB

1 .
1 Discrete access
1

a(256,256,2) | |
:\ 256x256x8 B

“=32x16 KB

a(256, 256, 3)

biscrete access
1

1

a(1, 1,4)

/

£ 256x256x88

subroutine sub()
parameter(n=256,m=256)
real*8 a(n, m, 8)
common /com/a
doj=1,m

doi=1,n

a(i,j, 1) =a(i'j12) +a(i,j,3) +a(i'j' [') +

\‘ =32x16 KB

a(256, 256, 4)

! Discrete access
1

a(1, 1,5)

’

A
~.256x256x8B

1=32x16 KB

1
~,/ Discrete access
A}

a(.1,. 1: 6)

\

" 1
K 256 x256 x 8 B
TR S
\

m After improvement

(L1D cache)

Data can be used effectively
because all eight arrays are on the
same cache line.

(Data alignment in memory)

Source code example

subroutine sub()

parameter(n=256,m=256)

real*8 a(8, n, m)

common /com/a

doj=1,m
doi=1,n

a(1, 256, 1)
a(2, 256, 1)
a(3, 256, 1)

a(1,i,j)=a(2,i,j) +a3,i,j) +a(4,ij) +

a(4, 256, 1)

3(5, i'j)+a(6'i'j)+a(7vi1j)+ a(1’ 1’ 2)
a(i, j, 5) +al(i, j, 6) +a(i,j, 7) +a(i, j, 8) . e 1 Discrete access a(8,i,j) a2, 1, 2)
dd ’/ I I
enddo a(1,1,8 k 256 x 256 x 8 B enddo 26 1 2)
enddo — o
=32x16 KB en 3(4 3 2)
a(256, 256, 8) Discrete access BT
m=m==P> Storing data in cache === Storing data in cache (conflict) ------- > Order of memory access a(8, 256, 256)

N,

N/ N/ N7 N, Ns Nz

a(1, 1, 1) |--
a(2, 1, 1) 2
a(3, 1, 1) -

\< a4, 1, 1) <
a5, 1, 1) :
a6, 1, 1) 2
a(7, 1, 1) -
a8, 1, 1) <-
a(1, 2, 1)

Chapter 8 Dimensional Displacement of an Array

52

Copyright 2016 FUJITSU LIMITED

Dimensional Displacement of an Array (Before Improvement) FUﬁTSU

L1D cache thrashing occurs because each stream of array a is located on a 16-KB boundary. Consequently, the following is
a frequent event: No instruction commit due to L2 access for a floating-point load instruction.

Source code before improvement
[sec]
33 parameter(n=256,m=256)
34 real*8 a(n, m, 8) \ 355400
35 common /com/a
<<< Loop-information Start >>> Size of 1 stream 3.0E+00
<<< [PARALLELIZATION] 256 x256x8 B = ' =
<<< [(S)t:Tr::;;;tg;;lon count: 422 32 x16 KB > SE+00 e
<<< SE+
<<< COLLAPSED (16-KB boundary)
<<< SIMD(VL: 4)
<<< SOFTWARE PIPELINING 2.0E+00 No
. <6<< L(:iop.-in]formation End >>> instructio
PP oY L o’ff'm tion Start 1.5E+00 n commit
) ‘;)OPPT-IIAIIIH(Z);\??O:\T“ e dueto L2
s [COLLAPSED] access for
<«L e tion End 1.0E+00 a floating-
o 6<<< (;o;{-in]orma ion End >>> point load
P ot=1.n instructio
38 2p6v alij1)=a(ij2)+a(ij 3) +ali,j, &) + ali,j, 5) +a(ij, 6) +a(i,j, 7) +a(i, j, 8) 5.0E-01 =
39 2 p 6v enddo
40 1 p enddo
0.0E+00
Before improvement
Cache
L1l miss rate |L1D miss rate i i i i
(effective (ILoad-store L1D miss L1D r/11L|1s_<|,)dm L1D r/r|1-|1ssD h\/\{pf L1D r/11|1sstw'pf L2 miss rate({Load— LéBt/hroughput !\/éeBr;mry throughput
instruction) instruction) rate(miss) rate(miss) rate(miss) store instruction) (GB/sec) (GB/sec)
Before improvement 0.00% < 23.26% 3.13E+09 9157%> 8.43% 0.00% 0.00% 261.00 0.00

__

The percentage of L1D misses is high and the L1 miss dm
percentage is high, despite the fact that the array is accessed
sequentialy.

—> L1D cache thrashing has occurred.

Chapter 8 Dimensional Displacement of an Array

53

Copyright 2016 FUJITSU LIMITED

Effects of Dimensional Displacement of an Array (Source Tuning)

[0®)
FUJITSU

Dimensional displacement of an array reduced the number of streams from eight to one, so L1D cache thrashing was avoided.
This results in improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Source code after improvement (source tuning)
33 parameter(n=256,m=256) [sec]
34 real*8 a(8, n, m) 3.5E+00
35 common /com/a
<<< Loop-information Start >>> 3.0E+00
<<< [PARALLELIZATION]
<<< Standard iteration count: 2 2.5E+00
<<< Loop-information End >>> No \
36 1 pp doj =1.m 2.0E+00 instructi
I on PN
<<< Loop-information Start >>> 1 EE+00 cgmmit fold eff
+ —B -
<<< [OPTIMIZATION] : wio 1 5.79-fold effect
. access
<<< SIMD(VL: &) 1.0E+00 for a A
<<< SOFTWARE PIPELINING floating \\
. . -point
<<< Loop-information End >>> 5 0E-01 load VO
37 2 p 4v doi=1,n instructi
382 p & allij)=a2ij)+a@,ij)+als i) +a(5 i) +a6,ij) +a(7,ij) +a(8i)) 0.0E+00 i il
39 2 p 4v enddo
0 1 p enddo Before improvement After improvement
Cache
L1I miss rate L1D miss rate
.) . L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- |L2 throughput Memory throughput
i(ﬁgiﬁ?t\ilgn) i(rllint)rauit?tore ﬂDmLLati(/UD\miss) rate(/L1D miss) rate(/L1D miss) store instruction) (GB/sec) (GB/sec)
Before improvement 0.00% 23.26% 3.13E+09 91.57% . 8.43% 0.00% 0.00% 261.00 0.00
After improvement 0.00% 3.16% 4.27E+08 20.03%_~ 79.97% 0.00% 0.00% 207.01 0.00

The percentage of L1D misses decreased from
23.26% to 3.16%, and the L1D miss dm percentage
decreased too from 91.57% to 20.03%.

Chapter 8 Dimensional Displacement of an Array 54

Copyright 2016 FUJITSU LIMITED

Dimensional Displacement of an Array (in C Language) (Before Improvement)

D
FUJITSU

L1D cache thrashing occurs because each stream of array a is located on a 16-KB boundary. Consequently, the following is
a frequent event: No instruction commit due to L2 access for a floating-point load instruction.

Source code before improvement
4 #define N 256 [sec]
5 #define M 256 3.5E+00
6 #definel8 \ ﬁ
7 .
8 double a[L][M][N]; Size of 1 stream 3.0E+00 ———
: 256 x 256 x 8 B =
<<< Loop-information Start >>> 32 x16 KB 2 5E+00
<<< [PARALLELIZATION] (1 6-KB boundary) ’
<<< Standard iteration count: 433
<<< [OPTIMIZATION] 2 0E+00 No
<<< COLLAPSED instructio
<<< SIMD(VL: 4) o o
<<< SOFTWARE PIPELINING 1.5E+00 due to L2
<<< Loop-information End >>> —
39 pp 6v for(j=0;j<M;j++){ Aoy
<<< Loop-information Start >>> 1.0E+00 a(EIIcr)l?ﬁI(?agd
<<< [OPTIMIZATION] [i,nstructio
<<< COLLAPSED 5 0E-01 -
<<< Loop-information End >>> ’
40 p 6v for(i=0;i<N;i++){
“ p 6v a0l = a[1]G1L] +al21 G0 + 31610 + al41G1] + alS]G1L] + al6] G101 + al71G16: 0.0E+00
42 p 6v }
43 } Before improvement
Cache
I(_;flfglitsi\s/gate b]L?)argi_S:tg?;e L1D miss L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- |L2 throughput Memory throughput
instruction) instruction) rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) store instruction) (GB/sec) (GB/sec)
Before improvement 0.00% 21.92% 2.95E+09 91.93%> 8.07% 0.00% 0.00% 235.07 0.00

\/

The percentage of L1D misses is high and the L1 miss dm percentage
is high, despite the fact that the array is accessed sequentialy.

—>L1D cache thrashing has occurred.

Chapter 8 Dimensional Displacement of an Array

55 Copyright 2016 FUJITSU LIMITED

Effects of Dimensional Displacement of an Array (in C Language) (Source Tuning)

[0®)
FUJITSU

Dimensional displacement of an array reduced the number of streams from eight to one, so L1D cache thrashing was avoided.
This results in improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Source code after improvement (source tuning)
, [sec]

4 #define N 256
5 #define M 256 3.5E+00
6 #defineL 8
7 3.0E+00
8 double a[M][N][L];

<<< Loop-i.nformation Start >>> 2.5E+00

<<< [PARALLELIZATION] No \

<<< Standard iteration count: 2 2.0E+00 instructi \

<<< Loop-information End >>> on \
39 pp for (j=0;j<M;j++){ commit \

<<< Loop-information Start >>> 1.5E+00 d”fzto 3

<<< [OPTIMIZATION] access

<<< SIMD(VL:4) 1.0E+00 fora 11 5.83-fold effect |

<<< SOFTWARE PIPELINING ' floating

<<< Loop-information End >>> _F:e:gt \
40 p 4v for(i=0;i<N;i++){ 5.0E-01 instructi T
& p 4v a[j]fil[o] = a[jI[il[1] + a[j]Lil[2] + a[j][il (31 + aljl i1 [4] + on J
2o w1 a[j1fil[5] + a[j1Lil[6] + a[j1Lil [7]; 0.0E+00
43 } Before improvement After improvement

Cache
LTI miss rate L1D miss rate Memory
. . L1D miss dm L1D miss hwpf rate(/L1D |L1D miss swpf L2 miss rate(/Load-|L2 throughput
i(re\sf{?lilt\ilgn) i(r/:;??i-t?;%rf L1D miss rate(/L1D miss) miss) rate(/L1D miss) store instruction) [(GB/sec) Ezg)/l;ggpm
Before improvement 0.00% 21.92% 2.95E+09 91.93%, 8.07% 0.00% 0.00% 235.07 0.00
After improvement 0.00% 3.16% 4.27E+08 22.84% 77.16% 0.00% 0.00% 199.05 0.00

=

The percentage of L1D misses decreased from

21.92% to 3.16%, and the L1D miss dm percentage
decreased too from 91.93% to 22.84%.

Chapter 8 Dimensional Displacement of an Array 56

Copyright 2016 FUJITSU LIMITED

Effects of Dimensional Displacement of an Array (Compiler Options Tuning) FUﬁTSU

You can achieve effects similar to source tuning by specifying the following compiler options.

Compiler options Description of function

-Karray_subscript Gives an instruction for dimensional displacement of allocatable arrays with 4 or more
dimensions and arrays with 4 or more dimensions containing 10 or fewer elements in the final
dimension and 100 or more elements in the other dimensions.

-Karray_subscript_element=100,-Karray_subscript_elementlast=10,
and -Karray_subscript_rank=4 are also valid at the same time.

-Karray_subscript_element=N Gives an instruction that the number of elements in a dimension other than the final
(2SN=2,147,483,647) dimension in an array subject to dimensional displacement be N or greater. This option has
meaning in cases where the -Karray_subscript option is valid. However, the option has no
meaning for an allocatable array.

-Karray_subscript_elementlast=N Gives an instruction that the number of elements in the final dimension of an array subject to

(2SN=2,147,483,647) dimensional displacement be N or less. This option has meaning in cases where the
-Karray_subscript option is valid. However, the option has no meaning for an allocatable
array.

-Karray_subscript_rank=N Gives an instruction that the number of dimensions of an array subject to dimensional

(2=N=30) displacement be N or greater. This option has meaning in cases where the -Karray_subscript

ontion is valid

m Use example (source code before improvement)

$ frtpx -KFast,parallel sample.f90

-Karray_subscript,array_subscript_rank=2,array_subscript_element=2

® Notes
®Options must be specified for all source code that uses the target arrays.
®The effects of displacement vary depending on the program.
®Incorrect use may result in different computational results.

Chapter 8 Dimensional Displacement of an Array 57 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Loop Fission

Loop Fission (Before Improvement)

Effects of Loop Fission (Source Tuning)

Loop Fission (in C Language) (Before Improvement)
Effects of Loop Fission (in C Language) (Source Tuning)
Effects of Loop Fission (Optimization Control Line Tuning)

Chapter 8 Loop Fission 58 Copyright 2016 FUJITSU LIMITED

Loop Fission (Before Improvement)

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the following is a frequent
event: No instruction commit due to L2 access for a floating-point load instruction.

D
FUJITSU

Source code before improvement [sec]
46 parameter(n=65536) 6.0E-02
47 real*8 a(n),b(n),c(n),d(n),e(n),f(n),g(n),h(n)
48 common /com/a,b,c,d,e,f,g,h

5.0E-02

49

<<< Loop-information Start >> A -

<<< [PARALLELIZATION] rray size 4.0E-02

. . 65536 x8 B =

<<< Standard iteration count: 32 x 16 KB

<= [OPHM'Z‘L.\TION] (16-KB boundary) |3.0E-02 No instruction

<<< SOFTWARE PIPELINING L2 access for a

<<< Loop-information End >>> 2.0E-02 floating-point
50 1pp 2v doi=1,n load

- ; instruction
51 1 p 2v a(ol) S/b(.l) 1.0E-02
52 1 p 2v c(i) = s/d(i)
B oren e —
5. 1 p 2v g(i) = s/h(i) 0.0E+00
55 1 p 2v enddo Before improvement
Cache
L1 miss rate I(‘/]LD ”(;isst rate L1D mi L1D miss dm rate(/L1D [L1D miss hwpf L1D miss swpf L2 miss rate(/Load-|L2 throughput [Memory throughput
(effective instruction) ins(t)rauc-t?o%r)e/_ miss miss) rate(/L1D miss) rate(/L1D miss) store instruction) |(GB/sec) (GB/sec)
Before 0.00% 9.03% 4.74E+07 73.50% 26.50% 0.00% 0.00% 222.75 0.18
improvement

\

The percentage of L1D misses is high and the L1 miss dm percentage
is high, despite the fact that the array is accessed sequentialy.

) L1D cache thrashing has occurred.

Chapter 8 Loop Fission

59

Copyright 2016 FUJITSU LIMITED

Effects of Loop Fission (Source Tuning) FUjiTSU

Loop fission reduced the number of streams from eight to four, so L1D cache thrashing was avoided. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Source code after improvement (source tuning) [sed
46 parameter(n=65536)
47 real*8 a(n),b(n),c(n),d(n),e(n),f(n),g(n),h(n) 6.0E-02
48 common /com/a,b,c,d,e,f,g,h
49 \
50 10CL LOOP_NOFUSION \ \
<<< Loop-information Start >>> Suppressing |00p 5.0E-02 \
<<< [PARALLELIZATION] fusion \
<<< Standard iteration count: 381
<<< [OPTIMIZATION] 40E_02 \\
<<< SIMD(VL: 4)
<<< SOFTWARE PIPELINING
<<< Loop-information End >>> inst[\i?tion 4'1 S_fOId eﬂ:e(:t
51 1pp 4v doi=1,n 3.0E-02 commit
52 1 p 4 ali)=s/bli) due to \
53 1 pav cli)=s/d(i) L2 \
54 1 p 4v enddo 2.0E-02 a;:ocrezs \
<<< Loop-information Start >>> floating \
<<< [PARALLELIZATION] “point \
<<< Standard iteration count: 381 o e load
<<< [OPTIMIZATION] Loop fISSIon 1.0E-02 instruction
<<< SIMD(VL: 4)
<<< SOFTWARE PIPELINING
<<< Loop-information End >>> 0.0E+00 —
5 1pp &4v doi=1,n
56 1 p 4v e(i) = s/F(i) Before improvement After improvement
57 1 p 4v g(i) = s/h(i)
B 1A e The percentage of L1D misses decreased from 9.03% to 3.25%, and
the L1D miss dm percentage decreased too from 73.50% to 15.93%.
Cache .
LTI miss rate L1D miss rate) . .)
e R fows s ol om0 mosidstoe oo ey oty
instruction) instruction)
Before improvement 0.00% 9.03% 474E+07] 73.50% 26.50% 0.00% 0.00%9 222.75 0.18
After improvement 0.00% ~__ 3.25% 1.71E+07 15.93% 84.07% 0.00% 0.00% 341.98 0.70

Chapter 8 Loop Fission 60 Copyright 2016 FUJITSU LIMITED

Loop Fission (in C Language) (Before Improvement) rujirsu

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the following is a frequent
event: No instruction commit due to L2 access for a floating-point load instruction.

Source code before improvement [sec]
4 #define N 65536 6.0E-02
5
6 double a[N],b[N],c[N],d[N],e[N],F[N],g[N],h[N];
: 5.0E-02
<<< Loop-information Start >>>
<<< [PARALLELIZATION] 4 0E-02
<<< Standard iteration count: 206 -
<<< [OPTIMIZATION] Array size No
65536 x 8B = . :
<<< SIMD(VL: &) 32x16 KB 3.0E-02 instruction
<<< SOFTWARE PIPELINING (16-KB boundary) commit due
<<< Loop-information End >>> to L2 access
46 pp 2v for(i=0;i<N;i++){ 2.0-02 for a
47 p 2v ali] =s/bli]; pf(l)(i)ﬁﬁr;ga_d
48 p 2v ([i]=s/d[i]; 1.0E-02 instruction
49 p 2v eli]l =s/Hi];
50 p 2v g[i] =s/h(il; ﬁ
51 p 2v } 0.0E+00
52 } Before improvement
— | The percentage of L1D misses is high and the L1 miss dm percentage is
high, despite the fact that the array is accessed sequentialy.
Cache I:> L1D cache thrashing has occurred.
L1I miss rate L1D miss rate i i i i
T 1 A o ot B o B el vl o
Before improvement 0.00%]_ 8.76% 4.60E+Q7 73.69% 26.31% 0.00% 0.00% 221.43 0.03

Chapter 8 Loop Fission

61

Copyright 2016 FUJITSU LIMITED

Effects of Loop Fission (in C Language) (Source Tuning) FujiTsu

Loop fission reduced the number of streams from eight to four, so L1D cache thrashing was avoided. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Source code after improvement (SOUI’(E tuning)
4 #Hdefine N 65536 [sec]
5
6 double a[N],b[N],c[N],d[N],e[N],F[N],g[N],h[NJ; 6.0E-02
46 #pragma loop Ioop_r;ofusion \ \
<<< Loop-information Start >>> Suppressing Ioop S.OE'OZ \
<<< [PARALLELIZATION] fusi \
<<< Standard iteration count: 381 usion \
<<< [OPTIMIZATION] \
<<< SIMD(VL: 4) 4.0E-02
<<< SOFTWARE PIPELINING
<<< Loop-information End >>> No 4°42 fOId eﬂ:ECt
47 pp 4v for(i=0;i<N;i++){ 3.0E-02 instructip .
48 p 4&v a[i] =s/bli]; n commit \
49 p 4v (]i] =s/d[i]; géjcee;(s) ;z)zr \
50 p 4v }
<<< Loop-information Start >>> 2.0E-02 roaat]in) \\
<<< [PARALLELIZATION] o lo% d \
<<< Standard iteration count: 381 I_ fo o [i)nstructio
<<< [OPTIMIZATION] oop fission 1.0E-02 n
<<< SIMD(VL: &)
<<< SOFTWARE PIPELINING
<<< Loop-information End >>> ﬁ -
51 pp 4y for(i=0:i<N;i++){ 0.0E+00
52 p 4&v e[i] =s/f[i]; Before improvement After improvement
53 p 4v gli] =s/h[i];
54 p 4v }
The percentage of L1D misses decreased from 8.76% to 3.23%, and
the L1D miss dm percentage decreased too from 73.69% to 20.84%.
Cache
L1I miss rate L1D miss rate
. . L1D miss dm rate(/L1D U.D.mas—hwprﬁﬂmu D miss swpf rate(/L1D L2 miss rate(/Load- [L2 throughput Memory throughput
'(effectn{e '(/Load—gtore L1D miss mi miss) miss) store instruction) (GB/sec) (GB/sec)
instruction) instruction)
Before improvement 0.00% 8.76% 4.60E+07 ~ 7369%. 26.31% 0.00% 0.00% 221.43 0.03
After improvement 0.00% 3.23% 1.70E+07 20.84%~ 79.16% 0.00% 0.00% 353.87 0.02

Chapter 8 Loop Fission

62

Copyright 2016 FUJITSU LIMITED

Effects of Loop Fission (Optimization Control Line Tuning)

D
FUJITSU

You can achieve effects similar to source tuning by specifying the following optimization control line.

Optimization control specifiers

Meaning

Optimization control line that can be specified

10CL FISSION_POINT[(n1)]

(where n1 is decimal
number from 1 to 6)

Gives an instruction for loop fission at the specified point
inside a loop. The loop fission divides multiple loops that
have loops nested to n1 levels (counting from the innermost
loop).

Array
Program DO loop Statement assignment
unit unit unit statement
unit
No No Yes No

Source code after improvement (optimization control line tuning)

<<< SPLIT
<<< SIMD(VL: 4)

46 parameter(n=65536)

47 real*8 a(n),b(n),c(n),d(n),e(n),f(n),g(n),h(n)
48 common /com/a,b,c,d,e,f,g,h

49

<<< Loop-information Start >>>
<<< [PARALLELIZATION]

<<< Standard iteration count: 381
<<< [OPTIMIZATION]

<<< SOFTWARE PIPELINING
<<< Loop-information End >>>

50 1pp 4v doi=1,n

51 1 p 4v a(i) = s/b(i)
52 1 p &v c(i) = s/d(i)
53 1 lod fission_point(1)
54 1 p hv e(i) = s/K(i)
5 1 p 4v g(i) = s/h(i)
56 1 p 4v enddo

jwd82120-i "a.f90", line 54: Loop is divided (loop fission).

Chapter 8 Loop Fission

63

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Padding

What Is Padding?

Padding That Increases the Number of Array Elements in the First
Dimension

Padding That Increases the Number of Array Elements in the Second
Dimension

Padding Using a Dummy Array
Padding Using a Dummy Array (for Arrays of Different Sizes)

Chapter 8 Padding b4 Copyright 2016 FUJITSU LIMITED

What Is Padding?

Padding inserts a dummy area between arrays or inside an array.

D
FUJITSU

Hm Use conditions

Alternatively,
® Multiple arrays exist.

® Multiple streams exist in the same array.

M Purpose

¥ The purpose is to create a temporary area to shift addresses.

B Adverse effect

® The amount of padding must be changed every time that the problem scale changes.

Example where multiple streams exist in the same array

® Before improvement

(Data alignment in memory)

(L1D cache)

| w

s

N

Occurrence of L1D

cache thrashing

Example of source code before improve

parameter(n=256,m=256)
real*8 a(n, m, 8)
common /com/a
doj=1,m
doi=1,n
a(i,j, 8) =ali,j, 1) +ali,j, 2) +a(i,j,3) +
a(i,j, &) +a(i,j,5) +ali,j, 6) +
a(i,j, 7)
enddo
enddo

t

a(1,1,1) | 256x256x88
a(2,1,1) \=32x16KB
- '_ : \Discrete access
a(256,256,1) |
a(1,1,2) 256x256x8 B
. .. =32x16KB

a(256, 256, 2

Discrete access

a(1,1,8)

256 x256 x8 B
“=32x16KB
biscrete access
a(256,256,3) |
7
a(1, 1,4 . 256x256x88
. .. % =32x16KB
1 Discrete access
a(256, 256, 4) |
_/
a(1, 1'5) ~\256x256x8B
LI 1=32x16 KB
! .
a(1,1,6) -/ Discrete access
LI 1256 x256 x 8 B

TR I o
° Discrete access

} 256 x 256 x 8 B
_/ =32x16KB

Discrete access

. (L1D cache) Data alignment in memory)
W After improvement

) a(1,1,1) -

L1D cache a(2, 1,1) 5
thrashing does —/ . \
not occur \
256, 1,1 '
because the a) !
storage a(257, 1,1) !
location was N |
shifted. a(256,256,1) |
\ a(257,256,1) | /

. a(1,1,2) W

Example of source code after improvemen (2' 1'2) .

da Uy \

parameter(n=257,m=256) .. |

\
A}
1

real*8 a(n, m, 8)

a(256, 1,2) \
common /com/a Padding shifted the '
doi=1.m storage location in cache 3(2571 1, 2) !

)=t memory. . . !
doi=1,n ;

a(256, 256, 2)
a(257, 256, 2)

a(i,j, 8) =a(i,j, 1) +a(i,j, 2) +a(ij, 3) +
a(i, j, &) +a(i, j, 5) +a(i, j, 6) +
a(i,j, 7)

enddo
enddo

a(2,1,3)

== Storing data in cache

mlp Storing data in cache (conflict)

» Order of memory access |

Chapter 8 Padding

65

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Padding That Increases the Number of Array
Elements in the First Dimension

Padding That Increases the Number of Array Elements in the First Dimension
(Before Improvement)

Effects of Padding That Increases the Number of Array Elements in the First
Dimension (Source Tuning)

Padding That Increases the Number of Array Elements in the First Dimension (in C
Language) (Before Improvement)

Effects of Padding That Increases the Number of Array Elements in the First
Dimension (in C Language) (Source Tuning)

Effects of Padding That Increases the Number of Array Elements in the First
Dimension (Compiler Options Tuning)

Cha pter 8 Padding That Increases the Number of Array Elements i the First Dimension 66 Copyright 2016 FUJITSU LIMITED

Padding That Increases the Number of Array Elements in the First Dimension (Before Improvement) FUﬁTSU

L1D cache thrashing occurs because each stream of array a is located on a 16-KB boundary. Consequently, the
following is a frequent event: No instruction commit due to L2 access for a floating-point load instruction.

Source code before improvement
42 parameter(n=256,m=256) [sec]
43 real*8 a(n, m, 8) 5.0E+00
44 common /com/a 4 5E+00
<<< Loop-information Start >>> DbF
<<< [PARALLELIZATION] A[ray size 4.0E+00
<<< Standard iteration count: 422 256x256x 8B =
<<< [OPTIMIZATION] 32x16 KB 3.5E+00
<<< COLLAPSED 16-KB boundar
<<< SIMD(VL: 4) () 3.0E+00
<<< SOFTWARE PIPELINING 2.5E+00 No
<<< Loop-information End >>> instruction
45 1pp 6v doj=1,m : 2.0E+00 T
PP J' ' . Stream in . dueto L2
<<< Loop-information Start >>> same array 1 SE+00 a;lcess fora
oct+ oating-
<<< [OPTIMIZATION] point load
<<< (OLLAPSED 1.0E+00 instruction
<<< Loop-information End >>>
46 2 p 6 doi=1,n 5.0E-01
47 2 p 6v a(i,j,8) =a(ij 1) +alij 2) +a(ij 3) +alij, 4) +a(ij, 5) +a(,j, 6) +a(i,j, 7)
48 2 p 6v enddo 0.0E+00
49 1 p enddo Before improvement
Cache
L1l miss rate I(_/1L[c))an(;i_ssstor?ete L1D miss L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- |L2 throughput ’t\:‘]?glorlz ut
(effective instruction) instructi rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) store instruction) (GB/sec) (GB/sgc)p
Before improvement 0.00% 33.19% 4.47E+09 95.12% 4.88% 0.00% 0.00%] 247.59 0.00

AN

The percentage of L1D cache misses is high and the demand percentage of L1D
cache misses is high, despite the fact that the array is accessed sequentialy.

|:> L1D cache thrashing has occurred.

Chapter 8 Padding That Increases the Number of Array Elements in the First Dimension

67

Copyright 2016 FUJITSU LIMITED

Effects of Padding That Increases the Number of Array Elements in the First Dimension (Source Tuning) FUﬁTSU

L1D cache thrashing was avoided because of padding (+1) of the first dimension of each stream of array a. This results in
improvement of the following event: No instruction commit due to L2 access for a Floating-point load instruction.

Source code after improvement (source tuning) [sec]
42 parameter(n=256,m=256) 5.0E+00
43 real*8 a(n+1, m, 8) Y -
b4, common /com/a \ Shifting from 16 -KB 4.5£+00 4“
boundary by adding 1 to n i
<<< Loop-information Start >>> 4.0E+00 et \
<<< [PARALLELIZATION] \
<<< Standard iteration count: 2 3.5E+00 \
<<< Loop-information End >>> 3.0E+00 No A
45 1 PP dOJ =1 ,m instructio'ré \\
<<< Loop-information Start >>> 2:5+00 cﬂ”& '\
<<< [OPTIMIZATION] St . 2.0E+00 L 4
ream in :
<<< SIMD(VL: 4) same array afc;re;s 17.1-fold effect
<<< SOFTWARE PIPELINING 1.5£+00 floatin |
r . g-point \
<< Loopllnformatlon End >>>) 1.0E+00 load \
46 2 p bv dO i=1 N instruction \
47 2 p 4v ali,j,8)=alij 1) +ali,j, 2) +ali,j, 3) +ali j, 4) +ai, j, 5) +ali, j, 6) +ali, j, 7) 5.0E-01 \
48 2 p 4v enddo 0.0E+00 =
49 1 p enddo
Before improvement After improvement
The percentage of L1D misses decreased from 33.19% to 3.27%, and
H (1) 0,
Cache the L1D miss dm percentage decreased too from 95.12% to 9.46%.
L11 miss rat L1D miss rat . . |L1D miss hwpfrate(/L1D |L1D miss swpf L2 miss rate(/Load- |L2 throughput M throughput
(efhraTtSi\S/er?nitruction) (/Loargl—ssst(;?eeimymn‘)—/——UDmlss / L1D miss dm rate(/L1D miss) miss;nISS Hpree rate(r/nl_lﬁ)sr;vizs) stoi?isﬁuitio?l? (GB/s:eOcl;g b (G%Tszg ougee
Before 0.00% / 33.19% 4.47E+09 95.1 4.88% 0.00% 0.00% 247.59 0.00
improvement
After 0.00%\ 3.27% 4.39E+08 9.46% 90.54% 0.00% 0.00% 421.35 0.01
improvement

Chapter 8 Padding That Increases the Number of Array Elements i the First Dimension 68 Copyright 2016 FUJITSU LIMITED

Padding That Increases the Number of Array Elements in the First Dimension

(in CLanguage) (Before Improvement)

L1D cache thrashing occurs because each stream of array a is located on a 16-KB boundary. Consequently, the following is a
frequent event: No instruction commit due to L2 access for a floating-point load instruction.

