
FUJITSU LIMITED
April 2016

Chapter 8
Intra-Node Tuning

Copyright 2016 FUJITSU LIMITED

 Chapter 8 1

Contents (1/2)

CPU Tuning
What Is CPU Tuning (Intra-Node Tuning)?

Positioning of CPU Tuning

How to Effectively Use PA Information and Tuning Flows

Copyright 2016 FUJITSU LIMITED

 Chapter 8 2

Contents (2/2)

Navigation from PA Information to Tuning Techniques
Tuning Map

Tuning Technique List

Scalar Tuning
 Improvement in Data Access Wait (Improvement in Thrashing)

 Improvement in Data Access Wait (Increase in Data Locality)

 Improvement in Data Access Wait (Latency Concealment)

 Improvement in Data Access Wait (Reduced Amount of Access)

 Improvement in Operation Wait (Instruction Scheduling
Improvement)

 Thread Parallelization Processing Tuning
Thread Parallelization ratio Improvement

Execution Efficiency Improvement of Thread Parallelization
Processing

Copyright 2016 FUJITSU LIMITED

 Chapter 8 CPU Tuning Copyright 2016 FUJITSU LIMITED 3

 What Is CPU Tuning (Intra-Node Tuning)?

 Positioning of CPU Tuning

CPU Tuning

 Chapter 8 CPU Tuning

What Is CPU Tuning (Intra-Node Tuning)?

Copyright 2016 FUJITSU LIMITED 4

 CPU tuning (Intra-Node tuning) improves execution efficiency on a
multi-core CPU.
The types of CPU tuning are scalar tuning and thread
parallelization processing tuning.

 Their various approaches to improvement include source tuning,
optimization control line tuning, and compiler options tuning.

 Scalar tuning
This tuning improves execution efficiency on a multi-core CPU by focusing
attention on the cores.

 Thread parallelization processing tuning

 This tuning improves the thread parallelization ratio and execution efficiency of
thread parallelization processing on a multi-core CPU.

 Chapter 8 CPU Tuning

Positioning of CPU Tuning

Copyright 2016 FUJITSU LIMITED 5

 Scalar tuning

 Thread parallelization

 processing tuning
CPU tuning

Compiler optimization is an important
prerequisite function supporting
tuning work.

See "Chapter 4 Fortran" or

"Chapter 5 C/C++."

Compiler optimization

Tu
n

in
g

P

rereq
u

isite

fu
n

ctio
n

s

CPU tuning forms the basis of tuning.

Process parallelization processing tuning

This line represents the boundary between
automatic optimization by a compiler and
manual optimization by a user.

For efficient tuning work, you are
recommended to leave the automatic
optimization done by the compiler.

 Chapter 8 How to Effectively Use PA Information and Tuning Flows Copyright 2016 FUJITSU LIMITED 6

 How to Effectively Use PA Information

 Tuning Flow

1. Hot Spot Detection

2. PA Information Collection

3. Breakdown to the Level of Hot Spots

4. Analysis and Diagnosis: Hot Spot (1)

5. Measures and Effects: Hot Spot (1)

How to Effectively Use PA Information and Tuning
Flows

 Chapter 8 How to Effectively Use PA Information and Tuning Flows

Loops

Procedures

Entire evaluation region under focus

How to Effectively Use PA Information

Copyright 2016 FUJITSU LIMITED 7

What measures are required for improvement in bottlenecks?
To what extent can bottlenecks be improved? To answer to these questions,
PA information must be broken down to the level of loops and analyzed.

You can determine bottlenecks in the entire evaluation region under focus (except
input/output and communication), from PA information for the entire evaluation region.

 Effective use for tuning

 Understanding bottlenecks

Bottleneck (1)

Bottleneck (2)

Entire evaluation region

Four instructions
commit

Two or three
instructions commit

One instruction
commit

No instruction
commit waiting for

a floating-point
instruction to be

completed

No instruction
commit due to

cache access for a
floating-point load

instruction

Before improvement

[sec]

 Chapter 8 How to Effectively Use PA Information and Tuning Flows

1. Hot Spot Detection

Copyright 2016 FUJITSU LIMITED 8

 What is the sampling region specification function?

You can collect cost information for the specified region by using the sampling region
specification function. To specify a measurement section in the source code, insert C or C++
functions or Fortran subroutines at the start and end points of cost information measurement.

* If the evaluation region under focus is the entire program, the sampling region specification
function is not needed.

* For details on the sampling region specification function, see the tutorial in "Chapter 7 Tuning
Tool."

…
call fipp_start()
 Evaluation region
call fipp_stop()
…

 Insertion diagram

First, detect hot spots in the evaluation region under focus.
To detect hot spots, use the sampling region specification function of fipp.

"Entire evaluation
region" enclosed by

sampling region
specification function

Function name Function

fipp_start Measurement start

fipp_stop Measurement end

 Chapter 8 How to Effectively Use PA Information and Tuning Flows

2. PA Information Collection

Copyright 2016 FUJITSU LIMITED 9

 Advanced profiler routines (precision PA)

The routines are C and C++ functions and Fortran subroutines for specifying a
measurement section for PA information. By specifying a collection section in the
source code, you can collect highly precise information.

call start_collection("region_all")
call start_collection("region_1")
 Hot spot (1)

call stop_collection("region_1")

call start_collection("region_2")

 Hot spot (2)

call stop_collection("region_2")

call start_collection("region_3")

 Hot spot (3)

call stop_collection("region_3")

call start_collection("region_4")

 Hot spot (4)

call stop_collection("region_4")

call stop_collection("region_all")

Here, collect PA information for detected hot spots. Use the advanced profiler routines of fapp
(precision PA) because analysis requires highly precise PA information.

 Insertion diagram

Entire evaluation region

"Each hot spot"
enclosed by

advanced profiler
routine functions

Function name Function

start_collection Information
measurement start

stop_collection Information
measurement end

 Chapter 8 How to Effectively Use PA Information and Tuning Flows

3. Breakdown to the Level of Hot Spots

Copyright 2016 FUJITSU LIMITED 10

 PA graph of the entire evaluation region

 PA graphs of hot spots (1) to (4)

Breakdown to
level of hot
spots

No
instruction

commit due
to memory
access for a

floating-point
load

instruction

No
instruction

commit
waiting for a

floating-point
instruction to
be completed

Two or three
instructions

commit

Four instructions
commit

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

8.0E+00

改善前

[sec] Entire evaluation region

The graph makes it possible to
understand the degree of a
bottleneck.

No
instruction

commit
waiting for a

floating-
point

instruction
to be

completed

One instruction
commit

Two or three instructions
commit

Four
instructions

commit

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善前

[sec]
Hot spot (1)

No
instruction

commit due
to memory
access for a

floating-
point load
instruction

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]
Hot spot (2)

No instruction commit
waiting for a floating-
point instruction to be

completed

Two or three
instructions

commit

Four instructions
commit

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]
Hot spot (3)

The CPU status after the
breakdown proves that each
hot spot (loop) has different
tendencies!

No
instruction

commit
waiting for a

floating-
point

instruction
to be

completed

One
instructio
n commit

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

改善前

[sec]
Hot spot (4)

From entire evaluation region to level of hot spots
Before improvement

Before improvement Before improvement

Before improvement Before improvement

 Chapter 8 How to Effectively Use PA Information and Tuning Flows

4. Analysis and Diagnosis: Hot Spot (1)

Copyright 2016 FUJITSU LIMITED 11

 PA graph Source list

 151 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< PREFETCH : 24

 <<< a: 12, b: 12

 <<< Loop-information End >>>

 152 2 p 6s do i=1,n1

 153 3 p 6m if (p(i) > 0.0) then

 154 3 p 6s b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*

 155 3 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*

 156 3 & (c8 + a(i)*c9))))))))

 157 3 p 6v endif

 158 2 p 6v enddo

 159 1 !$omp enddo

Facilitation of software pipelining
and SIMD optimization is not
possible because the innermost
loop contains an IF construct.

CPU tuning is necessary.
 Optimization by the tuning will lead to removal of the
conditional branch instruction in the innermost loop.

Diagnosis

Analysis

True ratio already
determined to be 90%
for IF construct

No
instructio
n commit
waiting

for a
floating-

point
instructio

n to be
completed

One instruction
commit

Four
instructions

commit

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善前

[sec]
Hot spot (1)

Frequent waiting
for operation

Event
Percentage of SIMD instructions

(effective instruction)

 IF construct in the innermost loop

Before improvement

0.00%

 Chapter 8 How to Effectively Use PA Information and Tuning Flows

5. Measures and Effects: Hot Spot (1)

Copyright 2016 FUJITSU LIMITED 12

 Source list

 151 1 !$omp do

 152 1 !ocl simd

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< PREFETCH : 12

 <<< b: 12

 <<< Loop-information End >>>

 153 2 p 6v do i=1,n1

 154 3 p 6v if (p(i) > 0.0) then

 155 3 p 6v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*

 156 3 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*

 157 3 & (c8 + a(i)*c9))))))))

 158 3 p 6v endif

 159 2 p 6v enddo

 160 1 !$omp enddo

Utilization of masked instructions
Apply SIMD optimization by using the
mask method since the true ratio of the
IF construct is high at 90%. This
measure is also intended to facilitate
software pipelining.

 PA graph

Effect

Measure

The specification of !ocl simd is
equivalent to specifying the
compiler options -Ksimd=2. The
SIMD optimization uses the
mask method.

True ratio of 90%
for IF construct

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善後

[秒] Hot spot (1)

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

One
instruction

commit

Four
instruction
s commit

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善前

[sec]
Hot spot (1)

Greatly reduced
waiting for operation

Execution time
(sec)

 Floating-point operation peak
rate

SIMD instruction rate
(effective instruction)

Total number of valid
operations

 Before improvement 2.48 5.93% 0.00% 9.46E+10

 After improvement 0.29 55.58% 87.71% 1.89E+10

Performance increased
by 8.55 times

 IF construct in the innermost loop

Before improvement After improvement

 Chapter 8 Analysis and Tuning of Each Hot Spot Copyright 2016 FUJITSU LIMITED 13

 (Duplicate) Hot Spot (1): IF Construct in the Innermost Loop (Analysis and Diagnosis)

 (Duplicate) Hot Spot (1): IF Construct in the Innermost Loop (Measures and Effects)

 Hot Spot (2): Stride Access (Analysis and Diagnosis)

 Hot Spot (2): Stride Access (Measures and Effects)

 Hot Spot (3): Ideal Operation (Analysis and Diagnosis)

 Hot Spot (4): Data Dependency (Analysis and Diagnosis)

 Entire Evaluation Region (Measures and Effects)

 Summary

Analysis and Tuning of Each Hot Spot

 Chapter 8 Analysis and Tuning of Each Hot Spot

Hot Spot (1): IF Construct in the Innermost Loop (Analysis and Diagnosis)

Copyright 2016 FUJITSU LIMITED 14

 PA graph Source list

 151 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< PREFETCH : 24

 <<< a: 12, b: 12

 <<< Loop-information End >>>

 152 2 p 6s do i=1,n1

 153 3 p 6m if (p(i) > 0.0) then

 154 3 p 6s b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*

 155 3 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*

 156 3 & (c8 + a(i)*c9))))))))

 157 3 p 6v endif

 158 2 p 6v enddo

 159 1 !$omp enddo

Facilitation of software pipelining
and SIMD optimization is not
possible because the innermost
loop contains an IF construct.

CPU tuning is necessary.
 Optimization by the tuning will lead to removal of the
conditional branch instruction in the innermost loop.

Diagnosis

Analysis

True ratio of 90%
for IF construct

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

One instruction
commit

Four
instructions

commit

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善前

[sec]
Hot spot (1)

Frequent waiting
for operation

Event
SIMD instruction rate

(effective instruction)

 IF construct in the innermost loop

Before improvement

0.00%

 Chapter 8 Analysis and Tuning of Each Hot Spot

Hot Spot (1): IF Construct in the Innermost Loop (Measures and Effects)

Copyright 2016 FUJITSU LIMITED 15

 Source list

 151 1 !$omp do

 152 1 !ocl simd

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< PREFETCH : 12

 <<< b: 12

 <<< Loop-information End >>>

 153 2 p 6v do i=1,n1

 154 3 p 6v if (p(i) > 0.0) then

 155 3 p 6v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*

 156 3 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*

 157 3 & (c8 + a(i)*c9))))))))

 158 3 p 6v endif

 159 2 p 6v enddo

 160 1 !$omp enddo

Utilization of masked instructions
Apply SIMD optimization by using the
mask method since the true ratio of the
IF construct is high at 90%. This
measure is also intended to facilitate
software pipelining.

 PA graph

Effect

Measure

The specification of !ocl simd is
equivalent to specifying the
compiler options -Ksimd=2. The
SIMD optimization uses the
mask method.

True ratio of 90%
for IF construct

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善後

[秒] Hot spot (1)

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

One
instruction

commit

Four
instructions

commit

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善前

[sec]
Hot spot (1)

Greatly reduced
waiting for operation

Execution time
(sec)

 Floating-point operation peak
rate

SIMD instruction rate
(effective instruction)

Total number of valid
operations

Before improvement 2.48 5.93% 0.00% 9.46E+10

After improvement 0.29 55.58% 87.71% 1.89E+10

Performance increased
by 8.55 times

 IF construct in the innermost loop

Before improvement After improvement

 Chapter 8 Analysis and Tuning of Each Hot Spot

Hot Spot (2): Stride Access (Analysis and Diagnosis)

Copyright 2016 FUJITSU LIMITED 16

 PA graph Source list

 176 1 !$omp do

 177 2 p do j=1,n2

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 178 3 p 6v do i=1,n1

 179 3 p 6v b(i,j) = c0 + a(j,i)*(c1 + a(j,i)*(c2 + a(j,i)*(c3 + a(j,i)*

 180 3 & (c4 + a(j,i)*(c5 + a(j,i)*(c6 + a(j,i)*(c7 + a(j,i)*

 181 3 & (c8 + a(j,i)*c9))))))))

 182 3 p 6v enddo

 183 2 p enddo

 184 1 !$omp enddo

CPU tuning is necessary.
 Improve the cache use efficiency of array a.

Diagnosis

Analysis

The cache use efficiency is low
since array b is accessed
contiguously and access to array a
is stride access. The result is a
throughput bottleneck.

No
instruction

commit due
to memory
access for a

floating-
point load
instruction

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]
Hot spot (2)

Frequent waiting for
memory access

Event

51.31%

L1D miss rate
(/Load-store instruction)

L2 miss rate
(/Load-store instruction)

 Stride access

Before improvement

51.34%

 Chapter 8 Analysis and Tuning of Each Hot Spot

Hot Spot (2): Stride Access (Measures and Effects)

Copyright 2016 FUJITSU LIMITED 17

 PA graph

 177 1 !$omp do

 178 2 p do jj=1,n2,16

 179 3 p do ii=1,n1,96

 180 4 p do j=jj,min(jj+16-1,n2)

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 181 5 p 6v do i=ii,min(ii+96-1,n1)

 182 5 p 6v b(i,j) = c0 + a(j,i)*(c1 + a(j,i)*(c2 + a(j,i)*(c3 + a(j,i)*

 183 5 & (c4 + a(j,i)*(c5 + a(j,i)*(c6 + a(j,i)*(c7 + a(j,i)*

 184 5 & (c8 + a(j,i)*c9))))))))

 185 5 p 6v enddo

 186 4 p enddo

 187 3 p enddo

 188 2 p enddo

 189 1 !$omp enddo

 Source list Application of loop blocking
The size of one block is 12 KB (96
x 16 x 8). The memory area size
required for processing one block
is 24 KB (12 x 2).
The measure is intended to
improve the L1D and L2 cache use
efficiency.

Effect

Measure

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善後

[秒] Hot spot (2)

No
instruc

tion
commi
t due

to
memor

y
access
for a

floatin
g-

point
load

instr…

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[秒]
Hot spot (2)

Greatly reduced
waiting for memory
access

Execution time (sec)
 Floating-point operation

peak rate
L1D miss rate(/Load-store

instruction)
L2 miss rate(/Load-store

instruction)

Before improvement 3.10 1.28% 51.31% 51.34%

After improvement 0.47 8.54% 6.66% 6.12%

Performance increased
by 6.6 times

 Stride access

Before improvement After improvement

[sec]

 Chapter 8 Analysis and Tuning of Each Hot Spot

Hot Spot (3): Ideal Operation (Analysis and Diagnosis)

Copyright 2016 FUJITSU LIMITED 18

 PA graph

 Source list

 201 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 202 2 p 6v do i=1,n1

 203 2 p 6v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*

 204 2 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*

 205 2 & (c8 + a(i)*c9))))))))

 206 2 p 6v enddo

 207 1 !$omp enddo

CPU tuning is not necessary.
 Instruction-level parallelization can reach very high levels.

Diagnosis

Analysis

Both the SIMD instruction rate and
percentage of SIMD multiply-add
operation instructions are high. The
operation peak ratio also shows a very
high performance value of 78%.

No instruction commit
waiting for a floating-point
instruction to be completed

Two or
three

instructions
commit

Four instructions
commit

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]
 Hot spot (3)

Instruction commit accounting
for majority, with many having
two or more instructions

Event

SIMD instruction rate
(effective instruction)

SIMD floating-point
multiply-and-add

instruction rate
(effective instruction)

Floating-point
operation peak

rate

95.31% 77.95% 78.33%

 Ideal operation

Before improvement

 Chapter 8 Analysis and Tuning of Each Hot Spot

Hot Spot (4): Data Dependency (Analysis and Diagnosis)

Copyright 2016 FUJITSU LIMITED 19

 PA graph Source list

 225 2 p 6s do i=2,n1

 226 2 p 6s a(i) = c0 + a(i-1)*(c1 + a(i-1)*(c2 + a(i-1)*(c3 + a(i-1)*

 227 2 & (c4 + a(i-1)*(c5 + a(i-1)*(c6 + a(i-1)*(c7 + a(i-1)*

 228 2 & (c8 + a(i-1)*c9))))))))

 229 2 p 6s enddo

CPU tuning is impossible.
 The operation algorithm must be reviewed.

Diagnosis

Neither facilitation of software
pipelining and SIMD optimization
nor parallelization is possible
because the processing shown as
a(i)=a(i-1) for array a causes data
dependency between iterations.

Analysis

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

One
instruction

commit

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

改善前

[sec]
 Hot spot (4)

Frequent waiting
for operation

Event

 Data Dependency

Before improvement

 Chapter 8 Analysis and Tuning of Each Hot Spot

Entire Evaluation Region (Measures and Effects)

Copyright 2016 FUJITSU LIMITED 20

 PA graph

Before improvement After improvement

No instruction
commit due to

memory
access for a

floating-point
load

instruction

No instruction
commit waiting
for a floating-

point instruction
to be completed

Two or three
instructions commit

Four instructions
commit

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

8.0E+00

改善前

[sec] Entire evaluation region

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

8.0E+00

改善後

[sec] 評価区間全体

Performance increased by
3.55 times

CPU tuning
completed

Before improvement

Entire evaluation region

After improvement

 Chapter 8 Analysis and Tuning of Each Hot Spot

Summary

Copyright 2016 FUJITSU LIMITED 21

 You can determine bottlenecks from the PA graph of an entire evaluation region.

 The bottleneck factors are often different for every loop. For this reason, a breakdown to
the level of loops is necessary to analyzing and determining whether CPU tuning is
possible and how to take measures for problems.

Breakdown

No instruction
commit due to

memory
access for a

floating-point
load

instruction

No instruction
commit waiting
for a floating-

point instruction
to be completed

Two or three
instructions commit

Four instructions
commit

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

8.0E+00

改善前

[sec] 評価区間全体

No
instruction

commit
waiting for a

floating-
point

instruction
to be

completed

One instruction
commit

Two or three instructions
commit

Four instructions
commit

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善前

[sec]
Hot spot (1)

No
instruction

commit due
to memory
access for a

floating-
point load
instruction

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]
Hot spot (2)

No instruction commit waiting for a
floating-point instruction to be

completed

Two or three
instructions

commit

Four instructions
commit

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]
Hot spot (3)

No
instruction

commit
waiting for a

floating-
point

instruction
to be

completed

One
instruction

commit

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

改善前

[sec]
Hot spot (4)

Entire evaluation region

Before improvement

Before improvement Before improvement

Before improvement Before improvement

 Chapter 8 Navigation from PA Information to Tuning Techniques Copyright 2016 FUJITSU LIMITED 22

 Tuning Map

 Tuning Technique List

Navigation from PA Information to Tuning Techniques

 Chapter 8 Navigation from PA Information to Tuning Techniques

Navigation from PA Information to Tuning Techniques

Copyright 2016 FUJITSU LIMITED 23

 The tuning map is useful for determining a specific tuning method from PA
information.

 Tuning map

 The tuning map is a list showing tuning proposals by bottleneck type.
The list clearly shows what PA information to check and bottleneck factors
(conditions) that occur by bottleneck classification, and summarizes the measures
(tuning proposals: what to improve) for solving them.

 1. Identify bottleneck factors from PA information.

 2. Present measures (tuning proposals) for removing bottlenecks.

 Tuning technique list

 This list summarizes various tuning techniques by tuning proposal.
 Select an effective tuning technique for improvement.

 For examples of actual measures, see the scalar tuning examples.

 Chapter 8 Navigation from PA Information to Tuning Techniques

 Entire tuning map

Tuning Map (1/12)

Copyright 2016 FUJITSU LIMITED 24

Bottleneck classification High cost as seen from PA graph High cost as seen from PA information Condition Tuning proposal

Memory bottleneck

No instruction commit due to memory access for a floating-
point load instruction -

Memory latency is a bottleneck. Improvement in data access wait
 - Dimensional displacement of an array
 - Prefetch-related improvement

No instruction commit due to memory access for an integer
load instruction -

Memory latency is a bottleneck.

Improvement in data access wait
 - Dimensional displacement of an array
 - Prefetch-related improvement

No instruction commit because SP (store port) is full
 -

The store instruction cost is a bottleneck. Improvement in data access wait
 - Dimensional displacement of an array
 - Prefetch-related improvement
 - High-speed store (XFILL)

No instruction commit due to memory and cache busy -
Memory throughput is a bottleneck. Improvement in data access wait

 - Dimensional displacement of an array
 - Loop blocking
 - High-speed store (XFILL)

- High memory busy rate
Memory throughput is a bottleneck. Improvement in data access wait

 - Dimensional displacement of an array
 - Loop blocking
 - High-speed store (XFILL)

-
High percentage of L2 misses
High percentage of L2 misses due to dm

Memory latency is a bottleneck. Improvement in data access wait
 - Dimensional displacement of an array
 - Loop blocking
 - Prefetch-related improvement
 - Thrashing

L2 cache bottleneck

No instruction commit due to L2 access for a floating-point
load instruction -

L2 cache latency is a bottleneck. Improvement in data access wait
 - Dimensional displacement of an array
 - Prefetch-related improvement

No instruction commit due to L2 access for an integer load
instruction -

L2 cache latency is a bottleneck.

Improvement in data access wait
 - Dimensional displacement of an array
 - Prefetch-related improvement

- High L2 busy rate
L2 cache throughput is a bottleneck. Improvement in data access wait

 - Dimensional displacement of an array
 - Loop blocking

-
High percentage of L1D misses
High percentage of L1D misses due to dm

L2 cache latency is a bottleneck. Improvement in data access wait
 - Dimensional displacement of an array
 - Thrashing

L1 cache bottleneck

No instruction commit due to L1D access for a floating-
point load instruction -

L1 cache latency is a bottleneck. Instruction scheduling improvement

No instruction commit due to L1D access for an integer load
instruction -

L1 cache latency is a bottleneck. Instruction scheduling improvement

- High L1 busy rate L1 cache throughput is a bottleneck. Improvement in data access wait
 - Algorithm review

Scheduling
bottleneck

No instruction commit waiting for a floating-point instruction to be
completed -

Operation instruction latency is a bottleneck. Instruction scheduling improvement

No instruction commit waiting for an integer instruction to be
completed -

Operation instruction latency is a bottleneck. Instruction scheduling improvement

No instruction commit waiting for a branch instruction to be
completed -

A branch instruction is a bottleneck. Instruction scheduling improvement
 - IF statement removal
 - Masked SIMD

Parallelization bottleneck Synchronous waiting time between threads -
A part that is not thread parallelization is a bottleneck. Thread parallelization ratio improvement

Load imbalance bottleneck Synchronous waiting time between threads
Large difference in the instruction balance
between max and min

A load imbalance between threads is a bottleneck. Execution efficiency improvement of thread
parallelization processing

TLB bottleneck
- High percentage of mDTLB misses

TLB misses and TLB thrashing are a bottleneck. Improvement in the TLB bottleneck
 - Elimination of thrashing
 - Change of areas used
 - Optimization using large page options

- High percentage of uDTLB misses TLB misses are a bottleneck. Improvement in the TLB bottleneck
 - Page size expansion

Instruction fetch No instruction commit waiting for an instruction to be
fetched -

Instruction cache misses and thrashing are a
bottleneck.

Improvement in instruction fetch
 - Reduction in the loop body
 - Algorithm review
 - Elimination of thrashing

Instruction count
bottleneck

Instruction
commit

Four instructions commit

-

The number of instructions is a bottleneck. Improvement in the instruction count bottleneck
 - Facilitation of SIMD optimization
 - Prefetch-related improvement
 - Inline expansion

Two or three instructions commit

One instruction commit

Other No instruction commit for other reasons - PA may have not been collected correctly. PA re-collection

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (2/12)

Copyright 2016 FUJITSU LIMITED 25

 Bottleneck classifications

Memory bottleneck

No instruction commit due to memory access for a floating-point load instruction

No instruction commit due to memory access for an integer load instruction

No instruction commit because SP (store port) is full

No instruction commit due to memory and cache busy

L2 cache bottleneck
No instruction commit due to L2 access for a floating-point load instruction

No instruction commit due to L2 access for an integer load instruction

L1 cache bottleneck
No instruction commit due to L1D access for a floating-point load instruction

No instruction commit due to L1D access for an integer load instruction

Scheduling bottleneck

No instruction commit waiting for a floating-point instruction to be completed

No instruction commit waiting for an integer instruction to be completed

No instruction commit waiting for a branch instruction to be completed

Parallelization bottleneck Synchronous waiting time between threads

Load imbalance bottleneck Synchronous waiting time between threads

TLB bottleneck -

Instruction fetch No instruction commit waiting for an instruction to be fetched

Instruction count bottleneck Instruction commit

Four instructions commit

Two or three instructions commit

One instruction commit

Other No instruction commit for other reasons

Left: Bottleneck
classifications
Right: Costs as seen
from PA graph

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (3/12)

Copyright 2016 FUJITSU LIMITED 26

Memory bottleneck
High cost as seen from PA

graph
High cost as seen from PA

information
Condition Tuning proposal

No instruction commit due to
memory access for a floating-
point load instruction

-
Memory latency is a bottleneck. Improvement in data access wait

 - Dimensional displacement of an array
 - Prefetch-related improvement

No instruction commit due to
memory access for an integer
load instruction

-
Memory latency is a bottleneck. Improvement in data access wait

 - Dimensional displacement of an array
 - Prefetch-related improvement

No instruction commit
because SP (store port) is full

-

The store instruction cost is a
bottleneck.

Improvement in data access wait
 - Dimensional displacement of an array
 - Prefetch-related improvement
 - High-speed store (XFILL)

No instruction commit due to
memory and cache busy

-

Memory throughput is a
bottleneck.

Improvement in data access wait
 - Dimensional displacement of an array
 - Loop blocking
 - High-speed store (XFILL)

- High memory busy rate

Memory throughput is a
bottleneck.

Improvement in data access wait
 - Dimensional displacement of an array
 - Loop blocking
 - High-speed store (XFILL)

-
High percentage of L2 misses
High percentage of L2 misses
due to dm

Memory latency is a bottleneck. Improvement in data access wait
 - Dimensional displacement of an array
 - Loop blocking
 - Prefetch-related improvement
 - Thrashing

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (4/12)

Copyright 2016 FUJITSU LIMITED 27

 L2 cache bottleneck

High cost as seen from
PA graph

High cost as seen from
PA information

Condition Tuning proposal

No instruction commit
due to L2 access for a
floating-point load
instruction

-

L2 cache latency is a bottleneck. Improvement in data access wait
 - Dimensional displacement of an

array
 - Prefetch-related improvement

No instruction commit
due to L2 access for an
integer load instruction

-

L2 cache latency is a bottleneck. Improvement in data access wait
 - Dimensional displacement of an

array
 - Prefetch-related improvement

- High L2 busy rate

L2 cache throughput is a
bottleneck.

Improvement in data access wait
 - Dimensional displacement of an

array
 - Loop blocking

-

High percentage of L1D
misses
High percentage of L1D
misses due to dm

L2 cache latency is a bottleneck. Improvement in data access wait
 - Dimensional displacement of an

array
 - Thrashing

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (5/12)

Copyright 2016 FUJITSU LIMITED 28

 L1 cache bottleneck

High cost as seen from PA
graph

High cost as seen from
PA information

Condition Tuning proposal

No instruction commit due
to L1D access for a
floating-point load
instruction

-

L1 cache latency is a bottleneck. Instruction scheduling
improvement

No instruction commit due
to L1D access for an
integer load instruction

-
L1 cache latency is a bottleneck. Instruction scheduling

improvement

- High L1 busy rate
L1 cache throughput is a
bottleneck.

Improvement in data access wait
 - Algorithm review

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (6/12)

Copyright 2016 FUJITSU LIMITED 29

 Scheduling bottleneck

High cost as seen from
PA graph

High cost as seen from
PA information

Condition Tuning proposal

No instruction commit
waiting for a floating-
point instruction to be
completed

-

Operation instruction latency is a
bottleneck.

Instruction scheduling
improvement

No instruction commit
waiting for an integer
instruction to be
completed

-

Operation instruction latency is a
bottleneck.

Instruction scheduling
improvement

No instruction commit
waiting for a branch
instruction to be
completed

-

A branch instruction is a
bottleneck.

Instruction scheduling
improvement
 - IF statement removal
 - Masked SIMD

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (7/12)

Copyright 2016 FUJITSU LIMITED 30

 Parallelization bottleneck

High cost as seen from PA
graph

High cost as seen from
PA information

Condition Tuning proposal

Synchronous waiting time
between threads -

A part that is not thread
parallelization is a bottleneck.

Thread parallelization ratio
improvement

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (8/12)

Copyright 2016 FUJITSU LIMITED 31

 Load imbalance bottleneck

High cost as seen from
PA graph

High cost as seen from PA
information

Condition Tuning proposal

Synchronous waiting
time between threads

Large difference in the
instruction balance
between max and min

A load imbalance between
threads is a bottleneck.

Execution efficiency
improvement of thread
parallelization processing

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (9/12)

Copyright 2016 FUJITSU LIMITED 32

 TLB bottleneck
High cost as seen from

PA graph
High cost as seen from

PA information
Condition Tuning proposal

-
High percentage of
mDTLB misses

TLB misses and TLB thrashing
are a bottleneck.

Improvement in the TLB bottleneck
 - Elimination of thrashing
 - Change of areas used
 - Optimization using large page options

-
High percentage of
uDTLB misses

TLB misses are a bottleneck. Improvement in the TLB bottleneck
 - Page size expansion

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (10/12)

Copyright 2016 FUJITSU LIMITED 33

 Instruction fetch
High cost as seen from

PA graph
High cost as seen from PA

information
Condition Tuning proposal

No instruction commit
waiting for an instruction
to be fetched

-

Instruction cache misses and
thrashing are a bottleneck.

Improvement in instruction fetch
 - Reduction in the loop body
 - Algorithm review
 - Elimination of thrashing

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (11/12)

Copyright 2016 FUJITSU LIMITED 34

 Instruction count bottleneck

High cost as seen from PA graph
High cost as seen

from PA information
Condition Tuning proposal

Instruction
commit

Four instructions
commit

-

The number of
instructions is a
bottleneck.

Improvement in the instruction
count bottleneck
 - Facilitation of SIMD optimization
 - Prefetch-related improvement
 - Inline expansion

Two or three
instructions commit

One instruction
commit

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Map (12/12)

Copyright 2016 FUJITSU LIMITED 35

 Other

High cost as seen from
PA graph

High cost as seen from
PA information

Condition Tuning proposal

No instruction commit
for other reasons

-
PA may have not been collected correctly.

PA re-collection

 Chapter 8 Navigation from PA Information to Tuning Techniques

 Major classifications

Tuning Technique List (1/2)

Copyright 2016 FUJITSU LIMITED 36

Thread parallelization ratio
improvement

Execution efficiency
improvement of
thread parallelization
processing

Improvement in data
access wait

Instruction scheduling
improvement

Improvement in the TLB
bottleneck

Improvement in
instruction fetch

Improvement in the
instruction count
bottleneck

NORECURRENCE specifier
(Facilitation of automatic
parallelization)

False sharing Dimensional
displacement of an array

Software pipelining Page size expansion Reduction in the loop
body

Facilitation of SIMD
optimization

NOALIAS specifier
(Facilitation of automatic
parallelization)

Parallelized
dimension change

Prefetch-related
improvement

Unrolling Elimination of thrashing Algorithm review
(Expansion of the
problem scale)

Prefetch-related
improvement

Peeling
(Facilitation of automatic
parallelization)

Division method
change (Cyclic)

High-speed store (XFILL) Facilitation of SIMD optimization Change of areas used Elimination of thrashing Inline expansion

OpenMP parallelization Division method
change (Dynamic)

Loop blocking IF statement removal Optimization using
large page options

Parallelization
algorithm review

Elimination of thrashing Masked SIMD

 Algorithm review
(Reducing the memory
access instruction ratio)

Outer unrolling

 Array division Suppression of software
pipelining & specification of the
number of unrollings (Loop with
a few iterations)

 Loop fission

Rerolling

 Strip mining Peeling

 Sector cache NORECURRENCE specifier

 Loop interchange NOALIAS specifier

 Loop fusion

 Array merging

* The colored items represent medium classifications. If applicable, go to the next page.

