
FUJITSU LIMITED
April 2016

Chapter 9
MPI and Inter-node Tuning

Copyright 2016 FUJITSU LIMITED

 Chapter 9 MPI Specifications of the FX100

Contents

Outline and explanation part
 MPI Specifications of the FX100

 Compilation and Execution of an MPI Program

Practice and example part

 Performance Improvement

 Tuning Examples

 Fujitsu Extended Functions

 Troubleshooting

Copyright 2016 FUJITSU LIMITED 1

 Chapter 9 Outline and explanation part

 MPI Specifications of the FX100

 Compilation and Execution of an MPI Program

Copyright 2016 FUJITSU LIMITED 2

Outline and explanation part

 Chapter 9 MPI Specifications of the FX100

MPI Specifications of the FX100
 The MPI-3.0 standard is supported.

The following sections in the MPI standard correspond to the supported MPI-3.0 standard.

(For details, see the MPI User's Guide.)

 3.8.2 Matching Probe

 3.8.3 Matched Receives

 5.12 Nonblocking Collective Operations
* The MPI-3.0 standard is supported in V2.0L30.

 Thread level
 MPI_THREAD_SERIALIZED is supported.

 Specifications have been extended from the MPI standard.

 Rank Query Interface

 Extended RDMA interface

 Section specifying MPI statistical information interface

 Extended Persistent Communication Requests Interface

 MPI Asynchronous Communication Promotion Section Specifying Interface

Copyright 2016 FUJITSU LIMITED 3

 Chapter 9 Compiling and Executing an MPI Program

Compilation and Execution of an MPI Program
 Compilation of an MPI program

 How to compile the program

 MPI program compile options

 Execution of an MPI Program

 How to execute the program

 mpiexec options (global options)

 mpiexec options (local options)

 MCA parameters

 SPMD model and MPMD model
Copyright 2016 FUJITSU LIMITED 4

 Chapter 9 Compiling and Executing an MPI Program

How to Compile the Program

 Compilation of an MPI program
 Use the following commands to compile an MPI program.

 Optimization options are the same as those of Fortran, C, and C++ compilers.

 There are three types of MPI-specific options as follows.

•To use -SCALAPACK or -SSL2MPI, also specify the -SSL2 or -SSL2BLAMP option.

Copyright 2016 FUJITSU LIMITED 5

Source program Command (cross) Command (own)

Fortran mpifrtpx mpifrt

C mpifccpx mpifcc

C++ mpiFCCpx mpiFCC

Option Meaning

--showme
[:{compile|link|version}]

Displays compile command, link command, and
version information.

-SCALAPACK Links the ScaLAPACK library.

-SSL2MPI Links the SSL II/MPI library.

 Chapter 9 Compiling and Executing an MPI Program

How to Execute the Program (1/2)

 Job execution options (MPI-related pjsub options)
 -L node={X|XxY|XxYxZ}

•This option specifies the number of nodes required for the entire job.

•The system secures the specified one to three dimensional torus shape.

 --mpi shape={X|XxY|XxYxZ}

•This option specifies the shape of MPI_COMM_WORLD. Specify this option to execute
dynamic process generation.

•If omitted, the setting is the same as ‘node’.

 --mpi proc=N

•This option specifies the size of MPI_COMM_WORLD.

•If omitted, the setting will be the product of ‘node’ (e.g. XxY or XxYxZ), or the
product of ‘shape’ (e.g. XxY or XxYxZ) if ‘shape’ is specified.

Copyright 2016 FUJITSU LIMITED 6

 Chapter 9 Compiling and Executing an MPI Program

How to Execute the Program (2/2)

 Job execution options (MPI-related pjsub options)
 --mpi {rank-map-bynode|rank-map-bychip[:rankmap]|rank-map-

hostfile=filename}

•This option specifies the rank assignment rule for generated processes.

•rank-map-bynode assigns one process to a node. After assignment has been done
for all nodes, it returns to the first node that was assigned a process.

•rank-map-bychip assigns the number of processes specified by ‘rankmap’ to a node
and then proceeds to the next node.

•rank-map-hostfile assigns ranks to generated processes according to the specified
‘filename’ file.

•If omitted, the setting is the same as rank-map-bychip.

Copyright 2016 FUJITSU LIMITED 7

 Chapter 9 Compiling and Executing an MPI Program

mpiexec Options (Global Options) (1/2)

 Global options : Options affecting all of mpiexec

Copyright 2016 FUJITSU LIMITED 8

Option Meaning

{-debuglib|--debuglib} Uses a debug library.

{-h|--help} Displays help messages.

{-of|--of|-std|--std} OF_FILE Outputs the standard output and standard error output to OF_FILE.

{-oferr|--oferr|-stderr|--stderr} OFERR_FILE Outputs the standard error output to OFERR_FILE.

{-oferr-proc|--oferr-proc|-stderr-proc|--stderr-proc}
OFERR_PROC_FILE

Outputs the standard error output to OFERR_PROC_FILE for each
process.

{-ofout|--ofout|-stdout|--stdout} OFOUT_FILE Outputs the standard output to OFOUT_FILE.

{-ofout-proc|--ofout-proc|-stdout-proc|--stdout-
proc} OFOUT_PROC_FILE

Outputs the standard output to OFOUT_PROC_FILE for each process.

{-ofprefix|--ofprefix|-stdprefix|--stdprefix}
OFPREFIX

Prefixes an identifier at the beginning of the each line of standard
output and standard error output. For OFPREFIX, specify one of
{rank|nid|rank,nid|nid,rank}.

{-stdin|--stdin} STDIN_FILE Specifies the standard input file.

{-app | --app} APP_FILE Uses the APP_FILE file to specify local options and an executable
file.

{-nompi | --nompi} Uses parallel execution for an executable file that is not an MPI
program.

 Chapter 9 Compiling and Executing an MPI Program

mpiexec Options (Global Options) (2/2)

 Global options : Options affecting all of mpiexec

Copyright 2016 FUJITSU LIMITED 9

Option Meaning

{-vcoordfile|--vcoordfile} VCOORD_FILE Uses background execution.

{-V|--version} Outputs version information.

 Chapter 9 Compiling and Executing an MPI Program

mpiexec Options (Local Options)

 Local options : Options specified for each executable program

Copyright 2016 FUJITSU LIMITED 10

Option Meaning

-am AM_FILE Specifies the configuration file of MCA parameters.

-x NAME=VALUE Sets the environment variable NAME with the value of
VALUE in an MPI program.

{-mca|--mca} MCA_PARAM_NAME
MCA_PARAM_VALUE

Sets the value of MCA_PARAM_VALUE in the MCA
parameter MCA_PARAM_NAME.

{-c|-np|--np|-n|--n} N Specifies the number of parallel processes. For MPMD
model, this option cannot be omitted. If omitted for an
SPMD model, the setting will be the value of --mpi proc.
If --mpi proc is not specified, it will be the product of the
--mpi shape element (or the product of -L node if --mpi
shape is not specified).

 Chapter 9 Compiling and Executing an MPI Program

MCA Parameters (Mainly Effective for Point-to-point Communication)

Copyright 2016 FUJITSU LIMITED 11

MCA parameter Meaning

btl_tofu_eager_limit Changes the threshold for switching between the Eager and
Rendezvous communication methods.

common_tofu_fastmode_threshold Specifies the communication count threshold at which the mode
switches from memory-saving communication mode to fast
communication mode. The default is 16.

common_tofu_large_recv_buf_size Changes the size of the Large receive buffer used in fast
communication mode. Specify 1024 or more. The default is 1 MiB.

common_tofu_max_fastmode_procs Specifies the upper limit on the number of processes in fast
communication mode. The default is 1024.

common_tofu_max_tnis Specifies the number of TNIs (networks) used. The maximum number
of TNIs that the system can use is already set. You do not need to
change the value.

common_tofu_medium_recv_buf_size Changes the size of the Medium receive buffer. Specify 256 or more.
The default is 2 KiB.

common_tofu_memory_limit Specifies the memory usage for MPI. The unit is MiB.

common_tofu_memory_limit_peers Specifies the assumed number of communication partner processes
when calculating the memory usage for MPI.

common_tofu_packet_gap Specifies a send gap.

common_tofu_packet_mtu Specifies the maximum packet transfer size.

common_tofu_use_multi_path Uses trunking in point-to-point communication. (This is not always
faster because it may facilitate communication contention.)

 Chapter 9 Compiling and Executing an MPI Program

MCA Parameters (Effective for Collective Communication)

Copyright 2016 FUJITSU LIMITED 12

MCA parameter Meaning

coll_base_reduce_commute_safe Guarantees the order of reduction operations. (This parameter has a
significant impact on performance. Do not specify the parameter unless
you need extremely high precision.)

coll_tbi_use_on_bcast Uses Tofu barrier communication with the MPI_Bcast function. The default
is to use Tofu barrier communication. Use this parameter if you execute a
program that violates the MPI standard.

coll_tuned_prealloc_size Ensures that collective communication parameters share the work buffer.
This parameter is used for some algorithms of Allreduce, Reduce,
Reduce_scatter_block, Reduce_scatter, Allgather, Gather, Scatter, and
Alltoall. The default is 6 MiB.

 Chapter 9 Compiling and Executing an MPI Program

MCA Parameters (Other)

Copyright 2016 FUJITSU LIMITED 13

MCA parameter Meaning

dpm_ple_socket_timeout Specifies the socket communication wait time used when
establishing communication between MPI process groups that do not
share a communicator.

mca_base_param_file_prefix Specifies the AMCA parameter file.

mpi_check_buffer_write Monitors buffer destruction by the nonblocking send function.

mpi_deadlock_timeout Specifies the period after which processing stops waiting for
communication.

mpi_deadlock_timeout_delay Specifies the period from message output to actual program end.

mpi_preconnect_mpi Establishes connections within the MPI_Init function.

mpi_print_stats Outputs MPI statistical information.

mpi_print_stats_ranks Specifies the ranks for which MPI statistical information is output.

 Chapter 9 Compiling and Executing an MPI Program

SPMD model and MPMD model

 SPMD
 Execute single program.

 When not specifying the -n option, the default value is used for the number
of processes.

 When specifying the -n option, be sure not to exceed the pjsub option --mpi
proc=N.

* The default value of option "-n" is the maximum number of parallel processes which

can be generated.