[0®)
FUJITSU

Source code before improvement
4 #define N 256 [sec]
5 #define M 256 3.5E+00
6 #define L 8
; - B
8 double a[L][M][N]; 3.0E+00
<<< Loop-information Start >>>
<<< [PARALLELIZATION] 2.5E+00
<<< Standard iteration count: 433 .
Array size
<<< [OPTIMIZATION] _ 2.0E+
<<< COLLAPSED 256x256x8 B = 0E+00 -
<<< SIMD(VL: &) 32x16 KB instruction
<<< SOFTWARE PIPELINING (16-KB boundary) 1.5E+00 commit
<<< Loop-information End >>> 2 dueto L2
39 pp 6v for(j=0;j<M;j++){ Stream in access for
<<< Loop-information Start >>> same array 1.0E+00 a floating-
<<< [OPTIMIZATION] .pOIt"t I?.ad
<<< COLLAPSED instruction
<<< Loop-information End >>> / 5.0E-01
40 p 6v for(i=0;i<N;i++){
41 p 6v a[0][jIli] = a[GILGT + al21 01111 + al31G1] + al41111i + al51 G0 + al61111i + al71 L1 (il: 0.0E+00
42 p 6v 1}
43 } The percentage of L1D misses is high and the demand Before improvement
percentage of L1D cache misses is high, despite the fact that
the array is accessed sequentialy.
Cache / —> L1D cache thrashing has occurred.
LTI miss rate L2 miss Memory
. L1D miss rate . L1D miss dm rate(/L1D|L1D miss hwpf L1D miss swpf L2 throughput
.(effectl\./e (/Loadﬂi_@tion) L1D miss miss) rate(/L1D miss) rate(/L1D miss) rate(/and—store (GB/sec) throughput
instruction) instruction) (GB/sec)
Before improvement 0.0 21.92% 2.95E+09 91.92% 8.08% 0.00% 0.00% 235.08 0.00

Chapter 8 Padding That Increases the Number of Array Elements in the First Dimension 69

Copyright 2016 FUJITSU LIMITED

Effects of Padding That Increases the Number of Array Elements in the First
Dimension (in C Language) (Source Tuning)

L1D cache thrashing was avoided because of padding (+1) of the first dimension of each stream of array a. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

[0®)
FUJITSU

Source code after improvement (source tuning) (sec]
4 #define N 256 3,5E+00
5 #define M 256
6 #define L 8 \
7 3.0E+00 4=17
8 double a[L][M][N+1]; Shifting from 16-KB B BN
: N boundary by adding 1 to n 2.5E+00 \
<<< Loop-information Start >>> \
<<< [PARALLELIZATION] \
<<< Standard iteration count: 2 2.0E+00 inst'r\i?tion N
<<< Loop-information End >>> commit \
38 pp for (j=0;j<M;j++){ 1.5E+00 duLezto \
<<< Loop-information Start >>> =
<<< [OPTIMIZATION] Stream in 1 0E+00 afc(ffzs 12.3-fold effect
<< SIMD(VL:4) same array ' deci \
<<< SOFTWARE PIPELINING T \
<<< Loop-information End >>> /j 5.0E-01 inst(r)t?ction \
39 p 4v for(i=0;i<N;i++){ E
40 p 4 a[0][jl[i] =a[11G1LT + al2] G111 + al31G1LT + al41 1] 0.0E+00 = |
+a[51010 + al6] G11il + al71 G Lil;
41 p 4v } Before improvement After improvement
42 }
The percentage of L1D misses decreased from 21.92% to 3.26%, and
Cache /— the L1D miss dm percentage decreased too from 91.92% to 8.79%.
L1I miss rate L1D miss rate . ’ . . Memory
. . i L1D miss dm rate(/L1D |L1D miss hwpf L1D miss swpf L2 miss rate(/Load- |L2 throughput
i(r?sr[fli?t\;gn) i(rlll;(t)raudc_tsict)?lr)e L1D miss miss) rate(/L1D miss) rate(/L1D miss) store instruction) |(GB/sec) EEngngt
Before 0.00% 21.92% 2.95E+09 91.9 8.08% 0.00% 0.00% 235.08 0.00
|mpr0vement
After 0.00% 3.26% 437E+08 BI9% 91.21% 0.00% 0.00% 425.99 0.01
|mpr0vement

Chapter 8 Padding That Increases the Number of Array Elements in the First Dimension

70

Copyright 2016 FUJITSU LIMITED

Effects of Padding That Increases the Number of Array Elements in the First Dimension o)
(Compiler Options Tuning) FUJITSU

You can achieve effects similar to source tuning by specifying the following
compiler options.

Compiler options Description of function

-Ka rraypad const[=N] Pads N elements of an array whose first dimension is an explicit shape

- specification and shape specification expression is a constant expression. If N
(1=N=2,147,483,647) is omitted, the compiler determines the amount of padding for each target

array. The padding creates a gap in the array.

-Ka rraypad expr=N Pads N elements of an array whose first dimension is an explicit shape

- specification, regardless of whether its shape specification expression is a
(1=N=2,147,483,647) constant expression.

B Use example (source code before improvement)

$ frtpx -Kfast,parallel sample.F90 -Karraypad_expr=1

@ Automatic selection of target arrays = Application of padding

® Notes
®(Options must be specified for all source code that uses the target arrays.
®The effects of padding vary depending on the program.
®Incorrect use may result in different computational results.

®The -Karraypad_const [=N] option and -Karraypad_expr=N option cannot be
specified at the same time.

Chapter 8 Padding That Increases the Number of Array Elements i the First Dimension Al Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Padding That Increases the Number of Array
Elements in the Second Dimension

Case of No Improvement from Padding That Increases the Number of
Array Elements in the First Dimension

Padding That Increases the Number of Array Elements in the Second
Dimension

Padding That Increases the Number of Array Elements in the Second
Dimension (Before Improvement)

Effects of Padding That Increases the Number of Array Elements in
the Second Dimension (Source Tuning)

Cha pter 8 Padding That Increases the Number of Array Elements in the Second Dimension 72 Copyright 2016 FUJITSU LIMITED

Case of No Improvement from Padding That Increases the Number of Array Elements in the First Dimension FUﬁTSU

Depending on the array size, there may be no improvement even with padding (+1) of the array elements of the first dimension.

Source code before improvement Address =0 | J-axis direction @48 x8B=16 KB]
33 parameter(k=64,1=2048) _ / 2048 >
34 real*aall LD L > (ke 1, 8) e e—— I
35 common /com/a 2.64 Area of a(i,j,1)
36doj=1,I i = .
37 :J i1 K Paddlng a ABA11) = = wwm s e e e e |a(64,2048,1)
P g i Area of a(i,j,2)
38 af(i,j, 8) =ali,j, 1) +alij, 2) +a(ij, 3) +a(i, j, &) +a(i,j, 5) +a(ij, 6) +a(,j,7) S h
39 enddo
40 enddo idgl:e)ﬁ 6 KB
41 end (2048 x 8 B) J
Cache
L11 miss rat L1D miss rat . L1D miss dm rate(/L1D i
(eff?cltsi\s/erain;ruction) (/Loargl—ssstor?e?nstruction) L1D miss miss;nISS e @ Paddlng
Before improvement 0.01% 26.39% 2.77E+07 92.46%]
After improvement 0.01% 37.12% 3.90E+07 97.12% ﬂ\s ﬂ_]J -axis direction @48"8 SOl
[sec] %l // NEEEEEEEEE “e- -« 4a(1,2048,1)
6.0E-02 % 64 : Area of a(i,j,1)
5.0E-02 > -7 %' 641 1) * r xx e e |a(64,2048,1)
Phe S 1 Paddin
4.0E-02 b P I m
3.0E-02 | p ~— & Area of a(i,j,2)
‘ Thrashing not Address
2.0E-02 | > avoidable = 64 x 16 KB + 16 KB
A ' —— —
1.0E-02 A 4> (2048 x 8 B) J
0.0E+00 Thrashing occurs since array a remains on a 16-KB boundary.
Before padding After padding

Chapter 8 Padding That Increases the Number of Array Elements in the Second Dimension 73 Copyright 2016 FUJITSU LIMITED

Padding That Increases the Number of Array Elements in the Second Dimension

o)
FUJITSU

L1D cache thrashing is avoided because padding (+1) of the second dimension causes a

shift from the 16-KB boundary.

Source code before improvement

33 parameter(k=64,1=2048)
34 real*8 a(k, |, 8)

35 common /com/a
36doj=1,1

37 doi=1,k

38 afi,j,8)=ali,j, 1) +a(ij,2) +a(,j, 3) +a(,j, &) +a(i, j, 5) +afi, j, 6) +ali,j, 7)

39 enddo
40 enddo
41 end

Address J-axis direction 2()1468;88 B
g G0 2048
<,
é: m 43(1,2048,1)
m .
%- 64 Area of a(i,j,1)
=

ABA11) = = = = = mmm e {a(64,2048.1)
a(1,1,2) .
Area of a(i,j,2)

Address
=64x16 KB
(2048 x 8 B)

L

Thrashing occurs because of the 16-KB boundary.

Padding of the second dimension of array a

Source code after improvement Address J-axis direction
33 parameter(k=64,1=2048) - = 2048 +1
34 real*8 a(k+1,1, 8) g. % rPe—>
35 common /com/a o 77/ RS Ja(1,2048,1) E
36doj=1,I 2 64 Area of a(ij,1) 2
37 doi=1,k y a(64,;,1) Ta(64.2048.1)
38 ali,j,8)=alij, 1) +alij, 2) +a(j, 3) +a(,j, 4) +a(,j, 5 +a(i, j, 6) +a(i, j, 7) 2(1.1.2)
39 enddo Area of a(i,j,2)
40 enddo Address
41 end =64x16 KB + 0.5 KB

Chapter 8 Padding That Increases the Number of Array Elements in the Second Dimension

Thrashing is avoided because the 16-KB boundary is no longer valid.

T4

Copyright 2016 FUJITSU LIMITED

[0®)
Padding That Increases the Number of Array Elements in the Second Dimension (Before Improvement)FU][TSU

L1D cache thrashing occurs because each stream of array a is located on a 16-KB boundary. Consequently, the
following is a frequent event: No instruction commit due to L2 access for a floating-point load instruction.

Source code before improvement [sec]

38 parameter(n=32,m=2048) 5.0E-01
39 real*8 a(n, m, 8)
40 common /com/a 4.5E-01 —=—

<<< Loop-information Start >>> . o bt ot

<<< [PARALLELIZATION] Array size 4000 b

<<< Standard iteration count: 422 32 X 2048 X 8 B = 3.5E-01

<<< [OPTIMIZATION] 32x16 KB :

<<< COLLAPSED (16-KB boundary) 3.0E-01

<<< SIMD(VL: &) No

<<< SOFTWARE PIPELINING 2.5E-01 instruction

<<< Loop-information End >>> commit due
41 1pp 6v doj=1,m 2.0E-01 to L2 access

<<< Loop-information Start >>> Stream in 1.56-01 for a

<<< [OPTIMIZATION] : floating-

same alra :

<<< COLLAPSED y 1.0E-01 point load

<<< Loop-information End >>> instruction
42 2p6 doi=1,n 5.0E-02
43 2 p 6v af(i,j 8 =alij, 1) +a(ij, 2) +a(ij 3) +a(i,j, 4) +a(ij, 5) +a(i,j, 6) +a(ij 7)
44 2 p 6v enddo 0.0E+00
45 1 p enddo Before improvement

The percentage of L1D cache misses is high and the demand percentage of L1D
cache misses is high, despite the fact that the array is accessed sequentialy.
Cache —> L1D cache thrashing has occurred.
LTI miss rate L1D miss rate Memory
i) L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- |L2 throughput
i(r?srifsgt\i/gn) i(r/]Ls(t)fudc_tS{;L_ L1D miss / rate(/L1D miss) |rate(/L1D miss) rate(/L1D miss) store instruction) (GB/sec) Er(];rBO/lSJgngt
Before 0.00%4 26.31% 4.42E+08 92.60% 7.40% 0.00% 0.00% 246.39 0.01
improvement

Chapter 8 Padding That Increases the Number of Array Elements in the Second Dimension

75

Copyright 2016 FUJITSU LIMITED

[o®)
Effects of Padding That Increases the Number of Array Elements in the Second Dimension (Source Tuning) FU][TSU

L1D cache thrashing was avoided because of padding (+1) of the second dimension of each stream of array a. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Source code after improvement (source tuning) (se
39 parameter(n=32,m=2048)
40 real*8 a(n, m+1, 8) 5.0E-01
41 common /com/a 4.5E-01
<<< Loop-information Start >> Sh|ft|ng from 16-KB)
<<< [PARALLELIZATION] boundary by adding 1 to m 4.0E-01
<<< Standard iteration count: 422
<<< [OPTIMIZATION] 3.5E-01
<<< COLLAPSED
<<< SIMD(VL: 4) 3.0E-01
<<< SOFTWARE PIPELINING . \
<<< Loop-information End >>> 2.58-01 commit fol ff B
42 1pp 6v doj=1,m 2 0E-01 duLeZto [7.93-fold effect | |
<<< Loop-information Start >>> access -
<<< [OPTIMIZATION] 1 5E-01 ﬂgc;rt;g \\
<<< COLLAPSED -point
<<< Loop-information End >>> 1.0E-01 load \
43 2 p 6 do i -] , n instruction \\
4 2 p 6v a(i,j,8)=ali,j, 1) +alij,2) +alij 3) +alij 4 +a(ij5) +alij 6) +alij 7) 5.0E-02 ﬁi
45 2 p 6v enddo
46 1 p enddo 0.0E+00 ———
Before improvement After improvement
The percentage of L1D misses decreased from 26.31% to 6.12%, and the
Cache L1D miss dm percentage decreased too from 92.60% to 52.53%.
. L1D miss rat . . , .
t;f'rg‘c'tsi\sle’?:]‘;mwon) i(r/]ti,[aur:jr.gzéf;ee 11D miss Z{[;(Tﬁ)drg;ss) h}ils)sgnlss hwpf rate(/L1D Ir_T:iIS)Sr)mss swpf rate(/L1D :_nZS{?lEsnroa;)e(/Load—store L2 throughput (GB/sec) !(\/éeBTszrg; throughput
4
Before 0.00% 2631% 4.42E+08 92.60% 7.40% 0.00% 0.00% 246.39 0.01
improvement N
After 0, 0, 0, / 0, 0, 0,
improvement 0.00% 6.12% 1.03E+08 }5)»/6 47.47% 0.00% 0.00% 456.13 0.02

Chapter 8 Padding That Increases the Number of Array Elements in the Second Dimension

76

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Padding Using a Dummy Array

Padding Using a Dummy Array (Before Improvement)
Effects of Padding Using a Dummy Array (Source Tuning)

Effects of Padding Using a Dummy Array
(Compiler Options Tuning)

Chapter 8 Padding Using a Dummy Array 77 Copyright 2016 FUJITSU LIMITED

Padding Using a Dummy Array (Before Improvement) FUjITSU

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the following is a
frequent event: No instruction commit due to L2 access for a floating-point load instruction.

Source code before improvement [sed]
1 parameter(n=256,m=256)
2 real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),f(n,m),g(n,m) h(n,m) 4.5E+00
3 character (1),parameter :: null0=2'00"'
‘ e bedetal . 4.0E+00
Array size
27 1 Il sub
e S 256 x 256X 8 B = 3.5E+00
32 X 16 KB * for an instruction to be
34 subroutine sub() feched
35 parameter(n=256,m=256) (16-KB boundary) 3.0E+00
36 real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),f(n,m),g(n,m),h(n,m) :
37 common /test/a,b,c,d,e,f,g,h
<<< Loop-information Start >>> 2.5E+00
<<< [PARALLELIZATION] No
- [3t;‘T'::n“’|;'i:|;';;'°“ count: 422 2.0E+00 instruction
<<< COLLAPSED commit due
<<< SIMD(VL: 4) 1.5E+00 to L2 access
<<< SOF'I:WARE PI.PELINING for a ﬂoatlng_
% 1o <6<v< Lt::)pj—:l:ormahon End >>> 1.0E+00 pOiﬂt load
<<< Loop-information Start >>> instruction
<<< [OPTIMIZATION] 5.0E-01
<<< COLLAPSED
<<< Loop-information End >>> 0.0E+00
39 2p6 doi=1,n :
40 2 p 6v a(ij)=b(ij)+cij) +d(ij) + e(i j) + (i j) + g(i j) + i j) Before improvement
41 2 p 6v enddo
42 1p enddo — The percentage of L1D misses is high and the demand percentage of L1D
cache misses is high, despite the fact that the array is accessed sequentialy.
Cache —> L1D cache thrashing has occurred.
%;rlf‘rancitsi\s/erate (L/1L[c))an;i_ssstor?ete L1 miss /L] D ;niss dm rate(/L1D |L1 D(r/l:_i]sthwpf) L1 D(rFLi]sEswpf) L2 miss rate(/Loa)‘d. th?roughput migrl]g%lput
: -) . i te miss rate miss store instruction
instruction) instruction) ——— miss a (GB/sec) (GB/sec)
Before improvement 0.00% 29.46%| 3.96E+09 93.329 6.68% 0.00% 0.00% 264.25 0.00

Chapter 8 Padding Using a Dummy Array 78 Copyright 2016 FUJITSU LIMITED

Effects of Padding Using a Dummy Array (Source Tuning) FUITSU

L1D cache thrashing was avoided because a dummy array was inserted between arrays to cause a shift from the 16-KB boundary.
This results in improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Source code after improvement (source tuning) (se
1 parameter(n=256,m=256)
2 real*8 a(n, m),dummy1(64),b(n,m),dummy2(64), 4.5E+00
c(n,m),dummy3(64),d(n,m),dummy%(64)
3 real*8 e(n, m),dummy5(64),f(n,m),dummy6(64), 4.0E+00
g(n,m),dummy7(64),h(n,m)
character (1),parameter :: null0=2'00' 3.5E+00
5 common /test/a,dummy1,b,dummy2,c,dummy3,d,dummy4,
e, dummy5,f,dummy6,g,dummy7,h 3.0E+00
28 1 s s call sub() Adding dummy array 2.5E+00
......... between arrays to cause) : . \
35 subroutine sub() shift from 16-KB instruction \
36 parameter(n=256,m=256) boundary 2.0E+00 oLl *
37 real*8 a(n, m),dummy1(64),b(n,m),dum Ty, due to 1 4,2-f0|d effect
dummy3(64),d(n,m),dummy4 (64) 1.5E+00 L2 access
38 real*8 e(n, m),dummy5(64),f(n,m),dummy6(64),g(n,m), for.a \
dummy7(64),h(n,m) -I .OE+OO ﬂoat.lng- \
39 common /test/a,dummy1,b,dummy2,¢,dummy3,d, point \
dummyé,e,dummy5,f,dummy6,g,dummy7,h . Ioad \
<<< Loop-information Start >>> 5.0E-01 instruction \
<<< [PARALLELIZATION] \ﬁ
<<< Standard iteration count: 422 0.0E+00 -_
<<< [OPTIMIZATION]
<<< COLLAPSED Before improvement After improvement
<<< SIMD(VL: 4)
<<< SOFTWARE PIPELINING The percentage of L1D misses decreased from 29.46% to 3.57%, and the L1D
<<<Loop-information End >>> miss dm percentage decreased too from 93.32% to 20.40%.
40 1pp 6v doj=1,m
e 1 Gache
<<< COLLAPSED L1l miss rate L1D miss rate) L1D miss dm
<<< Loop-information End >>> fr?sf[ijf:lt\:ce)n) féé?iﬁ%&‘a/_LDmelm\miss)
e dl) sl 2 L 2l 2 Before improvement 0.00%~ 29.46% 3.96E+09 93.32%
p 6v a(ij)=b(ij) +c(ij) + d(i j) +ei j) + F(ij) + g(i,j) + h(ij)
43 2 p6v enddo After improvement 0.00% 3.57% 4.80E+08 20.40%
4 1 p enddo

Chapter 8 Padding Using a Dummy Array 79 Copyright 2016 FUJITSU LIMITED

Effects of Padding Using a Dummy Array (Compiler Options Tuning) FUﬁTSU

You can achieve effects similar to source tuning by specifying the following

compiler options.

Compiler options Description of function
-Kcommonpad[=N] Specifies that a gap be created between areas for variables in a
(6<N<2,147,483,644) common block to increase the data cache use efficiency.

If N is omitted, the compiler automatically determines the optimal
value.

B Use example (source code before improvement)

$ frtpx -Kfast,parallel sample.f90 -Kcommonpad=512

@ Automatic selection of target arrays = Application of padding
® Notes

® For separate compilation with the compiler options -Kcommon[f)ad specified for a file
containing a common block, this option must also be specified for other files
containing common blocks of the same name.

® For compilation with the comﬁiler options -Kcommonpad=N specified for multiple
files, the value of N must be the same.

® Also, if programs with the compiler options -Kcommonpad specified use the same
common block name with its elements changed, the programs may not run correctly.

Chapter 8 Padding Using a Dummy Array 80 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Padding Using a Dummy Array
(for Arrays of Different Sizes)

Conflict between Arrays of Different Sizes

Padding Using a Dummy Array
(For Arrays of Different Sizes: Before Improvement)

Effects of Padding Using a Dummy Array
(for Arrays of Different Sizes: Source Tuning)

Chapter 8 Padding Using a Dummy Array (for Arrays of Different Sizes) 81 Copyright 2016 FUJITSU LIMITED

Conflict between Arrays of Different Sizes (1/2)

Generally, stationary cache thrashing does not occur for arrays of different sizes.

j-axis direction

o)
FUJITSU

the array address of b(1,2) is the b(1,1) address + 256 x 8 B,

the array address of h(1,2) is the h(1,1) addres$+ 2560 x 8

Source code example & \
parameter(n=256,m=256) oy a('rJ) ﬂ b(l,j) / h('rJ)
parameter(k-2560,-256) s TR

a 32 e o T oo 30 | 32 3,256
real*8 a(n,m), b(n,m), c(n,m), S 25621 {256,256 | 286,11 2562 -1 256256] - - - - | osei| 7562 | -] 756056
d(n,m), e(n,m), f(n,m), \ +18KB< [
25601 25602 | -~ (2560256
g(mm), h(k) L | Cache thrashing occurs because the addresses are
assigned to a 16-KB boundary
common /test/a,b,c,d,e,f,g,h
doj=1,m Assuming that the array address of a(1 ,1m
doi=1,n the array address of a(1,1) is
a(i, j) =b(i, j) + (i, j) + d(i, j) + the array address of b(1,1) is
e(irj) + f(l,j) + g(';]) + . .
h(i, j) the array address of h(1,1) is
enddo
enddo Incrementing in the second dimension,
the array address of a(1,2) is the a(1,1) address + 256 x 8 B, 256 x8 B + 18 KB

Generally, stationary cache thrashing does not
occur for arrays of different sizes.

G

Chapter 8 Padding Using a Dummy Array (for Arrays of Different Sizes)

82

16-KB boundary.

/
Arrays a, b, ¢, d, e, f, and g remain on a 16-KB
boundary, but the array h address shifts from the

Copyright 2016 FUJITSU LIMITED

Conflict between Arrays of Different Sizes (2/2) FUjITSU

Stationary cache thrashing occurs because an array remains on a 16-KB boundary. This happens even in
cases with arrays of different sizes, depending on the array size.

j-axis direction

Source code example & \
X
parameter(n=256,m=256) i a('rJ) ﬂ b('r]) / h('rJ)
= T2 T.250 2 (VAT R
parameter(k=2304,1=256) = > 225 22 2256 |- o ;1 22 . ;;22
= FamEr 3? I e 1 SV VMY
real*8 a(n,m), b(n,m), c(n,m), S 25621 1 256,25k | 256,11 256,21 1 256,256] -~ -~ |- [56671 | 2562 | --| 256,256
257,1 | 257, |-~ | 257,256
d(n,m), e(n,m), F(n,m), \ + 16 KB 4 222
g(n,m), h(k) 230411230621 - 12304256
v Cache thrashing occurs because the addresses
common /test/a,b,c,d,e f,g,h are assigned to a 16-KB boundary.
doj=1,m Assuming that the array address of a(1,1) E)T'""\‘
doi=1,n the array address of a(1,1) is
a(i, j) = b(i, j) + c(i, j) + d(i, j) + the array address of b(1,1) is
e(i, j) +F(i, j) + (i, j) + : :
hi, j) the array address of h(1,1) is
enddo !
enddo Incrementing in the second dimension, 256 x 8 B + 16 KB
the array address of a(1,2) is the a(1,1) address + 256 x 8 B,
the array address of b(1,2) is the b(1,1) address + 256 x 8 B,
the array address of h(1,2) is the h(1,1) addre
]
Measures against thrashing are necessary All of arrays a,b,¢,d,e,f,g, and h remain on a 16-
for arrays of all sizes, including array h. <:| KB boundary

Chapter 8 Padding Using a Dummy Array (for Arrays of Different Sizes) 83 Copyright 2016 FUJITSU LIMITED

Padding Using a Dummy Array (for Arrays of Different Sizes: Before Improvement) FUﬁTSU

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the following is a
frequent event: No instruction commit due to L2 access for a floating-point load instruction.

Source code before improvement

50 subroutine sub() - [sec]
51 integer k,I,n,m Ea(h array remains on 3.5E+00
52 16-KB boundary even '
53 parameter (n=256,m=256) when second dimension
4 ter(k=2304,1=2 .
:5 parameter(k=23041-256) / incremented 3.0E+00
56 real*8 a(nrm)rb(nvm)lc(nlm)'d(nlm)le(nlm)lf(nlm)lg(n!m)lh(kll) ﬁommnwamﬂg
57 for an instruction to be
58 2.5E+00
59 common /test/a,b,c,d,e,f,g,h

<<< Loop-information Start >>>
<<< [PARALLELIZATION] 2.0E+00
<<< Standard iteration count: 2

<<< Loop-information End >>> No
60 1pp doj=1,m 1.5E+00 instruction
<<< Loop-information Start >>> commit due
<<< [(S)IPAIIDI\QI‘IIZLAZI)ON] to L2 access
< : 1.0E+00 ing-
<<< SOFTWARE PIPELINING 12 d ﬂf Iatlrcllg
<<< Loop-information End >>> .P0|tn E).a
: instruction
12 =
R i sl o e ah 1 e B 5.0E-01
p &v a(i,j)=b(ij) +c(ij) + dij) +e(i,j) + G, j) + (i, j) + (i, j)
63 2 p v enddo The percentage of L1D misses is high and the demand
64 1 p enddo c o g 9
\ percentage of L1D cache misses is high, despite the fact
that the array is accessed sequentially. Before improvement
Cache \ —> L1D cache thrashing has occurred.
I(_;flfgitgs(erate l(_/]L?)argi-iStorr e L1D mi L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- |L2 throughput ft\:\]emorr;]/ t
instruclt\;on) instructi miss rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) store instruction) (GB/sec) (Ggggc)pu
Before improvement 0.00% 19.14% 2.57E+09 90.13% 9.87% 0.00% 0.00%] 221.82 0.01

Chapter 8 Padding Using a Dummy Array (for Arrays of Different Sizes) 84 Copyright 2016 FUJITSU LIMITED

Padding Using a Dummy Array (for Arrays of Different Sizes: Source Tuning)

[0®)
FUJITSU

L1D cache thrashing was avoided because a dummy array was inserted between arrays to cause a shift from the 16-KB boundary.
This results in improvement of the following event: No instruction commit due to L2 access for a fFloating-point load instruction.

Source code after improvement
50 -subroutine sub() [SEC]
51 integer k,I,n,m
52 3.5E+00
53 parameter(n=256,m=256)
54 parameter(k=2304,1=256)
55 3.0E+00
56 real*8 a(n,m),dummy1(64),b(n,m),dummy2(64), &
57 c(n,m),dummy3(6%),d(n,m),dummy% (64), &
58 e(n,m),dummy5(64),f(n,m),dummy6(64), & 2.5E+00
59 g(n,m),dummy7(6%),h(k,I)
60 common /test/a,dummy1,b,dummy2,c,dummy3,
d,dummy4,e,dummys5,f,dummy6,
g.dummy7.h 2.0E+00 .
61 L{ Inserting dumm MO }
<<< Loop-information Start >>> b gt y ST \
<<< [PARALLELIZATION] array between 1.5E+00 commit 10.6-fold effect
<<< Standard iteration count: 2 darrays dueto C old eftec
<<< Loop-information End >>> L2faccess N
62 1pp doj=1,m 1.0E+00 ore \
<<< Loop-information Start >>> float.lng— \
<<< [OPTIMIZATION] F;O'f('jt \
<<< SIMD(VL: &) _ '0ad \
<<< SOFTWARE PIPELINING 5.0E-01 LtLctic \
<<< Loop-information End >>>
63 2 p 4v doi=1,n
66 2 p v ali,j)=bj)+cli) +dG,j) + () + FG,J) + 9,) + hi,j) 0.0E+00 === e
65 2 4 dd
6 1 :: Y enZ:o 0 Before improvement After improvement
Cache The percentage of L1D misses decreased from 19.14% to 3.69%, and the L1D
/ miss dm percentage decreased too from 90.13% to 27.02%.
I(_;flhrarlitsi\slerate I(_/1LI())argi_ssst(:?;e L1D miss L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- |L2 throughput mfg;o?: ut
. . ; . rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) store instruction) |(GB/sec) gnp
instruction) instruction) (GB/sec)
Before improvement 0.00% 19.14% 2.57E+09 M 9.87% 0.00% 0.00% 221.82 0.01
After improvement 0.00% 3.69% 4.96E+08 27.02% 72.98% 0.00% 0.00% 452.07 0.04

Chapter 8 Padding Using a Dummy Array (for Arrays of Different Sizes)

85

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Tuning Approach to
Cache Thrashing (Application)

Tuning Approach (Application)

Chapter 8 Tuning Approach to Cache Thrashing (Application) 86 Copyright 2016 FUJITSU LIMITED

Tuning Approach (Application) FUjiTSU

B (array division +) array merging + dimensional displacement of an array

[Original source > Step 1 (array division) > Step 2 (array merging)]

a(n,2,4)
b(n,2,4)

. 8 streams

.=a(i,1,2) +b(i,1,2) +
& a(i,2,2) +b(i,2,2) +
& a(i,1,3) +b(i,1,3) +
& a(i,2,3) + b(i,2,3)
enddo

Step 3 (dimensional displacement of an array)

al(n,2),a2(n,2),a3(n,2),a4(n,2) a23(2,n,2)
b1(n,2),b2(n,2),b3(n,2),b4(n,2) b23(2,n,2)

8 streams .
doi=1,n doi=1,n

. =a2(i,1) +b2(i,1) + . =2a23(1,i,1) +b23(1,i,1) +
& a2(i,2) +b2(i,2) + & a23(1,i,2) + b23(1,i,2) +
& a3(i,1) +b3(i,1) + & a23(2,i,1) +b23(2,i,1) +
& a3(i,2) + b3(i,2) & a23(2.i,2) +b23(2,i,2)
enddo —— enddo

ke

a23(2,2,n)
b23(2,2,n)

doi=1,n

. =a23(1,1,i) + b23(1,1,i) +
& a23(1,2,i) + b23(1,2,i) +
& a23(2,1,i) + b23(2,1,i) +
& a23(2,2,i) +b23(2,2,i)
enddo

Suppose dimensional displacement of an array is done based on the original source.
[—>Cache efficiency will deteriorate because arrays a and b, which are used inside the loop,
use only part of the areas of the declared sizes.
For this reason, preprocessing that is called array division (step 1) is done before array
merging and dimensional displacement of an array (steps 2 and 3).

Following steps 1 to step 3 can reduce the
number of streams from eight to two.

Chapter 8 Tuning Approach to Cache Thrashing (Application) 87 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Improvement in TLB Thrashing

What Is TLB Thrashing?

Padding (Before Improvement)

Effects of Padding (Source Tuning)

Effects of Page Size Expansion (Ipgparm Command)

Chapter 8 Improvement in TLB Thrashing 88 Copyright 2016 FUJITSU LIMITED

What Is TLB Thrashing?

TLB thrashing is a phenomenon in which address translation information for
specific TLB indexes (TLB location information) is frequently overwritten. This

phenomenon is likely to occur when the array size is a multiple of 512 MB.

(* For details on the TLB, see "What Is the TLB? (Details)" in "Chapter 3 Large

Page.")