 Chapter 8 Navigation from PA Information to Tuning Techniques

Tuning Technique List (2/2)

Copyright 2016 FUJITSU LIMITED 37

 Medium classifications
Prefetch-related improvement Facilitation of SIMD optimization Elimination of thrashing Reduction in the loop body

Addition of prefetching Changing arrays to simple variables Padding Suppression of software pipelining

Deletion of unnecessary prefetching Loop unswitching Dimensional
displacement of an array

Suppression of unrolling

Prefetching toward the outer loop IF statement removal Array merging

Suppression of loop fusion

Indirect access prefetching Rerolling Reduction in the loop
body

Loop fission

 Inline expansion

 Loop fission (separating dependent
accesses)

Loop fission (loop extraction) for a part
with a high true ratio

Cloning

NORECURRENCE specifier

NOALIAS specifier

 Chapter 8 Scalar Tuning Copyright 2016 FUJITSU LIMITED 38

Scalar Tuning

 Improvement in Data Access Wait (Improvement in Thrashing)

 Improvement in Data Access Wait (Increase in Data Locality)

 Improvement in Data Access Wait (Latency Concealment)

 Improvement in Data Access Wait (Reduced Amount of Access)

 Improvement in Operation Wait (Instruction Scheduling Improvement)

 Chapter 8 Improvement in Data Access Wait Copyright 2016 FUJITSU LIMITED 39

Improvement in Data Access Wait
(Improvement in Thrashing)

 Improvement in Cache Thrashing

 Improvement in TLB Thrashing

 Chapter 8 Improvement in Cache Thrashing Copyright 2016 FUJITSU LIMITED 40

Improvement in Cache Thrashing

 What Is Cache Thrashing?

 Tuning Approach to Cache Thrashing (Basics)

 Tuning Approach to Cache Thrashing (Application)

 Chapter 8 Improvement in Cache Thrashing

L1D miss rate(/Load-store instruction)

Percentage of L1D
misses due to dm

(relative to number
of L1D misses)

Single-precision: 1.5625% or higher
Double-precision: 3.125% or higher

20% or higher

Copyright 2016 FUJITSU LIMITED 41

What Is Cache Thrashing?

Source code example

subroutine sub(a, n, m) ※n=256, m=256

real*8 a(n,m,8)

do j= 1 , m

 do i= 1 , n

 a(i,j,8)=a(i,j,1)+a(i,j,2)+a(i,j,3)+a(i,j,4)+

 a(i,j,5)+a(i,j,6)+a(i,j,7)

 enddo

enddo

end

Cache thrashing is a phenomenon in which only data of specific indexes of
cache memory (location information in cache memory) is frequently
overwritten. This phenomenon is due to the size of 1 WAY being 16 KB. It
is likely to occur when the array size is a power of 2 (multiple of 16 KB) or
when a loop contains many streams.

Note: A stream is a series of data defined in references corresponding to loop iterations.

In this example, a(1,1,1) to a(1,1,8)
are placed at an interval of 32 x 16
KB (on a 16-KB boundary), so the
eight of them are assigned to the
same index. Therefore, the first and
second points of data are
overwritten by the fifth and sixth
points of data, respectively.

 Execution order (1) to (7)

(L1D cache)

(Data alignment in memory)

a(1, 1, 1)
・ ・ ・
a (32, 1, 1)

・ ・ ・
a(1, 1, 2)
・ ・ ・
a (32, 1, 2)
・ ・ ・

・ ・ ・
a(1, 1, 4)

・ ・ ・
a (32, 1, 4)

・ ・ ・

Execution
order

(1)

(2)

1WAY

64

entries

4WAY

Storing data in cache

Storing data in cache (conflict) Rough standard for L1D cache thrashing

Single-precision: 1/64 (one miss for every 64 times)

Double-precision: 1/32 (one miss for every 32 times)

2WAY 3WAY

a(1, 1, 5)
・ ・ ・
a (32, 1, 5)

・ ・ ・
a(1, 1, 6)
・ ・ ・
a (32, 1, 6
・ ・ ・

a(1, 1, 7)

・ ・ ・
a (32, 1, 7
・ ・ ・

a(1, 1, 8)

・ ・ ・
a (32, 1, 8)

・ ・ ・

a(1, 1, 3)

・ ・ ・
a (32, 1, 3)

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

(3)

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

(4)

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

(5)

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

(6)
256 x 256 x 8 B

= 32 x 16 KB

Discrete access

(7)

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

 Chapter 8 Tuning Approach to Cache Thrashing (Basics) Copyright 2016 FUJITSU LIMITED 42

Tuning Approach to
Cache Thrashing (Basics)

 Tuning Approach (Basics)

 Array Merging

 Dimensional Displacement of an Array

 Loop Fission

 Padding

 Chapter 8 Tuning Approach to Cache Thrashing (Basics)

Tuning Approach (Basics)

Copyright 2016 FUJITSU LIMITED 43

 do i=1,n do i=1,n

 … = a(i) + b(i) … = z(1,i) + z(2,i)

 enddo enddo

 do i=1,n do i=1,n

 … = a(I,1) + a(I,2) … = a(1,i) + a(2,i)

 enddo enddo

 do i=1,n do i=1,n

 … = a(i) + b(i) … = a(i) + b(i)

 … = c(i) + d(i) enddo

 enddo do i=1,n

 … = c(i) + d(i)

 enddo

 common //a(n),b(n) common //a(n),p(64),b(n)

 do i=1,n do i=1,n

 … = a(i) + b(i) … = a(i) + b(i)

 enddo enddo

 Array merging

 Dimensional displacement of an array

 Loop fission

 Padding

A resolution approach improves thrashing risks
themselves by reducing the number of streams.

Advantage: Can accommodate shifts in the problem
scale such as parameter changes.

An avoidance approach for improvement
shifts array addresses through padding.

Disadvantage: Requires many corrections. SIMD
optimization is complex.

Note: This does not pertain to loop fission.

Advantage: Corrections are few, and SIMD
optimization is easy.

Disadvantage: Adjustments are necessary for every
shift in the problem scale such as a
parameter change.

 Chapter 8 Array Merging Copyright 2016 FUJITSU LIMITED 44

Array Merging

 What Is Array Merging?

 Array Merging (Before Improvement)

 Effects of Array Merging (Source Tuning)

 Array Merging (in C Language) (Before Improvement)

 Effects of Array Merging (in C Language) (Source Tuning)

 Effects of Array Merging (Compiler Options Tuning)

 Chapter 8 Array Merging Copyright 2016 FUJITSU LIMITED 45

What Is Array Merging?

Example of source code before improvement

subroutine sub()

parameter(n=256,m=256)

real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),

 f(n,m),g(n,m),h(n,m)

common /test/a,b,c,d,e,f,g,h

do j = 1 , m

 do i = 1 , n

 a(i, j) = b(i, j) + c(i, j) + d(i, j)+e(i,j)+f(i,j)+g(i,j)+h(i,j)

 enddo

enddo

End

Array merging is tuning that merges multiple arrays into one array.

a(256, 256)

b(1, 1)

・・・

(L1D cache)

(Data alignment in memory)

c(1, 1)

・・・

d(1, 1)

・・・

Example of source code after improvement

subroutine sub()

parameter(n=256,m=256)

real*8 abcd(4,n,m),efgh(4,n,m)

common /test/abcd,efgh

do j = 1 , m

 do i = 1 , n

 abcd(1,i,j)=abcd(2,i,j)+abcd(3,i,j)+

 abcd(4,i,j)+efgh(1,i,j)+efgh(2,i,j)+

 efgh(3,i,j)+efgh(4,i,j)

 enddo

enddo

 Before improvement After improvement

Occurrence of L1D
cache thrashing

 Use conditions

 Each array to be merged has the same number
of elements.

 Purpose

 The purpose is to reduce the number of streams.

 Adverse effect

 Load and store instructions become stride or indirect instructions.

abcd(1, 1, 1)

abcd(2, 1, 1)

・・・
abcd(1,256, 1)

(L1D cache)

(Data alignment in memory)

・・・

abcd(3, 1, 1)

abcd(4, 1, 1)

abcd(4,256,256)

Storing data in cache Storing data in cache (conflict) Order of memory access

Data can be used effectively because
all eight arrays are on the same cache
line.

256 x 256 x 8 B

= 32 x 16 KB
Discrete access

a(1, 1)

・・・

f(1, 1)

・・・
g(1, 1)

・・・

h(1, 1)

・・・

h(256, 256)

e(1, 1)

・・・

a(2, 1)

256 x 256 x 8 B

= 32 x 16 KB
Discrete access

256 x 256 x 8 B

= 32 x 16 KB
Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB
Discrete access

256 x 256 x 8 B

= 32 x 16 KB
Discrete access

efgh(1, 1, 1)

efgh(2, 1, 1)

efgh(3, 1, 1)

efgh(4, 1, 1)

abcd(1, 2, 1)

abcd(2,256, 1)

abcd(3,256, 1)

abcd(4,256, 1)

・・・

 Chapter 8 Array Merging Copyright 2016 FUJITSU LIMITED 46

Array Merging (Before Improvement)

Source code before improvement

 40 parameter(n=256,m=256)

 41 real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),f(n,m),g(n,m),h(n,m)

 42 common /test/a,b,c,d,e,f,g,h

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 422

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 43 1 pp 6v do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 44 2 p 6 do i = 1 , n

 45 2 p 6v a(i, j) = b(i, j) + c(i, j) + d(i, j)+e(i,j)+f(i,j)+g(i,j)+h(i,j)

 46 2 p 6v enddo

 47 1 p enddo

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the
following is a frequent event: No instruction commit due to L2 access for a floating-point load instruction.

Array size
256 x 256 x 8 B =

32 x 16 KB
(16-KB boundary)

No instruction
commit due
to L2 access

for a floating-
point load
instruction

No instruction commit waiting
for an instruction to be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

sec]

Before improvement

L1I miss rate(/Effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

Memory throughput
(GB/sec)

L2 throughput
(GB/sec)

Before
improvement 0.00% 23.21% 3.12E+09 91.66% 8.34% 0.00% 0.00% 0.00 261.73

The percentage of L1D misses is high and the L1 miss dm percentage is high,
despite the fact that the array is accessed sequentialy.

 L1D cache thrashing has occurred.

Cache

 Chapter 8 Array Merging Copyright 2016 FUJITSU LIMITED 47

Effects of Array Merging (Source Tuning)

Source code after improvement (source tuning)

 44 parameter(n=256,m=256)

 45 real*8 abcd(4,n,m),efgh(4,n,m)

 46 common /test/abcd,efgh

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 47 1 pp do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 48 2 p 4v do i = 1 , n

 49 2 p 4v abcd(1,i,j)=abcd(2,i,j)+abcd(3,i,j)+abcd(4,i,j)+efgh(1,i,j)+efgh(2,i,j)+efgh(3,i,j)+efgh(4,i,j)

 50 2 p 4v enddo

 51 1 p enddo

Array merging reduced the number of streams from eight to two, so L1D cache thrashing was avoided. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Merging 8 arrays in
units of 4

L1I miss
rate(/Effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm

rate(/L1D miss)
L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

Memory
throughput

(GB/sec)
L2 throughput (GB/sec)

Before
improvement 0.00% 23.21% 3.12E+09 91.66% 8.34% 0.00% 0.00% 0.00 261.73
After
improvement 0.00% 3.19% 4.29E+08 25.52% 74.48% 0.00% 0.00% 0.01 335.65

Cache

The percentage of L1D cache misses decreased from 23.21% to 3.19%, and
the L1D miss dm percentage decreased too from 91.66% to 25.52%.

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善後

[秒]

No
instructio
n commit
due to L2
access for

a
floating-

point
load

instructio
n

No instruction commit
waiting for an instruction to

be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

9.24-fold effect

Before improvement After improvement

 Chapter 8 Array Merging Copyright 2016 FUJITSU LIMITED 48

Array Merging (in C Language) (Before Improvement)

Source code before improvement

 5 #define N 256

 6 #define M 256

 7

 8 double a[M][N],b[M][N],c[M][N],d[M][N],e[M][N],f[M][N],g[M][N],h[M][N];

 :

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 433

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 47 pp 6v for(j=0;j<M;j++){

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 48 p 6v for(i=0;i<N;i++){

 49 p 6v a[j][i] = b[j][i] + c[j][i] + d[j][i] + e[j][i] + f[j][i] + g[j][i] + h[j][i];

 50 p 6v }

 :

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the
following is a frequent event: No instruction commit due to L2 access for a floating-point load instruction.

Array size
256 x 256 x 8 B =

32 x 16 KB
(16-KB boundary)

L1I miss rate(/Effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

Memory throughput
(GB/sec)

L2 throughput
(GB/sec)

Before
improvement 0.00% 21.95% 2.95E+09 91.96% 8.04% 0.00% 0.00% 0.00 235.97

The percentage of L1D misses is high and the L1 miss dm percentage is
high, despite the fact that the array is accessed sequentialy.
 L1D cache thrashing has occurred.

Cache

No
instruction

commit due
to L2 access

for a
floating-

point load
instruction

No instruction commit
waiting for an instruction

to be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

Before improvement

 Chapter 8 Array Merging Copyright 2016 FUJITSU LIMITED 49

Effects of Array Merging (in C Language) (Source Tuning)

Source code after improvement (source tuning)

 5 #define N 256

 6 #define M 256

 7

 8 double abcd[M][N][4],efgh[M][N][4];

 :

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 43 pp for(j=0;j<M;j++){

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 44 p 4v for(i=0;i<N;i++){

 45 p 4v abcd[j][i][0] = abcd[j][i][1] + abcd[j][i][2] + abcd[j][i][3] + efgh[j][i][0] +

 efgh[j][i][1] + efgh[j][i][2] + efgh[j][i][3];

 46 p 4v }

 47 }

 :

Array merging reduced the number of streams from eight to two, so L1D cache thrashing was avoided. This results in improvement
of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Merging 8 arrays in
units of 4

L1I miss rate(/Effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm

rate(/L1D miss)
L1D miss hwpf rate(/L1D

miss)
L1D miss swpf rate(/L1D

miss)
L2 miss rate(/Load-
store instruction)

Memory
throughput

(GB/sec)

L2 throughput
(GB/sec)

Before improvement 0.00% 21.95% 2.95E+09 91.96% 8.04% 0.00% 0.00% 0.00 235.97
After improvement 0.00% 3.18% 4.27E+08 27.49% 72.51% 0.00% 0.00% 0.01 377.36

Cache

The percentage of L1D cache misses decreased from 21.95% to 3.18%,
and the L1D miss dm percentage decreased too from 91.96% to 27.49%.

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善後

[秒]

No
instructi

on
commit
due to

L2
access
for a

floating
-point
load

instructi
on

No instruction commit
waiting for an

instruction to be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

11.03-fold effect

Before improvement After improvement

 Chapter 8 Array Merging

Effects of Array Merging (Compiler Options Tuning)

Copyright 2016 FUJITSU LIMITED 50

Compiler options Description of function

-Karray_merge_common

[=name]

Gives an instruction to merge multiple arrays in a common block. You can
specify a common block name for name. If name is omitted, the arrays in all
the named common blocks are targets.

-Karray_merge_local Gives an instruction to merge multiple local arrays.

-Karray_merge_local_size=1000000 is also valid at the same time.

-Karray_merge This option is equivalent to specifying the -Karray_merge_local

and -Karray_merge_common options.

You can achieve effects similar to source tuning by specifying the following
compiler options.

 Use example (source code before improvement)

 $ frtpx -Kfast,parallel sample.f90 -Karray_merge_common

Notes

Options must be specified for all source code that uses the target arrays.

The effects of array merging vary depending on the program.

Incorrect use may result in different computational results.

These options cannot be used with debug options (-g and -Haesux).

 Chapter 8 Dimensional Displacement of an Array Copyright 2016 FUJITSU LIMITED 51

Dimensional Displacement of an Array
 What Is Dimensional Displacement of an Array?

 Dimensional Displacement of an Array (Before Improvement)

 Effects of Dimensional Displacement of an Array (Source Tuning)

 Dimensional Displacement of an Array (in C Language) (Before Improvement)

 Effects of Dimensional Displacement of an Array (in C Language) (Source Tuning)

 Effects of Dimensional Displacement of an Array (Compiler Options Tuning)

 Chapter 8 Dimensional Displacement of an Array Copyright 2016 FUJITSU LIMITED 52

Storing data in cache Storing data in cache (conflict) Order of memory access

What Is Dimensional Displacement of an Array?

Source code example

subroutine sub()

parameter(n=256,m=256)

real*8 a(n, m, 8)

common /com/a

do j = 1 , m

 do i = 1 , n

 a(i, j, 1) = a(i, j, 2) + a(i, j, 3) + a(i, j, 4) +

 a(i, j, 5) + a(i, j, 6) + a(i, j, 7) + a(i, j, 8)

 enddo

enddo

Dimensional displacement of an array is a tuning method where multiple streams of the same array become one stream.

Source code example

subroutine sub()

parameter(n=256,m=256)

real*8 a(8, n, m)

common /com/a

do j = 1 , m

 do i = 1 , n

 a(1, i, j) = a(2, i, j) + a(3, i, j) + a(4, i, j) +

 a(5, i, j) + a(6, i, j) + a(7, i, j) +

 a(8, i, j)

 enddo

enddo

 Before improvement After improvement

Occurrence of L1D
cache thrashing

a(1, 1, 1)

a(2, 1, 1)

・・・

a(256, 256, 1)

a(1, 1, 2)

・・・

a(256, 256, 2)

(L1D cache)

(Data alignment in memory)

a(1, 1, 3)

・・・

a(256, 256, 3)

a(1, 1, 4)

・・・

a(256, 256, 4)

a(1, 1, 5)

・・・

 Use conditions
 Multiple streams exist in the same array.

 * a(1,1,1) to a(1,1,8) are shown as multiple streams.

 Purpose
 The purpose is to reduce the number of streams.

 Adverse effect
 SIMD optimization of load and store instructions is more difficult.

a(1, 1, 1)

a(2, 1, 1)

・・・
a(1, 256, 1)

(L1D cache)

(Data alignment in memory)

・・・

a(3, 1, 1)

a(4, 1, 1)

a(2, 256, 1)

a(1, 1, 2)

a(2, 1, 2)

a(3, 1, 2)

a(4, 1, 2)

a(1, 2, 1)

a(8, 256, 256)

Data can be used effectively
because all eight arrays are on the
same cache line.

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

a(1, 1, 6)

・・・

a(1, 1, 7)

・・・

a(1, 1, 8)

・・・

a(256, 256, 8)

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

a(5, 1, 1)

a(6, 1, 1)

a(7, 1, 1)

a(8, 1, 1)

・・・

a(3, 256, 1)

a(4, 256, 1)

 Chapter 8 Dimensional Displacement of an Array Copyright 2016 FUJITSU LIMITED 53

Dimensional Displacement of an Array (Before Improvement)

Source code before improvement

 33 parameter(n=256,m=256)

 34 real*8 a(n, m, 8)

 35 common /com/a

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 422

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 36 1 pp 6v do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 37 2 p 6 do i = 1 , n

 38 2 p 6v a(i, j, 1) = a(i, j, 2) + a(i, j, 3) + a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7) + a(i, j, 8)

 39 2 p 6v enddo

 40 1 p enddo

Size of 1 stream
256 x 256 x 8 B =

32 x 16 KB
(16-KB boundary)

L1D cache thrashing occurs because each stream of array a is located on a 16-KB boundary. Consequently, the following is
a frequent event: No instruction commit due to L2 access for a floating-point load instruction.

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory throughput
(GB/sec)

Before improvement 0.00% 23.26% 3.13E+09 91.57% 8.43% 0.00% 0.00% 261.00 0.00

The percentage of L1D misses is high and the L1 miss dm
percentage is high, despite the fact that the array is accessed
sequentialy.

 L1D cache thrashing has occurred.

No
instructio
n commit
due to L2
access for
a floating-
point load
instructio

n

No instruction commit waiting for
an instruction to be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

Before improvement

Cache

 Chapter 8 Dimensional Displacement of an Array Copyright 2016 FUJITSU LIMITED 54

Effects of Dimensional Displacement of an Array (Source Tuning)

Source code after improvement (source tuning)

 33 parameter(n=256,m=256)

 34 real*8 a(8, n, m)

 35 common /com/a

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 36 1 pp do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 37 2 p 4v do i = 1 , n

 38 2 p 4v a(1, i, j) = a(2, i, j) + a(3, i, j) + a(4, i, j) + a(5, i, j) + a(6, i, j) + a(7, i, j) + a(8, i, j)

 39 2 p 4v enddo

 40 1 p enddo

Dimensional displacement of an array reduced the number of streams from eight to one, so L1D cache thrashing was avoided.
This results in improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善後

[秒]

No
instructi

on
commit
due to

L2
access
for a

floating
-point
load

instructi
on

No instruction commit
waiting for an instruction to

be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

5.79-fold effect

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory throughput
(GB/sec)

Before improvement 0.00% 23.26% 3.13E+09 91.57% 8.43% 0.00% 0.00% 261.00 0.00
After improvement 0.00% 3.16% 4.27E+08 20.03% 79.97% 0.00% 0.00% 207.01 0.00

Cache

The percentage of L1D misses decreased from
23.26% to 3.16%, and the L1D miss dm percentage
decreased too from 91.57% to 20.03%.

Before improvement After improvement

 Chapter 8 Dimensional Displacement of an Array Copyright 2016 FUJITSU LIMITED 55

Dimensional Displacement of an Array (in C Language) (Before Improvement)

Source code before improvement

 4 #define N 256

 5 #define M 256

 6 #define L 8

 7

 8 double a[L][M][N];

 :

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 433

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 39 pp 6v for(j=0;j<M;j++){

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 40 p 6v for(i=0;i<N;i++){

 41 p 6v a[0][j][i] = a[1][j][i] + a[2][j][i] + a[3][j][i] + a[4][j][i] + a[5][j][i] + a[6][j][i] + a[7][j][i];

 42 p 6v }

 43 }

Size of 1 stream
256 x 256 x 8 B =

32 x 16 KB
(16-KB boundary)

L1D cache thrashing occurs because each stream of array a is located on a 16-KB boundary. Consequently, the following is
a frequent event: No instruction commit due to L2 access for a floating-point load instruction.

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory throughput
(GB/sec)

Before improvement 0.00% 21.92% 2.95E+09 91.93% 8.07% 0.00% 0.00% 235.07 0.00

The percentage of L1D misses is high and the L1 miss dm percentage
is high, despite the fact that the array is accessed sequentialy.

 L1D cache thrashing has occurred.

Cache

No
instructio
n commit
due to L2
access for
a floating-
point load
instructio

n

No instruction commit waiting for
an instruction to be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

Before improvement

 Chapter 8 Dimensional Displacement of an Array Copyright 2016 FUJITSU LIMITED 56

Effects of Dimensional Displacement of an Array (in C Language) (Source Tuning)

Source code after improvement (source tuning)

 4 #define N 256

 5 #define M 256

 6 #define L 8

 7

 8 double a[M][N][L];

 :

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 39 pp for(j=0;j<M;j++){

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 40 p 4v for(i=0;i<N;i++){

 41 p 4v a[j][i][0] = a[j][i][1] + a[j][i][2] + a[j][i][3] + a[j][i][4] +

 a[j][i][5] + a[j][i][6] + a[j][i][7];

 42 p 4v }

 43 }

Dimensional displacement of an array reduced the number of streams from eight to one, so L1D cache thrashing was avoided.
This results in improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf rate(/L1D
miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 21.92% 2.95E+09 91.93% 8.07% 0.00% 0.00% 235.07 0.00
After improvement 0.00% 3.16% 4.27E+08 22.84% 77.16% 0.00% 0.00% 199.05 0.00

Cache

The percentage of L1D misses decreased from
21.92% to 3.16%, and the L1D miss dm percentage
decreased too from 91.93% to 22.84%.

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善後

[秒]

No
instructi

on
commit
due to

L2
access
for a

floating
-point
load

instructi
on

No instruction
commit waiting for
an instruction to be

fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

5.83-fold effect

Before improvement After improvement

 Chapter 8 Dimensional Displacement of an Array

Effects of Dimensional Displacement of an Array (Compiler Options Tuning)

Copyright 2016 FUJITSU LIMITED 57

Compiler options Description of function

-Karray_subscript Gives an instruction for dimensional displacement of allocatable arrays with 4 or more
dimensions and arrays with 4 or more dimensions containing 10 or fewer elements in the final
dimension and 100 or more elements in the other dimensions.

-Karray_subscript_element=100,-Karray_subscript_elementlast=10,

and -Karray_subscript_rank=4 are also valid at the same time.

-Karray_subscript_element=N

(2≦N≦2,147,483,647)

Gives an instruction that the number of elements in a dimension other than the final
dimension in an array subject to dimensional displacement be N or greater. This option has
meaning in cases where the -Karray_subscript option is valid. However, the option has no
meaning for an allocatable array.

-Karray_subscript_elementlast=N

(2≦N≦2,147,483,647)

Gives an instruction that the number of elements in the final dimension of an array subject to
dimensional displacement be N or less. This option has meaning in cases where the

-Karray_subscript option is valid. However, the option has no meaning for an allocatable
array.

-Karray_subscript_rank=N

(2≦N≦30)

Gives an instruction that the number of dimensions of an array subject to dimensional
displacement be N or greater. This option has meaning in cases where the -Karray_subscript
option is valid.

You can achieve effects similar to source tuning by specifying the following compiler options.

 Use example (source code before improvement)

 $ frtpx -Kfast,parallel sample.f90

 -Karray_subscript,array_subscript_rank=2,array_subscript_element=2

Notes

Options must be specified for all source code that uses the target arrays.

The effects of displacement vary depending on the program.

Incorrect use may result in different computational results.

 Chapter 8 Loop Fission Copyright 2016 FUJITSU LIMITED 58

Loop Fission

 Loop Fission (Before Improvement)

 Effects of Loop Fission (Source Tuning)

 Loop Fission (in C Language) (Before Improvement)

 Effects of Loop Fission (in C Language) (Source Tuning)

 Effects of Loop Fission (Optimization Control Line Tuning)

 Chapter 8 Loop Fission Copyright 2016 FUJITSU LIMITED 59

Loop Fission (Before Improvement)

Source code before improvement

 46 parameter(n=65536)

 47 real*8 a(n),b(n),c(n),d(n),e(n),f(n),g(n),h(n)

 48 common /com/a,b,c,d,e,f,g,h

 49

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 206

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 50 1 pp 2v do i=1,n

 51 1 p 2v a(i) = s / b(i)

 52 1 p 2v c(i) = s / d(i)

 53 1 p 2v e(i) = s / f(i)

 54 1 p 2v g(i) = s / h(i)

 55 1 p 2v enddo

Array size
65536 x 8 B =

32 x 16 KB
(16-KB boundary)

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the following is a frequent
event: No instruction commit due to L2 access for a floating-point load instruction.

No instruction
commit due to
L2 access for a
floating-point

load
instruction

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

改善前

[sec]

L1I miss rate
(effective instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm rate(/L1D
miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory throughput
(GB/sec)

Before
improvement

0.00% 9.03% 4.74E+07 73.50% 26.50% 0.00% 0.00% 222.75 0.18

Cache

The percentage of L1D misses is high and the L1 miss dm percentage
is high, despite the fact that the array is accessed sequentialy.

 L1D cache thrashing has occurred.

Before improvement

 Chapter 8 Loop Fission Copyright 2016 FUJITSU LIMITED 60

Effects of Loop Fission (Source Tuning)

Source code after improvement (source tuning)

 46 parameter(n=65536)

 47 real*8 a(n),b(n),c(n),d(n),e(n),f(n),g(n),h(n)

 48 common /com/a,b,c,d,e,f,g,h

 49

 50 !OCL LOOP_NOFUSION

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 381

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 51 1 pp 4v do i=1,n

 52 1 p 4v a(i) = s / b(i)

 53 1 p 4v c(i) = s / d(i)

 54 1 p 4v enddo

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 381

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 55 1 pp 4v do i=1,n

 56 1 p 4v e(i) = s / f(i)

 57 1 p 4v g(i) = s / h(i)

 58 1 p 4v enddo

Loop fission

Suppressing loop
fusion

Loop fission reduced the number of streams from eight to four, so L1D cache thrashing was avoided. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf rate(/L1D
miss)

L2 miss rate(/Load-store
instruction)

L2 throughput
(GB/sec)

Memory throughput
(GB/sec)

Before improvement 0.00% 9.03% 4.74E+07 73.50% 26.50% 0.00% 0.00% 222.75 0.18
After improvement 0.00% 3.25% 1.71E+07 15.93% 84.07% 0.00% 0.00% 341.98 0.70

Cache

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

改善後

[秒]

The percentage of L1D misses decreased from 9.03% to 3.25%, and
the L1D miss dm percentage decreased too from 73.50% to 15.93%.

No
instruction

commit
due to

L2
access
for a

floating
-point
load

instruction

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

改善前

[sec]

4.15-fold effect

Before improvement After improvement

 Chapter 8 Loop Fission Copyright 2016 FUJITSU LIMITED 61

Loop Fission (in C Language) (Before Improvement)

Source code before improvement

 4 #define N 65536

 5

 6 double a[N],b[N],c[N],d[N],e[N],f[N],g[N],h[N];

 :

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 206

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 46 pp 2v for(i=0;i<N;i++){

 47 p 2v a[i] = s / b[i];

 48 p 2v c[i] = s / d[i];

 49 p 2v e[i] = s / f[i];

 50 p 2v g[i] = s / h[i];

 51 p 2v }

 52 }

Array size
65536 x 8 B =

32 x 16 KB
(16-KB boundary)

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the following is a frequent
event: No instruction commit due to L2 access for a floating-point load instruction.

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory throughput
(GB/sec)

Before improvement 0.00% 8.76% 4.60E+07 73.69% 26.31% 0.00% 0.00% 221.43 0.03

Cache

No
instruction

commit due
to L2 access

for a
floating-

point load
instruction

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

改善前

[sec]

Before improvement

The percentage of L1D misses is high and the L1 miss dm percentage is
high, despite the fact that the array is accessed sequentialy.

 L1D cache thrashing has occurred.

 Chapter 8 Loop Fission Copyright 2016 FUJITSU LIMITED 62

Effects of Loop Fission (in C Language) (Source Tuning)

Source code after improvement (source tuning)

 4 #define N 65536

 5

 6 double a[N],b[N],c[N],d[N],e[N],f[N],g[N],h[N];

 :

 46 #pragma loop loop_nofusion

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 381

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 47 pp 4v for(i=0;i<N;i++){

 48 p 4v a[i] = s / b[i];

 49 p 4v c[i] = s / d[i];

 50 p 4v }

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 381

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 51 pp 4v for(i=0;i<N;i++){

 52 p 4v e[i] = s / f[i];

 53 p 4v g[i] = s / h[i];

 54 p 4v }

Loop fission

Suppressing loop
fusion

Loop fission reduced the number of streams from eight to four, so L1D cache thrashing was avoided. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm rate(/L1D
miss)

L1D miss hwpf rate(/L1D
miss)

L1D miss swpf rate(/L1D
miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory throughput
(GB/sec)

Before improvement 0.00% 8.76% 4.60E+07 73.69% 26.31% 0.00% 0.00% 221.43 0.03
After improvement 0.00% 3.23% 1.70E+07 20.84% 79.16% 0.00% 0.00% 353.87 0.02

Cache

The percentage of L1D misses decreased from 8.76% to 3.23%, and
the L1D miss dm percentage decreased too from 73.69% to 20.84%.

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

改善後

[秒]

No
instructio
n commit
due to L2
access for

a
floating-

point load
instructio

n

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

改善前

[sec]

4.42-fold effect

Before improvement After improvement

 Chapter 8 Loop Fission

Effects of Loop Fission (Optimization Control Line Tuning)

Copyright 2016 FUJITSU LIMITED 63

Optimization control specifiers Meaning

Optimization control line that can be specified

Program
unit

DO loop
unit

Statement
unit

Array
assignment
statement
unit

!OCL FISSION_POINT[(n1)]

 (where n1 is decimal
number from 1 to 6)

Gives an instruction for loop fission at the specified point
inside a loop. The loop fission divides multiple loops that
have loops nested to n1 levels (counting from the innermost
loop).

No No Yes No

Source code after improvement (optimization control line tuning)

 46 parameter(n=65536)

 47 real*8 a(n),b(n),c(n),d(n),e(n),f(n),g(n),h(n)

 48 common /com/a,b,c,d,e,f,g,h

 49

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 381

 <<< [OPTIMIZATION]

 <<< SPLIT

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 50 1 pp 4v do i=1,n

 51 1 p 4v a(i) = s / b(i)

 52 1 p 4v c(i) = s / d(i)

 53 1 !ocl fission_point(1)

 54 1 p 4v e(i) = s / f(i)

 55 1 p 4v g(i) = s / h(i)

 56 1 p 4v enddo

jwd8212o-i "a.f90", line 54: Loop is divided (loop fission).

You can achieve effects similar to source tuning by specifying the following optimization control line.