 MPMD
 Execute multiple programs by delimiting execution units with a colon (:).

 The sum of the number of -n options must not exceed the pjsub option --mpi
proc=N.

Copyright 2016 FUJITSU LIMITED 14

mpiexec [global options] [local options] executable program

mpiexec [global options] ¥
 -n N1 [local options] executable program 1 : ¥
 -n N2 [local options] executable program 2 : ...

 Chapter 9 Compiling and Executing an MPI Program

How to Execute SPMD Model

 The most efficient approach is to have all the nodes in the

N-dimensional torus generate processes.

Copyright 2016 FUJITSU LIMITED 15

a.out

#!/bin/sh
#PJM -L node=4x4
mpiexec ./a.out # The -n option is not required.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

run.sh contents

The entire 4x4 two-dimensional
torus shape has 16 processes
assigned to it.

 Chapter 9 Compiling and Executing an MPI Program

Conceptual Diagram of MPMD Model Process Mapping

 Ranks are assigned on MPI_COMM_WORLD.

Copyright 2016 FUJITSU LIMITED 16

b.out

a.out

#!/bin/sh
#PJM -L node=4x4
mpiexec -n 12 ./a.out : -n 4 ./b.out

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

run.sh contents

In the 4x4 two-dimensional
torus,

12 processes (0 to 11) are
assigned to a.out, and 4
processes (12 to 15) are
assigned to b.out.

 Chapter 9 Compiling and Executing an MPI Program

Execution of Multiple MPI Programs

 Part of the shape specified by ‘node’ is used.

Copyright 2016 FUJITSU LIMITED 17

#!/bin/sh
#PJM -L node=4x4
mpiexec -n 12 ./a.out
mpiexec -n 16 ./b.out

run.sh contents

a.out

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

b.out

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

After a.out ends

 Chapter 9 Compiling and Executing an MPI Program

b.out c.out

a.out

Execution of Dynamic Process Generation

 Prepare space for dynamic processes by using the ‘shape’ option.

Copyright 2016 FUJITSU LIMITED 18

#!/bin/sh
#PJM -L node=4x4
#PJM --mpi shape=4x3
mpiexec ./a.out

run.sh contents

a.out

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

MPI_Comm_spawn The system searches for free
space and assigns MPI processes.

 Chapter 9 Practice and example part

 Performance Improvement

 Tuning Examples

 Fujitsu Extended Specifications

 Troubleshooting

Copyright 2016 FUJITSU LIMITED 19

Practice and example part

 Chapter 9 Performance Improvement

Performance Improvement
 Communication contention

 Eager and Rendezvous

 Cost of reception wait

 Acceleration of collective communication

 MPI statistical information

Copyright 2016 FUJITSU LIMITED 20

 Chapter 9 Performance Improvement

Communication Contention

Copyright 2016 FUJITSU LIMITED 21

 If there is only adjacent communication, it is not affected by other
communication.

 In communication with discrete communication destinations,
contention with other communication may occur.

There is no contention where the only form of communication by all
members is adjacent communication.

 D

A

C

B
If communication from A to D and
communication from C to D are
simultaneous, contention occurs
between B and D.

B

A

C

D
Since communication from A to D
and communication from C to D
are both adjacent
communication, no contention
occurs.

Contention

 Chapter 9 Performance Improvement

Communication Performance Degradation Due to Contention

Copyright 2016 FUJITSU LIMITED 22

 Comparison with IMB exchange performance
 IMB exchange is a benchmark test that exchanges messages with adjacent rank.

 One-dimensional torus (84 processes)

 Three-dimensional torus (2x3x14 processes)

0 1 2 3

0 1

2 3

The red paths (such as
between 1 and 2) use the
paths for other
communication, so
performance degrades.

83

4 5

6 7

8 9

10 11

In a one-dimensional torus,
there is only adjacent
communication, so no
contention occurs and
communication
performance does not
degrade.

 Chapter 9 Performance Improvement

 Trunking

Copyright 2016 FUJITSU LIMITED 23

 What is trunking?
 Trunking uses up to four Tofu network interfaces, and divides and transfers

data by using multiple paths at the same time.

 How to use trunking
 Specify --mca common_tofu_use_multi_path N.

 You can control the number of network interfaces used.
 Specify --mca common_tofu_max_tnis N.

Value Meaning

1 Specifies communication using multiple communication paths (i.e.,
trunking) in point-to-point communication.

0 Specifies not to use multiple communication paths in point-to-point
communication. The default value of this parameter is 0.

Value Meaning

1 or
greater

Specifies the upper limit on the number of network interfaces used.

-1 Uses the maximum number of available network interfaces. The
default value of this parameter is -1.

 Chapter 9 Performance Improvement

Eager and Rendezvous

Copyright 2016 FUJITSU LIMITED 24

 The Eager and Rendezvous communication methods are used for
MPI point-to-point communication.
 Eager communication method (suited for short messages)

•Communication goes through send and receive buffers.

•The message length used for communication is relatively short.

•Asynchronous communication proceeds as long as the communication buffer has
free space.

•Copying of the send memory buffer and copying to the receive memory buffer occur.

 Rendezvous communication method (suited for long messages)

•Control communication to notify the other end of the send-receive location occurs
internally.

•If the first address of the send-receive data represents a continuous area, sending is
done directly using RDMA.

 The switching threshold is set to 45,352 Bytes (which varies depending on
the number of communication hops).

 You can change the switching threshold by using the MCA parameter
btl_tofu_eager_limit.

 Chapter 9 Performance Improvement

Cost of Reception Wait (Profiler Results)

Copyright 2016 FUJITSU LIMITED 25

 Cost of reception wait as shown by the profiler
 If ptlib_read_mrq and mca_btl_tofu_component_progress appear near the top,

the reception wait event has occurred.

 Cause
 There is a load imbalance.

•The processing cost for only specific processes is high.

 Time(S) Start End
--------------- snip --------------
 324.5029 -- -- Application
--------------- ---- --------------
 116.8183 -- -- mca_btl_tofu_component_progress
 59.0181 -- -- ptlib_read_mrq

 Chapter 9 Acceleration of Collective Communication

Acceleration of Collective Communication

 Tofu Barrier Communication

 Tofu-dedicated Algorithms for Collective Communication

Copyright 2016 FUJITSU LIMITED 26

 Chapter 9 Acceleration of Collective Communication

Tofu Barrier Communication

Copyright 2016 FUJITSU LIMITED 27

 The Tofu interconnect provides barrier communication at the hardware
level.
 Tofu hardware barrier resources are allocated to up to eight communicators.

•The target communicators have a size of four or more.

 The target MPI functions are as follows:
•MPI_Barrier

•MPI_[Reduce|Allreduce] + MPI_SUM + 1 element of floating-point type/complex type

•MPI_[Reduce|Allreduce] + MPI_[SUM|MAX|MIN] + 1 element of integer type, etc.

•MPI_Bcast + 1 element of basic datatypes other than complex type, etc.

 This can also be used to generate multiple MPI processes in a node.
• In a node, software is used. Between nodes, hardware is used.

•To use a sub-communicator, it must meet all of the following conditions.
• The parent of the sub-communicator is MPI_COMM_WORLD.

• The sub-communicator was created by the MPI_Comm_split function.

• The sub-communicator has color=0.

 If resources become insufficient, no resources are allocated.
•As a rough guide to resource consumption when one communicator is created,

consumption is 2log2N (where N is the number of nodes), and the upper limit is 56.

 Chapter 9 Acceleration of Collective Communication

Problem in Tofu Barrier Communication + MPI_Bcast

Copyright 2016 FUJITSU LIMITED 28

 Different type signatures may result in a deadlock. Essentially, this
means the program is incorrect.
 The MCA parameter coll_tbi_use_on_bcast has been prepared as a workaround.

 #include <mpi.h>

int main(int argc, char *argv[])
{
 long sbuf = 0x0000000100000002L;
 int rbuf[2];
 int rank;
 MPI_Datatype newtype;

 MPI_Init(&argc, &argv);

 MPI_Type_vector(1, 2, 2, MPI_INT, &newtype);
 MPI_Type_commit(&newtype);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if(rank == 0){
 MPI_Bcast(&sbuf, 1, MPI_LONG, 0, MPI_COMM_WORLD);
 }else{
 MPI_Bcast(rbuf, 1, newtype, 0, MPI_COMM_WORLD);
 }

 MPI_Finalize();
}

If --mca coll_tbi_use_on_bcast 0 is
specified, rbuf = {1,2} is set.

If --mca coll_tbi_use_on_bcast is not
specified, a deadlock occurs.

The type signatures are different.

 Chapter 9 Acceleration of Collective Communication

Acceleration of MPI_Bcast or MPI_Ibcast When the Number of Elements Is the Same

Copyright 2016 FUJITSU LIMITED 29

 MPI_Bcast and MPI_Ibcast allow you to use send and receive
buffers with different data types and numbers of elements
between ranks when their type signatures are the same. The MPI
library uses a secure algorithm by default for operation even with
different data types and numbers of elements.
 The MCA parameter coll_tuned_bcast_same_count has been prepared so that

a high-speed algorithm can be used when the number of elements is the
same across all ranks.

 If the user program can guarantee that the number of elements is the same,
specify this MCA parameter.

Number of
elements: 4

Number of
elements: 2

Number of
elements: 2

Sam
e type sig

n
atu

re

int int int int

Derived datatype
of int x 2

Derived datatype
of int x 2

Derived datatype of
int x 2 (with gap)

Derived datatype of
int x 2 (with gap)

 Chapter 9 Acceleration of Collective Communication

Acceleration of the MPI_Bcast or MPI_Ibcast Function

Copyright 2016 FUJITSU LIMITED 30

 If each rank of the communicator that participates in MPI_Bcast or
MPI_Ibcast has the same number of elements, the specification of 1
in the following MCA parameter may accelerate the MPI_Bcast
function.

 Specified parameter

Parameter Value Meaning

coll_tuned_bcast_same_count

1

Specifies communication using the same number of
elements between ranks by the MPI_Bcast or MPI_Ibcast
function.

0 Specifies communication using different numbers of
elements between ranks by the MPI_Bcast or MPI_Ibcast
function.
The default value of this parameter is 0.

 Chapter 9 Acceleration of Collective Communication

Tofu-dedicated Algorithms for Collective Communication

Copyright 2016 FUJITSU LIMITED 31

 Definition of Tofu-dedicated algorithms
 The algorithms are implemented with RDMA communication.