(Page table)
* Stores address translation information

[0®)
FUJITSU

Execution order

Address translation

|~
\

AY

a(1,1,1)

\
1
1
1

information for one page (4
MB)

a(8192, 1, 1)

Source code example (for a large page of 4 MB)

subroutine sub()
parameter(n=8192,m=8192)
real*8 a(n, m, 8)
common /com/a
doj=1,m

doi=1,n

a(i, j, 1) =ali,j, 2) +a(ij,3) +ali,j, 4) +
a(i, j, 5) +ai, j, 6) +a(i,j, 7) + a(i, j, 8)

enddo

enddo

B Rough standard for TLB

a(1,1,2)

_J
L

a(8192, 1, 2)

4
2WAY

1WAY 3WAY 4WAY

X
128 < \

entries

a(1, 1,4)

A\

a(8192 1, 4)

=) Storing data in cache

AT L5

a (8192, 1, 5)

=) Storing data in cache (conflict) /

a(1,1,6)

------ + Execution order (1) to (7)

thrashing

mDTLB miss rate
(/Load-store instruction)

1.5% or higher

In this example, a(1,1,1),a(1,1,2),a(1,1,3),a(1,1,4),
a(1,1,5),a(1,1,6),a(1,1,7), and a(1,1,8) are placed at an
interval of 512 MB, so the eight of them are assigned to the
same index. Therefore, the first and second points of data
are overwritten by the fifth and sixth points of data,
respectively.

a (8192, 1, 6)

(1. 19)

a (8192 1, 8)

Q)

8192x8192x8B

=512 MB
,' Discrete access
7

(2)
8192x8192x8B

=512 MB
Discrete access

3)
8192x8192x8B

=512 MB
Discrete access

(4)
8192x8192x8 B

=512 MB
Discrete access

(5)
8192x8192x 8B

=512 MB
Discrete access

(6)
8192x8192x8 B

=512 MB
Discrete access

(7)

8192x8192x8B

=512 MB
Discrete access

Chapter 8 Improvement in TLB Thrashing

89

Copyright 2016 FUJITSU LIMITED

Padding (Before Improvement)

TLB thrashing occurs because the page size is 4 MB and each array is located on a 512-MB
boundary. Consequently, data access wait is a frequent event.

o)
FUJITSU

Source code before improvement
27 parameter(n=8192,m=8192) [5EC]
28 real*8 a(n, m, 8) 2.5E-01
29 common /com/a
<<< Loop-information Start >>> 8192 x {31 92x8B =512 MB ——
<<< [PARALLELIZATION] (Page size ol L
A 128 entries) 2.0E-01 No
<<< Standard iteration count: instruction
<<< [OPTIMIZATION] commit due
<<< COLLAPSED toL1D
<<< SIMD(VL: 4) 1.5E-01 access for a
<<< SOFTWARE PIPELINING Sloakifigs
. . point load
<<< Loop-information End >>> instruction
30 1 PP 6v d0j=1 , M 1.0E-01
<<< Loop-information Start >>> - No
<<< [OPTIMIZATION] C'Séfgjict“dou"e
<<< COLLAPSED to L2 access
<<< Loop-information End >>> 5.0E-02 fora
31 2p6 doi=1,n floating-
32 2 p6v alij1)=alij2) +alij, 3) +ali j &) +a(i, j, 5) + point load
a(i,j, 6) +a(i j, 7) + a(i, j, 8) 0.0E+00 netrudion
33 2 p 6v enddo Before improvement
34 1 p enddo
Cache Il-I;g1h3|:/ercentage of mDTLB misses:
Memory . . . 0
2| i | ST | st /) {58 trashing
Before improvement 163.32 20.79 28.39728% 12.12630%

Chapter 8 Improvement in TLB Thrashing

90

Copyright 2016 FUJITSU LIMITED

Effects of Padding (Source Tuning) FUjiTSU

TLB thrashing was avoided because the address of each stream was shifted through padding.
As a result, there was improvement in data access wait.

Source code after improvement (source tuning) ised
27 parameter(n=8192+64,m=8192) >
28 real*8 a(n, m, 8) 2.5E-01
29 common /com/a E=
<<< Loop-information Star| N
<<< [PARALLELIZATION] Padding to shift address of 2.0E-01 inSt’;chl)CtiO \\‘
<<< Standard iteration cq each stream by 512 MB + . n commit N
<<< [OPTIMIZATION] one page (4 MB) due to
<<< COLLAPSED L 1.92-fold effect
<<< SIMD(VL: 4) 1.5E-01 f a B N
<<< SOFTWARE PIPELINING oot load .
<<< Loop-information End >>> instructio [E——
30 1pp 6v doj=1,m 1.0E-01 No
<<< Loop-information Start >>> instructio
<<< [OPTIMIZATION] oo
<<< COLI._APSED . 5 0E-02 access for
<<< Loop-information End >>> ﬂoa?ing-
31 2p6 doi=1,n point load
32 2 p 6v a(i, j, 1) =adi,j, 2) +a(i,j, 3) +ali,j, &) + instructio
a(i,j, 5) +al(i, j, 6) +a(i,j, 7) +al(i, j, 8) 0.0E+00 : —_—
33 2 p 6v enddo Before improvement After improvement
34 1 p enddo
The percentage of mDTLB misses decreased to 0.00023%.
Cache
L2 throughput | Memory throughput uDTLB miss rate mDTLB miss rate
(GB/sec) (GB/sec) (/Load-store instruction) (/Load-store instruction)
Before improvement 163.32 20.79 28.39728% /1 2.1 2630%>
After improvement 272.45 42.11 0.01764% \\ 0.00023%

Chapter 8 Improvement in TLB Thrashing 91 Copyright 2016 FUJITSU LIMITED

Effects of Page Size Expansion (Ipgparm Command)

TLB thrashing was avoided because the page size was expanded to 32 MB by the Ipgparm command.

As a result, there was improvement in data access wait.

Page size specification of 32 MB

D
FUJITSU

92-fold effect

The percentage of mDTLB misses decreased to 0.00005%.

Source code after improvement $ Ipgparm -s 32MB -t 32MB -d 32MB -h 32MB -p 32MB -S 32MB a.out
27 parameter(n=8192,m=8192) [sec]
28 real*8 a(n, m, 8) 2.5E-01
29 common /com/a
. , —
<<< Loop-information Start >>> \
<<< [PARALLELIZATION] > OE.01 AR
<<< Standard iteration count: 422 el No \
<<< [OPTIMIZATION] instruction
<<< COLLAPSED Aty
<<< SIMD(VL: 4) 1.5E-01 SR
<<< SOFTWARE PIPELINING point load
<<< Loop-information End >>> nstruction
30 1 pp 6v d01.=1,m . 1.0E-01
<<< Loop-information Start >>>
No
<<< [OPTIMIZATION] instruction
<<< COLLAPSED dcommiLtZ
t
<<< Loop-information End >>> 5.0E-02 ac”cisﬁfm
31 2p6 doi=1,n el
point load
32 2 p 6v a(i,j, 1) =ali,j, 2) +afli,j, 3) +a(i,j, &) +a(i,j,5) + instruction
a(i, j, 6) +a(i,j, 7) +afi, j, 8) 0.0E+00
33 2 p 6v enddo fore
3% 1 p enddo . Before improvement
Cache
L2 throughput Memory throughput uDTLB miss rate mDTLB miss rate
(GB/sec) (GB/sec) (/Load-store instruction) (/Load-store instruction)
Before improvement 163.32 20.79 28.39728% / 12.12630%]
After improvement 270.29 41.83 0.00829% \ 0.00005%

Chapter 8 Improvement in TLB Thrashing

92

After improvement

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Improvement in Data Access Wait
(Increase in Data Locality)

What Is Data Locality?

Strip Mining

Loop Blocking

Sector Cache

Loop Interchange

Loop Fusion

Array Merging (Indirect Access)

Chapter 8 Improvement in Data Access Wait (Increase in Data Locality) 93 Copyright 2016 FUJITSU LIMITED

What Is Data Locality?

Data locality means the repeatedly accessing of data loaded in cache.
Higher data locality reduces memory access load, resulting in an improvement in data access wait.

The assumed model in these
descriptions is an L2 cache (12 MB).

Source code example

real*8

a(n),b(n),c(n),d(n),e(n)

doi=1,n ! Loop1
a(i)=b(i)+c(i)

enddo

1000000

Arrays a to e each
have a data size

doj=1,n !!Loop?2
e(i)=a(i)+d(i)

enddo

of about 4 MB.

A cache miss occurs because the array a data
loaded in cache by loop 1 was already forced
out at the loop 2 execution time.

Conceptual diagrams of L2 cache (12-MB) states

Up to this point, no
data is overwritten.

Data that
can still be
reused is
forced out.

0ld data is overwritten
by new data and forced

out of the cache.

Loop 1, with i = 500000

[0®)
FUJITSU

Overwritten
S

Data forced

Improving the data locality of
array a will increase cache
efficiency.

A cache miss occurs
because the data of
a(1) was already
forced out.

data

out

/ b(1) b(33) - +|b(499937] b(499969) \
b(2) b(34) - |b(499938] b(499970)| 4 mB
h(32) h(f4) - . |h(499968) h(500000
c(1 c(17 « o« «[c(499937) (499969
(2 (18 -+ [c(499938) (499970 !4 mB >]2MB
c(32) c(64) - [¢(499968)| ¢(500000)
am a(17 - [a(499937] a(499969
a2 a(18 - |a(499938] a(499970)| {, \
\ aB2) | al64) a(499968) a(50000 Y,
Loop 1, with i = 500001
o) | [pfs00001 IE [BliseesT Do
; b(500002)| b(34 - +|b(499938] b(499970
G321 |h(500032) b(64) - -|b(499968] b(500000)
(2500001; c}33g . c}499937 ¢(499969)
c(500002) [(34 - - +[c(499938)| (499970)
(500032) 1 c(64) . .lc(499968) c(500000)
"""" a(500001)] a(33 - +1a(499937) a(499969)
a(500002)| a(34 -1a(499938) a(499970)
\ a(500032)] a(64) .12(499968] a(500000)
Loop 2, withj=1
b(500001) (1) |b(500033 ~ ~1p(499937] b(499969
b(500002) el dfzg b(500034 - |b(499938 bf499970
2 d(32) |b(500064 - - |b(499968] b(500000)
¢(500001) | em (500033 = = = [c(499937 c2499969
¢(500002) f& el2 (500034 . 938)] c(499970
: e(16) _fc(9001 Cach 1000)
(500032} Cache <>a}499969
W_ a2 e miss 22(499970
a(5 : - . .
: a(16) 13(50006 = - 13(499968) a(500000)
.2(200032)

Chapter 8 Improvement in Data Access Wait (Increase in Data Locality)

94

Copyright 2016 FUJITSU

LIMITED

O
FUJITSU

Strip Mining

What Is Strip Mining?
Strip Mining (Before Improvement)
Effects of Strip Mining (Source Tuning)

Chapter 8 Strip Mining 95 Copyright 2016 FUJITSU LIMITED

— Array access order
r
- 1

What Is Strip Mining? FUjiTSU

Strip mining is a technique for increasing cache efficiency through alternating execution, in
units of blocks, of two loops nested at the same level.

Example of source code before iy’ 1=100*1000/3 ' Example of source code after improvement
integer n,m /\ m=20 } integer n,m
real*8 a(n,m),b(n,m),c(n,m),d(n,m),e(n,m) real*8 a(n,m),b(n,m),c(n,m),d(n,m),e(n,m)
DIITL 102408 .

do j=1,m Block size |

doi=1,n do j=1,m

b{i,j)+c(isj) Array a data loaded in do ii=1.n blki T
cache is overwritten .
enddo because the number of do i=ii,min (ii+blki-1,n)

do i=1,n-100 iterations is large. a(i,j)=b(i,j)+c(i,j — | Acache hit occurs because
data in array a remains in
d(ij)€a(ij)+e(ij) i enddo y data cache.
enddo Loop 2 do i=ii,min(ii+BIki-1,n-100)

/5
enddo d(ij)=a(iYre(ij) E
enddo

enddo
| enddo

A cache miss occurs for array a.

Loop iteration count
n

T Block size Cache miss Loop iteratrilon count

Cache miss |

Array size ——

Loop 1

Loop 2

| Cache miss | | Cachehit |

Chapter 8 Strip Mining 96 Copyright 2016 FUJITSU LIMITED

Strip Mining (Before Improvement)

Not all array data can be loaded in cache because loop 1 has many iterations, so loop 2 cannot reuse the data.
Consequently the following is a frequent event: No instruction commit due to memory and cache busy.

o)
FUJITSU

Source code before improvement [sec]
+
32 1$omp parallel do reduction(+:s1) 1.2E+00
3 1p doj=1,m Loop iteration count: 375000
<<< Loop-information Start 3 Tqtal of array sizes: 12 MB 1.0E+00
<<< [OPTIMIZATION] Not all array data can be loaded in
<<< SIMD(VL:4) cache because the number of
<<< SOFTWARE PIPELINING| , ions is | 8.0E-01
<<< Loop-information End > iterations is large.
34 2 p 4v doi=1,n
35 2 p 4v st=sl+a(ij)/ (s3/b(ij) +c(ij) 7 (s2 +s3/d(ij))) Loop 1 6.0E-01 ——
36 2 P Ly enddo due tq L2 access fora
floating-point load
<<< Loop-information Start >>> instruction
<<< [OPTIMIZATION] A lting i h 4.0E-01 . :
<< SIMD(VL:4) rray access resulting in cache No instruction
<<< SOFTWARE PIPELINING| MMISS commit due
<<< Loop-information End >*= 2.0E-01 to memory
37 2 p 4 do i=1,n-100 and cache
38 2 p 4y e(ij) =s2/ (alij) +b(ij) / (s3 +c(ij) /d(ij))) Loop 2 busy
39 2 p &y enddo 0.0E+00
“ 1p enddo Before improvement
The percentages of L1D misses and L2 misses are around
3.125%, which is the theoretical value for stream access,
Cache because data cannot be reused.
I(_1flfmits_s rate l('/]LD n;isst rate L1D mi L1D miss dm ﬁniss hwpf L1D miss f L2 miss rate(/Load- L2 mi L2 throughput m‘:mo?: ¢
\ettective \Load-store miss Mrate(/L]D miss) rate(/L1D mis store instruction) miss (GB/sec) oughpu
instruction) instruction) | ——— (GB/sec)
Before 0.01% @ 4.22E+08 0.18% 99.82% 0.00% 3.13% 4.23E+08> 104.86 116.67
|mpr0vement
Chapter 8 Strip Mining 97 Copyright 2016 FUJITSU LIMITED

Effects of Strip Mining (Source Tuning) FUJITSU

Strip mining increases cache efficiency, which improves the following event: No instruction

commit due to memory and cache busy.

Source code after improvement (source tuning) [sec]
34 blki=4*1024/8 1.2E+00
35
36 1$omp paralleTdeeduction(+:s1)
37 1 p doj=1,m 1.0E+00 A,
Loop-inf i ;
<<<loop-information 3} ;g » 4 streams = 16 KB 1.69-fold effect
<<< [OPTIMIZATION] Size for placing data in L1 cach 8.0E-01
<< SIMD(VL:4) |:> ize for placing data in L1 cache .OE- -
<<< SOFTWARE PIPELI N
<<< Loop-information End >>> A N
39 3 p 4y do i=ii,min (ii+blki-1,n) — %.0E-01 oo
40 3 p 4v s1=s1+a(ij)/ (s3/b(ij) +c(ij) / (s2 +s3/d(ij))) Loop 1 ol
41 3 P [AY enddo T ‘poinklo'ad
<<< Loop-information Start >>> 4.0E-01
<<< [OPTIMIZATION] Array access resulting in ~No
<<< SlMD(VL: 4) h h't mstructlf)n
<<< SOFTWARE PIPELINING | €aC€N€ I 5 0] .
<<< Loop-information End >>> il memory
4 3 p &y do i=ii,min (ji+blki-1,n-100) a”f“jjy‘he
43 3 p &y e(ij) =s2/ (a(ij) +b(ij) / (s3 +c(ij) /d(i))) Loop 2 >
44 3 p by enddo 0.0E+00 e
Z: f P e::do Before improvement After improvement
)] enddo
The numbers of L1D misses and L2 misses decreased
significantly.
Cache) y /
) L1D miss rate))) L2 miss Memory
L1l miss rate .\ |(/Load-store L1D miss miss dm L1D miss hV\{pf L1D miss swpf rate(/Load-store /2 miss L2 throughput throughput
(effective instruction) | > rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) . . (GB/sec)
instru instruction) (GB/sec)
Before improvement 0.01% ~ 3.13% 4.22E408 0.18% 99.82% 0.00% 3.13% 4.23E+08~. 104.86] 116.67
After improvement 0.01% 1.73% 2.35E+08 0.33% 99.67% 0.00% 1.74% 2.35E+08_ - 97.94 117.69
Chapter 8 Strip Mining 98 Copyright 2016 FUJITSU LIMITED

O
FUJITSU

Loop Blocking

What Is Loop Blocking?
Loop Blocking (Before Improvement)
Effects of Loop Blocking (Source Tuning)

Chapter 8 Loop Blocking 99 Copyright 2016 FUJITSU LIMITED

Loop Blocking (1/3)

o)
FUJITSU

Loop blocking is a technique for increasing cache efficiency. This
technique divides source code into blocks of the specified size before

execution.

Example of source code before
improvement

subroutine sub(a,b,m,n)
integer n,m
real*8 a(m,n),b(n,m)
do j=1,m
D(I,J)=a(),l
enddo
enddo

end subroutine

Array a: Stride access
Array b: Sequential access

Example of source code after improvement

subroutine sub(a,b,m,n

paramete((blki=96,blkj=16)

integer n,m
real*8 a(m,n),b(n,m) i
) _ Block size
do jj=1,m, blkj
do i bl 12 KB of 1 array
o ii=1,n, blki (=96x16x 8 B)
do j=jj,min (jj+blkj-1,m)

do i=ii,min (ii+blki-1,n)
b(irj)=a (j,i)
enddo
enddo
enddo
enddo
end subroutine

Chapter 8 Loop Blocking

100

Copyright 2016 FUJITSU LIMITED

Loop Blocking (2/3)

mArray access (before improvement)

o)
FUJITSU

Memory is accessed every time i is updated because of the stride access of array a.

This results in the data loaded in the cache by access to a(1,1) being forced out before access at the a(2,1) access time.

Array a(m,n) access order and cache miss status

L1 cache (64 KB) state

Overwritten data

end subroutine

Chapter 8 Loop Blocking

forced out.

101

Figure (3 Figure (1 Figure (2
(I)?lur[i(:;l(lt) i-axis direction :)?lurri‘;l(lt) :»gnurrii;l(xt) (1)j=1andi=240 Data forced out
N T 1.16IT1.17!1.18T! w1170 (120 | . [1n a(1,1) | a(1,2) | a(1,3) a(1,240)
I 777 ML S S e R B a2,1) | a2) | a(2,3) a(2,240)
3 T T H } . .
S o p—r—T | Lo Data that : Up to this point, no :
— (| | | | I ! | | - 1 1 a o .
) 16,1! ! ! ! ! ! ! ! | | | can st(;l!be . data is overwritten. . . .
U T T B s e | T ;glrl::d (:—;t a(32.1) [a32.2) [a(323)] -1 a(32,240)
g = e T . b .
SEgiE——— o T 7 (2)j=1andi=241
S5 L —— | |
B = R R R ey St et s i f /[1 1 a(1,241) | a(1,2) | a(1,3) a(1,240)
2 132! I : —— : ! I I I 2 a(2,241) | a2 | a(2.3) a(2,240)
3| K | i i | | I I : i I : . 0ld data is overwritten by new :
v m,1 ! ! : E i ! ! ! ! ! ! . "\. . data and forced out of the cache. . . :
a(32,1) | la(32.241) | a(322) [a(32.3)] -| -1 a(32,240)
Example of source code (before . .
improvement) Array access order (3)j=2andi=1
subroutine sub(a,b,m,n) 1™ Blockssize a(1,241) | | a(1,1) |a(1,242)]a(1,343) a(1,480)
integer n,m a(2,241) e _,_._Eif’f Coche <(7' " a(2,480)
real*8 a(m,n),b(n,m) Cache line ™~ : miss =L
dOF.].m - a(32,241) - 1a(32,480)
do 'f!'" B Cache miss
b(i,j)=a(j.i) — A cache miss occurs
enddo]) because the data of
enddo Cache hit a(2.1) was already

Copyright 2016 FUJITSU LIMITED

Loop Blocking (3/3)

mArray access (after improvement) with a block size of 96 x 16

Loop blocking causes block-by-block access.

This results in a cache hit during access of a(2,1) and increased cache efficiency.

Array a(m,n) access order and cache miss status

Figure (2)
on right

i-axis direction

Figure (1)
on right

L1 cache (64 KB) state

(1)j=1andi=96

o)
FUJITSU

do j=jj,min jj+bllg-1,m)

do i=ii,min (ii+blki-1,n) Cache miss
b(ij)=a(j.i) .
enddo _
enddo Cache hit
enddo o
enddo

end subroutine

_ 12 3 51'1,97_:98" - T,m'L,,Tm PETY B |
2 +— T e —— rl’4 1 a(1r1) 3(1,2) a(1r3) 3(1,96)
] O ! e s - s 1 | a21) | a@22) | a@3) a(2,96)
2 T eg— o/ %{/ = Alrray:ata h ..
Q E.I-l”:_____':—:-_ o Ql—_'_ 1"— e B —I . aced In cache .
ol &t . a(32,1) a(32l 11 a(323]] - a(32,96)
e %l 18,1 |) | |] 232
= %‘I I Access to next I (Z)J =2andi=1
a
SR EX i block I a(1,96)
o I I I a(2,96)
| m1 I I | :
Nl e el '
Example of source code (after improvement) — - 3(3;,96)
subroutine sub(a,b,m,n) R Array access order
parameter (blki=96,blkj=16) L ¥ Block size
integer n,m
real*8 a(m,n),b(n,m) A cache hit occurs
do jj=1,m, blkj Cache line because data
do ii=1,n, blki

remains in cache.

Chapter 8 Loop Blocking

102

Copyright 2016 FUJITSU LIMITED

Loop Blocking (Before Improvement)

[0®)
FUJITSU

Cache use efficiency decreases because of stride access of array a, and the following event
occurs: No instruction commit due to memory access for a floating-point load instruction.

Source code before improvement [sed]
48 1 1$omp do 3.5E+00
49 2 p do j=1,n2
<<< Loop-information Start >>> 3.0E+00
<<< [OPTIMIZATION]
<<< SIMD(VL: 4) 2.5E+00
<<< SOFTWARE PIPELINING 2.0E+00
<<< Loop-information End >>>
50 3 p 6v doi=1,n1 1.5E+00
51 3 p 6v b(i,j) = <0 +a(j,i)*(c1 +a(j,i)*(c2 + a(j,i) *(3 + a(j,i)*
52 3 & (& +a(j,i)*(c5 + a(j,i)*(cb + a(j,i)*(c7 + a(j,i)* 1.0E+00
33 3 & (8 +a(j,i)*c9)))))))
56 3 p 6v enddo 5.0E-01
5 2 p enddo |
56 1 1$omp enddo 0.0E+00
57 1 enddo I Before improvement
58 1$omp end parallel
Data in array a is placed in the cache once during the i
iteration, but the data is already forced out by the time of
the next j iteration. Consequently, a cache miss occurs.
Cache
L1I miss rate L1D miss rate L2 Memory
. . L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- .
i(r?sf{?lﬁ?t\ilgn) i(r/]Loadc-tsi:)c[)]r)e L1D miss rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) store instruction) L2 miss Egg)/l;gch)pm Ezggggpm
ang;[)flement 0.09% 51.31%) 1.28E+09 96.98% 3.02% 0.00% 51.34%) 1.28E+09 106.04 109.34

\

The percentages of L1D misses and L2

misses are high at 51%.

Chapter 8 Loop Blocking

103

Copyright 2016 FUJITSU LIMITED

Effects of Loop Blocking (Source Tuning)

Reuse of data in array a through loop blocking increases cache efficiency, which improves the following event:
No instruction commit due to memory access for a floating-point load instruction.

[0®)
FUJITSU

Source code after improvement (after source tuning) [sec]
55 1 1$omp do 3.5E+00
56 2 p dojj=1,n Application of loop blocking
57 3 p doii=1,n The L1 cache size is 64 KB, so the 3.0E+00
58 4 p do j=jj,min(jj+16-1| following is assumed in the cache: the
<<< Loop-information Start{ size of 1 blockis 12KB (96 x 16 x 8), and
<<< [OPTIMIZATION] the size required for processing 1 block is 2.5E+00
<< SIMD(VL:4) 24 KB (12 x 2 blocks).
50 R pIp This is intended to improve the data use |2.0E+00 L
<<< SOFTWARE PIPELINING otficiency of the cache. 9-fold effect
<<< Loop-information End 3
50 5 p 6v do i=ii,min(ii+96-1,n1) 1.5E+00 \
60 5 p 6v b(i,j) = 0 + a(j,i)*(c1 + a(j,i) *(c2 + a(j,i) *(3 + a(j,i)* \
61 5 & (ck +a(j,i)*(c5+ alj,i) *(c6 + a(j,i)*(c7 + a(j,i) * 1.0E+00 \
ok \
62 5 & (c8 +a(j,i)*c9))))))) \
63 5 p 6v enddo 5.0E-01 4\
64 4 p enddo ‘ |
65 3 p enddo 0.0E+00 e L
66 2 dd
67 1 P !$on(:: en(:ido Before improvement After improvement
Cache
LTI miss rate L1D miss rate Memory
(effective (/Load-store L1D miss L]tD(?I]SSant') UtD (?I']SSthpf) UtD (r;ll]sgsw_pf) Lt2 miss rtate(t{Loe)ad— L2 miss I(‘éé/hml;ghpmthroughput
iﬂSt[UCtiOﬂ) instruction] rate miss rate miss rate miss store instruction sec (GB/SGC)
Fnﬁg’r[)evement 0.09% 51.31% 1.2@9\ 96.98% 3.02% 0.60% 51.34% 1.28E\+09\1 06.04 109.34
e ment 0.01% 6.69% 1.70E:08 95.65% 4.35% 0:00% 6.12% 1.56E+08 " 97.61 111.78
\ The percentages of L1D misses and L2
misses decreased significantly.
Chapter 8 Loop Blocking 104 Copyright 2016 FUJITSU LIMITED

O
FUJITSU

Sector Cache

What Is a Sector Cache?
Overview of Sector Cache Capacity Control
Conceptual Diagram of Actual Operation

Sector Cache Improvement Example

O

O

O

® How to Use a Sector Cache

O

B Sector Cache: Case Example 1
O

Sector Cache: Case Example 2

Chapter 8 Sector Cache 105 Copyright 2016 FUJITSU LIMITED

What Is a Sector Cache? FUJTSU

A sector cache is a cache mechanism that can prevent reusable data from being forced
out of the cache by non-reusable data. This mechanism enables applications to divide
the cache into two parts (sector 0 and sector 1) and use them.

(Reused arrays use sector 1, and the others use sector 0.)

The following sector cache details assume a model of a 5-MB/10-way
L2 cache. =

(The SPARC64™ Xlfx has a 12-MB/24-way/1-CMG L2 cache.)
B The capacity of each sector is specified by the number of ways.
B Functionally, capacity values are interpreted as target values. \

] Settings by
Core #0-#15 applications

Under control by hardware, the capacity of each sector gets closer [sector 0] Sector 1

to the specified capacity at the line replacement time. 3 7

—> Data is not forcibly made invalid even if the capacity is 256 Byte/line
<+—>

~ = Control register
exceeded.

B The LRU algorithm (the least recently used data is discarded first)
controls the forcing out of data from a sector.

m Applications determine the usage of sector 0 and sector 1.
However, sector O stores a series of instructions.

Saul| 8%0¢

The next and subsequent pages provide an overview of
capacity control in cases where sector 0 = 3 ways and

— \/
sector 1 =7 ways. 10 ways

Chapter 8 Sector Cache 106 Copyright 2016 FUJITSU LIMITED

Overview of Sector Cache Capacity Control (1/2) FUJITSU

B A cache miss is an opportunity to adjust the capacity. The capacity
is not forcibly adjusted.

® |f the capacity of a sector is less than the capacity specified in the control register, the
number of ways is increased until the capacity is reached.

The LRU algorithm selects one way from

lAccess of sector 0 results in a cache miss. sector 1 to insert sector 0 data there.

Sector 0 Sector 1 Sector 0 Sector 1
Current: 2 ways Current: 8 ways Current: 3 ways Current: 7 ways
Setting: 3 ways Setting: 7 ways Setting: 3 ways Setting: 7 ways

® Even if the sector of a cache miss has a greater capacity than specified, the capacity
does not decrease.

Access of sector 1 results The LRU algorithm selects one way from
in a cache miss. sector 1 to insert sector 1 data there.
Sector 0 Sector 1 Sector 0 Sector 1
Current: 2 ways Current: 8 ways Current: 2 ways Current: 8 ways
Setting: 3 ways Setting: 7 ways Setting: 3 ways Setting: 7 ways

Chapter 8 Sector Cache 107 Copyright 2016 FUJITSU LIMITED

Overview of Sector Cache Capacity Control (2/2) FUJITSU

B The number of ways of a sector may exceed the specified capacity.
1. Case with a free way

Access of sector 0 results Sector 0 data is

in a cache miss. stored in a free way.
Sector 0 Sector 1 Sector 0 Sector 1
Current: 4 ways Current: 5 ways Current: 5 ways Current: 5 ways
Setting: 3 ways Setting: 7 ways Setting: 3 ways Setting: 7 ways

2. (ase of a hitin access of another sector

Access of sector 0 results in The way of sector 1 becomes that of sector
l a hitin sector 1. 0.
Sector 0 Sector 1 Sector 0 Sector 1
Current: 3 ways Current: 7 ways Current: 4 ways Current: 6 ways
Setting: 3 ways Setting: 7 ways Setting: 3 ways Setting: 7 ways

Chapter 8 Sector Cache 108 Copyright 2016 FUJITSU LIMITED

Conceptual Diagram of Actual Operation

(Sector 0: 7 Ways; Sector 1: 3 Ways)

Sector 1
Actual Number of
ways

Vo

Sector. 1 1

access

Sector. 1 2
Sector. 1 3

Sector. 1 3

Sector. 0 3

Sector. 1 4
Sector. 0 3

Chapter 8 Sector Cache

o)
FUJITSU
Number in square: Larger Smaller
N2 N
Access history: Newer Older

Sector O Sector] | < Reused arrays
9 (312 (8 [10|5 |7 |6 |1
—
82 (11719 |4 |6 |5 103
7 11 [10l6 [8 3 [5 [4]9 |2
611019 [5 [7 [2 [4]38
6 19 (8|57 |24 3 1001
5 18 [7 |4 [6 13 [2]97]10
------------------ O
5 17 |6 [4]10]1 3 |28]9
516 {104 19 |1 |3 (2|7 |8

109

10CL CACHE_SECTOR_SIZE (7,3)

The area of sector 1 is increased by
updates of the data with the oldest

~—access history in sector 0 until the
number of ways reaches the
specified value of 3.

Since the specified number of ways of 3
has been reached, sector 0 data is not

_
updated, but the data with the oldest
access history in sector 1 is updated.

The data with the oldest access history in
sector 0 is updated.

If access of data stored in a way of
sector 0 results in a hit, the way
becomes a way of sector 1.

(The specified number of ways is
ignored.)

The next time that sector 0 is accessed,
the data with the oldest access history in

sector 1 is updated (normalizing the
number of ways to the specified value).

Copyright 2016 FUJITSU LIMITED

How to Use a Sector Cache (1/2) FUjiTSU

® Sector cache: Pseudo local memory 5 . e
Software can use sectors effectively according
Data not to be reused

to the reusability of data.
® Reused arrays =) Sector 1 used
® Others = Sector 0 used prmnenrenssssnn il
® Data on sector 1 is not forced out by other :
data.

