
J2UL-1885-02ENZ0(00)
November 2015

FUJITSU Software
Technical Computing Suite V2.0

MPI User's Guide
(PRIMEHPC FX100)

Preface

Purpose of this Manual

This manual describes how to use the MPI library intended for supercomputer PRIMEHPC FX100 systems (hereafter referred to as FX100
systems). In particular, it details the MPI library included in the following product:

- Technical Computing Suite V2.0

MPI (Message Passing Interface) is the MPI library interface regulated by the MPI Forum, and is the interface installed in the MPI library
documented here. This MPI library is referred to as "this system" below. Note that this product conforms to the MPI-3.0 Standard regulated
by the MPI Forum.

Audience

The intended readers of this manual are those using the system to develop programs in Fortran, C, or C++. In addition to knowledge of
MPI and of programming in Fortran, C, and C++, readers need to have a basic knowledge of Linux commands, file manipulation, and
shell programming.

How This Manual is Organized

This manual consists of the following sections.

Chapter 1 Overview

An overview of this system

Chapter 2 Environment and Advance Settings

The environment settings that must be set in advance

Chapter 3 MPI Program Compilation/Linkage

How to compile and link MPI programs

Chapter 4 MPI Program Execution

How to execute MPI programs

Chapter 5 Extended Interfaces

Details the extended interface

Chapter 6 Supplementary Items

Supplementary information for this system

Chapter 7 Error Messages

Error messages detected by this system

Appendix A Error Class List

Error classes detected by this system

Appendix B Notes on Migration from FX10 System to FX100 System

This chapter provides notes on migrating from FX10 system to FX100 system on this system.

Appendix C Compatibility Information (FX10 system)

Provides compatibility information (FX10 system) with earlier releases of this product

Appendix D Compatibility Information (FX100 system)

Provides compatibility information (FX100 system) with earlier releases of this product

Glossary

Terminology

- i -

Related Manuals

The following manuals are related to this manual. Refer to these manuals in conjunction with this manual.

- Fortran Language Reference

- Fortran User's Guide

- Fortran User's Guide Additional Volume COARRAY

- Fortran Compiler Messages

- Debugger User's Guide

- Runtime Information Output Function User's Guide

- C User's Guide

- C++ User's Guide

- C/C++ Compiler Optimization Messages

- XPFortran User's Guide

- Fortran/C/C++ Runtime Messages

- Programming Workbench User's Guide

- Profiler User's Guide

- Rank Map Automatic Tuning Tool User's Guide

- Programmer's Guide for Usage of Mathematical Libraries

- SSL II User's Guide

- FUJITSU SSL II Extended Capabilities User's Guide

- FUJITSU SSL II Extended Capabilities User's Guide II

- FUJITSU SSL II Thread-Parallel Capabilities User's Guide

- FUJITSU C-SSL II User's Guide

- FUJITSU C-SSL II Thread-Parallel Capabilities User's Guide

- FUJITSU SSL II/MPI User's Guide

- BLAS LAPACK ScaLAPACK User's Guide

- Fast Basic Operations Library for Quadruple Precision User's Guide

- Job Operation Software First Step Guide

- Job Operation Software End-user's Guide

- Job Operation Software System Log Messages

- FEFS User's Guide

To learn details of the MPI specifications, refer to the following standard:

MPI: A Message-Passing Interface Standard

Version 3.0

Message Passing Interface Forum

September 21, 2012

Information concerning MPI is available from http://www.mpi-forum.org/.

However, note that the information obtained from the above website might vary slightly from installations of this system.

- ii -

http://www.mpi-forum.org/

Expression of Units

In this manual, the following prefixes are used to express units:

Prefix Value Prefix Value

k (kilo) 103 Ki (kibi) 210

M (mega) 106 Mi (mebi) 220

G (giga) 109 Gi (gibi) 230

Conventions Used in this Manual

The typographic conventions below are symbols used with pre-determined special meanings that express syntax.

Symbol name Symbol Explanation

Selection symbols
{} Indicates to select any one of the enclosed items

| Used as a delimiter in a list of items

Omission permitted symbol []
Indicates that the enclosed item can be omitted. This symbol includes the
meaning of the selection symbol "{}".

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country
and/or US export control laws.

Trademarks

- Linux is a registered trademark or trademark of Linus Torvalds in the United States and other countries.

- Other trademarks and registered trademarks are trademarks or registered trademarks of their respective owners.

Date of Publication and Version

Version Manual code

November 2015, 2nd Version J2UL-1885-02ENZ0(00)

February 2015, Version 1.1 J2UL-1885-01ENZ0(01)

October 2014, 1st Version J2UL-1885-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2014-2015

Update History

Changes Location Version

The article is corrected for the MPI-3.0 support. Preface
6.3.1
6.3.2
6.3.7
6.3.14
7.2
7.3
A.3

2nd Version

The article on the argument check is corrected. 3.1

- iii -

Changes Location Version

Note concerning the -Knointentopt option is added. 3.2

Examples of execution command are corrected. 4.1

The article on the profiling interface is added. 6.3.13

The explanation is added. 6.5

The explanation is corrected. 6.10.1

The error message is added / corrected. 7.2

The value of MPI_ERR_LASTCODE is changed. A.1

The article is added. B.1
D.1

Fixed the error in writing. -

The article on the sequential program execution is added. 4.1 Version 1.1

The article on the execution definition file specification is added. 4.1

The following MCA parameter is added.

- coll_tuned_scatterv_use_linear_sync

4.2

Notes concerning the non-contiguous mode are added. 4.2
5.1.2.5
5.1.3.5

The explanation is added / corrected. 3.1
5.2
6.1.3
6.5
6.17

"Value" in "Table 6.11" is changed. 6.11.1

The error message is added. 7.2
7.3

All rights reserved.
The information in this manual is subject to change without notice.

- iv -

Contents
Chapter 1 Overview..1

1.1 System Features... 1
1.2 Outline of How to Use This System.. 1

1.2.1 Flow from Compilation to Execution of an MPI Program... 1

Chapter 2 Environment and Advance Settings...3
2.1 MPI Program Compilation/Linkage Environment.. 3
2.2 MPI Program Execution Environment.. 3
2.3 Online Manual... 3

Chapter 3 MPI Program Compilation/Linkage..4
3.1 Overview of Compilation/Linkage Commands...4
3.2 Compilation/Linkage Command Format... 4

Chapter 4 MPI Program Execution...6
4.1 Execution Command Formats... 6
4.2 MCA Parameters..13
4.3 Environment Variables.. 26
4.4 mpiexec(1) Return Values... 27
4.5 VCOORD_FILE file format.. 27
4.6 Settings in NUMA system... 30

4.6.1 Setting value of NUMA memory allocation policy..30
4.6.2 Setting value of CPU (core) allocation policy.. 32

Chapter 5 Extended Interfaces...34
5.1 Rank Query Interface...34

5.1.1 Querying the Number of Dimensions and Shape... 35
5.1.1.1 FJMPI_Topology_get_dimension... 35
5.1.1.2 FJMPI_Topology_get_shape... 35

5.1.2 Querying the Coordinates... 36
5.1.2.1 FJMPI_Topology_rank2x..36
5.1.2.2 FJMPI_Topology_rank2xy..36
5.1.2.3 FJMPI_Topology_rank2xyz.. 37
5.1.2.4 FJMPI_Topology_sys_rank2xyzabc... 38
5.1.2.5 FJMPI_Topology_rel_rank2xyzabc.. 39

5.1.3 Querying the Rank.. 39
5.1.3.1 FJMPI_Topology_x2rank..39
5.1.3.2 FJMPI_Topology_xy2rank..40
5.1.3.3 FJMPI_Topology_xyz2rank.. 41
5.1.3.4 FJMPI_Topology_sys_xyzabc2rank... 41
5.1.3.5 FJMPI_Topology_rel_xyzabc2rank.. 42

5.1.4 Querying the Ranking of a Communicator that Has a Cartesian Structure.. 43
5.1.4.1 FJMPI_Topology_cart_reorder... 43

5.1.5 Sample Program..44
5.2 Extended RDMA Interface.. 46

5.2.1 Extended RDMA Interface Assumed Knowledge..47
5.2.1.1 Terminology...47
5.2.1.2 RDMA Communication Execution Model.. 47

5.2.1.2.1 Preparation.. 47
5.2.1.2.2 RDMA WRITE...50
5.2.1.2.3 RDMA READ...51
5.2.1.2.4 RDMA ARMW...53
5.2.1.2.5 Confirmation of Communication Notification... 54

5.2.1.3 Process Identification...54
5.2.1.4 Communication Resource Allocation..54

- v -

5.2.1.5 Communication Route Selection... 55
5.2.1.6 Sequence Guarantee within a Single RDMA.. 56
5.2.1.7 Sequence Guarantee between Multiple RDMAs... 57
5.2.1.8 Method for Checking RDMA Communication Completion for RDMA WRITE... 58
5.2.1.9 Method for Checking RDMA Communication Completion for RDMA READ...59
5.2.1.10 Method for Checking RDMA Communication Completion for RDMA ARMW...60
5.2.1.11 RDMA WRITE/RDMA READ/RDMA ARMW Immediate Return..62

5.2.2 Extended RDMA Interface Specifications... 63
5.2.2.1 FJMPI_Rdma_init..63
5.2.2.2 FJMPI_Rdma_finalize... 63
5.2.2.3 FJMPI_Rdma_reg_mem..64
5.2.2.4 FJMPI_Rdma_dereg_mem.. 64
5.2.2.5 FJMPI_Rdma_get_remote_addr..65
5.2.2.6 FJMPI_Rdma_put..65
5.2.2.7 FJMPI_Rdma_get.. 66
5.2.2.8 FJMPI_Rdma_armw..67
5.2.2.9 FJMPI_Rdma_poll_cq... 69
5.2.2.10 FJMPI_Rdma_poll_cq_ret_data.. 70

5.2.3 Sample Program..71
5.3 MPI Statistical Information Section Specifying Interface...75

5.3.1 The MPI Statistical Information Section Specifying Function...76
5.3.1.1 FJMPI_Collection_start... 76
5.3.1.2 FJMPI_Collection_stop... 76
5.3.1.3 FJMPI_Collection_print.. 77
5.3.1.4 FJMPI_Collection_clear.. 77

5.3.2 Sample Program..78
5.4 Extended Persistent Communication Requests Interface.. 80

5.4.1 Overview...80
5.4.2 Extended Persistent Communication Requests Interface Specifications..81

5.4.2.1 FJMPI_Prequest_send_init.. 81
5.4.2.2 FJMPI_Prequest_recv_init...81
5.4.2.3 FJMPI_Prequest_start..82
5.4.2.4 FJMPI_Prequest_startall..83

5.4.3 Sample Program..83
5.5 MPI Asynchronous Communication Promotion Section Specifying Interface... 84

5.5.1 The MPI Asynchronous Communication Promotion Section Specifying Function...84
5.5.1.1 FJMPI_Progress_start..84
5.5.1.2 FJMPI_Progress_stop.. 85

5.5.2 Sample Program..85

Chapter 6 Supplementary Items...87
6.1 Tofu Interconnect...87

6.1.1 Tofu Interconnect Configuration.. 87
6.1.2 Routing..88
6.1.3 Configuration within a Node.. 89

6.2 Promoting Asynchronous Communication Using an Assistant Core..90
6.3 Notes Concerning MPI Standards Specifications..91

6.3.1 Supported Level of MPI Standards...91
6.3.2 Predefined Datatypes that can be Used in This System..91
6.3.3 Allowed Datatypes in Collective Communication (Reduction Operation).. 94
6.3.4 Reserved Communicators... 96
6.3.5 Operations in a Multi-Threaded Environment..97
6.3.6 Signal Operation Changes.. 97
6.3.7 One-sided Communications..97

6.3.7.1 Assertions for Optimization...97
6.3.7.2 Info Argument..97

6.3.8 Establishing Communication between Groups not Sharing a Communicator... 98

- vi -

6.3.8.1 info Argument Value... 98
6.3.8.2 MPI_Open_port Function Behavior.. 98
6.3.8.3 MPI_Comm_join Function Return Value..98
6.3.8.4 Service Names in the MPI_Publish_name Function... 98
6.3.8.5 MPI_Unpublish_name Function Behavior.. 98
6.3.8.6 Socket Communication Wait Time..98

6.3.9 Dynamic Process Generation..99
6.3.9.1 Socket Communication Wait Time..99
6.3.9.2 info Argument Value... 99
6.3.9.3 Notes.. 99

6.3.10 Rank Changes in Accordance with Cartesian Topology.. 100
6.3.10.1 Conditions Enabling Rank Changes.. 100
6.3.10.2 Rules for Rank Changes.. 100
6.3.10.3 Checking Rank Changes..100
6.3.10.4 Sample Program...100

6.3.11 Notes on Send Buffer and Receive Buffer..102
6.3.12 MPI Input-Output... 102
6.3.13 Use of the Profiling Interface..103
6.3.14 MPI Tool Information Interface... 104

6.4 Eager Protocol and Rendezvous Protocol..104
6.5 Hasty Rendezvous Communication...104
6.6 Stride RDMA Communication.. 105
6.7 Using Multiple TNIs..106
6.8 Reduction Operation Sequence Guarantee in Collective Communication..107
6.9 Process Creation in MPI Program... 107
6.10 Suppressing Memory Usage.. 107

6.10.1 Switching between Fast Communication Mode and Memory-Saving Communication Mode.. 107
6.10.2 Influence of Dynamic Connection on Performance... 108

6.11 Memory Usage Estimation Formulae and Tuning Guidelines.. 108
6.11.1 Memory Usage Estimation Formulae... 108
6.11.2 Memory Usage Tuning Guidelines...111
6.11.3 Specifying Memory Allocation Restriction Values..111

6.11.3.1 Specification Memory Allocation Restriction Values... 112
6.11.3.2 MCA Parameters Targeted by Automatic Tuning...112
6.11.3.3 Notes on Execution When Memory Allocation Restriction Values are Specified.. 112

6.12 Use of Tofu Barrier Communication to Increase Speeds.. 113
6.12.1 MPI_Barrier Function...113
6.12.2 MPI_Bcast Function... 113
6.12.3 MPI_Reduce Function and MPI_Allreduce Function.. 114
6.12.4 Notes on Tofu Barrier Communication.. 115
6.12.5 Fast Reduction Operations for Floating Point Type and Complex Type Data within a Node... 115

6.13 MPI_Bcast Function When the Same Count is Used among the Processes..115
6.14 Algorithms Tuned with Recognition of Tofu Coordinates..116
6.15 MPI Statistical Information... 117
6.16 Dynamic Debug during MPI Program Execution..129

6.16.1 Deadlock Detection...129
6.16.2 Monitoring of Write Damage in MPI Communication Buffer... 130
6.16.3 Argument Check Function..131

6.17 Behavior on Forced Termination of MPI Programs.. 132

Chapter 7 Error Messages... 133
7.1 Output Format for Information Related to Parallel Processes...133
7.2 mpiexec Command Error Messages.. 133
7.3 Communication Library Error Messages...138

Appendix A Error Class List..160
A.1 MPI1 Error Class List... 160
A.2 MPI2 Error Class List... 160

- vii -

A.3 MPI3 Error Class List... 161

Appendix B Notes on Migration from FX10 System to FX100 System...163
B.1 Behavior of mpiexec(1) when a same MCA parameter is specified more than once is changed... 163
B.2 Value of MPI_ERR_LASTCODE is changed.. 163
B.3 Change of the "Threshold Value" for Switching between Eager Protocol and Rendezvous Protocol... 163
B.4 Change of Extended RDMA Interface Error Message... 163
B.5 The default value of MCA parameter orte_abort_print_stack is changed from 0 to 1... 164

Appendix C Compatibility Information (FX10 system)..165
C.1 Migrating to V2.0L10 (Generation Number:10)...165

C.1.1 Change of Extended RDMA Interface Error Message.. 165
C.1.2 The default value of MCA parameter orte_abort_print_stack is changed from 0 to 1.. 165

C.2 Migrating to V1.0L30 (Generation Number:09)...166
C.2.1 Change of Communication Library Error Message... 166

C.3 Migrating to V1.0L20... 166
C.3.1 Changes To Retrieved Values Of The Predefined Attributes.. 166

Appendix D Compatibility Information (FX100 system)..168
D.1 Migrating to V2.0L20 (Generation Number:03).. 168

D.1.1 Behavior of mpiexec(1) when a same MCA parameter is specified more than once is changed..168
D.1.2 Value of MPI_ERR_LASTCODE is changed...168

Glossary... 169

- viii -

Chapter 1 Overview
This chapter gives an overview of this system and an outline of how to use it.

1.1 System Features
This MPI library is intended for use with FX100 system. MPI (Message Passing Interface) is the set of standards determined by the MPI
Forum for regulating the library interface, which enables the Fortran, C, and C++ languages to be used for parallel MPI programming in
parallel computing systems with distributed memory.

FX100 systems use an interconnect, known as Tofu, comprised of a 6-dimensional mesh/torus. A virtual torus shape can be configured
from the physical 6-dimensional mesh/torus in the Tofu interconnect, and users can specify a network configuration having a torus shape
of from one to three dimensions when executing programs. This system supports this Tofu interconnect, thus achieving maximum
performance for the application programs that use the system. In addition, users can use the extended interface to describe programs that
make use of the 6-dimensional mesh/torus. Read "6.1 Tofu Interconnect" for details of the Tofu interconnect.

1.2 Outline of How to Use This System
The MPI library provided by this system can be used from application programs written in Fortran, C, or C++. In this manual, application
programs that use the MPI library are called MPI programs.

This system provides commands for compiling and linking MPI programs and MPI program execution commands.

This section gives a simple description of the flow of procedures, from compilation to execution of an MPI program intended for FX100
system.

1.2.1 Flow from Compilation to Execution of an MPI Program
To execute an MPI program, the user performs the required operations from the login node for FX100 system. For example, MPI program
compilation and linkage (in other words, execution of the compilation/linkage command) is normally performed from the login node.
Execution of an MPI program that has been converted to an executable file format by compilation and linkage is performed by requesting
Job Operation Software to launch the job. Refer to the Job Operation Software manual for details.

Compiling and linking an MPI program

This system provides compilation/linkage commands that compile and link MPI programs written in Fortran, C, and C++ in order to
convert them to the executable file format intended for FX100 system.