 They are topology-aware algorithms.

•Virtual three-dimensional: Bcast, Allreduce, Allgather(v), and Alltoall

• Bcast is aware also for virtual two-dimensional and virtual one-dimensional.

• Allreduce is aware also for virtual two-dimensional.

•Tofu six-dimensional: Alltoall

•Not topology-aware: Gather(v) and Alltoall(v)

 Conditions of Tofu-dedicated algorithms
 The conditions of each algorithm are prerequisites. When all the conditions

are met, you can call the Tofu-dedicated algorithm.

 Even when all the conditions are met, performance may not be optimized,
depending on the number of processes, number of nodes, and message
length. Consequently, the Tofu-dedicated algorithm may not be called.

 Chapter 9 Acceleration of Collective Communication

Selection of a Tofu-dedicated Algorithm for Collective Communication

Copyright 2016 FUJITSU LIMITED 32

 Tofu-dedicated algorithms are categorized as follows:
A) Algorithms that are selected automatically according to conditions such as

message size and shape

i. Algorithm that can be called only for one process (or two processes) in a node

ii. Algorithm that can be called for two or more processes in a node

B) Algorithms that are always callable due to a specified MCA parameter

 Only MPI_Alltoall, which is the six-dimensional algorithm described in table (4),
falls into this category.

 The conditions for calling an algorithm are described in the
following tables.

 (1) and (2): Conditions that enable calling of algorithm i in A)

 (3)-a and (3)-b: Conditions that enable calling of algorithm ii in A)

 (4): Conditions for calling the algorithm in B)

 If the conditions for calling both algorithms i and ii are met, i is
selected preferentially.

 Chapter 9 Acceleration of Collective Communication

Tofu-dedicated Algorithm for Collective Communication (1)

Copyright 2016 FUJITSU LIMITED 33

MPI_Bcast MPI_Allreduce

MPI_Reduce

MPI_Allgather

MPI_Allgatherv

Com
m

on
 con

d
ition

s

 The number of processes in a node is 1.
 Jobs with a 3-dimensional shape are executed.
 The communicator shape is a 3-dimensional rectangular parallelepiped and the process is arranged in all nodes.
 The data type of the send and receive buffers is a basic datatypes.
 The product of the following two values is a multiple of 4:
 - Size of the data type to send or receive
 - Number of elements (count/scount/rcount)

Specific con
d

ition
s

 The size of each axis of
the communicator is at
least 2.

 (The shape of the communicator
is 2 x 2 x 2 or larger.)

 MPI_IN_PLACE is not specified.

 Predefined operators (MAXLOC and MINLOC can
be used only with the following predefined data
types(Note 1).)

Note 1 : Data types that can be used by Tofu-dedicated algorithms with
MAXLOC/MINLOC

 - Fortran

 MPI_2INTEGER,MPI_2REAL,MPI_2DOUBLE_PRECISION

 - C

 MPI_FLOAT_INT, MPI_2INT

 - C++

 MPI::TWOINT, MPI::FLOAT_INT, MPI::TWOINTEGER,

 MPI::TWOREAL, MPI::TWODOUBLE_PRECISION

 The size of each axis of the communicator is at
least 2.
 (The shape of the communicator is 2 x 2 x 2 or larger.)

 The size of the send buffer
is up to about 16 MiB *
number of TNIs(Note 2) *
communicator size.

 Each element of the send
and receive buffers is
located on a 4-byte
boundary (applicable only
to MPI_Allgatherv).

Note2 : Upper limit for TNI specified
by MCA parameter
comm_tofu_max_tnis.

Featu
re

 Suited for medium-
length/long messages

 Suited for long messages Suited for long messages

 Chapter 9 Acceleration of Collective Communication

Tofu-dedicated Algorithm for Collective Communication (2)

Copyright 2016 FUJITSU LIMITED 34

MPI_Alltoall MPI_Alltoall

MPI_Alltoallv

Com
m

on

con
d

ition
s

 The data type of the send and receive buffers is a basic datatypes.

 The product of the following two values is a multiple of 4:

 - Size of the data type to send or receive

 - Number of elements (scount/rcount)

Specific con
d

ition
s

 The number of processes in a node is 1.

 Jobs with a 3-dimensional shape are executed.

 The communicator shape is a 3-dimensional
rectangular parallelepiped and the process is
arranged in all nodes.

 The length on each axis of a 3-dimensional
shape is an even number.

 The number of processes is the same as
MPI_COMM_WORLD.

 The receive buffer size is up to 32 MiB *
communicator size.

 The number of processes in a node is 1 or 2.

 Each element of the send and receive buffers is
located on a 4-byte boundary (applicable only to
MPI_Alltoallv).

Featu
re

 Suited for long messages Suited for short to medium-length messages

 Chapter 9 Acceleration of Collective Communication

Tofu-dedicated Algorithm for Collective Communication (3)-a

Copyright 2016 FUJITSU LIMITED 35

MPI_Bcast MPI_Allreduce MPI_Allgather MPI_Allgatherv

Com
m

on

con
d

ition
s

 The data type of the send and receive buffers is a basic datatypes.

 The product of the following two values is a multiple of 4:

 - Size of the data type to send or receive

 - Number of elements (count/scount/rcount)

Specific con
d

ition
s

 The
communicator
shape is a 3-
dimensional
rectangular
parallelepiped, 2-
dimensional
rectangle, or 1-
dimensional
shape.

 If the shape is a
rectangular
parallelepiped,
the size of each
axis of the 2 or
more axes of the
communicator is
at least 2.

 Jobs with a 3- or 2-dimensional shape
are executed.

 The communicator shape is a 3- or 2-
dimensional rectangle.

• The size of each axis of the 2 or more
axes of the communicator is at least
2.

 Predefined operators (MAXLOC and
MINLOC can be used only with the
following predefined data types(*).)

* Data types that can be used by Tofu-dedicated
algorithms with MAXLOC/MINLOC

 - Fortran

 MPI_2INTEGER,MPI_2REAL, MPI_2DOUBLE_PRECISION

 - C

 MPI_FLOAT_INT, MPI_2INT

 - C++

 MPI::TWOINT, MPI::FLOAT_INT, MPI::TWOINTEGER,

 MPI::TWOREAL, MPI::TWODOUBLE_PRECISION

 Jobs with a 3-
dimensional shape
are executed.

 The size of each axis
of the communicator
is at least 2.

 (The shape of the
communicator is 2 x 2 x 2 or
larger.)

 Jobs with a 3-
dimensional
shape are
executed.

 The size of each
axis of the
communicator is
at least 2.

 (The shape of the
communicator is 2 x 2 x
2 or larger.)

 Each element of
the send and
receive buffers is
located on a 4-
byte boundary.

Featu
re

 Suited for medium-
length/long messages

 Suited for medium-length messages Suited for medium-
length/long messages

 Suited for medium-
length/long messages

For allreduce in 2 dimensions, a different advantageous algorithm
may be selected for execution with a small number of nodes.

 Chapter 9 Acceleration of Collective Communication

Tofu-dedicated Algorithm for Collective Communication (3)-a: Shape Conditions of Bcast and Allreduce in Detail (1)

Copyright 2016 FUJITSU LIMITED 36

 Condition for determining whether the communicator is a rectangular
parallelepiped, a rectangle, or another shape

 If the virtual X, Y, or Z axis meets the following condition, the communicator is a
rectangular parallelepiped.

•On a virtual axis (e.g., X=0,1,2...N)

• All the coordinates in the same way have nodes that belong to the communicator.

 The following example shows a job executed at 4x3 or 4x3x1.

 Example with a sub-communicator determined to be a two-dimensional rectangle (1)

•At X=1, none of the nodes belongs to the communicator.

•At X=0, 2, and 3, all the nodes belong to the communicator.

X axis

Y axis

Colored node:
Node belonging to
sub-communicator

Node not belonging to
sub-communicator

 Chapter 9 Acceleration of Collective Communication

Tofu-dedicated Algorithm for Collective Communication (3)-a: Shape Conditions of Bcast and Allreduce in Detail (2)

Copyright 2016 FUJITSU LIMITED 37

 The following examples show jobs executed at 4x3 or 4x3x1.

 Example with a sub-communicator determined to be a rectangle (2)

•As viewed from the X axis, only Y=0 and Y=2 belong to the communicator.

•As viewed from the Y axis, only X=0, 2, and 3 belong to the communicator.

 Example with a sub-communicator determined not to be a two-dimensional rectangle

X axis

Y axis

X axis

Y axis Determined not to be
rectangle because of
hole here

 Chapter 9 Acceleration of Collective Communication

Tofu-dedicated Algorithm for Collective Communication (3)-b

Copyright 2016 FUJITSU LIMITED 38

MPI_Alltoall MPI_Alltoallv MPI_Gather MPI_Gatherv

Com
m

on

con
dition

s

 The data type of the send and receive buffers is a basic datatypes.

 The product of the following two values is a multiple of 4:

 - Size of the data type to send or receive

 - Number of elements (count/scount/rcount)

Specific con
d

ition
s

 None

 Each element of
the send and
receive buffers is
located on a 4-byte
boundary.

 None Each element of the send and
receive buffers is located on a
4-byte boundary.

Featu
re

 Suited for medium-length/long
messages

 Suited for all
messages

 Suited for
all
messages

 Suited for medium-length/long
messages

 Chapter 9 Acceleration of Collective Communication

Tofu-dedicated Algorithm for Collective Communication (4)

Copyright 2016 FUJITSU LIMITED 39

MPI_Alltoall

(6-dimensional algorithm)

Con
dition

s

 The number of processes in a node is 1.

 The communicator shape is a 6-dimensional rectangular parallelepiped.

 The data type of the send and receive buffers is a basic datatypes.

 The product of the following two values is a multiple of 4:

- Size of the data type to send or receive

- Number of elements (scount/rcount)

 The MCA parameter coll_tuned_use_6d_algorithm is specified as 1.

Featu
re

 Algorithm that is callable due to a specified MCA parameter

 Suited for medium-length/long messages

 Advantageous to performance in the following cases:

 The message length is 8 to 10 KiB or longer.

 The job size is at the level of thousands of nodes or greater.

 The MCA parameter coll_tuned_prealloc_size is specified.