 Chapter 8 Padding Copyright 2016 FUJITSU LIMITED 64

Padding

 What Is Padding?

 Padding That Increases the Number of Array Elements in the First
Dimension

 Padding That Increases the Number of Array Elements in the Second
Dimension

 Padding Using a Dummy Array

 Padding Using a Dummy Array (for Arrays of Different Sizes)

 Chapter 8 Padding Copyright 2016 FUJITSU LIMITED 65

Storing data in cache Storing data in cache (conflict)

Order of memory access

What Is Padding?

Example of source code before improvement

parameter(n=256,m=256)

real*8 a(n, m, 8)

common /com/a

do j = 1 , m

 do i = 1 , n

 a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) +

 a(i, j, 4) + a(i, j, 5) + a(i, j, 6) +

 a(i, j, 7)

 enddo

enddo

Padding inserts a dummy area between arrays or inside an array.

 Before improvement After improvement

 Use conditions
 Multiple streams exist in the same array.
Alternatively,
 Multiple arrays exist.

 Purpose
 The purpose is to create a temporary area to shift addresses.

 Adverse effect
 The amount of padding must be changed every time that the problem scale changes.

(L1D cache)

a(1, 1, 1)

a(2, 1, 1)

・・・

a(256, 1, 1)

a(1, 1, 2)

a(2, 1, 2)

・・・

(Data alignment in memory)

a(257, 256, 1)

Example of source code after improvement

parameter(n=257,m=256)

real*8 a(n, m, 8)

common /com/a

do j = 1 , m

 do i = 1 , n

 a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) +

 a(i, j, 4) + a(i, j, 5) + a(i, j, 6) +

 a(i, j, 7)

 enddo

enddo

Example where multiple streams exist in the same array

L1D cache
thrashing does
not occur
because the
storage
location was
shifted.

・・・

a(257, 1, 1)

a(256, 256, 1) Occurrence of L1D
cache thrashing

a(1, 1, 1)

a(2, 1, 1)

・・・

a(256, 256, 1)

a(1, 1, 2)

・・・

a(256, 256, 2)

(L1D cache)

(Data alignment in memory)

a(1, 1, 3)

・・・

a(256, 256, 3)

a(1, 1, 4)

・・・

a(256, 256, 4)

a(1, 1, 5)

・・・

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

a(1, 1, 6)

・・・

a(1, 1, 7)

・・・

a(1, 1, 8)

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

256 x 256 x 8 B

= 32 x 16 KB

Discrete access

a(257, 256, 2)

a(256, 256, 2)

a(1, 1, 3)

a(2, 1, 3)

・・・

Padding shifted the
storage location in cache
memory.

a(256, 1, 2)

・・・

a(257, 1, 2)

 Chapter 8 Padding That Increases the Number of Array Elements in the First Dimension Copyright 2016 FUJITSU LIMITED 66

Padding That Increases the Number of Array
Elements in the First Dimension

 Padding That Increases the Number of Array Elements in the First Dimension
(Before Improvement)

 Effects of Padding That Increases the Number of Array Elements in the First
Dimension (Source Tuning)

 Padding That Increases the Number of Array Elements in the First Dimension (in C
Language) (Before Improvement)

 Effects of Padding That Increases the Number of Array Elements in the First
Dimension (in C Language) (Source Tuning)

 Effects of Padding That Increases the Number of Array Elements in the First
Dimension (Compiler Options Tuning)

 Chapter 8 Padding That Increases the Number of Array Elements in the First Dimension Copyright 2016 FUJITSU LIMITED 67

Padding That Increases the Number of Array Elements in the First Dimension (Before Improvement)

Source code before improvement

 42 parameter(n=256,m=256)

 43 real*8 a(n, m, 8)

 44 common /com/a

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 422

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 45 1 pp 6v do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 46 2 p 6 do i = 1 , n

 47 2 p 6v a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

 48 2 p 6v enddo

 49 1 p enddo

Stream in
same array

L1D cache thrashing occurs because each stream of array a is located on a 16-KB boundary. Consequently, the
following is a frequent event: No instruction commit due to L2 access for a floating-point load instruction.

Array size
256 x 256 x 8 B =

32 x 16 KB
(16-KB boundary)

No
instruction

commit
due to L2

access for a
floating-

point load
instruction

No instruction commit waiting
for an instruction to be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

5.0E+00

改善前

[sec]

L1I miss rate
(effective instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 33.19% 4.47E+09 95.12% 4.88% 0.00% 0.00% 247.59 0.00

Cache

The percentage of L1D cache misses is high and the demand percentage of L1D
cache misses is high, despite the fact that the array is accessed sequentialy.

 L1D cache thrashing has occurred.

Before improvement

 Chapter 8 Padding That Increases the Number of Array Elements in the First Dimension Copyright 2016 FUJITSU LIMITED 68

Effects of Padding That Increases the Number of Array Elements in the First Dimension (Source Tuning)

Source code after improvement (source tuning)

 42 parameter(n=256,m=256)

 43 real*8 a(n+1, m, 8)

 44 common /com/a

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 45 1 pp do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 46 2 p 4v do i = 1 , n

 47 2 p 4v a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

 48 2 p 4v enddo

 49 1 p enddo

Stream in
same array

Shifting from 16-KB
boundary by adding 1 to n

L1D cache thrashing was avoided because of padding (+1) of the first dimension of each stream of array a. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

5.0E+00

改善後

[秒]

No
instruction

commit
due to

L2
access
for a

floatin
g-point

load
instruction

No instruction
commit waiting for
an instruction to be

fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

5.0E+00

改善前

[sec]

17.1-fold effect

L1I miss rate
(effective instruction)

L1D miss rate
(/Load-store instruction)

L1D miss L1D miss dm rate(/L1D miss)
L1D miss hwpf rate(/L1D
miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory throughput
(GB/sec)

Before
improvement

0.00% 33.19% 4.47E+09 95.12% 4.88% 0.00% 0.00% 247.59 0.00

After
improvement

0.00% 3.27% 4.39E+08 9.46% 90.54% 0.00% 0.00% 421.35 0.01

Cache

Before improvement After improvement

The percentage of L1D misses decreased from 33.19% to 3.27%, and
the L1D miss dm percentage decreased too from 95.12% to 9.46%.

 Chapter 8 Padding That Increases the Number of Array Elements in the First Dimension Copyright 2016 FUJITSU LIMITED 69

Padding That Increases the Number of Array Elements in the First Dimension
(in C Language) (Before Improvement)

Source code before improvement

 4 #define N 256

 5 #define M 256

 6 #define L 8

 7

 8 double a[L][M][N];

 :

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 433

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 39 pp 6v for(j=0;j<M;j++){

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 40 p 6v for(i=0;i<N;i++){

 41 p 6v a[0][j][i] = a[1][j][i] + a[2][j][i] + a[3][j][i] + a[4][j][i] + a[5][j][i] + a[6][j][i] + a[7][j][i];

 42 p 6v }

 43 }

Stream in
same array

Array size
256 x 256 x 8 B =

32 x 16 KB
(16-KB boundary)

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store instruction)

L1D miss
L1D miss dm rate(/L1D
miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 21.92% 2.95E+09 91.92% 8.08% 0.00% 0.00% 235.08 0.00

Cache

No
instruction

commit
due to L2
access for
a floating-
point load
instruction

No instruction commit waiting
for an instruction to be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

L1D cache thrashing occurs because each stream of array a is located on a 16-KB boundary. Consequently, the following is a
frequent event: No instruction commit due to L2 access for a floating-point load instruction.

Before improvement The percentage of L1D misses is high and the demand
percentage of L1D cache misses is high, despite the fact that
the array is accessed sequentialy.

 L1D cache thrashing has occurred.

 Chapter 8 Padding That Increases the Number of Array Elements in the First Dimension Copyright 2016 FUJITSU LIMITED 70

Effects of Padding That Increases the Number of Array Elements in the First
Dimension (in C Language) (Source Tuning)

Source code after improvement (source tuning)

 4 #define N 256

 5 #define M 256

 6 #define L 8

 7

 8 double a[L][M][N+1];

 :

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 38 pp for(j=0;j<M;j++){

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 39 p 4v for(i=0;i<N;i++){

 40 p 4v a[0][j][i] = a[1][j][i] + a[2][j][i] + a[3][j][i] + a[4][j][i]

 + a[5][j][i] + a[6][j][i] + a[7][j][i];

 41 p 4v }

 42 }

Stream in
same array

Shifting from 16-KB
boundary by adding 1 to n

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm rate(/L1D
miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.00% 21.92% 2.95E+09 91.92% 8.08% 0.00% 0.00% 235.08 0.00

After
improvement

0.00% 3.26% 4.37E+08 8.79% 91.21% 0.00% 0.00% 425.99 0.01

Cache
The percentage of L1D misses decreased from 21.92% to 3.26%, and
the L1D miss dm percentage decreased too from 91.92% to 8.79%.

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善後

[秒]

No
instruction

commit
due to

L2
access
for a

floating
-point
load

instruction

No instruction commit waiting for
an instruction to be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

12.3-fold effect

L1D cache thrashing was avoided because of padding (+1) of the first dimension of each stream of array a. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Before improvement After improvement

 Chapter 8 Padding That Increases the Number of Array Elements in the First Dimension

Effects of Padding That Increases the Number of Array Elements in the First Dimension
(Compiler Options Tuning)

Copyright 2016 FUJITSU LIMITED 71

Compiler options Description of function

-Karraypad_const[=N]

(1≦N≦2,147,483,647)

Pads N elements of an array whose first dimension is an explicit shape
specification and shape specification expression is a constant expression. If N
is omitted, the compiler determines the amount of padding for each target
array. The padding creates a gap in the array.

-Karraypad_expr=N

(1≦N≦2,147,483,647)

Pads N elements of an array whose first dimension is an explicit shape
specification, regardless of whether its shape specification expression is a
constant expression.

Automatic selection of target arrays Application of padding

Notes

Options must be specified for all source code that uses the target arrays.

The effects of padding vary depending on the program.

Incorrect use may result in different computational results.

The -Karraypad_const [=N] option and -Karraypad_expr=N option cannot be
specified at the same time.

You can achieve effects similar to source tuning by specifying the following
compiler options.

 Use example (source code before improvement)

 $ frtpx -Kfast,parallel sample.f90 -Karraypad_expr=1

 Chapter 8 Padding That Increases the Number of Array Elements in the Second Dimension Copyright 2016 FUJITSU LIMITED 72

Padding That Increases the Number of Array
Elements in the Second Dimension

 Case of No Improvement from Padding That Increases the Number of
Array Elements in the First Dimension

 Padding That Increases the Number of Array Elements in the Second
Dimension

 Padding That Increases the Number of Array Elements in the Second
Dimension (Before Improvement)

 Effects of Padding That Increases the Number of Array Elements in
the Second Dimension (Source Tuning)

 Chapter 8 Padding That Increases the Number of Array Elements in the Second Dimension

a(1,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(1,2048,1)

 ・
 ・
 ・

a(64,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(64,2048,1)

a(1,1,2)

Copyright 2016 FUJITSU LIMITED 73

Source code before improvement

 33 parameter(k=64,l=2048)

 34 real*8 a(k, l, 8)

 35 common /com/a

 36 do j = 1 , l

 37 do i = 1 , k

 38 a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

 39 enddo

 40 enddo

 41 end

Case of No Improvement from Padding That Increases the Number of Array Elements in the First Dimension

64

Address = 0

 Address
 = 64 x 16 KB + 16 KB
 (2048 x 8 B)

+1

Area of a(i,j,1)

Area of a(i,j,2)

a(k+1, l, 8)

Padding

2048 x 8 B = 16 KB

Depending on the array size, there may be no improvement even with padding (+1) of the array elements of the first dimension.

Padding

a(1,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(1,2048,1)

 ・
 ・
 ・

a(64,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(64,2048,1)

a(1,1,2)

J-axis direction

I-a
xis d

irectio
n

2048 x 8 B = 16 KB

 Address
 = 64 x 16 KB
 (2048 x 8 B)

Area of a(i,j,1)

Area of a(i,j,2)

64

Padding

2048

J-axis direction
2048

Address = 0

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

パディング後

[秒]

L1I miss rate
(effective instruction)

L1D miss rate
(/Load-store instruction)

L1D miss
L1D miss dm rate(/L1D
miss)

Before improvement 0.01% 26.39% 2.77E+07 92.46%
After improvement 0.01% 37.12% 3.90E+07 97.12%

Cache

Thrashing occurs since array a remains on a 16-KB boundary. 0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

パディング前

[sec]

Thrashing not
avoidable

Before padding After padding

I-a
xis d

irectio
n

 Chapter 8 Padding That Increases the Number of Array Elements in the Second Dimension

a(1,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(1,2048,1)

 ・
 ・
 ・

a(64,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(64,2048,1)

a(1,1,2)

a(1,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(1,2048,1)

 ・
 ・
 ・

a(64,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(64,2048,1)

a(1,1,2)

Copyright 2016 FUJITSU LIMITED 74

Source code before improvement

 33 parameter(k=64,l=2048)

 34 real*8 a(k, l, 8)

 35 common /com/a

 36 do j = 1 , l

 37 do i = 1 , k

 38 a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

 39 enddo

 40 enddo

 41 end

Source code after improvement

 33 parameter(k=64,l=2048)

 34 real*8 a(k+1, l, 8)

 35 common /com/a

 36 do j = 1 , l

 37 do i = 1 , k

 38 a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

 39 enddo

 40 enddo

 41 end

Padding That Increases the Number of Array Elements in the Second Dimension

 Address
 = 64 x 16 KB ＋ 0.5 KB

Padding of the second dimension of array a

Area of a(i,j,1)

Area of a(i,j,2)

Thrashing is avoided because the 16-KB boundary is no longer valid.

64

J-axis direction
2048

+1

2048 x 8 B
= 16 KB

 Address
 = 64 x 16 KB
 (2048 x 8 B)

Area of a(i,j,1)

Area of a(i,j,2)

64

Thrashing occurs because of the 16-KB boundary.

64 x 8 B
= 0.5 KB

L1D cache thrashing is avoided because padding (+1) of the second dimension causes a
shift from the 16-KB boundary.

P
a

d
d

in
g

J-axis direction
2048

Address
= 0

Address
= 0 I-a

xis d
irectio

n

I-a
xis d

irectio
n

 Chapter 8 Padding That Increases the Number of Array Elements in the Second Dimension Copyright 2016 FUJITSU LIMITED 75

Padding That Increases the Number of Array Elements in the Second Dimension (Before Improvement)

Source code before improvement

 38 parameter(n=32,m=2048)

 39 real*8 a(n, m, 8)

 40 common /com/a

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 422

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 41 1 pp 6v do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 42 2 p 6 do i = 1 , n

 43 2 p 6v a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

 44 2 p 6v enddo

 45 1 p enddo

Stream in
same array

Array size
32 x 2048 x 8 B =

32 x 16 KB
(16-KB boundary)

L1D cache thrashing occurs because each stream of array a is located on a 16-KB boundary. Consequently, the
following is a frequent event: No instruction commit due to L2 access for a floating-point load instruction.

No
instruction

commit due
to L2 access

for a
floating-

point load
instruction

No instruction commit waiting for an
instruction to be fetched

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

5.0E-01

改善前

[sec]

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.00% 26.31% 4.42E+08 92.60% 7.40% 0.00% 0.00% 246.39 0.01

The percentage of L1D cache misses is high and the demand percentage of L1D
cache misses is high, despite the fact that the array is accessed sequentialy.

 L1D cache thrashing has occurred. Cache

Before improvement

 Chapter 8 Padding That Increases the Number of Array Elements in the Second Dimension Copyright 2016 FUJITSU LIMITED 76

Effects of Padding That Increases the Number of Array Elements in the Second Dimension (Source Tuning)

Source code after improvement (source tuning)

 39 parameter(n=32,m=2048)

 40 real*8 a(n, m+1, 8)

 41 common /com/a

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 422

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 42 1 pp 6v do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 43 2 p 6 do i = 1 , n

 44 2 p 6v a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

 45 2 p 6v enddo

 46 1 p enddo

Shifting from 16-KB
boundary by adding 1 to m

L1D cache thrashing was avoided because of padding (+1) of the second dimension of each stream of array a. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

5.0E-01

改善後

[秒]

No
instruction

commit
due to

L2
access
for a

floating
-point
load

instruction

No instruction
commit waiting for
an instruction to be

fetched

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

5.0E-01

改善前

[sec]

7.93-fold effect

Cache

L1I miss rate
(effective instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf rate(/L1D
miss)

L1D miss swpf rate(/L1D
miss)

L2 miss rate(/Load-store
instruction)

L2 throughput (GB/sec)
Memory throughput
(GB/sec)

Before
improvement

0.00% 26.31% 4.42E+08 92.60% 7.40% 0.00% 0.00% 246.39 0.01

After
improvement

0.00% 6.12% 1.03E+08 52.53% 47.47% 0.00% 0.00% 456.13 0.02

The percentage of L1D misses decreased from 26.31% to 6.12%, and the
L1D miss dm percentage decreased too from 92.60% to 52.53%.

Before improvement After improvement

 Chapter 8 Padding Using a Dummy Array Copyright 2016 FUJITSU LIMITED 77

Padding Using a Dummy Array

 Padding Using a Dummy Array (Before Improvement)

 Effects of Padding Using a Dummy Array (Source Tuning)

 Effects of Padding Using a Dummy Array
(Compiler Options Tuning)

 Chapter 8 Padding Using a Dummy Array Copyright 2016 FUJITSU LIMITED 78

Padding Using a Dummy Array (Before Improvement)

Source code before improvement

 1 parameter(n=256,m=256)

 2 real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),f(n,m),g(n,m),h(n,m)

 3 character (1),parameter :: null0=z'00'

 4 common /test/a,b,c,d,e,f,g,h

 ・・・・・・・・・・・・・・・・・・・・・・・

 27 1 s s call sub()

 ・・・・・・・・・・・・・・・・・・・・・・・

 34 subroutine sub()

 35 parameter(n=256,m=256)

 36 real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),f(n,m),g(n,m),h(n,m)

 37 common /test/a,b,c,d,e,f,g,h

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 422

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 38 1 pp 6v do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 39 2 p 6 do i = 1 , n

 40 2 p 6v a(i, j) = b(i, j) + c(i, j) + d(i, j) + e(i, j) + f(i ,j) + g(i ,j) + h(i ,j)

 41 2 p 6v enddo

 42 1 p enddo

Array size
256 x 256 x 8 B =

32 x 16 KB
(16-KB boundary)

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the following is a
frequent event: No instruction commit due to L2 access for a floating-point load instruction.

No
instruction

commit due
to L2 access

for a floating-
point load
instruction

No instruction commit waiting
for an instruction to be

fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善前

[sec]

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm rate(/L1D
miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2
throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 29.46% 3.96E+09 93.32% 6.68% 0.00% 0.00% 264.25 0.00

Cache

Before improvement

The percentage of L1D misses is high and the demand percentage of L1D
cache misses is high, despite the fact that the array is accessed sequentialy.

 L1D cache thrashing has occurred.

 Chapter 8 Padding Using a Dummy Array Copyright 2016 FUJITSU LIMITED 79

Effects of Padding Using a Dummy Array (Source Tuning)

Source code after improvement (source tuning)

 1 parameter(n=256,m=256)

 2 real*8 a(n, m),dummy1(64),b(n,m),dummy2(64),

 c(n,m),dummy3(64),d(n,m),dummy4(64)

 3 real*8 e(n, m),dummy5(64),f(n,m),dummy6(64),

 g(n,m),dummy7(64),h(n,m)

 4 character (1),parameter :: null0=z'00'

 5 common /test/a,dummy1,b,dummy2,c,dummy3,d,dummy4,

 e,dummy5,f,dummy6,g,dummy7,h

 ・・・・・・・・・・・・・・・・・・・・・・・・・・

 28 1 s s call sub()

 ・・・・・・・・・・・・・・・・・・・・・・・・・・

 35 subroutine sub()

 36 parameter(n=256,m=256)

 37 real*8 a(n, m),dummy1(64),b(n,m),dummy2(64),c(n,m),

 dummy3(64),d(n,m),dummy4(64)

 38 real*8 e(n, m),dummy5(64),f(n,m),dummy6(64),g(n,m),

 dummy7(64),h(n,m)

 39 common /test/a,dummy1,b,dummy2,c,dummy3,d,

 dummy4,e,dummy5,f,dummy6,g,dummy7,h

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 422

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 40 1 pp 6v do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 41 2 p 6 do i = 1 , n

 42 2 p 6v a(i, j) = b(i, j) + c(i, j) + d(i, j) + e(i, j) + f(i,j) + g(i,j) + h(i,j)

 43 2 p 6v enddo

 44 1 p enddo

L1D cache thrashing was avoided because a dummy array was inserted between arrays to cause a shift from the 16-KB boundary.
This results in improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

Adding dummy array
between arrays to cause
shift from 16-KB
boundary

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

Before improvement 0.00% 29.46% 3.96E+09 93.32%
After improvement 0.00% 3.57% 4.80E+08 20.40%

Cache

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善後

[秒]

No
instruction

commit
due to

L2 access
for a

floating-
point
load

instruction

No instruction commit waiting for an
instruction to be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善前

[sec]

14.2-fold effect

The percentage of L1D misses decreased from 29.46% to 3.57%, and the L1D
miss dm percentage decreased too from 93.32% to 20.40%.

Before improvement After improvement

 Chapter 8 Padding Using a Dummy Array

Effects of Padding Using a Dummy Array (Compiler Options Tuning)

Copyright 2016 FUJITSU LIMITED 80

Compiler options Description of function

-Kcommonpad[=N]

(4≦N≦2,147,483,644)

Specifies that a gap be created between areas for variables in a
common block to increase the data cache use efficiency.

If N is omitted, the compiler automatically determines the optimal
value.

Automatic selection of target arrays Application of padding

Notes
For separate compilation with the compiler options -Kcommonpad specified for a file

containing a common block, this option must also be specified for other files
containing common blocks of the same name.

For compilation with the compiler options -Kcommonpad=N specified for multiple
files, the value of N must be the same.

Also, if programs with the compiler options -Kcommonpad specified use the same
common block name with its elements changed, the programs may not run correctly.

You can achieve effects similar to source tuning by specifying the following
compiler options.

 Use example (source code before improvement)

 $ frtpx -Kfast,parallel sample.f90 -Kcommonpad=512

 Chapter 8 Padding Using a Dummy Array (for Arrays of Different Sizes) Copyright 2016 FUJITSU LIMITED 81

Padding Using a Dummy Array
(for Arrays of Different Sizes)

 Conflict between Arrays of Different Sizes

 Padding Using a Dummy Array
(for Arrays of Different Sizes: Before Improvement)

 Effects of Padding Using a Dummy Array
(for Arrays of Different Sizes: Source Tuning)

 Chapter 8 Padding Using a Dummy Array (for Arrays of Different Sizes) Copyright 2016 FUJITSU LIMITED 82

Source code example

parameter(n=256,m=256)

parameter(k=2560,l=256)

real*8 a(n,m), b(n,m), c(n,m),

 d(n,m), e(n,m), f(n,m),

 g(n,m), h(k,l)

common /test/a,b,c,d,e,f,g,h

do j = 1 , m

 do i = 1 , n

 a(i, j) = b(i, j) + c(i, j) + d(i, j) +

 e(i, j) + f(i, j) + g(i, j) +

 h(i, j)

 enddo

enddo

Conflict between Arrays of Different Sizes (1/2)

Incrementing in the second dimension,

the array address of a(1,2) is the a(1,1) address + 256 x 8 B,

the array address of b(1,2) is the b(1,1) address + 256 x 8 B,

 : : :

the array address of h(1,2) is the h(1,1) address + 2560 x 8 B

Assuming that the array address of a(1,1) is 0,

the array address of a(1,1) is 0 (16 KB x 0),

the array address of b(1,1) is 256 x 256 x 8 (16 KB x 32),

 : : :

the array address of h(1,1) is 256 x 256 x 8 x 7 (16 KB x 224)

Cache thrashing occurs because the addresses are
assigned to a 16-KB boundary

+ 18 KB

Generally, stationary cache thrashing does not
occur for arrays of different sizes.

Generally, stationary cache thrashing does not occur for arrays of different sizes.
j-axis direction

a(i,j) b(i,j) h(i,j)
1,1 1,2 ‥ 1,256 1,1 1,2 ‥ 1,256 1,1 1,2 ‥ 1,256
2,1 2,2 ‥ 2,256 2,1 2,2 ‥ 2,256 2,1 2,2 ‥ 2,256
3,1 3,2 ‥ 3,256 3,1 3,2 ‥ 3,256 3,1 3,2 ‥ 3,256
： ： ： ： ： ： ‥ ： ： ： ： ：

256,1 256,2 ‥ 256,256 256,1 256,2 ‥ 256,256 256,1 256,2 ‥ 256,256
257,1 257,2 ‥ 257,256
： ： ： ：

2560,1 2560,2 ‥ 2560,256

‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥

‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥

i-a
xis d

ire
ctio

n

Arrays a, b, c, d, e, f, and g remain on a 16-KB
boundary, but the array h address shifts from the
16-KB boundary.

256 x 8 B + 18 KB

 Chapter 8 Padding Using a Dummy Array (for Arrays of Different Sizes) Copyright 2016 FUJITSU LIMITED 83

Source code example

parameter(n=256,m=256)

parameter(k=2304,l=256)

real*8 a(n,m), b(n,m), c(n,m),

 d(n,m), e(n,m), f(n,m),

 g(n,m), h(k,l)

common /test/a,b,c,d,e,f,g,h

do j = 1 , m

 do i = 1 , n

 a(i, j) = b(i, j) + c(i, j) + d(i, j) +

 e(i, j) + f(i, j) + g(i, j) +

 h(i, j)

 enddo

enddo

Conflict between Arrays of Different Sizes (2/2)

Incrementing in the second dimension,

the array address of a(1,2) is the a(1,1) address + 256 x 8 B,

the array address of b(1,2) is the b(1,1) address + 256 x 8 B,

 : : :

the array address of h(1,2) is the h(1,1) address + 2304 x 8 B

Assuming that the array address of a(1,1) is 0,

the array address of a(1,1) is 0 (16 KB x 0),

the array address of b(1,1) is 256 x 256 x 8 (16 KB x 32),

 : : :

the array address of h(1,1) is 256 x 256 x 8 x 7 (16 KB x 224)

Cache thrashing occurs because the addresses
are assigned to a 16-KB boundary.

Measures against thrashing are necessary
for arrays of all sizes, including array h.

Stationary cache thrashing occurs because an array remains on a 16-KB boundary. This happens even in
cases with arrays of different sizes, depending on the array size.

+ 16 KB

a(i,j) b(i,j) h(i,j)
1,1 1,2 ‥ 1,256 1,1 1,2 ‥ 1,256 1,1 1,2 ‥ 1,256
2,1 2,2 ‥ 2,256 2,1 2,2 ‥ 2,256 2,1 2,2 ‥ 2,256
3,1 3,2 ‥ 3,256 3,1 3,2 ‥ 3,256 3,1 3,2 ‥ 3,256
： ： ： ： ： ： ‥ ： ： ： ： ：

256,1 256,2 ‥ 256,256 256,1 256,2 ‥ 256,256 256,1 256,2 ‥ 256,256
257,1 257,2 ‥ 257,256
： ： ： ：

2304,1 2304,2 ‥ 2304,256

‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥

‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥

j-axis direction i-a
xis d

ire
ctio

n

All of arrays a,b,c,d,e,f,g, and h remain on a 16-
KB boundary.

256 x 8 B + 16 KB

 Chapter 8 Padding Using a Dummy Array (for Arrays of Different Sizes) Copyright 2016 FUJITSU LIMITED 84

Padding Using a Dummy Array (for Arrays of Different Sizes: Before Improvement)

Source code before improvement

 50 subroutine sub()

 51 integer k,l,n,m

 52

 53 parameter(n=256,m=256)

 54 parameter(k=2304,l=256)

 55

 56 real*8 a(n,m), b(n,m), c(n,m), d(n,m), e(n,m), f(n,m), g(n,m), h(k,l)

 57

 58

 59 common /test/a,b,c,d,e,f,g,h

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 60 1 pp do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 61 2 p 4v do i = 1 , n

 62 2 p 4v a(i, j) = b(i, j) + c(i, j) + d(i, j) + e(i, j) + f(i, j) + g(i, j) + h(i, j)

 63 2 p 4v enddo

 64 1 p enddo

Each array remains on
16-KB boundary even
when second dimension
incremented

L1D cache thrashing occurs because each array is located on a 16-KB boundary. Consequently, the following is a
frequent event: No instruction commit due to L2 access for a floating-point load instruction.

No
instruction
commit due
to L2 access

for a floating-
point load
instruction

No instruction commit waiting
for an instruction to be

fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

Before improvement

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 19.14% 2.57E+09 90.13% 9.87% 0.00% 0.00% 221.82 0.01

Cache

The percentage of L1D misses is high and the demand
percentage of L1D cache misses is high, despite the fact
that the array is accessed sequentially.

 L1D cache thrashing has occurred.

 Chapter 8 Padding Using a Dummy Array (for Arrays of Different Sizes) Copyright 2016 FUJITSU LIMITED 85

Padding Using a Dummy Array (for Arrays of Different Sizes: Source Tuning)

Source code after improvement

 50 subroutine sub()

 51 integer k,l,n,m

 52

 53 parameter(n=256,m=256)

 54 parameter(k=2304,l=256)

 55

 56 real*8 a(n,m),dummy1(64),b(n,m),dummy2(64), &

 57 c(n,m),dummy3(64),d(n,m),dummy4(64), &

 58 e(n,m),dummy5(64),f(n,m),dummy6(64), &

 59 g(n,m),dummy7(64),h(k,l)

 60 common /test/a,dummy1,b,dummy2,c,dummy3,

 d,dummy4,e,dummy5,f,dummy6,

 g,dummy7,h

 61

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 62 1 pp do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 63 2 p 4v do i = 1 , n

 64 2 p 4v a(i, j) = b(i, j) + c(i, j) + d(i, j) + e(i, j) + f(i, j) + g(i, j) + h(i, j)

 65 2 p 4v enddo

 66 1 p enddo

Inserting dummy
array between
arrays

L1D cache thrashing was avoided because a dummy array was inserted between arrays to cause a shift from the 16-KB boundary.
This results in improvement of the following event: No instruction commit due to L2 access for a floating-point load instruction.

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善後

[秒]

No
instruction

commit
due to

L2 access
for a

floating-
point
load

instruction

No instruction commit
waiting for an instruction to

be fetched

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

10.6-fold effect

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 19.14% 2.57E+09 90.13% 9.87% 0.00% 0.00% 221.82 0.01
After improvement 0.00% 3.69% 4.96E+08 27.02% 72.98% 0.00% 0.00% 452.07 0.04

Cache The percentage of L1D misses decreased from 19.14% to 3.69%, and the L1D
miss dm percentage decreased too from 90.13% to 27.02%.

Before improvement After improvement

 Chapter 8 Tuning Approach to Cache Thrashing (Application) Copyright 2016 FUJITSU LIMITED 86

Tuning Approach to
Cache Thrashing (Application)

 Tuning Approach (Application)

 Chapter 8 Tuning Approach to Cache Thrashing (Application)

Tuning Approach (Application)

Copyright 2016 FUJITSU LIMITED 87

 a(n,2,4)

 b(n,2,4)

 …

 do i=1,n

 … = a(i,1,2) + b(i,1,2) +

 & a(i,2,2) + b(i,2,2) +

 & a(i,1,3) + b(i,1,3) +

 & a(i,2,3) + b(i,2,3)

 enddo

Following steps 1 to step 3 can reduce the
number of streams from eight to two.

 a23(2,n,2)

 b23(2,n,2)

 …

 do i=1,n

 … = a23(1,i,1) + b23(1,i,1) +

 & a23(1,i,2) + b23(1,i,2) +

 & a23(2,i,1) + b23(2,i,1) +

 & a23(2,i,2) + b23(2,i,2)

 enddo

 a1(n,2),a2(n,2),a3(n,2),a4(n,2)

 b1(n,2),b2(n,2),b3(n,2),b4(n,2)

 …

 do i=1,n

 … = a2(i,1) + b2(i,1) +

 & a2(i,2) + b2(i,2) +

 & a3(i,1) + b3(i,1) +

 & a3(i,2) + b3(i,2)

 enddo

Original source Step 1 (array division) Step 2 (array merging)

 a23(2,2,n)

 b23(2,2,n)

 …

 do i=1,n

 … = a23(1,1,i) + b23(1,1,i) +

 & a23(1,2,i) + b23(1,2,i) +

 & a23(2,1,i) + b23(2,1,i) +

 & a23(2,2,i) + b23(2,2,i)

 enddo

Step 3 (dimensional displacement of an array)

8 streams 8 streams 4 streams

2 streams

Suppose dimensional displacement of an array is done based on the original source.
 Cache efficiency will deteriorate because arrays a and b, which are used inside the loop,

use only part of the areas of the declared sizes.
For this reason, preprocessing that is called array division (step 1) is done before array
merging and dimensional displacement of an array (steps 2 and 3).

 (array division +) array merging + dimensional displacement of an array

 Chapter 8 Improvement in TLB Thrashing Copyright 2016 FUJITSU LIMITED 88

Improvement in TLB Thrashing

 What Is TLB Thrashing?