: Pseudo local
® The user can specify in a directive line that memory

the array be in sector 1.

Sector 0 Sector 1

Example of using compiler directive lines for sector cache specification

10CL CACHE_SECTOR_SIZE(3,7)
10CL CACHE_SUBSECTOR_ASSIGN(a)
do j=1,m

doi=1,n

a(i) = a(i) + b(ij) *c(iyj)

enddo
enddo
10CL END_CACHE_SUBSECTOR
10CL END_CACHE_SECTOR_SIZE

<Purpose>
The purpose is to prevent array a, which has reusability, from being
forced out of the cache by access to arrays b and cin a loop.

Chapter 8 Sector Cache 110 Copyright 2016 FUJITSU LIMITED

How to Use a Sector Cache (2/2) FUjiTSU

To use a sector cache, specify the following optimization control lines.

Optimization control line that
can be specified
Optimization control specifiers Meaning Array
Program DO loop Statement | assignment
unit unit unit statement
unit
CACHE_SECTOR _SIZE Specifies the maximum numbers of ways of
(I1_n1,1_n2,2_n1,12_n1) sector 0 and ways of sector 1 in the L1 cache Yes No Yes No
END_CACHE_SECTOR_SIZE and L2 cache.
CACHE_SECTOR_SIZE Specifies the maximum number of ways of
(I12_n1,12_n2) sector 0 and the maximum number of ways of Yes No Yes No
END CACHE SECTOR SIZE sector 1 in the L2 cache.
CACHE_SUBSECTOR_ASSIGN(array Specifies th to olace i tor 1 of th
1[,array2...]) c;)cehc; ies the array to place in sector 1 of the Yes No Yes No
END_CACHE_SUBSECTOR)

Chapter 8 Sector Cache 111

Copyright 2016 FUJITSU LIMITED

Sector Cache Improvement Example (1/2)

In this example, reusable data in array b is forced out of the cache, resulting in a
cache miss. The assumed model in the descriptions is a 6-MB/12-way L2 cache.

Source code before improvement

(1) i= 262144

(o0
FUJITSU

Conceptual diagrams of L2 cache (6-MB/12-way) states

subroutine sub(s)

parameter(n=4*1024*1024, m=9*512*1024/8)
real*8 a(n),b(m),s

integer*8 c(n)

real*8 dummy1(140),dummy2(140)
common /data/a,dummy1,c,dummy2,b

doi=1,n

a(i)= a(l) +5 "
enddo j

[Data amount of each array]
Array a: 32 MB

Array b: 4.5 MB

Array c: 16 MB

Access of array b]

Array b has reusability since sequential
access from b(1) to b(589824) is
repeated seven times.

b@b(589824)

afl)] i b{l) ; : c(l) : :
" | Array a ' | Array b " | Array c
a{llﬁ) : : htIlE-} Up to this point, no data Gﬂ,ﬁ} : .
) ’ is overwritten.)
a85536) a062144) | b65536) bo62144) | o 65536) 0 082144)
S\ J/
Y e
dvay(2MB) 4way(2MB) dway(2MB)
(2) i= 262145
a(1) K1) |Dataof b(1) is forced c(1)
: : |out of the cache. : Overwritten data
a ﬁ ' i Data ;urcea out
a(262145)| - A| : b(262145)| : c(262145) : :
: - Array & : . A rra-y b A|'-.|'ay C:
3(262160) - ; h(262160) : - leoe160)] : :
i ' i ; 0Id data is overwritten by new ' '
: _ : data and forced out of the cache. :
a65634) 3062144) | bB5536) [Toosnen | owsss) | c 05014)
(3) i= 589825
a(327681) h(327681) ¢(327681)
jfyi@ﬂ ? ¢(377696)
2
2620289 [a(589825)| - b624289)) W1 c624209) [c(saoe2s)| :
ss24304) | rspanay| ATTAY A bmgo«(o 624304) | c(sge Array
: A cache miss occurs because - : :
! the data of b(1) was :
ab89824) already forced out. ¢ £49424)

Chapter 8 Sector Cache

112

Copyright 2016 FUJITSU LIMITED

Sector Cache Improvement Example (2/2)

(o0
FUJITSU

The following example shows a way to prevent reusable data in array b from being

forced out of the cache.

Source code after improvement

subroutine sub(s) Adding optimization

parameter(n=4*1024* control lines
real*8 a(n),b(m),s

integer*8 c(n)

real*8 dummy1(140 my2(140)
common /data/a,dum/iy1,c,dummy2,b

10CL CACHE_SECTOR_SIZE(3,9)
10CL CACHE_SUBSECTOR_ASSIGN(b)
doi=1,n

a(i) =a(i) +s *
enddo
10CL END_CACHE_SUBSECTOR

T0CL END_CACHE_SECTOR_SIZE
end

(1) i= 2062144

Conceptual diagrams of L2 cache (6-MB/12-way) states

[Access of array b]

Array b has reusability since sequential
access from b(1) to b(589824) is
repeated seven times.

b(1) ->b(2) -> ... -> b(589824)

N~

a) : o) b) | bB5537) | ba31073) | ba%660%)
ate | et | bae) : : '
Array a, ' Array b
arfay €| | pessa | bosiom | bossson) | boszie
AN S/
h'd Y
Sector 0: 3 ways (1.5 MB) Sector 1: 9 ways (4.5 MB)
2)i= 262145
: Overwritten data
3 ? Data ;urceé out
a(262145) c(262145)| bd) | bB637) | bu3ioza) | baseeos) | p262145)
ol Lol wo | | 0| |gee| ATAYD
Array a, :
; 'L y ! : : : : Array b is not
drfay ¢ b88536) | b0131072) | b196608) | 6062144 R by ek |
(3) i = 569825 A cache hit occurs because
’ data of b(1) remains in
cache.
/ A
2(580825) ¢(589825) T bB5537) | b031073) | b96609) | bR62145) | bG2T6B1) | bSIZIT) | b@se7sa) | b624z89)
a(s80840)| [c(sA0840) : b
AlLray a] | :Afray
' : i B 5
arfay c b B5536) bee2144) | b627680) | bess216) | beseTs2) | b524288) | b5ag82e)

Chapter 8 Sector Cache

113

Copyright 2016 FUJITSU LIMITED

Sector Cache: Case Example 1 (Before Improvement)

D
FUJITSU

Data in array b cannot be reused because it has been forced out of the cache.

Consequently, the following is a frequent event: No instruction commit due to
memory and cache busy.

Source code before improvement [sec]
63 parameter(n=8*1024*1024, m=17*512*1024/8) 2.5E+01
64 real*8 a(n), b(m),s
65 integer*8 c(n)
66 real*8 dummy1(140),dummy2(140) 2.0E+01
67 common /data/a,dummy1,c,dummy2,b _
68 No instruction
1.5E+01 commit due to L2
<<< Loop-information Start >>> access for a
<<< [PARALLELIZATION] =G EETE lose
<<< Standard iteration count: 762 1.0E+01
<<< [OPTIMIZATION] No
<<< SIMD(VL: 4) instruction
<<< SOFTWARE PIPELINING 5 0E+00 commit due
<<< Loop-information End >>> to rgem?]ry
69 1 pp 8v doi=1,n an bg?‘ €
70 1p 8 ai)=ali) +s*blc(i) 0.0E+00 Y
71 1 p 8 enddo Before improvement
The percentage of L2 cache misses is A memory throughput bottleneck has
high. occurred.
Cache
LTI miss rate |L1D miss rate Memory
. . L1D missdm [L1D miss hwpf L1D miss swpf L2 miss rate(/Load- . L2 tw
(effective (/Load-store L1D miss) - / ; . L2 miss throughput
instruction) instruction) rate(/L1D miss) |rate(/L1D miss) rate(/L1D miss) s{ore instruction) (GB/sec) (GBfsec)
Fn‘jlf)‘)rfvement 0.01% 2.78% 9.35E+09 18.29% 81.71% 0.00% 235%) 7.87E+09 12554 1409
Chapter 8 Sector Cache 114 Copyright 2016 FUJITSU LIMITED

Sector Cache: Case Example 1 (After Improvement)

[0®)
FUJITSU

Placing array b in sector 1 increases cache efficiency, which improves the following
event: No instruction commit due to memory and cache busy.

Source code after improvement (optimization control line tuning) [sec]
59 parameter(n=8*1024*1024, m=17*512*1024/8) 2.5E+01
60 real*8 a(n), b(m),s
61 integer*8 c(n)
62 real*8 dummy?1(140),dummy2(140)
63 common /data/a,dummy1,c,dummy2,b 2.0E+01
s —
65 10CL CACHE_SECTOR_SIZE(6,18) S
66 10CL CACHE_SUBSECTOR_ASSIGN(b) e _
<<< Loop-information Start >>> 1.5E+01 conmitde s [} 1 °49 fOId eﬂ:ECt
<<< [PARALLELIZATION] e a <3
<<< Standard iteration count: 762 osdimtricton 'E
<<< [OPTIMIZATION] Increases reusability 1 0E+01 -
<<< SIMD(VL: 4) of array b : No I
<<< Loop-information End >>> n commit
67 1 pp 8v doi=1,n 5 0E+00 due to
68 1 p 8v a(i) =a(i) +s * b(c(i))) memory
69 1 p 8v enddo and
70 10CL END_CACHE_SUBSECTOR CSChe
7 10CL END_CACHE_SECTOR_SIZE 0.0E+00 oy _—
The L2 miss decreased significantly. Before improvement After improvement
Cache
LTI miss rate [L1D miss rate - . . L2 miss Memory
(effective (/Load-store L1D miss Ir_;tZ(r/T_lstdmni]ss) gt[;(w%mg) ggmf%i@% rate(/Load-store |L2 miss (Léé/l;;ocl;ghput throughput
instruction) instruction) instructiop}———1 (GB/sec)
for
before 0.01% 2.78% 9.35E+09 18.29% 81.71% 0.00% 2.35% 7.87E+09\ 125.54 140.97
|mprovement
After
e 0.02% 2.71% 9.10E+09 16.76% 83.24% 0.00% 1.56% 5.25E+0 182.57 157.96
|mprovement
Chapter 8 Sector Cache 115 Copyright 2016 FUJITSU LIMITED

Sector Cache: Case Example 2 (Before Improvement)

Data in array u cannot be reused because it has been forced out of the cache.
Consequently, the following is a frequent event: No instruction commit due to memory and cache busy.

D
FUJITSU

Source code before improvement Size of each array: unew, u, rhs: 60.5 MB
128 subroutine JACOBI (u, rhs, niter,unew)
129 REAL (double),INTENT(IN),dimension(0:n1-1,0:n2-1,0:n3-1) :: u [sec]
130 REAL (double),INTENT(IN),dimension(0:n1-1,0:n2-1,0:n3-1) :: rhs
131 REAL (double),INTENT(INOUT),dimension (0:n1-1,0:n2-1,0:n3-1) :: unew 6.0E-01
132 INTEGER, INTENT(IN) :: niter
133 INTEGER :: iter, i,j,k nl= 452
<<< Loop-information Start >>> n2= 52 5.0E-01 g
<<< [PARALLELIZATION] n3 = 322 e —
<<< Standard iteration count: 2 due to L2 access fora
<<< Loop-information End >>> 4.0E-01 floating-point load
161 2 pp do k=1,n3-2
162 3 p do j=1,n2-2
<<< Loop-information Start >>> 3.0E-01
<< foPmmzarion Array u should be in the e
<<< .
<<< SOFTWARE PIPELINING cache t?";‘a‘,‘se of t.l!e 2.0E-01 commit due
<<< Loop-information End >>> feusablhty in the 'rJ to memor
163 4 p 6v doi=1,n1-2 dimensions of array u. Y
- N and cache
p 6v unew(i,j k) = & 1.0E-01
165 4 ((u(i+1,j,k) + u(i-1,j,k)) * h1sqinv & busy
166 4 +(u(i,j+1,k) + u(i,j-1,k)) * h2sqinv &
167 &4 +(u(i,j,k+1) + u(i,jk-1)) * h3sqinv & 0.0E+00
168 4 -rhs(i,j,k)) * hhhinv
169 4 p 6v end do Before improvement
170 3 p end do
171 2 p end do The percentage of L2 A memory throughput bottleneck has
misses is high. occurred.
Cache
L1I miss rate L1D miss rate L Memor
(effective (/Load-store L1D miss L1D miss d“? L1D miss hW.Pf L1D miss sw.pf L2 miss rate((Load— L2 miss twt througlzlput
instruction) instruction) rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) store instruction) (GB/seq) (GB/sec)
Before 0.02% 2.32E+08 3.91% 96.09% 0.00% 1.92%) 2226+08 110.620 127.79
improvement
Chapter 8 Sector Cache 116 Copyright 2016 FUJITSU LIMITED

Sector Cache: Case Example 2 (After Improvement)

Placing part of the k dimension of array u in sector 1 increases cache efficiency, which
improves the following event: No instruction commit due to memory and cache busy.

[0®)
FUJITSU

Source code after improvement (optimization control line tuning) [sec]
159 Tocl CACHE_SECTOR_SIZE(6,18)
160 Tocl CACHE_SUBSECTOR_ASSIGN (u) 6 OE_O-I
<<< Loop-information Start >>> ’
<<< [PARALLELIZATION]
<<< Standard iteration count: 2 To Iace art of arrav u in
<<< Loop-information End >>> thepcaChepfor eaCh tl"llread 5.0E-01 i 1 .32'f0|d Effect 1
165 2 pp do k=1,n3-2 . R !] k g
166 3 p doje n2-2 a cac.he size of 9 MB is e <
<<< Loop-information Start >>> feqUITEd. 4.0E-01 floating-point ~|
<<< [OPTIMIZATION]
cce SIMD(VL: &) =
<<< SOFTWARE PIPELINING Increases reusability of 3.0E-01
<<< Loop-information End >>> array u . NO'
167 & p 6v doi=1,n1-2 BRI ——
168 4 p 6v unew(ij k) =& commit
169 & ((0(i+1,j,k) + u(i-1,j,k)) * hisqinv & 2.0E-01 due to
170 & +(u(i,j+1,k) +u(ij-1,k)) * h2sqinv & memory
171 4 +(u(ijk+1) + u(ijk-1)) * h3sqinv & and
172 4 -rhs(i,j,k)) * hhhinv 1.0E-01 cache
173 4 p 6y end do busy
174 3 p end do
175 2 p end do
177 1 end do 0.0E+00
178 focl END_CACHE_SUBSECTOR Before improvement After improvement
179 ocl END_CACHE_SECTOR_SIZE .
— The percentage of L2 misses decreased
0 o
Cache from 1.92% to 1.41%.
L1l miss rate |L1D miss rate - - - L2 miss Memory
.) . L1D miss dm L1D miss hwpf L1D miss swpf } . L2 throughput
.(effectl\./e .(/Load §t0re L1D miss rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) .r\at%o'ad store |12 miss (GB/sec) throughput
instruction) instruction) instrietion)—— (GB/sec)
Before improvement 0.02% 2.01% 2.32E+08 3.91% 96.09% 0.00% 1.92% 2.22E+08 11062 127.79
After improvement 0.03% 2.01% 2.32E+08 3.94% 96.06% 0.00%—_ 1.41% 1.63E+08 146.05 _131.47
Chapter 8 Sector Cache 17 Copyright 2016 FUJITSU LIMITED

Sector Cache: Case Example 2 (Cyclic Distribution)

[0®)
FUJITSU

In this case example, the schedule(static,1) specification divides the array into smaller parts to which cache memory is cyclically
allocated. Then, parallel execution is performed. The effect of this technique can be equivalent to a sector cache.

Source code after improvement [sec]
157 1$omp parallel shared(n1,n2,n3,u,rhs, niter,
h1sqinv,h2sqinv,h3sqinv, 6.0E-01
hhhinv)
161 1 1$omp do schedule(static,1)
162 2 p do k=1,n3-2 5 0E-01
163 3 p do j=1,n2-2
<<< Loop-information Start >>> g-fold effe(t
<<< [OPTIMIZATION] i
<< SIMD(VL: 4) Increabs.ele.s f 4.0E-01 [
<<< SOFTWARE PIPELINING reusability o N
<<< Loop-information End >>> array u N
166 4 p 6v doi=1,n1-2 3.0E-01 No
165 4 p 6v unew(i,j,k) = & T
166 4 ((ui+1,j,k) + u(i-1,j,k)) * Rsginv & commit
167 4 +(u(i,j+1,K) +u(ij-1,k)) * h2sqinv & 2.0E-01 dueto ——
168 & +(u(i,j,k+1) + u(i,j,k-1)) * h3sqinv & memory
169 4 -rhs(i,j,k)) * hhhinv and
170 4 p 6v end do 1.0E-01 cache
171 3 p end do busy
172 2 p end do
173 1 1$omp end do 0.0E+00
176 1$omp end parallel
Before improvement After improvement
The percentage of L2 misses decreased from 1.92% to 1.21%.
Cache
L11 miss rate L1D miss rate . . . L2 miss Memory
(effective (/Load-store L1D miss L1D miss d”.] L1D miss hWPf L1D miss SWp rate(/Load-store |L2 miss L2 throughput throughput
. ; . > rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) . A (GB/sec)
instruction) instruction) instruction) (GB/sec)
?rﬁg’rfvement 0.02% 2.01% 2.32E+08 3.91% 96.09% 0.00% 1.92% 2.22E+08~ 11062 127.79
'io‘rrflts:ovement 0.01% 2.02% 2.33E+08 4.66% 95.34% 0.00% 1.21% 1 .4OE+08/ 174.05 138.63

Chapter 8 Sector Cache

118

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Loop Interchange

Loop Interchange (Before Improvement)
Contents of Loop Interchange Tuning
Effects of Loop Interchange (Source Tuning)

Chapter 8 Loop Interchange 119 Copyright 2016 FUJITSU LIMITED

Loop Interchange (Before Improvement)

Cache use efficiency decreases because of stride access of arrays b, ¢, and d. Consequently, the following is a
frequent event: No instruction commit due to L2 access for a floating-point load instruction.

D
FUJITSU

Source code before improvement [sec]
45 real*8 a(n2),b(n1,n2),c(n1,n2),d(n1,n2)
46 real*8 s1,s2 2.5E-01
47 integer n1,n2 Low cache use efficiency
48 1$omp parallel .
49 \$omp do private(a) because of stride access
0 1p dojsim of arrays b, ¢, and d
<<< Loop-information Start >3 y ' 2.0E-01 L |
<<< SIMD(VL: &)
<<< SOFTWARE PIPELINING
<<< Loop-information End >>> 1.5E-01
51 2 p &v doi=1,n2 No instruction
. . L. itd L1D
52 2 p & a(i) =s1+c(j,i) 1 (s1+s2/d(j,i)) accocng;:)r :eﬂ(t)(;ting-
53 2 p v enddo Loop 1 point load instruction
<<< Loop-information Start >>>
<<< [OPTIMIZATION] 1.0E-01 No
<<< SIMD(VL: &) instruction
<<< SOFTWARE PI‘PELINING commit due
<<< Loop-information End >>> to L2
54 2 p 4y doi=2,n2 5 0F-02 (0} acgess
55 2 p &v b(j,i) = a(i) / (s2 +s1/a(i-1)) for a floating-
5 2 p 4 enddo } Loop 2 point load
57 1 p enddo instruction
58 !$omp end do
|
59 1$omp end parallel 0.0E+00
Before improvement
The percentage of L1D misses is high at about 52%.
Cache
L1I miss rate L1D miss rate . . . L2 miss Memory
(effective (/Load-store L1D miss L1D miss d”? L1D miss hW.Pf L1D miss sw.pf rate(/Load-store |L2 miss L2 throughput throughput
. . . . rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) . A (GB/sec)
instruction) linstraetion)—"| instruction) (GB/sec)
Before improvement 0.00%) 51.15% >3.86E+08 98.73% 1.27% 0.00% 0.00% 9.03E+03 483.01 0.02
Chapter 8 Loop Interchange 120 Copyright 2016 FUJITSU LIMITED

. (o8}
Contents of Loop Interchange Tuning FUJiTSU
Source code before improvement (1) Converting array a into a two-dimensional
do j=1,n1 array
doi=1,n2 doj=1,n1
a(i) = s1+c(j,i) / (s1+s2/d(j,i)) do i=1,n2
enddo a(j, i) =s1 +c(j,i) / (s1 +s2/d(j,i))
do i=2,n2 enddo
b(iji) = ali) / (s2 +s1 Ia(i-1) do i=2,n2
enddo b(j,i) =a(j, i)/ (s2 +s1/a(j,i-1))
enddo enddo There is no longer an
Low cache use efficiency because enddo array a dependency,
of stride access of arrays b, ¢, and which is a factor
d. thindering loop fission.
(3) Interchanging loops (2) Dividing loop 1 and loop 2
do i=1,n2 do j=1,n1
do j=1,n1 :> do i=1,n2
a(j, i) =s1 +c(j,i) / (s1 +s2/d(j,i)) a(j, i) =s1 +c(j,i) / (s1 +s2/d(j,i))
enddo enddo
enddo enddo
do i=2,n2 :> EOT='|-,I'IT ___________
do j=1,n1 do i=2,n2
b(j,i) =a(j, i) / (s2 +s1/a(j,i-1)) Access to arrays b, ¢, and d b(j,i) =a(j, i) / (s2 +s1/a(j,i-1))
enddo becomes sequential access, enddo
enddo which improves cache use enddo

Kefficiency.

Chapter 8 Loop Interchange

121

Copyright 2016 FUJITSU LIMITED

Effects of Loop Interchange (Source Tuning)

Cache efficiency increases because of sequential access of an array through loop interchange. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load

D
FUJITSU

instruction.
Source code after improvement (source tuning) [sec]
45 real*8 a(n1,n2),b(n1,n2),c(n1,n2),d(n1,n2)
46 real*8s1,s2 2.5E-01
47 integer n1,n2 .
48 $omp parallel Contents of tuning
49 $omp do
0 1e doElm (1) Convert array a into a two-dimensional array.
<<< Loop-information Start >>> . .
<<< [OPTIMIZATION] (2) Divide loop 1 and loop 2. i \
<<< SIMD(VL: 4) (3) Interchange loops. \
<<< SOFTWARE PIPELINING \
<<< Loop-information End >>> \
51 2 P 4y d°j=1'n1]'SE_O] No instruction N\
52 2 pav alii)=sl+cii) / (s1+s2/d(ji)) Loop 1 (D et o \
53 2 p 4v enddo Iro;aFing-poi.nt
54 1 p enddo oad instruction
55 !$omp end do 1.0E-01 6.67'f0|d Effect
56 1$omp do ' No -
57 1 p doi=2,n2 instruction \
<<<Loop-information Start >>> commit \
<<< [OPTIMIZATION] due to L2 \
<<< SIMD(VL: 4) 5.0E-02 access for a \
<<< SOFTWARE PIPELINING floating- \
<<< Loop-information End >>> point load
58 2 p 4v do j=1,n1 instruction
59 2 p 4v b(jii) =a(j,i) / (s2 +s1/a(j,i-1))
60 2 p 4v enddo }@) 0.0E+00 —m —
61 1 p enddo
62 1$omp end do Before improvement After improvement
63 !$omp end parallel
Cache The percentage of L1D misses decreased significantly.
te1flf;ncitsi\slerate (L/1L?)an:ii—zst(:?e§e L1D mis; L1D miss dm L1D miss hwpf L1D miss swpf rLathUSLSoad—store L2 miss L2 throughput mmo?: ut
;) ; > rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) . A (GB/sec) gnp
instruction) instruction) instruction) (GB/sec)
Before improvement 0.00% ,—51.15% ~3.86E+08 98.73% 1.27% 0.00% 0.00% 9.03E+03 483.01 0.02
After improvement 0.00% “_ 2.64% 2.04E+07 6.97% 93.03% 0.00%] 0.00% 5.00E+03 152.22 0.07,
Chapter 8 Loop Interchange 122 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Loop Fusion

Loop Fusion (Before Improvement)

Effects of Loop Fusion (Source Tuning)

Loop Fusion (in C Language) (Before Improvement)
Effects of Loop Fusion (in C Language) (Source Tuning)

Chapter 8 Loop Fusion 123 Copyright 2016 FUJITSU LIMITED

Loop Fusion (Before Improvement)

o)
FUJITSU

Not all array data can be loaded in cache because loop 1 has many iterations, so loop 2 cannot reuse the data.
Consequently, the following is a frequent event: No instruction commit due to memory and cache busy.

Source code before improvement fsec]
sec
m =50
n = 125000 _ 4.5E-01
2 1pp by doj=l,m-1 Array type: real*8
<<< Loop-information Start >>> 4.0E-01
<<< [OPTIMIZATION]
<<< COLLAPSED Loop 1 3.5E-01
<<< Loop-information End >>>
43 2 p4 doi=1,n
44 2 p Ly s1=s1+a(ij)/(s3/b(ij) +c(ij) /(s2+s3/d(ij))) 3.0E-01
ey enddo — e 1012 access fora
46 1 p 4v enddo 2.5E-01 floating-point load
4 , , Total size of array data: About 200 e
<<< Loop-information Start >>> 2.0E-01
<<< [PARALLELIZATION] M8 . '
<< Standard iteration count:26] Not all array data can be loaded in . No .
<<< [OPTIMIZATION] cache. 1.5E-01 instruction
<<< COLLAPSED commit due
<< simo(v:4) | Array access resulting in cache 1.0E-01 to memory
<<< SOFTWARE PI misses d h
<<< Loop-informati{ ————— and cache
48 1pp 4v doj=1,m — 5.0E-02 bUSY
<<< Loop-information Start >>>
<<< [OPTIMIZATION] 0.0E+00
<<< (COLLAPSED
<<< Loop-information End >>> Loop 2> Before improvement
49 2 p 4 doi=1,n
50 2 p 4v e(ij) =s2/(a(ij) +b(ij) 7 (s3 +c(ij) / d(ij)))
51 2 p b enddo The percentages of L1 cache misses and L2 cache misses are 3.125%, which is the
52 1p enddo - Yo S theoretical value for stream access. -> Misses have occurred in both loops 1 and 2. This
means that loop 2 could not use data placed in the cache in loop 1.
Cache /
I(.]flfmi;s rate Number of loads l(‘;LD rglsst rate L1D mi L1D miss dm L1D miss hwpf |L1D miss swpf |L2 miss j4te(/Load- L2 mi L2 throughput tNr\]emorr)]/ ¢
\eTiectve and stores v-oac-store miss rate(/L1D miss) |rate(/L1D miss) [rate(/L1D miss) |store ipStruction) miss (GBIsec) roughpu
instruction) instruction) (GB/sec)
Before improvement 0.01% 5.58E+09 3.13% 1.74E+08 > 0.23% 99.77% 0.00% 3.13% 1.74E+08 > 104.92] 116.69
Chapter 8 Loop Fusion 124 Copyright 2016 FUJITSU LIMITED

Effects of Loop Fusion (Source Tuning)

Loop fusion increases cache efficiency, which improves the following event: No instruction commit due to
memory and cache busy.

D
FUJITSU

- : Appearance of loop fusion doi=1. m-1)
Source code after improvement (source tuning) daiin 7 doj=1, m-1
doj1, m- e doi, n
42 1 pp 2v[—doj=1,m-1 doi=1,n enddo > ;’;’;
<<<|:mp-information Start >>> enddo |: enddo Loop fusion | enddo
Loop fusion [oPMzaTion] enddo V| doj=1,m-1 enddo
COLLAPSED . T doi=1,n do j=m,m
<<{ Loop-information End >>> doj=1,m wYYYeo. dt: i=1 ' n
43 2 p2 doi=1,n doi=1,n | enddo _y)jy
4 2 p 2v s1=s1+a(ij) / (s3/b(ij) +c(ij) / (s2 +s3/d(ij))) weoYYYee. 21| enddo _ enddo
w5 2 p 2| el)=s2/(ali) +blij) /(53 +c(ij) 16ij)) enddo enddo
enddo iz
46 2 p 2v enddo . dOJ—_ m,m
i 1 p 20 enddo —{ Peeling__]| doict.n
48 Y-
Loop-information Start . . enddo
<<<Loop-intormation tart >>> Array daccess resultlng in enddo
<<< [PARALLELIZATION] h h.
<<< Standard iteration count: 2 cache hit
<<< Loop-information End >>> 4.5E-01
49 1 s do j=m,m -
<<k Loop-infomb\ 4.0E-01 =
<<} [PARALLELIZATION] 3.5E-01 >
H Standard iteration count: 208 . _ -
Peeling . Cut out of I90p (peeling) 3.0E-01 | 1.72-fold effect
<k smMp(vL: 4) for loop fusion 2.5E-01 <
<<k SOFTWARE PIPELINING 2 OE_O]
<<k Loop-information End >>> ’ instruction
50 2 pp 4 doi=1,n 1.5E-01 commit
51 2 p &v e(ij) =s2/(a(i,j) +b(ij) / (s3 +c(i,j) /d(ij))) 1.0E-01 due to
52 2 p 4vL_ enddo ’ memory
53 1p enddo 5.0E-02 and cache
b
0.0E+00 =
Cach The numbers of L1D misses and L2 misses decreased significantly. [sec] Before improvement After improvement
ache
Ay
L11 miss rate N L1D miss rate - ; . Memory
(effective umber of (/Load=stare L1D miss L1D m|ssdrq W@w& miss rate({Load— L2 miss L2 throughput throughput
A . loads and stores|. y rate(/L1D miss) rate(/L1D miss) miss) [Store stroctio)—— (GB/sec)
instruction) instruction) (GB/sec)
Before improvement 0.01% 5.58E+09 3.13%| 1.74E+08 0.23% 99.77% 0.00%] 3.13% 1.74E+08) 104.92] 116.69
After improvement 0.00% 3.13E+09 3.13%~9.78F+07 0.68% 99.32% 0.00% 3.13%™9.78E+07" 100.58 120.70
Chapter 8 Loop Fusion 125 Copyright 2016 FUJITSU LIMITED

Loop Fusion (in C Language) (Before Improvement)

o)
FUJITSU

Not all array data can be loaded in cache because loop 1 has many iterations, so loop 2 cannot reuse the

data.

Consequently, the following is a frequent event: No instruction commit due to memory and cache busy.

Source code before improvement
<<< Loop-information Start >>> [Se(]
<<< [PARALLELIZATION] M =50 5.0E-01
<<< Standard iteration count: 2 N =125000
<<< Loop-information End >>> —. 45E_0‘|
W pp Forlj=0j<M-Tjes){ Array type: double
<<< Loop-information Start >>> —_ 4.0E-01
<<< [OPTIMIZATION])
<< S|MD(VL2 ll) 3 SE_O]
<<< SOFTWARE PIPELINING :
<<< Loop-information End >>> Loop 1 3.0E-01
46 p 2v for(i=0;i<N;i++){ :
47 p 2v *s1=*s1+a[j][i] / (s3/b[j1[i] + c[jlLi] / (s2 +s3 /d[j][i])); ﬁz;ﬂsgfgjggeggfgp;t
48 p 2v } \ — 2.5E-01 ﬂo;;:;%;ﬂgir;:oad
49 } m—
50 Total size of array data: About 200 MB 2.0E-01 No
<<< Loop-information Start >>3 Ngt all array data can be loaded in : :
<<< [PARALLELIZATION] cache 1.5E-01 InStrUFtlon
<<< Standard iteration count: b I commit due
<<< Loop-information End >>> = = 1.0E-01 to memory
51pp for(j=0<Mijs+){ Array access resulting in cache il e
<<< Loop-information Start >>>i miSSES 5.0E-02 bus
<<< [OPTIMIZATION] — y
<<< SIMD(VL: 4) 0.0E+00
<<< SOFTWARE PIPELINING .
<<< Loop-information End >>> @ I!2> Before improvement
52 p 2v for(i=0;i<N;i++){
5 il = <2/ ([T + bl / 101 7 dGIED): - - —
B p o101 = s2/ (ali10i + b1 /3 + U107 4DIEN The percentages of L1 cache misses and L2 cache misses are 3.125%, which is the
54 p 2v } -
5 } ——| theoretical value for stream access. -> Misses have occurred in both loops 1 and 2.
This means that loop 2 could not use data placed in the cache in loop 1.
Cache v
LTI miss rate L1D miss . . . L2 miss Memory
(effective Number of loads rate(/Load-store |L1D mij L1D miss d"? L1D miss hWPf L1D miss swpf rate(/Logd-store [L2 miss L2 throughput throughput
; . and stores . . rate(/L1D miss) rate(/L1D miss) [rate(/L1D miss) |. (GB/sec)
instruction) instruction) | instruckon) (GB/sec)
Before ent 0.00% 5.58E+09 3.13% 1.74E+0 0.22% 99.78% 0.00%C_ 3.13% 1.75E+08 > 97.51 108.55
126 Copyright 2016 FUJITSU LIMITED

Chapter 8 Loop Fusion

Effects of Loop Fusion (in C Language) (Source Tuning)

[0®)
FUJITSU

Loop fusion increases cache efficiency, which improves the following event: No instruction commit due to
memory and cache busy.