 Chapter 9 Acceleration of Collective Communication

MPI Statistical Information (MCA Parameter)

Copyright 2016 FUJITSU LIMITED 40

 How to use the parameter
 Specify a value for the MCA parameter mpi_print_stats.

Value Meaning

0 Does not output MPI statistical information.
The default value of this parameter is 0.

1 Outputs the tabulated results of MPI statistical information on all parallel
processes to the standard error output. The results are output by the process of
rank 0 in MPI_COMM_WORLD.

2 Outputs MPI statistical information of each parallel process to the standard error
output. The results are output by each parallel process. If you want the output for
a specific parallel process, you can specify it with the MCA parameter
mpi_print_stats_ranks.

3 Outputs the tabulated results of MPI statistical information section specifying on
all parallel processes to the standard error output. The results are output by the
process of rank 0 in MPI_COMM_WORLD.

4 Outputs MPI statistical information of each parallel process to the standard error
output. The results are output by each parallel process. If you want the output for
a specific parallel process, you can specify it with the MCA parameter
mpi_print_stats_ranks.

 Chapter 9 Acceleration of Collective Communication

MPI Statistical Information Section Specifying

Copyright 2016 FUJITSU LIMITED 41

 MPI statistical information section specifying
 Measure statistical data from a user-specified location.

 Specify 3 or 4 for the MCA parameter mpi_print_stats.

Function name Function

FJMPI_Collection_start Starts MPI statistical information measurement

FJMPI_Collection_stop Stops MPI statistical information measurement

FJMPI_Collection_print Prints MPI statistical information measurement

FJMPI_Collection_clear Initializes MPI statistical information

 Chapter 9 Acceleration of Collective Communication

MPI Statistical Information Results

Copyright 2016 FUJITSU LIMITED 42

 Example of output results
===

/****************** MPI Statistical Information ******************/

===

------------------------- MPI Information -------------------------

Dimension 3

Shape 2x3x2

---------------------- MPI Memory Usage (MiB) ---------------------

 MAX MIN AVE

Estimated_Memory_Size 49.81 [1] 49.81 [0] 49.81

------------------- Per-peer Communication Count ------------------

 MAX MIN AVE

In_Node 0 [0] 0 [0] 0.0

Neighbor 21140 [0] 5285 [3] 9694.8

Not_Neighbor 10587 [3] 5285 [0] 7937.4

Total_Count 26442 [1] 15872 [2] 17632.2

Connection 11 [0] 11 [0] 11.0

Max_Hop 3 [0] 3 [0] 3.0

Average_Hop 1.82 [0] 1.82 [0] 1.82

----------------- Per-peer Transmission Size (MiB) ----------------

 MAX MIN AVE

In_Node 0.00 [0] 0.00 [0] 0.00

Neighbor 335.91 [0] 83.98 [3] 153.96

Not_Neighbor 167.96 [3] 83.98 [0] 125.97

Total_Size 419.89 [1] 251.94 [2] 279.93

----------------- Per-protocol Communication Count ----------------

 MAX MIN AVE

Eager 20037 [1] 12029 [2] 13362.2

Rendezvous 6405 [0] 3843 [2] 4270.0

Hasty_Rendezvous 0 [0] 0 [0] 0.0

Unexpected_Message 8 [1] 2 [0] 2.6

------------------- Barrier Communication Count -------------------

 MAX MIN AVE

Tofu 51218 [0] 51218 [0] 51218.0

Soft 56 [0] 16 [2] 22.7

----------- Tofu Barrier Collective Communication Count -----------

 MAX MIN AVE

Bcast 2046 [0] 2046 [0] 2046.0

Reduce 2003 [0] 2003 [0] 2003.0

Allreduce 2046 [0] 2046 [0] 2046.0

--------- 6D-Tofu-specific Collective Communication Count ---------

 MAX MIN AVE

Alltoall 0 [0] 0 [0] 0.0

----------- Tofu-specific Collective Communication Count ----------

 MAX MIN AVE

Bcast 1281 [0] 1281 [0] 1281.0

Reduce 1281 [0] 1281 [0] 1281.0

Gather 5334 [0] 5334 [0] 5334.0

Allreduce 1281 [0] 1281 [0] 1281.0

Alltoall 5285 [0] 5285 [0] 5285.0

Alltoallv 5285 [0] 5285 [0] 5285.0

Allgather 3282 [0] 3282 [0] 3282.0

Allgatherv 5285 [0] 5285 [0] 5285.0

--------- Non-Tofu-specific Collective Communication Count --------

 MAX MIN AVE

Bcast 2010 [0] 2004 [2] 2005.0

Reduce 2001 [0] 2001 [0] 2001.0

Gather 0 [0] 0 [0] 0.0

Allreduce 1927 [0] 1909 [2] 1912.0

Alltoall 0 [0] 0 [0] 0.0

Alltoallv 0 [0] 0 [0] 0.0

Allgather 2003 [0] 2003 [0] 2003.0

Allgatherv 0 [0] 0 [0] 0.0

----- Per-protocol Nonblocking/Persistent Communication Count -----

MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

Hasty_Rendezvous 0 [0] 0 [0] 0.0

Collective 0 [0] 0 [0] 0.0

-- Per-protocol Nonblocking/Persistent Communication Count Started in

Wait --

MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

Hasty_Rendezvous 0 [0] 0 [0] 0.0

------------------------- Process Mapping -------------------------

(0,0,0) 0

(1,0,0) 1

(0,1,0) 2

(1,1,0) 3

Barrier (software or hardware)

Reduction
(software or hardware)

Collective communication
(Tofu-dedicated or non-Tofu-dedicated)

Communication information on
point-to-point communication

Nonblocking communication

 Chapter 9 Acceleration of Collective Communication

Possibility of Improvement Based on Statistics

Copyright 2016 FUJITSU LIMITED 43

 Whether a Tofu-specific algorithms can be called
 Low numbers in Tofu-specific Collective Communication Count

• Is the job executed in three dimensions? (Excluding Alltoall(v) and Gather(v), which are
for relatively short messages)

• Is the communicator a three-dimensional rectangular parallelepiped or two-dimensional
rectangle? (Excluding Alltoall(v) and Gather(v))

MPI_COMM_
WORLD

sub
comm

An applied condition for most Tofu-dedicated
algorithms is that the communicator must be a
3-dimensional rectangular parallelepiped.

Divide

 Chapter 9 Tuning Examples

Tuning Examples
 Problem detection guidelines for communication times

 Overview of tuning examples

 Effective nonblocking communication using four TNIs

 Use of trunking

 Examples of overlapping computations and communications

• Facilitating communication by inserting MPI_Testall

• Implementing a communication-dedicated thread using OpenMP

 Improvement through the data types used

 Communication Using the Basic/Derived Datatype

 Use of assistant cores

 Example of differences in performance with a specified shape

* See the “MPI User‘s Guide 4.2 MCA Parameters” for details.

Copyright 2016 FUJITSU LIMITED 44

 Chapter 9 Tuning Examples

Problem Detection Guidelines for Communication Times (1/2)

Copyright 2016 FUJITSU LIMITED 45

computation
time

Communication
time

Time

Elapsed
application time

If the ratio of communication time to elapsed
application time is high, there may be a

communication problem.

Elapsed MPI library
function time

MPI_AAA

MPI_BBB
MPI_CCC

Identify high-cost MPI functions.
Example: Function type (point-to-point

communication, collective communication), data type
(basic datatypes, derived datatype)

 Step 1: Check ratio of computation
time to communication time

 Step 2: Identify high-cost MPI functions

You can obtain a breakdown of the application execution time by using the fipp command.

 Chapter 9 Tuning Examples

Problem Detection Guidelines for Communication Times (2/2)

Copyright 2016 FUJITSU LIMITED 46

Processes

Time

If computation time is unbalanced among processes,
optimize computation to balance loads.

MPI communication time and
computation time of each

process

Processes

Time

MPI communication time and
computation time of each

process

If computation time is almost balanced
among processes, optimize.

MPI_AAA

Computation time

MPI_AAA

Computation time

 Step 3: Check computation time of each process

MPI
communication

time increased by
unbalanced load
of computation

among processes

You can obtain the computation time of each process by using the fipp command.

 Chapter 9 Tuning Examples

Overview of Tuning Examples

Copyright 2016 FUJITSU LIMITED 47

 This section describes tuning
examples and the processing of
parallel application that are tuning
targets.
 Assume an application solves two-

dimensional differential equations using
the Jacobi method.

 The assumed sleeve area communication
is a two-dimensional space (nmax x
nmax).

 One process sends and receives data with
the processes on the left, right, top, and
bottom. There are non-periodic boundary
conditions.

 The code implemented with nonblocking
communication is a tuning target. (See
the next page.)

Area of computation by one process

Example: Division of spaces and sleeve
communication for using 16 processes

nmax

 Chapter 9 Tuning Examples

Implementation with Nonblocking Communication

Copyright 2016 FUJITSU LIMITED 48

do iter = 1, 10
 do j = 1, ny
 bxs(j,1) = a(1,j)
 bxs(j,2) = a(nx,j)
 enddo

 do i = 1, nx
 bys(i,1) = a(i,1)
 bys(I,2) = a(i,ny)
 enddo

 call mpi_irecv(bxr(1,2), ny, mpi_real8, left, 1, comm2d, req(1), err)
 call mpi_irecv(bxr(1,1), ny, mpi_real8, right, 2, comm2d, req(2), err)

 call mpi_irecv(byr(1,2), nx, mpi_real8, down, 1, comm2d, req(3), err)
 call mpi_irecv(byr(1,1), nx, mpi_real8, up, 2, comm2d, req(4), err)

 call mpi_isend(bxs(1,2), ny, mpi_real8, right, 1, comm2d, req(5), err)
 call mpi_isend(bxs(1,1), ny, mpi_real8, left, 2, comm2d, req(6), err)

 call mpi_isend(bys(1,2), nx, mpi_real8, up, 1, comm2d, req(7), err)
 call mpi_isend(bys(1,1), nx, mpi_real8, down, 2, comm2d, req(8),err)

 call mpi_waitall(8, req, mpi_statuses_ignore, err)

 if(left .ne. mpi_proc_null) then
 do j = 1, ny
 a(0,j) = bxr(j,2)
 enddo
 endif

 if(right .ne. mpi_proc_null) then
 do j = 1, ny
 a(nx+1,j) = bxr(j,1)
 enddo
 endif