There are two types of compilation/linkage commands: commands used as the login node (cross compiler), and commands executed at
compute nodes (own compiler).

These compilation/linkage commands are shown below.

Use these compilation/linkage commands in accordance with the program language you are using to write an MPI program.

Table 1.1 Compilation/linkage commands

Command name Programming language of MPI program

<Cross compiler> mpifrtpx

mpifccpx

mpiFCCpx

Fortran

C

C++

<Own compiler> mpifrt

mpifcc

mpiFCC

Fortran

C

C++

Invoke these cross compiler compilation/linkage commands from the login node. They can be used to convert MPI programs to a format
that can be executed by FX100 system. These compilation/linkage commands internally invoke the corresponding Fujitsu cross compilers

- 1 -

(frtpx(1), fccpx(1), or FCCpx(1)). Refer to "Chapter 3 MPI Program Compilation/Linkage" for information on how to use the MPI program
compilation/linkage commands. Refer to the compiler manuals for information on the Fujitsu compilers.

Use the own compiler compilation/linkage commands from the compute nodes. To execute a command on a compute node, ask the Job
Operation Software to launch a job. Refer to the Job Operation Software manual for details. The own compiler compilation/linkage
commands internally invoke the corresponding Fujitsu own compiler (frt(1), fcc(1), or FCC(1)).

The cross compiler and own compiler for MPI programs have no functional differences other than the command launching methods
described above. Refer to "Chapter 3 MPI Program Compilation/Linkage" for information on how to use own compiler compilation/
linkage commands.

Executing an MPI program

Use the mpiexec(1) command to execute an MPI program that has been converted to an executable file format using a compilation/linkage
command. The mpiexec(1) command must be executed from the compute node within FX100 system but the user does not execute it
directly in the compute node. Instead, the user requests Job Operation Software to launch the job that executes the MPI program. Refer
to the Job Operation Software manual for information on how to launch jobs.

This system has two communication ways between two parallel processes of a MPI program internally, Tofu interconnect communication
and shared memory communication. Tofu interconnect communication is used in MPI communication between nodes, and shared memory
communication is used in MPI communication inside each node.

- 2 -

Chapter 2 Environment and Advance Settings
This chapter describes the environment settings that must be set when using this system.

2.1 MPI Program Compilation/Linkage Environment
The following setting is required at the login node in order to enable MPI program compilation and linkage with the cross compiler :

- Append the following path name to user environment variable PATH

/opt/FJSVmxlang/bin

The following setting is required in the job script when the compilation/linkage command execution job is launched. The setting enables
MPI program compilation and linkage with the own compiler. Refer to the Job Operation Software manual for information on job launching
and job scripts.

- Append the following path name to user environment variable PATH

/opt/FJSVmxlang/bin

The MPI library resources are shown below.

Table 2.1 MPI library resource list

Name
Usage

Path within () indicates the install location
C

C++
Fortran

mpi.h

mpi-ext.h

mpif.h

mpi.mod

When compiling: MPI library header file (for Fortran, the module information file is also included)

(/opt/FJSVmxlang/include/mpi/fujitsu)

mpifccpx

mpiFCCpx

mpifcc

mpiFCC

mpifrtpx

mpifrt

When compiling and linking: Fortran, C, and C++ compilation/linkage commands

(/opt/FJSVmxlang/bin)

2.2 MPI Program Execution Environment
The settings below are required in the job script used to launch an MPI program execution job. Refer to the Job Operation Software manual
for information on launching jobs and job scripts.

- Append the following path name to user environment variable PATH

/opt/FJSVmxlang/bin

- Append the following path name to user environment variable LD_LIBRARY_PATH

/opt/FJSVmxlang/lib64

2.3 Online Manual
The following setting is required at the login node in order to use the related online manual:

- Append the following path name to user environment variable MANPATH

/opt/FJSVmxlang/man

- 3 -

Chapter 3 MPI Program Compilation/Linkage
This chapter describes how to compile and link an MPI program.

3.1 Overview of Compilation/Linkage Commands
As described in "1.2 Outline of How to Use This System", an MPI program is a Fortran, C, or C++ program that includes invocation of
the MPI library.

Fujitsu compilers frtpx(1), fccpx(1), or FCCpx(1) (or own compilers frt(1), fcc(1), or FCC(1)) are used to compile and link ordinary
Fortran, C, or C++ programs; however the compile/edit commands for MPI programs, mpifrtpx(1), mpifccpx(1), and mpiFCCpx(1) (or
own compilers mpifrt(1), mpifcc(1), or mpiFCC(1)), are used to compile and link MPI programs.

mpifrtpx(1), mpifccpx(1), mpiFCCpx(1), mpifrt(1), mpifcc(1), and mpiFCC(1) are wrapper commands for frtpx(1), fccpx(1), FCCpx(1),
frt(1), fcc(1), or FCC(1) respectively, and internally invoke the corresponding Fujitsu compiler. Therefore, the corresponding Fujitsu
compiler options can be specified as is in the compile/edit commands for MPI programs.

The conformance of types of arguments of MPI function calls can be checked when an MPI program is compiled.
In the case of a Fortran program, if the program uses the mpi module, the compiler checks argument types based on the contents of the
module, and an error or a warning message is output. Note that the mpi_f08 module is not supported in this system.
In the case of a C program or a C++ program, the compiler checks argument types based on the contents of mpi.h, and an error or a warning
message is output.

Refer to the compiler manuals for details on Fujitsu compilers.

3.2 Compilation/Linkage Command Format

Table 3.1 Compilation/linkage command format

Command name Options

Cross compiler mpifrtpx [-showme|-showme:compile|-showme:link|-showme:version]
[-SCALAPACK] [-SSL2MPI] [compiler_arguments] file ...

Own compiler mpifrt

Cross compiler mpifccpx [-showme|-showme:compile|-showme:link|-showme:version]
[-SCALAPACK] [-SSL2MPI] [compiler_arguments] file ...

Own compiler mpifcc

Cross compiler mpiFCCpx [-showme|-showme:compile|-showme:link|-showme:version]
[-SCALAPACK] [-SSL2MPI] [compiler_arguments] file ...

Own compiler mpiFCC

With this system, MPI programs can be a mix of Fortran, C, and C++. Refer to the compiler manuals for notes and details concerning
mixing program languages.

The compilation/linkage command options are explained below:

Table 3.2 Compilation/linkage command options

Option Explanation

-showme Displays the call line used when the MPI program compilation/linkage command invokes the Fujitsu
compiler command. Actual compilation/linkage processing is not performed.

-showme:compile Displays the option list that is passed to the Fujitsu compiler command. Actual compilation/linkage
processing is not performed.

-showme:link Displays the option list that is passed to the linker. Actual compilation/linkage processing is not performed.

-showme:version Displays the version information. Actual compilation/linkage processing is not performed.

-SCALAPACK Links the ScaLAPACK library. With this option, specify the Fujitsu compiler option -SSL2 or -
SSL2BLAMP.

- 4 -

Option Explanation

-SSL2MPI Links the SSL II/MPI library. With this option, specify the Fujitsu compiler option -SSL2 or -SSL2BLAMP.

compiler_argumen
ts

Specifies the options passed to the Fujitsu compiler.

Refer to the Fujitsu compiler manuals for practical details of the options that can be specified.

 Note

Compilation/linkage notes

- The MPI library is provided in only the dynamic link library format.

- mpifrtpx(1) and mpifrt(1) automatically specify the following frtpx(1) and frt(1) option:

- -f2004

- -Knointentopt (-Kintentopt option is disable even if it is specified)

- When the following option of frtpx(1) and frt(1) is specified with mpifrtpx(1) and mpifrt(1), the language entities must be lowercase
letter:

- -AU

- When the following option of fccpx(1), fcc(1), FCCpx(1) and FCC(1) is specified with mpifccpx(1), mpifcc(1), mpiFCCpx(1) and
mpiFCC(1), a warning message about language standard is output. There is no influence in the execution of the MPI program:

- -Xc

 Example

Examples of using mpifrtpx(1) to compile and link an MPI program

1. Compile the user program "test.f" and create the object program "test.o".

$ mpifrtpx -c test.f

2. Link edit the object program "test.o" and create the executable program "test".

$ mpifrtpx -o test test.o

- 5 -

Chapter 4 MPI Program Execution
This chapter describes how to execute MPI programs.

In this system, mpiexec(1) is used to execute MPI programs. mpiexec(1) passes control to Job Operation Software. Process generation
and execution of the MPI program takes place on the compute node. Refer to the Job Operation Software manual for information on Job
Operation Software.

4.1 Execution Command Formats
The format of the execution command varies depending on whether the SPMD model, the MPMD model, or the execution definition file
specification is used for execution.

1. SPMD model

Table 4.1 SPMD model execution command format

Command name Options

mpiexec global_options local_options execfile execfile_arguments

2. MPMD model

Table 4.2 MPMD model execution command format

Command name Options

mpiexec global_options local_options execfile1 execfile1_arguments

: local_options execfile2 execfile2_arguments

[: local_options execfile3 execfile3_arguments] ...

<Notes>

- If there are three or more different programs, the items enclosed in square brackets [] are specified repeatedly to give the
required number of specifications.

3. Execution definition file

Table 4.3 Execution definition file specifying execution command format

Command name Options

mpiexec global_options { -app | --app } execution_definition_file local_options

The execution definition file is described in the form of the following:

local_options execfile1 execfile1_arguments

[local_options execfile2 execfile2_arguments] ...

<Notes>

- If there are two or more different programs, the items enclosed in square brackets [] are specified repeatedly to give the
required number of specifications.

- When local_options are specified for mpiexec(1), the specified content is effective for all lines of the execution definition
file.

- When local_options are specified for both mpiexec(1) and the execution definition file more than once, the specification of
the execution definition file takes priority.

- When "#" or "//" is included in the execution definition file, the following content in the line is ignored.

- 6 -

 Note

Note that, if a single colon (:) is specified in the command line of mpiexec(1), the colon is regarded as a delimiter. For example, a single
colon cannot be specified as an execfile name or an argument name to be passed to the corresponding execfile.

The format for global_options is shown under "Table 4.4 global_options format". The format for local_options is shown under "Table 4.5
local_options format".

Explanations of all options are provided in "Table 4.6 Execution command options". Explanations of options that can be specified as
global_options are listed below in "Table 4.7 Options that can be specified in global_options", and explanations of options that can be
specified at local_options are given in "Table 4.9 Options that can be specified in local_options".

In this system, some variables, known as MCA parameters, are held internally by the MPI library. The operating conditions that apply
when this system is executed can be changed by temporarily changing the values of these MCA parameters. Refer to "4.2 MCA
Parameters" for information on MCA parameters. MCA parameters can also be set by environment variables. Refer to "4.3 Environment
Variables" for information on using environment variables to set MCA parameters.

 Example

Specification example for using mpiexec(1) to execute an MPI program

1. Example of execution command specification in SPMD model

$ mpiexec -of-proc procfile -mca mpi_print_stats 2 ./a.out

Execute the MPI program executable file a.out. The program output results and statistical information for each process is output to
the file with the name generated by the specified method.

2. Example of execution command specification in MPMD model

$ mpiexec -n 2 ./a.out : -n 4 ./b.out : -n 6 ./c.out

Execute the MPI program files a.out, b.out, and c.out using 2, 4, and 6 parallel processes respectively.

3. Example of execution command specification in the format of the execution definition file

$ cat abc.exec
-n 2 ./a.out
-n 4 ./b.out
-n 6 ./c.out
$ mpiexec --app abc.exec

Execute the MPI program files a.out, b.out, and c.out using 2, 4, and 6 parallel processes respectively.

Table 4.4 global_options format

[{ -app | --app } APP_FILE]

[{ -debuglib | --debuglib }]

[{ -h | --help }]

[{ -nompi | --nompi }]

[{ -of | --of | -std | --std } FILE]

[{ -oferr | --oferr | -stderr | --stderr } ERR_FILE]

[{ -oferr-proc | --oferr-proc | -stderr-proc | --stderr-proc } ERR_PROC_FILE]

[{ -ofout | --ofout | -stdout | --stdout } OUT_FILE]

- 7 -

[{ -ofout-proc | --ofout-proc | -stdout-proc | --stdout-proc } OUT_PROC_FILE]

[{ -of-proc | --of-proc | -std-proc | --std-proc } PROC_FILE]

[{ -ofprefix | --ofprefix | -stdprefix | --stdprefix } PREFIX]

[{ -stdin | --stdin } STDIN_FILE]

[{ -vcoordfile | --vcoordfile } VCOORD_FILE]

[{ -V | --version }]

Table 4.5 local_options format

[-am AM_FILE]

[-x NAME=VALUE]

[{ -mca | --mca } MCA_PARAM_NAME MCA_PARAM_VALUE]

[{ -c | -np | --np | -n | --n } N]

Table 4.6 Execution command options

Option Explanation

execfile Specifies a shell script, or an executable file.

If specifying a shell script which do not execute an MPI program executable file or an executable
file other than an MPI program, specify the -nompi option for the mpiexec(1). If the -nompi
option is not specified, an executable file or a shell script will end abnormally when it is executed.

A shell script cannot be coded to execute more than one MPI program. The shell script behavior
is not guaranteed if it contains code to execute more than one MPI program.

Recursive execution of mpiexec(1) cannot be specified. If it is executed recursively, an error
message is output and then mpiexec(1) ends abnormally. For example, the mpiexec(1) start
filename cannot be specified for execfile.

 Point

If a shell script is specified, execution permission is required for the shell script.

execfile_arguments Specifies the arguments to be passed to execfile.

execfile1
execfile2
execfile3

Specifies a shell script, or an executable file.

When the MPMD model is used for execution, the corresponding executable file is delimited by
the colon and specified according to a different number of programs.

If specifying a shell script which do not execute an MPI program executable file or an executable
file other than an MPI program, specify the -nompi option for the mpiexec(1). If the -nompi
option is not specified, an executable file or a shell script will end abnormally when it is executed.

A shell script cannot be coded to execute more than one MPI program. The shell script behavior
is not guaranteed if it contains code to execute more than one MPI program.

Recursive execution of mpiexec(1) cannot be specified. If it is executed recursively, an error
message is output and then mpiexec(1) ends abnormally. For example, the mpiexec(1) start
filename cannot be specified for execfile1, execfile2, execfile3.

- 8 -

Option Explanation

 Point

If a shell script is specified, execution permission is required for the shell script.

execfile1_arguments
execfile2_arguments
execfile3_arguments

Specifies the arguments to be passed to execfile1.
Specifies the arguments to be passed to execfile2.
Specifies the arguments to be passed to execfile3.

Table 4.7 Options that can be specified in global_options

Option Explanation

{ -app | --app } APP_FILE Specifies when the execution definition file of APP_FILE is used. Following the app option,
specify the path of execution definition file. Read permission to the user who executes the job is
required for the specified file. Specify the number of parallel processes for each of the MPI
programs.

If this option is specified more than once, the parameter specified last takes priority.

{ -debuglib | --debuglib } Links the debug MPI library.

If you are using the argument check function, which is one of the dynamic debug functions at
the time of execution, specify this option.

Use of this option may cause execution of the MPI program to become very slow as the debug
MPI library is linked. Take care when using this option.

Refer to "6.16.3 Argument Check Function" for information on the argument check function.

{ -h | --help } Displays help messages for this command and ends mpiexec(1).

Even if mpiexec(1) is executed with no arguments, the help message is displayed and mpiexec(1)
ends.

{ -nompi | --nompi } Specifies that the user executes the shell script which does not execute an MPI program
executable file or the executable file other than an MPI program.

If the shell script which does not execute an MPI program or the executable file other than an
MPI program is executed without specifying this option, the mpiexec command will end
abnormally.

MPI program is the program that executes MPI_init function or MPI_Init_thread function.

{ -of | --of | -std | --std } FILE The parallel process standard output and standard error output are saved in the file with the name
specified at FILE. If just the filename or the relative path is specified, the relative path from the
job execution current directory is used.

If this option is specified more than once, the parameter specified last takes priority.

{ -oferr | --oferr | -stderr | --stderr }
ERR_FILE

Saves the parallel process standard error output to the file with the name specified at
ERR_FILE. If just the filename or the relative path is specified, the relative path from the job
execution current directory is used.

If this option is specified more than once, the parameter specified last takes priority.

{ -oferr-proc | --oferr-proc | -stderr-
proc | --stderr-proc }
ERR_PROC_FILE

Saves the parallel process standard error output to the file with the filename
"ERR_PROC_FILE.rank-number". The character string for the "rank number" is the actual rank
number under MPI_COMM_WORLD, expressed as a numeric character string of the same
number of digits. Note that the filename for a dynamically generated parallel process is
"ERR_PROC_FILE.rank number@spawn number". The "spawn number" character string is the
number allocated by Job Operation Software for each dynamically generated process, expressed
as a numeric character string. If just the filename or the relative path is specified, the relative
path from the job execution current directory is used.

If this option is specified more than once, the parameter specified last takes priority.

- 9 -

Option Explanation

{ -ofout | --ofout | -stdout | --stdout }
OUT_FILE

Saves the parallel process standard output to the file with the filename specified at OUT_FILE.
If just the filename or the relative path is specified, the relative path from the job execution current
directory is used.

If this option is specified more than once, the parameter specified last takes priority.

{ -ofout-proc | --ofout-proc | -
stdout-proc | --stdout-proc }
OUT_PROC_FILE

Saves the parallel process standard output, separately for each process, to the file with the
filename "OUT_PROC_FILE.rank-number". The character string for the "rank number" is the
actual rank number under MPI_COMM_WORLD, expressed as a numeric character string of
the same number of digits. Note that the filename for a dynamically generated parallel process
is "OUT_PROC_FILE.rank number@spawn number". The "spawn number" character string is
the number allocated by Job Operation Software for each dynamically generated process,
expressed as a numeric character string. If just the filename or the relative path is specified, the
relative path from the job execution current directory is used.

If this option is specified more than once, the parameter specified last takes priority.

{ -of-proc | --of-proc | -std-proc | --
std-proc } PROC_FILE

Saves the parallel process standard output and standard error output, separately for each process,
to the file with the filename "PROC_FILE.rank-number". The character string for the "rank
number" is the actual rank number under MPI_COMM_WORLD, expressed as a numeric
character string of the same number of digits. Note that the filename for a dynamically generated
parallel process is "PROC_FILE.rank number@spawn number". The "spawn number" character
string is the number allocated by Job Operation Software for each dynamically generated process,
expressed as a numeric character string. If just the filename or the relative path is specified, the
relative path from the job execution current directory is used.