Source code after improvement (source tuning)

Appearance of loop fusion

<<< Loop-information S
<<< [PARALLELIZATION

whpp[" For(=0jem-Tjes)g

Loop fusion

[OPTIMIZATION]

tart >>>

]

<<< Standard iteration count: 2
<<< Loop-information End >>>

Loop-information Start >>>

for(j=0;j<M-1;j++){
for(i=0;i<N;i++){

}
}

for (j=0;j<M-1;j++){
for(i=0;i<N;i++){

XXX "t

“yyy -

for(j=0;j<M-1;j++){
for(i=0;i<N;i++){

XXXt ot

Sy ;-

= |
for (j=0;j<M-1;j++){
for(i=0;i<N;i++){

Tyyy -

)

<<< SIMD(VL: &) }
<<< SOFTWARE PIPELINING } !
<<< Loop-information End >>>
45 p |2v for(i=0;i<N;i++){ [sec]
46 p |ov *s1=*s1+a[j][il/ (s3 /b + Il / (s2 + s3/d[j][i])); 5.0E-01 |
47 p |2v e[jllil =s2/ (aljl[i] + b1 [T/ (s3 + <[1LiT / A[ILED);
48 p|2v } 4.0E-01 4=~—* 1.70-fold effect —
49 L}
50 Array access resulting in 3.0E-01 : ~ <
51 [for(=M;j<Mij++){ cache hit S
52 for(i=0;i<N;i++){ 2.0E-01 _ tNot'
Peeling e[jI[i] = s2/ (aljI il + bI1[il (s3 + <11l / 1 LiD)); commitdue
1 } 1 0E‘01 to memory
} amlijca;he
55 us)
56— 0.0E+00
57 } Before improvement After improvement
"I The numbers of L1D misses and L2 misses decreased significantly.
Cache /
Ll missrate g ber of loads |L1D Miss . L1D miss d L1D misshwpf |L1D missswpf |L2 miss rate(Lomd—l . Memory
i(:sfﬁlj?t\;gn) arl:([jn stf):gs o {ﬁg?&giﬂftore L1D miss rate(r;]LllsB nq:ss) rate(rR_I]SE) n‘:vigs) rate(r;]LllsBSnv:ipss) sto;glisrslsrguectioﬂ? % EEFE;‘SJESPM ErG"BO/l;gch)pUt
Before improvement 0.00% 5.58E+09 3.13%,T.74E+08\ 0.22% 99.78% 0.00% 3.13%,1.75E+08\, 97.51] 108.55
After improvement 0.00% 3.06E+09 3.13%\9.58E+07/ 0.20%] 99.80% 0.00%] 3.13%_9.58E+07/ 90.26 108.38
127 Copyright 2016 FUJITSU LIMITED

Chapter 8 Loop Fusion

(o8,
FUJITSU

Array Merging (Indirect Access)

What Is Array Merging?

Array Merging (Before Improvement)

Effects of Array Merging (Source Tuning)

Array Merging (in C Language) (Before Improvement)
Effects of Array Merging (in C Language) (Source Tuning)

Chapter 8 Array Merging (Indirect Access) 128 Copyright 2016 FUJITSU LIMITED

What Is Array Merging?

o)
FUJITSU

Array merging is the merging of multiple arrays into one array. These
multiple arrays are processed in the same loop and have a common access
pattern. This technique realizes sequential data access and increases cache

efficiency.

Source code before improvement

After improvement (appearance after compiler optimization)

parameter(n=1000000)
real*8 a(n), b(n), c(n)

integer d(n+10) N
: Array merging
doiter=1,100 I/
doi=1,n (L1D cache)
a(d(i)) =b(d(i)) +scalar * c(d(i)) [a(d(i))
enddo i
enddo a(d(i+1))
b(d(i))
Access of different b(d(i+1))
cache lines I
c(d(i))
c(d(i+1))

parameter(n=1000000)
real*8 abc(3, n)
integer d(n+10)

doiter=1,100
doi=1,n
abc(1, d(i)) = abc(2, d(i)) + scalar * abc(3, d(i))
enddo

enddo
(L1D cache)

abc(1, d(i))
abc(2, d(i)) 3

abc(3, d(i))

Access of same

cache line abe(1, d(i+1))

abc(2, d(i+1))

abc(3, d(i+1))

Chapter 8 Array Merging (Indirect Access)

129

Copyright 2016 FUJITSU LIMITED

Array Merging (Before Improvement) FUjiTSU

Cache use efficiency decreases because of a high percentage of L1D misses (list access).
Consequently, the following is a frequent event: No instruction commit due to L2 access for a

floating-point load instruction.

Source code before improvement
sec
1 parameter(n=2*1000%1000/8) []
2 real*8 a(n),b(n),c(n),e(n),f(n),s 6.0E-01
3 integer d(n)
14 15s s call sub(a,b,c,d,e,f,s,n) 5.0E-01 —
25 subroutine sub(a,b,c,d,ef, s, n)
26 real*8 a(n),b(n),c(n),e(n),f(n),s 4.0E-01
27 integer d(n), ii No
28 . .
3.0E-01 instruction

29 1$omp parallel do schedule (static,96) .

<<< Loop-information Start >>> A"aysoa' f' & b' and commit due

<<< [OPTIMIZATION] c are list access. 2 0E-01 to L2 access

<<< SIMD(VL: 4) for a floating-

<<< SOFTWARE PIPELINING point load

<<< Loop-information End >>> 1.0E-01 instruction
30 1 p 2v doi=1,n
31 1p2v ii = d(i)
32 1 p2v a(ii) =s/ (s +F(ii) / (s+ e(ii) /(b(ii) +s/c(ii)))) 0.0E+00
33 1 p 2v enddo .
34 1$omp end parallel do Before improvement

The percentage of L1D misses is high at 78.45%.
Cache /
L1I miss rate L1D miss - -) . Memory
. . L1D miss dm L1D miss hwpf |L1D miss swpf L2 miss rate(/Load- . L2 throughput
.(effectl\{e 'rate(/Lo.ad—store L1D m&/ rate(/L1D miss) rate(/L1D miss) |rate(/L1D miss) store instruction) L2 miss (GB/sec) throughput
instruction) instruction) | (GB/sec)
Before 0.00% <78.45% 1.276+09) 100.00% 0.00% 0.00% 0.00% 6.70E+04 649.65 0.06
|mprovement

Chapter 8 Array Merging (Indirect Access) 130 Copyright 2016 FUJITSU LIMITED

Effects of Array Merging (Source Tuning)

Array merging for list access increases cache efficiency, which improves the following event: No

instruction commit due to L2 access for a floating-point load instruction.

[0®)
FUJITSU

Source code after improvement (source tuning) [sec]
1 parameter(n=2*1000%*1000/8)
2 real*8 abcef(5,n),s 6.0E-01
integer d(n)
14 1 s s call sub(abcef,d,s,n) 5.0E-01 H Ve
24 subroutine sub(abcef.d, s, n) 1 .31 -fOId eﬂ:ECt
25 real*8 abcef(5,n),s 4.0E-01 N~
26 integer d(n), ii ﬁ
27 No
28 !'$omp parallel do schedule (static,96) 3.0E-01 iTelEm No instruction
<<< Loop-information Start >>> commit Wacizrr?g"}i;ra
<<< [OPTIMIZATION] due to L.2 f'Ioa[tinn;:jpoitrnt
<<< SIMD(VL: 4) 2.0E-01 :Ef:;;rf]‘;r be completed
<<< Loop-information End >>> point load
29 1 p 2v doi=1,n instruction
30 1p2v ii = d(i) 1.0E-01
31 1 p 2v abcef(1,ii) =s/ (s + abcef(5,ii) / (s + abcef(4,ii)
32 1 * | (abcef(2,ii) + s / abcef(3,ii))))
33 1 p2v enddo 0.0E+00
34 1$omp end parallel do
. Before improvement After improvement
Cache The percentage of L1D misses decreased significantly.
LTI miss rate L1D miss L2 Memory
. . L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- .
i(r?sr[flilt\ilsn) irﬁ;ar(lﬁand—store L1D miss rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) store instruction) L2 miss Egggggpm EEB‘;ESPM
Before improvement 0.00%i 78.45% 1.27E+09 100.00% 0.00% 0.00%] 0.00% 6.70E+04f 649.65 0.06)
After improvement 0.00% 18.01% 2.90E+08 99.99% 0.01% 0.00% 0.00% 1.52E+04 194.49 0.03

Chapter 8 Array Merging (Indirect Access)

131

Copyright 2016 FUJITSU LIMITED

Array Merging (in C Language) (Before Improvement)

Cache use efficiency decreases because of a high percentage of L1D misses (list access).
Consequently, the following is a frequent event: No instruction commit due to L2 access for a

floating-point load instruction.

o)
FUJITSU

Source code before improvement
4 #define N 2*1000*1000/8 [SeC]
5 7.0E-02
6 void sub(double a[N],const double b[N],const double c[N],
const int d[N],const double e[N],const double f[N],double);
) o 6.0E-02
10 int i
1 double a[N],b[N],c[N],e[N].FNs; _
12 int d[N]; n - -
| 5.0£-02 e ko
40 5 sub(a,(const double (*))b,(const double (*))c,(const int (*))d, point Lg;:r;fetégg to be
(const double (*))e,(const double (*))f,s);
: 4.0E-02
48 void sub(double a[N],const double b[N],const double c[N],
const int d[N],const double e[N],const double F[N],double s) N
“ o 3.0E-02 . N0
50 int i,ii; instruction
51 commit due
52 #pragma omp parallel for schedule (static,96)
<<< Loop-information Start >>> A.lTays a f' & b' and LalE 2.0E-02 to L2 access
<<< [OPTIMIZATION] list access. for a
<<< SIMD(VL: 4) floating-
<<< SOFTWARE PIPELINING 1.0E-02 point load
<<< Loop-information End >>> : f
53 p 2v for(i=0;i<N;i++){ instruction
S6p 2v ii=d[il; 0.0E+00 — |
5 p 2v alii]=s / (s + F[ii] / (s + e[ii] / (b[ii] +s/c[ii]))); ’
56 p 2v } Before improvement
57 }
The percentage of L1D misses is high at 70.79%.
Cache
. . Percentage of L1D)
Ll miss rate L1D miss . L1D miss dm L1D miss hwpf misses due to swpf L2 miss . L2 throughput Memory
(effective rate(/Load-store |L1D miss) . ; rate(/Load-store|L2 miss throughput
!) . . rate(/L1D miss) rate(/L1D miss) |(relative to number |. . (GB/sec)
instruction) instruction) of L1D misses) instruction) (GB/sec)
Before improvement 0.00%<__ 70.79% 1.28E+08 100.00% 0.00% 0.00% 0.02% 4.12E+04 552.20 0.34

Chapter 8 Array Merging (Indirect Access)

132

Copyright 2016 FUJITSU LIMITED

Effects of Array Merging (in C Language) (Source Tuning) Frujitsu

Array merging for list access increases cache efficiency, which improves the following event: No
instruction commit due to L2 access for a floating-point load instruction.

Source code after improvement (source tuning)
4 #define N 2*1000%1000/8 [sec]
2 #define M 5 7.0E-02 |
7 double abcef[N][5]; -
8 void sub(double abcef[N][5],const int d[N],double s); 6.0F-02 1 '1 6 fOId eﬂ:ECt
W e ag E— - -
i ~
0 Instruction ~
: 5.0E-02 it =
42 5 sub(abcef, (const int (*))d,s); ,,L?Lf.ﬁ';’ﬁf,'ﬂ?on
5(; void sub(double abcef[N][5],const int d[N],double s) 4.0E-02
51 {
52 int i,ii;
53 3.0E-02 No
54 #pragma omp parallel for schedule (static,96) instruction
<<< Loop-information Start >>> commit
<<< [OPTIMIZATION] 2.0E-02 dueto L2
<<< SIMD(VL: &) access for
<<< Loop-information End >>> a fl’oatlng-
55 p 2v for(i=0;i<N;i++){ 1.0E-02 'pomt Iqad
56 p 2v ii=dlil; instruction
57 p 2v abcef[ii][0]=s / (s + abcef[ii] [4] / (s + abcef[ii][3] / (abcef[ii][1] +
s/ abeef[ii] [2]))); 0.0E+00
58 p 2v }
59 } Before improvement After improvement
Cache /\ The percentage of L1D misses decreased significantly.
LTI miss rate L1D miss .) . L2 miss Memory
(effective rate(/Load-store L1D miss/ LTD ;ﬂISS dm rate(/L1D L1tD(r/r|1_|]sthV\{pf) UtD (r/11|1sstw'pf) rate(/Load-store |L2 miss I(_éBt/hrOl;ghput throughput
instruction) instruction) miss fate miss rate miss instruction) Sec (GB/sec)
Before nent 0.00% 70.79% 1.28E+08 100.00% 0.00% 0.00% 0.02% 4.12E+04 55220 034
After
e ement 0.00%_ 1241% 2.90E 99.99% 0.01% 0.00% 0.01% 136E+04 14488 0.13

Chapter 8 Array Merging (Indirect Access)

133

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Improvement in Data Access Wait
(Latency Concealment)

What Is Latency Concealment?
Indirect Access Prefetching
Prefetching for an Outer Loop

Chapter 8 Improvement in Data Access Wait (Latency Concealment) 134 Copyright 2016 FUJITSU LIMITED

What Is Latency Concealment?

Latency concealment means concealing the latency of data access (the period of time
from a data transfer request to its acknowledgement) by prefetching data. There are
three types of data access: L1D cache access, L2 cache access, and memory access. For
L2 cache access and memory access among these types, this section discusses only the
latency visible as execution time.

For the latency time of each data access type, see the LMbench results below.

B Results of data access latency measurement with LMbench

D
FUJITSU

1000.00

100.00

Latency (ns)

10.00

1.00

L2 cache

F Memory

L1D cache /7

0.00

0.02 0.05 0.16
Data size (MB)

0.44

7.00 70.00

Chapter 8 Improvement in Data Access Wait (Latency Concealment) 135

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Indirect Access Prefetching

Indirect Access Prefetching (Before Improvement)

Effects of Indirect Access Prefetching
(Optimization Control Line Tuning)

Effects of Indirect Access Prefetching
(Optimization Control Line)

Effects of Indirect Access Prefetching
(Compiler Options Tuning)

Chapter 8 Indirect Access Prefetching 136 Copyright 2016 FUJITSU LIMITED

Indirect Access Prefetching (Before Improvement)

[0®)
FUJITSU

Indirect access (list access) with the recommended options does not generate a prefetch. Also,
memory access latency is visible. Consequently, the following is a frequent event: No instruction
commit due to memory access for a floating-point load instruction.

S de before i t sed
ource code perore improvemen
P 5.0E+00
51 4.5E+00 | |
<<< [PARALLELIZATION] 4.0E+00
. . . : No instruction
<<< Standard iteration count: 485 3.5E400 ot 2
<<< [OPTIMIZATION] o load metucion
<<< PREFETCH :36 3.0E+00
<<< e:12,d:12,a:12 2.5E+00
<<< Loop-information End >>> 2.0E+00
52 1pp 6 doi=1,n 1.5E+00
53 2p6 if (mod(i,2) .eq. 0) then 1.0E+00
5 2 p6 a(i) = b(d(i)) + scalar* c(e(i)) 5.0E-01
5 2p6 endif / ObE+00
56 1p6 enddo Indirect access for arrays b and ¢ '
Before improvement
Cache
. . . Memory
L11 miss rate |L1D miss . . . L2 miss . L2
(effective |rate(/Load-store |L1D miss L1tD(r;:_|1sstm) L1tD(r/11|1sthV\{pf) L1tD(r/I:_|1sstw.pf) rate(/Load-store L2 miss th”z;i-;d”.‘ throughput tTOUth
instruction) |instruction) fate miss fate miss) —rate miss instruction) fate miss) (GB/sec) l(JGB/sec)
Fnﬁ{)orzi/ement 0.01% 42.97% 1.94E+09 94.20% 0.00% 5.80% 12.48% 5.63E+08 48.76% 111.02 35.47D

The L1D miss dm percentage and L2 miss dm percentage are high,
and prefetching is not effective. Performance may increase because
there are margins in memory throughput and L2 throughput.

Chapter 8 Indirect Access Prefetching

137

Copyright 2016 FUJITSU LIMITED

Effects of Indirect Access Prefetching (Optimization Control Line Tuning)

[0®)
FUJITSU

Specification of the prefetch specifier generates a prefetch for indirect access (list access). This
results in improvement of the following event: No instruction commit due to memory access for
a floating-point load instruction.

Source code after improvement (optimization control line tuning) [sec]
51 locl prefetch >-0E+00
<<< Loop-information Start >>> 4.5E+00
<<< [PARALLELIZATION] 4.0E+00
<<< Standard iteration count: 485 DO 2.28-fold effect
Generated prefetch for
<<< [OPTIMIZATION] indirect (I b DO (N
e PREFETCH 60 €ct access {arrays o0 N
]) and ¢) N
<<< e:12,c¢12,d:12,b:12,a:12 Y N
<<< Loop-information End >>> 1.56400 H
52 1pp 6 doi=1,n 1'0E 00
N
53 2p6 if (mod(i,2) .eq. 0) then '
5. 2 p6 a(i) = b(d(i)) + scalar * c(e(i)) >.0E-01
5 2p6 endif 0.0E+00 -
56 1 p6 enddo Before improvement After improvement
Cache
L1I miss rate |L1D miss . . . L2 miss . L2 Memory
{effectiye fate(/and—store L1D miss I;;tlg(r;r]s%dnq;ss) Ir_;tlz([/nl_llsi)hn:vigsf) Ir_z]tZ(r;]LllsBSnv:ipsfs) fate(/and—store L2 miss Ir‘]fi:;)'ss dm rate(/1.2 throughput |throughput
instruction) |instruction) instruction) (GB/sec) (GB/sec)
?n?ﬁfvement 0.01% 42.97% 1.94E+0?/ 94.20% 0.00% 5.80% 12.48% 5.63E+0§/ 48.76%, 111.02 3547
After 0.00% 38.12% 3.09E+0§ 52.34% 0.00% 47.66% 8.84% 7.16E+0é 5.34% 404.14 101.08
improvement N 2
The generation of prefetch instructions for indirect
access (arrays b and c) reduced the L1D miss dm
percentage and L2 miss dm percentage.
Chapter 8 Indirect Access Prefetching 138 Copyright 2016 FUJITSU LIMITED

Indirect Access Prefetching (Optimization Control Line) FUjITSU

Here, specify the following optimization control line.

Optimization control line that can be specified
Optimization control specifiers Meaning Statement | ATTaY
Program unit DO loop unit unit assignment
statement unit
Enables the automatic prefetch
prefetch ab.es © automatic pretetc Yes Yes No No
function of the compiler.
® Remarks

® The prefetch optimization control specifiers is equivalent to specifying the
following compiler options:

-Kprefetch_sequential,prefetch_stride, prefetch_indirect,
prefetch_conditional,prefetch_cache_level=all

@ Notes
® Depending on the cache efficiency of loops, whether branching exists,
and the complexity of subscripts, prefetching with the compiler options
-Kprefetch_sequential, -Kprefetch_stride, -Kprefetch_indirect,
or -Kprefetch_conditional enabled may degrade execution performance.

Chapter 8 Indirect Access Prefetching 139 Copyright 2016 FUJITSU LIMITED

Effects of Indirect Access Prefetching(Compiler Options Tuning) rufitsu

You can achieve effects similar to optimization control line tuning by
specifying the following compiler options.

Compiler options Description of function

-Kprefetch_indirect Gives an instruction on whether to generate an object that uses a prefetch
- instruction for indirectly accessed (list access) array data used inside a loop.
This option has meaning in cases where -01 or a higher option is valid.

The default is -Kprefetch_noindirect.

B Use example (source code before improvement)

$ frtpx —Kfast,parallel sample.f90 -Kprefetch_indirect

@ Notes

®Depending on the cache efficiency of loops, whether IF construct are used, and the
complexity of subscripts, prefetching may not have the intended effect.

Chapter 8 Indirect Access Prefetching 140 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Prefetching for an Outer Loop

Prefetching for an Outer Loop (Before Improvement)

Effects of Prefetching for an Outer Loop
(Optimization Control Line Tuning)

Use of software prefetch

Chapter 8 Prefetching for an Outer Loop 141 Copyright 2016 FUJITSU LIMITED

Prefetching for an Outer Loop (Before Improvement)

The innermost loop has a few iterations, and its array size is greater than its number of iterations.

For this reason, the cost at the prefetching rise time is visible in normal prefetching. Consequently, the
following is a frequent event: No instruction commit due to L2 access for a floating-point load

D
FUJITSU

instruction.
[sec]
. 1.0E-01
Source code before improvement
41 subroutine sub(scalar,isize) 8.0E-02
42 parameter(n=1000) 6.0E-02
43 integern No instruction
b4 real*8 a(n,n),b(n,n),c(n,n),scalar 4.0E-02 commit due to
45 common /com/a,b,c . 2 0E-02 L2 GIEss fqr a
46 Number of elements in First : IflocTFIn%-POtl_nt
. P 0ad instruction
<<< Loop-information Start >>> dimension: 1000 0.0E+00
<<< [PARALLELIZATION] Loop iteration count: 15 i
<<< Standard iteration count: 2 iterations (isize = 60) Before improvement
a1 < LZOP.__':'formam" End>>> Access continuity is broken Forward direction of inner loop
PP oyt when outer loop j is - . : : . >
<<< Loop-information Start >>>]) = i=17 =33 =49 i=60 -
<<< [OPTIMIZATION] 5 _!=1 = > >
<<< SIMD(VL: 4) 3 J_fg > > >
<<< SOFTWARE PIPELINING = j=4 ; ; >
<<< Loop-information End >>> § j=5 > > >
48 2 p4v doislisizes s %6 > > >
49 2 p 4y a(i,j) = b(i,j) + scalar * c(i,j) 2 J;; = = .
50 2 p &4 a(i+1,j) = b(i+1,j) + scalar * c(i+1,j) S j:g > > =
51 2 p & a(i+2,j) = b(i+2,j) + scalar * c(i+2,j) % : > > > > Prefetch
52 2 p v a(i+3])= b(i+3) + scalar* c(i+3,) g S " jCachent
5 2 p & enddo 8 j=999 > > > ga(call?lglllisnse
5. 1 p enddo © j=1000 P> > >
- The L1D miss dm percentage is high, and prefetching is not effective.
Cache /
LTI miss rate L1D miss . - - L2 miss L2 Memory
(effective rate(/Load-store L1D miss lr_;t[;(r/?_?sD?nn;ss) lr_;tz(r/]?j]ssomg) I;;tlz(r;ll]sstnv;/iz; rate(/Load-store |L2 miss throughput |throughput
instruction) instruction) instruction) (GB/sec) (GB/sec)
Before improvement 0.00% 4.92% 8.88E+07 95.13% 4.87% 0.00% 0.00% 1.29E+04 289.19 0.08
Chapter 8 Prefetching for an Outer Loop 142 Copyright 2016 FUJITSU LIMITED

Effects of Prefetching for an Outer Loop(Optimization Control Line Tuning) FUT?TSU

To conceal the cost at the prefetching rise time, the PREFETCH_READ and PREFETCH_WRITE specifiers were used to generate a
prefetch for the arrays in an outer loop. This results in improvement of the following event: No instruction commit due to L2 access
for a floating-point load instruction.

Source code after improvement (optimization control line tuning) 1.0F 0][SEC]
41 subroutine sub(scalar,isize) ‘I 33_f0|d eﬂ:ect
42 parameter(n=1000) 8.0E-02 = °
43 integern - T
44 real*8 a(n,n),b(n,n),c(n,n),scalar 60E_02 =
45 common /com/a,b,c
. 4.0E-02 st
<<< Loop-information Start >>> VLT clcr)\s:rr#ict“doune
<<< [PARALLELIZATION] to L2 access
<<< Standard iteration count: 2 2.0E-02 rorsigtof:;rég'
<<< [OPTIMIZATION] B etruction
<<< PREFETCH :6 0.0E+00 - e e e e e
<<< ©2,b:2,a:2
<<<Loop-information End >>> Before improvement After improvement
47 1 pp doj=1,n
<<<Loop-information Start >>> : : Forward direction of innerg)op
<<< [OPTIMIZATION] Prefetching for array in - _ , _ : _
<<< SIMD(VL: & . . e i=1 i=17 i=33 i=49 i=60
(V&) next iteration of outer s -
<<< SOFTWARE PIPELINING = = _ _ _ e
<<< PREFETCH :6 loop ay 72 = < = -
«< @2,bi2,a2 :1 =3 > > > s B
<<< Loop-information End >>> g J.=4 = = = L
48 2p v doicl,isized a| 4% > = = |
49 2 p 2 10CL PREFETCH_WRITE(a(ij+1) level=1) o J.:e = = = —
50 2 p 2 !OCLPREFETCH_READ(b(ij+1),level=1) g !:7 = = = —
51 2 p 2 !OCLPREFETCH_READ(c(i,j+1),level=1) = J,:B = = = =
2 2p 2 afij) = b(i) + scalar * () =] I > > > < I
53 2p2v a(i+1,j) = b(i+1,j) + scalar * c(i+1,j) T : = < < <
56 2 p2v a(i+2,j) = b(i+2,j) + scalar * c(i+2,j) 5/ > > > <I > CP;‘:L‘:":t
55 2 p2v a(i+3)= b(i+3) + scalar * c(i+3) S j=999 B > B S Cache miss
56 2 p 2v enddo -=j=1000 > > > »| 1 cache line
57 1p enddo > > > >
Cache The L1D miss dm percentage decreased.
L1l miss rate L1D miss rate(/Load- : L1D miss dm rate(/L1D |L1D misshwpf L1D miss swpf L2 miss rate(/Load- ’ L2 throughput Memory
p p ghp
(effective) - L1D miss)) ! ; - L2 miss throughput
; - store instruction) miss) rake(/L1D miss) rate(/L1D miss) store instruction) (GB/sec)
instruction) (GB/sec)
Before improvement 0.00% 4.92% 8.88E+07 95.13% 4.87% 0.00% 0.00% 1.29E+04] 289.19 0.08
After improvement 0.00%] 4.74% 8.57E+07 13.91% 0.19% 85.91% 0.00% 1.31E+04 382.23 0.12
Chapter 8 Prefetching for an Outer Loop 143 Copyright 2016 FUJITSU LIMITED

Use of software prefetch FUjfTsu

In case of sequential access, hardware prefetching may not be effective even if co
mpiler option -Kprefetch_sequential=auto is effective.

When L1D miss dm rate or L2 miss dm rate is high, performance may improve with
-Kprefetch_sequential=soft specified (software prefetch will be effective)

L1D miss dm rate and L2 miss dm rate are high 3_0[5331]

rate(/L1D miss) A rate(/L1 rate(/L1D miss) | rate(/L2 miss)

L1D miss dm iss hwpf | L1D miss swpf | L2missdm | |, o ol | |

Thread 0 33.89% 66.11% 0.0E+00

Thread 0

FERISAT > 3> HEHESHER

-Kprefetch_sequential=auto The compiler automatically selects whether to use hardware-prefetch or to create prefetch instructions
for array data that is accessed sequentially within a loop.

-Kprefetch_sequential=auto is effective only when the -01 option or higher is set.

The default when the -02 option or higher is set is -Kprefetch_sequential=auto.

-Kprefetch_sequential=soft The compiler does not use hardware-prefetch, but rather creates prefetch instructions for array data th
at is accessed sequentially within a loop.
-Kprefetch_sequential=soft is effective only when the -O1 option or higher is set.

-Kprefetch_nosequential Prefetch instructions are not generated for array data that is accessed sequentially within a loop.
The default when the -00 or -O1 option is set is -Kprefetch_nosequential.

Chapter 8 Prefetching for an Outer Loop 144 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Improvement in Data Access Wait
(Reduced Amount of Access)

Memory Throughput and Amount of Memory Access
High-speed Store (XFILL)

Chapter 8 Improvement in Data Access Wait (Reduced Amount of Access) 145 Copyright 2016 FUJITSU LIMITED

O
FUJITSU

Memory Throughput and
Amount of Memory Access

Chapter 8 Memory Throughput and Amount of Memory Access 146 Copyright 2016 FUJITSU LIMITED

Memory Throughput and Amount of Memory Access rujitsu

B Amount of memory access:
(number of L2 cache misses + L2 writebacks) x 256 Byte (line size)

The performance of a program with a memory throughput bottleneck does
not increase unless the program is tuned to decrease the amount of
memory access or the number of L2 cache misses.

To increase
performance

Tuning to increase data
locality (See the previous
section.)

High-speed store (XFILL)

Chapter 8 Memory Throughput and Amount of Memory Access

147

_

This section describes this
function.

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

High-speed Store (XFILL)

What Is High-speed Store (XFILL)?

XFILL (Before Improvement)

Effects of XFILL (Optimization Control Line Tuning)
Effects of XFILL (Compiler Options Tuning)

Chapter 8 High-speed Store (XFILL) 148 Copyright 2016 FUJITSU LIMITED

What Is High-speed Store (XFILL)? FUjfTsu

m What is high-speed store (XFILL)?

This function reserves a cache line for cache write operations (contents with indefinite
values). The function helps reduce the number of cache lines read from memory to
increase the performance of a program with a memory throughput bottleneck.

B Operating conditions

Example)
® The array that is the store target has DOI=1,N
no dependency between iteration cycles. A(l) = B(1) + C(1)
® Arrays with definitions are not referenced. END DO
®m Memory is accessed contiguously.
XFILL not used XFILL used
Reqgister Reqister
N | =) | &)|,
Cache Cache

A

No more reading from
memory of A

(4
Memory
> t > t
Total number of memory access times: 4 Total number of memory access times: 3

Chapter 8 High-speed Store (XFILL) 149 Copyright 2016 FUJITSU LIMITED

XFILL (Before Improvement)

D
FUJITSU

Memory throughput is a bottleneck because a program has a heavy load on memory

access. Consequently, data access wait is a frequent event.