 Padding (Before Improvement)

 Effects of Padding (Source Tuning)

 Effects of Page Size Expansion (lpgparm Command)

 Chapter 8 Improvement in TLB Thrashing Copyright 2016 FUJITSU LIMITED 89

What Is TLB Thrashing?

Source code example (for a large page of 4 MB)

subroutine sub()

parameter(n=8192,m=8192)

real*8 a(n, m, 8)

common /com/a

do j = 1 , m

 do i = 1 , n

 a(i, j, 1) = a(i, j, 2) + a(i, j, 3) + a(i, j, 4) +

 a(i, j, 5) + a(i, j, 6) + a(i, j, 7) + a(i, j, 8)

 enddo

enddo

TLB thrashing is a phenomenon in which address translation information for
specific TLB indexes (TLB location information) is frequently overwritten. This
phenomenon is likely to occur when the array size is a multiple of 512 MB.
(* For details on the TLB, see "What Is the TLB? (Details)" in "Chapter 3 Large
Page.")

In this example, a(1,1,1), a(1,1,2), a(1,1,3), a(1,1,4),
a(1,1,5), a(1,1,6), a(1,1,7), and a(1,1,8) are placed at an
interval of 512 MB, so the eight of them are assigned to the
same index. Therefore, the first and second points of data
are overwritten by the fifth and sixth points of data,
respectively.

(Page table)
* Stores address translation information

 Rough standard for TLB
thrashing

mDTLB miss rate

(/Load-store instruction)

1.5% or higher

Address translation
information for one page (4
MB)

(TLB)

a(1, 1, 1)
・ ・ ・

a (8192, 1, 1)

・ ・ ・
a(1, 1, 2)
・ ・ ・

a (8192, 1, 2)
・ ・ ・

・ ・ ・
a(1, 1, 4)

・ ・ ・
a (8192 1, 4)

・ ・ ・

Execution order

(1)

(2)

1WAY

128

entries

4WAY

Storing data in cache (conflict)

Execution order (1) to (7)

Storing data in cache

2WAY 3WAY

a(1, 1, 5)
・ ・ ・

a (8192, 1, 5)

・ ・ ・
a(1, 1, 6)
・ ・ ・

a (8192, 1, 6)
・ ・ ・

a(1, 1, 7)

・ ・ ・
a (8192, 1, 7)
・ ・ ・

a(1, 1, 8)

・ ・ ・
a (8192 1, 8)

a(1, 1, 3)

・ ・ ・
a (8192 1, 3)

(3)

8192 x 8192 x 8 B

= 512 MB
Discrete access

(4)

(5)

(6)

(7)

8192 x 8192 x 8 B

= 512 MB
Discrete access

8192 x 8192 x 8 B

= 512 MB
Discrete access

8192 x 8192 x 8 B

= 512 MB
Discrete access

8192 x 8192 x 8 B

= 512 MB
Discrete access

8192 x 8192 x 8 B

= 512 MB
Discrete access

8192 x 8192 x 8 B

= 512 MB
Discrete access

 Chapter 8 Improvement in TLB Thrashing Copyright 2016 FUJITSU LIMITED 90

Padding (Before Improvement)

Source code before improvement

 27 parameter(n=8192,m=8192)

 28 real*8 a(n, m, 8)

 29 common /com/a

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 422

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 30 1 pp 6v do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 31 2 p 6 do i = 1 , n

 32 2 p 6v a(i, j, 1) = a(i, j, 2) + a(i, j, 3) + a(i, j, 4) + a(i, j, 5) +

 a(i, j, 6) + a(i, j, 7) + a(i, j, 8)

 33 2 p 6v enddo

 34 1 p enddo

8192 x 8192 x 8 B = 512 MB
(Page size of 4 MB x
 128 entries)

TLB thrashing occurs because the page size is 4 MB and each array is located on a 512-MB
boundary. Consequently, data access wait is a frequent event.

No
instruction

commit due
to L2 access

for a
floating-

point load
instruction

No
instruction

commit due
to L1D

access for a
floating-

point load
instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善前

[SEC]

L2 throughput
(GB/sec)

Memory
throughput

(GB/sec)

μDTLB miss rate
(/Load-store instruction)

mDTLB miss rate
(/Load-store instruction)

Before improvement 163.32 20.79 28.39728% 12.12630%

Cache High percentage of mDTLB misses:
12.13%
 TLB thrashing

Before improvement

 Chapter 8 Improvement in TLB Thrashing Copyright 2016 FUJITSU LIMITED 91

Effects of Padding (Source Tuning)

Source code after improvement (source tuning)

 27 parameter(n=8192+64,m=8192)

 28 real*8 a(n, m, 8)

 29 common /com/a

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 422

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 30 1 pp 6v do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 31 2 p 6 do i = 1 , n

 32 2 p 6v a(i, j, 1) = a(i, j, 2) + a(i, j, 3) + a(i, j, 4) +

 a(i, j, 5) + a(i, j, 6) + a(i, j, 7) + a(i, j, 8)

 33 2 p 6v enddo

 34 1 p enddo

Padding to shift address of
each stream by 512 MB +
one page (4 MB)

TLB thrashing was avoided because the address of each stream was shifted through padding.
As a result, there was improvement in data access wait.

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善後

[秒]

No
instructio
n commit
due to L2
access for

a
floating-

point load
instructio

n

No
instructio
n commit

due to
L1D

access for
a

floating-
point load
instructio

n

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善前

[sec]

1.92-fold effect

L2 throughput
(GB/sec)

Memory throughput
(GB/sec)

μDTLB miss rate
(/Load-store instruction)

mDTLB miss rate
(/Load-store instruction)

Before improvement 163.32 20.79 28.39728% 12.12630%

After improvement 272.45 42.11 0.01764% 0.00023%

Cache
The percentage of mDTLB misses decreased to 0.00023%.

Before improvement After improvement

 Chapter 8 Improvement in TLB Thrashing Copyright 2016 FUJITSU LIMITED 92

Effects of Page Size Expansion (lpgparm Command)
TLB thrashing was avoided because the page size was expanded to 32 MB by the lpgparm command.
As a result, there was improvement in data access wait.

Source code after improvement

 27 parameter(n=8192,m=8192)

 28 real*8 a(n, m, 8)

 29 common /com/a

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 422

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 30 1 pp 6v do j = 1 , m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 31 2 p 6 do i = 1 , n

 32 2 p 6v a(i, j, 1) = a(i, j, 2) + a(i, j, 3) + a(i, j, 4) + a(i, j, 5) +

 a(i, j, 6) + a(i, j, 7) + a(i, j, 8)

 33 2 p 6v enddo

 34 1 p enddo

L2 throughput
(GB/sec)

Memory throughput
(GB/sec)

μDTLB miss rate
(/Load-store instruction)

mDTLB miss rate
(/Load-store instruction)

Before improvement 163.32 20.79 28.39728% 12.12630%

After improvement 270.29 41.83 0.00829% 0.00005%

Cache

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善後

[秒]

No
instruction

commit
due to L2
access for
a floating-
point load
instruction

No
instruction

commit
due to L1D
access for
a floating-
point load
instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善前

[sec]

 Page size specification of 32 MB
 $ lpgparm -s 32MB -t 32MB -d 32MB -h 32MB -p 32MB -S 32MB a.out

1.92-fold effect

Before improvement After improvement

The percentage of mDTLB misses decreased to 0.00005%.

 Chapter 8 Improvement in Data Access Wait (Increase in Data Locality) Copyright 2016 FUJITSU LIMITED 93

 What Is Data Locality?

 Strip Mining

 Loop Blocking

 Sector Cache

 Loop Interchange

 Loop Fusion

 Array Merging (Indirect Access)

Improvement in Data Access Wait
(Increase in Data Locality)

 Chapter 8 Improvement in Data Access Wait (Increase in Data Locality)

Data locality means the repeatedly accessing of data loaded in cache.
Higher data locality reduces memory access load, resulting in an improvement in data access wait.

Conceptual diagrams of L2 cache (12-MB) states

What Is Data Locality?

Copyright 2016 FUJITSU LIMITED 94

Source code example

real*8
a(n),b(n),c(n),d(n),e(n)

do i=1, n !! Loop 1

 a(i)=b(i)+c(i)

enddo

do j=1, n !! Loop 2

 e(i)=a(i)+d(i)

enddo
Arrays a to e each
have a data size
of about 4 MB.

Improving the data locality of
array a will increase cache
efficiency.

n = 1000000

A cache miss occurs
because the data of
a(1) was already
forced out.

A cache miss occurs because the array a data
loaded in cache by loop 1 was already forced
out at the loop 2 execution time.

 Overwritten data

 Data forced out

Up to this point, no
data is overwritten.

Old data is overwritten
by new data and forced

out of the cache.

Data that
can still be
reused is
forced out.

b(1) b(33) ・・・ b(499969)
b(2) b(34) ・・・ b(499938) b(499970)
： ： ・・・ ： ：

b(32) b(64) ・・・ b(499968) b(500000)
c(1) c(17) ・・・ c(499937) c(499969)
c(2) c(18) ・・・ c(499938) c(499970)
： ： ・・・ ： ：

c(32) c(64) ・・・ c(499968) c(500000)
a(1) a(17) ・・・ a(499937) a(499969)
a(2) a(18) ・・・ a(499938) a(499970)
： ： ・・・ ： ：
a(32) a(64) ・・・ a(499968) a(500000)

b(500001) b(33) ・・・
b(500002) b(34) ・・・

： ： ・・・
b(500032) b(64) ・・・
c(500001) c(33) ・・・
c(500002) c(34) ・・・

： ： ・・・
c(500032) c(64) ・・・
a(500001) a(33) ・・・
a(500002) a(34) ・・・

： ： ・・・
a(500032) a(64) ・・・

d(1) b(500033) ・・・ b(499937) b(499969)
d(2) b(500034) ・・・ b(499938) b(499970)
： ： ・・・ ： ：

d(32) b(500064) ・・・ b(499968) b(500000)
e(1) c(500033) ・・・ c(499937) c(499969)
e(2) c(500034) ・・・ c(499938) c(499970)
： ： ・・・ ： ：

e(16) c(500064) ・・・ c(499968) c(500000)
a(1) a(500033) ・・・ a(499937) a(499969)
a(2) a(500034) ・・・ a(499938) a(499970)
： ： ・・・ ： ：

a(16) a(500064) ・・・ a(499968) a(500000)

b(1)
b(2)
：

b(32)

c(1)
c(2)

：
c(32)

a(1)
a(2)

：
a(32)

b(500001)
b(500002)

：
b(500032)

c(500001)
c(500002)

：
c(500032)

a(500001)
a(500002)

：
a(500032)

Loop 1, with i = 500000

a(1)

：

：

Cache
miss

b(499937)

b(499969)
b(499970)

b(500000)
c(499969)
c(499970)

c(500000)

：

a(499969)
a(499970)

a(500000)

b(499938)
：

b(499968)
c(499937)
c(499938)

：
c(499968)
a(499937)
a(499938)

：
a(499968)

b(499937)

4 MB

4 MB

4 MB

12 MB

Loop 1, with i = 500001

Loop 2, with j = 1

The assumed model in these
descriptions is an L2 cache (12 MB).

 Chapter 8 Strip Mining Copyright 2016 FUJITSU LIMITED 95

Strip Mining

 What Is Strip Mining?

 Strip Mining (Before Improvement)

 Effects of Strip Mining (Source Tuning)

 Chapter 8 Strip Mining

What Is Strip Mining?

Copyright 2016 FUJITSU LIMITED 96

Example of source code before improvement

 integer n,m

 real*8 a(n,m),b(n,m),c(n,m),d(n,m),e(n,m)

 do j=1,m

 do i=1,n

 a(i,j)=b(i,j)+c(i,j)

 enddo

 do i=1,n-100

 d(i,j)=a(i,j)+e(i,j)

 enddo

 enddo

Example of source code after improvement

 integer n,m

 real*8 a(n,m),b(n,m),c(n,m),d(n,m),e(n,m)

 blki=10*1024/8

 do j=1,m

 do ii=1,n,blki

 do i=ii,min(ii+blki-1,n)

 a(i,j)=b(i,j)+c(i,j)

 enddo

 do i=ii,min(ii+blki-1,n-100)

 d(i,j)=a(i,j)+e(i,j)

 enddo

 enddo

 enddo

A occurs because
data in array a remains in
data cache.

Array a data loaded in
cache is overwritten
because the number of
iterations is large.

Strip mining is a technique for increasing cache efficiency through alternating execution, in
units of blocks, of two loops nested at the same level.

Block size
Loop 1

Loop 2

A occurs for array a.

Loop 1

Loop 2

n=100*1000/8
m=20

Cache hit

,1) ・・・a(1280,1) ・・・・ a(n,1)

1 n

Loop 1

Loop iteration count

1 n-100

Loop 2

Cache miss

 ・・・a(1280,1) ・・・

a(1,1)

a(1,1)

Cache miss

1) ・・・a(1280,1) ・・・ a(n,1)

1 n

Loop 1

Loop iteration count

1 n-100

Loop 2

Cache miss

 ・・・a(1280,1) ・・・

a(1,1)

a(1,1)

cache miss

Array access order

Block size

Array size

cache hit

 Chapter 8 Strip Mining Copyright 2016 FUJITSU LIMITED 97

Strip Mining (Before Improvement)

Source code before improvement

32 !$omp parallel do reduction(+:s1)

33 1 p do j=1,m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

34 2 p 4v do i=1,n

35 2 p 4v s1 = s1 + a(i,j) / (s3 / b(i,j) + c(i,j) / (s2 + s3 / d(i,j)))

36 2 p 4v enddo

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

37 2 p 4v do i=1,n-100

38 2 p 4v e(i,j) = s2 / (a(i,j) + b(i,j) / (s3 + c(i,j) / d(i,j)))

39 2 p 4v enddo

40 1 p enddo

Not all array data can be loaded in cache because loop 1 has many iterations, so loop 2 cannot reuse the data.
Consequently the following is a frequent event: No instruction commit due to memory and cache busy.

Loop 1

Loop iteration count: 375000
Total of array sizes: 12 MB
Not all array data can be loaded in
cache because the number of
iterations is large.

Array access resulting in cache
miss

Loop 2

No instruction
commit due
to memory
and cache

busy

No instruction commit
due to L2 access for a

floating-point load
instruction

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

改善前

[sec]

Before improvement

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.01% 3.13% 4.22E+08 0.18% 99.82% 0.00% 3.13% 4.23E+08 104.86 116.67

Cache

データの再利用性がないためL1
キャッシュミス率とL2キャッシュミ
ス率が理論値の6.25%

The percentages of L1D misses and L2 misses are around
3.125%, which is the theoretical value for stream access,
because data cannot be reused.

 Chapter 8 Strip Mining Copyright 2016 FUJITSU LIMITED 98

Effects of Strip Mining (Source Tuning)

Source code after improvement (source tuning)

 34 blki=4*1024/8

 35

 36 !$omp parallel do reduction(+:s1)

 37 1 p do j=1,m

 38 2 p do ii=1,n,blki

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 39 3 p 4v do i=ii,min(ii+blki-1,n)

 40 3 p 4v s1 = s1 + a(i,j) / (s3 / b(i,j) + c(i,j) / (s2 + s3 / d(i,j)))

 41 3 p 4v enddo

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 42 3 p 4v do i=ii,min(ii+blki-1,n-100)

 43 3 p 4v e(i,j) = s2 / (a(i,j) + b(i,j) / (s3 + c(i,j) / d(i,j)))

 44 3 p 4v enddo

 45 2 p enddo

 46 1 p enddo

Strip mining increases cache efficiency, which improves the following event: No instruction
commit due to memory and cache busy.

Block size: 4 KB
4 KB x 4 streams = 16 KB
 Size for placing data in L1 cache

Array access resulting in
cache hit

Loop 2
0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

改善後

[秒]

No
instruction
commit
due to

memory
and cache

busy

No instruction
commit due
to L2 access

for a floating-
point load
instruction

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

改善前

[sec]

1.69-fold effect

Loop 1

L1I miss rate
(effective instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.01% 3.13% 4.22E+08 0.18% 99.82% 0.00% 3.13% 4.23E+08 104.86 116.67
After improvement 0.01% 1.73% 2.35E+08 0.33% 99.67% 0.00% 1.74% 2.35E+08 97.94 117.69

Cache

The numbers of L1D misses and L2 misses decreased
significantly.

Before improvement After improvement

 Chapter 8 Loop Blocking Copyright 2016 FUJITSU LIMITED 99

Loop Blocking

 What Is Loop Blocking?

 Loop Blocking (Before Improvement)

 Effects of Loop Blocking (Source Tuning)

 Chapter 8 Loop Blocking

Loop Blocking (1/3)

Copyright 2016 FUJITSU LIMITED 100

Example of source code before
improvement

 subroutine sub(a,b,m,n)

 integer n,m

 real*8 a(m,n),b(n,m)

 do j=1,m

 do i=1,n

 b(i,j)=a(j,i)

 enddo

 enddo

 end subroutine

Loop blocking is a technique for increasing cache efficiency. This
technique divides source code into blocks of the specified size before
execution.

Example of source code after improvement

 subroutine sub(a,b,m,n)

 parameter(blki=96,blkj=16)

 integer n,m

 real*8 a(m,n),b(n,m)

 do jj=1,m, blkj

 do ii=1,n, blki

 do j=jj,min(jj+blkj-1,m)

 do i=ii,min(ii+blki-1,n)

 b(i,j)=a(j,i)

 enddo

 enddo

 enddo

 enddo

 end subroutine

Block size

12 KB of 1 array
(= 96 x 16 x 8 B)

Array a: Stride access

Array b: Sequential access

 Chapter 8 Loop Blocking

1,1 1,2 … 1,16 1,17 1,18 … 1,240 1,241 … … 1,n

2,1

…

16,1

17,1

18,1

…

32,1

…

m,1

Loop Blocking (2/3)

Copyright 2016 FUJITSU LIMITED 101

■Array access (before improvement)
Memory is accessed every time i is updated because of the stride access of array a.
This results in the data loaded in the cache by access to a(1,1) being forced out before access at the a(2,1) access time.

Array a(m,n) access order and cache miss status
Figure (3)
on right

Figure (1)
on right

Figure (2)
on right

Example of source code (before
improvement)

subroutine sub(a,b,m,n)

 integer n,m

 real*8 a(m,n),b(n,m)

 do j=1,m

 do i=1,n

 b(i,j)=a(j,i)

 enddo

 enddo

end subroutine

Array access order

Block size

Cache line

Cache miss

Cache hit

L1 cache (64 KB) state

a(1,1) a(1,2) a(1,3) ・・・ ・・・ a(1,240)
a(2,1) a(2,2) a(2,3) ・・・ ・・・ a(2,240)
： ： ： ・・・ ・・・ ：
： ： ： ・・・ ・・・ ：

a(32,1) a(32,2) a(32,3) ・・・ ・・・ a(32,240)

a(1,1) a(1,241) a(1,2) a(1,3) ・・・ ・・・ a(1,240)
a(2,1) a(2,241) a(2,2) a(2,3) ・・・ ・・・ a(2,240)

: ： ： ： ・・・ ・・・ ：
: ： ： ： ・・・ ・・・ ：

a(32,1) a(32,241) a(32,2) a(32,3) ・・・ ・・・ a(32,240)

a(1,241) a(1,1) a(1,242) a(1,243) ・・・ ・・・ a(1,480)
a(2,241) a(2,1) a(2,242) a(2,243) ・・・ ・・・ a(2,480)

: ： ： ： ・・・ ・・・ ：
: ： ： ： ・・・ ・・・ ：

a(32,241) a(32,1) a(32,242) a(32,243) ・・・ ・・・ a(32,480)

Up to this point, no
data is overwritten.

Old data is overwritten by new
data and forced out of the cache.

Cache
miss

Data that
can still be
reused is
forced out.

A cache miss occurs
because the data of
a(2.1) was already
forced out.

i-axis direction

j-a
xis d

irectio
n

M
e

m
o

ry Co
n

tin
u

in
g

 d
ire

ctio
n

Overwritten data

Data forced out
(1) j = 1 and i = 240

(2) j = 1 and i = 241

(3) j = 2 and i = 1

 Chapter 8 Loop Blocking

Loop Blocking (3/3)

Copyright 2016 FUJITSU LIMITED 102

A cache hit occurs
because data
remains in cache.

■Array access (after improvement) with a block size of 96 x 16
Loop blocking causes block-by-block access.
This results in a cache hit during access of a(2,1) and increased cache efficiency.

1,1 1,2 … 1,96 1,97 1,98 … 1,192 1,193 1,194 … 1,n

2,1

…

16,1

17,1

18,1

…

32,1

…

m,1

Access to next
block

Figure (1)
on right

Figure (2)
on right

Example of source code (after improvement)

subroutine sub(a,b,m,n)

 parameter(blki=96,blkj=16)

 integer n,m

 real*8 a(m,n),b(n,m)

 do jj=1,m, blkj

 do ii=1,n, blki

 do j=jj,min(jj+blkj-1,m)

 do i=ii,min(ii+blki-1,n)

 b(i,j)=a(j,i)

 enddo

 enddo

 enddo

 enddo

end subroutine

Array access order

Block size

Cache line

Cache miss

Cache hit

L1 cache (64 KB) state
Array a(m,n) access order and cache miss status

a(1,1) a(1,2) a(1,3) ・・・ a(1,96)
a(2,1) a(2,2) a(2,3) ・・・ a(2,96)
： ： ： ・・・ ：
： ： ： ・・・ ：

a(32,1) a(32,2) a(32,3) ・・・ a(32,96)

a(1,1) a(1,2) a(1,3) ・・・ a(1,96)
a(2,1) a(2,2) a(2,3) ・・・ a(2,96)
： ： ： ・・・ ：
： ： ： ・・・ ：

a(32,1) a(32,2) a(32,3) ・・・ a(32,96)

Cache hit

Array data

placed in cache

i-axis direction

j-a
xis d

irectio
n

M
e

m
o

ry Co
n

tin
u

in
g

 d
ire

ctio
n

(1) j = 1 and i = 96

(2) j = 2 and i = 1

 Chapter 8 Loop Blocking Copyright 2016 FUJITSU LIMITED 103

Loop Blocking (Before Improvement)

Source code before improvement

 48 1 !$omp do

 49 2 p do j=1,n2

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 50 3 p 6v do i=1,n1

 51 3 p 6v b(i,j) = c0 + a(j,i)*(c1 + a(j,i)*(c2 + a(j,i)*(c3 + a(j,i)*

 52 3 & (c4 + a(j,i)*(c5 + a(j,i)*(c6 + a(j,i)*(c7 + a(j,i)*

 53 3 & (c8 + a(j,i)*c9))))))))

 54 3 p 6v enddo

 55 2 p enddo

 56 1 !$omp enddo

 57 1 enddo

 58 !$omp end parallel

Cache use efficiency decreases because of stride access of array a, and the following event
occurs: No instruction commit due to memory access for a floating-point load instruction.

Data in array a is placed in the cache once during the i
iteration, but the data is already forced out by the time of
the next j iteration. Consequently, a cache miss occurs.

No
instruction

commit due
to memory
access for a

floating-
point load
instruction

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

Before improvement

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2
throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.09% 51.31% 1.28E+09 96.98% 3.02% 0.00% 51.34% 1.28E+09 106.04 109.34

Cache

The percentages of L1D misses and L2
misses are high at 51%.

 Chapter 8 Loop Blocking Copyright 2016 FUJITSU LIMITED 104

Effects of Loop Blocking (Source Tuning)

Source code after improvement (after source tuning)

 55 1 !$omp do

 56 2 p do jj=1,n2,16

 57 3 p do ii=1,n1,96

 58 4 p do j=jj,min(jj+16-1,n2)

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 59 5 p 6v do i=ii,min(ii+96-1,n1)

 60 5 p 6v b(i,j) = c0 + a(j,i)*(c1 + a(j,i)*(c2 + a(j,i)*(c3 + a(j,i)*

 61 5 & (c4 + a(j,i)*(c5 + a(j,i)*(c6 + a(j,i)*(c7 + a(j,i)*

 62 5 & (c8 + a(j,i)*c9))))))))

 63 5 p 6v enddo

 64 4 p enddo

 65 3 p enddo

 66 2 p enddo

 67 1 !$omp enddo

Reuse of data in array a through loop blocking increases cache efficiency, which improves the following event:
No instruction commit due to memory access for a floating-point load instruction.

Application of loop blocking
The L1 cache size is 64 KB, so the
following is assumed in the cache: the
size of 1 block is 12 KB (96 x 16 x 8), and
the size required for processing 1 block is
24 KB (12 x 2 blocks).
This is intended to improve the data use
efficiency of the cache.

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善後

[秒]

No
instructio
n commit

due to
memory

access for
a

floating-
point load
instructio

n

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[sec]

6.89-fold effect

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement 0.09% 51.31% 1.28E+09 96.98% 3.02% 0.00% 51.34% 1.28E+09 106.04 109.34
After
improvement 0.01% 6.69% 1.70E+08 95.65% 4.35% 0.00% 6.12% 1.56E+08 97.61 111.78

Cache

The percentages of L1D misses and L2
misses decreased significantly.

Before improvement After improvement

 Chapter 8 Sector Cache Copyright 2016 FUJITSU LIMITED 105

 What Is a Sector Cache?

 Overview of Sector Cache Capacity Control

 Conceptual Diagram of Actual Operation

 How to Use a Sector Cache

 Sector Cache Improvement Example

 Sector Cache: Case Example 1

 Sector Cache: Case Example 2

Sector Cache

 Chapter 8 Sector Cache

A sector cache is a cache mechanism that can prevent reusable data from being forced
out of the cache by non-reusable data. This mechanism enables applications to divide
the cache into two parts (sector 0 and sector 1) and use them.
(Reused arrays use sector 1, and the others use sector 0.)

What Is a Sector Cache?

Copyright 2016 FUJITSU LIMITED 106

The following sector cache details assume a model of a 5-MB/10-way
L2 cache.

(The SPARC64™ XIfx has a 12-MB/24-way/1-CMG L2 cache.)

 The capacity of each sector is specified by the number of ways.

 Functionally, capacity values are interpreted as target values.
Under control by hardware, the capacity of each sector gets closer
to the specified capacity at the line replacement time.

 Data is not forcibly made invalid even if the capacity is
exceeded.

 The LRU algorithm (the least recently used data is discarded first)
controls the forcing out of data from a sector.

 Applications determine the usage of sector 0 and sector 1.
However, sector 0 stores a series of instructions.

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Control register

Sector 1 Sector 0

3 7

256 Byte/line

20
48

 lin
es

10 ways

Core #0-#15
Settings by
applications

The next and subsequent pages provide an overview of
capacity control in cases where sector 0 = 3 ways and
sector 1 = 7 ways.

 Chapter 8 Sector Cache

Overview of Sector Cache Capacity Control (1/2)

Copyright 2016 FUJITSU LIMITED 107

 A cache miss is an opportunity to adjust the capacity. The capacity
is not forcibly adjusted.
 If the capacity of a sector is less than the capacity specified in the control register, the

number of ways is increased until the capacity is reached.

 Even if the sector of a cache miss has a greater capacity than specified, the capacity
does not decrease.

Access of sector 1 results
in a cache miss.

Access of sector 0 results in a cache miss.
The LRU algorithm selects one way from
sector 1 to insert sector 0 data there.

The LRU algorithm selects one way from
sector 1 to insert sector 1 data there.

Sector 0
Current: 2 ways
Setting: 3 ways

Sector 1
Current: 8 ways
Setting: 7 ways

Sector 0
Current: 3 ways
Setting: 3 ways

Sector 1
Current: 7 ways
Setting: 7 ways

Sector 0
Current: 2 ways
Setting: 3 ways

Sector 1
Current: 8 ways
Setting: 7 ways

Sector 0
Current: 2 ways
Setting: 3 ways

Sector 1
Current: 8 ways
Setting: 7 ways

 Chapter 8 Sector Cache

Overview of Sector Cache Capacity Control (2/2)

Copyright 2016 FUJITSU LIMITED 108

 The number of ways of a sector may exceed the specified capacity.
1. Case with a free way

2. Case of a hit in access of another sector

Sector 0
Current: 4 ways
Setting: 3 ways

Sector 1
Current: 5 ways
Setting: 7 ways

Sector 0
Current: 5 ways
Setting: 3 ways

Sector 1
Current: 5 ways
Setting: 7 ways

Sector 0
Current: 3 ways
Setting: 3 ways

Sector 1
Current: 7 ways
Setting: 7 ways

Sector 0
Current: 4 ways
Setting: 3 ways

Sector 1
Current: 6 ways
Setting: 7 ways

Access of sector 0 results in
a hit in sector 1.

Access of sector 0 results
in a cache miss.

Sector 0 data is
stored in a free way.

The way of sector 1 becomes that of sector
0.

 Chapter 8 Sector Cache

9 3 2 8 10 5 7 6 1 4 8 2 1 7 9 4 6 5 3

8 2 1 7 9 4 6 5 3 10 7 1 6 8 3 5 4 9 2

Conceptual Diagram of Actual Operation
(Sector 0: 7 Ways; Sector 1: 3 Ways)

Copyright 2016 FUJITSU LIMITED 109

5 7 6 4 1 3 2 8 9 10 5 6 4 9 1 3 2 7 8 The next time that sector 0 is accessed,
the data with the oldest access history in
sector 1 is updated (normalizing the
number of ways to the specified value).

5 8 7 4 6 1 3 2 9 10 6 5 7 4 1 3 2 8 9

If access of data stored in a way of
sector 0 results in a hit, the way
becomes a way of sector 1.
(The specified number of ways is
ignored.)

6 9 8 5 7 2 4 3 1 10 The data with the oldest access history in
sector 0 is updated. 5 8 7 4 6 1 3 2 9

6 9 5 7 2 4 3 8 1 10

7 1 6 8 3 5 4 9 2 10

!OCL CACHE_SECTOR_SIZE (7,3)
9 3 2 8 10 5 7 6 1 4

Sector. 1 2 10

The area of sector 1 is increased by
updates of the data with the oldest
access history in sector 0 until the
number of ways reaches the
specified value of 3.

6 9 5 7 2 4 3 8 1 Sector. 1 3 10
Since the specified number of ways of 3
has been reached, sector 0 data is not
updated, but the data with the oldest
access history in sector 1 is updated. 6 9 8 5 7 2 4 3 1

Sector. 0 3 10

Sector. 1 4

Hit

10

Sector. 0 3 10

10 Sector. 1 3

Sector. 1 1 10

Actual
access

Sector 1
Number of

ways
Sector 0 Sector 1 Number in square: Larger Smaller

 ↓ ↓
Access history: Newer Older

<- Reused arrays

 Chapter 8 Sector Cache

How to Use a Sector Cache (1/2)

Copyright 2016 FUJITSU LIMITED 110

 Sector cache: Pseudo local memory
Software can use sectors effectively according
to the reusability of data.
 Reused arrays Sector 1 used
Others Sector 0 used
 Data on sector 1 is not forced out by other

data.
 The user can specify in a directive line that

the array be in sector 1.

Example of using compiler directive lines for sector cache specification

!OCL CACHE_SECTOR_SIZE(3,7)
!OCL CACHE_SUBSECTOR_ASSIGN(a)
do j=1,m
 do i=1,n
 a(i) = a(i) + b(i,j)＊c(i,j)
 enddo
enddo
!OCL END_CACHE_SUBSECTOR
!OCL END_CACHE_SECTOR_SIZE

<Purpose>
The purpose is to prevent array a, which has reusability, from being
forced out of the cache by access to arrays b and c in a loop.

Cache

Data whose reusability is unknown

Pseudo local
memory

Data not to be reused
Data to be reused

Normal cache

Sector 0 Sector 1

 Chapter 8 Sector Cache

How to Use a Sector Cache (2/2)

Copyright 2016 FUJITSU LIMITED 111

Optimization control specifiers Meaning

Optimization control line that
can be specified

Program
unit

DO loop
unit

Statement
unit

Array
assignment
statement
unit

CACHE_SECTOR_SIZE

(l1_n1,l1_n2,l2_n1,l2_n1)

END_CACHE_SECTOR_SIZE

Specifies the maximum numbers of ways of
sector 0 and ways of sector 1 in the L1 cache
and L2 cache.

Yes No Yes No

CACHE_SECTOR_SIZE

(l2_n1,l2_n2)

END_CACHE_SECTOR_SIZE

Specifies the maximum number of ways of
sector 0 and the maximum number of ways of
sector 1 in the L2 cache.

Yes No Yes No

CACHE_SUBSECTOR_ASSIGN(array
1[,array2...])

END_CACHE_SUBSECTOR

Specifies the array to place in sector 1 of the
cache.

Yes No Yes No

To use a sector cache, specify the following optimization control lines.