If this option is specified more than once, the parameter specified last takes priority.

{ -ofprefix | --ofprefix | -stdprefix |
--stdprefix } PREFIX

Outputs the character string corresponding to the keyword specified at PREFIX at the start of
the parallel process standard output and standard error output lines.

Any of the following keywords can be specified at PREFIX:

{ rank | nid | rank,nid | nid,rank }

The output format of the character string depends on which keyword is specified, as shown below.

rank

The rank number under MPI_COMM_WORLD is attached at the start of the output character
string.

nid

The node ID is attached at the start of the output character string.

rank,nid

The rank number under MPI_COMM_WORLD and the node ID are both attached in
sequence at the start of the output character string.

nid,rank

The node ID and the rank number under MPI_COMM_WORLD are both attached in
sequence at the start of the output character string.

If this option is specified more than once, the parameter specified last takes priority.

If a parallel process is generated dynamically, the character string "@spawn number" is added
after the rank number. This string expresses, as an unchanged numeric character string, the
number assigned by the Job Operation Software to each dynamically generated process.

The node ID is the number that identifies the compute node allocated to the parallel process.
Refer to the Job Operation Software manual for information concerning node IDs.

{ -stdin | --stdin } STDIN_FILE Loads from the file with the filename specified at STDIN_FILE, the standard input for all parallel
processes that were generated by executing the MPI program. If just the filename or the relative
path is specified, the relative path from the job execution current directory is used.

- 10 -

Option Explanation

If this option is specified more than once, the parameter specified last takes priority.

{ -vcoordfile | --vcoordfile }
VCOORD_FILE

Specifies that parallel processes are allocated on the basis of the process assignment information
specified in the VCOORD_FILE file when an MPI program is executed. If just the filename or
the relative path is specified, the relative path from the current directory of the mpiexec(1) process
is used.

Ensure that this option is specified if background execution is used to execute more than one
mpiexec(1) simultaneously. In this case, the same coordinates cannot be specified in the
VCOORD_FILE files specified in the simultaneously executed mpiexec(1)s. If the same
coordinates are specified in the VCOORD_FILE files, a Job Operation Software error occurs.
The maximum number of mpiexec(1) that can be executed simultaneously in background
execution is 128.

Refer to "4.5 VCOORD_FILE file format" for details on the VCOORD_FILE file.

Note that if an MPI program is executed with this option specified, the coding that performs
dynamic process generated cannot be included in the MPI program. Refer to "6.3.9 Dynamic
Process Generation".

If this option is specified more than once, the parameter specified last takes priority.

{ -V | --version } Outputs the mpiexec(1) version information.

If this option is specified without specifying any other options, mpiexec(1) ends after the
mpiexec(1) version information is output.

 Note

Parallel process standard input, standard output, and standard error output

The standard output and standard error output of each parallel process and mpiexec(1) are normally connected to the job execution results
file that is generated by Job Operation Software when the job is executed.

A list of the parallel process standard outputs and standard error outputs that result from whether or not the various -of/-std options are
specified in the execution command mpiexec(1) is shown in table below:

Table 4.8 Parallel process standard output and standard error output resulting from -of/-std option specifications

mpiexec(1) option specification Standard output Standard error output

No type of -of/-std option specified Job execution results file Job execution results file

-of/-std option specified Specified file Specified file

-ofout/-stdout option specified Specified file Job execution results file

-oferr/-stderr option specified Job execution results file Specified file

-of-proc/-std-proc option specified Specified file Specified file

-ofout-proc/-stdout-proc option specified Specified file Job execution results file

-oferr-proc/-stderr-proc option specified Job execution results file Specified file

The redirected standard input of mpiexec(1) cannot be used as the standard input for each of the parallel processes. A function for specifying
the standard input for each parallel process, and a function for changing the connection destination of the standard output and standard
error output of each parallel process, are provided in the mpiexec(1) options. Note the dynamically generated parallel process standard
input, standard output, and standard error output also conform to these option specifications for mpiexec(1).

Refer to the Job Operation Software manual for information concerning the job execution results file.

DT_RPATH

If the DT_RPATH dynamic section attribute exists in a MPI program and /opt/FJSVmxlang/lib64 is included in DT_RPATH, --debuglib
option is disabled. Deal with either as follows for such a MPI program.

- 11 -

- Do not let /opt/FJSVmxlang/lib64 be included in the DT_RPATH. (Relinking program and so on)

- Specify the --inhibit-rpath option of a dynamic linker when a MPI program is executed. Specifying the option is shown below.

 Example

$ mpiexec -n 2 /lib64/ld-linux.so.2 --inhibit-rpath :./a.out ./a.out

- Set the environment variable PATH and LD_LIBRARY_PATH corresponding to the executed FJSVmxlang package.

- Specify the argument of the --inhibit-rpath option of /lib64/ld-linux.so.2 in the form of ":MPI program".

Table 4.9 Options that can be specified in local_options

Option Explanation

-am AM_FILE Specifies the path name of the AMCA parameter file (MCA parameter settings
file) corresponding to the relevant MPI program.

Specify the same MCA parameter values for all programs. If different values
are specified, the operation results are not guaranteed.

The specification method within the file is as follows:

- In each line, use following format for the specification:

MCA-parameter-name=value

- If multiple values are to be specified in the same MCA parameter, use
commas as separators as shown below.

MCA-parameter-name=value1,value2

If this option is specified more than once, the parameter specified last takes
priority.

-x NAME=VALUE Specifies the environment variable when executing an MPI program.

NAME indicates the environment variable name. VALUE indicates the value
to be set in that environment variable. If it is necessary to specify spaces, the
following format is also allowed.

"NAME=VALUE "

Only one environment variable can be specified for this option. To set multiple
environment variables, specify this option as often as needed.

However, if the environment variable name is specified more than once, the
value specified last takes priority.

Specification example:
-x OMP_NUM_THREADS=8 -x THREAD_STACK_SIZE=4096

{ -mca | --mca } MCA_PARAM_NAME
MCA_PARAM_VALUE

Specifies MCA parameters for the relevant MPI program.

Specify the same value in the MCA parameter for all programs. If different
values are specified, the operation is not guaranteed.

{ -c | -np | --np | -n | --n } N Specifies the number (an integer) of parallel processes for the relevant MPI
program.

If this option is omitted when the SPMD model is used for execution, the
maximum number of parallel processes that can be generated is assumed.

This option must be specified when the MPMD model is used for execution.

- 12 -

Option Explanation

If this option is specified more than once for the same MPI program, the
parameter specified last takes priority.

For execution of an MPI program in an FX100 system, the parallel processes
can be allocated to an appropriate torus format. Refer to the Job Operation
Software manual for information concerning how to specify torus format and
how to deploy parallel processes.

4.2 MCA Parameters
When an MPI program is executed in this system, the system operating conditions can be changed by temporarily changing the values of
the MPI library internal variables. These variables are called MCA parameters. This section describes the MCA parameter types and how
to use them. Environment variables can be used to set MCA parameters. Refer to "4.3 Environment Variables" for details.

In this system, MCA parameters can be specified in the following ways:

- Use the -am option of mpiexec(1) to specify the parameters in the MCA parameter settings file (AMCA parameter file).

- Use the -mca option of mpiexec(1) to specify the MCA parameters directly.

- Use the environment variables to set the MCA parameters.

If different methods are used to specify values for the same MCA parameter, the specification with the highest priority takes effect. The
priority levels for the different MCA parameter specification methods are shown in table below:

Table 4.10 MCA parameter specification methods and priorities

Rank MCA parameter setting method Example of use

1 -mca option of mpiexec -mca btl_tofu_eager_limit 4096

2 Environment variable export OMPI_MCA_btl_tofu_eager_limit=4096

3 AMCA parameter file (MCA parameter
settings file) specified in the -am option

-am mca_file

Note: A smaller priority value indicates a higher priority.

The "MCA parameters" that can be used in this system are shown below. The text in parentheses after each MCA parameter name describes
the function of that MCA parameter.

MCA parameters

Table 4.11 btl_tofu_eager_limit (changes the threshold value for switching the communication method)

MCA parameter value Content

Integer value of 1 or more Specifies the message size (number of bytes) used as the "threshold value" for switching between the
Eager protocol and the Rendezvous protocol in the fast communication mode. Messages that are
smaller than the specified message size (number of bytes) are sent under Eager protocol. More
precisely, the value used is obtained by adding the size of the actual message (number of bytes) and
the size of the internally added header part (several tens of bytes). Refer to "6.10.1 Switching between
Fast Communication Mode and Memory-Saving Communication Mode" for information on the fast
communication mode.

If a value smaller than 256 is specified, 256 is set.

Note that, if a large value is specified, it may be reduced internally to a value that is smaller than the
specified value. Generally, values up to about 128,000 can be specified effectively but, depending on
the memory usage status, the value may need to be smaller than this to take effect. In practice, this
depends on the Large receive buffer size specified in the common_tofu_large_recv_buf_size MCA
parameter and the send buffer size. More specifically, an approximation of the value that can be
specified effectively can be obtained from the expression below, and has an upper limit value of around
512000, derived from the send buffer size. For a more precise value, if the control information and

- 13 -

MCA parameter value Content

other information used internally is considered, the value is reduced by several hundreds of bytes,
however that can be ignored here.

Large receive buffer size / 2

Usually, this system dynamically determines an appropriate value internally as the "threshold value"
for fast communication modes. This is because the distance of the compute node that is performing
the communication is taken into account, not just the message size (number of bytes). For message
communication between nearby compute nodes, for example, 45,352 is set internally. As the distance
between the compute nodes performing the message communication increases, the "threshold value"
also increases. With this MCA parameter, the specified value is used as the "threshold value" regardless
of the compute node distance.

Refer to "6.4 Eager Protocol and Rendezvous Protocol" for details.

"l" in the character string btl used in the MCA parameter name is a lowercase "L".

Table 4.12 coll_base_reduce_commute_safe (guarantees the reduction operation sequence)

MCA parameter value Content

1 Guarantees the reduction operation sequence for MPI_Reduce, MPI_Ireduce, MPI_Allreduce,
MPI_Iallreduce, MPI_Reduce_scatter, MPI_Ireduce_scatter, MPI_Reduce_scatter_block and
MPI_Ireduce_scatter_block functions in collective communication that performs reduction
operations.

In collective communication that performs these reduction operations, the operation sequence may be
changed in accordance with communication conditions to optimize the communication time. Changing
the reduction operation sequence may affect the accuracy of the computing results.

The operation sequence can be fixed by specifying a value in this parameter.

Note that fixing the operation sequence lengthens the communication time.

Refer to "6.8 Reduction Operation Sequence Guarantee in Collective Communication" for details.

0 Does not guarantee the reduction operation sequence. The reduction operation sequence may be
changed internally to make the communication time as short as possible. Note that, if the
communication conditions are the same, the computing results are the same regardless of the number
of times the same program is executed.

The default value for this parameter is 0.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.13 coll_tbi_intra_node_reduction (specifies the algorithms used by Tofu barrier communication for
floating point type and complex type data reduction operations within a node if multiple processes are assigned
within one node)

MCA parameter value Content

1 If the conditions for applying Tofu barrier communication, as explained in "6.12.3 MPI_Reduce
Function and MPI_Allreduce Function", are met, specifies that Tofu barrier communication uses
ordinary algorithms for reduction operations of floating point type or complex type data within a node.

The default value for this parameter is 1.

2 Specifies to use faster reduction operation algorithms compared with when 1 is specified as the value
of this parameter.

Read "6.12.5 Fast Reduction Operations for Floating Point Type and Complex Type Data within a
Node" for details.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

- 14 -

Table 4.14 coll_tbi_use_on_bcast (uses Tofu barrier communication in MPI_Bcast function)
MCA parameter value Content

1 Specifies that Tofu barrier communication (hardware function) is used on execution of MPI_Bcast
function.

Refer to "6.12.2 MPI_Bcast Function" for details.

The default value for this parameter is 1

0 Specifies that Tofu barrier communication is not used on execution of MPI_Bcast function.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.15 coll_tbi_use_on_comm_dup (uses Tofu barrier communication for a communicator created by
MPI_Comm_dup function)

MCA parameter value Content

1 If Tofu barrier communication (hardware function), explained in "6.12 Use of Tofu Barrier
Communication to Increase Speeds", is applied, specifies that Tofu barrier communication is used for
a communicator created by the MPI_Comm_dup function.

The default value for this parameter is 1.

0 Specifies that Tofu barrier communication is not used for a communicator created by the
MPI_Comm_dup function.

Read "6.12.4 Notes on Tofu Barrier Communication" for details.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.16 coll_tbi_use_on_max_min (uses Tofu barrier communication for floating point datatypes MPI_MAX
and MPI_MIN)

MCA parameter value Content

1 Under the conditions for applying Tofu barrier communication, explained in "6.12.3 MPI_Reduce
Function and MPI_Allreduce Function", the following operation combinations are added to the default
operation combinations shown in "Table 6.16 Operation combinations that allow the MPI_Reduce
and MPI_Allreduce functions to apply Tofu barrier communication". Communication speeds of the
following operation combinations can be increased by using Tofu barrier communication.

- Operation combinations to which Tofu barrier communication is newly applied.

- MPI predefined operation

- C/Fortran

MPI_MAX

MPI_MIN

- C++

MPI::MAX

MPI::MIN

- Datatypes

Floating point datatypes

- Size

8 bytes or less

A calculation result to which Tofu barrier communication is newly applied might be different in either
of special following conditions according to whether Tofu barrier communication is applied. This fact
must be noted if the value specified for the MCA parameter is being changed.

- At least one input value is NaN.

- 15 -

MCA parameter value Content

- Tofu barrier communication is applied.

A calculation result is compared from input values except NaN. If all input values are NaN,
a calculation result is one of them.

- Tofu barrier communication is not applied.

A calculation result is either a result that input values except NaN are compared or one of
NaN.

- At least one input value is +0.0. And, at least one input value is -0.0. And, a calculation result is
either +0.0 or -0.0.

- Tofu barrier communication is applied.

The functions compare sign of zero. (+0.0 > -0.0)

- Tofu barrier communication is not applied.

A calculation result is either +0.0 or -0.0.

0 Specifies that Tofu barrier communication is not used on the operation combinations explained by the
content that the value of this parameter is 1.

The default value for this parameter is 0.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.17 coll_tuned_bcast_same_count (achieves faster communication when MPI_Bcast/MPI_Ibcast function
is used with the same count among the processes)

MCA parameter value Content

1 Specifies to achieve faster communication when MPI_Bcast function or MPI_Ibcast function is used
with the same count among the processes.

Refer to "6.13 MPI_Bcast Function When the Same Count is Used among the Processes" for details.

0 Specifies not to use a faster communication mechanism.

The default value for this parameter is 0.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.18 coll_tuned_prealloc_size (specifies the size of the static work area used internally by the collective
communication function)

MCA parameter value Content

Integer value of 1 or more Specifies the size (MiB) of the work area allocated statically for the following collective
communication functions:

- MPI_Allreduce function

- MPI_Reduce function

- MPI_Reduce_scatter_block function

- MPI_Reduce_scatter function

- MPI_Allgather function

- MPI_Gather function

- MPI_Scatter function

- MPI_Alltoall function

For MPI programs that call these functions multiple times, the MPI program execution time can be
reduced by using this parameter effectively for statically allocating memory.

- 16 -

MCA parameter value Content

The following size gives an estimate to be specified:

For MPI_Allreduce function, MPI_Reduce function and MPI_Reduce_scatter_block function.

Size of messages sent in the program + 2MiB

For MPI_Reduce_scatter function.

(Size of message sent in the program * 2) + 2MiB

For MPI_Allgather function.

Size of message received in the program + 2MiB

For MPI_Gather function.

Size of message received on the root process in the program + 2MiB

For MPI_Scatter function.

Size of message sent on the root process in the program + 2MiB

For MPI_Alltoall function.

(Size of messages sent in the program * Number of ranks in communicators)
+ 2MiB

If the size of the work area allocated statically corresponding to this parameter specification is smaller
than the work area size required to process the collective communication function, the statically
allocated work area is not used.

The default value for this parameter is 6(MiB).

0 Specifies that the static work area is not allocated.

Both "l" characters in the character string coll used in the MCA parameter name are the lowercase "L".

Table 4.19 coll_tuned_scatterv_use_linear_sync (uses the MPI_Scatterv algorithm which performs
communication control)

MCA parameter value Content

1 Uses the algorithm of MPI_Scatterv function that improves performance.

This parameter is effective only for MPI_Scatterv function.

If this algorithm is called continuously, an error message starting with [mpi::common-tofu::tofu-
signal-mrq] might be output.

0 Does not use the algorithm of MPI_Scatterv function that improves performance.

The default value for this parameter is 0.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.20 coll_tuned_use_6d_algorithm (use of algorithms tuned with recognition of Tofu coordinates)

MCA parameter value Content

1 Enables algorithms tuned with recognition of Tofu coordinates to be called.

This parameter is effective only for MPI_Alltoall.

If MPI_Alltoall is called with this parameter specified, all processes that reference MPI_Alltoall
temporarily use a memory area proportionate to the size of the messages received. Therefore, a memory
shortage might occur. If this parameter is specified, execute the MPI program with plenty of memory
available.

- 17 -

MCA parameter value Content

Read "6.14 Algorithms Tuned with Recognition of Tofu Coordinates" for details of algorithms tuned
with recognition of Tofu coordinates.

MPI statistical information can be used to check whether or not algorithms tuned with recognition of
Tofu coordinates are selected.

Read "6.15 MPI Statistical Information" for details.

This parameter is ignored when the job type is mesh mode or non-contiguous mode.

Refer to the Job Operation Software manual for information on mesh mode and non-contiguous mode.

0 Specifies that algorithms tuned with recognition of Tofu coordinates are not called.

The default value for this parameter is 0.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.21 common_tofu_fastmode_threshold (changes the conditions for switching to fast communication
mode)

MCA parameter value Content

Integer value of 0 or more Specifies the communication count used as the condition for switching from memory-saving
communication mode to fast communication mode.

If 0 is specified, communication is performed in fast communication mode from the start, provided
that the upper limit is not reached for the number of communication partner processes that
communicate in fast communication mode. If -1 or a lower numeric is specified, a 0 specification is
assumed.

Refer to "6.10 Suppressing Memory Usage" for details.