 if(up .ne. mpi_proc_null) then
 do i = 1, nx
 a(i,ny+1) = byr(i,1)
 enddo
 endif

 if(down .ne. mpi_proc_null) then
 do i = 1, nx
 a(i,0) = byr(i,2)
 enddo
 endif

 do j = 1, ny
 do i = 1, nx
 b(i,j) = 0.25d0 * (a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j))
 enddo
 enddo

 norm(1) = 0.0d0
 norm(2) = 0.0d0
 do j = 1, ny
 do i = 1, nx
 a(i,j) = b(i,j)
 norm(1) = norm(1) + (a(I,j) – b(I,j)) ** 2
 norm(2) = norm(2) + b(I,j) ** 2
 enddo
 enddo

enddo

Computation

Communication

 Chapter 9 Tuning Examples

Effective Nonblocking Communication Using Four TNIs

Copyright 2016 FUJITSU LIMITED 49

 Multiple TNIs (four TNIs) available for
Tofu communication

1 TNI used

Sequential
communications
in 4 directions

Time

Comm 2

Comm 3

Comm 4

Comm 1

Simultaneous
communications

possible in 4 directions

Multiple TNIs used

Comm 1
Comm 2

Comm 3
Comm 4

Time

Simultaneous nonblocking communications in 4 directions
 Communication overlap (simultaneous communications

using 4 TNIs) resulting in
significantly improved performance

CPU

Link 0
Link 1
Link 2
Link 3
Link 4
Link 5
Link 6
Link 7
Link 8
Link 9

TNI 0

TNI 1

TNI 2

TNI 3

XYZ

ABC

Four TNIs are mounted, enabling four sends and four

receives at the same time.
! Adjacent communication in K direction
 call mpi_irecv(p(1,1,kmax),1,ijvec, npz(2), 1,mpi_comm_cart,ireq(3),ierr)
 call mpi_irecv(p(1,1,1),1,ijvec, npz(1),2,mpi_comm_cart,ireq(2),ierr)
 call mpi_isend(p(1,1,2),1,ijvec,npz(1),1,mpi_comm_cart,ireq(0),ierr)
 call mpi_isend(p(1,1,kmax-1),1,ijvec,npz(2),2,mpi_comm_cart,ireq(1), ierr)
 call mpi_waitall(4,ireq,ist,ierr)

! Adjacent communication in J direction
 call mpi_irecv(p(1,1,1),1,ikvec,npy(1),2,mpi_comm_cart,ireq(3),ierr)
 call mpi_irecv(p(1,jmax,1),1,ikvec,npy(2),1,mpi_comm_cart,ireq(2),ierr)
 call mpi_isend(p(1,2,1),1,ikvec,npy(1),1,mpi_comm_cart,ireq(0),ierr)
 call mpi_isend(p(1,jmax-1,1),1,ikvec,npy(2),2,mpi_comm_cart,ireq(1),ierr)
 call mpi_waitall(4,ireq,ist,ierr)

! Adjacent communication in K direction
 call mpi_irecv(p(1,1,kmax),1,ijvec, npz(2), 1,mpi_comm_cart,ireq(3),ierr)
 call mpi_irecv(p(1,1,1),1,ijvec, npz(1),2,mpi_comm_cart,ireq(2),ierr)
 call mpi_isend(p(1,1,2),1,ijvec,npz(1),1,mpi_comm_cart,ireq(0),ierr)
 call mpi_isend(p(1,1,kmax-1),1,ijvec,npz(2),2,mpi_comm_cart,ireq(1), ierr)

! Adjacent communication in J direction
 call mpi_irecv(p(1,1,1),1,ikvec,npy(1),2,mpi_comm_cart,ireq(7),ierr)
 call mpi_irecv(p(1,jmax,1),1,ikvec,npy(2),1,mpi_comm_cart,ireq(6),ierr)
 call mpi_isend(p(1,2,1),1,ikvec,npy(1),1,mpi_comm_cart,ireq(4),ierr)
 call mpi_isend(p(1,jmax-1,1),1,ikvec,npy(2),2,mpi_comm_cart,ireq(5),ierr)
!
 call mpi_waitall(8,ireq,ist,ierr)

Simultaneous communications in 2 directions

Communication for each 1 direction

 Simultaneous communications
in multi directions by merging mpi_waitall
functions into one

* Communications using multiple TNIs improve performance when the communication method is Rendezvous.

 Chapter 9 Tuning Examples

Use of Trunking

Copyright 2016 FUJITSU LIMITED 50

 Example of throughput improvement through trunking

 Sometimes, you can expect communications using multiple
communication paths, that is, trunking, to improve throughput in
communication performance.

 To use trunking, specify 1 for the MCA parameter
common_tofu_use_multi_path.

 The performance of the PingPong benchmark test may double
by using the trunking. (Execution with two nodes and two
processes)

* Depending on the application program or other communication
environment conditions, the effects of trunking may not be
obtained and communication contention may occur, resulting in
performance degradation. Take sufficient care about using
trunking.

 Results when multiple communication paths are
not used

 (common_tofu_use_multi_path 0)
#---
Benchmarking PingPong
processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 4194304 10 429.95 9303.41

 Results when communication uses multiple
communication paths

 (common_tofu_use_multi_path 1)
#---
Benchmarking PingPong
processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 4194304 10 211.17 18941.69

 PingPong source code example
 if (rank == 0) {
 for(i=0; i<ITERATIONS; i++) {
 MPI_Send (...);
 MPI_Recv (...);
 }
 }
 else if (rank == 1) {
 for(i=0; i<ITERATIONS; i++) {
 MPI_Recv (...);
 MPI_Send (...);
 }
 }

 Chapter 9 Tuning Examples

Prerequisites to Overlapping Computations and Communications

Copyright 2016 FUJITSU LIMITED 51

 Blocking communication: Returning from the send/receive function after the
communication is completed

 The computation and communication can never overlap.

 Nonblocking communication: The send/recieve functions return after the
communication begins

 The computation and communication can overlap.

 call mpi_irecv(bxrr, ny, mpi_real8, left, 1, comm2d, reqs(1), err)
call mpi_irecv(bxrl, ny, mpi_real8, right, 2, comm2d, reqs(2), err)
call mpi_irecv(byru, nx, mpi_real8, down, 1, comm2d, reqs(3), err)
call mpi_irecv(byrd, nx, mpi_real8, up, 2, comm2d, reqs(4), err)
call mpi_isend(bxsr, ny, mpi_real8, right, 1, comm2d, reqs(5), err)
call mpi_isend(bxsl, ny, mpi_real8, left, 2, comm2d, reqs(6), err)
call mpi_isend(bysu, nx, mpi_real8, up, 1, comm2d, reqs(7), err)
call mpi_isend(bysd, nx, mpi_real8, down, 2, comm2d, reqs(8), err)
call mpi_waitall(8, reqs, mpi_statuses_ignore, err)

call mpi_sendrecv(bxsr, ny, mpi_real8, right, 1,
 bxrr, ny, mpi_real8, left, 1, comm2d, mpi_status_ignore, err)
call mpi_sendrecv(bxsl, ny, mpi_real8, left, 2,
 bxrl, ny, mpi_real8, right, 2, comm2d, mpi_status_ignore, err)
call mpi_sendrecv(bysu, nx, mpi_real8, up, 1,
 byru, nx, mpi_real8, down, 1, comm2d, mpi_status_ignore, err)
call mpi_sendrecv(bysd, nx, mpi_real8, down, 2,
 byrd, nx, mpi_real8, up, 2, comm2d, mpi_status_ignore, err)

To overlap computations and communications, use nonblocking communication.

 Chapter 9 Tuning Examples

Computations and Communications not Overlapping

Copyright 2016 FUJITSU LIMITED 52

 Using the Rendezvous communication method with nonblocking communication,
the receiver is already under computation when control communication arrives.

MPI_Irecv

MPI_Waitall

MPI_Isend

MPI_Waitall

Computation

Put

Control
communication

Control
communication

Computation

The next control communication
cannot start when control
communication arrives from
MPI_Isend.

It is after MPI_Waitall function is
called that the next control
communication can start.

Communications
and computations
do not overlap.

Receiver Sender

Control
communication

* Basically, overlap is possible with the Eager communication method. However, if the sender calls Isend frequently within a
short period and processing by the receiver is late, overlap may be impossible because of a receive buffer shortage.

* This example uses two processes, but the same applies even to point-to-point communication with multiple processes.
* Determine the communication method (Eager and Rendezvous) based on message length or MPI statistical information.

For the relationship between message length and communication method, see the btl_tofu_eager_limit item in the MPI
User's Guide.

 Chapter 9 Tuning Examples

Facilitating Communication by Inserting MPI_Testall

Copyright 2016 FUJITSU LIMITED 53

 An MPI_Testall function call during computation transfers control temporarily to
the MPI library.

 Upon detecting the arrival and completion of communication, the MPI library
gives an instruction for the next communication to the Tofu interconnect when
calling the MPI_Testall function.

MPI_Irecv MPI_Isend

Computation

Put

MPI_Testall

Computation

MPI_Testall

Computation

MPI_Testall

Computation

MPI_Waitall

Computation

MPI_Testall

Computation

MPI_Testall

Computation

MPI_Testall

Computation

MPI_Testall

Computation

MPI_Waitall

MPI_Testall

Computation

The MPI library gives an
instruction for the next
communication to the Tofu
interconnect when calling the
MPI_Testall function.
After the instruction,
communication runs in the
background of the computation.

Control
communication

Receiver Sender

Control
communication

Control
communication

* If MPI_Test is used instead of MPI_Testall, the number of control communications processed with one call is one.
* This example uses two processes, but the same applies even to point-to-point communication with multiple processes.