 Chapter 8 Sector Cache

① i=262144の時
a(1) ： ： ： b(1) ： ： ： c(1) ： ： ：
： ： ： ： ： ： ： ： ： ： ： ：

a(16) ： ： ： b(16) ： ： ： c(16) ： ： ：
： ： ： ： ： ： ： ： ： ： ： ：
： ： ： ： ： ： ： ： ： ： ： ：
： ： ： ： ： ： ： ： ： ： ： ：

a(65536) ： ： a(262144) b(65536) ： ： b(262144) c(65536) ： ： c(262144)

4way(2MB) 4way(2MB) 4way(2MB)

② i=262145の時
a(1) b(1) b(1)のデータがキャッシュから c(1)

： ： 追い出されてしまう ： 上書きしたデータ

a(16) b(16) c(16)
追い出されたデータ

a(262145) ： ： ： b(262145) ： ： ： c(262145) ： ： ：

： ： ： ： ： ： ： ： ： ： ： ：
a(262160) ： ： ： b(262160) ： ： ： c(262160) ： ： ：

： ： ： ： ： ： ： ： ： ： ： ：

： ： ： ： ： ： ： ： ： ： ： ：
： ： ： ： ： ： ： ： ： ： ： ：

a(65536) ： ： a(262144) b(65536) ： ： b(262144) c(65536) ： ： c(262144)

③ i=589825の時
a(327681) b(327681) c(327681)

： ： ：
a(327696) b(327696) c(327696)

a(524289) a(589825) ： ： b(524289) b(1) ： ： c(524289) c(589825) ： ：

： ： ： ： ： ： ： ： ： ： ： ：
a(524304) a(589840) ： ： b(524304) b(16) ： ： c(524304) c(589840) ： ：

： ： ： ： ： ： ： ： ： ： ： ：

： ： ： ： ： ： ： ： ： ： ： ：
： ： ： ： ： ： ： ： ： ： ： ：

a(589824) ： ： ： b(589824) ： ： ： c(589824) ： ： ：

キャッシュミス

Copyright 2016 FUJITSU LIMITED 112

Sector Cache Improvement Example (1/2)

Source code before improvement

subroutine sub(s)

parameter(n=4*1024*1024, m=9*512*1024/8)

real*8 a(n), b(m), s

integer*8 c(n)

real*8 dummy1(140),dummy2(140)

common /data/a,dummy1,c,dummy2,b

do i=1,n

 a(i) = a(i) + s * b(c(i))

enddo

end

In this example, reusable data in array b is forced out of the cache, resulting in a
cache miss. The assumed model in the descriptions is a 6-MB/12-way L2 cache.

[Data amount of each array]
Array a: 32 MB
Array b: 4.5 MB
Array c: 16 MB

Access of array b]
Array b has reusability since sequential
access from b(1) to b(589824) is
repeated seven times.
b(1) -> b(2) -> … -> b(589824)

Conceptual diagrams of L2 cache (6-MB/12-way) states

Up to this point, no data
is overwritten.

Old data is overwritten by new
data and forced out of the cache.

A cache miss occurs because
the data of b(1) was
already forced out.

Array b Array a Array c

Array b Array a Array c

Array b Array a Array c

 Chapter 8 Sector Cache

① i=262144の時
a(1) ： c(1) b(1) b(65537) b(131073) b(196609)
： ： ： ： ： ： ：

a(16) ： c(16) b(16) ： ： ：
： ： ： ： ： ： ：
： ： ： ： ： ： ：
： ： ： ： ： ： ：
： ： ： b(65536) b(131072) b(196608) b(262144)

セクタ０：3way(1.5MB) セクタ１：9way(4.5MB)

② i=262145の時
： ：

： ： 上書きしたデータ

： ：
追い出されたデータ

a(262145) ： c(262145) b(1) b(65537) b(131073) b(196609) ｂ(262145)

： ： ： ： ： ： ： ：
a(262160) ： c(262160) b(16) ： ： ： ｂ(262160)

： ： ： ： ： ： ：

： ： ： ： ： ： ：
： ： ： ： ： ： ：
： ： ： b(65536) b(131072) b(196608) b(262144)

③ i=589825の時
： ：

： ：
： ：

a(589825) ： c(589825) b(1) b(65537) b(131073) b(196609) b(262145) b(327681) b(393217) b(458753) b(524289)

： ： ： ： ： ： ： ： ： ： ： ：
a(589840) ： c(589840) b(16) ： ： ： ： ： ： ： ：

： ： ： ： ： ： ： ： ： ： ： ：

： ： ： ： ： ： ： ： ： ： ： ：
： ： ： ： ： ： ： ： ： ： ： ：
： ： ： b(65536) b(131072) b(196608) b(262144) b(327680) b(393216) b(458752) b(524288) b(589824)

キャッシュヒット

Copyright 2016 FUJITSU LIMITED 113

Sector Cache Improvement Example (2/2)

Source code after improvement

subroutine sub(s)

parameter(n=4*1024*1024, m=9*512*1024/8)

real*8 a(n), b(m), s

integer*8 c(n)

real*8 dummy1(140),dummy2(140)

common /data/a,dummy1,c,dummy2,b

!OCL CACHE_SECTOR_SIZE(3,9)

!OCL CACHE_SUBSECTOR_ASSIGN(b)

do i=1,n

 a(i) = a(i) + s * b(c(i))

enddo

!OCL END_CACHE_SUBSECTOR

!OCL END_CACHE_SECTOR_SIZE

end

The following example shows a way to prevent reusable data in array b from being
forced out of the cache. Conceptual diagrams of L2 cache (6-MB/12-way) states

Adding optimization
control lines

Array b is not
overwritten by new data.

A cache hit occurs because
data of b(1) remains in
cache. [Access of array b]

Array b has reusability since sequential
access from b(1) to b(589824) is
repeated seven times.
b(1) -> b(2) -> … -> b(589824)

Array b

Array b

Array b

Array a,
array c

Array a,
array c

Array a,
array c

 Chapter 8 Sector Cache Copyright 2016 FUJITSU LIMITED 114

Sector Cache: Case Example 1 (Before Improvement)

Source code before improvement

 63 parameter(n=8*1024*1024, m=17*512*1024/8)

 64 real*8 a(n), b(m), s

 65 integer*8 c(n)

 66 real*8 dummy1(140),dummy2(140)

 67 common /data/a,dummy1,c,dummy2,b

 68

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 762

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 69 1 pp 8v do i=1,n

 70 1 p 8v a(i) = a(i) + s * b(c(i))

 71 1 p 8v enddo

Data in array b cannot be reused because it has been forced out of the cache.
Consequently, the following is a frequent event: No instruction commit due to
memory and cache busy.

No
instruction

commit due
to memory
and cache

busy

No instruction
commit due to L2

access for a
floating-point load

instruction

0.0E+00

5.0E+00

1.0E+01

1.5E+01

2.0E+01

2.5E+01

改善前

[sec]

Before improvement

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.01% 2.78% 9.35E+09 18.29% 81.71% 0.00% 2.35% 7.87E+09 125.54 140.97

Cache

The percentage of L2 cache misses is
high.

A memory throughput bottleneck has
occurred.

 Chapter 8 Sector Cache Copyright 2016 FUJITSU LIMITED 115

Sector Cache: Case Example 1 (After Improvement)

Source code after improvement (optimization control line tuning)

 59 parameter(n=8*1024*1024, m=17*512*1024/8)

 60 real*8 a(n), b(m), s

 61 integer*8 c(n)

 62 real*8 dummy1(140),dummy2(140)

 63 common /data/a,dummy1,c,dummy2,b

 64

 65 !OCL CACHE_SECTOR_SIZE(6,18)

 66 !OCL CACHE_SUBSECTOR_ASSIGN(b)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 762

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 67 1 pp 8v do i=1,n

 68 1 p 8v a(i) = a(i) + s * b(c(i))

 69 1 p 8v enddo

 70 !OCL END_CACHE_SUBSECTOR

 71 !OCL END_CACHE_SECTOR_SIZE

Placing array b in sector 1 increases cache efficiency, which improves the following
event: No instruction commit due to memory and cache busy.

Increases reusability
of array b

0.0E+00

5.0E+00

1.0E+01

1.5E+01

2.0E+01

2.5E+01

改善後

[秒]

No
instructio
n commit

due to
memory

and
cache
busy

No instruction
commit due to
L2 access for a
floating-point

load instruction

0.0E+00

5.0E+00

1.0E+01

1.5E+01

2.0E+01

2.5E+01

改善前

[sec]

1.49-fold effect

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.01% 2.78% 9.35E+09 18.29% 81.71% 0.00% 2.35% 7.87E+09 125.54 140.97

After
improvement

0.02% 2.71% 9.10E+09 16.76% 83.24% 0.00% 1.56% 5.25E+09 182.57 157.96

Cache
The L2 miss decreased significantly. Before improvement After improvement

 Chapter 8 Sector Cache

Sector Cache: Case Example 2 (Before Improvement)

Source code before improvement

 128 subroutine JACOBI(u, rhs, niter,unew)

 129 REAL(double),INTENT(IN),dimension(0:n1-1,0:n2-1,0:n3-1) :: u

 130 REAL(double),INTENT(IN),dimension(0:n1-1,0:n2-1,0:n3-1) :: rhs

 131 REAL(double),INTENT(INOUT),dimension(0:n1-1,0:n2-1,0:n3-1) :: unew

 132 INTEGER,INTENT(IN) :: niter

 133 INTEGER :: iter, i,j,k

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 161 2 pp do k=1,n3-2

 162 3 p do j=1,n2-2

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 163 4 p 6v do i=1,n1-2

 164 4 p 6v unew(i,j,k) = &

 165 4 ((u(i+1,j,k) + u(i-1,j,k)) * h1sqinv &

 166 4 +(u(i,j+1,k) + u(i,j-1,k)) * h2sqinv &

 167 4 +(u(i,j,k+1) + u(i,j,k-1)) * h3sqinv &

 168 4 -rhs(i,j,k)) * hhhinv

 169 4 p 6v end do

 170 3 p end do

 171 2 p end do

Data in array u cannot be reused because it has been forced out of the cache.
Consequently, the following is a frequent event: No instruction commit due to memory and cache busy.

Size of each array: unew, u, rhs: 60.5 MB

Copyright 2016 FUJITSU LIMITED 116

No
instruction

commit due
to memory
and cache

busy

No instruction commit
due to L2 access for a

floating-point load
instruction

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2
throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.02% 2.01% 2.32E+08 3.91% 96.09% 0.00% 1.92% 2.22E+08 110.62 127.79

Cache

The percentage of L2
misses is high.

A memory throughput bottleneck has
occurred.

 n1 = 452

 n2 = 52

 n3 = 322

Array u should be in the
cache because of the
reusability in the i,j
dimensions of array u.

Before improvement

 Chapter 8 Sector Cache

Sector Cache: Case Example 2 (After Improvement)

Source code after improvement (optimization control line tuning)

 159 !ocl CACHE_SECTOR_SIZE(6,18)

 160 !ocl CACHE_SUBSECTOR_ASSIGN(u)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 165 2 pp do k=1,n3-2

 166 3 p do j=1,n2-2

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 167 4 p 6v do i=1,n1-2

 168 4 p 6v unew(i,j,k) = &

 169 4 ((u(i+1,j,k) + u(i-1,j,k)) * h1sqinv &

 170 4 +(u(i,j+1,k) + u(i,j-1,k)) * h2sqinv &

 171 4 +(u(i,j,k+1) + u(i,j,k-1)) * h3sqinv &

 172 4 -rhs(i,j,k)) * hhhinv

 173 4 p 6v end do

 174 3 p end do

 175 2 p end do

 177 1 end do

 178 !ocl END_CACHE_SUBSECTOR

 179 !ocl END_CACHE_SECTOR_SIZE

Placing part of the k dimension of array u in sector 1 increases cache efficiency, which
improves the following event: No instruction commit due to memory and cache busy.

Increases reusability of
array u

Copyright 2016 FUJITSU LIMITED 117

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善後

[秒]

No
instruction

commit
due to
memory

and
cache
busy

No instruction
commit due to
L2 access for a
floating-point

load instruction

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]

1.32-fold effect

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.02% 2.01% 2.32E+08 3.91% 96.09% 0.00% 1.92% 2.22E+08 110.62 127.79
After improvement 0.03% 2.01% 2.32E+08 3.94% 96.06% 0.00% 1.41% 1.63E+08 146.05 131.47

Cache

To place part of array u in
the cache for each thread,
a cache size of 9 MB is
required.

Before improvement After improvement

The percentage of L2 misses decreased
from 1.92% to 1.41%.

 Chapter 8 Sector Cache

Sector Cache: Case Example 2 (Cyclic Distribution)

In this case example, the schedule(static,1) specification divides the array into smaller parts to which cache memory is cyclically
allocated. Then, parallel execution is performed. The effect of this technique can be equivalent to a sector cache.

Source code after improvement

 157 !$omp parallel shared(n1,n2,n3,u,rhs, niter,

 h1sqinv,h2sqinv,h3sqinv,

 hhhinv)

 161 1 !$omp do schedule(static,1)

 162 2 p do k=1,n3-2

 163 3 p do j=1,n2-2

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 164 4 p 6v do i=1,n1-2

 165 4 p 6v unew(i,j,k) = &

 166 4 ((u(i+1,j,k) + u(i-1,j,k)) * h1sqinv &

 167 4 +(u(i,j+1,k) + u(i,j-1,k)) * h2sqinv &

 168 4 +(u(i,j,k+1) + u(i,j,k-1)) * h3sqinv &

 169 4 -rhs(i,j,k)) * hhhinv

 170 4 p 6v end do

 171 3 p end do

 172 2 p end do

 173 1 !$omp end do

 176 !$omp end parallel

Increases
reusability of
array u

Copyright 2016 FUJITSU LIMITED 118

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善後

[秒]

No
instruction

commit
due to

memory
and

cache
busy

No instruction
commit due to L2

access for a floating-
point load
instruction

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]

1.59-fold effect

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.02% 2.01% 2.32E+08 3.91% 96.09% 0.00% 1.92% 2.22E+08 110.62 127.79

After
improvement

0.01% 2.02% 2.33E+08 4.66% 95.34% 0.00% 1.21% 1.40E+08 174.05 138.63

Cache

Before improvement After improvement

The percentage of L2 misses decreased from 1.92% to 1.21%.

 Chapter 8 Loop Interchange

Loop Interchange

Copyright 2016 FUJITSU LIMITED 119

 Loop Interchange (Before Improvement)

 Contents of Loop Interchange Tuning

 Effects of Loop Interchange (Source Tuning)

 Chapter 8 Loop Interchange Copyright 2016 FUJITSU LIMITED 120

Loop Interchange (Before Improvement)

Source code before improvement

 45 real*8 a(n2),b(n1,n2),c(n1,n2),d(n1,n2)

 46 real*8 s1,s2

 47 integer n1,n2

 48 !$omp parallel

 49 !$omp do private(a)

 50 1 p do j=1,n1

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 51 2 p 4v do i=1,n2

 52 2 p 4v a(i) = s1 + c(j,i) / (s1 + s2 / d(j,i))

 53 2 p 4v enddo

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 54 2 p 4v do i=2,n2

 55 2 p 4v b(j,i) = a(i) / (s2 + s1 / a(i-1))

 56 2 p 4v enddo

 57 1 p enddo

 58 !$omp end do

 59 !$omp end parallel

Cache use efficiency decreases because of stride access of arrays b, c, and d. Consequently, the following is a
frequent event: No instruction commit due to L2 access for a floating-point load instruction.

No
instruction
commit due
to L2 access

for a floating-
point load
instruction

No instruction
commit due to L1D

access for a floating-
point load instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善前

[sec]

Loop 1

Loop 2

Low cache use efficiency
because of stride access
of arrays b, c, and d

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 51.15% 3.86E+08 98.73% 1.27% 0.00% 0.00% 9.03E+03 483.01 0.02

Cache

Before improvement
The percentage of L1D misses is high at about 52%.

 Chapter 8 Loop Interchange

Contents of Loop Interchange Tuning

Copyright 2016 FUJITSU LIMITED 121

Source code before improvement

 do j=1,n1

 do i=1,n2

 a(i) = s1 + c(j,i) / (s1 + s2 / d(j,i))

 enddo

 do i=2,n2

 b(j,i) = a(i) / (s2 + s1 / a(i-1))

 enddo

 enddo

(1) Converting array a into a two-dimensional
array

 do j=1,n1

 do i=1,n2

 a(j, i) = s1 + c(j,i) / (s1 + s2 / d(j,i))

 enddo

 do i=2,n2

 b(j,i) = a(j, i) / (s2 + s1 / a(j,i-1))

 enddo

 enddo

(2) Dividing loop 1 and loop 2

 do j=1,n1

 do i=1,n2

 a(j, i) = s1 + c(j,i) / (s1 + s2 / d(j,i))

 enddo

 enddo

 do j=1,n1

 do i=2,n2

 b(j,i) = a(j, i) / (s2 + s1 / a(j,i-1))

 enddo

 enddo

Loop 1

Loop 2

(3) Interchanging loops

 do i=1,n2

 do j=1,n1

 a(j, i) = s1 + c(j,i) / (s1 + s2 / d(j,i))

 enddo

 enddo

 do i=2,n2

 do j=1,n1

 b(j,i) = a(j, i) / (s2 + s1 / a(j,i-1))

 enddo

 enddo

Low cache use efficiency because
of stride access of arrays b, c, and
d.

Access to arrays b, c, and d
becomes sequential access,
which improves cache use
efficiency.

There is no longer an
array a dependency,
which is a factor
hindering loop fission.

 Chapter 8 Loop Interchange Copyright 2016 FUJITSU LIMITED 122

Effects of Loop Interchange (Source Tuning)

Source code after improvement (source tuning)

 45 real*8 a(n1,n2),b(n1,n2),c(n1,n2),d(n1,n2)

 46 real*8 s1,s2

 47 integer n1,n2

 48 !$omp parallel

 49 !$omp do

 50 1 p do i=1,n2

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 51 2 p 4v do j=1,n1

 52 2 p 4v a(j,i) = s1 + c(j,i) / (s1 + s2 / d(j,i))

 53 2 p 4v enddo

 54 1 p enddo

 55 !$omp end do

 56 !$omp do

 57 1 p do i=2,n2

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 58 2 p 4v do j=1,n1

 59 2 p 4v b(j,i) = a(j,i) / (s2 + s1 / a(j,i-1))

 60 2 p 4v enddo

 61 1 p enddo

 62 !$omp end do

 63 !$omp end parallel

Cache efficiency increases because of sequential access of an array through loop interchange. This results in
improvement of the following event: No instruction commit due to L2 access for a floating-point load
instruction.

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善後

[秒]

No
instruction

commit
due to L2

access for a
floating-

point load
instruction

No instruction
commit due to

L1D access for a
floating-point

load instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善前

[sec]

6.67-fold effect

Contents of tuning

(1) Convert array a into a two-dimensional array.
(2) Divide loop 1 and loop 2.
(3) Interchange loops.

Loop 1

Loop 2

L1I miss rate
(effective
instruction)

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 51.15% 3.86E+08 98.73% 1.27% 0.00% 0.00% 9.03E+03 483.01 0.02
After improvement 0.00% 2.64% 2.04E+07 6.97% 93.03% 0.00% 0.00% 5.00E+03 152.22 0.07

Cache
The percentage of L1D misses decreased significantly.

Before improvement After improvement

 Chapter 8 Loop Fusion Copyright 2016 FUJITSU LIMITED 123

Loop Fusion

 Loop Fusion (Before Improvement)

 Effects of Loop Fusion (Source Tuning)

 Loop Fusion (in C Language) (Before Improvement)

 Effects of Loop Fusion (in C Language) (Source Tuning)

 Chapter 8 Loop Fusion

Source code before improvement

 42 1 pp 4v do j=1,m-1

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 43 2 p 4 do i=1,n

 44 2 p 4v s1 = s1 + a(i,j) / (s3 / b(i,j) + c(i,j) / (s2 + s3 / d(i,j)))

 45 2 p 4v enddo

 46 1 p 4v enddo

 47

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 263

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 48 1 pp 4v do j=1,m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 49 2 p 4 do i=1,n

 50 2 p 4v e(i,j) = s2 / (a(i,j) + b(i,j) / (s3 + c(i,j) / d(i,j)))

 51 2 p 4v enddo

 52 1 p enddo

Copyright 2016 FUJITSU LIMITED 124

Loop Fusion (Before Improvement)
Not all array data can be loaded in cache because loop 1 has many iterations, so loop 2 cannot reuse the data.
Consequently, the following is a frequent event: No instruction commit due to memory and cache busy.

Loop 1

Loop 2

m = 50
n = 125000
Array type: real*8

Total size of array data: About 200
MB
Not all array data can be loaded in
cache.

Array access resulting in cache
misses

No
instruction

commit due
to memory
and cache

busy

No instruction commit
due to L2 access for a

floating-point load
instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

改善前

[sec]

L1I miss rate
(effective
instruction)

Number of loads
and stores

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.01% 5.58E+09 3.13% 1.74E+08 0.23% 99.77% 0.00% 3.13% 1.74E+08 104.92 116.69

Cache

The percentages of L1 cache misses and L2 cache misses are 3.125%, which is the
theoretical value for stream access. -> Misses have occurred in both loops 1 and 2. This
means that loop 2 could not use data placed in the cache in loop 1.

Before improvement

 Chapter 8 Loop Fusion

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

改善後

[秒]

Source code after improvement (source tuning)

 42 1 pp 2v do j=1,m-1

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< COLLAPSED

 <<< Loop-information End >>>

 43 2 p 2 do i=1,n

 44 2 p 2v s1 = s1 + a(i,j) / (s3 / b(i,j) + c(i,j) / (s2 + s3 / d(i,j)))

 45 2 p 2v e(i,j) = s2 / (a(i,j) + b(i,j) / (s3 + c(i,j) / d(i,j)))

 46 2 p 2v enddo

 47 1 p 2v enddo

 48

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 49 1 s do j=m,m

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 208

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 50 2 pp 4v do i=1,n

 51 2 p 4v e(i,j) = s2 / (a(i,j) + b(i,j) / (s3 + c(i,j) / d(i,j)))

 52 2 p 4v enddo

 53 1 p enddo

Copyright 2016 FUJITSU LIMITED 125

Effects of Loop Fusion (Source Tuning)
Loop fusion increases cache efficiency, which improves the following event: No instruction commit due to
memory and cache busy.

Peeling

Loop fusion

Array access resulting in
cache hit

No
instruction
commit
due to

memory
and cache

busy

No instruction commit due
to L2 access for a floating-

point load instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

改善前 [sec]

do j=1, m-1
 do i=1, n
 …xxx…
 enddo
enddo

do j=1, m
 do i=1, n
 …yyy…
 enddo
enddo

do j=1, m-1
 do i=1, n
 …xxx…
 …yyy…
 enddo
enddo

do j= m,m
 do i=1, n
 …yyy…
 enddo
enddo

Appearance of loop fusion

L1I miss rate
(effective
instruction)

Number of
loads and stores

L1D miss rate
(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf rate(/L1D
miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.01% 5.58E+09 3.13% 1.74E+08 0.23% 99.77% 0.00% 3.13% 1.74E+08 104.92 116.69
After improvement 0.00% 3.13E+09 3.13% 9.78E+07 0.68% 99.32% 0.00% 3.13% 9.78E+07 100.58 120.70

Cache
The numbers of L1D misses and L2 misses decreased significantly.

1.72-fold effect Cut out of loop (peeling)
for loop fusion

do j=1, m-1
 do i=1, n
 …xxx…
 enddo
enddo

do j=1, m-1
 do i=1, n
 …yyy…
 enddo
enddo

do j= m,m
 do i=1, n
 …yyy…
 enddo
enddo

Peeling

Loop fusion

Before improvement After improvement

 Chapter 8 Loop Fusion

Source code before improvement

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 45 pp for(j=0;j<M-1;j++){

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 46 p 2v for(i=0;i<N;i++){

 47 p 2v *s1 = *s1 + a[j][i] / (s3 / b[j][i] + c[j][i] / (s2 + s3 / d[j][i]));

 48 p 2v }

 49 }

 50

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 51 pp for(j=0;j<M;j++){

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 52 p 2v for(i=0;i<N;i++){

 53 p 2v e[j][i] = s2 / (a[j][i] + b[j][i] / (s3 + c[j][i] / d[j][i]));

 54 p 2v }

 55 }

Copyright 2016 FUJITSU LIMITED 126

Loop Fusion (in C Language) (Before Improvement)

Loop 1

Loop 2

M = 50
N = 125000
Array type: double

Total size of array data: About 200 MB
Not all array data can be loaded in
cache.

Array access resulting in cache
misses

L1I miss rate
(effective
instruction)

Number of loads
and stores

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement 0.00% 5.58E+09 3.13% 1.74E+08 0.22% 99.78% 0.00% 3.13% 1.75E+08 97.51 108.55

Cache

The percentages of L1 cache misses and L2 cache misses are 3.125%, which is the
theoretical value for stream access. -> Misses have occurred in both loops 1 and 2.
This means that loop 2 could not use data placed in the cache in loop 1.

No
instruction
commit due
to memory
and cache

busy

No instruction commit
due to L2 access for a

floating-point load
instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

5.0E-01

改善前

[sec]

Not all array data can be loaded in cache because loop 1 has many iterations, so loop 2 cannot reuse the
data.
Consequently, the following is a frequent event: No instruction commit due to memory and cache busy.

Before improvement

 Chapter 8 Loop Fusion

Source code after improvement (source tuning)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 44 pp for(j=0;j<M-1;j++){

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 45 p 2v for(i=0;i<N;i++){

 46 p 2v *s1 = *s1 + a[j][i] / (s3 / b[j][i] + c[j][i] / (s2 + s3 / d[j][i]));

 47 p 2v e[j][i] = s2 / (a[j][i] + b[j][i] / (s3 + c[j][i] / d[j][i]));

 48 p 2v }

 49 }

 50

 51 for(j=M;j<M;j++){

 52 for(i=0;i<N;i++){

 53 e[j][i] = s2 / (a[j][i] + b[j][i] / (s3 + c[j][i] / d[j][i]));

 54 }

 55 }

 56

 57 }

Copyright 2016 FUJITSU LIMITED 127

Effects of Loop Fusion (in C Language) (Source Tuning)

Peeling

Loop fusion

Array access resulting in
cache hit

for(j=0;j<M-1;j++){

 for(i=0;i<N;i++){

・・・ xxx ・・・
 }
}

for(j=0;j<M-1;j++){

 for(i=0;i<N;i++){

・・・yyy ・・・
 }
}

for(j=0;j<M-1;j++){

 for(i=0;i<N;i++){

・・・ xxx ・・・
・・・ yyy ・・・
 }
}

for(j=0;j<M-1;j++){

 for(i=0;i<N;i++){

・・・ yyy ・・・
 }
}

Loop fusion

Peeling

Appearance of loop fusion

L1I miss rate
(effective
instruction)

Number of loads
and stores

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2
throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 5.58E+09 3.13% 1.74E+08 0.22% 99.78% 0.00% 3.13% 1.75E+08 97.51 108.55
After improvement 0.00% 3.06E+09 3.13% 9.58E+07 0.20% 99.80% 0.00% 3.13% 9.58E+07 90.26 108.38

Cache
The numbers of L1D misses and L2 misses decreased significantly.

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

改善後

[秒]

No
instruction

commit due
to memory
and cache

busy

No instruction commit due
to L2 access for a floating-

point load instruction

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

改善前

[sec]

1.70-fold effect

Loop fusion increases cache efficiency, which improves the following event: No instruction commit due to
memory and cache busy.

Before improvement After improvement

 Chapter 8 Array Merging (Indirect Access) Copyright 2016 FUJITSU LIMITED 128

Array Merging (Indirect Access)

 What Is Array Merging?

 Array Merging (Before Improvement)

 Effects of Array Merging (Source Tuning)

 Array Merging (in C Language) (Before Improvement)

 Effects of Array Merging (in C Language) (Source Tuning)

 Chapter 8 Array Merging (Indirect Access)

What Is Array Merging?

Copyright 2016 FUJITSU LIMITED 129

Array merging is the merging of multiple arrays into one array. These
multiple arrays are processed in the same loop and have a common access
pattern. This technique realizes sequential data access and increases cache
efficiency.

Source code before improvement After improvement (appearance after compiler optimization)

 parameter(n=1000000)

 real*8 a(n), b(n), c(n)

 integer d(n+10)

 ：

 do iter = 1, 100

 do i = 1 , n

 a(d(i)) = b(d(i)) + scalar * c(d(i))

 enddo

 enddo

 ：

 parameter(n=1000000)

 real*8 abc(3, n)

 integer d(n+10)

 ：

 do iter = 1, 100

 do i = 1 , n

 abc(1, d(i)) = abc(2, d(i)) + scalar * abc(3, d(i))

 enddo

 enddo

 ：

 abc(1, d(i))

abc(2, d(i))

abc(3, d(i))

・・・

abc(1, d(i+1))

abc(2, d(i+1))

abc(3, d(i+1))

・・・

b(d(i))

・・・

c(d(i+1))

・・・

・・・

a(d(i))

・・・

a(d(i+1))

・・・

b(d(i+1))

・・・
c(d(i))

Array merging

Access of different
cache lines

Access of same
cache line

(L1D cache)

(L1D cache)

 Chapter 8 Array Merging (Indirect Access) Copyright 2016 FUJITSU LIMITED 130

Array Merging (Before Improvement)

Source code before improvement

 1 parameter(n=2*1000*1000/8)

 2 real*8 a(n),b(n),c(n),e(n),f(n),s

 3 integer d(n)

 :

 14 1 s s call sub(a,b,c,d,e,f,s,n)

 :

 25 subroutine sub(a,b,c,d,e,f, s, n)

 26 real*8 a(n),b(n),c(n),e(n),f(n),s

 27 integer d(n), ii

 28

 29 !$omp parallel do schedule (static,96)

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 30 1 p 2v do i = 1 , n

 31 1 p 2v ii = d(i)

 32 1 p 2v a(ii) = s / (s + f(ii) / (s + e(ii) / (b(ii) + s / c(ii))))

 33 1 p 2v enddo

 34 !$omp end parallel do

 :

Cache use efficiency decreases because of a high percentage of L1D misses (list access).
Consequently, the following is a frequent event: No instruction commit due to L2 access for a
floating-point load instruction.

Arrays a, f, e, b, and
c are list access.

No
instruction
commit due
to L2 access

for a floating-
point load
instruction

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]

L1I miss rate
(effective
instruction)

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.00% 78.45% 1.27E+09 100.00% 0.00% 0.00% 0.00% 6.70E+04 649.65 0.06

Cache
The percentage of L1D misses is high at 78.45%.

Before improvement

 Chapter 8 Array Merging (Indirect Access) Copyright 2016 FUJITSU LIMITED 131

Effects of Array Merging (Source Tuning)

Source code after improvement (source tuning)

 1 parameter(n=2*1000*1000/8)

 2 real*8 abcef(5,n),s

 3 integer d(n)

 :

 14 1 s s call sub(abcef,d,s,n)

 :

 24 subroutine sub(abcef,d, s, n)

 25 real*8 abcef(5,n),s

 26 integer d(n), ii

 27

 28 !$omp parallel do schedule (static,96)

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< Loop-information End >>>

 29 1 p 2v do i = 1 , n

 30 1 p 2v ii = d(i)

 31 1 p 2v abcef(1,ii) = s / (s + abcef(5,ii) / (s + abcef(4,ii)

 32 1 * / (abcef(2,ii) + s / abcef(3,ii))))

 33 1 p 2v enddo

 34 !$omp end parallel do

 :

Array merging for list access increases cache efficiency, which improves the following event: No
instruction commit due to L2 access for a floating-point load instruction.

No instruction
commit

waiting for a
floating-point
instruction to
be completed

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善後

[秒]

No
instruction
commit

due to L2
access for
a floating-
point load
instruction

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]

1.31-fold effect

L1I miss rate
(effective
instruction)

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2
throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 78.45% 1.27E+09 100.00% 0.00% 0.00% 0.00% 6.70E+04 649.65 0.06
After improvement 0.00% 18.01% 2.90E+08 99.99% 0.01% 0.00% 0.00% 1.52E+04 194.49 0.03

Cache
The percentage of L1D misses decreased significantly.

Before improvement After improvement

 Chapter 8 Array Merging (Indirect Access) Copyright 2016 FUJITSU LIMITED 132

Array Merging (in C Language) (Before Improvement)

Source code before improvement

 4 #define N 2*1000*1000/8

 5

 6 void sub(double a[N],const double b[N],const double c[N],

 const int d[N],const double e[N],const double f[N],double);

 :

 10 int i;

 11 double a[N],b[N],c[N],e[N],f[N],s;

 12 int d[N];

 :

 40 5 sub(a,(const double (*))b,(const double (*))c,(const int (*))d,

 (const double (*))e,(const double (*))f,s);

 :

 48 void sub(double a[N],const double b[N],const double c[N],

 const int d[N],const double e[N],const double f[N],double s)

 49 {

 50 int i,ii;

 51

 52 #pragma omp parallel for schedule (static,96)

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 53 p 2v for(i=0;i<N;i++){

 54 p 2v ii=d[i];

 55 p 2v a[ii]=s / (s + f[ii] / (s + e[ii] / (b[ii] + s / c[ii])));

 56 p 2v }

 57 }

Cache use efficiency decreases because of a high percentage of L1D misses (list access).
Consequently, the following is a frequent event: No instruction commit due to L2 access for a
floating-point load instruction.

Arrays a, f, e, b, and c are
list access.

L1I miss rate
(effective
instruction)

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

Percentage of L1D
misses due to swpf
(relative to number
of L1D misses)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 70.79% 1.28E+08 100.00% 0.00% 0.00% 0.02% 4.12E+04 552.20 0.34

Cache
The percentage of L1D misses is high at 70.79%.