The default value for this parameter is 16.

Table 4.22 common_tofu_large_recv_buf_size (changes the size of the Large receive buffer)

MCA parameter value Content

Integer value from 1024 to
16777216

Specifies the size (number of bytes) of the Large receive buffer.

If a value lower than 1024 is specified, a specification of 1024 is assumed. If a value greater than
16777216 is specified, a specification of 16777216 is assumed.

Refer to "6.10 Suppressing Memory Usage" for information on the large receive buffer.

The default value for this parameter is 1048576.

Table 4.23 common_tofu_max_fastmode_procs (changes the upper limit for the number of processes that can
communicate in fast communication mode)

MCA parameter value Content

Integer value of -1 or 0 or
more

Specifies the upper limit for the number of communication partner processes that each parallel process
can communicate with in fast communication mode.

If -1 is specified, communication with all processes is performed in fast communication mode. If 0 is
specified, fast communication mode is not used and communication with all processes is in memory-
saving communication mode. If a value of -2 or less is specified, a specification of -1 is assumed.

Refer to "6.10 Suppressing Memory Usage" for details.

The default value for this parameter is 1024.

- 18 -

Table 4.24 common_tofu_max_tnis (changes the upper limit for the number of TNIs to be used)
MCA parameter value Content

Integer value of 1 or more Specifies the upper limit for the number of network interface devices (TNIs) to be used. If a number
greater than the maximum number (4) is specified, the parameter value becomes the number that can
actually be used. Refer to "6.7 Using Multiple TNIs" for details.

-1 Specifies to use the maximum number of network interface devices (TNIs) that can be used.

If a value of 0 or -2 or less is specified, a specification of -1 is assumed.

The default value for this parameter is -1.

Table 4.25 common_tofu_medium_recv_buf_size (changes the size of the Medium receive buffer)

MCA parameter value Content

Integer value from 256 to
16777216

Specifies the size (number of bytes) of the Medium receive buffer.

If a value lower than 256 is specified, a specification of 256 is assumed. If a value greater than 16777216
is specified, a specification of 16777216 is assumed.

Refer to "6.10 Suppressing Memory Usage" for information on the medium receive buffer.

The default value for this parameter is 2048.

Table 4.26 common_tofu_memory_limit (specifies the memory allocation limit value)

MCA parameter value Content

Integer value of 0 or more Specifies the limit (MiB) for the memory allocation that this system's MPI library itself can use.

A memory allocation limit cannot be specified if using dynamic process generation or if establishing
communication between MPI process groups that do not share a communicator.

Specify 0 to disable memory allocation restriction. If a value of -1 or less is specified, 0 is assumed.

Refer to "6.11.3 Specifying Memory Allocation Restriction Values" for details.

The default value for this parameter is 0MiB

Table 4.27 common_tofu_memory_limit_peers (specifies the assumed number of communication partner
processes when the memory allocation is limited)

MCA parameter value Content

Integer value of 0 or more Specifies the assumed number of communication partner processes when the usable memory allocation
of this system's MPI library is limited.

The number of processes belonging to the communicator MPI_COMM_WORLD is set as the default
value for this parameter. However, to perform automatic tuning more accurately, the number of
connections for Tofu communication, obtainable from the MPI statistical information, must be
specified.

Refer to "6.11.3 Specifying Memory Allocation Restriction Values" for information on how to specify
memory allocation limit values.

The default value for this parameter is the number of processes belonging to the communicator
MPI_COMM_WORLD.

Table 4.28 common_tofu_num_mrq_entries (change the number of entries in a completion queue)

MCA parameter value Content

One of the following integer
values:

2048, 8192, 32768, 131072,
524288

Specify the number of entries in a completion queue of Tofu interconnect. If you encountered an error
message starting with [mpi::common-tofu::tofu-signal-mrq], the error may be avoided by changing
the value of this parameter larger. Or memory usage of a MPI process can be decreased by changing
this value smaller.

- 19 -

MCA parameter value Content

Specifiable values for this parameter are either 2048, 8192, 32768, 131072, or 524288. If a value that
is not in the list is specified, the closest value in the list is assumed. If there are two closest values, the
larger value is assumed.

The default value for this parameter is 131072.

Refer to "7.3 Communication Library Error Messages" for details of the error message starting with
[mpi::common-tofu::tofu-signal-mrq].

Table 4.29 common_tofu_packet_gap (changes the packet transfer interval time)

MCA parameter value Content

Integer value from 0 to 255 An integer value, called a gap value, specifies the packet transfer interval time.

One unit of the gap value corresponds to 1/8 of the time taken to transfer data of the packet maximum
transmission unit, described below.

An integer value from 0 to 255 can be specified for this parameter. If a value of -1 or less is specified,
0 is assumed. If a value of 255 or more is specified, 255 is assumed.

The default value for this parameter is 0.

Message transfer is performed within the MPI library in units called packets. One packet has an upper
limit value, known as the maximum transmission unit. If a message larger than the maximum
transmission unit is being transferred, the message is split into multiple packets so that the size of each
packet is the maximum transmission unit or less. This maximum transmission unit can be changed by
the MCA parameter common_tofu_packet_mtu. Refer to "Table 4.30 common_tofu_packet_mtu
(changes the maximum packet transfer size)" for information on this parameter.

Bandwidth can be controlled by adjusting the packet transfer interval time. This may improve
communication throughput time when other message communication is being attempted at the same
time. For example, if gap value 8 is specified in this parameter, the time interval between packets is
exactly the amount of time it takes to transfer one packet and the targeted message transfer bandwidth
is adjusted to 1/2. However, depending on the circumstances, performance may deteriorate, so care is
essential when using this parameter.

Table 4.30 common_tofu_packet_mtu (changes the maximum packet transfer size)

MCA parameter value Content

One of the following integer
values:

256, 384, 512,

640, 768, 896,

1024, 1152, 1280,

1408, 1536, 1664,

or 1792

Message transfer is performed within the MPI library in units called packets. This parameter specifies
the packet maximum transmission unit in bytes.

Specifiable values for this parameter are either 256, 384, 512, 640, 768, 896, 1024, 1152, 1280, 1408,
1536, 1664, or 1792. If a value that is not in the list is specified, the closest value in the list is assumed.
If there are two closest values, the larger value is assumed.

The default value for this parameter is 1792.

If communication of multiple large messages is attempted, communication throughput times can be
improved by changing the value of this parameter in conjunction with specifying the MCA parameter
common_tofu_packet_gap. However, depending on the circumstances, performance may deteriorate,
so care is essential when using this parameter. Refer to "Table 4.29 common_tofu_packet_gap
(changes the packet transfer interval time)" for details.

Table 4.31 common_tofu_use_multi_path (performs point-to-point communication using multiple communication
paths)

MCA parameter value Content

1 Specifies that multiple communication paths are used for point-to-point communication, that is, that
trunking is implemented.

- 20 -

MCA parameter value Content

This parameter is mutually exclusive to Hasty Rendezvous communication. If 1 is specified for this
parameter and 1 or 2 is specified for the MCA parameter pml_ob1_use_hasty_rendezvous, the MCA
parameter pml_ob1_use_hasty_rendezvous is ignored.

Since multiple TNIs are used to reserve multiple communication paths, the result of this parameter is
also affected by the number of usable TNIs. In addition, depending on communication conditions,
communication performance may deteriorate, so care is essential when using this parameter.

Read "6.7 Using Multiple TNIs" for details of using multiple TNIs.

0 Specifies that multiple communication paths are not used for point-to-point communication.

The default value for this parameter is 0.

Table 4.32 dpm_ple_no_establish_connection (specifies that the MPI program does not establish communication
using background execution)

MCA parameter value Content

1 Specifies that the MPI program does not establish communication between two groups of MPI
processes that do not share a communicator using background execution of mpiexec command.

The number of communication resources allocated to a process is determined by the number of CPUs
(cores) allocated to a process.

When the MPI program is run with description of the number of CPUs in the VCOORD_FILE file
and the numbers of CPUs allocated to processes are not identical, the number of communication
resources allocated to each process is aligned with the one for the process that has least CPUs in the
entire job. This rule may degrade the performance of Tofu communication on processes that have more
CPUs.

By specifying this parameter, it is aligned with the one for the process that has least CPUs in the
processes spawned by a same mpiexec process, not in the processes in the entire job.

This may be able to prevent the communication performance degradation.

However, the MPI program ends abnormally if the program establishes communication between two
groups of MPI processes that do not share a communicator even this MCA parameter is specified.

If background execution of mpiexec command is not used or the numbers of CPUs allocated to
processes are identical, there is no benefit to specifying this parameter.

Refer to "4.5 VCOORD_FILE file format" for details of the VCOORD_FILE.

0 Specifies that the MPI program may establish communication between two groups of MPI processes
that do not share a communicator using background execution of mpiexec command.

The default value for this parameter is 0.

Table 4.33 dpm_ple_socket_timeout (specifies the socket communication wait time when establishing
communication)

MCA parameter value Content

A positive integer value Specifies the socket communication wait time (in seconds) used when establishing communication
between MPI process groups that do not share a communicator.

If the specified wait time is exceeded, an error message is output and MPI program execution ends.
Refer to "6.3.9.1 Socket Communication Wait Time" for details.

0 Sets unlimited as the socket communication wait time used when establishing communication between
MPI process groups that do not share a communicator.

The default value for this parameter is 0.

- 21 -

Table 4.34 mca_base_param_file_prefix (specifies the AMCA parameter file)
MCA parameter value Content

File path name of the AMCA
parameter file

Interprets the specified file as being an AMCA parameter file (MCA parameter settings file). If an
MCA parameter coded within this settings file has already been set as an environment variable, the
relevant MCA parameter setting coded in this settings file has no effect.

If an invalid file path name is specified, a warning message is output and the AMCA parameter file
specification has no effect.

Table 4.35 mpi_check_buffer_write (monitors communication buffer write damage)

MCA parameter value Content

1 Specifies to monitor for damages when writing to the send buffer during nonblocking communication.

Before the send ends, if writing to the send buffer occurred, a message confirming the write and stack
trace information are output to the standard error, and MPI program execution ends.

Refer to "6.16.2 Monitoring of Write Damage in MPI Communication Buffer" for information on
monitoring communication buffer write damages.

0 Specifies to not monitor for damages when writing to the communication buffer.

The default value for this parameter is 0.

Table 4.36 mpi_deadlock_timeout (specifies the communication wait timeout time)

MCA parameter value Content

A positive integer value Specifies the communication wait timeout time (in seconds) in order to detect deadlocks.

If the communication wait time during MPI communication exceeds the time (in seconds) specified
in this parameter, a message confirming the waittime and stack trace information are output to the
standard error, and MPI program execution ends.

Refer to "6.16.1 Deadlock Detection" for information on deadlock detection.

0 Specifies to not implement communication wait timeouts.

The default value for this parameter is 0.

Table 4.37 mpi_deadlock_timeout_delay (delays program termination caused by detection of a deadlock)

MCA parameter value Content

A positive integer value Specifies the wait time (in seconds) between message output and actual program termination if the
deadlock detection function detects a deadlock.

This parameter specification is enabled when a positive integer value is specified in the MCA parameter
mpi_deadlock_timeout.

Specifying this wait time relates to increasing the number of processes targeted for message output
and stack trace information output when deadlock detection causes program termination. It may be
useful for investigating the location where the deadlock occurred.

Refer to "6.16.1 Deadlock Detection" for information on deadlock detection.

0 If the deadlock detection function detects a deadlock, the program ends as soon as the message is
output.

The default value for this parameter is 0.

Table 4.38 mpi_preconnect_mpi (specifies the timing for establishing connections)

MCA parameter value Content

Integer value of 1 or more If this parameter is not specified in this system, Tofu connection is established at the time of first
communication with each process that is a communication partner.

- 22 -

MCA parameter value Content

If a positive integer value is specified in this parameter, connections are established within the MPI_Init
function from all process to all processes that communicate internally. This increases the execution
time of the MPI_Init function but makes execution times stable for MPI functions that communicate.

Normally, specify 1 for this parameter. If a value of 2 or more is specified, this will make the execution
time of the MPI_Init function longer than necessary.

If there is no communication between compute nodes, there is no benefit to specifying this parameter.

0 Does not establish Tofu connections within the MPI_Init function. At the point when an MPI function
that performs communication is invoked, a connection is established with the communication partner
process.

This reduces the execution time of the MPI_Init function but may increase the execution time of MPI
functions that perform communication by the number of initial communications.

The default value for this parameter is 0.

Table 4.39 mpi_print_stats (outputs MPI statistical information)

MCA parameter value Content

1 Specifies to output MPI statistical information to the standard error output. However, with this
specification, the MPI statistical information of all parallel processes is aggregated and output by
parallel processes belonging to MPI_COMM_WORLD with a rank number of 0.

The MPI statistical information is output in MPI_Finalize function.

2 Specifies to output MPI statistical information to the standard error output. However, with this
specification, the MPI statistical information of each parallel process is output separately by each
parallel process itself.

The MPI statistical information is output when MPI_Finalize function or MPI_Abort function is called
or when this system terminates the parallel process due to a detected abnormal state.

Process Mapping information is output only at the normal termination.

To output statistical information from a particular parallel process, specify the MCA parameter
mpi_print_stats_ranks. Refer to "Table 4.40 mpi_print_stats_ranks (specifies the parallel process that
outputs MPI statistical information)" for details.

3 It is similar to parameter value 1. However, it is necessary to specify the FJMPI_Collection_print
function to output it to the standard error output. In addition, the content of the output is output
separately for the header department, body department including section line, and the footer
department. Refer to "5.3.1.3 FJMPI_Collection_print" for details.

4 It is similar to parameter value 2. However, it is necessary to specify the FJMPI_Collection_print
function to output it to the standard error output. In addition, the content of the output is output
separately for the header department, body department including section line, and the footer
department. Refer to "5.3.1.3 FJMPI_Collection_print" for details.

0 Specifies to not output MPI statistical information.

Refer to "6.15 MPI Statistical Information" for information on MPI statistical information.

If a value other than an integer from 0 to 2 is specified in this parameter, 0 is assumed.

The default value for this parameter is 0.

Table 4.40 mpi_print_stats_ranks (specifies the parallel process that outputs MPI statistical information)

MCA parameter value Content

0 or higher integer value Specifies the rank number of the parallel process that outputs MPI statistical information. This MCA
parameter is enabled only if 2 or 4 is specified for the MCA parameter mpi_print_stats.

Specify the rank number belonging to MPI_COMM_WORLD.

- 23 -

MCA parameter value Content

Multiple rank numbers can be specified, separated by commas ",".

If a rank number that does not exist is specified, it is ignored.

Refer to "Table 4.39 mpi_print_stats (outputs MPI statistical information)" for information on the
MCA parameter mpi_print_stats.

-1 Specifies to output MPI statistical information from all parallel processes. This MCA parameter is
enabled only if 2 or 4 is specified for the MCA parameter mpi_print_stats. Refer to "Table 4.39
mpi_print_stats (outputs MPI statistical information)" for details.

If a value of -1 or less is specified in this parameter, a specification of -1 is assumed.

The default value for this parameter is -1.

Table 4.41 opal_progress_thread_mode (specifies the operation mode of the MPI asynchronous processing
progress thread)

MCA parameter value Content

1 Specifies to use manual section (without MPI call) mode to promote asynchronous communication
using an assistant core.
Refer to "6.2 Promoting Asynchronous Communication Using an Assistant Core" for details.

2 Specifies to use manual section (with MPI call) mode to promote asynchronous communication using
an assistant core.

3 Specifies to use automatic section mode to promote asynchronous communication using an assistant
core.

0 Specifies that function of promoting asynchronous communication using an assistant core is not used.
The default value for this parameter is 0. If a value smaller than 0 or larger then 3 is specified in this
parameter, 0 is assumed.

Table 4.42 orte_abort_print_stack (outputs stack trace informations)

MCA parameter value Content

1 If MPI_Abort function is called, or if the MPI library ends the execution of the MPI program detecting
abnormalities of the execution environment and the communication, stack trace information are output
following the error message to the standard error.

It might be useful for the specification of the cause of abnormal termination.

The default value for this parameter is 1.

0 Stack trace information are not output.

Table 4.43 plm_ple_cpu_affinity (specifies CPU affinity for MPI processes)

MCA parameter value Content

1 Specifies that the optimum number of CPUs (cores) is bound to each MPI process if neither compiler
automatic parallelization function nor OpenMP function is used.

If those functions are used, this MCA parameter specification is disabled because CPU (core) binding
for parallel threads is performed by the compiler.

Which CPU (core) bind to the process is decided based on the numanode_assign_policy in the
VCOORD_FILE file or the MCA parameter plm_ple_numanode_assign_policy.

The default value for this parameter is 1.

0 Specifies that MPI processes are not bound to CPUs (cores) and they are scheduled by the operating
system, if neither compiler automatic parallelization function nor OpenMP function is used.

If those functions are used, this MCA parameter specification is disabled because CPU (core) binding
for parallel threads is performed by the compiler.

- 24 -

MCA parameter value Content

Refer to Fujitsu compiler manuals for details of CPU (core) binding for threads.

In case of specifying this MCA parameter value, two or more processes may be bound to one CPU
(core), but only rarely. Use of the sched_setaffinity functionin case of specifying this MCA parameter
value is recommended.

The operation is not guaranteed if a value other than 0 or 1 is specified.

"l" in both the character string pml and ple used in the MCA parameter name is a lowercase "L".

Table 4.44 plm_ple_memory_allocation_policy (specifies the NUMA memory policy)

MCA parameter value Content

Either of following value

localalloc
interleave_local
interleave_nonlocal
interleave_all
bind_local
bind_nonlocal
bind_all
prefer_local
prefer_nonlocal

Specifies the NUMA memory policy of the MPI processes. The value below can be specified. Refer
to "Table 4.53 NUMA memory allocation policy" for details.

- localalloc: The memory is allocated from the NUMA node that CPU (core) where the process is
allocated belongs.

- interleave_local: The memory is alternately allocated from each NUMA node in "Local node set".

- interleave_nonlocal: The memory is alternately allocated from each NUMA node in "Non-local
node set".

- interleave_all: The memory is alternately allocated from each NUMA node in "All node set".

- bind_local: The memory allocations will come from the NUMA node that belongs to "Local node
set" with the lowest numeric node ID first.

- bind_nonlocal: The memory allocations will come from the NUMA node that belongs to "Non-
local node set" with the lowest numeric node ID first.