 Chapter 9 Tuning Examples

Computations and Communications not Overlapping

Copyright 2016 FUJITSU LIMITED 54

do iter = 1, 10
 do j = 1, ny
 bxs(j,1) = a(1,j)
 bxs(j,2) = a(nx,j)
 enddo

 do i = 1, nx
 bys(i,1) = a(i,1)
 bys(I,2) = a(i,ny)
 enddo

 call mpi_irecv(bxr(1,2), ny, mpi_real8, left, 1, comm2d, req(1), err)
 call mpi_irecv(bxr(1,1), ny, mpi_real8, right, 2, comm2d, req(2), err)

 call mpi_irecv(byr(1,2), nx, mpi_real8, down, 1, comm2d, req(3), err)
 call mpi_irecv(byr(1,1), nx, mpi_real8, up, 2, comm2d, req(4), err)

 call mpi_isend(bxs(1,2), ny, mpi_real8, right, 1, comm2d, req(5), err)
 call mpi_isend(bxs(1,1), ny, mpi_real8, left, 2, comm2d, req(6), err)

 call mpi_isend(bys(1,2), nx, mpi_real8, up, 1, comm2d, req(7), err)
 call mpi_isend(bys(1,1), nx, mpi_real8, down, 2, comm2d, req(8),err)

 call mpi_waitall(8, req, mpi_statuses_ignore, err)

 if(left .ne. mpi_proc_null) then
 do j = 1, ny
 a(0,j) = bxr(j,2)
 enddo
 endif

 if(right .ne. mpi_proc_null) then
 do j = 1, ny
 a(nx+1,j) = bxr(j,1)
 enddo
 endif

 if(up .ne. mpi_proc_null) then
 do i = 1, nx
 a(i,ny+1) = byr(i,1)
 enddo
 endif

 if(down .ne. mpi_proc_null) then
 do i = 1, nx
 a(i,0) = byr(i,2)
 enddo
 endif

 do j = 1, ny
 do i = 1, nx
 b(i,j) = 0.25d0 * (a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j))
 enddo
 enddo

 norm(1) = 0.0d0
 norm(2) = 0.0d0
 do j = 1, ny
 do i = 1, nx
 a(i,j) = b(i,j)
 norm(1) = norm(1) + (a(I,j) – b(I,j)) ** 2
 norm(2) = norm(2) + b(I,j) ** 2
 enddo
 enddo
 enddo

Computation

Communication

 Chapter 9 Tuning Examples

Facilitating Communication by Inserting MPI_Testall

Copyright 2016 FUJITSU LIMITED 55

do iter = 1, 10
 do j = 1, ny
 bxs(j,1) = a(1,j)
 bxs(j,2) = a(nx,j)
 enddo
 do i = 1, nx
 bys(I,1) = a(i,1)
 bys(I,2) = a(i,ny)
 enddo
 call mpi_irecv(bxr(1,2), ny, mpi_real8, left, 1, comm2d, req(1), err)
 call mpi_irecv(bxr(1,1), ny, mpi_real8, right, 2, comm2d, req(2), err)
 call mpi_irecv(byr(1,2), nx, mpi_real8, down, 1, comm2d,req(3),err)
 call mpi_irecv(byr(1,1), nx, mpi_real8, up, 2, comm2d, req(4), err)
 call mpi_isend(bxs(1,2), ny, mpi_real8, right, 1, comm2d,req(5),err)
 call mpi_isend(bxs(1,1), ny, mpi_real8, left, 2, comm2d, req(6), err)
 call mpi_isend(bys(1,2), nx, mpi_real8, up, 1, comm2d, req(7), err)
 call mpi_isend(bys(1,1), nx, mpi_real8, down, 2,comm2d,req(8),err)

 do j = 2, ny-1
 do i = 2, nx-1
 b(i,j) = 0.25d0 * (a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j))
 enddo
 enddo
 norm(1) = 0.0d0
 norm(2) = 0.0d0
 do j = 2, ny-1
 do i = 2, nx-1
 norm(1) = norm(1) + (b(i,j) - a(i,j)) ** 2
 norm(2) = norm(2) + b(i,j) ** 2
 enddo
 if(done == 0) call mpi_testall(8,req,done,mpi_statuses_ignore,err)
 enddo
 if(done .eq. 0) then
 call mpi_waitall(8, req, mpi_statuses_ignore, err)
 endif

 if(left .ne. mpi_proc_null) then
 do j = 1, ny
 a(0,j) = bxr(j,2)
 enddo
 endif
 if(right .ne. mpi_proc_null) then
 do j = 1, ny
 a(nx+1,j) = bxr(j,1)
 enddo
 endif
 if(up .ne. mpi_proc_null) then
 do i = 1, nx
 a(i,ny+1) = byr(i,1)
 enddo
 endif
 if(down .ne. mpi_proc_null) then
 do i = 1, nx
 a(i,0) = byr(i,2)
 enddo
 endif

 do i = 1, nx
 b(i,1) = 0.25d0 * (a(i-1,1) + a(i,0) + a(i,2) + a(i+1,1))
 b(i,ny) = 0.25d0 * (a(i-1,ny) + a(i,ny-1) + a(i,ny+1) + a(i+1,ny))
 enddo
 do j = 1, ny
 b(1,j) = 0.25d0 * (a(0,j) + a(1,j-1) + a(1,j+1) + a(2,j))
 b(nx,j) = 0.25d0 * (a(nx-1,j) + a(nx,j-1) + a(nx,j+1) + a(nx+1,j))
 enddo

 do j = 1, ny
 do i = 1, nx
 a(i,j) = b(i,j)
 enddo
 enddo
 enddo

Computes the part that
depends on the
communication.

Computes first the part that is
independent of the communication.
Computations and communications
overlap.

 Chapter 9 Tuning Examples

Implementing a Communication-dedicated Thread Using OpenMP

Copyright 2016 FUJITSU LIMITED 56

 Current issue and idea for improvement
 The other threads are waiting when a thread is used for communication.

 Consider an implementation that uses one dedicated thread for
communication and performs computations with the other threads.

•MASTER + DO DYNAMIC

•SINGLE + DO DYNAMIC
Conceptual diagram of implementation with

conventional thread parallelization processing
Conceptual diagram of implementation using

communication-dedicated thread

Computations
with
all threads
minus 1

Communication start Computation start

Computation end

Communication start

Communication end

Computation start

Computation end

Communication end

Computations with
all threads ...

...

 Chapter 9 Tuning Examples

Coding Example of a Communication-dedicated Thread Using OpenMP

Copyright 2016 FUJITSU LIMITED 57

 MASTER + DO DYNAMIC SINGLE + DO DYNAMIC
 program main
 :
 call MPI_Init
 :
!$OMP PARALLEL
!$OMP MASTER

!$OMP END MASTER

!$OMP DO SCHEDULE (DYNAMIC)
 do i = 1, n

 enddo
!$OMP END DO
!$OMP END PARALLEL

 :
 call MPI_Finalize
 :
 stop
 end

MPI communication to be overlapped
(synchronous or asynchronous allowed)
Call MPI_Waitall

Computation to be overlapped

Computation using communication results

Communication by master thread
If communication ends early, thread
can participate in computations

Required for asynchronous
communication

END MASTER not
synchronized

Computation with thread
other than master
Chunk size: 1

Wait for end of overlapped
communication and computation

 program main
 :
 call MPI_Init
 :
!$OMP PARALLEL
!$OMP SINGLE

!$OMP END SINGLE NOWAIT

!$OMP DO SCHEDULE (DYNAMIC)
 do i = 1, n

 enddo
!$OMP END DO
!$OMP END PARALLEL

 :
 call MPI_Finalize
 :
 stop
 end

MPI communication to be
overlapped (synchronous or
asynchronous allowed)
Call MPI_Waitall

Computation to be overlapped

Computation using communication results

Communication by any single thread
If communication ends early, thread
can participate in computations

Required for asynchronous
communication

Computation with another
thread
Chunk size: 1

Wait for end of overlapped
communication and computation

 Chapter 9 Tuning Examples

Explanation of coding example

Copyright 2016 FUJITSU LIMITED 58

 Overlapping is achieved by using the
MASTER/SINGLE construct with one
thread as a communication-dedicated
thread and by combining it with the
LOOP construct having the
SCHEDULE(DYNAMIC) clause .

 One feature is that the communication-
dedicated thread can also participate in
operations after the end of communication.

•Cores are not wastefully occupied by
communication.

 From the perspective of comprehensibility at
the operation verification/debug time, we
recommend the MASTER construct.

Operation using
communication
results

M
PI

com
m

u
n

ication

Operation to
be
overlapped

Operation using
communication
results

M
PI

com
m

u
n

ication

Operation to
be
overlapped

Conceptual
diagram of
operations

 Chapter 9 Tuning Examples

Improvement through the Data Types Used

Copyright 2016 FUJITSU LIMITED 59

 The MPI data types include the basic datatypes and derived
datatypes.

 Basic datatypes

•They are general data types provided in the MPI standard.

types; e.g. MPI_INTEGER and MPI_REAL

 Derived datatypes

•This data type is user-defined, based on MPI basic datatypes. You can use it for
point-to-point communication and collective communication in a similar way to the
basic datatypes.

•For example, use the derived datatypes to enable the MPI library to handle a
(cumbersome) processing such as data packing/unpacking during communication
of non-contiguous data.

 Chapter 9 Tuning Examples

Communication Using the Basic/Derived Datatype

Copyright 2016 FUJITSU LIMITED 60

 Communication in a non-contiguous
area

1. Using the basic datatypes
The pack/unpack should be executed explicitly by
application program for send/receive data in
communication.

/* Creates derived datatype*/
mpi_type_vector(y,1,nx,mpi_real8,
 newtype,err)
/* Registers derived datatype*/
mpi_type_commit(newtype,err)

/* Uses derived datatype*/
mpi_isend(...,newtype,...)

2. Using the derived datatype
Define a derived datatype corresponding to non-
contiguous data and use the datatype for
communication instead of executing packing and
unpacking.

Memory access

Packing and
sending

Send data

!$omp parallel do

do j=1, ny
 pack(j,1) = a(1, j)
enddo
!$omp end parallel do

mpi_isend(pack(1,1), mpi_real8,...)

Compiler optimization and thread
parallelization can accelerate the
pack/unpack.

Example: Send

nx

ny

a(nx,ny)

The pack/unpack cannot be accelerated
because it is handled by processing within
MPI functions.