Source code before improvement [sec]
39 2.5E-01
<<< Loop-information Start >>>
<<< [PARALLELIZATION] 2.0E-01 a2 e ot
<<< Standard iteration count: 942 N ebeton
<<< [OPTIMIZATION] 1.5E-01
<<< SIMD(VL: 4) No
<<< SOFTWARE PIPELINING 1.0E-01 instruction
<<< Loop-inf tion End >>> commit due
oop-information En to memory
40 1 pp 8 doi=1,n 5.0E-02 and cache
41 1 p 8v a(i) = b(i) + c(i)*d busy
42 1 p 8v enddo 0.0E+00
Before improvement
Cache
LTI miss rate L1D miss . . . L2 miss L2 Memory
. . L1D d L1D hwpf L1D f .
I 0 W S 1 e B ek O A TR 1 S 7l 7
Before 0 0 0 14189
improvement 0.01% 3.13% 9.38E+07 0.79% 99.21% 3.13% 9.39E+07 106.37/¥141./89>
Memory throughput is a bottleneck.
Chapter 8 High-speed Store (XFILL) 150

Copyright 2016 FUJITSU LIMITED

Effects of XFILL (Optimization Control Line Tuning)

[0®)
FUJITSU

The specification of the XFILL specifier eliminated the reading of cache lines from
memory by a store instruction. This reduced the L2 miss. As a result, there was

improvement in data access wait.

Source code after improvement (optimization control line tuning)

39 locl xfill
<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 942
<<< [OPTIMIZATION]
<<< SIMD(VL: 4)
<<< SOFTWARE PIPELINING
<<< PREFETCH :2

<<< a:2
<<< XFILL 12
<<< a:2

<<< Loop-information End >>>

[sec]
2.5E-01 |
2.0E-01 1.53-fold effect
1.5E-01
No
instruction . .
1.0E-01 commit No nstruction
due to because)
SP(store port) is
memory full
5.0E-02 and
cache
busy
0.0E+00 ——
Before improvement After improvement

40 1pp v doi=ln Even after the improvement, a memory throughput
41 1 p v a(i)=b(i) +c(i)*d bottleneck remains, but the use of XFILL has
42 1 p v enddo reduced the L2 miss by 1/3.
Cache \ \
L11 miss rate L1D miss . . . L2 miss Mermory
. . L1D miss dm L1D miss hwpf [L1D f) L2 th hput
(et Jatelloadstore [UDMES loigiTDm) fare(LiDmis) el mi) [eV1000S0re 2R g™ ﬁgg',%ggp“t
Before improvement 0.01% 3.13% 9.38E+07 0.79% 99.21% 0.00% 3.13% 9.39E+07 106.37 141.89
After improvement 0.01% 3.09% 9.38E+07 29.49% 65.74% 4.77% 2.06%~6.26E+07" 158%3 158.85

Chapter 8 High-speed Store (XFILL)

Copyright 2016 FUJITSU LIMITED

XFILL (Optimization Control Line Tuning) FUJITSU

Here, specify the following optimization control line.

Optimization control line that can be specified

Optimization control specifiers Meaning Array

assignment
statement unit

Statement

Program unit | DO loop unit unit

Gives an instruction to generate an XFILL
instruction. m1 is a decimal number in a range

of 1 to 100 that indicates the number of lines No Yes No Yes
of the cache.

XFILL[(m1)]

- nstructi tt te an XFILL
Gives an instruction not to generate an No Yes No Yes

NOXFILL instruction.

@ Notes

@® The XFILL instruction is output for array data that is stored in a loop. However, it is
not output for arrays referenced in the same loop, arrays accessed non-sequentialy,
and arrays stored in IF construct.

@ No prefetch instruction is output to the L2 cache when the XFILL instruction is
output.

@® The following optimization methods cannot be applied because loops are
transformed to always store the cache lines reserved by the XFILL instructions. For
this reason, execution performance may deteriorate.

- Loop unrolling
- Loop striping

@ Execution performance may also deteriorate in the following case:
- Loop with a few iterations

Chapter 8 High-speed Store (XFILL) 152 Copyright 2016 FUJITSU LIMITED

XFILL (Compiler Options Tuning) FUJITSU

You can achieve effects similar to optimization control line tuning by
specifying the following compiler options.

Compiler options Description of function
-K{ XFILL[=N] | NOXFILL } Gives an instruction regarding array data that is only written in a
1=<N=Z100 loop, to generate an instruction (XFILL instruction) that reserves a

cache line for cache writing without loading data from memory.

N specifies the data that is N cache lines away as the target of the
XFILL instruction.

You can specify a value in a range of 1 to 100 for N. If the
specification of N is omitted, the compiler automatically
determines a value.

This option has meaning in cases where -02 or a higher option is
valid. The default is -KNOXFILL.

B Use example (source code before improvement)

$ frtpx -Kfast,parallel sample.f90 -KXFILL

Chapter 8 High-speed Store (XFILL) 153 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Improvement in Operation Wait
(Instruction Scheduling Improvement)

Factors Hindering Instruction Scheduling

Hindering Factor: Improvement of a Loop Containing an IF
Statement

Hindering Factor: Improvement in Data Dependency

Hindering Factor: Improvement of a Loop with a Few
Iterations

Cha pter 8 Improvement in Operation Wait (Instruct ion Schedul ing Improvement) 154 Copyright 2016 FUJITSU LIMITED

Factors Hindering Instruction Scheduling FUjiTSU

The following factors hinder instruction scheduling.

Loop containing an IF construct

Data dependency between iteration cycles
Loop that has data dependency

Loop that has an unclear definition
reference relationship

Loop containing pointer variables
Loop with a few iterations

Chapter 8 improvement in Operation Wait (Instruction Scheduling Improvement) 155 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Hindering Factor: Improvement of a Loop
Containing an IF Construct

SIMD Extensions with the Mask (Basics)
SIMD Extensions with the Mask (Application)

Cha pter 8 Hindering Factor: Improvement of a Loop Containing an IF Construct 156 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

SIMD Extensions with the Mask (Basics)

SIMD Extensions with the Mask
(Before Improvement)

Effects of SIMD Extensions with the Mask (Optimization Control
Line Tuning)

SIMD Extensions with the Mask (Optimization Control Line)

Effects of SIMD Extensions with the Mask
(Compiler Options Tuning)

Chapter 8 SIMD Extensions with the Mask (Basics) 157 Copyright 2016 FUJITSU LIMITED

SIMD Extensions with the Mask (Before Improvement) rujirsu

SIMD optimization and software pipelining are not facilitated because the loop contains an IF
construct.Consequently, the following is a frequent event: No instruction commit waiting for a
floating-point instruction to be completed.

. sec
Source code before improvement [sed]
95 1 1$omp do 4.5E+00
<<< Loop-information Start >>> 4.0E+00
<<< [OPTIMIZATION]
+
<<< PREFETCH :32 3.38+00
<<< b:16,a:16 3.0E+00
<<< Loop-information End >>> 2.5E+00
9% 2 p 8 do i=1,n1 True ratio of 90%
97 3 p 8m if (p(i) > q) then 2.0E+00
98 3 p 8 a(i) = c0+b(i)* (c1+b (i) * (2+b (i) *(3+b(i) *c4))) 1.5E+00 No Instraction
99 3 P 8v endif 1.0E+00 c?(;lrwgwlﬂtov;zta;[:g_g
100 2 p 8v enddo point instruction
101 1 !$omp enddo 5.0E-01 to be completed
0.0E+00 —
Before improvement
SIMD
SIMD instruction rate SIMD floating point instruction rate (/SIMD | SIMD integer instruction rate (/SIMD SIMD load-store instruction rate
(effective instruction) target floating point instruction) target integer instruction) (/SIMD target load-store instruction)

Before 0.00% 0.00% 0.00% 0.00%
improvement

There is no SIMD optimization.

Chapter 8 SIMD Extensions with the Mask (Basics) 158 Copyright 2016 FUJITSU LIMITED

Effects of SIMD Extensions with the Mask (Optimization Control Line Tuning)FuﬁTSU

Specification of the SIMD specifier facilitates software pipelining through SIMD extensions with the mask. The result is
a reduction in effective instruction, a decrease in instruction commits, facilitation of instruction scheduling, and a
significant improvement in the following event: No instruction commit waiting for a floating-point instruction to be

Instructions commit ||

5.98-fold effect

waiting for a

No instruction N\
commit

A

floating-point
instruction to

be completed

1

Before improvement

After improvement

completed.
Source code after improvement (optimization control line tuning) [sec]
g: : :;d simd ™___ | Specifies SIMD 4.5E+00
'$omp do . .
<<< Loop-information Start >>> optimization 4.0E+00
<<< [OPTIMIZATION]
<<< SIMD(VL: 4) 3.58+00
<<< SOFTWARE PIPELINING 3.0E+
<<< PREFETCH :8
<< a8 2.5E+00
<<< Loop-information End >>> 2.0E+00
9% 2 p 6v do i=1,n1
97 3 p 6v if (p(i) > q) then 1.5E+00
98 3 p 6v a(i) = c0+b (i) *(c1+b (i) *(c2+b (i) *(3+b (i) *c4)))
99 3 p 6 endif 1.0E+00
100 2 p 6v enddo 5 0E-01
101 1 '$omp enddo
0.0E+00
Effective instruction
Before improvement S 22EH11 T~ —
After improvement \ 4.15E+10 /

SIMD

Facilitating SIMD optimization reduced effective instruction.

/

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate
(/SIMD target floating point instructiory/

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Z

Before improvement 0.00%—— 0.00% 0.00% —000%
After improvement 77.36% 100.00% 0.00% 97.17%
Chapter 8 SIMD Extensions with the Mask (Basics) 159 Copyright 2016 FUJITSU LIMITED

SIMD Extensions with the Mask (Optimization Control Line)

Here, specify the following optimization control line.

D
FUJITSU

optimization Optimization control line that can be specified
control Meanin .
e g Program unit DO loop unit Statement unit) aSS|gnm.ent
Sp@(lflers statement unit
SIMD Enables SIMD optimization. Yes Yes No Yes
& Notes

® SIMD optimization may not be realized depending on the operation type

and loop structure.

Chapter 8 SIMD Extensions with the Mask (Basics)

160

Copyright 2016 FUJITSU LIMITED

Effects of SIMD Extensions with the Mask (Compiler Options Tuning) rufitsu

You can achieve effects similar to optimization control line tuning by
specifying the following compiler options.

Compiler options Description of function

-Ksimd=2 Gives an instruction to generate an object that uses a SIMD
expansion instruction, in addition to the -Ksimd=1 function, for
loops containing an IF construct, etc.

B Use example (source code before improvement)

$ frtpx -KFast,parallel sample.f90 -Ksimd=2

¥ Notes

@® Execution performance may deteriorate depending on the true ratio of the IF
construct.

@ The execution of an instruction that should not be executed from the
Perspective of program logic may cause an error because expressions inside
F construct are speculatively executed.

Chapter 8 SIMD Extensions with the Mask (Basics) 161 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

SIMD Extensions with the Mask (Application)

SIMD Extensions with the Mask (Before Improvement)

Effects of SIMD Extensions with the Mask: Process 1
(Optimization Control Line Tuning)

Effects of SIMD Extensions with the Mask: Process 2
(Optimization Control Line Tuning + Source Tuning)

Effects of SIMD Optimization through Loop Unswitching (Before Improvement)
Effects of SIMD Optimization through Loop Unswitching (After Improvement)
Appearance of Code Optimized by Loop Unswitching

Array Division (Before Improvement)

Effects of Array Division (Source Tuning)

Chapter 8 SIMD Extensions with the Mask (Application) 162 Copyright 2016 FUJITSU LIMITED

SIMD Extensions with the Mask (Before Improvement) FUjITSU

SIMD optimization and software pipelining are not facilitated because the loop contains an IF
construct. Consequently, the following is a frequent event: No instruction commit waiting for a
floating-point instruction to be completed.

Source code before improvement [sec]

63 1 1$omp do 1.4E+02

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH :12 1.2E+02

<<< b:2,a:2,b1:2,a1:2,b2:2,a2:2

<<< Loop-information End >>> True ratio of 1.0E+02
64 2 p s do i=1,n1 98% -
65 3 p m if (p(i) > q) then
66 3 p s a(i) =c0+ b(i)*(c1 + b(i)*(c2 + b(i)*(c3 + b(i)* 8.0E+01
67 3 & (c& +b(i)*(c5 + b(i)*(c6 + b(i)*(c7 + b(i)* _ .
68 3 & (B+b(i)*9))N))) True ratio of 6.0E+01 No '”SUUSE'O“
6 3p v end 2% waiting for a
0 3ps if (p(i) < q) then 4.0E+01 floating-point
71 3 p s al(i) = c0+b1(i)/(c1+b1(i)/(c2+b1(i)/(c3+b1 (i)/(c4+b1 (i)/ instruction to
72 3 & (c5+b1(i)/(c6+b1 (i)/(c7+b1 (i)/(c8+b1 (i)/c9)))))))) be completed
73 3ps a2(i) = c0+b2(i)/(c1+b2(i)/(c2+b2 (i) (c3+b2 (i) / (c4+b2 i)/ 2.0E+01
74 3 & (c5+b2(i)/(c6+b2(i)/(c7+b2(i)/(c8+b2(i)/c9))))))))
B 3pv endt 0.0E+00 I
76 2 p v enddo

Before improvement
SIMD
SIMD instruction rate SIMD floating point instruction rate (/SIMD | SIMD integer instruction rate (/SIMD SIMD load-store instruction rate
(effective instruction) target floating point instruction) target integer instruction) (/SIMD target load-store instruction)
Before @ 0.00% 0.00% 0.00% >
improvement

[

There is no SIMD optimization. |

Chapter 8 SIMD Extensions with the Mask (Application) 163

Copyright 2016 FUJITSU LIMITED

Effects of SIMD Extensions with the Mask: Process 1 (Optimization Control Line Tuning)FUﬁTSU

Specification of the SIMD specifier facilitates software pipelining through SIMD extensions with the mask. This results in an
improvement in the following event: No instruction commit waiting for a floating-point instruction to be completed. However,
an adverse effect of SIMD extensions with the mask was an increased effective instruction, which was the cause of an increase in
instruction commits.

Source code of improvement 1 (optimization control line tuning) [se
sec
63 1 !$°I'“P d: e Specifies SIMD | 4E+0D
64 1 locl sim P . LE+
<<< Loop-information Start >>> optlmlzatlon
<<< [OPTIMIZATION]] ~
<<< SIMD(VL: 4) 1.2E+02 N
<<< SOFTWARE PIPELINING
<<< PREFETCH :6 1 0E+02 Instructions commit 1 °66_f0|d effeCt
<<< a:2,al:2,a2:2) <
<<< Loop-information End >>> True ratio of N N
65 2 p v doi=1,n1 Ve 0 8.0E+01 =
66 3 v if (p(i) > q) then 98% \ S S
67 3 p v a(i) = c0 + b(i)*(c1 +b(i)*(c2 + b(i)*(c3 + b(i)*) 0
68 3 & (ch+b(i)*(c5 +b(i)*(c6 + b(i)*(c7 + b(i)* 6.0E+01 instruction Instruction
S . - commits
69 3 & (@b NN True ratio of welling (o increased
70 3p v endif f— 29 4.0F+01 a floating- N
1 3pv if (p(i) < q) then 0) insrt)roul?ttion S N
72 3p v al (i) = c0+b1 (i)/(c1+b1 (i)/ (c2+b1 i)/ (3+b1 (i)/ (ct+b1 i)/ to be N
73 3 & (<5+b1(i)/(c6+b1 (i)/(c7+b1 (i)/(c8+b1 (i)/c9)))))))) 2.0E+01 completed
74 3p v a2(i) = c0+b2 (i)/(c1+b2 (i)/ (c2+b2 (i) (c3+b2 (i) (ct+b2 i)/
75 3 & (c5+b2 i)/ (c6+b2 (i) (c7+b2 (i) (c8+b2(i)/c9)))))))) J
76 3p v endif 0.0E+00
m2pv enddo Before improvement After improvement
Effective instruction
Before improvement 4.19E+12
After improvement 5.14E+12
SIMD facil d, but th luded
. . T 1 SIMD optimization was facilitated, but this included SIMD
5”;?[) nstruction rate SIMD HOW opht‘iggifation for IF construct that have a low true ratio, so effective
(effective instruction) target Poating pointing_jnstruction decreased anly slightly because redundant instructions
Before improvement | ——0.00% 0.00% were issued. s
Afterimprovement | ————9568% 100.00% | 0:00% | T o9RS—— |
Chapter 8 SIMD Extensions with the Mask (Application) 164 Copyright 2016 FUJITSU LIMITED

Effects of SIMD Extensions with the Mask: Process 2 (Optimization Control Line Tuning + Source Tuning) FUﬁTSU

The adverse effect of SIMD extensions with the mask could be reduced in the next step, which is loop division
and SIMD optimization of only IF construct that have a high true ratio.
This results in a decreased effective instruction and improved execution performance.

Source code of improvement 2 (optimization control + source tuning)

63
64

65
66
67
68
69
70
n
72
73

1
1

b= I — B -

-}

- - NW W W WwWwwN
.=}

1$omp do
locl simd

<<< Loop-information Start >>>
<<< [OPTIMIZATION]

<<< SIMD(VL: 4)

<<< SOFTWARE PIPELINING

<<< PREFETCH
<<<

<<< Loop-information End >>

6v
6v
6v

6v

:12

True ratio of 98%
—> SIMD
optimization

a:12

do i=1,n1

if (p(i) > q) then
a(i) =c0+ b(i)*(c1 + b(i)*(c2 + b(i)*(c3 + b(i)*
& (c& + b(i)*(c5 + b(i)*(c6 + b(i)*(c7 + b(i)*
& (8 + b(i)*c9)))))))
endif
enddo

$omp enddo
1$omp do

14
75
76
77
78
79
80
81
82

- N W W WwwwwN
-]

Loop fission

<<<

<<< Loop-information E

p-information Start >>>

Compared with values before improvement: 1.89-fold effect

TIMIZATION]
EFETCH :8
b1:2,a1:2, b2: 2, az;

True ratio of 2%
No SIMD
optimization

>>>

do i=1,n1
if (p(i) < q) then

al(i) = c0+b1(i)/(c1+b1(i)/(c2+b1(i)/(c3+b1 (i)/(ch+b1 (i)/

& (c5+b1(i)/(c6+b1(i)/(c7+b1(i)/(c8+b1(i)/c9))))))))
a2(i) = c0+b2(i)/(c1+b2(i)/(c2+b2(i)/(c3+b2(i)/ (ch4+b2(i)/

& (c5+b2(i)/(c6+b2(i)/(c7+b2(i)/(c8+b2(i)/c9))))))))

endif

enddo

$Somp enddo

[sec]
1.4E+02
1.2E+02 S
Instructions commit A\
lbeos 1.66-fold effect| [1.14-fold effect
8.0E+01 N
— A —
\ T~
6.0E+01 instr’\l‘ition S\
commit N\
waitingfor \
4.0E+01 e
instruction \ — -
to be -
2 0E+0—| completed
00Es00 | D | _
Before improvement After improvement 1 After improvement 2
SIMD
instruction SIMD roaFlng point | SIMD integer §IMD Io;_ad—store _ Effectlye
rate instruction rate instruction rate instruction rate instruction
e ement 0.00% 0.00% 0.00% 0.00% HTIERTN
f\r:srrovemem 95.68% 100.00% 0.00% 99.65% / 5.14E+12
f\n:tsrrovememz 18.16% 38.95% 0.00% 40.79% \ 2.15E+12

With SIMD optimization of only IF construct with a
high true ratio, the effective instruction decreased.

Chapter 8 SIMD Extensions with the Mask (Application)

165

Copyright 2016 FUJITSU LIMITED

Effects of SIMD Optimization through Loop Unswitching (Before Improvement) FUﬁTSU

There is neither SIMD optimization nor effective software pipelining because the innermost loop contains an IF
construct. Consequently, the following is a frequent event: No instruction commit waiting for a floating-point
instruction to be completed.

Before optimization
[sec]
97 1 1$omp do
<<< Loop-information Start >>> 4.0E+00
<<< [OPTIMIZATION]
<<< UNSWITCHING 3.5E+00
<<< Loop-information End >>>) Four
98 2 p 4s doi=1,n instructions
99 2 3.0E+00 commit
100 3 p 4v if (n1 >= q) then
101 3 p 4v a(i) = c0+b(i)*(c1+b(i) *(c2+b (i) * 2.5E+00
(c3+b(i)*c4)))
102 3 p 4&v endif
03 2 2.0E+00
104 3 p 4v if(n1 >r) then
105 3 p 4v a(i) = cO*b (i)/(c1*b(i)/(c2*b i)/ 1.5E+00 _ _
(3*b(i)/ck))) e nstruction
:gg ; * el 1.0E+00 waiting for a
. floating-point
108 3 p 4&s if(n1 <s) then sl (@
109 3 p 4s a(i) = cO+b (i) /(c1+b (i) /(c2+b i)/ 5.0E-01 be completed
(c3+b(i)/c4)))
. e
110 3 p 4v endif 0.0E+00 I 1
11 2 p & enddo Before improvement
112 1 1$omp enddo
SIMD instruction rate SIMD floating point instruction rate (/SIMD | SIMD integer instruction rate (/SIMD SIMD load-store instruction rate
(effective instruction) target floating point instruction) target integer instruction) (/SIMD target load-store instruction)
Before 0.00% 0.00% 0.00% 0.00%
improvement

There is no SIMD optimization

Chapter 8 SIMD Extensions with the Mask (Application)

166

Copyright 2016 FUJITSU LIMITED

Effects of SIMD Optimization through Loop Unswitching (After Improvement)

[0®)
FUJITSU

Specification of loop unswitching for the IF construct improves instruction scheduling and facilitates SIMD
optimization and software pipelining. The result is a significant improvement in the following event: No
instruction commit waiting for a floating-point instruction to be completed.

After optimization
97 1 1$omp do [SEC]
<<< Loop-information Start >>> 4.0E+00
<<< [OPTIMIZATION]
<<< SIMD(VL: 4)
<<< SOFTWARE PIPELINING 3.5E+00 \
<<< UNSWITCHING . tFOUE. \
<<< Loop-information End >>> instruc! |9n \
: 3.0E+00 s commit
98 2 p 4v do i=1,n1
99 2 !ocl unswitching 5 5E+00
100 3 p 4v if (n1 >= q) then o) ke
101 3 p 4v a(i) = c0+b (i) * (c1+b (i)* (c2+b (i) * 7.22-fold effect
(c3+b(i)*c4)))
102 3 p 4v endif See next page for 2.0E+00
103 2 locl unswitching appearance of
106 3 p 4y if(n1 >1) then optimized code 1.5E+00 No \
105 3 p &4v a(i) = c0*b(i)/(c1*b(i)/(c2*b(i)/ instructi‘on \
(3*b(i)/ca))) Wg?ti":]m'ftor \
106 3 p &y endif 1.0E+00 9 \
a floating-
107 2 tocl unswitching point \
108 3 p 4v if(n1 <s) then 5 0E-01 instruction \
109 3 p 4v a(i) = c0+b(i)/(c1+b i)/ (c2+b i)/ : to be !
(3+b(i)/ct))) completed
110 3 p 4 endif 0.0E+00 =——— N —i =
11 2 [AY enddo
12 1 1$omp enddo Before improvement After improvement
Effective instruction
Before improvement 7 198E+11T N SIMD optimization reduced effective instruction.
After improvement \Z.SOEW /
7

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
arget floating point instruction)

SIMD integer instruction rate
(/SIMD target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before improvement —0e6% 0.00% 0.00% — 000%—
After improvement — B624% 100.00% 0.00% 95.50%

Chapter 8 SIMD Extensions with the Mask (Application)

167

Copyright 2016 FUJITSU LIMITED

Appearance of Code O

htimized by Loop Unswitching FUJITSU

Source code

Appearance of optimized code

97 1 1$omp do
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 4)
<<< SOFTWARE PIPELINING
<<< UNSWITCHING
<<< Loop-information End >>>

98 2 p 4v doi=1,n1

Condition (1)

99 2 locl unswitching
100 3 p 4v if (n1 >=q) then
101 3 p 4v a(i) = c0+b(i)*(c1+b(i)*(c2+b(i)*

(c3+b(i)*c4))) Process (1)

102 3 p 4v endif

103 2 locl unswitching | Condition (2)

104 3 p 4v if(n1 > r) then

105 3 p 4v a(i) = c0*b (i)/(c1*b(i)/(c2*b i)/
(3*b(i)/c4))) | Process (2)

106 3 p 4v endif

107 2 locl unswitching Condition (3)

108 3 p 4v if(n1 < s) then

109 3 p 4v a(i) = c0+b(i)/(c1+b(i)/(c2+b(i)/
(3+b(i)/c4)))

110 3 p 4v endif Process (3)

1M1 2 p &v enddo

12 1 1$omp enddo

* Loop unswitching

This optimization pertains to a loop containing an IF
construct that has branches with invariable conditions. It
places the IF construct outside the loop to create loops
used when some or all of the conditions in the IF
construct are met and a loop used when none of the
conditions are met.

!Pattern (1)
if((condition (1) true).and.(condition (2)
true).and.(condition (3) true))then
do i=1,n1
Process (1)
Process (2)
Process (3)
enddo
endif

IPattern (2)
if((condition (1) true).and.(condition (2)
true).and.(condition (3) false))then
do i=1,n1
Process (1)
Process (2)
enddo
endif

!Pattern (3)
if((condition (1) true).and.(condition (2)
false).and.(condition (3) true))then
do i=1,n1
Process (1)
Process (3)
enddo
endif

!Pattern (4)
if((condition (1) true).and.(condition (2)
false).and.(condition (3) false))then
do i=1,n1
Process (1)
enddo
endif

IPattern (5)
if((condition (1) false).and.(condition (2)
true).and.(condition (3) true))then
do i=1,n1
Process (2)
Process (3)
enddo
endif

IPattern (6)
if((condition (1) false).and.(condition (2)
true).and.(condition (3) false))then
do i=1,n1
Process (2)
enddo
endif

IPattern (7)
if((condition (1) false).and.(condition (2)
false).and.(condition (3) true))then
do i=1,n1
Process (3)
enddo
endif

! Pattern (8)
if((condition (1) false).and.(condition (2)
false).and.(condition (3) false))then
do i=1,n1
enddo
endif

Expanded to 8 if statements (do statements)

Chapter 8 SIMD Extensions with the Mask (Application)

168

Copyright 2016 FUJITSU LIMITED

Array Division (Before Improvement)

The L1 busy rate is high because indirect load and store are used. Consequently, the following is
a frequent event: No instruction commit due to L1D access for a floating-point load instruction.

[0®)
FUJITSU

Source code before improvement
28 real*8 a(14,n),b(14,n),c(14,n)
29
<<< Loop-information Start >>> | Arrays a, b, and c are accessed
<<< [PARALLELIZATION] contiguously. However, the respective
<<< Standard iteration count: 11{ * 3rrays themselves (such as a(1,i)) are
<<< [OPTIMIZATION] accessed with a stride of 14 elements
<<< SIMD(VL: 4) o q
<<< SOFTWARE PIPELINING per iteration.
<<< Loop-information End >>>
30 Tpp v doi=1,n Indirect load and store are used
31 1pv a(1,i) =b(1,i) - <(1,i) for access with a stride of 8 or more
32 1pv a(2,i) =b(2,i) - ¢(2,i) elements.
33 1 pv a(3,i) =b(3,i) - ¢(3,i)
34 1 p v a(4,i) =b(4,i) - c(4,i)
3 1 pv a(5,i) =b(5,i) - c(5,i)
36 1p v a(6,i) = b(6,i) - c(6,)
37 1 p v a(7,i) =b(7,i) - «(7,i)
38 1 p v a(8,i) =b(8,i) - ¢(8,i)
39 1p v a(9,i) =b(9,i) - c(9,i)
4 1 p v a(10,i) =b(10,i) - c(10,i)
£ 1p v a(11,i) =b(11,i) - c(11,i)
2 1p v a(12,) =b(12,) -c12i) | The L1 busy rate is high
4 1p v a(3d)=b130)-<13) | because indirect load and
wor v alL) b4 %) crore instructions are used.
p v enddo
46
47 end g
Instruction

[sec]

4.0E-01

3.5E-01

3.0E-01

2.5E-01

2.0E-01

No

1.5E-01

1.0E-01

5.0E-02

0.0E+00

instruction
commit due
to L1D access
for a floating-

point load

instruction

Before improvement

Memory and cache

L1 busy rate

L2 busy rate

Before improvement-

~ 75%)

2%

Memory busy rate

0%

SIMD floating-point load
instruction rate

SIMD floating poiqt store
instruction rate

SIMD indirect load
instruction rate

SIMD indirect store
instruction rate

SIMD stride load
instruction rate

SIMD stride store
instruction rate

SIMD broadcast load
instruction rate

4 SIMD 2 SIMD 4 SIMD 2 SIMD 4 SIMD 4 SIMD 4 SIMD 4 SIMD 4 SIMD
Before improvement 0.03% 0.00% 0.00% 0.00%>— 22.60% ~ TT30% 0.00% 0.00% 1.15%
Chapter 8 SIMD Extensions with the Mask (Application) 169 Copyright 2016 FUJITSU LIMITED

Effects of Array Division (Source Tuning)

Stride load and store are used since the loop is divided in such a way that the arrays are accessed with a stride of seven or fewer
elements. This results in improvement of the following event: No instruction commit due to L1 access for a floating-point load

instruction.

[0®)
FUJITSU

Source code after improvement (source tuning) ZESSE]m
30 real*8 a1(7,n),b1(7,n),c1(7,n) e
31 real*8 a2(7,n),b2(7,n),c2(7,n)
2 3.5E-01
<<< Loop-information Start >>> | Arrays a, b, and c are accessed
<<< [PARALLELIZATION] contiguously. However, the OE-01
<<< Standarditeration count: 1| respective arrays themselves (such 1.80-fold effect
<<< [OPTIMIZATION] . . . 5E-01 '
<< SIMDIVL:4) as al(1,i)) are accessed with a stride
: . . N
<<<_ SOFTWARE PIPELINING of 7 elements per iteration. ey N
<<< Loop-information End >>> . . instr':‘J(c)tion R
3 1pp2v doi=in —> Stride store is used. eyl
3% 1p2v al(1,i) =b1(1,i) - c1(1,i) .5E-01 oliD
35 1p 2 al(2,i) =b1(2,i) - 1(2) *Hoating-.
36 1 p 2v a1(3,i) =b1(3,i) - c1(3,i) 1.0E-01 point load
37 1p2v al(4,i) = b1(4,i) - <1 (4,i) instruction
38 1 p 2v a1(5,i) = b1(5,i) - c1(5,i) 5.0E-02
39 1 p 2v a1(6,i) = b1(6,i) - c1(6,i)
40 1 P 2v al (7,I) =b1 (7,I) -cl (7,I) 0 0E+00
51 1 p2v a2(1,i) = b2(1,i) - 2(1,i))
42 1 p 2 a2(2,i) = b2(2,i) - 2(2,i) . Before improvement After improvement
8B 1pw a2(3,i) = b2(3,i) - 2(3,i) :Stnde Iqad and store
4 1p 2 a2(4,i) = b2(4,i) - 2(&,i) | 'nstructions are now used. Memory and cache
4 1 p v a2(5,i) = b2(5,) - 2(5,i) L1 busy rate L2 busy rate Memory busy rate
4 1 p 2v a2(6,i) = b2(6,i) - 2(6,i)
4 1 p v a2(7,i) =b2(7,i) - 2(7,i) Before improvement 75% 2% 0%
48 1 p v enddo After improvement 58% 3% 0%
Instruction
SIMD floating-point load SIMD floating pojjnt store instruction| SIMD indirect load |SIMD indirect store| SIMD stride load | SIMD stride store | SIMD broadcast load
instruction rate rate instruction rate instruction rate instruction rate instruction rate instruction rate
4 SIMD 2 SIMD 4SIMD | 2 SIMD 4 SIMD 4 SIMD 4 SIMD 4 SIMD 4 SIMD
Before improvement 0.03% 0.00% -009 22.60% 11.30% 0.00% 0.00% 1.15%
After improvement 0.00% 0.00% 0.00% ~ 0.00% 0.00% 3563%—1781% 0.00%
\ /
Chapter 8 SIMD Extensions with the Mask (Application) 170 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Hindering Factor: Improvement in Data
Dependency

Loop That Has Data Dependency
Loop That Has an Unclear Definition Reference Relationship

Loop Containing Pointer Variables

Chapter 8 Hindering Factor: Improvement in Data Dependency 171 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Loop That Has Data Dependency

Loop That Has Data Dependency (Before Improvement)
Loop That Has Data Dependency (Source Tuning)

Chapter 8 Loop That Has Data Dependency 172 Copyright 2016 FUJITSU LIMITED

Loop That Has Data Dependency (Before Improvement) ruitsu

There is neither SIMD optimization nor effective software pipelining because array a has a data
dependency that references data for i = 2 or greater as defined wheni=1.
Consequently, the following is a frequent event: No instruction commit waiting for a floating-point

instruction to be completed.
There is no effective software pipelining

Source code before improveme),t/ because of data dependen(y between
iteration cycles.
<<< Loop-information Start >>] [sec]
RA There is dependency 4 5E+00
<<< [PA LLEL_IZATI(.)N] between array a on the load :
<< Standard iteration ¢ :2 Side and array aon the store 4.0E+00
<<< Loop-l.nforma End >>> side wheni=1or?2. 3.5E+00
4 1 pp doj=1,m
5 2 p 6s doi=1,n 3.0E+00
6 2 p 6m a(ij) =c0+a(1,j)*(c1 +b(i,j)*(c2 + b(ij)*(3 + b(ij)* 2.5E+00
7 2 & (c& +b(i,j)*(c5+b(i,j)*(c6 + b(i,j)*(c7 + b(i,j)* 2.0E+00
-
8 2 & (c8+b(ij)*c9)))) 1.5E+00 No instruction
9 2 commit waiting
10 2 p 6v end do 1.0E+00 for a floating-
point instruction
1M1 1 p end do 5.0E-01 to be completed
12 end 0.0E+00
Before improvement
SIMD
SIMD instruction rate SIMD floating point instruction rate (/SIMD SIMD integer instruction rate (/SIMD SIMD load-store instruction rate
(effective instruction) target floating point instruction) target integer instruction) (/SIMD target load-store instruction)

Before @ 0.00% 0.00% 0.00%
improvement

-

| There is no SIMD optimization.