- bind_all: The memory is allocated in the NUMA node of "All node set".

- prefer_local: The lowest numeric node ID in the NUMA node that belongs to "Local node set"
will be selected as the preferred node, then the memory allocations will come from the preferred
node.

- prefer_nonlocal: The lowest numeric node ID in the NUMA node that belongs to "Non-local node
set" will be selected as the preferred node, then the memory allocations will come from the
preferred node.

Refer to the Job Operation Software manual for information on NUMA node.

The specification of the NUMA memory policy is decided by the following priority levels:

1. Specification with VCOORD_FILE file

2. Specification with this parameter

3. (If memory_allocation_policy is not specified in the VCOORD_FILE file, and this parameter
is omitted) localalloc

"l" in both the character string pml and ple used in the MCA parameter name is a lowercase "L".

Table 4.45 plm_ple_numanode_assign_policy (specifies the CPUs (cores) allocation policy to the NUMA nodes)

MCA parameter value Content

Either of following value

simplex

share_cyclic

share_band

Specifies the CPUs (cores) allocation policy that allocates the MPI process to the NUMA nodes. The
value below can be specified. Refer to "Table 4.54 CPU (core) allocation policy" for details.

- simplex: The processes are allocated to the NUMA node without sharing with other processes.

- share_cyclic: The processes are allocated to the NUMA node with sharing with other processes.
The processes are sequentially allocated in different NUMA nodes.

- 25 -

MCA parameter value Content

- share_band: The processes are allocated to the NUMA node with sharing with other processes.
The processes are sequentially allocated in a same NUMA node.

Refer to the Job Operation Software manual for information on NUMA node.

The specification of the CPUs (cores) allocation policy is decided by the following priority levels:

1. Specification with VCOORD_FILE file

2. Specification with this parameter

3. (If numanode_assign_policy is not specified in the VCOORD_FILE file, and this parameter is
omitted) share_cyclic

"l" in both the character string pml and ple used in the MCA parameter name is a lowercase "L".

Table 4.46 pml_ob1_use_hasty_rendezvous (use of Hasty Rendezvous communication)

MCA parameter value Content

1 Specifies that Hasty Rendezvous communication is used. Read "6.5 Hasty Rendezvous
Communication" for details.

Usually, with Rendezvous communication, the send side performs write communication (Put) to the
receive side. Hasty Rendezvous communication uses this communication (Put).

2 Specify that Hasty Rendezvous communication uses read communication (Get) by the receive side
from the send side, in addition to write communication (Put) which is used when 1 is specified for this
parameter. Therefore, Hasty Rendezvous communication uses both communications (Put/Get).

However, with nonblocking communication when the receive side performs read communication (Get)
from the send side and there are repeated attempts to communicate simultaneously with multiple
processes, conversely this might cause performance to deteriorate. It is essential to take care with using
this specification.

0 Specifies that Hasty Rendezvous communication is not used.

The default value for this parameter is 0.

"l" in the character string pml used in the MCA parameter name is a lowercase "L", and the "1" in the ob1 character string is a numeric.

Table 4.47 pml_ob1_use_stride_rdma (use of Stride RDMA communication)

MCA parameter value Content

1 Specifies that Stride RDMA communication is used. Refer to "6.6 Stride RDMA Communication" for
details.

The default value for this parameter is 1.

0 Specifies that Stride RDMA communication is not used.

"l" in the character string pml used in the MCA parameter name is a lowercase "L", and the "1" in the ob1 character string is a numeric.

4.3 Environment Variables
When an MPI program is executed by this system, environment variables can be used to control the behavior when the MPI library is
executed. The environment variables provided by this system have names starting with the reserved character string "OMPI_".

A dynamically generated parallel process inherits the environment variables of the original parallel process that generated it. However,
of all the environment variables set in the program during execution of the original parallel process, only those with names starting with
the string "OMPI" are inherited.

The environment variables provided by this system are just items derived from the MCA parameters. By adding "OMPI_MCA_" to the
start of an MCA parameter name, the MCA parameter can be used as an environment variable. This is possible for all of the MCA
parameters. Refer to "4.2 MCA Parameters" for details.

- 26 -

An example of setting an MCA parameter as an environment variable is shown below.

 Example

MCA parameter specification example:

-mca mca_base_param_file_prefix MCAFILE

The MCA parameter "mca_base_param_file_prefix" specifies the AMCA parameter file. Attaching "OMPI_MCA_" to the start of this
parameter name allows it to be used as the environment variable name.

Example of the above MCA parameter used as an environment variable:

OMPI_MCA_mca_base_param_file_prefix=MCAFILE

4.4 mpiexec(1) Return Values
In principle, the mpiexec(1) return values are the values that the user has specified in the MPI program or the values set by the language
processor. If there are multiple MPI program processes, the return value of the first process identified internally becomes the mpiexec(1)
return value. If an MPI program ends abnormally, the return values of the MPI program that ended abnormally become the return values.
If a dynamically generated parallel process ended abnormally, the return value becomes the return value of the abnormally ended dynamic
process. If this system ends abnormally, the return values specified by this system become the return values.

However, in this system, the return values shown below are reserved. The return values reserved by this system take priority. Therefore,
users must avoid using these return values when setting return values in MPI programs.

Table 4.48 mpiexec(1) return values reserved in this system

mpiexec return value Explanation

1 Indicates occurrence of an mpiexec(1) option settings error, an internal inconsistency
within this system, or a fatal error within an MPI function.

2 to 54 If there is an error class regulated by the MPI standards within an MPI function in the
MPI program, the corresponding error code becomes the return value.

Refer to "Appendix A Error Class List" for the error classes regulated by the MPI
standards.

Logical sum of signal number and 0x80 Indicates the return value if mpiexec(1) or the MPI program ended abnormally.

The value is the logical sum of the signal number received when the MPI program ended
abnormally and 0x80.

255 Indicates the return value if the parallel execution environment side of Job Operation
Software ended abnormally.

4.5 VCOORD_FILE file format
The VCOORD_FILE file specifies coordinates and the number of CPUs (cores) allocated to the processes in the form of the following.

Table 4.49 Form of the coordinates

Type of coordinates Format

1-dimensional (X)

2-dimensional (X,Y)

3-dimensional (X,Y,Z)

- 27 -

Table 4.50 Form of the number of CPUs (cores)
Type of options Format

The number of CPUs (cores) core=N

Table 4.51 Specification of NUMA memory allocation policy

Content Format

Method of allocating NUMA memory memory_allocation_policy=value

Either of value in "Table 4.44 plm_ple_memory_allocation_policy (specifies the NUMA memory policy)" can be specified for a policy.

When MCA parameter plm_ple_memory_allocation_policy specification exists and this specification exists in the VCOORD_FILE file,
the VCOORD_FILE file specification becomes effective.

When both specifications do not exist, it is equal to the result of specifying "localalloc" for MCA parameter
plm_ple_memory_allocation_policy.

Refer to the Job Operation Software manual for information on NUMA node.

Table 4.52 Specification of CPU (core) allocation policy to the NUMA node

Content Format

Method of allocating CPU (core) numanode_assign_policy=value

Either of value in "Table 4.45 plm_ple_numanode_assign_policy (specifies the CPUs (cores) allocation policy to the NUMA nodes)" can
be specified for a policy.

When MCA parameter plm_ple_numanode_assign_policy specification exists and this specification exists in the VCOORD_FILE file,
the VCOORD_FILE file specification becomes effective.

When both specifications do not exist, it is equal to the result of specifying "share_cyclic" for MCA parameter
plm_ple_numanode_assign_policy.

Refer to the Job Operation Software manual for information on NUMA node.

The following examples show the format of the VCOORD_FILE file.

 Example

Format 1. Specifying the logical coordinates and the numbers of CPUs (cores)

In this form, both the coordinates with which each process is generated and the numbers of CPUs (cores) allocated to the processes are
specified.

(0) core=8
(0) core=8
(1) core=4
(1) core=4
(1) core=4
(1) core=4
(2) core=1
(3) core=1

Format 2. Specifying only the logical coordinates

In this form, only the coordinates with which each process is generated are specified. The numbers of CPUs (cores) allocated to the
processes are decided based on the MCA parameter plm_ple_cpu_affinity by Job Operation Software.

(0)
(0)
(1)
(1)
(2)
(2)

- 28 -

(3)
(3)

Format 3. specifying only the number of CPUs (cores)

In this form, only the numbers of CPUs (cores) allocated to the processes are specified. The coordinates with which each process is
generated are decided by Job Operation Software.

core=8
core=8
core=4
core=4
core=4
core=4
core=1
core=1

Format 4. Specifying the NUMA memory allocation policy

In this form, the allocation policy of the NUMA memory in addition to form 1 or 2 or 3 are specified.

(0) core=2 memory_allocation_policy=localalloc

(0) memory_allocation_policy=interleave_local

core=2 memory_allocation_policy=interleave_all

Format 5. Specifying the CPU (core) allocation policy to the NUMA node

In this form, the CPU (core) allocation policy to the NUMA node in addition to form 1 or 2 or 3 are specified.

(0) core=2 numanode_assign_policy=simplex

(0) numanode_assign_policy=share_cyclic

core=2 numanode_assign_policy=share_band

2-dimensional coordinates or 3-dimensional coordinates also can be specified. Moreover, multiple processes can be generated to the same
coordinates by writing the same coordinates multiple times.

When two or more of core, memory_allocation_policy, and numanode_assign_policy are specified, there is no restriction in order.

 Note

In the following cases, Job Operation Software error occurs

- The number of processes generated with the same coordinates exceeds the number of processes per node decided by "--mpi proc="
option of pjsub command.

- The total number of CPUs (cores) allocated to the process generated with the same coordinates exceeds the number of CPUs (cores)
installed in the compute node.

- The lines with coordinates and the lines without coordinates exist together in one VCOORD_FILE file.

- The coordinate is written besides the head of the line.

- The number of processes specified with mpiexec(1) (the number of processes specified with pjsub(1) when the mpiexec(1)'s
specification is omitted) exceeds the number of lines of the VCOORD_FILE file.

- There is a possibility that CPU (core) allocation to the process fails due to the lack of the number of CPUs (cores) when one or more
processes where "simplex" was specified for CPU (core) allocation policy to the NUMA node exist.

- 29 -

4.6 Settings in NUMA system
The compute nodes in the FX100 system are NUMA system. The MCA parameter is prepared to decrease job execution performance
deteriorate because of the memory access speed in the NUMA system.

4.6.1 Setting value of NUMA memory allocation policy
The memory policy can be set by the MCA parameter plm_ple_memory_allocation_policy. Values that can be specified are shown in the
table below. Refer to "Table 4.44 plm_ple_memory_allocation_policy (specifies the NUMA memory policy)" for information on the MCA
parameter plm_ple_memory_allocation_policy.

In the explanation of this table, NUMA node sets are defined as follows.

- All node set (all)

Set of all NUMA nodes in a compute node

- Local node set (local)

Set union of NUMA node that each CPU core where process is allocated belongs

- Non-local node set (nonlocal)

Set of elements in "All node set" but not in "Local node set"

Table 4.53 NUMA memory allocation policy

Value Content Note

localalloc The memory is allocated from the NUMA node that
CPU (core) where the process is allocated belongs. If
that NUMA node contains no free memory, the system
will attempt to allocate memory from a "nearby" node.

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_DEFAULT,NULL, ..)

interleave_local The memory is alternately allocated from each NUMA
node in "Local node set". The memory is allocated from
the next NUMA node in "Local node set" when there is
no remainder capacity in the memory of the NUMA
node that tried to be allocated. It operates according to
the specification of OS when there is no remainder
capacity of the memory of all NUMA nodes that belongs
to the "Local node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_INTERLEAVE,local, ..)

interleave_nonlocal The memory is alternately allocated from each NUMA
node in "Non-local node set". The memory is allocated
from the next NUMA node in "Non-local node set"
when there is no remainder capacity in the memory of
the NUMA node that tried to be allocated. It operates
according to the specification of OS when there is no
remainder capacity of the memory of all NUMA nodes
that belongs to the "Non-local node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_INTERLEAVE,nonlocal, ..)

It fails in the call of set_mempolicy(2)
when "Non-local node set" is empty. In
that case, the warning message PLE 0601
is output to the standard error output of
the job, and processing is continued. In
this case, the NUMA memory allocation
policy of parallel processes is equal to the
result of calling the following system
calls from the parallel processes.

set_mempolicy
(MPOL_DEFAULT,NULL, ..)

- 30 -

Value Content Note

interleave_all The memory is alternately allocated from each NUMA
node in "All node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_INTERLEAVE,all, ..)

bind_local The memory allocations will come from the NUMA
node that belongs to "Local node set" with the lowest
numeric node ID first. It fails in the allocation when
there is no remainder capacity of the memory of the
NUMA node that belongs to "Local node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_BIND,local, ..)

bind_nonlocal The memory allocations will come from the NUMA
node that belongs to "Non-local node set" with the
lowest numeric node ID first. It fails in the allocation
when there is no remainder capacity of the memory of
the NUMA node that belongs to "Non-local node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_BIND,nonlocal, ..)

It fails in the call of set_mempolicy(2)
when "Non-local node set" is empty. In
that case, the warning message PLE 0601
is output to the standard error output of
the job, and processing is continued. In
this case, the NUMA memory allocation
policy of parallel processes is equal to the
result of calling the following system
calls from the parallel processes.

set_mempolicy
(MPOL_DEFAULT,NULL, ..)

bind_all The memory is allocated in the NUMA nodes of "All
node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_BIND,all, ..)

prefer_local The lowest numeric node ID in the NUMA node that
belongs to "Local node set" will be selected as the
preferred node. The memory allocation is done the
preferred node by priority. If that NUMA node contains
no free memory, the system will attempt to allocate
memory from a "nearby" node.

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_PREFERRED,local, ..)

prefer_nonlocal The lowest numeric node ID in the NUMA node that
belongs to "Non-local node set" will be selected as the
preferred node. The memory allocation is done the
preferred node by priority. If that NUMA node contains
no free memory, the system will attempt to allocate
memory from a "nearby" node.

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_PREFERRED,nonlocal, ..)

The specification of "nonlocal" is
disregarded when "Non-local node set"
does not exist, and it is equal to the result
of specifying "localalloc".

- 31 -

4.6.2 Setting value of CPU (core) allocation policy
The CPU (core) allocation policy can be set by the MCA parameter plm_ple_numanode_assign_policy. Values that can be specified are
shown in the table below. Refer to "Table 4.45 plm_ple_numanode_assign_policy (specifies the CPUs (cores) allocation policy to the
NUMA nodes)" for information on the MCA parameter plm_ple_numanode_assign_policy.

Table 4.54 CPU (core) allocation policy

Value Content

simplex The processes are allocated to the NUMA node without sharing with other processes.

share_cyclic The processes are allocated to the NUMA node with sharing with other processes.
The processes are sequentially allocated in a different NUMA node.

share_band The processes are allocated to the NUMA node with sharing with other processes.
The processes are sequentially allocated in a same NUMA node.

The allocation image is shown as follows.

Figure 4.1 Example of allocating process for simplex

Figure 4.2 Example of allocating process for share_cyclic

- 32 -

Figure 4.3 Example of allocating process for share_band

- 33 -

Chapter 5 Extended Interfaces
This chapter describes the following MPI extended interfaces provided by this system:

- Rank query interface

- Extended RDMA interface

- Section specifying MPI statistical information interface

- Extended persistent communication requests interface

- MPI asynchronous communication promotion section specifying interface

 Information

Supplementation 1) Rank query interface, Extended RDMA interface

Note that these extended interfaces support only the C language, and cannot be used in the following cases.

- When the MPI program uses dynamic process generation

- When the job type is node-sharing job

Refer to the Job Operation Software manual for information on node-sharing job.

Supplementation 2) Section specifying MPI statistical information interface, Extended persistent communication requests interface, MPI
asynchronous communication promotion section specifying interface

This extended interface supports C language and Fortran.

Use C interface in C++.

5.1 Rank Query Interface
This system can execute MPI programs in logical node space that has a torus structure of from one to three dimensions. Job Operation
Software allocates logical coordinates in this logical node space. These logical coordinates may be referred to simply as coordinates. An
MPI program with a torus structure process shape can be deployed at a suitable location within this logical node space.

It is useful to know from within the MPI program the position (coordinates) where each parallel process rank of the MPI program is
deployed in the torus structure process shape. For example, this system normally deploys two parallel processes with neighboring torus
structure shape coordinates such that they are physically at a distance of one hop. Knowing the rank numbers of two neighboring parallel
processes enables communication performance to be considered when programming.

Table below shows a list of concrete functions for the rank query interface provided by this system.

Table 5.1 Rank query interface function list

Function name Function overview

FJMPI_Topology_get_dimension Gets the number of dimensions given to MPI_COMM_WORLD

FJMPI_Topology_get_shape Gets the process shape given to MPI_COMM_WORLD

FJMPI_Topology_rank2x Gets the X coordinate value from the rank number

FJMPI_Topology_rank2xy Gets the XY coordinate value from the rank number

FJMPI_Topology_rank2xyz Gets the XYZ coordinate value from the rank number

FJMPI_Topology_x2rank Gets the rank number from the X coordinate value

FJMPI_Topology_xy2rank Gets the rank number from the XY coordinate value

FJMPI_Topology_xyz2rank Gets the rank number from the XYZ coordinate value

- 34 -

Function name Function overview

FJMPI_Topology_cart_reorder Gets the value that determines the rank of a communicator with a
Cartesian structure

FJMPI_Topology_sys_rank2xyzabc Gets the Tofu coordinates from the rank number

FJMPI_Topology_sys_xyzabc2rank Gets the rank number from the Tofu coordinates

FJMPI_Topology_rel_rank2xyzabc Gets the relative Tofu coordinates from the rank number

FJMPI_Topology_rel_xyzabc2rank Gets the rank number from the relative Tofu coordinates

5.1.1 Querying the Number of Dimensions and Shape

5.1.1.1 FJMPI_Topology_get_dimension
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_get_dimension(int *size)

<Explanation>

This query returns the number of dimensions in the process shape where the MPI processes belonging to the MPI_COMM_WORLD
generated internally when MPI_Init is executed are deployed.