 Chapter 9 Tuning Examples

Communication Using the Basic/Derived Datatypes

Copyright 2016 FUJITSU LIMITED 61

 Using the basic datatypes
(pack/unpack of send/receive data)

 Using the derived datatypes

call mpi_type_vector(1, nx, nx, mpi_real8, typex, err)
call mpi_type_commit(typex, err)

call mpi_type_vector(ny, 1, nx+2, mpi_real8, typey, err)
call mpi_type_commit(typey, err)

call mpi_irecv(a(0,1), 1, typey, left, 2, comm2d, req(1), err)
call mpi_irecv(a(nx+1,1), 1, typey, right, 1, comm2d, req(2), err)
call mpi_irecv(a(1,0), 1, typex, up, 2, comm2d, req(3), err)
call mpi_irecv(a(1,ny+1), 1, typex, down, 1, comm2d, req(4), err)

call mpi_isend(a(1,1), 1, typey, left, 1, comm2d, req(5), err)
call mpi_isend(a(nx,1), 1, typey, right, 2, comm2d, req(6), err)
call mpi_isend(a(1,1), 1, typex, up, 1, comm2d, req(7), err)
call mpi_isend(a(1,ny), 1, typex, down, 2, comm2d, req(8), err)

call mpi_waitall(8, req, mpi_statuses_ignore, err)

do j = 1, ny
 bxs(j,1) = a(1,j)
 bxs(j,2) = a(nx,j)
enddo

do i = 1, nx
 bys(i,1) = a(i,1)
 bys(i,2) = a(i,ny)
enddo

call mpi_irecv(bxr(1,2), ny, mpi_real8, left, 1, comm2d, req(1), err)
call mpi_irecv(bxr(1,1), ny, mpi_real8, right, 2, comm2d,req(2), err)
call mpi_irecv(byr(1,2), nx, mpi_real8, down,1, comm2d,req(3), err)
call mpi_irecv(byr(1,1) nx, mpi_real8, up, 2, comm2d, req(4), err)

call mpi_isend(bxs(1,2), ny, mpi_real8, right, 1, comm2d,req(5),err)
call mpi_isend(bxs(1,1), ny, mpi_real8, left, 2, comm2d, req(6),err)
call mpi_isend(bys(1,2), nx, mpi_real8, up, 1, comm2d, req(7),err)
call mpi_isend(bys(1,1), nx, mpi_real8, down,2,comm2d,req(8),err)

call mpi_waitall(8, req, mpi_statuses_ignore, err)

if(left .ne. mpi_proc_null) then
 do j = 1, ny
 a(0,j) = bxr(j,2)
 enddo
endif

Unpacks receive data

Packs send data

Defines derived datatype

Uses derived datatype

Uses basic datatypes

 Chapter 9 Tuning Examples

Use of Assistant Cores (1/3)

Copyright 2016 FUJITSU LIMITED 62

 Facilitation of asynchronous communication using assistant cores

 Use the MCA parameter opal_progress_thread_mode (specifying the computation
mode for the MPI asynchronous processing progress thread) and MPI Asynchronous
Communication Promotion Section Specifying Interface (FJMPI_Progress_start and
FJMPI_Progress_stop) to facilitate asynchronous communication for the user-specified
section by using assistant cores.

 Communications using assistant cores improve performance when the communication
method is Rendezvous.

 This is effective in cases where the assistant cores perform most of the nonblocking
communication. However, if the time taken by computations differs significantly from
the time taken by communications, the effect of overlapping is reduced. Be careful
when using assistant cores.

 Assistant core

 Two assistant cores are installed for thirty-two computation cores.

 The cores are not used by user applications but are responsible for OS processing, etc.

 Purposes of use

•OS noise reduction

•Overlapping execution of computation and communication

•Routing of IO data (between Tofu and InfiniBand)

 Chapter 9 Tuning Examples

Use of Assistant Cores (2/3)

Copyright 2016 FUJITSU LIMITED 63

 Specify a mode in the following by MCA parameter opal_progress_thread_mode

 0: Specifies that the function for asynchronous communication facilitation using assistant cores
not be used. The default is 0.

 1: Specifies to use manual section (without MPI call) mode to promote asynchronous
communication using an assistant core.

• This mode has the lowest performance overhead.

 2: Specifies to use manual section (with MPI call) mode to promote asynchronous
communication using an assistant core.

• This mode has a slightly higher overhead than the mode with no MPI calls.

 3: Specifies use of the automatic section mode.

• If many MPI functions are called, the overhead is higher.

Conceptual diagram of operation
when an assistant core is used

 Specifying the target section for the asynchronous
communication facilitation

 Use the following interfaces to specify the target
section (valid in modes 1 and 2).

 FJMPI_Progress_start:

 Starts the asynchronous communication facilitation.

 FJMPI_Progress_stop:

 Stops the asynchronous communication facilitation.

 Chapter 9 Tuning Examples

 :
 for (i = 0; i < count; i++) {

 MPI_Irecv (rbuf[0], MSG_LEN, MPI_DOUBLE, prev, 0, MPI_COMM_WORLD, &reqs[0]);
 MPI_Irecv (rbuf[1], MSG_LEN, MPI_DOUBLE, next, 0, MPI_COMM_WORLD, &reqs[1]);
 MPI_Isend (sbuf[0], MSG_LEN, MPI_DOUBLE, prev, 0, MPI_COMM_WORLD, &reqs[2]);
 MPI_Isend (sbuf[1], MSG_LEN, MPI_DOUBLE, next, 0, MPI_COMM_WORLD, &reqs[3]);

 FJMPI_Progress_start();

 for (j = 0; j < VEC_LEN; j++) {
 y[j] = a * x[j] + y[j];
 }

 FJMPI_Progress_stop();

 MPI_Waitall(4, reqs, MPI_STATUSES_IGNORE);

 }
 :

Use of Assistant Cores (3/3)

Copyright 2016 FUJITSU LIMITED 64

 Example of mode 1 (with the asynchronous communication facilitation)

 Execution of the following asynchronous communication program with 1 specified for
the MCA parameter opal_progress_thread_mode resulted in a performance
improvement of about 58%.

Computation part
(target section for
asynchronous
communication
facilitation)

 Without asynchronous communication
facilitation

 (opal_progress_thread_mode 0)
 - Overall time: About 27 seconds

 With asynchronous communication

facilitation process
 (opal_progress_thread_mode 1)
 - Overall time: About 17 seconds

* Execution with 2 nodes and 2 processes

->

 Chapter 9 Tuning Examples

Example of Differences in Performance with a Specified Shape

Copyright 2016 FUJITSU LIMITED 65

 Communication performance differences
depending on the specified shape
 The communication part (sendp and

mpi_allreduce) of the HIMENO benchmark was
used to check the differences.

 No variation was found in the computation part,
but performance differences were observed in
the processing time of the communication part.

 The performance differences when a shape is
specified depend on the program.

 Appearance of HIMENO source code
 :

 subroutine jacobi(nn,gosa)
 :

 loop 1
 :

 loop 2
 :

 call sendp (ndx,ndy,ndz)
 :

 call mpi_allreduce (....)
 :

 end

 Processing time (msec)

Size
Source code

divided shape
Tofu shape

specification
MFLOPS

Total for
computatio

n part

Total for
communication

part

Overall
time

12n24p16t 8x3x1

1x2x6 184,348 10.70 38.30 49.00

1x3x4 178,917 10.70 39.80 50.49

2x2x3 183,375 10.70 38.56 49.26

2x3x2 193,632 10.70 35.96 46.65

Computation
part

Communication
part

 Chapter 9 Fujitsu Extended Specifications

Fujitsu Extended Specifications

Rank Query Interface

Extended RDMA interface

Copyright 2016 FUJITSU LIMITED 66

 Chapter 9 Fujitsu Extended Specifications

Rank Query Interface

Copyright 2016 FUJITSU LIMITED 67

 Ranks and coordinates are mutually converted.

 Note

•Ranks cannot be obtained from a dynamically generated MPI process.

#include <stdio.h>
#include <mpi.h>
#include <mpi-ext.h>

main(int argc, char *argv[])
{
 int rank, dim;
 int xsize, ysize, zsize;
 int myx, myy, myz;
 int xminus, yminus, zminus;
 int xplus, yplus, zplus;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 FJMPI_Topology_get_dimension(&dim);

 FJMPI_Topology_get_shape(&xsize, &ysize, &zsize);

 switch(dim){
 case 3:
 FJMPI_Topology_rank2xyz(rank, &myx, &myy, &myz);
 FJMPI_Topology_xyz2rank((myx+1)%xsize, myy, myz, &xplus);
 FJMPI_Topology_xyz2rank(myx, (myy+1)%ysize, myz, &yplus);
 FJMPI_Topology_xyz2rank(myx, myy, (myz+1)%zsize, &zplus);
 FJMPI_Topology_xyz2rank((myx-1)%xsize, myy, myz, &xminus);
 FJMPI_Topology_xyz2rank(myx, (myy-1)%ysize, myz, &yminus);
 FJMPI_Topology_xyz2rank(myx, myy, (myz-1)%zsize, &zminus);
 printf("myrank=%2d: %2d %2d %2d %2d %2d %2d¥n",
 rank, xplus, xminus, yplus, yminus, zplus, zminus);
 break;

case 2:
 FJMPI_Topology_rank2xy(rank, &myx, &myy);
 FJMPI_Topology_xy2rank((myx+1)%xsize, myy, &xplus);
 FJMPI_Topology_xy2rank(myx, (myy+1)%ysize, &yplus);
 FJMPI_Topology_xy2rank((myx-1)%xsize, myy, &xminus);
 FJMPI_Topology_xy2rank(myx, (myy-1)%ysize, &yminus);
 printf("myrank=%2d: %2d %2d %2d %2d¥n",
 rank, xplus, xminus, yplus, yminus);
 break;
 case 1:
 FJMPI_Topology_rank2x(rank, &myx);
 FJMPI_Topology_x2rank((myx+1)%xsize, &xplus);
 FJMPI_Topology_x2rank((myx-1)%xsize, &xminus);
 printf("myrank=%2d: %2d %2d¥n", rank, xplus, xminus);
 break;
 }

 MPI_Finalize();
}

Number of dimensions

Job shape

Rank calculated from adjacent
coordinates in 3 dimensions

 Chapter 9 Fujitsu Extended Specifications

Extended RDMA Interface

Copyright 2016 FUJITSU LIMITED 68

 What is the extended RDMA interface?

 Communication through this interface can make the most of Tofu characteristics,
such as communication using four network interfaces and communication using
alternative paths.

 API

 Restrictions

 The available memory IDs for identifying communication areas are 0 to 510.

 The available message tag numbers for identifying transfer data are 0 to 14.