Chapter 8 Loop That Has Data Dependency 173 Copyright 2016 FUJITSU LIMITED

Loop That Has Data Dependency (Source Tuning)

SIMD optimization and software pipelining were facilitated through peeling.
The result is a reduction in effective instruction, a decrease in instruction commits, facilitation of instruction
scheduling, and a significant improvement in the following event: No instruction commit waiting for a

floating-point instruction to be completed.

[0®)
FUJITSU

2.9-fold effect ||

Source code after improvement (source tuning) [sec]
15' : PP (‘10j]= 1.m Peeling of locations that have dependency 4.5E+00
p i=
6 1p a(i,j) = c0 +a(1,j)*(c1 + b(ij)*(c2 + b(i,j)*(c3 + b(i,j)* 4.0E+00 — \
71 & (c&+b(ij)*(c5+b(ij)*(c6 + b(i,j)*(c7 + b(ij)* A\
8 1 & (@+b(ij)*9))) — 3-5E+00 v
. . The elimination of : :
<<< Loop-information St d d Eacili d 3.0E+00|instructions commit
<<< [OPTIMIZATION] / ependency facilitate 5 5E400
<< SIMD(VL:4) SIMD optimization a.nd SE+
<<< SOFTWARE PIPELINING software pipelining in the 2.0E+00 -
<<< Loop-information End >>> period of i = 2 to n.
9 2 p 6v doi=2,n 1.5E+00 No instruction
10 2 p 6v a(ij) = €0 +a(1,j)*(c1 + b(i,j)*(c2 + b(i,j) * (3 + b(i,j)* 1.0E+00 it fods
1n 2 & (ch+b(ij)*(c5+ b(ij)*(c6 + b(ij)*(c7 + b(ij)* i';’iih"&;;ﬁ'?é
12 2 & (8+b(ij)*9))))) 5.0E-01 e
13 2 p 6v end do 0.0E+00
14 1 p end do
15 end Before improvement

After improvement

Effective instruction

Before improvement

1.68E+11

—

After improvement

4.27E+10

SIMD optimization reduced effective instruction.

SIMD instruction rate
(effective instruction)

SIMDyéting point instruction rate (/SIMD target

floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before improvement

0.00%

0.00%

0.00%

0.00%

After improvement

0,

96.12%

0.00%

83.919

Chapter 8 Loop That Has Data Dependency

174

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Loop That Has an Unclear Definition
Reference Relationship

Loop That Has an Unclear Definition Reference Relationship
(Before Improvement)

Loop That Has an Unclear Definition Reference Relationship
(Optimization Control Line Tuning)

Loop That Has an Unclear Definition Reference Relationship
(Optimization Control Line)

Chapter 8 Loop That Has an Unclear Definition Reference Relationship 175 Copyright 2016 FUJITSU LIMITED

Loop That Has an Unclear Definition Reference Relationship (Before Improvement) FUﬁTSU

There is neither SIMD optimization nor effective software pipelining because of unclear data
dependency regarding array a. Consequently, the following is a frequent event: No instruction
commit waiting for a floating-point instruction to be completed.

Source code before improvement

|| There is no effective software pipelining because of
unclear data dependency between iteration cycles for

array a.
<<< Loop-information Start >>> [sec]
<<< [PARALLELIZATION]
<<< Standard iteration count: 2 6.0E-01
<<< Loop-information End >>> 5.0E-01
53 1 pp do j=1,n1
546 2 p 6bs do i=1,n2 4.0E-01
55 2 p 6m a(I(i) j)=a(x(i),j)/b(ij)
56 2 p 6v end do . 3.0E-01
There is unclear
57 1 p end do
dependency between 2 0E-01
| array aon the Ioad No instruction commit
side and array a on 1.0E-01 waiting for a foating-
. * point instruction to be
the store side. completed
_
0.0E+00
Before improvement
SIMD
SIMD instruction rate SIMD floating point instruction rate (/SIMD | SIMD integer instruction rate (/SIMD | SIMD load-store instruction rate (/SIMD
(effective instruction) target floating point instruction) target integer instruction) target load-store instruction)

Before 0.00%
improvement

0.00%

0.00%

=

There is no SIMD optimization.

Chapter 8 Loop That Has an Unclear Definition Reference Relationship

176

Copyright 2016 FUJITSU LIMITED

Loop That Has an Unclear Definition Reference Relationship (Optimization Control Line Tuning)FUﬁTSU

With no data dependency made explicit by the NORECURRENCE specifier, SIMD optimization and software pipelining were
facilitated. The result is a reduction in the total number of effective instructions, a decrease in instruction commits,
facilitation of instruction scheduling, and a significant improvement in the following event: No instruction commit waiting
for a Floating-point instruction to be completed.

Source code after improvement (optimization control line tuning) [sed
53 locl norecurrence(a) 6.0E-01
<<< Loop-information'start >>> | Notifies compiler about Uk
<<< [PARALLELIZATION] no data dependency _
<<< Standard iteration count: 2 | between a(l(i), j) and 5.0E-01 \\
<<< Loop-information End >>> | a(x(i), J) \
54 1 pp do j=1,n1 4.0E-01 - —]
Loop-information Start '
s oop intormation S an>>> Instructions commit 1-86_f0Id effeCt
<<< [OPTIMIZATION]
<<< SIMD(VL: 4) 3.0E-01 =
<<< Loop-information End >>>
55 2 p 6v do i=1,n2 2.0E-01 —
56 2 p 6v a(l(i),j)=a(x(i),j)/b(ij) i
57 2 p 6v end do "o =
waiting for a
58 1 p end do 1.0E-01 foaing o -
be completed - e
0.0E+00
Before improvement After improvement
Effective instruction L Hective i .
Before improvement " 387E.10 \/7——‘ SIMD optimization reduced effective instruction.
After improvement \ 8.71E+09 /
SIMD instruction rate SIMD floagtihg point instruction rate (/SIMD | SIMD integer instruction rate (/SIMD | SIMD load-store instruction rate
(effective instruction) tafget floating point instruction) target integer instruction) (/SIMD target load-store instruction)
Before improvement | —0.00% 0.00% 0.00% 0.00%
After improvement ~ 88.34% 100.00% 76.92% 97.75%

Chapter 8 Loop That Has an Unclear Definition Reference Relationship 177

Copyright 2016 FUJITSU LIMITED

Loop That Has an Unclear Definition Reference Relationship (Optimization Control Line) FUﬁTSU

Here, specify the following optimization control line.

Optimization control line that can
be specified

optimization control specifiers Meaning Array
.. | DO loop Statement |assignment
ACLED I unit unit statgment
unit
Gives an instruction to the main processing
system about elements of the array that is the
operation target in a DO loop. The instruction is
NORECURRENCE that definiti
at definitions of th.e array .eleme.nts are not to Yes Yes No Yes
[(array1][,array2]...)] be referenced over different iterations.
(Gives an instruction to arrays for which loop
slicing is possible.)
array1, array2,... are array names.

Chapter 8 Loop That Has an Unclear Definition Reference Relationship 178 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Loop Containing Pointer Variables

Loop Containing Pointer Variables (Before Improvement)

Loop Containing Pointer Variables
(Optimization Control Line Tuning)

Making Data Dependency Explicit Regarding Array Subscripts
(Optimization Control Line)

Speed-up by CONTIGUOUS attribute

Chapter 8 Loop Containing Pointer Variables 179 Copyright 2016 FUJITSU LIMITED

Loop Containing Pointer Variables (Before Improvement) ruitsu

SIMD optimization and software pipelining are not facilitated because the pointer variables of arrays a and
b point to unknown memory areas. Consequently, the following is a frequent event: No instruction commit

waiting for a floating-point instruction to be completed.

Source code before improvement

[sec]

— e e e o e o o o
XN E WN=oP®~NOUL P~ WN =

program sub_f

real,dimension (100000),target::x

integer :: kmax

real, dimension(:),pointer::a,b

1 pp 8v do i=1,100000
1 p 8 x(i)=i
1 p 8v end do

a=>x(1:10000)

2.5E+00

2.0E+00

b=>x(10001:20000) No
= instruction
kmax = 1000000. . 1.0E+00 commit
call start_collection("1") waiting for
1$omp parallel Unclear dependency between a floating-
1 do k=1,kmax array b on load side and array ~ point
1 1$omp do a on store side 5.0E-01 '“Sttg“;:c’”
2 p 8 do i=1,10000 completed
2 p 8 a(i)=2.0/b(i)+1.0
2 p 8 end do 0.0E+00
1 end do ;
i Before improvement
20 1$omp end parallel The.re .IS n? SIMD P
optimization.
SIMD /
SIMD instruction rate SIMD floating point instruction rate (/SIMD | SIMD integer instruction rate (/SIMD | ~ SIMD load-store instruction rate (/SIMD
(effective instruction) target floating point instruction) target integer instruction) target load-store instruction)
Before 0.00% 0.00% 0.00% 0.00%
improvement

Chapter 8 Loop Containing Pointer Variables

180

Copyright 2016 FUJITSU LIMITED

Loop Containing Pointer Variables (Optimization Control Line Tuning)

[0®)
FUJITSU

With data dependency made explicit by the NOALIAS specifier, SIMD optimization and software
pipelining were facilitated. This results in significant improvement of the following event: No
instruction commit waiting for a floating-point instruction to be completed.

Source code after improvement (optimization control line tuning)
[sec]
1 program sub_f
2 2.5E+00
3 real,dimension(100000),target::x
4 integer :: kmax P \
5 real,dimension(:),pointer::a,b 2.0E+00 \
6 1pp 8 d? i=.1'100000 Instructions commit \
7 1p 8 () 3.04-fold effect
8 1 p 8v end do 1.5E+00 —
9 a=>x(1:10000) L
10 b=>x(10001:20000) iI'IStI"\llJ(Ztion
1 kmax = 1000000 1.0E+00 commit
12 call start_collection("1" o q ’ iy
collection("1") Notifies compiler about no for a
13 1$omp parallel floating-
% 1 do k=1 kmax data dependency between 5 0E01 point
15 1 1$omp do /‘ a(i) and b(i)) |nstt(r)u;‘ta|on
16 1 locl noalias completed d o=
<<< Loop-information Start >>> s D -
’ 0.0E+00
<<< [OPTIMIZATION]
<<< SIMD(VL: 4) Before improvement After improvement
<<< SOFTWARE PIPELINING
<< LOOP""f?rmat'O" End >>> SIMD optimization reduced effective instruction.
17 2 p 6v do i=1,10000
18 2 6 i)=2.0/b(i)+1.0
P .y (e T Effective instruction
19 2 p 6v end do
20 1 end do Before improvemert— , 105E+11 N
After improvement \3.35E+10 /
SIMD instruction rate SIMD floating point instruction rate (/SIMD JSIMD integer instruction rate (/SIMD | SIMD load-store instruction rate (/SIMD
(effective instruction) target floating point instruction) target integer instruction) target load-store instruction)
Before improvement .00% 0.00% | 0.00% W%’\
After improvement\ 75.36% 99.36% 41.78% 91.78%

Chapter 8 Loop Containing Pointer Variables

181

Copyright 2016 FUJITSU LIMITED

Making Data Dependency Explicit Regarding Array Subscripts (Optimization Control Line) FUﬁTSU

Here, specify the following optimization control line.

Optimization control line that can

be specified
Optimization control specifiers Meaning Array
Program unit | DO loop unit 3::::ement ::;12::::_?';“
unit

Gives an instruction that pointer
NOALIAS variables are not to share memory Yes Yes No No
areas with other variables.

Chapter 8 Loop Containing Pointer Variables 182 Copyright 2016 FUJITSU LIMITED

Speed-up by CONTIGUOUS attribute FUjfTsu

Optimization against arrays with pointer attribute may be promoted
if CONTIGUOUS attribute be added to them.

STREAM Triad(pointer version)

127 DOUBLE PRECISION, dimension(:), pointer,contiguous :: a,b,c

248 1 f !$OMP PARALLEL DO
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 4)
<<< SOFTWARE PIPELINING
<<< PREFETCH :10
<<< C4,b:4a:2
<<< XFILL 12
<<< a2
<<< Loop-information End >>>
289 2 p K DO60j=1,n
250 2 p kv a(j) = b(j) + scalar*c(j)
251 2 p kv 60 CONTINUE

GB/Sec

350
300
250

200

150 -

100 -

50 -~

STREAM Triad (pointer version)_,—prz

—=—PTR(CONTIGUOUS)

1 3 5 7 9 11 1315 17 19 21 23 25 27 29 31
Number of threads

In above case, XFILL optimization has been applied by specifying CONTIGUOUS attribute,

then performance improved.

CONTIGUOUS attribute(Specification introduced by Fortran2008)

CONTIGUOUS attribute can be specified to shape-assumed arrays or pointer arrays,

- in case of shape-assumed arrays, they should associate with actual arguments having CONTIGUOUS attribute.
- in case of pointer arrays, they should associate with targets with CONTIGUOUS attribute.

Chapter 8 Loop Containing Pointer Variables

183

Copyright 2015 FUJITSU LIMITED

(o8,
FUJITSU

Hindering Factor: Improvement of a Loop
with a Few Iterations

Loop with a Few Iterations
Specification of an Appropriate Number of Unrollings and
Suppression of Software Pipelining
Cloning
Before Improvement by Cloning

Cloning Source Tuning

Chapter 8 Hindering Factor: Improvement of a Loop with a Few Iterations 184 Copyright 2016 FUJITSU LIMITED

Loop with a Few Iterations Fujfrsu

Even for a loop for which software pipelining was facilitated, if the number of loop
iterations is small, instruction scheduling may have a small effect.

Assumptions in this example
Loop iteration count, n = 40
Example doi=1,n Number of unrollings = 8
b(i) = a(i) + c | Software pipelining
enddo 4SIMD

Loop structure diagram
Parallelism: High |

if (process whose iteration count is value (160 or more) presented by software pipelining) then

Software pipelined and unrolled 4

loo jwd82050-i "sample.f90", line 4: At a loop iteration count of 160 or more, a loop to which software pipelining is applied is
P selected at the execution time.

Since the loop iteration count in this example is 40, this loop is not executed.

> else if (process whose iteration count is multiple of 32 iterations, among those remaining with above iteration count) then

Unrolled loop
8 unrollings x 4 (SIMD) = 32
For the loop in this example, the processes for i = 1 to 32 are executed in this loop.
> else
Original loop

For the loop in this example, the remaining processes for i = 33 to 40 are executed in this loop.

Parallelism: Low

The above diagram shows the multiple As described above, if the loop iteration count is small, instruction
loop structure created by the compiler. In scheduling has a small effect since loops with high parallelism at
the structure, the higher the layer, the . 9t p gh paralielism a
higher the parallelism at the instruction the instruction level are not executed.
level.

Chapter 8 Hindering Factor: Improvement of a Loop with a Few Iterations 185

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Specification of an Appropriate Number
of Unrollings and
Suppression of Software Pipelining

Specification of an Appropriate Number of Unrollings and
Suppression of Software Pipelining (Before Improvement)

Specification of an Appropriate Number of Unrollings and
Suppression of Software Pipelining (After Improvement)

Specification of an Appropriate Number of Unrollings and
Suppression of Software Pipelining (Optimization Control Line)

Specification of an Appropriate Number of Unrollings and
Suppression of Software Pipelining (Compiler Options)

Cha pter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining 186 Copyright 2016 FUJITSU LIMITED

Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining (Before Improvement) FUT[)TSU

Unrolling and software pipelining do not function effectively because the number of iterations is small.
Consequently, the following is a frequent event: No instruction commit waiting for a floating-point
instruction to be completed.

Source code before improvement [sec]

<<< Loop-information Start >>> 7.0E-01

<<< [PARALLELIZATION] 6.0E-01

<<< Standard iteration count: 534 '

<<< [OPTIMIZATION] Number of unrollings is 6, 5.0E-01

<<< SIMD(VL: 4) with loop iterations count of 4 OE-01

<<< SOFTWARE PIPELINING n=16 :

<<< Loop-information End >>> | 3.0E-01 No instruction

. commit waiting

42 1 pp 6v doi=1,n 2.0E-01 for a floating-
43 1 p 6v b(i) =0 +a(i)*(c1 +a(i)*(c2 + a(i)*(3 + a(i)*) ~ point
44 1 i zcg + a:i;:(;!)i);)a)()i)))*(cﬁ +ali)*(c7 +ali)* 1.0E-01 L”SEL”&%?&Z%
45 1 8 +afi)*c
46 1 p 6v enddo 0.0E+00
47 End Before improvement

Problem: The loop iteration count is small.
- Software pipelining loops are not executed.

Although "SOFTWARE PIPELINING" is displayed as optimization information, software pipelining loops
are not executed because the number of iterations is small.

jwd82050-i "sample.f", line 42: At a loop iteration count of 120 or more, a loop to which software
pipelining is applied is selected at the execution time.

- The number of unrollings is not appropriate.

6 unrollings x 4 (SIMD) =24 The unrolled loop is not even executed once.
The original loop is executed for all 16 iterations.
The execution of the original loop has a significant effect on performance.

Chapter 8 specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining 187 Copyright 2016 FUJITSU LIMITED

Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining (After Improvement) FUT[)TSU

Appropriate instruction scheduling was done with a specified number of unrollings appropriate
to the number of iterations and with software pipelining suppressed. This resulted in the
following event being significantly reduced: No instruction commit waiting for a floating-point
instruction to be completed.

Source code after improvement (optimization control line tuning) fsed]
sec
Specifies 4 as
appropriate number of /.0E-01 | |
unrollings
42 tod unroll(4) ' 6.0E-01 1.26-fold effect
43 locl noswp <
<<< Loop-information Start >>> 5.0E-01 S o
<<< [PARALLELIZATION] Suppresses software
<<< Standard iteration count: 534 pipelining 4.0E-01
<<< [OPTIMIZATION]
<< S|MD(VLZ ll) 30E_01 instr’:lJ(Ztion = S~ ~
<<< Loop-information End >>> wgi)tin:(;“ftor SN~
4 1 pp 4y doi=1,n 2.0E-01 = Toaling-
45 1 |p 4v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)* insg)ugson
46 1 & (ck+a(i)*(c5+a(i)*(c6+ a(i)*(c7 +a(i)* 1.0E-01 completed
47 1 & (c8 +a(i)*c9)))))))) 0.0E+00 |_L _
48 1 |p 4v enddo :
49 End Before improvement After improvement

From the specification of 4 for the number of unrollings
4 unrollings x 4 (SIMD) =16
The unrolled loop is executed for all 16 iterations.

Chapter 8 specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining 188 Copyright 2016 FUJITSU LIMITED

Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining (Optimization Control Line)FuﬁTSU

Here, specify the following optimization control line.

Optimization specifier

Meaning

Optimization control line that

can be specified

Array
Program unit DO_Ioop Sta_tement assignment
unit unit statement
unit
Unrolls a DO loop.
UNROLL (m1) mlisa deu.rna! number in a range of 2 No Yes No No
to 100 that indicates the number of
unrollings (multiplicity).
Disables the software pipelinin
NOSWP ; pipelining Yes | Yes | No | VYes
function.
Chapter 8 specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining 189 Copyright 2016 FUJITSU LIMITED

Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining (Compiler Options) FUﬁTSU

You can achieve effects similar to source tuning by specifying the following

compiler options.

Compiler options

Description of function

-Kunroll[=N]

Gives an instruction to optimize loop unrolling. Specify an upper
limit in N for the number of loop unrollings. You can specify a
value in a range of 2 to 100 for N. If the specification of N is
omitted, the compiler automatically determines the optimal value.
If the -00 or -01 option is valid, the default is -Knounroll.

If -02 or a higher option is valid, the default is -Kunroll.

-Knoswp

Gives an instruction not to optimize software pipelining.

B Use example (source code before improvement)
$ Frtpx -Kfast,parallel sample.f90 -Kunroll=8,noswp

Chapter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining 190

Copyright 2016 FUJITSU LIMITED

Before Improvement by Cloning

o)
FUJITSU

Even though the number of iterations of the innermost loop depends disproportionately on a specific condition,
it is just a variable. For this reason, optimizations such as full unrolling are hindered, the number of instructions
increases, and the following is a frequent event: No instruction commit waiting for a floating-point instruction

to be completed.

Source code before improvement

48

49
50
51
52

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 3
<<< Loop-information End >>>

1 pp DO J=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 4)
<<< SOFTWARE PIPELINING

Cases where N is 9
account for 100%.

<<< Loop-information End >,
2 p 6bv DO I=2,N <—
2 p 6v AL =B(J)C(L)
2 p 6v ENDDO
1p ENDDO

Chapter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining

191

[sec]

3.0E-02

2.5E-02

2.0E-02

1.5E-02

1.0E-02

5.0E-03

0.0E+00

Four
instructions

commit

No instruction

commit
waiting for a
floating-point

instruction to
be completed

Before improvement

Copyright 2016 FUJITSU LIMITED

Cloning Source Tuning

D
FUJITSU

Clone optimization control lines are specified to create a conditional branch in the innermost loop using
variable values and to facilitate full unrolling and other optimizations. This results in significant improvement
of the following event: No instruction commit waiting for a floating-point instruction to be completed.

Source code after improvement

47 locl done(N==9) <—
<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration c
<<< [OPTIMIZATION]
<<< SOFTWARE BHELINING

|1

Insert CLONE optimization control lines
to apply cloning optimization to the loop.

A branch is created with the
condition specified by N, and the
loop is cloned.

After optimization

<<< Loop-information End >>> DO J=1,M
49 2 pf DOI=2N DOI=2,NB c
A(l,)) =B(1,J)/C(l
50 2 p R A(L))=B(L)/C(L) Al = BUNCL
512 pfv ENDDO .
521 p ENDDO ENDIE

<<< (CLONE (Appearance of source code)
<<< Loop-information End >>>
48 1 pp DO J=1,M —_ ||;£)NJ=_=]9,)WTHEN
<<< Loop-information Start >>> Do |='2 9 Full unrolling is possible
<<< [OPTIMIZATION] " because the number of
SIMD A(1)) = B(1))/C(1,)) iterations of the
<<< SIMD(VL: 4) ENDDO innermost loop is clear.
<<< SOFTWARE PIPELINING - ENDDO
<<< FULL UNROLLING ELSE

[sec]

3.0E-02

2.5E-02

2.0E-02

1.5E-02

1.0E-02

5.0E-03

0.0E+00

Four \

instructions

commit

About 1.69-fold
effect

.

No

instruction
commit
waiting for
a floating-
point

instruction
to be
completed

—

’=‘

Before improvement

After improvement

Effective instruction//\
Before improvement |~ 1.34E+08 N
After improvement \ 6.71E+07 /

Facilitating optimization reduced effective instruction.

Chapter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining

192

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Various Optimizations

Rerolling
Rerolling (Before Improvement)
Effects of Rerolling (Source Tuning)

Facilitation of SIMD Optimization through Changes to Simple
Variables

Inline expansion: procedures using associated allocatable
variable

Chapter 8 Various Optimizations 193 Copyright 2016 FUJITSU LIMITED

Rerolling (Before Improvement)

There are many instruction commits because SIMD optimization is unavailable due to the dependency
in the innermost loop.

[0®)
FUJITSU

Source code after improvement (source tuning) [sec]
sec
<<< Loop-information Start >>>
<<< [PARALLELIZATION] 2.2-01
<<< Standard iteration count: 2 2.0E-01 i
<<< Loop-information End >>> 1.8E-01 instructions
_ commit
42 1 pp DO K=1,M 1.6E-01
<<< Loop-information Start >>>
<<< [OPTIMIZATION] 1.4E-01
<<< SOFTWARE PIPELINING 1.2E-01
<<< Loop-information End >>> 1.0E-01
44 2 p hs a(1,),K) = b(1,),K) +a(1,)-1,K) 6 0E-02
45 2 p 4s a(2),K) =b(2JK) +a(2)-1,K) o o etucton
4 2 p 4s a(3)K)=b(3)K) +a(3)-1K) 4.0E-02 fora foting.
47 2 p 4s a(4,),K) = b(4,),K) + a(4,)-1,K) 2.0E-02 to be completed
49 1 p ENDDO Before improvement
50 end subroutine rerolling
SIMD There is no SIMD optimization.
SIMD instruction rate SIMD floating point instruction rate (/SIM SIMD integer instruction rate (/SIMD SIMD load-store instruction rate (/SIMD
(effective instruction) target floating point instruction) target integer instruction) target load-store instruction)
Before o 0 o 7
mprovemeﬁ 0.00% 0.00% 0.00% 0.00%

Chapter 8 Various Optimizations

194

Copyright 2016 FUJITSU LIMITED

Effects of Rerolling (Source Tuning)

Rewriting unrolled statements into loop statements (returning them to a loop) facilitates SIMD optimization.
This results in a decreased effective instruction and improved performance.

[0®)
FUJITSU

Source code after improvement
sec
<<< Loop-information Start >>> []

<<< [PARALLELIZATION] 2.2E-01

<<< Standard iteration count: 2 2.0E-01 - 1.1-fold effect

<<< Loop-information End >>> Suppresses |00P 1 8E-01 instrﬁgtrions .
42 1 pp DO K=1,M > unro"ing : commit
43 1 !0CL NOUNROLL 1.6E-01

<<< Loop-information Start >>>

<<< [OPTIMIZATION] 1.4E-01

<<< SOFTWARE PIPELINING 1.2E-01 No

<<< Loop-information End >>> instruction
44 2 p DO J=1,N 1.0E-01 cgrpmift

<<< Loop-information Start >>> 8.0E-02 \;vaﬂl(t;:t?n;)_r

<<< [OPTIMIZATION] point

<<< SIMD(VL: 4) 6.0E-02 No instruction instruction

. : . commitwaiting to be
<<< Loop-information End >>> 4.0E-02 oot completed
= to be completed
46 3 p v a(1,),K) =b(1,),K) + a(l1,)-1,K)
473 p v ENDDO 0.0E+00 R
48 2 p ENDDO Before improvement After improvement
49 1 p ENDDO
50 end subroutine rerolling Effective instruction SIMD optimization
: 117641 reduced effective
Beforfa improvement M instruction.
SIMD After improvement 4.43E+0 /

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate
(/SIMD target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before improvement | ——0.00% 0.00% 0.00% - 000% —— |
After improvement T——5534% | 100.00% 0.00% 96 68% |

Chapter 8 Various Optimizations

195

Copyright 2016 FUJITSU LIMITED

Facilitation of SIMD Optimization through Changes to Simple Variables FUT?TSU

Changing arrays with constant subscripts to simple variables may facilitate SIMD

optimization.

Example: Program change to simple variables

Before correction

After correction

doi=1,N

a(1) =b(1,i)
a(2) = b(2,i)
a(3) =b(3,i)
a(4) = b(4,i)
a(5) = b(5,i)
a(6) = b(6,i)

x =u(2) *a(1) +u(3) *a(2)
y =u(2) *a(3) +u(3) *a(4)
z =u(2) *a(4) + u(3) * a(6)

end db

doi=1,N

al =b(1,i)
a2 =b(2,i)
a3 =b(3,i)
ak = b(4,i)
a5 =b(5,i)
ab =b(6,i)

X =.u(2) *al +u(3) *a2
y =u(2) *a3 +u(3) * a4
z =u(2) *a4 +u(3) *ab

end db

Since arrays a(1) to a(6) are handled
practically as local variables, they
are changed to simple variables a1
to ab.

Chapter 8 Various Optimizations

196

Copyright 2016 FUJITSU LIMITED

Inline expansion: procedures using associated allocatable variable

(o0
FUJITSU

B Procedure containing use-association of allocatable variable are not target of inline
expansion. If allocatable variable is not referred to, copying the module and
modifying to delete the use-association make the procedure will be target of inline

expantion.

module mod?2
real(8), dimension(:), allocatable :: gl
end module mod?2 A

module mod1/Allocatable
use mod2 variable gl is

real(8) :: a(100) Lnot referred to

contains insubl
subroutine sub1(n)
doi=1,n
a(i)=5
end do
end subroutine sub1

subroutine sub3(n)
doi=1,n

ql(i) =5
end do

end subroutine sub3 -
end module mod1 Inline '
expansion of
subroutine sub? sub1 is preferred

use mod1
call sub1(100)
end subroutine sub?2

module mod2
real(8), dimension(:), allocatable :: gl
end module mod2

module mod1
use mod2
subroutine sub3(n)
doi=1,n
ql(i)=5
end do
end subroutine sub3
end module mod1

Sub1 is copied and
modified as
another procedure
in module mod11

module mod11
real(8) :: a(100)
contains
subroutine sub1(n)
doi=1,n
a(i)=5
end do
end subroutine sub1
end module mod11

Copied and
modified module

subroutine sub? mod11 is used
use mod1
call sub1(100)

end subroutine sub?

jwd2483i-i "b.f90", line 25, column 8: Module procedure 'sub1' not
expanded inline, because it use associates an allocatable variable.

jwd810To-i "c.f90", line 28: 'sub1'is expanded inline.

Chapter 8 Various Optimizations

197

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Thread Parallelization Processing Tuning

Thread Parallelization ratio Improvement

Execution Efficiency Improvement of Thread Parallelization
Processing

Chapter 8 Thread Parallelization Processing Tuning 198 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Thread Parallelization Ratio Improvement

What Is the Thread Parallelization Ratio?
Thread Parallelization Ratio Improvement

Chapter 8 Thread Parallelization Ratio Improvement 199 Copyright 2016 FUJITSU LIMITED

What Is the Thread Parallelization Ratio? FUJFTSU

The parallelization ratio means the percentage that can be executed in parallel in one parallel
execution sequence.