Type Variable Explanation IN/OUT

int* size Number of dimensions in the process shape of processes belonging to
MPI_COMM_WORLD

OUT

<Return value>

Normal 0

Error -1 - If this function was called from a dynamically generated MPI process

-3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

5.1.1.2 FJMPI_Topology_get_shape
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_get_shape(int *x, int *y, int *z)

<Explanation>

This query returns the MPI parallel process shape XYZ given to the MPI_COMM_WORLD generated internally when the MPI_Init
function is executed.

Type Variable Explanation IN/OUT

int* x Size of the X axis of the process shape given to MPI_COMM_WORLD OUT

int* y Size of the Y axis of the process shape given to MPI_COMM_WORLD OUT

int* z Size of the Z axis of the process shape given to MPI_COMM_WORLD OUT

- 35 -

<Return value>

Normal 0

Error -1 - If this function was called from a dynamically generated MPI process

-3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

The Y axis and Z axis values are 0 if the process shape is one-dimensional. The Z axis value is 0 if the process shape is two-dimensional.

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

5.1.2 Querying the Coordinates

5.1.2.1 FJMPI_Topology_rank2x
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_rank2x(int rank, int *x)

<Explanation>

This query returns the X coordinate value internally allocated to each parallel process when the MPI_Init function is executed.

Type Variable Explanation IN/OUT

int rank Specify the rank number of the parallel process for which the coordinate is
to be fetched.

IN

int* x Value of the X coordinate of the parallel process corresponding to the rank
number

OUT

<Return value>

Normal 0

Error -1 - If this function was called from a dynamically generated MPI process

- If this function was called even though the process shape when the job was executed was two-
dimensional or three-dimensional

-3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

The rank number to be specified must be within the rank number range given to MPI_COMM_WORLD.

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

5.1.2.2 FJMPI_Topology_rank2xy
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_rank2xy(int rank, int *x, int *y)

- 36 -

<Explanation>

This query returns the XY coordinate values internally allocated to each parallel process when the MPI_Init function is executed.

Type Variable Explanation IN/OUT

int rank Specify the rank number of the parallel process for which the coordinates
are to be fetched.

IN

int* x Value of the X coordinate of the parallel process corresponding to the rank
number

OUT

int* y Value of the Y coordinate of the parallel process corresponding to the rank
number

OUT

<Return value>

Normal 0

Error -1 - If this function was called from a dynamically generated MPI process

- If this function was called even though the process shape when the job was executed was one-
dimensional or three-dimensional

-3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

The rank number to be specified must be within the rank number range given to MPI_COMM_WORLD.

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

5.1.2.3 FJMPI_Topology_rank2xyz
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_rank2xyz(int rank, int *x, int *y, int *z)

<Explanation>

This query returns the XYZ coordinate values internally allocated to each parallel process when the MPI_Init function is executed.

Type Variable Explanation IN/OUT

int rank Specify the rank number of the parallel process for which the coordinates
are to be fetched.

IN

int* x Value of the X coordinate of the parallel process corresponding to the rank
number

OUT

int* y Value of the Y coordinate of the parallel process corresponding to the rank
number

OUT

int* z Value of the Z coordinate of the parallel process corresponding to the rank
number

OUT

<Return value>

Normal 0

Error -1 - If this function was called from a dynamically generated MPI process

- 37 -

- If this function was called even though the process shape when the job was executed was one-
dimensional or two-dimensional

-3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

The rank number to be specified must be within the rank number range given to MPI_COMM_WORLD.

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

5.1.2.4 FJMPI_Topology_sys_rank2xyzabc
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_sys_rank2xyzabc(int rank, int *x, int *y, int *z, int *a, int *b, int *c)

<Explanation>

This query returns the Tofu coordinate values allocated to each parallel process when the MPI_Init function is executed.

The coordinates actually allocated on the system are returned.

Type Variable Explanation IN/OUT

int rank Specify the rank number of the parallel process for which the coordinates
are to be fetched.

IN

int* x Value of the Tofu coordinates X coordinate of the parallel process
corresponding to the rank number

OUT

int* y Value of the Tofu coordinates Y coordinate of the parallel process
corresponding to the rank number

OUT

int* z Value of the Tofu coordinates Z coordinate of the parallel process
corresponding to the rank number

OUT

int* a Value of the Tofu coordinates A coordinate of the parallel process
corresponding to the rank number

OUT

int* b Value of the Tofu coordinates B coordinate of the parallel process
corresponding to the rank number

OUT

int* c Value of the Tofu coordinates C coordinate of the parallel process
corresponding to the rank number

OUT

<Return value>

Normal 0

Error -3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

The rank number to be specified must be within the rank number range given to MPI_COMM_WORLD.

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

- 38 -

5.1.2.5 FJMPI_Topology_rel_rank2xyzabc
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_rel_rank2xyzabc(int rank, int *x, int *y, int *z, int *a, int *b, int *c)

<Explanation>

This query returns the relative Tofu coordinates, the base coordinates being a node within space allocated by the job that executes the
MPI program, of the node with the corresponding rank.

The base coordinates are the rank 0 that applies when the rank-map-hostfile is not specified in the --mpi option of the pjsub command.

Type Variable Explanation IN/OUT

int rank Specify the rank number of the parallel process for which the coordinates
are to be fetched.

IN

int* x Value of the relative Tofu coordinates X coordinate of the parallel process
corresponding to the rank number

OUT

int* y Value of the relative Tofu coordinates Y coordinate of the parallel process
corresponding to the rank number

OUT

int* z Value of the relative Tofu coordinates Z coordinate of the parallel process
corresponding to the rank number

OUT

int* a Value of the relative Tofu coordinates A coordinate of the parallel process
corresponding to the rank number

OUT

int* b Value of the relative Tofu coordinates B coordinate of the parallel process
corresponding to the rank number

OUT

int* c Value of the relative Tofu coordinates C coordinate of the parallel process
corresponding to the rank number

OUT

<Return value>

Normal 0

Error -3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

The rank number to be specified must be within the rank number range given to MPI_COMM_WORLD.

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

This function cannot be used when the job type is mesh mode or non-contiguous mode.

Refer to the Job Operation Software manual for information on mesh mode and non-contiguous mode.

5.1.3 Querying the Rank

5.1.3.1 FJMPI_Topology_x2rank
< Format >

#include <mpi-ext.h>
int FJMPI_Topology_x2rank(int x, int *rank)

- 39 -

<Explanation>

From the specified X coordinate value, this query returns the parallel process rank number allocated to MPI_COMM_WORLD.

Type Variable Explanation IN/OUT

int x Specify the X coordinate value of the parallel process rank number to be
fetched.

IN

int* rank Parallel process rank number deployed to the coordinate OUT

<Return value>

Normal 0

Error -1 - If this function was called from a dynamically generated MPI process

- If this function was called even though the process shape when the job was executed was two-
dimensional or three-dimensional

- If this function was called even though multiple parallel processes are allocated within the node

-2 - If no parallel processes are deployed to the specified coordinate

-3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

5.1.3.2 FJMPI_Topology_xy2rank
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_xy2rank(int x, int y, int *rank)

<Explanation>

From the specified XY coordinate values, this query returns the parallel process rank number allocated to MPI_COMM_WORLD.

Type Variable Explanation IN/OUT

int x Specify the X coordinate value of the parallel process rank number to be
fetched.

IN

int y Specify the Y coordinate value of the parallel process rank number to be
fetched.

IN

int* rank Parallel process rank number deployed to the coordinate OUT

<Return value>

Normal 0

Error -1 - If this function was called from a dynamically generated MPI process

- If this function was called even though the process shape when the job was executed was one-
dimensional or three-dimensional

- If this function was called even though multiple parallel processes are allocated within the node

-2 - If no parallel processes are deployed to the specified coordinate

-3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

- 40 -

<Notes>

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

5.1.3.3 FJMPI_Topology_xyz2rank
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_xyz2rank(int x, int y, int z, int *rank)

<Explanation>

From the specified XYZ coordinate values, this query returns the parallel process rank number allocated to MPI_COMM_WORLD.

Type Variable Explanation IN/OUT

int x Specify the X coordinate value of the parallel process rank number to be
fetched.

IN

int y Specify the Y coordinate value of the parallel process rank number to be
fetched.

IN

int z Specify the Z coordinate value of the parallel process rank number to be
fetched.

IN

int* rank Parallel process rank number deployed to the coordinate OUT

<Return value>

Normal 0

Error -1 - If this function was called from a dynamically generated MPI process

- If this function was called even though the process shape when the job was executed was one-
dimensional or two-dimensional

- If this function was called even though multiple parallel processes are allocated within the node

-2 - If no parallel processes are deployed to the specified coordinate

-3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

5.1.3.4 FJMPI_Topology_sys_xyzabc2rank
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_sys_xyzabc2rank(int x, int y, int z, int a, int b, int c, int *rank)

<Explanation>

From the specified Tofu coordinate values, this query returns the rank number of parallel process allocated to MPI_COMM_WORLD.

- 41 -

Type Variable Explanation IN/OUT

int x Specify the X coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int y Specify the Y coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int z Specify the Z coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int a Specify the A coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int b Specify the B coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int c Specify the C coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int* rank Parallel process rank number deployed to the coordinate OUT

<Return value>

Normal 0

Error -1 - If this function was called from a dynamically generated MPI process

- If this function was called even though multiple parallel processes are allocated within the node

-2 - If no parallel processes are deployed to the specified coordinate

-3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

5.1.3.5 FJMPI_Topology_rel_xyzabc2rank
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_rel_xyzabc2rank(int x, int y, int z, int a, int b, int c, int *rank)

<Explanation>

From the specified relative Tofu coordinates, this query returns the rank number of parallel process allocated to MPI_COMM_WORLD.

The base coordinates are the rank 0 that applies when the rank-map-hostfile is not specified in the --mpi option of the pjsub command.

Type Variable Explanation IN/OUT

int x Specify the X coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int y Specify the Y coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int z Specify the Z coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int a Specify the A coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

- 42 -

Type Variable Explanation IN/OUT

int b Specify the B coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int c Specify the C coordinate value of the Tofu coordinates of the parallel process
rank number to be fetched.

IN

int* rank Parallel process rank number deployed to the coordinate OUT

<Return value>

Normal 0

Error -1 - If this function was called from a dynamically generated MPI process

- If this function was called even though multiple parallel processes are allocated within the node

-2 - If no parallel processes are deployed to the specified coordinate

-3 - If the job type is node-sharing job
Refer to the Job Operation Software manual for information on node-sharing job.

<Notes>

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

This function cannot be used when the job type is mesh mode or non-contiguous mode.

Refer to the Job Operation Software manual for information on mesh mode and non-contiguous mode.

5.1.4 Querying the Ranking of a Communicator that Has a Cartesian
Structure

5.1.4.1 FJMPI_Topology_cart_reorder
<Format>

#include <mpi-ext.h>
int FJMPI_Topology_cart_reorder(MPI_Comm comm, int *reorder)

<Explanation>

This query returns information used to determine whether or not rankings were executed from the topology information of a
communicator that has a Cartesian structure. If the value of the reorder argument is 1, this indicates that rank reordering is implemented.
If the value of the reorder argument is 0, this indicates that rank reordering is not implemented.

Type Variable Explanation IN/OUT

MPI_Comm comm Communicator for which ranking is to be determined IN

int* reorder Communicator ranking information OUT

<Return value>

Normal 0

Error -1 - If an inter-group communicator was specified

- If a communicator that does not have a Cartesian structure was specified

<Notes>

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- 43 -

- This function is called before the MPI_Init function is executed

- This function is called after the MPI_Finalize function is executed

5.1.5 Sample Program
A sample program of a rank query interface is shown below.

This program performs the following processing with assumption that the process shape is three-dimensional.

1. Queries the MPI process number of dimensions and process shape

2. Obtains the coordinates of this process and the neighboring process for each coordinate, and gets the rank information from those
coordinates

3. Obtains the coordinates for each coordinate from the rank information queried in 2 above, and checks that these are the same as the
original coordinates

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <mpi.h>
#include <mpi-ext.h>

/* Extended function return value */
#define ERR_USER_OP -1
#define ERR_NO_PROC -2

#define FAILURE 1

int main(int argc, char *argv[])
{
 int x, y, z, i, size, rank;
 int rc, dim;
 int shape_x, shape_y, shape_z;
 int tmp_x, tmp_y, tmp_z;
 int next_x, next_y, next_z;
 int left, right, high, low, far, near, ans;
 char host[255];

 gethostname(host, 255);

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 rc = FJMPI_Topology_get_dimension(&dim);
 if (MPI_SUCCESS != rc) {
 fprintf(stderr, "[%s] FJMPI_Topology_get_dimension ERROR\n", host);
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }

 /* Result check */
 if (3 != dim) {
 fprintf(stderr, "[%s] Dimension size ERROR\n", host);
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }

 rc = FJMPI_Topology_get_shape(&shape_x, &shape_y, &shape_z);
 if (MPI_SUCCESS != rc) {
 fprintf(stderr, "[%s] FJMPI_Topology_get_shape ERROR\n", host);
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }

- 44 -

 /***
 * Get own coordinates *
 ***/
 rc = FJMPI_Topology_rank2xyz(rank, &x, &y, &z);
 if (MPI_SUCCESS != rc) {
 fprintf(stderr, "[%s] FJMPI_Topology_rank2xyz ERROR\n", host);
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }

 /***
 * Get neighboring processes before and after each coordinate *
 ***/
 for(i=0; i < 6; i++)
 {
 switch(i)
 {
 case 0: /* Neighboring X axis */
 case 1:
 ans = (0 == i) ? left : right;
 tmp_x = (0 == i) ?
 (x - 1 >= 0) ? x - 1 : shape_x - 1
 : (x + 1 < shape_x) ? x + 1 : 0;
 tmp_y = y;
 tmp_z = z;
 break;
 case 2: /* Neighboring Y axis */
 case 3:
 ans = (2 == i) ? low : high;
 tmp_y = (2 == i) ?
 (y - 1 >= 0) ? y - 1 : shape_y - 1
 : (y + 1 < shape_y) ? y + 1 : 0;
 tmp_x = x;
 tmp_z = z;
 break;
 case 4: /* Neighboring Z axis */
 case 5:
 ans = (4 == i) ? near : far;
 tmp_z = (4 == i) ?
 (z - 1 >= 0) ? z - 1 : shape_z - 1
 : (z + 1 < shape_z) ? z + 1 : 0;
 tmp_x = x;
 tmp_y = y;
 break;
 }
 rc = FJMPI_Topology_xyz2rank(tmp_x, tmp_y, tmp_z, &ans);
 switch (rc) {
 case MPI_SUCCESS:
 break;
 case ERR_USER_OP:
 fprintf(stderr, "[%s] USER OP ERROR\n", host);
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 case ERR_NO_PROC:
 /* Searches until the closest MPI process is found */
 while (rc == ERR_NO_PROC) {
 tmp_x = tmp_x - 1;
 rc = FJMPI_Topology_xyz2rank(tmp_x, tmp_y, tmp_z, &ans);
 }
 break;
 default:
 fprintf(stderr, "[%s] FATAL ERROR\n", host);
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }

- 45 -

 /***
 * Checks if used coordinates and fetched coordinates are the same *
 ***/
 rc = FJMPI_Topology_rank2xyz(ans, &next_x, &next_y, &next_z);
 if (MPI_SUCCESS != rc) {
 fprintf(stderr, "[%s] FJMPI_Topology_rank2xyz ERROR\n", host);
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }

 if ((next_x != tmp_x) || (next_y != tmp_y) || (next_z != tmp_z)) {
 fprintf(stderr, "[%s] PARAM ERROR\n", host);
 fprintf(stderr, "[%s %d] [user:%u-%u-%u] [get:%u-%u-%u] [rank|next:%d|%d]\n",
 host, i, tmp_x, tmp_y, tmp_z, next_x, next_y, next_z, rank, ans);
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 }

 MPI_Finalize();

 return 0;

}

5.2 Extended RDMA Interface

 Note

The extended RDMA interface is an interface for the senior of the communication programming. When using this interface, well versed
in the specification of the Tofu interconnect is required. Use this interface with extreme caution.

Use of this interface enables communication that maximizes the use of the Tofu interconnect physical configuration, such as communication
using four TNIs and communication using detour routes.

See table below for a list of the practical functions for the extended RDMA interface supported by this system.

Table 5.2 List of functions supported by the extended RDMA interface

Function name Overview of feature

FJMPI_Rdma_init Initialization of the extended RDMA interface

FJMPI_Rdma_finalize Extended RDMA interface end processing

FJMPI_Rdma_reg_mem Memory registration

FJMPI_Rdma_dereg_mem Release of memory registration

FJMPI_Rdma_get_remote_addr Fetches remote DMA address

FJMPI_Rdma_put RDMA WRITE communication

FJMPI_Rdma_get RDMA READ communication

FJMPI_Rdma_armw RDMA ARMW communication

FJMPI_Rdma_poll_cq RDMA completion confirmation

FJMPI_Rdma_poll_cq_ret_data RDMA completion confirmation and data fetch associated with the
communication

This system supports operations in a multi-thread environment. The thread support level of this system is MPI_THREAD_SERIALIZED.
See Section "6.3.5 Operations in a Multi-Threaded Environment" for details.

- 46 -

5.2.1 Extended RDMA Interface Assumed Knowledge

5.2.1.1 Terminology

Term Meaning

TNI (Tofu Network
Interface)

A physical NIC that is used for communication in the Tofu Interconnect. Each node has 4 TNIs. Each TNI
has an instruction queue and a completion queue.

DMA address A virtual address used to specify an area to exchange data in a buffer during RDMA communication. By
adding an offset to a DMA address that can be obtained using FJMPI_Rdma_get_remote_addr function
or FJMPI_Rdma_reg_mem function, data from any location in the buffer can be sent.

Memory ID The ID for identifying a buffer. 0 to 510 can be used as the memory ID.

Message tag number The number arbitrarily specified by the user for identifying send data when RDMA communication is used
for sending. 0 to 14 can be used as the message tag number.

Virtual NIC A virtual communication resource. A process has 4 virtual NICs and each NIC is associated with a physical
NIC (TNIs). The correspondence between physical NICs (TNIs) and virtual NICs is 1:1 if there is one
node for one process. If there are multiple processes at one node, multiple virtual NICs may correspond
to one physical NIC (TNI).

Instruction queue A queue that stores communication instructions. The instruction queue has a maximum capacity of 1,997
entries.

Completion queue (CQ) A queue for notifying completion. The completion queue has a maximum capacity of 114,688 entries by
default.