No
instruction
commit due
to L2 access

for a
floating-

point load
instruction

No instruction commit
waiting for a floating-
point instruction to be

completed

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

7.0E-02

改善前

[sec]

Before improvement

 Chapter 8 Array Merging (Indirect Access) Copyright 2016 FUJITSU LIMITED 133

Effects of Array Merging (in C Language) (Source Tuning)

Source code after improvement (source tuning)

 4 #define N 2*1000*1000/8

 5 #define M 5

 6

 7 double abcef[N][5];

 8 void sub(double abcef[N][5],const int d[N],double s);

 :

 14 int d[N];

 :

 42 5 sub(abcef,(const int (*))d,s);

 :

 50 void sub(double abcef[N][5],const int d[N],double s)

 51 {

 52 int i,ii;

 53

 54 #pragma omp parallel for schedule (static,96)

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< Loop-information End >>>

 55 p 2v for(i=0;i<N;i++){

 56 p 2v ii=d[i];

 57 p 2v abcef[ii][0]=s / (s + abcef[ii][4] / (s + abcef[ii][3] / (abcef[ii][1] +

 s / abcef[ii][2])));

 58 p 2v }

 59 }

Array merging for list access increases cache efficiency, which improves the following event: No
instruction commit due to L2 access for a floating-point load instruction.

L1I miss rate
(effective
instruction)

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm rate(/L1D
miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement 0.00% 70.79% 1.28E+08 100.00% 0.00% 0.00% 0.02% 4.12E+04 552.20 0.34
After
improvement 0.00% 12.41% 2.90E+07 99.99% 0.01% 0.00% 0.01% 1.36E+04 144.88 0.13

Cache
The percentage of L1D misses decreased significantly.

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

7.0E-02

改善後

[秒]

No
instruction

commit
due to L2
access for
a floating-
point load
instruction

No instruction
commit waiting
for a floating-

point instruction
to be completed

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

7.0E-02

改善前

[sec]

1.16-fold effect

Before improvement After improvement

 Chapter 8 Improvement in Data Access Wait (Latency Concealment) Copyright 2016 FUJITSU LIMITED 134

 What Is Latency Concealment?

 Indirect Access Prefetching

 Prefetching for an Outer Loop

Improvement in Data Access Wait
(Latency Concealment)

 Chapter 8 Improvement in Data Access Wait (Latency Concealment)

What Is Latency Concealment?

Copyright 2016 FUJITSU LIMITED 135

Latency concealment means concealing the latency of data access (the period of time
from a data transfer request to its acknowledgement) by prefetching data. There are
three types of data access: L1D cache access, L2 cache access, and memory access. For
L2 cache access and memory access among these types, this section discusses only the
latency visible as execution time.

For the latency time of each data access type, see the LMbench results below.

 Results of data access latency measurement with LMbench

1.00

10.00

100.00

1000.00

0.00 0.02 0.05 0.16 0.44 7.00 70.00

La
te

n
cy

 (
n

s)

Data size (MB)

L1D cache

L2 cache Memory

 Chapter 8 Indirect Access Prefetching Copyright 2016 FUJITSU LIMITED 136

Indirect Access Prefetching

 Indirect Access Prefetching (Before Improvement)

 Effects of Indirect Access Prefetching
(Optimization Control Line Tuning)

 Effects of Indirect Access Prefetching
(Optimization Control Line)

 Effects of Indirect Access Prefetching
(Compiler Options Tuning)

 Chapter 8 Indirect Access Prefetching

Indirect Access Prefetching (Before Improvement)

Copyright 2016 FUJITSU LIMITED 137

Indirect access (list access) with the recommended options does not generate a prefetch. Also,
memory access latency is visible. Consequently, the following is a frequent event: No instruction
commit due to memory access for a floating-point load instruction.

Source code before improvement

 51

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 485

 <<< [OPTIMIZATION]

 <<< PREFETCH : 36

 <<< e: 12, d: 12, a: 12

 <<< Loop-information End >>>

 52 1 pp 6 do i = 1 , n

 53 2 p 6 if (mod(i,2) .eq. 0) then

 54 2 p 6 a(i) = b(d(i)) + scalar * c(e(i))

 55 2 p 6 endif

 56 1 p 6 enddo

No instruction
commit due to
memory access
for a floating-

point load
instruction

No instruction
commit due to L2

access for a floating-
point load instruction

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

5.0E+00

改善前

[sec]

L1I miss rate
(effective
instruction)

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 miss dm
rate(/L2 miss)

L2
throughput
(GB/sec)

Memory
throughp
ut
(GB/sec)

Before
improvement

0.01% 42.97% 1.94E+09 94.20% 0.00% 5.80% 12.48% 5.63E+08 48.76% 111.02 35.47

Cache

Indirect access for arrays b and c

The L1D miss dm percentage and L2 miss dm percentage are high,
and prefetching is not effective. Performance may increase because
there are margins in memory throughput and L2 throughput.

Before improvement

 Chapter 8 Indirect Access Prefetching

Effects of Indirect Access Prefetching (Optimization Control Line Tuning)

Copyright 2016 FUJITSU LIMITED 138

Specification of the prefetch specifier generates a prefetch for indirect access (list access). This
results in improvement of the following event: No instruction commit due to memory access for
a floating-point load instruction.

Source code after improvement (optimization control line tuning)

 51 !ocl prefetch

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 485

 <<< [OPTIMIZATION]

 <<< PREFETCH : 60

 <<< e: 12, c: 12, d: 12, b: 12, a: 12

 <<< Loop-information End >>>

 52 1 pp 6 do i = 1 , n

 53 2 p 6 if (mod(i,2) .eq. 0) then

 54 2 p 6 a(i) = b(d(i)) + scalar * c(e(i))

 55 2 p 6 endif

 56 1 p 6 enddo

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

5.0E+00

改善後

[秒]

No
instruction

commit
due to

memory
access for
a floating-
point load
instruction

No instruction
commit due to L2

access for a
floating-point load

instruction

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

5.0E+00

改善前

[sec]

Generated prefetch for
indirect access (arrays b
and c)

2.28-fold effect

L1I miss rate
(effective
instruction)

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 miss dm rate(/L2
miss)

L2
throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.01% 42.97% 1.94E+09 94.20% 0.00% 5.80% 12.48% 5.63E+08 48.76% 111.02 35.47

After
improvement

0.00% 38.12% 3.09E+09 52.34% 0.00% 47.66% 8.84% 7.16E+08 5.34% 404.14 101.08

Cache

The generation of prefetch instructions for indirect
access (arrays b and c) reduced the L1D miss dm
percentage and L2 miss dm percentage.

Before improvement After improvement

 Chapter 8 Indirect Access Prefetching

Indirect Access Prefetching (Optimization Control Line)

Copyright 2016 FUJITSU LIMITED 139

Optimization control specifiers Meaning

Optimization control line that can be specified

Program unit DO loop unit
Statement
unit

Array
assignment
statement unit

prefetch
Enables the automatic prefetch
function of the compiler.

Yes Yes No No

Notes
 Depending on the cache efficiency of loops, whether branching exists,

and the complexity of subscripts, prefetching with the compiler options
-Kprefetch_sequential, -Kprefetch_stride, -Kprefetch_indirect,
or -Kprefetch_conditional enabled may degrade execution performance.

Remarks
 The prefetch optimization control specifiers is equivalent to specifying the

following compiler options:

 -Kprefetch_sequential,prefetch_stride,prefetch_indirect,

 prefetch_conditional,prefetch_cache_level=all

Here, specify the following optimization control line.

 Chapter 8 Indirect Access Prefetching Copyright 2016 FUJITSU LIMITED 140

Compiler options Description of function

-Kprefetch_indirect Gives an instruction on whether to generate an object that uses a prefetch
instruction for indirectly accessed (list access) array data used inside a loop.

This option has meaning in cases where -O1 or a higher option is valid.

The default is -Kprefetch_noindirect.

Notes

Depending on the cache efficiency of loops, whether IF construct are used, and the
complexity of subscripts, prefetching may not have the intended effect.

You can achieve effects similar to optimization control line tuning by
specifying the following compiler options.

 Use example (source code before improvement)

 $ frtpx –Kfast,parallel sample.f90 -Kprefetch_indirect

Effects of Indirect Access Prefetching(Compiler Options Tuning)

 Chapter 8 Prefetching for an Outer Loop Copyright 2016 FUJITSU LIMITED 141

Prefetching for an Outer Loop

 Prefetching for an Outer Loop (Before Improvement)

 Effects of Prefetching for an Outer Loop
(Optimization Control Line Tuning)

 Use of software prefetch

 Chapter 8 Prefetching for an Outer Loop

i=1 i=17 i=33 i=49 i=60
j=1
j=2
j=3
j=4
j=5
j=6
j=7
j=8
j=9

：
：
：

j=999
j=1000

Copyright 2016 FUJITSU LIMITED 142

Prefetching for an Outer Loop (Before Improvement)

Source code before improvement

 41 subroutine sub(scalar,isize)

 42 parameter(n=1000)

 43 integer n

 44 real*8 a(n,n),b(n,n),c(n,n),scalar

 45 common /com/a,b,c

 46

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 47 1 pp do j=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 48 2 p 4v do i=1,isize,4

 49 2 p 4v a(i,j) = b(i,j) + scalar * c(i,j)

 50 2 p 4v a(i+1,j) = b(i+1,j) + scalar * c(i+1,j)

 51 2 p 4v a(i+2,j) = b(i+2,j) + scalar * c(i+2,j)

 52 2 p 4v a(i+3,j) = b(i+3,j) + scalar * c(i+3,j)

 53 2 p 4v enddo

 54 1 p enddo

The innermost loop has a few iterations, and its array size is greater than its number of iterations.
For this reason, the cost at the prefetching rise time is visible in normal prefetching. Consequently, the
following is a frequent event: No instruction commit due to L2 access for a floating-point load
instruction.

Number of elements in first
dimension: 1000

Loop iteration count: 15
iterations (isize = 60)

Access continuity is broken
when outer loop j is
incremented.

Forward direction of inner loop

L1I miss rate
(effective
instruction)

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2
throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 4.92% 8.88E+07 95.13% 4.87% 0.00% 0.00% 1.29E+04 289.19 0.08

Cache

No instruction
commit due to
L2 access for a
floating-point

load instruction
0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

改善前

[sec]

The L1D miss dm percentage is high, and prefetching is not effective.

Before improvement

Fo
rw

a
rd

 d
irectio

n
 o

f o
u

ter lo
o

p

プリフェッチ
キャッシュヒット
キャッシュミス
1キャッシュライン

Prefetch
Cache hit
Cache miss
1 cache line

 Chapter 8 Prefetching for an Outer Loop

i=1 i=17 i=33 i=49 i=60
j=1 ・・・・・・

j=2 ・・・・・・

j=3 ・・・・・・

j=4 ・・・・・・

j=5 ・・・・・・

j=6 ・・・・・・

j=7 ・・・・・・

j=8 ・・・・・・

j=9 ・・・・・・

： ・・・・・・
： ・・・・・・
： ・・・・・・

j=999 ・・・・・・

j=1000 ・・・・・・

Copyright 2016 FUJITSU LIMITED 143

Source code after improvement (optimization control line tuning)

 41 subroutine sub(scalar,isize)

 42 parameter(n=1000)

 43 integer n

 44 real*8 a(n,n),b(n,n),c(n,n),scalar

 45 common /com/a,b,c

 46

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< [OPTIMIZATION]

 <<< PREFETCH : 6

 <<< c: 2, b: 2, a: 2

 <<< Loop-information End >>>

 47 1 pp do j=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< PREFETCH : 6

 <<< c: 2, b: 2, a: 2

 <<< Loop-information End >>>

 48 2 p 2v do i=1,isize,4

 49 2 p 2 !OCL PREFETCH_WRITE(a(i,j+1),level=1)

 50 2 p 2 !OCL PREFETCH_READ(b(i,j+1),level=1)

 51 2 p 2 !OCL PREFETCH_READ(c(i,j+1),level=1)

 52 2 p 2v a(i,j) = b(i,j) + scalar * c(i,j)

 53 2 p 2v a(i+1,j) = b(i+1,j) + scalar * c(i+1,j)

 54 2 p 2v a(i+2,j) = b(i+2,j) + scalar * c(i+2,j)

 55 2 p 2v a(i+3,j) = b(i+3,j) + scalar * c(i+3,j)

 56 2 p 2v enddo

 57 1 p enddo

To conceal the cost at the prefetching rise time, the PREFETCH_READ and PREFETCH_WRITE specifiers were used to generate a
prefetch for the arrays in an outer loop. This results in improvement of the following event: No instruction commit due to L2 access
for a floating-point load instruction.

Effects of Prefetching for an Outer Loop(Optimization Control Line Tuning)

Forward direction of inner loop
Prefetching for array in
next iteration of outer
loop

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

改善後

[秒]

No
instruction

commit due
to L2 access

for a floating-
point load
instruction

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

改善前

[sec]

1.33-fold effect

L1I miss rate
(effective
instruction)

L1D miss rate(/Load-
store instruction)

L1D miss
L1D miss dm rate(/L1D
miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 4.92% 8.88E+07 95.13% 4.87% 0.00% 0.00% 1.29E+04 289.19 0.08
After improvement 0.00% 4.74% 8.57E+07 13.91% 0.19% 85.91% 0.00% 1.31E+04 382.23 0.12

Cache The L1D miss dm percentage decreased.

Before improvement After improvement

Fo
rw

a
rd

 d
irectio

n
 o

f o
u

ter lo
o

p

プリフェッチ
キャッシュヒット
キャッシュミス
1キャッシュライン

Prefetch
Cache hit
Cache miss
1 cache line

 Chapter 8 Prefetching for an Outer Loop

In case of sequential access, hardware prefetching may not be effective even if co
mpiler option -Kprefetch_sequential=auto is effective.

When L1D miss dm rate or L2 miss dm rate is high, performance may improve with

-Kprefetch_sequential=soft specified (software prefetch will be effective)

Cache

L1D miss dm

rate(/L1D miss)
L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss dm
rate(/L2 miss)

Thread 0 33.89% 66.11% 0.00% 33.64%

Use of software prefetch

Copyright 2016 FUJITSU LIMITED 144

翻訳時オプション 機能説明

-Kprefetch_sequential=auto The compiler automatically selects whether to use hardware-prefetch or to create prefetch instructions
for array data that is accessed sequentially within a loop.
-Kprefetch_sequential=auto is effective only when the -O1 option or higher is set.
The default when the -O2 option or higher is set is -Kprefetch_sequential=auto.

-Kprefetch_sequential=soft The compiler does not use hardware-prefetch, but rather creates prefetch instructions for array data th
at is accessed sequentially within a loop.
-Kprefetch_sequential=soft is effective only when the -O1 option or higher is set.

-Kprefetch_nosequential Prefetch instructions are not generated for array data that is accessed sequentially within a loop.
The default when the -O0 or -O1 option is set is -Kprefetch_nosequential.

L1D miss dm rate and L2 miss dm rate are high

0.0E+00

1.0E-01

2.0E-01

3.0E-01

Thread 0

[Sec]

 Chapter 8 Improvement in Data Access Wait (Reduced Amount of Access) Copyright 2016 FUJITSU LIMITED 145

 Memory Throughput and Amount of Memory Access

 High-speed Store (XFILL)

Improvement in Data Access Wait
(Reduced Amount of Access)

 Chapter 8 Memory Throughput and Amount of Memory Access Copyright 2016 FUJITSU LIMITED 146

Memory Throughput and
Amount of Memory Access

 Chapter 8 Memory Throughput and Amount of Memory Access

Memory Throughput and Amount of Memory Access

Copyright 2016 FUJITSU LIMITED 147

 Amount of memory access:
(number of L2 cache misses + L2 writebacks) x 256 Byte (line size)

The performance of a program with a memory throughput bottleneck does
not increase unless the program is tuned to decrease the amount of
memory access or the number of L2 cache misses.

To increase
 performance

Tuning to increase data
locality (See the previous
section.)

High-speed store (XFILL)

This section describes this
function.

 Chapter 8 High-speed Store (XFILL) Copyright 2016 FUJITSU LIMITED 148

High-speed Store (XFILL)

 What Is High-speed Store (XFILL)?

 XFILL (Before Improvement)

 Effects of XFILL (Optimization Control Line Tuning)

 Effects of XFILL (Compiler Options Tuning)

 Chapter 8 High-speed Store (XFILL)

What Is High-speed Store (XFILL)?

Copyright 2016 FUJITSU LIMITED 149

 What is high-speed store (XFILL)?

 This function reserves a cache line for cache write operations (contents with indefinite
values). The function helps reduce the number of cache lines read from memory to
increase the performance of a program with a memory throughput bottleneck.

 Operating conditions

 The array that is the store target has
no dependency between iteration cycles.

 Arrays with definitions are not referenced.

 Memory is accessed contiguously.

t

Example)
 DO I = 1, N
 A(I) = B(I) + C(I)
 END DO

Register

Cache

Memory

Reading
cache line

of A

XFILL not used

t

Register

Cache

Memory

XFILL used

No more reading from
memory of A

Reading
of B

Reading
of C

Writing
of A

Reading
cache line

of C

Reading
cache line

of B

Writing
back

cache line
of A

Reading
of B

Reading of
C

Reserving
cache line
of A (xfill)

Writing of
A

Writing
back

cache line
of A

Reading
cache line

of C

Reading
cache line

of B

Total number of memory access times: 4 Total number of memory access times: 3

 Chapter 8 High-speed Store (XFILL) Copyright 2016 FUJITSU LIMITED 150

Source code before improvement

 39

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 942

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 40 1 pp 8v do i=1,n

 41 1 p 8v a(i) = b(i) + c(i)*d

 42 1 p 8v enddo

XFILL (Before Improvement)

Memory throughput is a bottleneck because a program has a heavy load on memory
access. Consequently, data access wait is a frequent event.

No
instruction

commit due
to memory
and cache

busy

No instruction commit
due to L2 access for a

floating-point load
instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善前

[sec]

L1I miss rate
(effective
instruction)

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2
throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement

0.01% 3.13% 9.38E+07 0.79% 99.21% 0.00% 3.13% 9.39E+07 106.37 141.89

Cache

Memory throughput is a bottleneck.

Before improvement

 Chapter 8 High-speed Store (XFILL) Copyright 2016 FUJITSU LIMITED 151

Effects of XFILL (Optimization Control Line Tuning)

Source code after improvement (optimization control line tuning)

 39 !ocl xfill

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 942

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< PREFETCH : 2

 <<< a: 2

 <<< XFILL : 2

 <<< a: 2

 <<< Loop-information End >>>

 40 1 pp v do i=1,n

 41 1 p v a(i) = b(i) + c(i)*d

 42 1 p v enddo

The specification of the XFILL specifier eliminated the reading of cache lines from
memory by a store instruction. This reduced the L2 miss. As a result, there was
improvement in data access wait.

No instruction
commit due to
memory access
for a floating-

point load
instruction

No instruction
commit
because

SP(store port) is
full

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善後

[秒]

No
instruction
commit
due to

memory
and

cache
busy

No instruction
commit due to L2

access for a
floating-point load

instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

改善前

[sec]

1.53-fold effect

L1I miss rate
(effective
instruction)

L1D miss
rate(/Load-store
instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss
rate(/Load-store
instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.01% 3.13% 9.38E+07 0.79% 99.21% 0.00% 3.13% 9.39E+07 106.37 141.89
After improvement 0.01% 3.09% 9.38E+07 29.49% 65.74% 4.77% 2.06% 6.26E+07 158.73 158.85

Cache

Even after the improvement, a memory throughput
bottleneck remains, but the use of XFILL has
reduced the L2 miss by 1/3.

Before improvement After improvement

 Chapter 8 High-speed Store (XFILL)

XFILL (Optimization Control Line Tuning)

Copyright 2016 FUJITSU LIMITED 152

Optimization control specifiers Meaning

Optimization control line that can be specified

Program unit DO loop unit
Statement
unit

Array
assignment
statement unit

XFILL[(m1)]

Gives an instruction to generate an XFILL
instruction. m1 is a decimal number in a range
of 1 to 100 that indicates the number of lines
of the cache.

No Yes No Yes

NOXFILL
Gives an instruction not to generate an XFILL
instruction. No Yes No Yes

Notes
 The XFILL instruction is output for array data that is stored in a loop. However, it is

not output for arrays referenced in the same loop, arrays accessed non-sequentialy,
and arrays stored in IF construct.

 No prefetch instruction is output to the L2 cache when the XFILL instruction is
output.

 The following optimization methods cannot be applied because loops are
transformed to always store the cache lines reserved by the XFILL instructions. For
this reason, execution performance may deteriorate.

- Loop unrolling
- Loop striping

 Execution performance may also deteriorate in the following case:
- Loop with a few iterations

Here, specify the following optimization control line.

 Chapter 8 High-speed Store (XFILL)

XFILL (Compiler Options Tuning)

Copyright 2016 FUJITSU LIMITED 153

Compiler options Description of function

-K{ XFILL[=N] | NOXFILL }

1 ≦ N ≦ 100

Gives an instruction regarding array data that is only written in a
loop, to generate an instruction (XFILL instruction) that reserves a
cache line for cache writing without loading data from memory.
N specifies the data that is N cache lines away as the target of the
XFILL instruction.
You can specify a value in a range of 1 to 100 for N. If the
specification of N is omitted, the compiler automatically
determines a value.
This option has meaning in cases where -O2 or a higher option is
valid. The default is -KNOXFILL.

You can achieve effects similar to optimization control line tuning by
specifying the following compiler options.

 Use example (source code before improvement)

 $ frtpx -Kfast,parallel sample.f90 -KXFILL

 Chapter 8 Improvement in Operation Wait (Instruction Scheduling Improvement) Copyright 2016 FUJITSU LIMITED 154

Improvement in Operation Wait
(Instruction Scheduling Improvement)

 Factors Hindering Instruction Scheduling

 Hindering Factor: Improvement of a Loop Containing an IF
Statement

 Hindering Factor: Improvement in Data Dependency

 Hindering Factor: Improvement of a Loop with a Few
Iterations

 Chapter 8 Improvement in Operation Wait (Instruction Scheduling Improvement)

Factors Hindering Instruction Scheduling

Copyright 2016 FUJITSU LIMITED 155

• Loop containing an IF construct

• Data dependency between iteration cycles

• Loop that has data dependency

• Loop that has an unclear definition
reference relationship

• Loop containing pointer variables

• Loop with a few iterations

The following factors hinder instruction scheduling.

 Chapter 8 Hindering Factor: Improvement of a Loop Containing an IF Construct Copyright 2016 FUJITSU LIMITED 156

Hindering Factor: Improvement of a Loop
Containing an IF Construct

 SIMD Extensions with the Mask (Basics)

 SIMD Extensions with the Mask (Application)

 Chapter 8 SIMD Extensions with the Mask (Basics) Copyright 2016 FUJITSU LIMITED 157

SIMD Extensions with the Mask (Basics)

 SIMD Extensions with the Mask
(Before Improvement)

 Effects of SIMD Extensions with the Mask (Optimization Control
Line Tuning)

 SIMD Extensions with the Mask (Optimization Control Line)

 Effects of SIMD Extensions with the Mask
(Compiler Options Tuning)

 Chapter 8 SIMD Extensions with the Mask (Basics)

SIMD Extensions with the Mask (Before Improvement)

Copyright 2016 FUJITSU LIMITED 158

Source code before improvement

 95 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< PREFETCH : 32

 <<< b: 16, a: 16

 <<< Loop-information End >>>

 96 2 p 8s do i=1,n1

 97 3 p 8m if (p(i) > q) then

 98 3 p 8s a(i) = c0+b(i)*(c1+b(i)*(c2+b(i)*(c3+b(i)*c4)))

 99 3 p 8v endif

 100 2 p 8v enddo

 101 1 !$omp enddo

SIMD optimization and software pipelining are not facilitated because the loop contains an IF
construct.Consequently, the following is a frequent event: No instruction commit waiting for a
floating-point instruction to be completed.

True ratio of 90%

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before
improvement

0.00% 0.00% 0.00% 0.00%

SIMD

There is no SIMD optimization.

No instruction
commit waiting
for a floating-

point instruction
to be completed

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善前

[sec]

Before improvement

 Chapter 8 SIMD Extensions with the Mask (Basics)

Effects of SIMD Extensions with the Mask (Optimization Control Line Tuning)

Copyright 2016 FUJITSU LIMITED 159

Source code after improvement (optimization control line tuning)

 94 1 !ocl simd

 95 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< PREFETCH : 8

 <<< a: 8

 <<< Loop-information End >>>

 96 2 p 6v do i=1,n1

 97 3 p 6v if (p(i) > q) then

 98 3 p 6v a(i) = c0+b(i)*(c1+b(i)*(c2+b(i)*(c3+b(i)*c4)))

 99 3 p 6v endif

 100 2 p 6v enddo

 101 1 !$omp enddo

Specification of the SIMD specifier facilitates software pipelining through SIMD extensions with the mask. The result is
a reduction in effective instruction, a decrease in instruction commits, facilitation of instruction scheduling, and a
significant improvement in the following event: No instruction commit waiting for a floating-point instruction to be
completed.

Specifies SIMD
optimization

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate
(/SIMD target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before improvement 0.00% 0.00% 0.00% 0.00%

After improvement 77.36% 100.00% 0.00% 97.17%

SIMD

 Effective instruction

Before improvement 2.22E+11

After improvement 4.15E+10

Facilitating SIMD optimization reduced effective instruction.

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善後

[秒]

No instruction
commit

waiting for a
floating-point
instruction to
be completed

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善前

[sec]

Instructions commit

5.98-fold effect

Before improvement After improvement

 Chapter 8 SIMD Extensions with the Mask (Basics) Copyright 2016 FUJITSU LIMITED 160

optimization
control

specifiers
Meaning

Optimization control line that can be specified

Program unit DO loop unit Statement unit
Array assignment
statement unit

SIMD Enables SIMD optimization. Yes Yes No Yes

Notes

SIMD optimization may not be realized depending on the operation type
and loop structure.

SIMD Extensions with the Mask (Optimization Control Line)

Here, specify the following optimization control line.

 Chapter 8 SIMD Extensions with the Mask (Basics)

Effects of SIMD Extensions with the Mask (Compiler Options Tuning)

Copyright 2016 FUJITSU LIMITED 161

You can achieve effects similar to optimization control line tuning by
specifying the following compiler options.

Compiler options Description of function

-Ksimd=2 Gives an instruction to generate an object that uses a SIMD
expansion instruction, in addition to the -Ksimd=1 function, for
loops containing an IF construct, etc.

 Use example (source code before improvement)

 $ frtpx -Kfast,parallel sample.f90 -Ksimd=2

Notes

 Execution performance may deteriorate depending on the true ratio of the IF
construct.

 The execution of an instruction that should not be executed from the
perspective of program logic may cause an error because expressions inside
IF construct are speculatively executed.

 Chapter 8 SIMD Extensions with the Mask (Application) Copyright 2016 FUJITSU LIMITED 162

SIMD Extensions with the Mask (Application)
 SIMD Extensions with the Mask (Before Improvement)

 Effects of SIMD Extensions with the Mask: Process 1
(Optimization Control Line Tuning)

 Effects of SIMD Extensions with the Mask: Process 2
(Optimization Control Line Tuning + Source Tuning)

 Effects of SIMD Optimization through Loop Unswitching (Before Improvement)

 Effects of SIMD Optimization through Loop Unswitching (After Improvement)

 Appearance of Code Optimized by Loop Unswitching

 Array Division (Before Improvement)

 Effects of Array Division (Source Tuning)

 Chapter 8 SIMD Extensions with the Mask (Application)

SIMD Extensions with the Mask (Before Improvement)

Copyright 2016 FUJITSU LIMITED 163

Source code before improvement

 63 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< PREFETCH : 12

 <<< b: 2, a: 2, b1: 2, a1: 2, b2: 2, a2: 2

 <<< Loop-information End >>>

 64 2 p s do i=1,n1

 65 3 p m if (p(i) > q) then

 66 3 p s a(i) = c0 + b(i)*(c1 + b(i)*(c2 + b(i)*(c3 + b(i)*

 67 3 & (c4 + b(i)*(c5 + b(i)*(c6 + b(i)*(c7 + b(i)*

 68 3 & (c8 + b(i)*c9))))))))

 69 3 p v endif

 70 3 p s if (p(i) < q) then

 71 3 p s a1(i) = c0+b1(i)/(c1+b1(i)/(c2+b1(i)/(c3+b1(i)/(c4+b1(i)/

 72 3 & (c5+b1(i)/(c6+b1(i)/(c7+b1(i)/(c8+b1(i)/c9))))))))

 73 3 p s a2(i) = c0+b2(i)/(c1+b2(i)/(c2+b2(i)/(c3+b2(i)/(c4+b2(i)/

 74 3 & (c5+b2(i)/(c6+b2(i)/(c7+b2(i)/(c8+b2(i)/c9))))))))

 75 3 p v endif

 76 2 p v enddo

True ratio of
98%

True ratio of
2%

SIMD optimization and software pipelining are not facilitated because the loop contains an IF
construct. Consequently, the following is a frequent event: No instruction commit waiting for a
floating-point instruction to be completed.

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before
improvement

0.00% 0.00% 0.00% 0.00%

SIMD

There is no SIMD optimization.

No instruction
commit

waiting for a
floating-point
instruction to
be completed

0.0E+00

2.0E+01

4.0E+01

6.0E+01

8.0E+01

1.0E+02

1.2E+02

1.4E+02

改善前

[sec]

Before improvement

 Chapter 8 SIMD Extensions with the Mask (Application)

Effects of SIMD Extensions with the Mask: Process 1 (Optimization Control Line Tuning)

Copyright 2016 FUJITSU LIMITED 164

Source code of improvement 1 (optimization control line tuning)

 63 1 !$omp do

 64 1 !ocl simd

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< PREFETCH : 6

 <<< a: 2, a1: 2, a2: 2

 <<< Loop-information End >>>

 65 2 p v do i=1,n1

 66 3 p v if (p(i) > q) then

 67 3 p v a(i) = c0 + b(i)*(c1 + b(i)*(c2 + b(i)*(c3 + b(i)*

 68 3 & (c4 + b(i)*(c5 + b(i)*(c6 + b(i)*(c7 + b(i)*

 69 3 & (c8 + b(i)*c9))))))))

 70 3 p v endif

 71 3 p v if (p(i) < q) then

 72 3 p v a1(i) = c0+b1(i)/(c1+b1(i)/(c2+b1(i)/(c3+b1(i)/(c4+b1(i)/

 73 3 & (c5+b1(i)/(c6+b1(i)/(c7+b1(i)/(c8+b1(i)/c9))))))))

 74 3 p v a2(i) = c0+b2(i)/(c1+b2(i)/(c2+b2(i)/(c3+b2(i)/(c4+b2(i)/

 75 3 & (c5+b2(i)/(c6+b2(i)/(c7+b2(i)/(c8+b2(i)/c9))))))))

 76 3 p v endif

 77 2 p v enddo

Specifies SIMD
optimization

True ratio of
98%

True ratio of
2%

Specification of the SIMD specifier facilitates software pipelining through SIMD extensions with the mask. This results in an
improvement in the following event: No instruction commit waiting for a floating-point instruction to be completed. However,
an adverse effect of SIMD extensions with the mask was an increased effective instruction, which was the cause of an increase in
instruction commits.

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before improvement 0.00% 0.00% 0.00% 0.00%

After improvement 95.68% 100.00% 0.00% 99.65%

SIMD

 Effective instruction

Before improvement 4.19E+12

After improvement 5.14E+12

SIMD optimization was facilitated, but this included SIMD
optimization for IF construct that have a low true ratio, so effective
instruction decreased only slightly because redundant instructions
were issued.

0.0E+00

2.0E+01

4.0E+01

6.0E+01

8.0E+01

1.0E+02

1.2E+02

1.4E+02

改善後

[秒]

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

0.0E+00

2.0E+01

4.0E+01

6.0E+01

8.0E+01

1.0E+02

1.2E+02

1.4E+02

改善前

[sec]

Instructions commit 1.66-fold effect

Instruction
commits
increased

Before improvement After improvement

 Chapter 8 SIMD Extensions with the Mask (Application)

Effects of SIMD Extensions with the Mask: Process 2(Optimization Control Line Tuning + Source Tuning)

Copyright 2016 FUJITSU LIMITED 165

The adverse effect of SIMD extensions with the mask could be reduced in the next step, which is loop division
and SIMD optimization of only IF construct that have a high true ratio.
This results in a decreased effective instruction and improved execution performance.

Source code of improvement 2 (optimization control + source tuning)

 63 1 !$omp do

 64 1 !ocl simd

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< PREFETCH : 12

 <<< a: 12

 <<< Loop-information End >>>

 65 2 p 6v do i=1,n1

 66 3 p 6v if (p(i) > q) then

 67 3 p 6v a(i) = c0 + b(i)*(c1 + b(i)*(c2 + b(i)*(c3 + b(i)*

 68 3 & (c4 + b(i)*(c5 + b(i)*(c6 + b(i)*(c7 + b(i)*

 69 3 & (c8 + b(i)*c9))))))))

 70 3 p 6v endif

 71 2 p 6v enddo

 72 1 !$omp enddo

 73 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< PREFETCH : 8

 <<< b1: 2, a1: 2, b2: 2, a2: 2

 <<< Loop-information End >>>

 74 2 p s do i=1,n1

 75 3 p m if (p(i) < q) then

 76 3 p s a1(i) = c0+b1(i)/(c1+b1(i)/(c2+b1(i)/(c3+b1(i)/(c4+b1(i)/

 77 3 & (c5+b1(i)/(c6+b1(i)/(c7+b1(i)/(c8+b1(i)/c9))))))))

 78 3 p s a2(i) = c0+b2(i)/(c1+b2(i)/(c2+b2(i)/(c3+b2(i)/(c4+b2(i)/

 79 3 & (c5+b2(i)/(c6+b2(i)/(c7+b2(i)/(c8+b2(i)/c9))))))))

 80 3 p v endif

 81 2 p v enddo

 82 1 !$omp enddo

Loop fission

True ratio of 98%
 SIMD

optimization

True ratio of 2%
 No SIMD

optimization

SIMD
instruction

rate

SIMD floating point
instruction rate

SIMD integer
instruction rate

SIMD load-store
instruction rate

Effective
instruction

Before
improvement 0.00% 0.00% 0.00% 0.00% 4.19E+12
After
improvement 1 95.68% 100.00% 0.00% 99.65% 5.14E+12
After
improvement 2 18.16% 38.95% 0.00% 40.79% 2.15E+12

With SIMD optimization of only IF construct with a
high true ratio, the effective instruction decreased.