One parallel Sequential .
execution S’;‘ﬁfut'on Part that can be executed in parallel
sequence

In two parallel execution sequences,
E’)\(lgcﬂﬁi;arllld Ziggﬁ{i‘gr?l Part that can be the part that can be executed in
sequences part executed in parallel gig‘:ﬂﬁl)?]e:g;l‘;; :éz of one parallel

Amdahl's [aw shows the relationship between the thread parallelization

ratio and scalability in n parallel execution sequences.
n =16 (ideally, 16 parallel processes)

I
mAmdahl's law . 7

16

r: 1 14 : : - = =

Scalablllty — 0 =1 An.lngre.asemthe parall:gllz.atlc;‘r] h
= 10 ratio is important to achieving hig
(1_ p)+_ E 8 scalability. \/
n gs
® p: Parallelization ratio 4
2 ===
® n: Number of parallels 0
0 20 40 60 80 100

Parallelization ratio

Chapter 8 Thread Parallelization ratio Improvement 200 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Thread Parallelization Ratio Improvement

Loop That Has an Unclear Definition Reference Relationship
Loop Containing Pointer Variables

Loop That Has Data Dependency

Chapter 8 Improvement in False Sharing 201 Copyright 2016 FUJITSU LIMITED

Loop That Has an Unclear Definition Reference Relationship rujitsu

B '0CL NORECURRENCE

The main processing system cannot determine whether applying loop slicing to array a will cause a
problem in the following problem, because the subscript expression of array a is an element of another
array, y(j). If the programmer knows that loop slicing of array a will not cause a problem, the
programmer can use parallelization by specifying the NORECURRENCE specifier.

Source code before improvement Source code after improvement
5 5 locl norecurrence(a)
6 1 s 8s do i=1,1000 <<< Loop-information Start >>>
7 1 m8m a(y(i))=a(y(i))+b(i) <<< [PARALLELIZATION]
8 1 p 8v end do <<< Standard iteration count: 800
9 END <<< [OPTIMIZATION]
<<< SIMD(VL: 4)
jwd5228p-i "a.f90", line 7: This DO loop cannot be <<< Loop-information End >>>
parallglized because the definition ref.erence orfier of 6 1 pp 8v do i=1,1000
data differs from the order of sequential execution. \ . .
: : wa £90" [ine 7- Thi 7 1 p 8 a(y(i))=a(y(i))+b(i)
jwd6228s-i "a.f90", line 7: This DO loop cannot be
SIMD-optimized because the definition reference order 8 1 p 8 end do
of data differs from the order of sequential execution.

INote!

= If the NORECURRENCE specifier is specified for an array for which loop slicing is not
possible, the main processing system may apply the wrong loop slicing.

= If the array name is omitted, the specification is valid for all arrays in the target
section.

Chapter 8 Thread Parallelization Ratio Improvement 202 Copyright 2016 FUJITSU LIMITED

Loop Containing Pointer Variables FUJITSU
B !0CL NOALIAS

Data dependency is unclear and there is no parallelization because the memory areas occupied by the
pointer variables are determined at the execution time. If the programmer knows that the pointer
variables do not point to the same memory area, the programmer can use parallelization by specifying
the NOALIAS specifier.

Source code before improvement Source code after improvement
1 real,dimension(100000),target::x 1 real,dimension(100000),target::x
2 real, dimension(:),pointer::a,b 2 real,dimension(:),pointer::a,b
3 a=>x(1:10000) 3 a=>x(1:10000)
4 b=>x(10001:20000) A b=>x(10001:20000)
5 5 locl noalias
6 1 s s do i=1,100000 <<< Loop-information Start >>>
7 15 s b(i) = a(i)+1.0 <<< [PARALLELIZATION]
8 1 s s end do <<< Standard iteration count: 1143
9 end <<< [OPTIMIZATION]
<<< SIMD(VL:8)
jwd5228p-i "a.f90", line 7: This DO loop cannot be <<< SOFTWARE PIPELINING
parallelized because the definition reference order of <<< Loop-information End >>>
data differs from the order of sequential execution. .
) . . . 6 1pp 8v do i=1,100000
jwd6228s-i "a.F90", line 7: This DO loop cannot be)]
SIMD-optimized because the definition reference order 7 1p 8 b(i) = a(i)+1.0
of data differs from the order of sequential execution. 8 1 p 8v end do
9 end

Chapter 8 Thread Parallelization Ratio Improvement 203 Copyright 2016 FUJITSU LIMITED

Loop That Has Data Dependency

B Parallelization through peeling

o)
FUJITSU

The following loop is not parallelized because it has dependency regarding array a wheni =1
and when i = n. To facilitate parallelization, eliminate the dependency by placing the

beginning and end parts of the loop outside the loop.

Source code before improvement

Source code after improvement

4 1 s 8s doi=1,n
5 1 s 8m a(i)=a(1)+b(i)+a(n)
6 1 s 8v end do

jwd5202p-i "a.f90", line 5: This DO loop cannot be

differs from the order of sequential execution. (Name: a)

jwd5208p-i "a.f90", line 5: The definition reference order
is unknown and the reference order may differ from the
order of sequential execution, so this DO loop cannot be
parallelized. (Name: a)

parallelized because the definition reference order of data

A

0 N O U

a(1)=a(1)+b(1)+a(n)
<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 800
<<< [OPTIMIZATION]
SIMD(VL: 8)
SOFTWARE PIPELINING
<<< Loop-information End >>>

<

<

1 pp 8v do i=2,n-1
1 p 8v a(i)=a(1)+b(i)+a(n)
1 p 8v enddo

a(n)=a(1)+b(n)+a(n)

Chapter 8 Thread Parallelization Ratio Improvement

204

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Execution Efficiency Improvement of
Thread Parallelization Processing

Improvement in False Sharing
Improvement in Load Imbalance

Chapter 8 Execution Efficiency Improvement of Thread Parallelization Processing 205 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Improvement in False Sharing

What Is False Sharing?
False Sharing (Before Improvement)
False Sharing (Source Tuning)

Chapter 8 Improvement in False Sharing 206 Copyright 2016 FUJITSU LIMITED

What Is False Sharing?

False sharing is a phenomenon in which cache lines between threads are
frequently invalidated or copied back.

Example assuming four-thread parallelization processing

Source code example

1 subroutine sub(s,a,b,ni,nj)
2 real*8 a(ni,nj),b(ni,nj) g
3 real*8 s(nj) nJ:l’
’ — | ni=2000
5 1pp doj=1,nj
6 1 p s(j)=0.0
7 2 p 8v doi=1,ni
8 2 p 8 s(j)=s(j)+a(i,j)*b(ij)
9 2 p 8v end do
0 1 p end do
11
12 end
| Data is placed in cache in units

Initial state /

of cache lines.

® Thread 0 instruction to update s(1)

o)
FUJITSU

(1) Cache hit
(2) Thread 0 completion of the update of s(1)

(3) Invalidation of the cache lines of threads 1 to 3 to maintain data
consistency

cache

(1) Cache hit

Thread 0
(core 1

Thread 1
(core 2)

Thread 2
(core 3)

Thread 3

(core 4)

s(1) to s(4)

(3) Invalidate

(3) Invalidate

(3) Invalidate

v |

A

A

L2 cache

cache

Thread 0
(core 1)

Thread 1
(core 2)

Thread 2
(core 3)

s(1) to s(4)

s(1) to s(4)

s(1) to s(4)

Each thread reads the game cache lines, including s(1) to s(4).

Thread 3
(core 4)

s(1) to s(4)

L2 cache

- =

® Thread 1 instruction to update s(2)

cache

(1) Cache miss
(2) Copy back of the cache line from thread 0 to thread 1
(3) Thread 1 completion of the update of s(2)

(4) Invalidation of the cache line for thread 0 to maintain data

consistency | (1) Cache miss

Thread 1 Thread 2 read 3
T{J{,‘ig‘”’ (core 2)/ (core 3) (core 4)
(4) Invalidate | | s(1) to s(4) | | Invalidate | | Invalidate
A
\ W%k D Performance
deteriorates el
51 ¢ because each %
(1) th t
(&ackpy “ 12 cache = read repeats ~ <T

Chapter 8 Improvement in False Sharing

207

Tr/, this state.

Copyright 2016 FUJITSU LIMITED

False Sharing (Before Improvement)

False sharing occurs because the number of iterations of j, which is the
parallelized dimension, is small at 16 and data in array a shares cache lines
between threads. Consequently, data access wait is a frequent event.

[0®)
FUJITSU

Source code before improvement [sec]
22 subroutine sub(flag)
23 integer*8 i,j,n 6.0E-01
24 parameter(n=60000)
25 parameter(m=16)
26 real*8 a(m,n),b(m,n) 5.0E-01
27 integer flag(m,n))
28 common /com/a,b
29
30 1$omp parallel Number of iterations 4.0E-01
31 1$omp do / of parallelized
2.1 do i=1,m g dimension: 16
<<< Loop-information Start >>> 3.0E-01
<<< [OPTIMIZATION]
<<< PREFETCH :16
<<< b:16
<<< Loop-information End >>> 2.0E-01
3 2p8 dojein False sharing occurrence o et e
34 3 p 8m if(flaglifj-eq.1)then .
mmit t
35 3 p 8 a(ij)=b(i) 1.0E-01 5 d”? °
36 3 p 8y endif - GITHEER 10l
37 2 p 8 enddo an integer load
38 1p enddo instruction
39 1$omp end parallel 0.0E+00
“0 Before improvement
41 end
Cache
I(.]flfmitsi\sl rate L1D miss rate(/Load- L1D mi L1D miss dm L1D miss hwpf L1D miss swpf rate(/L1D |L2 miss rate(/Load- L2 mi L2 throughput !t\:l]?mo?]/ ¢
\etiective store instruction) s rate(/L1D miss) rate(/L1D miss) miss) store instruction) 5 (GB/sec) oughpu
instruction) (GB/sec)
Before /ﬁ' 0 0 0 0
Before ment 0.06% 24.98%7:21E+08 0.21% 99.79% 0.00% 0.00% 1.05E+04 355.62 0.01

The percentage of L1D misses is high, and false sharing has occurred.

Chapter 8 Improvement in False Sharing

208

Copyright 2016 FUJITSU LIMITED

False Sharing (Source Tuning)

False sharing can be avoided through loop interchange and parallelization outside the loop. This
results in a decrease in the number of L1 cache misses and an improvement in data access wait.

[0®)
FUJITSU

Source code after improvement (source tuning) [sec]
22 subroutine sub(flag)
23 integer*8 i,j,n 6.0E-01
24 parameter(n=60000)
25 parameter(m=16)
26 real*8 a(m,n),b(m,n) 5.0E-01 .
27 integer flag(m,n) A 1 .625'f0|d Effect
28 common /com/a,b S N
29 - A
30 1$omp parallel Loop interchange and 4.0E-01
3 '$omp do / parallelization
32 109 doj=1, outside loop
<<< Loop-information Start >>> 3.0E-01
<<< [OPTIMIZATION]
<<< FULL UNROLLING
<<< Loop-information End >>>
33 2pks doi=1,m . . 2.0E-01
3% 3 p fm iffag(ij)eaithed Avoids false sharing No
35 3 pfs a(i,j)=b(ji) instruction
36 3 pfv endif 1.0E-01 COTZmitdue
37 2p kv enddo 0 fora;rcless
38 1p enddo integer load
39 1$omp end parallel instruction |
» 0.0E+00
M end Before improvement After improvement
Cache
I(.lflfmi;s rate L1D miss rate(/Load- L1D mi L1D miss dm L1D miss hwpf L1D miss swpf L2 miss rate(/Load- L2 mi L2 throughput ft\:l]emo?]/ "
ir?st(reljclt\;gn) store instruction) miss rate(/L1D miss) rate(/L1D miss) rate(/L1D miss) store instruction) miss (GB/sec) (Gg)/l;gc)pu
Before improvement 0.00%, 24.98%™ 7.21E+08 0.21% 99.79% 0.00% 0.00% 1.05E+04 355.62 0.01
After improvement 0.00% 1.59% 4.59E+07 2.65% 97.35% 0.00% 0.00% 1.09E+04 36.28 0.02

Avoiding false sharing reduced the L1D miss and
increased performance.

Chapter 8 Improvement in False Sharing

209

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Improvement in Load Imbalance

Triangular Loop
Loops with Irreqgular Amount of Calculation
Small Loop Iteration Count of a Parallelized Dimension

Chapter 8 Improvement in Load Imbalance 210 Copyright 2016 FUJITSU LIMITED

Triangular Loop

® What Is a Triangular Loop?
® Trianqular Loop (Before Improvement)
® Triangular Loop (OpenMP Tuning)

Chapter 8 Trianqular Loop 2n

O
FUJITSU

Copyright 2016 FUJITSU LIMITED

What Is a Triangular Loop?

[0®)
FUJITSU

A triangular loop is a loop in which the initial value and end
value of an inner loop are determined by the control variable of

an outer loop. If that loop is divided into blocks that are executed
in parallel, a load imbalance occurs.

Source code example

subroutine sub()

* Load imbalance:
This is a phenomenon in which the parallel processing load varies

between individual threads.

integer*8 i,j,n J
parameter(n=512) ~_
real*8 a(n+1,n),b(n+1,n),c(n+1,n) Y Amount of calculation
common a,b,c \\
N
1$omp parallel do N
do j=1,n \\
doi=sjn — Initial val fi
a(ij)=b(ij)+c(ij) nitial va ue of inner
enddo loop determined by
enddo control variable of \\
outer loop
end I TO T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15
A load imbalance occurs because thread 0
has the greatest amount of calculation
and thread 7 has the smallest processing
amount.
Chapter 8 Trianqular Loop 212

Copyright 2016 FUJITSU LIMITED

Triangular Loop (Before Improvement) FUjfTsu

A load imbalance occurs because the amount of calculation varies for individual threads.
Consequently, the following is a frequent event: Synchronous waiting time between threads.

Source code before improvement [sec]

28 subroutine sub() Before improvement
29 integer*8 i,j,n 1.6E-03
30 parameter(n=512)
31 real*8 a(n+1,n),b(n+1,n),c(n+1,n) 1.4E-03
32 common a,b,c
33 1.2E-03
34 1$omp parallel do
35 1 p doj=1,n 1.0E-03

<<< Loop-information Start >>>

<<< [OPTIMIZATION] 8.0E-04

<<< SIMD(VL: 4) Trianqular loo

<<< SOFTWARE PIPELININ 9 P 6.0E-04

<<< Loop-information Erd >>>
36 2 p 8v doi=j,n 4.0E-04
37 2 p 8y a(ij)=b(ij) +<(i,)
38 2 p 8v enddo 2.0E-04
39 1 p enddo a S .
0 0.0E+00
A end

amount of calculation

Poor load balance between different
i threads!
Chapter 8 Trianqular Loop 213 Copyright 2016 FUJITSU LIMITED

Triangular Loop (OpenMP Tuning) FUjiTsu

After the processing amount is divided into small units allocated cyclically, the amount of
calculation of each thread is uniform. The result is a load imbalance improvement and a decrease
in the following event: Synchronous waiting time between threads.

Source code after improvement

28 subroutine sub()
29 integer*8 i,j,n
30 parameter(n=512)
31 real*8 a(n+1,n),b(n+1,n),c(n+1,n)
32 common a,b,c
33
34 1$omp parallel do schedule static,1)
35 1 p doj=1,n
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 4) .
<<< SOFTWAREPI:I;I;IyM/ Triangular loop
<<< Loop-informati nd >>>
36 2 p 8v doi=j,n
37 2 p 8y a(i,j)=b(ij)+c(ij)
38 2 p 8v enddo
39 1 p enddo
40
41 end
J
| | | | | Amount of calculation
I T T T T T T T T T T T TT1
The processing amount is divided
into small units allocated to each
d thread cyclically.

[sec]
1.6E-03

1.4E-03
1.2E-03
1.0E-03
8.0E-04
6.0E-04
4.0E-04
2.0E-04
0.0E+00

Before improvement

_|
o
_|
—
—|
NJ
_|
w
_|
~
_|
ul
_|
o
_|
~
—|
(0e]
—|
O
_|
o
_|
—
_|
No
_|
w
—|
—
~
—|
—
ul

[sec]
1.6E-03
1.4E-03
1.2E-03
1.0E-03
8.0E-04
6.0E-04
4.0E-04
2.0E-04
0.0E+00

After improvement | Decrease in following event: Synchronous
waiting time between threads

TOT1 T2 T3 T4 15 To T7 T8 T9 T10T11T12T13T14T15

Chapter 8 Trianqular Loop

214

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Loops with Irreqular Amount of Calculation

Loop Containing an IF Construct (Before Improvement)
Loop Containing an IF Construct (OpenMP Tuning)

Loop with an Irregular Amount of Calculation
(Before Improvement)

Loop with an Irregular Amount of Calculation
(OpenMP Tuning)

Chapter 8 Loops with Irreqular Amount of Calculation 215 Copyright 2016 FUJITSU LIMITED

Loop Containing an IF Construct (Before Improvement)

(o0
FUJITSU

The loop contains an IF construct. In this case, even if the amount of calculation varies between different
threads, cyclic division with static specified as the scheduling method may not solve a load imbalance.
Consequently, the following is a frequent event: Synchronous waiting time between threads.

Source code before improvement

Before improvement

1 subroutine sub(a,b,s,n,m,nn)
2 real*8 a(m,n),b(m,n)
3 real s Synchronous waiting time
4 1$omp parallel do schedule(static,1) [sed] between threads
5 1p do k=1,nn 30E+00
6 2 p if(mod(k,2) .eq. 0) then
7 3p doj=1,n
<<< Loop-information\St s PO it
o [oppanzmlon}G\ Executes processing in '
<<< SIMD(VL: &) loop of only odd
<<< SOFTWARE PIPELIN|_threads £o0
<<< Loop-information End >>>
8 4 p 8v doi=1,m
9 4 p 8v a(ij) =a(i,j)*b(ij)*s 156400
10 4 p 8v enddo
1 3 p enddo |]]]] | | |
12 2 p endif 1.0E+00 |
13 1 p enddo
14 end subroutine sub
: 5.06-01 -
26 program main - L L L - L || |
27 parameter(n=100)
28 parameter(m=1000) ooer00 |8 L L || || || L L
29 parameter(nn=‘l 000000) TO Ti T2 T3 T4 TS T6 T7 T8 T9 T10 T T2 T3 Ti4 Ti15
30 real*8 a(m,n),b(m,n)
31 call init(a,b,n,m) Poor load balance between different threads!
32 call sub(a,b,2.0,n,m,nn)
Chapter 8 Loops with Irreqular Amount of Calculation 216 Copyright 2016 FUJITSU LIMITED

Loop Containing an IF Construct (OpenMP Tuning) rujitsu

Load imbalance improves with dynamic as the scheduling method, since it allows a thread that
completed processing earlier to execute the next process.

. Before Synchronous waiting
Source code after improvement improvement time between threads
1 subroutine sub(a,b,s,n,m,nn) .
2 real*8 a(m,n),b(m,n) |
3 real s -
4 1$omp parallel do schedule(dynamic,1)
5 1p do k=1,nn =
6 2 p if(mod(k,2) .eq. 0) then
7 3p doj=1,n A
<<< Loop-information Start . .
<<< [OPTIMIZATION] SpGleyulg dynamlc a"OWS d roeso |
<<< SIMD(VL: 4) thread that has completed
<<< SOFTWARE PIPELINING processing earlier to execute o
<<< Loop-information End3 the next process. -
8 4 p 8v doi:]'m) To TI T2 T3 T4 T5 T6 T7 T8 T8 TIO T T2 TI3 T4 TIS
9 4 p 8v a(i,j) =a(i,j)*b(ij)*s
104 p & enddo iAnf1terrovement [sec]
1 3 p enddo P soev00
12 2 p endif
13 1 p enddo 255400
14 end subroutine sub
: === Load imbalance was improved.
26 program main
27 parameter(n=100) 1 55400 mwmmyp
28 arameter(m=1000)
29 garameter(nn=1000000) 106400 | I I I I I I
30 real*8 a(m,n),b(m,n) IR
31 call init(a,b,n,m) 5001 |] " P |
32 call sub(a,b,2.0,n,m,nn) - HH A H B
33 end program main 0,06 400 TR v S

Chapter 8 Loops with Irreqular Amount of Calculation 217 Copyright 2016 FUJITSU LIMITED

Loop with an Irregular Amount of Calculation(Before Improvement) Fujitsu

Even if the amount of calculation Fluctuates irreqularly, cyclic division with static specified as the scheduling method may not
solve a load imbalance. Consequently, the following is a frequent event: Synchronous waiting time between threads.

Source code before improvement

10
n
12
16
17
18

19
20

21
22
23
24
25
27
28

31
33

NN N

subroutine init(a,b,ie,n)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]
<<< FUSED

<<< Loop-information End >>>

doi=1,n

if (mod(i,2).eq.0) then

Before improvement

ie(i)=10000!
endif

enddo

subroutine sub(a,b,s,
real a(n),b(n),s

A value is set in array ie as the
evaluation loop end value only
for an even number of
iterations.

integer ie(n)

1$omp parallel do schedule(static,1

doj=1,n

<<< Loop-information Start >>>

<<< [OPTIMIZATION]
<<< SIMD(VL:8)

<<< SOFTWARE PIPELINING
tion End >>>

<<< Loop-infor

8v doi=Tiie(j) |00p
8v a(i) =a(i)*b(i)*s
8v enddo

enddo

end subroutine sub

program main

— Evaluation

—

[sec]

Synchronous waiting time
between threads

7

1.4E+00

1.2E+00

1.0E+00

8.0E-01

6.0E-01

4.0E-01

20E-01

0.0E+00

UL

TO TI T2 T3 T4 5 T6 T7 T8 T9 TI0 T Tiz TI3 Ti4 Ti5

parameter(n=1000000) iterations only when control

callinit(a,b,ie,n)
call sub(a,b,2.0,ie,n)

The innermost loop has 100,000

variable j is an even number.

Poor load balance between different
threads!

Chapter 8 Loops with Irreqular Amount of Calculation

218 Copyright 2016 FUJITSU LIMITED

Loop with an Irregular Amount of Calculation (OpenMP Tuning)Fu‘j‘i’Tsu

Load imbalance improves with dynamic as the scheduling method, since it allows a thread that
completed processing earlier to execute the next process.

Source code after improvement

10
1
12
16
17
18

19
20

21
22
23
24
25
27
28

31
33

- NN N

- N N N

subroutine init(a,b,ie,n)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< FUSED
<<< Loop-information End >>>
doi=1,n
if (mod(i,2).eq.0) then
ie(i)=100000
endif
enddo

subroutine sub(a,b,s,ie,n)
real a(n),b(n),s
integer ie(n)
1$omp parallel do schedule(dynamic,1)
doj=1,n
<<< Loop-information Start >>>
<<< [OPTIMIZATION]

I

Before
improvement

After
improvement

<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING
<<< Loop-information End >>>

8v do i=1,ie(j) . .
8v a(i) = a(i)*b(i)*s processing earlier to execute
8 enddo the next process.

enddo

Specifying dynamic allows a
thread that has completed

end subroutine sub

program main
parameter(n=1000000)
callinit(a,b,ie,n)
call sub(a,b,2.0,ie,n)

[sec]

1.4E+00
1.2E+00
1.0E+00
8.0E-01
6.0E—01
4.0E-01

2.0E-01

Synchronous waiting
time between threads

0.0E+00
TO

[#1

1.4E+00

1.2E+00

8.0E-01

6.0E-01

4.0E-01

2.0E-01

0.0E+00
TO

T

T

T2

T3

T4

T5 T6 T7 T8 T9 TIiO T Ti2 TI3 T4 TI5

Load

imbalance was improved.

T2

T3

T4

T5 T6 T7 T8 T9 TiO T T2 T3 Ti4 T15

Chapter 8 Loops with Irreqular Amount of Calculation

219

Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Small Loop Iteration Count of a Parallelized
Dimension

Parallelization in an Appropriate Parallelized Dimension (Before
Improvement)

Parallelization in an Appropriate Parallelized Dimension
(Optimization Control Line Tuning)

Parallelization in an Appropriate Parallelized Dimension
(Compiler Options Tuning)

Chapter 8 Small Loop Iteration Count of a Parallelized Dimension 220 Copyright 2016 FUJITSU LIMITED

Parallelization in an Appropriate Parallelized Dimension (Before Improvement) FUﬁTSU

If the loop iteration count of the parallelized dimension is small and unknown at the compile
time, a load imbalance occurs under the following condition: the number of iterations is smaller
than the number of thread parallelization processes (16 parallel processes in this example).
Consequently, the following is a frequent event: Synchronous waiting time between threads.

Before improvement

Source code before improvement

34
35

36
37
38
39
40
A
42

1 pp do k=1,1

- N W W W

p
P
p
P
p

<<< Loop-information Start >>>
<<< [PARALLELIZATION]

<<< Standard iteration count: 2
<<< Loop-information End >>>

doj=1,m /

<<< Loop-information\Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 4)
<<< SOFTWARE PIPELINING
<<< Loop-information End >>>
8v doi=1,n
8v a(i,j,k)=b(ij,k)+c(i,j.k)
8v enddo

enddo

enddo

end

=2
m=512
n=256

[sec]

1.0E-02
9.0E-03
8.0E-03
7.0E-03
6.0E-03
5.0E-03
4.0E-03
3.0E-03
2.0E-03
1.0E-03 | [

E
\
E

=N

B
-
-
-
b
i
-
-

Y-
AT«
==
D~ ~
DL

0.0E+00 i
7/T1 T2 T3 T4 T5 T6 T7 T8 T9 TI10 T11 T12 T13 T14 T15

Poor load balance between different threads!

| lp

/

A load imbalance occurs because the

number of iterations of k in the
parallelized dimension is 2.

Chapter 8 Small Loop Iteration Count of a Parallelized Dimension

221

Copyright 2016 FUJITSU LIMITED

Parallelization in an Appropriate Parallelized Dimension (Optimization Control Line Tuning) FUﬁTSU

Specifying the SERIAL and PARALLEL specifiers realized parallelization in an
appropriate dimension and improved load imbalance.

Source code after improvement

33
34
35

36

37
38
39
40
A

—

3
3
3
2
1

)]
P
P
P

lod serial
do k=1l| \
lodl parallel

<<< Loop-information Start >>>
<<< [PARALLELIZATION]

<<< Standard iteration count: 4
<<< Loop-information End >>>

Before
improvement

Suppresses
loop slicing

do j=1,m
<<< Loop-informatjon Start >>>
<<< [OPTIMIZATIO |=
<<< SIMD(VL: 4) | m=512
<<< SOFTWARE PIPELNING
<<< Loop-information End >>> n=256
8v doi=1,n
8v a(i,j,k)=b(ij,k)+cki,j.k)
8v enddo
enddo Parallel execution of
enddo loop j with iteration

count of 256 for
parallelized dimension

After
improvement

1.
9.
8.
7.
6.
5.

[sec]

0E-02
OE-03
OE-03
OE-03
OE-03
OE-03

4.0E-03

3.
2.
1.

OE-03
OE-03
0E-03

0.0E+00

I/
L =
A e o R
L =
LT Ol [
==
L =]
-~

13114115

TOTT T2 T3 T4 J5 To T7 T8 T9TI0TT1T12T13T14T15

Load imbalance was improved.

Chapter 8 Small Loop Iteration Count of a Parallelized Dimension

222

Copyright 2016 FUJITSU LIMITED

Parallelization in an Appropriate Parallelized Dimension (Compiler Options Tuning) FUﬁTSU

With the compiler options -Kdynamic_iteration specified, an appropriate parallelized
dimension was automatically selected at the execution time, and load imbalance
was improved.

[sec]
Source code after improvement Before
improvement 1.0E-02
<<< Loop-information Start >>> 9.0E-03 MR
<<< [PARALLELIZATION] g.gg-gg BEER
<<< Stan.dard iter.ation count: 2 6:0E:03 ! L . L
<<< Loop-information End >>> 5 OF-03 anie bl
34 1 pp do k=1, 4.0E-03 TN 'i I.I
<<< Loop-informatign Start >>> 3.0E-03 i H h #
<<< [PARALLELIZATION] 2.0E-03 ans w
<<< Standard iteratioR count: 4 018_588 BEERR
<<< Loop-information E)
35 2 pp doj=1,m — =2
<<< Loop-informatign Start m=512
[sec]
<<< [PARALLELIZATIQN] n=256 After)
improvement 1.0E-02
<<< Standard iterati 9.0E-03
<<< [OPTIMIZATION] 8.0E-03
<<< SIMD(VL: 4) 7.0E-03
<<< SOFTWARE PIPELININ 6.0E-03
<<< Loop-information End >> 5.0E-03
. 4.0E-03
36 3 pp 8v doi=1,n Parallel execution attempted 3.0F-03
37 3 p 8 a(ijk)=b(ijk)+<(il from outer loop, but loop k has | | 2.0E-03
o s small number of iterations at2, | /o> [J U G H M HHH OO HHHE
39 2 p enddo so inner loop j with 512 0.0E+00
] 7
42 end I Load imbalance was improved.

Chapter 8 Small Loop Iteration Count of a Parallelized Dimension 223 Copyright 2016 FUJITSU LIMITED

(o8,
FUJITSU

Usage Taking SSL2 Library Performance into
Account (DGEMM)

DGEMM Parameters
DGEMM Parameters Appropriate to the FX100

Chapter 8 Usage Taking SSL2 Library Performance into Account (DGEMM) 224 Copyright 2016 FUJITSU LIMITED

DGEMM Parameters FUjfTsu

B The following is a list of parameters for calling DGEMM.

W (:= ALPHA x op(A) x op(B) + BETA x C

® DGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA B, LDB, BETA, C, LD()

Argument Meaning

TRANSA, TRANSB They specify ‘N’ (do not transpose), ‘T’ (transpose), or ‘C’ (conjugate
transpose).

M, N, K Integers indicating the matrix size

ALPHA, BETA Scalar values used in operation

A, B, C A: M x K matrix
B: Kx N matrix
C: M x N matrix

LDA, LDB, LDC They specify the size of the 1st dimension of arrays A, B, and (,
respectively.

Chapter 8 Usage Taking SSL2 Library Performance into Account (DGEMM) 225 Copyright 2016 FUJITSU LIMITED

DGEMM Parameters Appropriate to the FX100 rujitsu

B The recommended number of processes in a node is 2.
® Performance is good with 16 or 32 threads, which enable utilization of a sector cache.
(This is because the sector cache can effectively use L2%.)

® We recommend that M, N, and K be as large as possible.
That reduces the overhead of matrix copying done internally and the impact of the
remaining part of a processing unit. Therefore, if they cannot be made larger by any
means, try to improve efficiency as described below.

® M should be a multiple of 32.

* This is because the DGEMM kernel focuses on cases with processing in units of 32 elements (SIMD width of 4
x 8 registers) by combining 8 SIMD registers in the M direction.

® N should be a multiple of 64 (when there are 16 threads).

* This is because the DGEMM kernel focuses on cases with processing in units of 4 columns in the N direction.

* If the size per thread is a multiple of 4 as a result of dividing N by the number of threads, the kernel is always
used efficiently. However, if there is a remainder, efficiency decreases slightly.

® K should be an even number.
* This is because the DGEMM kernel focuses on cases with processing in units of 2 elements in the K direction.

B We recommend avoiding multiples of 2048 for LDA, LDB, and LDC.
® This is because a multiple of 2048 may cause L1D$ thrashing.

Chapter 8 Usage Taking SSL2 Library Performance into Account (DGEMM) 226 Copyright 2016 FUJITSU LIMITED

Revision History FUJITSU
Version Date Revised section Details
2.0 April 25, 2016 - - First published

Chapter 8

227

Copyright 2016 FUJITSU LIMITED

e,
FUJITSU

shaping tomorrow with you