Local node A node that sends a request of RDMA communication and receives response packets.

Remote node A node that receives a request of RDMA communication and sends response packets.

5.2.1.2 RDMA Communication Execution Model

5.2.1.2.1 Preparation

Before communication starts, the user program must prepare by fetching the DMA addresses of the local node and the remote node buffers.
Accordingly, the user program at local and remote nodes allocates a memory ID to each of its own buffers using FJMPI_Rdma_reg_mem
function ("Figure 5.1 Registering buffers"). Then, the local node uses the FJMPI_Rdma_get_remote_addr function to request the buffer
DMA addresses and allocated memory IDs to be fetched from the remote node ("Figure 5.2 Fetching remote node DMA addresses").

- 47 -

Figure 5.1 Registering buffers

- 48 -

Figure 5.2 Fetching remote node DMA addresses

The local node is then able to use the DMA addresses to read data from any area in the buffer. The area can be specified by adding an
offset to a DMA address ("Figure 5.3 Specifying an area in a buffer").

- 49 -

Figure 5.3 Specifying an area in a buffer

5.2.1.2.2 RDMA WRITE

When RDMA WRITE communication is performed, a send instruction is first stored in the instruction queue. When the send instruction
is executed by a TNI, the send data is split into packets and sent to the remote node. When all the sent data has been written to the remote
node, a notification is stored in the completion queue at the remote node when the RDMA WRITE instruction is issued with a flag to
notify at the remote node. The remote node sends a RDMA WRITE communication completion notification to the local node. When the
local node receives this notification, the notification is stored in the completion queue at the local node.

- 50 -

Figure 5.4 RDMA WRITE flow

5.2.1.2.3 RDMA READ

When RDMA READ communication is performed, a send request instruction is first stored in the instruction queue. When the send request
instruction is executed by a TNI, the send request is sent to the remote node. When a send request is received, the remote node splits the
send data into packets and sends it to the local node. As soon as the data send processing is completed at the remote node, a notification
is stored in the completion queue at the remote node when the RDMA READ instruction is issued with a flag to notify at the remote node.
When all the data has been written in the buffer at the local node, a notification is stored in the completion queue at the local node.

- 51 -

Figure 5.5 RDMA READ flow

- 52 -

5.2.1.2.4 RDMA ARMW

Figure 5.6 RDMA ARMW flow

RDMA ARMW communication is the communication that the local node performs Atomic Read Modify Write (ARMW) to a remote
node buffer. It is guaranteed that ARMW is performed atomically against other TNIs and CPUs. Therefore, while ARMW is performed
to a remote node buffer, the memory accesses for the same buffer from other TNIs and CPUs is kept waiting. ARMW can be performed
only when the address of the specified area is 4-byte alignment and its size is 4-byte or its address is 8-byte alignment and its size is 8-
byte.

"Table 5.3 Operations that can be specified for RDMA ARMW communication" shows the six ARMW operations that can be specified
for RDMA ARMW communication.

Table 5.3 Operations that can be specified for RDMA ARMW communication

ARMW operation name Operation details

Compare and Swap If the data in the specified area of the remote node buffer is equal
to the comparison operand, rewrite that data to the writing operand.
Otherwise, do nothing.

Swap Rewrite the data in the specified area of the remote node buffer to
the writing operand.

Fetch and Add Rewrite the data in the specified area of the remote node buffer to
the result of add operation with that data and the writing operand.

XOR Rewrite the data in the specified area of the remote node buffer to
the result of XOR operation with that data and the writing operand.

AND Rewrite the data in the specified area of the remote node buffer to
the result of AND operation with that data and the writing operand.

OR Rewrite the data in the specified area of the remote node buffer to
the result of OR operation with that data and the writing operand.

- 53 -

When RDMA ARMW communication is performed, a RDMA ARMW instruction is first stored in the instruction queue. When the RDMA
ARMW instruction is executed by a TNI, the specified ARMW operation is performed.

When the ARMW operation to the specified area has been performed, a notification is stored in the completion queue at the remote node
when the RDMA ARMW instruction is issued with a flag to notify at the remote node. The remote node sends a RDMA ARMW
communication completion notification to the local node. When the local node receives this notification, the notification is stored in the
completion queue at the local node. The data which was in the specified area before ARMW was performed is stored in the RDMA ARMW
communication completion notification sent from the remote node to the local node. Therefore, the data can be fetched when the RDMA
ARMW communication completion is checked.

5.2.1.2.5 Confirmation of Communication Notification

As noted in "5.2.1.2.2 RDMA WRITE", "5.2.1.2.3 RDMA READ" and "5.2.1.2.4 RDMA ARMW", notifications related to communication
are progressively added to the completion queue. Therefore, at suitable times, the user program must confirm these completion notifications
and take them from the queues ("Figure 5.7 Confirmation of communication notification"). If completion notification is not checked, there
is a danger of overflow of the completion queue, so checking is essential. The completion queue has 114,688 entries by default, though
overflow might occur at a lower number if the queue is used for both MPI point-to-point communication functions and collective
communication functions.

Figure 5.7 Confirmation of communication notification

5.2.1.3 Process Identification
For process identification, the extended RDMA interface uses the rank numbers used by MPI. However, only MPI_COMM_WORLD
rank numbers are supported. Operations by dynamically generated processes are not supported.

5.2.1.4 Communication Resource Allocation
The Tofu interconnect has four communication resources (TNIs) and each communication resource has an instruction queue and a
completion queue. Through extended RDMA interface, the user can use these resources to communicate in parallel. These communication

- 54 -

resources are virtualized by the extended RDMA interface, and users communicate by using macros that specify the virtual NICs used for
communication.

The correspondence between communication resources and virtual NICs is 1:1 if there is one node for one process. If there are multiple
processes at one node, multiple virtual NICs correspond to one communication resource. Therefore, if multiple processes operate at one
node, communication might be performed using the same communication resource even if a different macro is specified.

5.2.1.5 Communication Route Selection
With the exception of some nodes, Tofu interconnect communication enables 12 routes to be selected as the communication route between
each node. This can be used for detours when faults occur, for multiple communications, and so on. The extended RDMA interface provides
an interface enabling uses to use macros to select these communication routes. Macros can be used to select a maximum of four routes,
FJMPI_RDMA_PATH 0 to 3. However, the system determines which of the Tofu interconnect routes are allocated as the routes specified
by the macros in a way that the route has lower number of hops in order of FJMPI_RDMA_PATH0, 1, 2, 3. Figure below shows an image
of communication route allocation.

Example of RDMA WRITE communication flag specification

Put#0: FJMPI_RDMA_LOCAL_NIC0 | FJMPI_RDMA_REMOTE_NIC0 | FJMPI_RDMA_PATH0
Put#1: FJMPI_RDMA_LOCAL_NIC1 | FJMPI_RDMA_REMOTE_NIC2 | FJMPI_RDMA_PATH1
Put#2: FJMPI_RDMA_LOCAL_NIC2 | FJMPI_RDMA_REMOTE_NIC3 | FJMPI_RDMA_PATH2
Put#3: FJMPI_RDMA_LOCAL_NIC3 | FJMPI_RDMA_REMOTE_NIC1 | FJMPI_RDMA_PATH3

Figure 5.8 Image showing how routes are allocated

Figure below shows an image of Tofu interconnect physical routes. Since there are four non-overlapping physical routes from the start
node to the target node, FJMPI_RDMA_PATH 0 to 3 are allocated to any of these.

- 55 -

Figure 5.9 Tofu allocation image

Sometimes less than four of the four Tofu communication routes can be used due to a fault or due to the relative position of the
communication destination. In this case, the same route might be used even though a different macro is specified. Figure below shows an
image or overlapping routes.

Figure 5.10 Even though a different route is specified, the same route may be used when less than four routes
can be used

5.2.1.6 Sequence Guarantee within a Single RDMA
The Tofu interconnect splits into packets the data that is read and written in memory, then sends the data, and the receive side writes it to
memory in cache line (128 bytes) units. As a result, sending of the size that fits into a single cache line at the receive side does not break

- 56 -

the memory access sequence. On the other hand, the memory access sequence is not guaranteed for sends that span multiple cache lines.
However, if the user specified the FJMPI_RDMA_STRONG_ORDER macro when executing the RDMA communication, the interface
splits and sends the final cache line of data as a separate RDMA communication. Therefore, it is guaranteed that all data is written to
memory at the point when the final cache line of data is written to memory because of sequence guarantee between multiple RDMAs
("5.2.1.7 Sequence Guarantee between Multiple RDMAs"), as shown in "Figure 5.11 Sequence Guarantee within a Single RDMA". As
mentioned above, the FJMPI_RDMA_STRONG_ORDER macro is used to guarantee memory write sequence within a single RDMA.

Figure 5.11 Sequence Guarantee within a Single RDMA

5.2.1.7 Sequence Guarantee between Multiple RDMAs
If the same kinds of multiple RDMA communications are issued, the packet sequence between multiple RDMAs is guaranteed, as shown
in "Figure 5.12 Sequence Guarantee between Multiple RDMAs", provided that the same virtual NIC number and the same communication
route are specified. In other cases, packets from RDMA communications issued later might reach remote node's NIC first. In order to
guarantee the sequence for communication between RDMAs when the virtual NIC number and the communication route are not the same,
set the program so that the next RDMA communication starts after confirming completion of the previous RDMAs. If the user specified
the same virtual NIC number and the same communication route, memory write sequence between multiple RDMAs is guaranteed, since
memory write of the following RDMA begins after that of the previous RDMA has completed.

If different kinds of multiple RDMA communications that have the same local node's memory region are issued, in the case of that the
first instruction is READ and the following is WRITE, the local node's TNI issues the latter WRITE instruction immediately after issuing
READ send request to the remote node without waiting data from the remote node. This may cause invalid data to be written to the buffer
in the remote node. Therefore, completion confirmation is required after issuing READ instruction in order to use the data that is written
by the READ instruction in the following WRITE instruction.

- 57 -

Figure 5.12 Sequence Guarantee between Multiple RDMAs

5.2.1.8 Method for Checking RDMA Communication Completion for RDMA WRITE
To check RDMA WRITE completion at the local node (send side), use the FJMPI_Rdma_poll_cq function or the
FJMPI_Rdma_poll_cq_ret_data function to perform polling. At this time the send destination rank number and message tag number can
also be fetched. In addition, when the FJMPI_Rdma_poll_cq_ret_data function is used to perform polling, the RDMA communication
type can also be fetched.

After writing on the buffer has completed at the remote node, it automatically sends a completion notification to the local node through
the Tofu interconnect. When the notification has reached the local node, a completion notification is added to the completion queue at the
local node. Therefore, completion of write to the buffer at the remote node is guaranteed when completion confirmation is performed at
the local node ("Figure 5.13 RDMA WRITE notification at the local node"). If completion notification is not checked, there is a danger
of overflow of the completion queue, so checking is essential.

Figure 5.13 RDMA WRITE notification at the local node

Either of two methods can be selected as the method for checking RDMA WRITE completion at the remote node (receive side): arrival
confirmation by means of data polling, or arrival confirmation by means of completion queue polling. In general, the data polling method
has lower overheads.

- 58 -

To perform data polling, the FJMPI_RDMA_STRONG_ORDER macro should be set when RDMA communication is executed. Whether
all data has been written to the buffer can be checked by performing data polling for the last four bytes. When data polling is performed,
be careful that the user must make the program not to have the same value at the end of the buffer between that of before the RDMA
communication and that of after the RDMA communication.

To perform completion queue polling, the FJMPI_RDMA_REMOTE_NOTICE macro should be set when RDMA communication is
executed. It can be confirmed that all data has been written to buffer at the remote node by performing polling using the
FJMPI_Rdma_poll_cq function or the FJMPI_Rdma_poll_cq_ret_data function. At this time the send source rank number and message
tag number can also be fetched ("Figure 5.14 RDMA WRITE notification at the remote node"). In addition, when the
FJMPI_Rdma_poll_cq_ret_data function is used to perform polling, the RDMA communication type can also be fetched.

Figure 5.14 RDMA WRITE notification at the remote node

5.2.1.9 Method for Checking RDMA Communication Completion for RDMA READ
Either of two methods can be selected as the method for checking RDMA READ completion at the local node (receive side): arrival
confirmation by means of data polling, or arrival confirmation by means of completion queue polling. In general, the data polling method
has lower overheads.

As with RDMA WRITE, to perform data polling, the FJMPI_RDMA_STRONG_ORDER macro should be set when RDMA
communication is executed. It can be confirmed that all data has been written to the buffer by performing data polling for the last four
bytes. However, completion is notified to the local node ("Figure 5.15 RDMA READ notification at the local node") regardless of whether
or not the FJMPI_RDMA_REMOTE_NOTICE macro is specified at the time of RDMA READ. Therefore, at any timing after data polling,
the completion notification must be removed by calling the FJMPI_Rdma_poll_cq function or the FJMPI_Rdma_poll_cq_ret_data
function. When data polling is performed, the program must be such that the data entered at the end of the buffer before RDMA
communication does not match the data written at the end of the buffer after RDMA communication.

If completion queue polling is performed, it can be confirmed that all data has been written to the buffer by performing polling using the
FJMPI_Rdma_poll_cq function or the FJMPI_Rdma_poll_cq_ret_data function. At this time the send source rank number and message
tag number can also be fetched. In addition, when the FJMPI_Rdma_poll_cq_ret_data function is used to perform polling, the RDMA
communication type can also be fetched.

- 59 -

Figure 5.15 RDMA READ notification at the local node

To check RDMA READ completion at the remote node, perform polling using the FJMPI_Rdma_poll_cq function or the
FJMPI_Rdma_poll_cq_ret_data function after executing RDMA communication with the FJMPI_RDMA_REMOTE_NOTICE macro
set. At this time the send destination rank number and message tag number can also be fetched. In addition, when the
FJMPI_Rdma_poll_cq_ret_data function is used to perform polling, the RDMA communication type can also be fetched. The RDMA
READ completion notification at the remote node indicates that the send by the remote node has been completed. Note that this does not
guarantee that writing to the buffer at the local node has been completed ("Figure 5.16 RDMA READ notification at the remote node").

Figure 5.16 RDMA READ notification at the remote node

5.2.1.10 Method for Checking RDMA Communication Completion for RDMA ARMW
To check RDMA ARMW completion at the local node (the side that instructs to perform ARMW), use the FJMPI_Rdma_poll_cq function
or the FJMPI_Rdma_poll_cq_ret_data to perform polling. At this time the ARMW target rank number and message tag number can also
be fetched. In addition, when FJMPI_Rdma_poll_cq_ret_data is used to perform polling, the RDMA communication type and the data
which was in the specified area of the remote node before ARMW can also be fetched. After specified ARMW operation has completed
at the remote node, it automatically sends a completion notification to the local node through the Tofu interconnect. When the notification
has reached the local node, a completion notification is added to the completion queue at the local node. Therefore, completion of ARMW
to the buffer at the remote node is guaranteed when completion confirmation is performed at the local node ("Figure 5.17 RDMA ARMW
notification at the local node"). If completion notification is not checked, there is a danger of overflow of the completion queue, so checking
is essential.

- 60 -

Figure 5.17 RDMA ARMW notification at the local node

Either of two methods can be selected as the method for checking RDMA ARMW completion at the remote node (the side that is instructed
to perform ARMW): arrival confirmation by means of data polling, or arrival confirmation by means of completion queue polling. In
general, the data polling method has lower overheads.

To perform data polling, whether specified ARMW operation to the buffer has been completed can be checked by performing data polling
for the specified data size (4-bytes or 8-bytes). When data polling is performed, be careful that the user must make the program not to
have the same value at the specified area of the buffer between that of before the RDMA communication and that of after the RDMA
communication. For example, when "Compare and Swap" is specified as an ARMW operation, nothing is done to the specified area of
the buffer if its data is equals to the comparison operand. Therefore, in this case, checking RDMA ARMW completion by means of data
polling can't be performed.

To perform completion queue polling, the FJMPI_RDMA_REMOTE_NOTICE macro should be set when RDMA communication is
executed. It can be confirmed that an ARMW to the specified area in the remote node buffer has been completed by performing polling
using the FJMPI_Rdma_poll_cq function or the FJMPI_Rdma_poll_cq_ret_data function. At this time the send source rank number and
message tag number can also be fetched ("Figure 5.18 RDMA ARMW notification at the remote node"). In addition, when the
FJMPI_Rdma_poll_cq_ret_data function is used to perform polling, the RDMA communication type can also be fetched. But unlike
checking RDMA ARMW completion at the local node, the data which was in the specified area of the remote node buffer before ARMW
can't be fetched.

Figure 5.18 RDMA ARMW notification at the remote node

- 61 -

5.2.1.11 RDMA WRITE/RDMA READ/RDMA ARMW Immediate Return
After communication, the FJMPI_Rdma_put function, the FJMPI_Rdma_get function and the FJMPI_Rdma_armw function perform
instruction completion confirmation of previously instructed request processing. In some cases, however, it is possible to improve the
execution time of the MPI program as a whole by skipping instruction completion confirmation.

Specify FJMPI_RDMA_IMMEDIATE_RETURN in the flags argument in order to skip the instruction completion confirmation in the
FJMPI_Rdma_put function, the FJMPI_Rdma_get function and the FJMPI_Rdma_armw function.

The instruction completion confirmation that is omitted by specifying FJMPI_RDMA_IMMEDIATE_RETURN is processed the next
time the FJMPI_Rdma_poll_cq function or the FJMPI_Rdma_poll_cq_ret_data function is executed or the next time the FJMPI_Rdma_put
function or the FJMPI_Rdma_get function or the FJMPI_Rdma_armw function is executed without
FJMPI_RDMA_IMMEDIATE_RETURN being specified. Therefore, the execution time for these functions might be slower.

Waits might occur due to instruction queue shortages even if FJMPI_RDMA_IMMEDIATE_RETURN is specified. Figure below shows
waits during RDMA communication and a flow chart of returns. Especially, the potential of exhausting the instruction queue increases
on the following conditions because two communication instructions are internally produced per single RDMA communication.

Figure 5.19 Flow when an RDMA communication is issued

<FJMPI_Rdma_put>

- The FJMPI_RDMA_STRONG_ORDER flag is specified, and the local node sends to an address that spans multiple cache lines at
the remote node.

- 12 to 32 byte communication

- 62 -

<FJMPI_Rdma_get>

- The FJMPI_RDMA_STRONG_ORDER flag is specified, and the remote node sends to an address that spans multiple cache lines at
the local node.