0.0E+00

2.0E+01

4.0E+01

6.0E+01

8.0E+01

1.0E+02

1.2E+02

1.4E+02

改善後2

[秒]

0.0E+00

2.0E+01

4.0E+01

6.0E+01

8.0E+01

1.0E+02

1.2E+02

1.4E+02

改善後1

[秒]

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

0.0E+00

2.0E+01

4.0E+01

6.0E+01

8.0E+01

1.0E+02

1.2E+02

1.4E+02

改善前

[sec]

Instructions commit

1.66-fold effect 1.14-fold effect

Compared with values before improvement: 1.89-fold effect

Before improvement After improvement 1 After improvement 2

 Chapter 8 SIMD Extensions with the Mask (Application)

Effects of SIMD Optimization through Loop Unswitching (Before Improvement)

Copyright 2016 FUJITSU LIMITED 166

Before optimization

 97 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< UNSWITCHING

 <<< Loop-information End >>>

 98 2 p 4s do i=1,n1

 99 2

 100 3 p 4v if (n1 >= q) then

 101 3 p 4v a(i) = c0+b(i)*(c1+b(i)*(c2+b(i)*

 (c3+b(i)*c4)))

 102 3 p 4v endif

 103 2

 104 3 p 4v if(n1 > r) then

 105 3 p 4v a(i) = c0*b(i)/(c1*b(i)/(c2*b(i)/

 (c3*b(i)/c4)))

 106 3 p 4s endif

 107 2

 108 3 p 4s if(n1 < s) then

 109 3 p 4s a(i) = c0+b(i)/(c1+b(i)/(c2+b(i)/

 (c3+b(i)/c4)))

 110 3 p 4v endif

 111 2 p 4v enddo

 112 1 !$omp enddo

No instruction
commit

waiting for a
floating-point
instruction to
be completed

Four
instructions

commit

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

改善前

[sec]

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before
improvement

0.00% 0.00% 0.00% 0.00%

There is no SIMD optimization

There is neither SIMD optimization nor effective software pipelining because the innermost loop contains an IF
construct. Consequently, the following is a frequent event: No instruction commit waiting for a floating-point
instruction to be completed.

Copyright 2016 FUJITSU LIMITED

Before improvement

 Chapter 8 SIMD Extensions with the Mask (Application)

Effects of SIMD Optimization through Loop Unswitching (After Improvement)

Copyright 2016 FUJITSU LIMITED 167

Specification of loop unswitching for the IF construct improves instruction scheduling and facilitates SIMD
optimization and software pipelining. The result is a significant improvement in the following event: No
instruction commit waiting for a floating-point instruction to be completed.

After optimization

 97 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< UNSWITCHING

 <<< Loop-information End >>>

 98 2 p 4v do i=1,n1

 99 2 !ocl unswitching

 100 3 p 4v if (n1 >= q) then

 101 3 p 4v a(i) = c0+b(i)*(c1+b(i)*(c2+b(i)*

 (c3+b(i)*c4)))

 102 3 p 4v endif

 103 2 !ocl unswitching

 104 3 p 4v if(n1 > r) then

 105 3 p 4v a(i) = c0*b(i)/(c1*b(i)/(c2*b(i)/

 (c3*b(i)/c4)))

 106 3 p 4v endif

 107 2 !ocl unswitching

 108 3 p 4v if(n1 < s) then

 109 3 p 4v a(i) = c0+b(i)/(c1+b(i)/(c2+b(i)/

 (c3+b(i)/c4)))

 110 3 p 4v endif

 111 2 p 4v enddo

 112 1 !$omp enddo

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

改善後

[秒]

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

Four
instruction
s commit

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

改善前

[sec]

167 Copyright 2016 FUJITSU LIMITED

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate
(/SIMD target integer instruction)

SIMD load-store instruction rate
 (/SIMD target load-store instruction)

Before improvement 0.00% 0.00% 0.00% 0.00%

After improvement 86.24% 100.00% 0.00% 95.50%

 Effective instruction

Before improvement 1.98E+11

After improvement 2.80E+10

SIMD optimization reduced effective instruction.

7.22-fold effect

See next page for
appearance of
optimized code

Before improvement After improvement

 Chapter 8 SIMD Extensions with the Mask (Application)

Appearance of Code Optimized by Loop Unswitching

Copyright 2016 FUJITSU LIMITED 168 168 Copyright 2016 FUJITSU LIMITED

Source code

 97 1 !$omp do

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< UNSWITCHING

 <<< Loop-information End >>>

 98 2 p 4v do i=1,n1

 99 2 !ocl unswitching

 100 3 p 4v if (n1 >= q) then

 101 3 p 4v a(i) = c0+b(i)*(c1+b(i)*(c2+b(i)*

 (c3+b(i)*c4)))

 102 3 p 4v endif

 103 2 !ocl unswitching

 104 3 p 4v if(n1 > r) then

 105 3 p 4v a(i) = c0*b(i)/(c1*b(i)/(c2*b(i)/

 (c3*b(i)/c4)))

 106 3 p 4v endif

 107 2 !ocl unswitching

 108 3 p 4v if(n1 < s) then

 109 3 p 4v a(i) = c0+b(i)/(c1+b(i)/(c2+b(i)/

 (c3+b(i)/c4)))

 110 3 p 4v endif

 111 2 p 4v enddo

 112 1 !$omp enddo

Appearance of optimized code

!Pattern (1)
if((condition (1) true).and.(condition (2)
true).and.(condition (3) true))then
 do i=1,n1
 Process (1)
 Process (2)
 Process (3)
 enddo
endif

!Pattern (2)
if((condition (1) true).and.(condition (2)
true).and.(condition (3) false))then
 do i=1,n1
 Process (1)
 Process (2)
 enddo
endif

!Pattern (3)
if((condition (1) true).and.(condition (2)
false).and.(condition (3) true))then
 do i=1,n1

 Process (1)
 Process (3)
 enddo
endif

!Pattern (4)
if((condition (1) true).and.(condition (2)
false).and.(condition (3) false))then
 do i=1,n1
 Process (1)
 enddo
endif

!Pattern (5)
if((condition (1) false).and.(condition (2)
true).and.(condition (3) true))then
 do i=1,n1

 Process (2)
 Process (3)
 enddo
endif

!Pattern (6)
if((condition (1) false).and.(condition (2)
true).and.(condition (3) false))then
 do i=1,n1

 Process (2)
 enddo
endif

!Pattern (7)
if((condition (1) false).and.(condition (2)
false).and.(condition (3) true))then
 do i=1,n1
 Process (3)
 enddo
endif

! Pattern (8)
if((condition (1) false).and.(condition (2)
false).and.(condition (3) false))then
 do i=1,n1
 enddo
endif

Expanded to 8 if statements (do statements)

* Loop unswitching
This optimization pertains to a loop containing an IF
construct that has branches with invariable conditions. It
places the IF construct outside the loop to create loops
used when some or all of the conditions in the IF
construct are met and a loop used when none of the
conditions are met.

Condition (1)

Condition (2)

Condition (3)

Process (1)

Process (2)

Process (3)

 Chapter 8 SIMD Extensions with the Mask (Application)

SIMD floating-point load
instruction rate

SIMD floating point store
instruction rate

SIMD indirect load
instruction rate

SIMD indirect store
instruction rate

SIMD stride load
instruction rate

SIMD stride store
instruction rate

SIMD broadcast load
instruction rate

4 SIMD 2 SIMD 4 SIMD 2 SIMD 4 SIMD 4 SIMD 4 SIMD 4 SIMD 4 SIMD
Before improvement 0.03% 0.00% 0.00% 0.00% 22.60% 11.30% 0.00% 0.00% 1.15%

Copyright 2016 FUJITSU LIMITED 169

Array Division (Before Improvement)

Source code before improvement

28 real*8 a(14,n),b(14,n),c(14,n)

29

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 110

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

30 1 pp v do i=1,n

31 1 p v a(1,i) = b(1,i) - c(1,i)

32 1 p v a(2,i) = b(2,i) - c(2,i)

33 1 p v a(3,i) = b(3,i) - c(3,i)

34 1 p v a(4,i) = b(4,i) - c(4,i)

35 1 p v a(5,i) = b(5,i) - c(5,i)

36 1 p v a(6,i) = b(6,i) - c(6,i)

37 1 p v a(7,i) = b(7,i) - c(7,i)

38 1 p v a(8,i) = b(8,i) - c(8,i)

39 1 p v a(9,i) = b(9,i) - c(9,i)

40 1 p v a(10,i) = b(10,i) - c(10,i)

41 1 p v a(11,i) = b(11,i) - c(11,i)

42 1 p v a(12,i) = b(12,i) - c(12,i)

43 1 p v a(13,i) = b(13,i) - c(13,i)

44 1 p v a(14,i) = b(14,i) - c(14,i)

45 1 p v enddo

46

47 end :

The L1 busy rate is high because indirect load and store are used. Consequently, the following is
a frequent event: No instruction commit due to L1D access for a floating-point load instruction.

No
instruction
commit due

to L1D access
for a floating-

point load
instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

改善前

[sec]

L1 busy rate L2 busy rate Memory busy rate

Before improvement 75% 2% 0%

Memory and cache

The L1 busy rate is high
because indirect load and
store instructions are used.

Instruction

Arrays a, b, and c are accessed
contiguously. However, the respective
arrays themselves (such as a(1,i)) are
accessed with a stride of 14 elements
per iteration.

 Indirect load and store are used
for access with a stride of 8 or more
elements.

Before improvement

 Chapter 8 SIMD Extensions with the Mask (Application)

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

改善後

[秒]

Copyright 2016 FUJITSU LIMITED 170

Effects of Array Division (Source Tuning)

Source code after improvement (source tuning)

30 real*8 a1(7,n),b1(7,n),c1(7,n)

31 real*8 a2(7,n),b2(7,n),c2(7,n)

32

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 110

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

33 1 pp 2v do i=1,n

34 1 p 2v a1(1,i) = b1(1,i) - c1(1,i)

35 1 p 2v a1(2,i) = b1(2,i) - c1(2,i)

36 1 p 2v a1(3,i) = b1(3,i) - c1(3,i)

37 1 p 2v a1(4,i) = b1(4,i) - c1(4,i)

38 1 p 2v a1(5,i) = b1(5,i) - c1(5,i)

39 1 p 2v a1(6,i) = b1(6,i) - c1(6,i)

40 1 p 2v a1(7,i) = b1(7,i) - c1(7,i)

41 1 p 2v a2(1,i) = b2(1,i) - c2(1,i)

42 1 p 2v a2(2,i) = b2(2,i) - c2(2,i)

43 1 p 2v a2(3,i) = b2(3,i) - c2(3,i)

44 1 p 2v a2(4,i) = b2(4,i) - c2(4,i)

45 1 p 2v a2(5,i) = b2(5,i) - c2(5,i)

46 1 p 2v a2(6,i) = b2(6,i) - c2(6,i)

47 1 p 2v a2(7,i) = b2(7,i) - c2(7,i)

48 1 p 2v enddo

Stride load and store are used since the loop is divided in such a way that the arrays are accessed with a stride of seven or fewer
elements. This results in improvement of the following event: No instruction commit due to L1 access for a floating-point load
instruction.

No
instruction

commit due
to L1D

access for a
floating-

point load
instruction

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

改善前

[sec]

1.80-fold effect

SIMD floating-point load
instruction rate

SIMD floating point store instruction
rate

SIMD indirect load
instruction rate

SIMD indirect store
instruction rate

SIMD stride load
instruction rate

SIMD stride store
instruction rate

SIMD broadcast load
instruction rate

4 SIMD 2 SIMD 4 SIMD 2 SIMD 4 SIMD 4 SIMD 4 SIMD 4 SIMD 4 SIMD
Before improvement 0.03% 0.00% 0.00% 0.00% 22.60% 11.30% 0.00% 0.00% 1.15%
After improvement 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 35.63% 17.81% 0.00%

L1 busy rate L2 busy rate Memory busy rate

Before improvement 75% 2% 0%
After improvement 58% 3% 0%

Memory and cache

Instruction

Arrays a, b, and c are accessed
contiguously. However, the
respective arrays themselves (such
as a1(1,i)) are accessed with a stride
of 7 elements per iteration.

 Stride store is used.

Stride load and store
instructions are now used.

Before improvement After improvement

 Chapter 8 Hindering Factor: Improvement in Data Dependency Copyright 2016 FUJITSU LIMITED 171

Hindering Factor: Improvement in Data
Dependency

 Loop That Has Data Dependency

 Loop That Has an Unclear Definition Reference Relationship

 Loop Containing Pointer Variables

 Chapter 8 Loop That Has Data Dependency Copyright 2016 FUJITSU LIMITED 172

Loop That Has Data Dependency

 Loop That Has Data Dependency (Before Improvement)

 Loop That Has Data Dependency (Source Tuning)

 Chapter 8 Loop That Has Data Dependency

Loop That Has Data Dependency (Before Improvement)

Copyright 2016 FUJITSU LIMITED 173

Source code before improvement

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 4 1 pp do j = 1, m

 5 2 p 6s do i = 1, n

 6 2 p 6m a(i,j) = c0 + a(1,j)*(c1 + b(i,j)*(c2 + b(i,j)*(c3 + b(i,j)*

 7 2 & (c4 + b(i,j)*(c5 + b(i,j)*(c6 + b(i,j)*(c7 + b(i,j)*

 8 2 & (c8 + b(i,j)*c9))))))))

 9 2

 10 2 p 6v end do

 11 1 p end do

 12 end

There is neither SIMD optimization nor effective software pipelining because array a has a data
dependency that references data for i = 2 or greater as defined when i = 1.
Consequently, the following is a frequent event: No instruction commit waiting for a floating-point
instruction to be completed.

There is dependency
between array a on the load
side and array a on the store
side when i = 1 or 2.

No instruction
commit waiting
for a floating-

point instruction
to be completed

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善前

[sec]

There is no effective software pipelining
because of data dependency between
iteration cycles.

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before
improvement

0.00% 0.00% 0.00% 0.00%

SIMD

There is no SIMD optimization.

Before improvement

 Chapter 8 Loop That Has Data Dependency Copyright 2016 FUJITSU LIMITED 174

Loop That Has Data Dependency (Source Tuning)

Source code after improvement (source tuning)

 4 1 pp do j = 1, m

 5 1 p i = 1

 6 1 p a(i,j) = c0 + a(1,j)*(c1 + b(i,j)*(c2 + b(i,j)*(c3 + b(i,j)*

 7 1 & (c4 + b(i,j)*(c5 + b(i,j)*(c6 + b(i,j)*(c7 + b(i,j)*

 8 1 & (c8 + b(i,j)*c9))))))))

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 9 2 p 6v do i = 2, n

 10 2 p 6v a(i,j) = c0 + a(1,j)*(c1 + b(i,j)*(c2 + b(i,j)*(c3 + b(i,j)*

 11 2 & (c4 + b(i,j)*(c5 + b(i,j)*(c6 + b(i,j)*(c7 + b(i,j)*

 12 2 & (c8 + b(i,j)*c9))))))))

 13 2 p 6v end do

 14 1 p end do

 15 end

The elimination of
dependency facilitated
SIMD optimization and
software pipelining in the
period of i = 2 to n.

SIMD optimization and software pipelining were facilitated through peeling.
The result is a reduction in effective instruction, a decrease in instruction commits, facilitation of instruction
scheduling, and a significant improvement in the following event: No instruction commit waiting for a
floating-point instruction to be completed.

Peeling of locations that have dependency

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善後

[秒]

No instruction
commit

waiting for a
floating-point
instruction to
be completed

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善前

[sec]

Instructions commit

2.9-fold effect

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD target
floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before improvement 0.00% 0.00% 0.00% 0.00%

After improvement 81.99% 96.12% 0.00% 83.91%

 Effective instruction

Before improvement 1.68E+11

After improvement 4.27E+10

SIMD optimization reduced effective instruction.

Before improvement After improvement

 Chapter 8 Loop That Has an Unclear Definition Reference Relationship Copyright 2016 FUJITSU LIMITED 175

Loop That Has an Unclear Definition
Reference Relationship

 Loop That Has an Unclear Definition Reference Relationship
(Before Improvement)

 Loop That Has an Unclear Definition Reference Relationship
(Optimization Control Line Tuning)

 Loop That Has an Unclear Definition Reference Relationship
(Optimization Control Line)

 Chapter 8 Loop That Has an Unclear Definition Reference Relationship

Loop That Has an Unclear Definition Reference Relationship (Before Improvement)

Copyright 2016 FUJITSU LIMITED 176

Source code before improvement

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 53 1 pp do j=1,n1

 54 2 p 6s do i=1,n2

 55 2 p 6m a(l(i),j)=a(x(i),j)/b(i,j)

 56 2 p 6v end do

 57 1 p end do
There is unclear
dependency between
array a on the load
side and array a on
the store side.

There is neither SIMD optimization nor effective software pipelining because of unclear data
dependency regarding array a. Consequently, the following is a frequent event: No instruction
commit waiting for a floating-point instruction to be completed.

There is no effective software pipelining because of
unclear data dependency between iteration cycles for
array a.

No instruction commit
waiting for a floating-
point instruction to be

completed

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate (/SIMD
target load-store instruction)

Before
improvement

0.00% 0.00% 0.00% 0.00%

SIMD

There is no SIMD optimization.

Before improvement

 Chapter 8 Loop That Has an Unclear Definition Reference Relationship

Loop That Has an Unclear Definition Reference Relationship (Optimization Control Line Tuning)

Copyright 2016 FUJITSU LIMITED 177

With no data dependency made explicit by the NORECURRENCE specifier, SIMD optimization and software pipelining were
facilitated. The result is a reduction in the total number of effective instructions, a decrease in instruction commits,
facilitation of instruction scheduling, and a significant improvement in the following event: No instruction commit waiting
for a floating-point instruction to be completed.

Source code after improvement (optimization control line tuning)

 53 !ocl norecurrence(a)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 54 1 pp do j=1,n1

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< Loop-information End >>>

 55 2 p 6v do i=1,n2

 56 2 p 6v a(l(i),j)=a(x(i),j)/b(i,j)

 57 2 p 6v end do

 58 1 p end do

Notifies compiler about
no data dependency
between a(l(i), j) and
a(x(i), j)

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善後

[秒]

No instruction
commit

waiting for a
floating-point
instruction to
be completed

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]

Instructions commit 1.86-fold effect

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before improvement 0.00% 0.00% 0.00% 0.00%

After improvement 88.34% 100.00% 76.92% 97.75%

 Effective instruction

Before improvement 3.87E+10

After improvement 8.71E+09

SIMD optimization reduced effective instruction.

Before improvement After improvement

 Chapter 8 Loop That Has an Unclear Definition Reference Relationship Copyright 2016 FUJITSU LIMITED 178

optimization control specifiers Meaning

Optimization control line that can
be specified

Program unit
DO loop
unit

Statement
unit

Array
assignment
statement
unit

NORECURRENCE
[(array1[,array2]...)]

Gives an instruction to the main processing
system about elements of the array that is the
operation target in a DO loop. The instruction is
that definitions of the array elements are not to
be referenced over different iterations.
(Gives an instruction to arrays for which loop
slicing is possible.)
array1, array2,… are array names.

Yes Yes No Yes

Loop That Has an Unclear Definition Reference Relationship (Optimization Control Line)

Here, specify the following optimization control line.

 Chapter 8 Loop Containing Pointer Variables Copyright 2016 FUJITSU LIMITED 179

Loop Containing Pointer Variables

 Loop Containing Pointer Variables (Before Improvement)

 Loop Containing Pointer Variables
(Optimization Control Line Tuning)

 Making Data Dependency Explicit Regarding Array Subscripts
(Optimization Control Line)

 Speed-up by CONTIGUOUS attribute

 Chapter 8 Loop Containing Pointer Variables

Loop Containing Pointer Variables (Before Improvement)

Copyright 2016 FUJITSU LIMITED 180

SIMD optimization and software pipelining are not facilitated because the pointer variables of arrays a and
b point to unknown memory areas. Consequently, the following is a frequent event: No instruction commit
waiting for a floating-point instruction to be completed.

Source code before improvement

 1 program sub_f

 2

 3 real,dimension(100000),target::x

 4 integer :: kmax

 5 real,dimension(:),pointer::a,b

 6 1 pp 8v do i=1,100000

 7 1 p 8v x(i)=i

 8 1 p 8v end do

 9 a=>x(1:10000)

 10 b=>x(10001:20000)

 11 kmax = 1000000

 12 call start_collection("1")

 13 !$omp parallel

 14 1 do k=1,kmax

 15 1 !$omp do

 16 2 p 8s do i=1,10000

 17 2 p 8s a(i)=2.0/b(i)+1.0

 18 2 p 8s end do

 19 1 end do

 20 !$omp end parallel

Unclear dependency between
array b on load side and array
a on store side

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善前

[sec]

Before improvement

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate (/SIMD
target load-store instruction)

Before
improvement

0.00% 0.00% 0.00% 0.00%

SIMD

There is no SIMD
optimization.

 Chapter 8 Loop Containing Pointer Variables

Loop Containing Pointer Variables (Optimization Control Line Tuning)

Copyright 2016 FUJITSU LIMITED 181

Source code after improvement (optimization control line tuning)

 1 program sub_f

 2

 3 real,dimension(100000),target::x

 4 integer :: kmax

 5 real,dimension(:),pointer::a,b

 6 1 pp 8v do i=1,100000

 7 1 p 8v x(i)=i

 8 1 p 8v end do

 9 a=>x(1:10000)

 10 b=>x(10001:20000)

 11 kmax = 1000000

 12 call start_collection("1")

 13 !$omp parallel

 14 1 do k=1,kmax

 15 1 !$omp do

 16 1 !ocl noalias

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 17 2 p 6v do i=1,10000

 18 2 p 6v a(i)=2.0/b(i)+1.0

 19 2 p 6v end do

 20 1 end do

Notifies compiler about no
data dependency between

a(i) and b(i)

With data dependency made explicit by the NOALIAS specifier, SIMD optimization and software
pipelining were facilitated. This results in significant improvement of the following event: No
instruction commit waiting for a floating-point instruction to be completed.

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善後

[秒]

No
instruction

commit
waiting

for a
floating-

point
instruction

to be
completed

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善前

[sec]

Instructions commit

3.04-fold effect

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate (/SIMD
target load-store instruction)

Before improvement 0.00% 0.00% 0.00% 0.00%

After improvement 75.36% 99.36% 41.78% 91.78%

 Effective instruction

Before improvement 1.05E+11

After improvement 3.35E+10

SIMD optimization reduced effective instruction.

Before improvement After improvement

 Chapter 8 Loop Containing Pointer Variables Copyright 2016 FUJITSU LIMITED 182

Optimization control specifiers Meaning

Optimization control line that can
be specified

Program unit DO loop unit
Statement
unit

Array
assignment
statement
unit

NOALIAS
Gives an instruction that pointer
variables are not to share memory
areas with other variables.

Yes Yes No No

Making Data Dependency Explicit Regarding Array Subscripts (Optimization Control Line)

Here, specify the following optimization control line.

 Chapter 8 Loop Containing Pointer Variables

Speed-up by CONTIGUOUS attribute

Copyright 2015 FUJITSU LIMITED 183

Optimization against arrays with pointer attribute may be promoted
if CONTIGUOUS attribute be added to them.

In above case, XFILL optimization has been applied by specifying CONTIGUOUS attribute,
then performance improved.

CONTIGUOUS attribute(Specification introduced by Fortran2008)
CONTIGUOUS attribute can be specified to shape-assumed arrays or pointer arrays,

・in case of shape-assumed arrays, they should associate with actual arguments having CONTIGUOUS attribute.

・in case of pointer arrays, they should associate with targets with CONTIGUOUS attribute.

STREAM Triad(pointer version)

 127 DOUBLE PRECISION, dimension(:), pointer,contiguous :: a,b,c

 248 1 f !$OMP PARALLEL DO

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< PREFETCH : 10

 <<< c: 4, b: 4, a: 2

 <<< XFILL : 2

 <<< a: 2

 <<< Loop-information End >>>

 249 2 p fv DO 60 j = 1,n

 250 2 p fv a(j) = b(j) + scalar*c(j)

 251 2 p fv 60 CONTINUE

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

GB/Sec

Number of threads

STREAM Triad(pointer version） PTR

PTR(CONTIGUOUS)

 Chapter 8 Hindering Factor: Improvement of a Loop with a Few Iterations Copyright 2016 FUJITSU LIMITED 184

Hindering Factor: Improvement of a Loop
with a Few Iterations
 Loop with a Few Iterations

 Specification of an Appropriate Number of Unrollings and
Suppression of Software Pipelining

 Cloning

 Before Improvement by Cloning

 Cloning Source Tuning

 Chapter 8 Hindering Factor: Improvement of a Loop with a Few Iterations

Loop with a Few Iterations

Copyright 2016 FUJITSU LIMITED 185

Software pipelined and unrolled
loop

Unrolled loop

Original loop

Loop structure diagram

 do i = 1 , n
 b(i) = a(i) + c
 enddo

Example

if (process whose iteration count is value (160 or more) presented by software pipelining) then

else if (process whose iteration count is multiple of 32 iterations, among those remaining with above iteration count) then

else

For the loop in this example, the remaining processes for i = 33 to 40 are executed in this loop.

The above diagram shows the multiple
loop structure created by the compiler. In
the structure, the higher the layer, the
higher the parallelism at the instruction
level.

Assumptions in this example
Loop iteration count, n = 40
Number of unrollings = 8
Software pipelining
4SIMD

As described above, if the loop iteration count is small, instruction
scheduling has a small effect since loops with high parallelism at
the instruction level are not executed.

Even for a loop for which software pipelining was facilitated, if the number of loop
iterations is small, instruction scheduling may have a small effect.

Parallelism: High

Parallelism: Low

8 unrollings x 4 (SIMD) = 32
For the loop in this example, the processes for i = 1 to 32 are executed in this loop.

jwd8205o-i "sample.f90", line 4: At a loop iteration count of 160 or more, a loop to which software pipelining is applied is
selected at the execution time.
Since the loop iteration count in this example is 40, this loop is not executed.

 Chapter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining Copyright 2016 FUJITSU LIMITED 186

Specification of an Appropriate Number
of Unrollings and
Suppression of Software Pipelining
 Specification of an Appropriate Number of Unrollings and

Suppression of Software Pipelining (Before Improvement)

 Specification of an Appropriate Number of Unrollings and
Suppression of Software Pipelining (After Improvement)

 Specification of an Appropriate Number of Unrollings and
Suppression of Software Pipelining (Optimization Control Line)

 Specification of an Appropriate Number of Unrollings and
Suppression of Software Pipelining (Compiler Options)

 Chapter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining

Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining (Before Improvement)

Copyright 2016 FUJITSU LIMITED 187

Source code before improvement

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 534

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 42 1 pp 6v do i = 1 , n

 43 1 p 6v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*

 44 1 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*

 45 1 & (c8 + a(i)*c9))))))))

 46 1 p 6v enddo

 47 End

Unrolling and software pipelining do not function effectively because the number of iterations is small.
Consequently, the following is a frequent event: No instruction commit waiting for a floating-point
instruction to be completed.

Number of unrollings is 6,
with loop iterations count of
n = 16

Problem: The loop iteration count is small.

- Software pipelining loops are not executed.

 Although "SOFTWARE PIPELINING" is displayed as optimization information, software pipelining loops
are not executed because the number of iterations is small.

 jwd8205o-i "sample.f", line 42: At a loop iteration count of 120 or more, a loop to which software
pipelining is applied is selected at the execution time.

- The number of unrollings is not appropriate.

 6 unrollings x 4 (SIMD) = 24 The unrolled loop is not even executed once.

 The original loop is executed for all 16 iterations.

 The execution of the original loop has a significant effect on performance.

No instruction
commit waiting
for a floating-

point
instruction to
be completed

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

改善前

[sec]

Before improvement

 Chapter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining

Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining (After Improvement)

Copyright 2016 FUJITSU LIMITED 188

Appropriate instruction scheduling was done with a specified number of unrollings appropriate
to the number of iterations and with software pipelining suppressed. This resulted in the
following event being significantly reduced: No instruction commit waiting for a floating-point
instruction to be completed.

Source code after improvement (optimization control line tuning)

 42 !ocl unroll(4)

 43 !ocl noswp

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 534

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< Loop-information End >>>

 44 1 pp 4v do i = 1 , n

 45 1 p 4v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*

 46 1 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*

 47 1 & (c8 + a(i)*c9))))))))

 48 1 p 4v enddo

 49 End

Specifies 4 as
appropriate number of
unrollings

Suppresses software
pipelining

From the specification of 4 for the number of unrollings

4 unrollings x 4 (SIMD) = 16

The unrolled loop is executed for all 16 iterations.

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

改善後

[秒]

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

改善前

[sec]

1.26-fold effect

Before improvement After improvement

 Chapter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining Copyright 2016 FUJITSU LIMITED 189

Optimization specifier Meaning

Optimization control line that
can be specified

Program unit
DO loop
unit

Statement
unit

Array
assignment
statement
unit

UNROLL(m1)

Unrolls a DO loop.

m1 is a decimal number in a range of 2
to 100 that indicates the number of
unrollings (multiplicity).

No Yes No No

NOSWP
Disables the software pipelining
function.

Yes Yes No Yes

Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining (Optimization Control Line)

Here, specify the following optimization control line.

 Chapter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining

Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining (Compiler Options)

Copyright 2016 FUJITSU LIMITED 190

You can achieve effects similar to source tuning by specifying the following
compiler options.

Compiler options Description of function

-Kunroll[=N] Gives an instruction to optimize loop unrolling. Specify an upper
limit in N for the number of loop unrollings. You can specify a
value in a range of 2 to 100 for N. If the specification of N is
omitted, the compiler automatically determines the optimal value.
If the -O0 or -O1 option is valid, the default is -Knounroll.
If -O2 or a higher option is valid, the default is -Kunroll.

-Knoswp Gives an instruction not to optimize software pipelining.

 Use example (source code before improvement)
 $ frtpx -Kfast,parallel sample.f90 -Kunroll=8,noswp

 Chapter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining

Before Improvement by Cloning

Copyright 2016 FUJITSU LIMITED 191

Even though the number of iterations of the innermost loop depends disproportionately on a specific condition,
it is just a variable. For this reason, optimizations such as full unrolling are hindered, the number of instructions
increases, and the following is a frequent event: No instruction commit waiting for a floating-point instruction
to be completed.

Source code before improvement

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 3

 <<< Loop-information End >>>

48 1 pp DO J=1,M

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

49 2 p 6v DO I=2,N

50 2 p 6v A(I,J) = B(I,J)/C(I,J)

51 2 p 6v ENDDO

52 1 p ENDDO

Cases where N is 9
account for 100%.

No instruction
commit

waiting for a
floating-point
instruction to
be completed

Four
instructions

commit

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

改善前

[sec]

Before improvement

 Chapter 8 Specification of an Appropriate Number of Unrollings and Suppression of Software Pipelining

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

改善後

[秒]

Cloning Source Tuning

Copyright 2016 FUJITSU LIMITED 192

Clone optimization control lines are specified to create a conditional branch in the innermost loop using
variable values and to facilitate full unrolling and other optimizations. This results in significant improvement
of the following event: No instruction commit waiting for a floating-point instruction to be completed.

Source code after improvement

47 !ocl clone(N==9)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 3

 <<< [OPTIMIZATION]

 <<< SOFTWARE PIPELINING

 <<< CLONE

 <<< Loop-information End >>>

 48 1 pp DO J=1,M

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< FULL UNROLLING

 <<< Loop-information End >>>

 49 2 p fv DO I=2,N

 50 2 p fv A(I,J) = B(I,J)/C(I,J)

 51 2 p fv ENDDO

 52 1 p ENDDO

Insert CLONE optimization control lines

to apply cloning optimization to the loop.

A branch is created with the
condition specified by N, and the
loop is cloned.

After optimization
(Appearance of source code)

IF (N==9) THEN

 DO J=1,M

 DO I=2,9

 A(I,J) = B(I,J)/C(I,J)

 ENDDO

 ENDDO

ELSE

 DO J=1,M

 DO I=2,N

 A(I,J) = B(I,J)/C(I,J)

 ENDDO

 ENDDO

ENDIF

 Effective instruction

Before improvement 1.34E+08

After improvement 6.71E+07

Full unrolling is possible
because the number of
iterations of the
innermost loop is clear.

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

Four
instructions
commit

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

改善前

[sec]

About 1.69-fold
effect

Facilitating optimization reduced effective instruction.

Before improvement After improvement

 Chapter 8 Various Optimizations Copyright 2016 FUJITSU LIMITED 193

Various Optimizations
 Rerolling

 Rerolling (Before Improvement)

 Effects of Rerolling (Source Tuning)

 Facilitation of SIMD Optimization through Changes to Simple
Variables

 Inline expansion: procedures using associated allocatable
variable

 Chapter 8 Various Optimizations Copyright 2016 FUJITSU LIMITED 194

Rerolling (Before Improvement)
There are many instruction commits because SIMD optimization is unavailable due to the dependency
in the innermost loop.