API Function overview

FJMPI_Rdma_init Initialization of extended RDMA interface

FJMPI_Rdma_finalize End processing of extended RDMA interface

FJMPI_Rdma_reg_mem Memory registration

FJMPI_Rdma_dereg_mem Release of memory registration

FJMPI_Rdma_get_remote_addr Acquisition of remote DMA address

FJMPI_Rdma_put RDMA Write communication (put)

FJMPI_Rdma_get RDMA Read communication (get)

FJMPI_Rdma_armw RDMA ARMW communication (atomic read modify write)

FJMPI_Rdma_poll_cq RDMA completion check

FJMPI_Rdma_poll_cq_ret_data Acquisition of data associated with RDMA completion check
and communication

 Chapter 9 Fujitsu Extended Specifications

How to Use the Extended RDMA Interface

Copyright 2016 FUJITSU LIMITED 69

 Processing flow (RDMA Write method)

Initialization

Registration of local memory
for sending Memory

(memid)

Acquisition of remote DMA
address

Memory
(memid)

Initialization

Sending of put

Completion
check

End processing End processing

No

Yes

Send start

Local Remote

Send end

Registration of local memory
for receiving

 Chapter 9 Fujitsu Extended Specifications

Sample Program for the Extended RDMA Interface

Copyright 2016 FUJITSU LIMITED 70

 PingPong communication proceeds between even and odd ranks.
#include <stdlib.h>
#include <stdio.h>
#include <mpi.h>
#include <mpi-ext.h>

#define MEMID1 10
#define MEMID2 11
#define BUFSIZE 1024

int main(int argc, char *argv[])
{
 int i, lrank, rrank, size;
 uint64_t laddr1, raddr2;
 struct FJMPI_Rdma_cq cq;
 volatile long *sbuf = malloc(BUFSIZE*sizeof(long));
 volatile long *rbuf = malloc(BUFSIZE*sizeof(long));
 double d1, d2;

 MPI_Init(&argc, &argv);
 FJMPI_Rdma_init();

 MPI_Comm_rank(MPI_COMM_WORLD, &lrank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 if(size % 2){
 fprintf(stderr, "MPI_Comm_size ERROR¥n");
 free((void *)sbuf); free((void *)rbuf);
 MPI_Abort(MPI_COMM_WORLD, -1);
 }

 rrank = (lrank % 2) ? lrank - 1 : lrank + 1;

 for(i = 0; i < BUFSIZE; ++i){ sbuf[i] = i; rbuf[i] = -1;}

 laddr1 = FJMPI_Rdma_reg_mem(MEMID1, (void *)sbuf, BUFSIZE*sizeof(long));
 FJMPI_Rdma_reg_mem(MEMID2, (void *)rbuf, BUFSIZE*sizeof(long));
 while((raddr2 = FJMPI_Rdma_get_remote_addr(rrank, MEMID2)) == FJMPI_RDMA_ERROR);

 MPI_Barrier(MPI_COMM_WORLD);

 if((lrank % 2) == 0){
 d1 = MPI_Wtime();

 for(i = 0; i < BUFSIZE; ++i){
 if(FJMPI_Rdma_put(rrank, i%14, raddr2+i*sizeof(long), laddr1+i*sizeof(long), sizeof(long),
 FJMPI_RDMA_LOCAL_NIC0 | FJMPI_RDMA_REMOTE_NIC0 | FJMPI_RDMA_STRONG_ORDER)){
 fprintf(stderr, "FJMPI_Rdma_put ERROR¥n");
 exit(EXIT_FAILURE);
 }
 while(FJMPI_Rdma_poll_cq(FJMPI_RDMA_NIC0, &cq) != FJMPI_RDMA_NOTICE);
 if((cq.pid != rrank) || (cq.tag != (i%14))){
 fprintf(stderr, "FJMPI_Rdma_poll_cq ERROR¥n");
 exit(EXIT_FAILURE);
 }
 while(rbuf[i] != i);
 }
 d2 = MPI_Wtime();
 fprintf(stdout, "[%3d] Pingpong = %7.3f us¥n", lrank, (d2 - d1) * 1.0e6 / BUFSIZE / 2);
 }else{
 for(i = 0; i < BUFSIZE; ++i){
 while(rbuf[i] != i);
 if(FJMPI_Rdma_put(rrank, i%14, raddr2+i*sizeof(long), laddr1+i*sizeof(long), sizeof(long),
 FJMPI_RDMA_LOCAL_NIC0 | FJMPI_RDMA_REMOTE_NIC0 | FJMPI_RDMA_STRONG_ORDER)){
 fprintf(stderr, "FJMPI_Rdma_put ERROR¥n");
 exit(EXIT_FAILURE);
 }
 while(FJMPI_Rdma_poll_cq(FJMPI_RDMA_NIC0, &cq)!=FJMPI_RDMA_NOTICE);
 if((cq.pid != rrank) || (cq.tag != (i%14))){
 fprintf(stderr, "CQ ERROR¥n");
 exit(EXIT_FAILURE);
 }
 }
 }

 FJMPI_Rdma_finalize();
 MPI_Finalize();
 free((void*)sbuf); free((void*)rbuf);
 return 0;
}

Address
exchange

even rank: Receiving after Put

odd rank: Put after received

 Chapter 9 Troubleshooting

Troubleshooting
 Debug library

 Memory area-related MPI errors

 Hardware Queue Overflow

 Debug options
 Deadlock detection function

 Communication buffer write damage detection function

Copyright 2016 FUJITSU LIMITED 71

 Chapter 9 Troubleshooting

Debug Library

Copyright 2016 FUJITSU LIMITED 72

 How to use the library

 What can you do with the debug library?
 Operate the runtime argument check function.

•If the contents of an argument are clearly incorrect, the program ends with an error
message.

(Example) Details of the MPI_Send check

• Is the communicator valid?

• Is count < 0 not specified?

• Is the tag value valid?

• Does the rank number of the send destination exist?

• Does datatype exist?

etc.

 Output additional information on the MPI library.
•When requesting an inspection for a problem in MPI library operation, attach the

output information to the request.

Note

• The MPI program execution time may be much longer because of the linked MPI library for
debugging. Take sufficient care about using the library.

mpiexec --debuglib ...

 Chapter 9 Troubleshooting

Argument Check Example

Copyright 2016 FUJITSU LIMITED 73

 Program with an incorrect argument in MPI_Comm_rank
#include <mpi.h>

int main(int argc, char *argv[])
{
 MPI_Comm comm = 0;
 int rank;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(comm, &rank);

 MPI_Finalize();
}

+ mpiexec --debuglib ./a.out
[mpi::mpi-errors::mpi_errors_are_fatal]
[em15-020:6039] *** An error occurred in MPI_Comm_rank
[em15-020:6039] *** on communicator MPI_COMM_WORLD
[em15-020:6039] *** MPI_ERR_COMM: invalid communicator
[em15-020:6039] *** MPI_ERRORS_ARE_FATAL (your MPI job will now abort)
[ERR.] PLE 0019 plexec One of MPI processes was
aborted.(rank=0)(nid=0x01010024)(CODE=1783,794050804906655744,1280)

stderr output

invalid comm

 Chapter 9 Troubleshooting

Memory area-related MPI Errors (1)

Copyright 2016 FUJITSU LIMITED 74

 If an invalid address is used for MPI communication, the following error
occurs internally in MPI.

 Any occurrence of this error is likely due to insufficient memory.

•Reduce the memory used, and try again.

 We recommend you run an error check when allocating memory.

Be careful when using the Fortran STAT specifier.

[mpi::common-tofu::tofu-stag-error] Failed to query/register Tofu STag.
 [Where: btl:prepare_src, RC: -1, TNI: 0, Addr: (nil), Size: 400000]

sbuf = malloc(SIZE);
if(sbuf == NULL){
 error;
}

ALLOCATE(SBUF(N,M), STAT=IERR)
IF(IERR.ne.0) THEN
 reallocate or error
ENDIF

C program

Fortran program

 Chapter 9 Troubleshooting

Memory area-related MPI Errors (2)

Copyright 2016 FUJITSU LIMITED 75

 Execution may end abnormally with the following error during a
collective communication procedure.

 MPI_ERR_INTERN that occurs during collective communication is output when

the work buffer could not be acquired during collective communication.

•Reduce the memory used, and try again.

[q20-062:5045] *** An error occurred in MPI_Gather
[q20-062:5045] *** on communicator MPI COMMUNICATOR 3 SPLIT FROM 0
[q20-062:5045] *** MPI_ERR_INTERN: internal error
[q20-062:5045] *** MPI_ERRORS_ARE_FATAL (your MPI job will now abort)

 Chapter 9 Troubleshooting

Hardware Queue Overflow

Copyright 2016 FUJITSU LIMITED 76

 Successive communications that use nonblocking communication
or the Eager communication method may cause a runtime error.

 Corrective action
 Increase the number of entries in the completion queue by using the MCA

parameter common_tofu_num_mrq_entries.

 Review the communication logic.

•In a pattern that concentrates sends at a specific node, a runtime error may occur
because the receiver processing cannot keep up.

•For successive nonblocking sends, insert MPI_Wait, MPI_Test, or other such function
to facilitate the operation of the receiver.

[mpi::common-tofu::tofu-signal-mrq] Tofu interconnect detected
MRQ overflow. [signo:34 cq:4]

 Chapter 9 Troubleshooting

Deadlock Detection Mechanism

Copyright 2016 FUJITSU LIMITED 77

 How to use the mechanism

 Function
 The mechanism sets a timer at the start time of receiving. Then, if the timer is

exceeded, the program ends.

mpiexec --mca mpi_deadlock_timeout N ...

MPI_Send
MPI_Recv

Timer start

Reception
wait

If the processing has not
begun receiving a
message within N
seconds, the program
ends.

Process A Process B

 Chapter 9 Troubleshooting

Communication Buffer Write Damage Detection Function

Copyright 2016 FUJITSU LIMITED 78

 How to use the function

 Function

 Note

•MPI_Ibsend is not subject to this function.

mpiexec --mca mpi_check_buffer_write 1 ...

MPI_Isend

Process A

Send buffer

MPI_Wait

Write

Send

t

If rewriting is attempted on the send
buffer during a nonblocking send,
execution ends abnormally.

 Chapter 9 Copyright 2016 FUJITSU LIMITED 79

Revision History

Version Date Revised section Details
2.0 April 25, 2016 - - First published