SIMD

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate (/SIMD
target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate (/SIMD
target load-store instruction)

Before
improvement

0.00% 0.00% 0.00% 0.00%

No instruction
commit waiting
for a floating-

point instruction
to be completed

One
instruction

commit

Two or three
instructions

commit

Four
instructions

commit

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

1.4E-01

1.6E-01

1.8E-01

2.0E-01

2.2E-01

改善前

[sec]

There is no SIMD optimization.

Source code after improvement (source tuning)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

42 1 pp DO K=1,M

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

43 2 p 4s DO J=1,N

44 2 p 4s a(1,J,K) = b(1,J,K) + a(1,J-1,K)

45 2 p 4s a(2,J,K) = b(2,J,K) + a(2,J-1,K)

46 2 p 4s a(3,J,K) = b(3,J,K) + a(3,J-1,K)

47 2 p 4s a(4,J,K) = b(4,J,K) + a(4,J-1,K)

48 2 p 4s ENDDO

49 1 p ENDDO

50 end subroutine rerolling
Before improvement

 Chapter 8 Various Optimizations

SIMD instruction rate
(effective instruction)

SIMD floating point instruction rate
(/SIMD target floating point instruction)

SIMD integer instruction rate (/SIMD
target integer instruction)

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Before improvement 0.00% 0.00% 0.00% 0.00%

After improvement 55.34% 100.00% 0.00% 96.68%

No
instruction

commit
waiting for
a floating-

point
instruction

to be
completed

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

1.4E-01

1.6E-01

1.8E-01

2.0E-01

2.2E-01

改善後

[秒]

Copyright 2016 FUJITSU LIMITED 195

Effects of Rerolling (Source Tuning)
Rewriting unrolled statements into loop statements (returning them to a loop) facilitates SIMD optimization.
This results in a decreased effective instruction and improved performance.

SIMD

 Effective instruction

Before improvement 1.17E+10

After improvement 4.43E+09

SIMD optimization
reduced effective
instruction.

No instruction
commit waiting
for a floating-

point instruction
to be completed

One
instruction

commit

Two or three
instructions

commit

Four
instructions

commit

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

1.4E-01

1.6E-01

1.8E-01

2.0E-01

2.2E-01

改善前

[sec]
Source code after improvement

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

42 1 pp DO K=1,M

43 1 !OCL NOUNROLL

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

44 2 p DO J=1,N

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< Loop-information End >>>

45 3 p v DO I=1,4

46 3 p v a(I,J,K) = b(I,J,K) + a(I,J-1,K)

47 3 p v ENDDO

48 2 p ENDDO

49 1 p ENDDO

50 end subroutine rerolling

1.1-fold effect
Suppresses loop
unrolling

Before improvement After improvement

 Chapter 8 Various Optimizations

Facilitation of SIMD Optimization through Changes to Simple Variables

Copyright 2016 FUJITSU LIMITED 196

Changing arrays with constant subscripts to simple variables may facilitate SIMD
optimization.

Example: Program change to simple variables

do i = 1 , N
 ：
 a(1) = b(1,i)
 a(2) = b(2,i)
 a(3) = b(3,i)
 a(4) = b(4,i)
 a(5) = b(5,i)
 a(6) = b(6,i)
 ：
 x = u(2) * a(1) + u(3) * a(2)
 y = u(2) * a(3) + u(3) * a(4)
 z = u(2) * a(4) + u(3) * a(6)
 ：
end do

do i = 1 , N
 ：
 a1 = b(1,i)
 a2 = b(2,i)
 a3 = b(3,i)
 a4 = b(4,i)
 a5 = b(5,i)
 a6 = b(6,i)
 ：
 x = u(2) * a1 + u(3) * a2
 y = u(2) * a3 + u(3) * a4
 z = u(2) * a4 + u(3) * a6
 ：
end do

Before correction After correction

Since arrays a(1) to a(6) are handled
practically as local variables, they
are changed to simple variables a1
to a6.

 Chapter 8 Various Optimizations

Inline expansion: procedures using associated allocatable variable

Copyright 2016 FUJITSU LIMITED 197

 Procedure containing use-association of allocatable variable are not target of inline
expansion. If allocatable variable is not referred to, copying the module and
modifying to delete the use-association make the procedure will be target of inline
expantion.
module mod2
 real(8), dimension(:), allocatable :: ql
end module mod2

module mod1
 use mod2
 real(8) :: a(100)
 contains
 subroutine sub1(n)
 do i=1,n
 a(i) = 5
 end do
 end subroutine sub1

 subroutine sub3(n)
 do i=1,n
 ql(i) = 5
 end do
 end subroutine sub3
end module mod1

subroutine sub2()
 use mod1
 call sub1(100)
end subroutine sub2

Allocatable
variable ql is
not referred to
in sub1

Inline
expansion of
sub1 is preferred

module mod2
 real(8), dimension(:), allocatable :: ql
end module mod2

module mod1
 use mod2
 subroutine sub3(n)
 do i=1,n
 ql(i) = 5
 end do
 end subroutine sub3
end module mod1

module mod11
 real(8) :: a(100)
 contains
 subroutine sub1(n)
 do i=1,n
 a(i) = 5
 end do
 end subroutine sub1
end module mod11

subroutine sub2()
 use mod11
 call sub1(100)
end subroutine sub2

 jwd2483i-i "b.f90", line 25, column 8: Module procedure ‘sub1' not
expanded inline, because it use associates an allocatable variable.

Sub1 is copied and
modified as
another procedure
in module mod11

jwd8101o-i "c.f90", line 28: ‘sub1' is expanded inline.

Copied and
modified module
mod11 is used

 Chapter 8 Thread Parallelization Processing Tuning Copyright 2016 FUJITSU LIMITED 198

Thread Parallelization Processing Tuning

 Thread Parallelization ratio Improvement

 Execution Efficiency Improvement of Thread Parallelization
Processing

 Chapter 8 Thread Parallelization Ratio Improvement Copyright 2016 FUJITSU LIMITED 199

Thread Parallelization Ratio Improvement

 What Is the Thread Parallelization Ratio?

 Thread Parallelization Ratio Improvement

 Chapter 8 Thread Parallelization ratio Improvement

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

Sc
al

ab
ili

ty

Parallelization ratio

Copyright 2016 FUJITSU LIMITED 200

Scalability

n

p
p

1

1

The parallelization ratio means the percentage that can be executed in parallel in one parallel
execution sequence.

What Is the Thread Parallelization Ratio?

Amdahl's law

 p: Parallelization ratio

 n: Number of parallels

Amdahl's law shows the relationship between the thread parallelization
ratio and scalability in n parallel execution sequences.

An increase in the parallelization
ratio is important to achieving high
scalability.

n = 16 (ideally, 16 parallel processes)

One parallel
execution
sequence

Part that can be executed in parallel
Sequential
execution
part

Two parallel
execution
sequences

Part that can be
executed in parallel

Sequential
execution
part

In two parallel execution sequences,
the part that can be executed in
parallel becomes 1/2 of one parallel
execution sequence.

 Chapter 8 Improvement in False Sharing Copyright 2016 FUJITSU LIMITED 201

Thread Parallelization Ratio Improvement

 Loop That Has an Unclear Definition Reference Relationship

 Loop Containing Pointer Variables

 Loop That Has Data Dependency

 Chapter 8 Thread Parallelization Ratio Improvement

Loop That Has an Unclear Definition Reference Relationship

Copyright 2016 FUJITSU LIMITED 202

Source code before improvement Source code after improvement
 5

 6 1 s 8s do i=1,1000

 7 1 m 8m a(y(i))=a(y(i))+b(i)

 8 1 p 8v end do

 9 END

jwd5228p-i "a.f90", line 7: This DO loop cannot be
parallelized because the definition reference order of
data differs from the order of sequential execution.

jwd6228s-i "a.f90", line 7: This DO loop cannot be
SIMD-optimized because the definition reference order
of data differs from the order of sequential execution.

 5 !ocl norecurrence(a)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 800

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< Loop-information End >>>

 6 1 pp 8v do i=1,1000

 7 1 p 8v a(y(i))=a(y(i))+b(i)

 8 1 p 8v end do

 !OCL NORECURRENCE
The main processing system cannot determine whether applying loop slicing to array a will cause a
problem in the following problem, because the subscript expression of array a is an element of another
array, y(j). If the programmer knows that loop slicing of array a will not cause a problem, the
programmer can use parallelization by specifying the NORECURRENCE specifier.

!Note!

 If the NORECURRENCE specifier is specified for an array for which loop slicing is not
possible, the main processing system may apply the wrong loop slicing.

 If the array name is omitted, the specification is valid for all arrays in the target
section.

 Chapter 8 Thread Parallelization Ratio Improvement

Loop Containing Pointer Variables

Copyright 2016 FUJITSU LIMITED 203

Source code before improvement Source code after improvement
 1 real,dimension(100000),target::x

 2 real,dimension(:),pointer::a,b

 3 a=>x(1:10000)

 4 b=>x(10001:20000)

 5

 6 1 s s do i=1,100000

 7 1 s s b(i) = a(i)+1.0

 8 1 s s end do

 9 end

jwd5228p-i "a.f90", line 7: This DO loop cannot be
parallelized because the definition reference order of
data differs from the order of sequential execution.

jwd6228s-i "a.f90", line 7: This DO loop cannot be
SIMD-optimized because the definition reference order
of data differs from the order of sequential execution.

 1 real,dimension(100000),target::x

 2 real,dimension(:),pointer::a,b

 3 a=>x(1:10000)

 4 b=>x(10001:20000)

 5 !ocl noalias

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 1143

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 8)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 6 1 pp 8v do i=1,100000

 7 1 p 8v b(i) = a(i)+1.0

 8 1 p 8v end do

 9 end

 !OCL NOALIAS
Data dependency is unclear and there is no parallelization because the memory areas occupied by the
pointer variables are determined at the execution time. If the programmer knows that the pointer
variables do not point to the same memory area, the programmer can use parallelization by specifying
the NOALIAS specifier.

 Chapter 8 Thread Parallelization Ratio Improvement

Loop That Has Data Dependency

Copyright 2016 FUJITSU LIMITED 204

Source code before improvement Source code after improvement
 4 1 s 8s do i=1,n

 5 1 s 8m a(i)=a(1)+b(i)+a(n)

 6 1 s 8v end do

jwd5202p-i "a.f90", line 5: This DO loop cannot be
parallelized because the definition reference order of data
differs from the order of sequential execution. (Name: a)

jwd5208p-i "a.f90", line 5: The definition reference order
is unknown and the reference order may differ from the
order of sequential execution, so this DO loop cannot be
parallelized. (Name: a)

 4 a(1)=a(1)+b(1)+a(n)

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 800

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 8)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 5 1 pp 8v do i=2,n-1

 6 1 p 8v a(i)=a(1)+b(i)+a(n)

 7 1 p 8v enddo

 8 a(n)=a(1)+b(n)+a(n)

 Parallelization through peeling
The following loop is not parallelized because it has dependency regarding array a when i = 1
and when i = n. To facilitate parallelization, eliminate the dependency by placing the
beginning and end parts of the loop outside the loop.

 Chapter 8 Execution Efficiency Improvement of Thread Parallelization Processing Copyright 2016 FUJITSU LIMITED 205

Execution Efficiency Improvement of
Thread Parallelization Processing

 Improvement in False Sharing

 Improvement in Load Imbalance

 Chapter 8 Improvement in False Sharing Copyright 2016 FUJITSU LIMITED 206

Improvement in False Sharing

 What Is False Sharing?

 False Sharing (Before Improvement)

 False Sharing (Source Tuning)

 Chapter 8 Improvement in False Sharing

Each thread reads the same cache lines, including s(1) to s(4).

Copyright 2016 FUJITSU LIMITED 207

What Is False Sharing?

Source code example

 1 subroutine sub(s,a,b,ni,nj)

 2 real*8 a(ni,nj),b(ni,nj)

 3 real*8 s(nj)

 4

 5 1 pp do j = 1, nj

 6 1 p s(j)=0.0

 7 2 p 8v do i = 1, ni

 8 2 p 8v s(j)=s(j)+a(i,j)*b(i,j)

 9 2 p 8v end do

10 1 p end do

11

12 end

nj=4

ni=2000

Data is placed in cache in units
of cache lines.

(1) Cache hit

(2) Thread 0 completion of the update of s(1)

(3) Invalidation of the cache lines of threads 1 to 3 to maintain data
consistency

s(1) to s(4) L1
cache

L2 cache

(2) Update

(3) Invalidate (3) Invalidate (3) Invalidate

(1) Cache miss

(2) Copy back of the cache line from thread 0 to thread 1

(3) Thread 1 completion of the update of s(2)

(4) Invalidation of the cache line for thread 0 to maintain data
consistency

L1
cache

L2 cache

s(1) to s(4)

(3) Update

(2) Copy
back

(4) Invalidate

 Initial state

 Thread 1 instruction to update s(2)

Performance
deteriorates
because each
thread repeats
this state.

False sharing is a phenomenon in which cache lines between threads are
frequently invalidated or copied back.

(1) Cache miss

Example assuming four-thread parallelization processing

Invalidate Invalidate

(1) Cache hit

 Thread 0 instruction to update s(1)

Thread 0
(core 1)

Thread 1
(core 2)

Thread 2
(core 3)

Thread 3
(core 4)

L1
cache

L2 cache

s(1) to s(4) s(1) to s(4) s(1) to s(4) s(1) to s(4)

Thread 0
(core 1)

Thread 1
(core 2)

Thread 2
(core 3)

Thread 3
(core 4)

Thread 0
(core 1)

Thread 1
(core 2)

Thread 2
(core 3)

Thread 3
(core 4)

 Chapter 8 Improvement in False Sharing Copyright 2016 FUJITSU LIMITED 208

False Sharing (Before Improvement)

Source code before improvement

 22 subroutine sub(flag)

 23 integer*8 i,j,n

 24 parameter(n=60000)

 25 parameter(m=16)

 26 real*8 a(m,n),b(m,n)

 27 integer flag(m,n)

 28 common /com/a,b

 29

 30 !$omp parallel

 31 !$omp do

 32 1 p do i=1,m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< PREFETCH : 16

 <<< b: 16

 <<< Loop-information End >>>

 33 2 p 8s do j=1,n

 34 3 p 8m if(flag(i,j).eq.1)then

 35 3 p 8s a(i,j)=b(j,i)

 36 3 p 8v endif

 37 2 p 8v enddo

 38 1 p enddo

 39 !$omp end parallel

 40

 41 end

False sharing occurs because the number of iterations of j, which is the
parallelized dimension, is small at 16 and data in array a shares cache lines
between threads. Consequently, data access wait is a frequent event.

False sharing occurrence

Number of iterations
of parallelized
dimension: 16

No instruction
commit due to
L2 access for

an integer load
instruction

Synchronous
waiting time

between
threads

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]

L1I miss rate
(effective
instruction)

L1D miss rate(/Load-
store instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf rate(/L1D
miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before
improvement 0.00% 24.98% 7.21E+08 0.21% 99.79% 0.00% 0.00% 1.05E+04 355.62 0.01

Cache

The percentage of L1D misses is high, and false sharing has occurred.

Before improvement

 Chapter 8 Improvement in False Sharing Copyright 2016 FUJITSU LIMITED 209

False Sharing (Source Tuning)

Source code after improvement (source tuning)

 22 subroutine sub(flag)

 23 integer*8 i,j,n

 24 parameter(n=60000)

 25 parameter(m=16)

 26 real*8 a(m,n),b(m,n)

 27 integer flag(m,n)

 28 common /com/a,b

 29

 30 !$omp parallel

 31 !$omp do

 32 1 p do j=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< FULL UNROLLING

 <<< Loop-information End >>>

 33 2 p fs do i=1,m

 34 3 p fm if(flag(i,j).eq.1)then

 35 3 p fs a(i,j)=b(j,i)

 36 3 p fv endif

 37 2 p fv enddo

 38 1 p enddo

 39 !$omp end parallel

 40

 41 end

False sharing can be avoided through loop interchange and parallelization outside the loop. This
results in a decrease in the number of L1 cache misses and an improvement in data access wait.

Avoids false sharing

Loop interchange and
parallelization

outside loop

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善後

[秒]

No
instruction

commit due
to L2 access

for an
integer load
instruction

Synchronous
waiting

time
between
threads

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

改善前

[sec]

1.625-fold effect

L1I miss rate
(effective
instruction)

L1D miss rate(/Load-
store instruction)

L1D miss
L1D miss dm
rate(/L1D miss)

L1D miss hwpf
rate(/L1D miss)

L1D miss swpf
rate(/L1D miss)

L2 miss rate(/Load-
store instruction)

L2 miss
L2 throughput
(GB/sec)

Memory
throughput
(GB/sec)

Before improvement 0.00% 24.98% 7.21E+08 0.21% 99.79% 0.00% 0.00% 1.05E+04 355.62 0.01
After improvement 0.00% 1.59% 4.59E+07 2.65% 97.35% 0.00% 0.00% 1.09E+04 36.28 0.02

Cache

Avoiding false sharing reduced the L1D miss and
increased performance.

Before improvement After improvement

 Chapter 8 Improvement in Load Imbalance Copyright 2016 FUJITSU LIMITED 210

Improvement in Load Imbalance

 Triangular Loop

 Loops with Irregular Amount of Calculation

 Small Loop Iteration Count of a Parallelized Dimension

 Chapter 8 Triangular Loop Copyright 2016 FUJITSU LIMITED 211

Triangular Loop

 What Is a Triangular Loop?

 Triangular Loop (Before Improvement)

 Triangular Loop (OpenMP Tuning)

 Chapter 8 Triangular Loop

j

i

 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Copyright 2016 FUJITSU LIMITED 212

What Is a Triangular Loop?

A triangular loop is a loop in which the initial value and end
value of an inner loop are determined by the control variable of
an outer loop. If that loop is divided into blocks that are executed
in parallel, a load imbalance occurs.

Source code example

 subroutine sub()

 integer*8 i,j,n

 parameter(n=512)

 real*8 a(n+1,n),b(n+1,n),c(n+1,n)

 common a,b,c

!$omp parallel do

 do j=1,n

 do i=j,n

 a(i,j)=b(i,j)+c(i,j)

 enddo

 enddo

 end

Initial value of inner
loop determined by
control variable of
outer loop

* Load imbalance:
This is a phenomenon in which the parallel processing load varies
between individual threads.

A load imbalance occurs because thread 0
has the greatest amount of calculation
and thread 7 has the smallest processing
amount.

Amount of calculation

 Chapter 8 Triangular Loop Copyright 2016 FUJITSU LIMITED 213

Poor load balance between different
threads!

A load imbalance occurs because the amount of calculation varies for individual threads.

Consequently, the following is a frequent event: Synchronous waiting time between threads.

Triangular Loop (Before Improvement)

Source code before improvement

 28 subroutine sub()

 29 integer*8 i,j,n

 30 parameter(n=512)

 31 real*8 a(n+1,n),b(n+1,n),c(n+1,n)

 32 common a,b,c

 33

 34 !$omp parallel do

 35 1 p do j=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 36 2 p 8v do i=j,n

 37 2 p 8v a(i,j)=b(i,j)+c(i,j)

 38 2 p 8v enddo

 39 1 p enddo

 40

 41 end

amount of calculation

Triangular loop
バリア同期待ち

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11 T12T13 T14T15

[sec]
Before improvement

Synchronous
waiting time
between
threads

 Chapter 8 Triangular Loop

j

i

Copyright 2016 FUJITSU LIMITED 214

Triangular Loop (OpenMP Tuning)

Source code after improvement

 28 subroutine sub()

 29 integer*8 i,j,n

 30 parameter(n=512)

 31 real*8 a(n+1,n),b(n+1,n),c(n+1,n)

 32 common a,b,c

 33

 34 !$omp parallel do schedule(static,1)

 35 1 p do j=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 36 2 p 8v do i=j,n

 37 2 p 8v a(i,j)=b(i,j)+c(i,j)

 38 2 p 8v enddo

 39 1 p enddo

 40

 41 end

After the processing amount is divided into small units allocated cyclically, the amount of
calculation of each thread is uniform. The result is a load imbalance improvement and a decrease
in the following event: Synchronous waiting time between threads.

Amount of calculation

Triangular loop

The processing amount is divided
into small units allocated to each
thread cyclically.

バリア同期待
ち

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14T15

[sec] Before improvement

Synchronous
waiting time
between threads

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14T15

[sec] After improvement Decrease in following event: Synchronous
waiting time between threads

 Chapter 8 Loops with Irregular Amount of Calculation Copyright 2016 FUJITSU LIMITED 215

Loops with Irregular Amount of Calculation

 Loop Containing an IF Construct (Before Improvement)

 Loop Containing an IF Construct (OpenMP Tuning)

 Loop with an Irregular Amount of Calculation
(Before Improvement)

 Loop with an Irregular Amount of Calculation
(OpenMP Tuning)

 Chapter 8 Loops with Irregular Amount of Calculation Copyright 2016 FUJITSU LIMITED 216

Loop Containing an IF Construct (Before Improvement)

Source code before improvement

 1 subroutine sub(a,b,s,n,m,nn)

 2 real*8 a(m,n),b(m,n)

 3 real s

 4 !$omp parallel do schedule(static,1)

 5 1 p do k=1,nn

 6 2 p if(mod(k,2) .eq. 0) then

 7 3 p do j=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 8 4 p 8v do i=1,m

 9 4 p 8v a(i,j) = a(i,j)*b(i,j)*s

10 4 p 8v enddo

11 3 p enddo

12 2 p endif

13 1 p enddo

14 end subroutine sub

 :

26 program main

27 parameter(n=100)

28 parameter(m=1000)

29 parameter(nn=1000000)

30 real*8 a(m,n),b(m,n)

31 call init(a,b,n,m)

32 call sub(a,b,2.0,n,m,nn)

Executes processing in
loop of only odd
threads

Before improvement

Poor load balance between different threads!

The loop contains an IF construct. In this case, even if the amount of calculation varies between different
threads, cyclic division with static specified as the scheduling method may not solve a load imbalance.
Consequently, the following is a frequent event: Synchronous waiting time between threads.

Synchronous waiting time
between threads [sec]

 Chapter 8 Loops with Irregular Amount of Calculation Copyright 2016 FUJITSU LIMITED 217

Loop Containing an IF Construct (OpenMP Tuning)

Source code after improvement

 1 subroutine sub(a,b,s,n,m,nn)

 2 real*8 a(m,n),b(m,n)

 3 real s

 4 !$omp parallel do schedule(dynamic,1)

 5 1 p do k=1,nn

 6 2 p if(mod(k,2) .eq. 0) then

 7 3 p do j=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 8 4 p 8v do i=1,m

 9 4 p 8v a(i,j) = a(i,j)*b(i,j)*s

10 4 p 8v enddo

11 3 p enddo

12 2 p endif

13 1 p enddo

14 end subroutine sub

 :

26 program main

27 parameter(n=100)

28 parameter(m=1000)

29 parameter(nn=1000000)

30 real*8 a(m,n),b(m,n)

31 call init(a,b,n,m)

32 call sub(a,b,2.0,n,m,nn)

33 end program main

Before
improvement

After
improvement

Load imbalance was improved.

Load imbalance improves with dynamic as the scheduling method, since it allows a thread that
completed processing earlier to execute the next process.

Specifying dynamic allows a
thread that has completed
processing earlier to execute
the next process.

Synchronous waiting
time between threads [sec]

[sec]

 Chapter 8 Loops with Irregular Amount of Calculation Copyright 2016 FUJITSU LIMITED 218

Loop with an Irregular Amount of Calculation(Before Improvement)

Source code before improvement

 1 subroutine init(a,b,ie,n)

 :

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< FUSED

 <<< Loop-information End >>>

 8 1 do i=1,n

 9 2 if (mod(i,2).eq.0) then

10 2 ie(i)=100000

11 2 endif

12 1 enddo

 :

16 subroutine sub(a,b,s,ie,n)

17 real a(n),b(n),s

18 integer ie(n)

19 !$omp parallel do schedule(static,1)

20 1 p do j=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 8)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

21 2 p 8v do i=1,ie(j)

22 2 p 8v a(i) = a(i)*b(i)*s

23 2 p 8v enddo

24 1 p enddo

25 end subroutine sub

 :

27 program main

28 parameter(n=1000000)

31 call init(a,b,ie,n)

33 call sub(a,b,2.0,ie,n)

Evaluation
loop

The innermost loop has 100,000
iterations only when control
variable j is an even number.

Before improvement

Poor load balance between different
threads!

Even if the amount of calculation fluctuates irregularly, cyclic division with static specified as the scheduling method may not
solve a load imbalance. Consequently, the following is a frequent event: Synchronous waiting time between threads.

Synchronous waiting time
between threads

A value is set in array ie as the
evaluation loop end value only
for an even number of
iterations.

[sec]

 Chapter 8 Loops with Irregular Amount of Calculation Copyright 2016 FUJITSU LIMITED 219

Loop with an Irregular Amount of Calculation (OpenMP Tuning)

Source code after improvement

 1 subroutine init(a,b,ie,n)

 :

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< FUSED

 <<< Loop-information End >>>

 8 1 do i=1,n

 9 2 if (mod(i,2).eq.0) then

10 2 ie(i)=100000

11 2 endif

12 1 enddo

 :

16 subroutine sub(a,b,s,ie,n)

17 real a(n),b(n),s

18 integer ie(n)

19 !$omp parallel do schedule(dynamic,1)

20 1 p do j=1,n

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 8)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

21 2 p 8v do i=1,ie(j)

22 2 p 8v a(i) = a(i)*b(i)*s

23 2 p 8v enddo

24 1 p enddo

25 end subroutine sub

 :

27 program main

28 parameter(n=1000000)

31 call init(a,b,ie,n)

33 call sub(a,b,2.0,ie,n)

Before
improvement

After
improvement

Load imbalance was improved.
Specifying dynamic allows a
thread that has completed
processing earlier to execute
the next process.

Load imbalance improves with dynamic as the scheduling method, since it allows a thread that
completed processing earlier to execute the next process.

Synchronous waiting
time between threads

[sec]

 Chapter 8 Small Loop Iteration Count of a Parallelized Dimension Copyright 2016 FUJITSU LIMITED 220

Small Loop Iteration Count of a Parallelized
Dimension

 Parallelization in an Appropriate Parallelized Dimension (Before
Improvement)

 Parallelization in an Appropriate Parallelized Dimension
(Optimization Control Line Tuning)

 Parallelization in an Appropriate Parallelized Dimension
(Compiler Options Tuning)

 Chapter 8 Small Loop Iteration Count of a Parallelized Dimension Copyright 2016 FUJITSU LIMITED 221

If the loop iteration count of the parallelized dimension is small and unknown at the compile
time, a load imbalance occurs under the following condition: the number of iterations is smaller
than the number of thread parallelization processes (16 parallel processes in this example).
Consequently, the following is a frequent event: Synchronous waiting time between threads.

Parallelization in an Appropriate Parallelized Dimension (Before Improvement)

Source code before improvement

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 34 1 pp do k=1,l

 35 2 p do j=1,m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 36 3 p 8v do i=1,n

 37 3 p 8v a(i,j,k)=b(i,j,k)+c(i,j,k)

 38 3 p 8v enddo

 39 2 p enddo

 40 1 p enddo

 41

 42 end

l=2
m=512
n=256

Before improvement

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

1.0E-02

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

[sec]

A load imbalance occurs because the
number of iterations of k in the

parallelized dimension is 2.

Synchronous
waiting time

between threads

Poor load balance between different threads!

 Chapter 8 Small Loop Iteration Count of a Parallelized Dimension Copyright 2016 FUJITSU LIMITED 222

Specifying the SERIAL and PARALLEL specifiers realized parallelization in an
appropriate dimension and improved load imbalance.

Source code after improvement

 33 !ocl serial

 34 1 do k=1,l

 35 1 !ocl parallel

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 4

 <<< Loop-information End >>>

 36 2 pp do j=1,m

 <<< Loop-information Start >>>

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 37 3 p 8v do i=1,n

 38 3 p 8v a(i,j,k)=b(i,j,k)+c(i,j,k)

 39 3 p 8v enddo

 40 2 p enddo

 41 1 enddo

Parallelization in an Appropriate Parallelized Dimension (Optimization Control Line Tuning)

l=2
m=512
n=256

Before
improvement

After
improvement

Parallel execution of
loop j with iteration
count of 256 for
parallelized dimension

Suppresses
loop slicing

バリア同期待
ち

0.0E+00
1.0E-03
2.0E-03
3.0E-03
4.0E-03
5.0E-03
6.0E-03
7.0E-03
8.0E-03
9.0E-03
1.0E-02

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14T15

[sec]

Synchronous waiting
time between

threads

0.0E+00
1.0E-03
2.0E-03
3.0E-03
4.0E-03
5.0E-03
6.0E-03
7.0E-03
8.0E-03
9.0E-03
1.0E-02

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14T15

[sec]

Load imbalance was improved.

 Chapter 8 Small Loop Iteration Count of a Parallelized Dimension Copyright 2016 FUJITSU LIMITED 223

With the compiler options -Kdynamic_iteration specified, an appropriate parallelized
dimension was automatically selected at the execution time, and load imbalance
was improved.

 Source code after improvement

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 2

 <<< Loop-information End >>>

 34 1 pp do k=1,l

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 4

 <<< Loop-information End >>>

 35 2 pp do j=1,m

 <<< Loop-information Start >>>

 <<< [PARALLELIZATION]

 <<< Standard iteration count: 728

 <<< [OPTIMIZATION]

 <<< SIMD(VL: 4)

 <<< SOFTWARE PIPELINING

 <<< Loop-information End >>>

 36 3 pp 8v do i=1,n

 37 3 p 8v a(i,j,k)=b(i,j,k)+c(i,j,k)

 38 3 p 8v enddo

 39 2 p enddo

 40 1 p enddo

 41

 42 end

Parallelization in an Appropriate Parallelized Dimension (Compiler Options Tuning)

l=2
m=512
n=256

Before
improvement

After
improvement

Parallel execution attempted
from outer loop, but loop k has
small number of iterations at 2,
so inner loop j with 512
iterations is executed in parallel

バリア同期待
ち

0.0E+00
1.0E-03
2.0E-03
3.0E-03
4.0E-03
5.0E-03
6.0E-03
7.0E-03
8.0E-03
9.0E-03
1.0E-02

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14T15

[sec]

Synchronous waiting
time between

threads

0.0E+00
1.0E-03
2.0E-03
3.0E-03
4.0E-03
5.0E-03
6.0E-03
7.0E-03
8.0E-03
9.0E-03
1.0E-02

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11T12T13T14T15

[sec]

Load imbalance was improved.

 Chapter 8 Usage Taking SSL2 Library Performance into Account (DGEMM) Copyright 2016 FUJITSU LIMITED 224

Usage Taking SSL2 Library Performance into
Account (DGEMM)

 DGEMM Parameters

 DGEMM Parameters Appropriate to the FX100

 Chapter 8 Usage Taking SSL2 Library Performance into Account (DGEMM) Copyright 2016 FUJITSU LIMITED 225

DGEMM Parameters

バリア同期待
ち

 The following is a list of parameters for calling DGEMM.

 C := ALPHA x op(A) x op(B) + BETA x C
 DGEMM(TRANSA, TRANSB, M, N, K,

 ALPHA, A, LDA B, LDB, BETA, C, LDC)

Argument Meaning

TRANSA, TRANSB They specify ‘N’ (do not transpose), ‘T’ (transpose), or ‘C’ (conjugate
transpose).

M, N, K Integers indicating the matrix size

ALPHA, BETA Scalar values used in operation

A, B, C A: M x K matrix
B: K x N matrix
C: M x N matrix

LDA, LDB, LDC They specify the size of the 1st dimension of arrays A, B, and C,
respectively.

 Chapter 8 Usage Taking SSL2 Library Performance into Account (DGEMM) Copyright 2016 FUJITSU LIMITED 226

DGEMM Parameters Appropriate to the FX100

バリア同期待
ち

 The recommended number of processes in a node is 2.

 Performance is good with 16 or 32 threads, which enable utilization of a sector cache.

 (This is because the sector cache can effectively use L2$.)

 We recommend that M, N, and K be as large as possible.
That reduces the overhead of matrix copying done internally and the impact of the
remaining part of a processing unit. Therefore, if they cannot be made larger by any
means, try to improve efficiency as described below.

 M should be a multiple of 32.
• This is because the DGEMM kernel focuses on cases with processing in units of 32 elements (SIMD width of 4

x 8 registers) by combining 8 SIMD registers in the M direction.

 N should be a multiple of 64 (when there are 16 threads).
• This is because the DGEMM kernel focuses on cases with processing in units of 4 columns in the N direction.

• If the size per thread is a multiple of 4 as a result of dividing N by the number of threads, the kernel is always
used efficiently. However, if there is a remainder, efficiency decreases slightly.

 K should be an even number.
• This is because the DGEMM kernel focuses on cases with processing in units of 2 elements in the K direction.

 We recommend avoiding multiples of 2048 for LDA, LDB, and LDC.

 This is because a multiple of 2048 may cause L1D$ thrashing.

 Chapter 8

Revision History

227

Version Date Revised section Details

2.0 April 25, 2016 - - First published

Copyright 2016 FUJITSU LIMITED

Copyright 2016 FUJITSU LIMITED