<FJMPI_Rdma_armw>

- The FJMPI_RDMA_ARMW_CAS is specified in the op argument, and 8-bytes is specified in the length argument.

5.2.2 Extended RDMA Interface Specifications

5.2.2.1 FJMPI_Rdma_init
<Format>

#include <mpi-ext.h>
int FJMPI_Rdma_init()

<Explanation>

This function initializes the extended RDMA interface. The program ends abnormally if the following problems are detected within
this function:

- Library initialization failed

- Memory allocation failed

- Communication resource acquisition failed

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

<Notes>

Since the program ends abnormally if a problem is detected in the current implementation, no values other than 0 are returned by this
function.

5.2.2.2 FJMPI_Rdma_finalize
<Format>

#include <mpi-ext.h>
int FJMPI_Rdma_finalize()

<Explanation>

This function performs the extended RDMA interface end processing.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

<Notes>

Since problems are not detected in the current implementation, no values other than 0 are returned by this function.

Any extended RDMA interface function that includes FJMPI_Rdma_init cannot be used after FJMPI_Rdma_finalize is called.

- 63 -

5.2.2.3 FJMPI_Rdma_reg_mem
<Format>

#include <mpi-ext.h>
uint64_t FJMPI_Rdma_reg_mem(int memid, void *buf, size_t length)

<Explanation>

This function registers the memory to be used to perform RDMA communication transfers.

Type Variable Explanation IN/OUT

int memid Specify the ID of the memory being registered. IN

void * buf Specify the start address of the memory being registered. IN

size_t length Specify the length of the memory being registered. IN

The program ends abnormally if the following problems are detected within this function:

- Memory ID is outside range

- Memory ID is already allocated

- Communication resource acquisition failed

<Restrictions>

- The memory ID is 0 to 510.

<Return value>

Normal DMA address is returned.

Error FJMPI_RDMA_ERROR is returned.

<Notes>

Since problems are not detected in the current implementation, FJMPI_RDMA_ERROR is not returned by this function.

The memory specified at buf must be an area in user space where physical memory is allocated.

On this system, a DMA address that was registered once can be used unless the user releases it by the FJMPI_Rdma_dereg_mem
function.

The FJMPI_Rdma_reg_mem function and the FJMPI_Rdma_get_remote_addr function might return different DMA address values.
Therefore, always use the FJMPI_Rdma_get_remote_addr function to fetch remote DMA addresses.

5.2.2.4 FJMPI_Rdma_dereg_mem
<Format>

#include <mpi-ext.h>
int FJMPI_Rdma_dereg_mem(int memid)

<Explanation>

This function releases the registration of memory that was registered using the FJMPI_Rdma_reg_mem function.

Type Variable Explanation IN/OUT

int memid Specify the ID of the memory for which registration is being
released.

IN

The program ends abnormally if the following problems are detected by this function internally:

- Memory ID is outside range

- Memory ID is not allocated

- 64 -

<Restrictions>

- The memory ID is 0 to 510.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

<Notes>

Since problems are not detected in the current implementation, no values other than 0 are returned by this function.

5.2.2.5 FJMPI_Rdma_get_remote_addr
<Format>

#include <mpi-ext.h>
uint64_t FJMPI_Rdma_get_remote_addr(int pid, int memid)

<Explanation>

This function gets the remote DMA address of the memory ID specified from the remote rank pid.

Type Variable Explanation IN/OUT

int pid Specify the rank number. IN

int memid Specify the memory ID. IN

The program ends abnormally if the following problems are detected within this function:

- Memory ID is outside range

- Rank number is outside range

<Restrictions>

- The memory ID is 0 to 510.

<Return value>

Normal DMA address is returned.

If not registered FJMPI_RDMA_ERROR is returned.

5.2.2.6 FJMPI_Rdma_put
<Format>

#include <mpi-ext.h>
int FJMPI_Rdma_put(int pid, int tag, uint64_t raddr, uint64_t laddr, size_t length, int flags)

<Explanation>

This function performs RDMA WRITE from the local node laddr to the raddr of the remote rank pid.

Type Variable Explanation IN/OUT

int pid Specify the rank number. IN

int tag Specify the message tag number. IN

uint64_t raddr Specify the remote side node DMA address. IN

uint64_t laddr Specify the local side node DMA address. IN

size_t length Specify the message size. IN

int flags Specify the options. IN

- 65 -

The options below can be specified using flags. Specify logical inclusive OR.

Macro Meaning

FJMPI_RDMA_LOCAL_NIC0 Send using send side virtual NIC number 0 (default).

FJMPI_RDMA_LOCAL_NIC1 Send using send side virtual NIC number 1.

FJMPI_RDMA_LOCAL_NIC2 Send using send side virtual NIC number 2.

FJMPI_RDMA_LOCAL_NIC3 Send using send side virtual NIC number 3.

FJMPI_RDMA_REMOTE_NIC0 Send using receive side virtual NIC number 0 (default).

FJMPI_RDMA_REMOTE_NIC1 Send using receive side virtual NIC number 1.

FJMPI_RDMA_REMOTE_NIC2 Send using receive side virtual NIC number 2.

FJMPI_RDMA_REMOTE_NIC3 Send using receive side virtual NIC number 3.

FJMPI_RDMA_PATH0 Use path 0 (default).

FJMPI_RDMA_PATH1 Use path 1.

FJMPI_RDMA_PATH2 Use path 2.

FJMPI_RDMA_PATH3 Use path 3.

FJMPI_RDMA_REMOTE_NOTICE Set remote notification to ON.

FJMPI_RDMA_STRONG_ORDER Guarantees that the last four bytes are written last during data write.

FJMPI_RDMA_IMMEDIATE_RETURN Return from the function immediately.

Refer to "5.2.1.11 RDMA WRITE/RDMA READ/RDMA ARMW
Immediate Return" for details.

Note that, if an incorrect parameter is specified in this function, the program where the error is detected may end abnormally when the
FJMPI_Rdma_poll_cq function, FJMPI_Rdma_poll_cq_ret_data function or an MPI communication function is called.

<Restrictions>

The maximum transmission unit is 16,777,215 (224 - 1) bytes.

The message tag number is 0 to 14.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

5.2.2.7 FJMPI_Rdma_get
<Format>

#include <mpi-ext.h>
int FJMPI_Rdma_get(int pid, int tag, uint64_t raddr, uint64_t laddr, size_t length, int flags)

<Explanation>

This function performs READ to the local node laddr from the raddr of the remote rank pid.

Type Variable Explanation IN/OUT

int pid Specify the rank number. IN

int tag Specify the message tag number. IN

uint64_t raddr Specify the remote side node DMA address. IN

uint64_t laddr Specify the local side node DMA address. IN

- 66 -

Type Variable Explanation IN/OUT

size_t length Specify the message size. IN

int flags Specify the options. IN

The options below can be specified using flags. Specify logical inclusive OR.

Macro Meaning

FJMPI_RDMA_LOCAL_NIC0 Receive using the receive side virtual NIC number 0 (default).

FJMPI_RDMA_LOCAL_NIC1 Receive using the receive side virtual NIC number 1.

FJMPI_RDMA_LOCAL_NIC2 Receive using the receive side virtual NIC number 2.

FJMPI_RDMA_LOCAL_NIC3 Receive using the receive side virtual NIC number 3.

FJMPI_RDMA_REMOTE_NIC0 Receive using the send side virtual NIC number 0 (default).

FJMPI_RDMA_REMOTE_NIC1 Receive using the send side virtual NIC number 1.

FJMPI_RDMA_REMOTE_NIC2 Receive using the send side virtual NIC number 2.

FJMPI_RDMA_REMOTE_NIC3 Receive using the send side virtual NIC number 3.

FJMPI_RDMA_PATH0 Use path 0 (default).

FJMPI_RDMA_PATH1 Use path 1.

FJMPI_RDMA_PATH2 Use path 2.

FJMPI_RDMA_PATH3 Use path 3.

FJMPI_RDMA_REMOTE_NOTICE Set remote notification to ON.

FJMPI_RDMA_STRONG_ORDER Guarantees that the last four bytes are written last during data write.

FJMPI_RDMA_IMMEDIATE_RETURN Return from the function immediately.

Refer to "5.2.1.11 RDMA WRITE/RDMA READ/RDMA ARMW
Immediate Return" for details.

Note that, if an incorrect parameter is specified in this function, the program where the error is detected may end abnormally when the
FJMPI_Rdma_poll_cq function, FJMPI_Rdma_poll_cq_ret_data function or an MPI communication function is called.

<Restrictions>

The maximum transmission unit is 16,777,215 (224 - 1) bytes.

The message tag number is 0 to 14.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

5.2.2.8 FJMPI_Rdma_armw
<Format>

#include <mpi-ext.h>
int FJMPI_Rdma_armw(int pid, int tag, uint64_t raddr, size_t length, uint64_t write_op,
 uint64_t comp_op, int operation, int flags)

<Explanation>

Execute atomic communication. (Atomic Read Modify Write)

- 67 -

Type Variable Explanation IN/OUT

int pid Specify the rank number. IN

int tag Specify the message tag number. IN

uint64_t raddr Specify the remote side node DMA address. IN

size_t length Specify the operand size. Only 4 bytes or 8 bytes can be specified. IN

uint64_t write_val Specify the writing operand. Only 4 bytes or 8 bytes can be specified. IN

uint64_t comp_val Specify the comparison operand. Only 4 bytes or 8 bytes can be specified. IN

int op Specify the operation. IN

int flags Specify the options. IN

The kind of the operation is selected by specifying the value for the argument op. The value below can be specified. The data of the
object area is rewritten according to the content of the operation.

Macro Kind of operation Content of operation

FJMPI_RDMA_ARMW_CAS Compare and Swap If the data in the specified area of the remote node buffer is equal
to the comparison operand, rewrite that data to the writing operand.
Otherwise, do nothing.

FJMPI_RDMA_ARMW_SWAP Swap Rewrite the data in the specified area of the remote node buffer to
the writing operand.

FJMPI_RDMA_ARMW_ADD Fetch and Add Rewrite the data in the specified area of the remote node buffer to
the result of add operation with that data and the writing operand.

FJMPI_RDMA_ARMW_XOR XOR Rewrite the data in the specified area of the remote node buffer to
the result of XOR operation with that data and the writing operand.

FJMPI_RDMA_ARMW_AND AND Rewrite the data in the specified area of the remote node buffer to
the result of AND operation with that data and the writing operand.

FJMPI_RDMA_ARMW_OR OR Rewrite the data in the specified area of the remote node buffer to
the result of OR operation with that data and the writing operand.

Only when FJMPI_RDMA_ARMW_CAS is specified for the argument op, argument comp_val specification becomes effective.

The options below can be specified using flags. Specify logical inclusive OR.

Macro Meaning

FJMPI_RDMA_LOCAL_NIC0 Receive using the receive side virtual NIC number 0 (default).

FJMPI_RDMA_LOCAL_NIC1 Receive using the receive side virtual NIC number 1.

FJMPI_RDMA_LOCAL_NIC2 Receive using the receive side virtual NIC number 2.

FJMPI_RDMA_LOCAL_NIC3 Receive using the receive side virtual NIC number 3.

FJMPI_RDMA_REMOTE_NIC0 Receive using the send side virtual NIC number 0 (default).

FJMPI_RDMA_REMOTE_NIC1 Receive using the send side virtual NIC number 1.

FJMPI_RDMA_REMOTE_NIC2 Receive using the send side virtual NIC number 2.

FJMPI_RDMA_REMOTE_NIC3 Receive using the send side virtual NIC number 3.

FJMPI_RDMA_PATH0 Use path 0 (default).

FJMPI_RDMA_PATH1 Use path 1.

FJMPI_RDMA_PATH2 Use path 2.

FJMPI_RDMA_PATH3 Use path 3.

FJMPI_RDMA_REMOTE_NOTICE Set remote notification to ON.

- 68 -

Macro Meaning

FJMPI_RDMA_STRONG_ORDER Guarantee that the memory of the following packet is accessed
after the early packet writing in the memory is completed.

FJMPI_RDMA_IMMEDIATE_RETURN Return from the function immediately.

Refer to "5.2.1.11 RDMA WRITE/RDMA READ/RDMA
ARMW Immediate Return" for details.

Note that, if an incorrect parameter is specified in this function, the program where the error is detected may end abnormally when the
FJMPI_Rdma_poll_cq function, FJMPI_Rdma_poll_cq_ret_data function or an MPI communication function is called.

<Restrictions>

The message tag number is 0 to 14.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

5.2.2.9 FJMPI_Rdma_poll_cq
<Format>

#include <mpi-ext.h>
int FJMPI_Rdma_poll_cq(int nic, struct FJMPI_Rdma_cq *cq)

<Explanation>

This function checks the completion of the RDMA communication of the specified NIC number. The send (receive) rank number and
message tag information can be obtained by specifying the FJMPI_Rdma_cq structure address at cq. Specify NULL if detailed
information is not required.

Type Variable Explanation IN/OUT

int nic Specify the virtual NIC number. The following macros can be
used:

FJMPI_RDMA_NIC0...virtual NIC0

FJMPI_RDMA_NIC1...virtual NIC1

FJMPI_RDMA_NIC2...virtual NIC2

FJMPI_RDMA_NIC3...virtual NIC3

IN

struct FJMPI_Rdma_cq * cq Specify the FJMPI_Rdma_cq structure pointer. The format of the
FJMPI_Rdma_cq structure is as follows:

struct FJMPI_Rdma_cq {
int pid; /* remote side node rank number */
int tag; /* message tag number */
};

OUT

The program ends abnormally if the following problem is detected within this function:

- Error completion notification received

<Return value>

If there is an RDMA completion notification originating from the
local side node

FJMPI_RDMA_NOTICE is returned.

If there is an RDMA completion notification originating from the
remote side node

FJMPI_RDMA_HALFWAY_NOTICE is returned.

- 69 -

If Put/Get/ARMW not completed 0 is returned.

<Note>

This completion notification is posted when send and receive are both completed. Therefore, the notification sequence may not be the
same as the FJMPI_Rdma_put/FJMPI_Rdma_get/FJMPI_Rdma_armw issue sequence. Remote side node RDMA completion
notifications are enabled only if FJMPI_RDMA_REMOTE_NOTICE is specified as FJMPI_Rdma_put/FJMPI_Rdma_get/
FJMPI_Rdma_armw flags.

5.2.2.10 FJMPI_Rdma_poll_cq_ret_data
<Format>

#include <mpi-ext.h>
int FJMPI_Rdma_poll_cq_ret_data(int nic, struct FJMPI_Rdma_cq_ret_data *cq_rd)

<Explanation>

This function checks the completion of the RDMA communication of the specified NIC number. The send (receive) rank number,
message tag information, kind of RDMA communication and specific data that accompanies communication can be obtained by
specifying the FJMPI_Rdma_cq_ret_data structure address at cq_rd.

When you do not acquire specific data that accompanies the communication, the completion confirmation can be done even if the
FJMPI_Rdma_poll_cq function is used. When you acquire specific data that accompanies the communication, the completion
confirmation is executed by using this function.

In that case, the user should manage the communication by either of the following methods.

- The FJMPI_Rdma_poll_cq_ret_data function is called when there is only RDMA completion notification of a communication for
data fetch.

- Virtual NIC number different because of the communication and other RDMA communications of the data acquisition object or
different tag numbers are specified.

Type Variable Explanation IN/OUT

int nic Specify the virtual NIC number. The following macros can be used:
FJMPI_RDMA_NIC0...virtual NIC0
FJMPI_RDMA_NIC1...virtual NIC1
FJMPI_RDMA_NIC2...virtual NIC2
FJMPI_RDMA_NIC3...virtual NIC3

IN

struct FJMPI_Rdma_cq_ret_data * cq_rd Specify the FJMPI_Rdma_cq_ret_data structure pointer.
The format of the FJMPI_Rdma_cq_ret_data structure is as
follows:

struct FJMPI_Rdma_cq {
 int pid; /* remote side node rank number */
 int tag; /* message tag number */
 int rdma_type; /* kind of RDMA communication */
 uint64_t ret_data; /* specific datas associated
with the communication */
}

OUT

Either of the following values is stored in rdma_type.

Kind of RDMA communication value of rdma_type

Put FJMPI_RDMA_TYPE_PUT

Get FJMPI_RDMA_TYPE_GET

ARMW FJMPI_RDMA_TYPE_ARMW

Either of the following values is stored in ret_data.

- 70 -

Kind of RDMA communication Value of ret_data

ARMW originating from the local side node Remote side node area data before ARMW is executed

Put/Get/ARMW originating from the local side node No change from an initialized value

<Return value>

If there is an RDMA completion notification originating from the
local side node

FJMPI_RDMA_NOTICE is returned.

If there is an RDMA completion notification originating from the
remote side node

FJMPI_RDMA_HALFWAY_NOTICE is returned.

If Put/Get/ARMW not completed 0 is returned.

5.2.3 Sample Program
Extended RDMA interface sample programs are shown below. The first is a simple program in which two nodes both perform RDMA
WRITE to each other. Data polling or completion queue polling can be selected by switching the DATA_POLLING compile option. In
the second program, an even numbered node and an odd numbered node pair perform pingpong communication and, if there are an even
number of nodes, operation is either one process at one node or multiple processes at one node using any number of parallels. In the third
program, an even numbered node and an odd numbered node pair perform RDMA ARMW to each other in pingpong form. The AND
operation is specified as a ARMW operation. Checking RDMA ARMW completion at the local node is performed by using the
FJMPI_Rdma_poll_ret_data function, and checking RDMA ARMW completion at the remote node is performed by data polling. Like
the second program, if there are an even number of nodes, operation is either one process at one node or multiple processes at one node
using any number of parallels.

#include <stdlib.h>
#include <stdio.h>
#include <mpi.h>
#include <mpi-ext.h>

#define BUFSIZE 8192

enum {
 MEMID_S = 0,
 MEMID_R
};

#define INVALID -1
#define DATA_POLLING 0

void communicate(){
 int i;
 int lrank, rrank;
 uint64_t laddr;
 uint64_t raddr;
 /* volatile is required */
 volatile int *sbuf, *rbuf;
 int flag_nic, send_nic, recv_nic;
 struct FJMPI_Rdma_cq cq;

 sbuf = (int*)malloc(sizeof(int)*BUFSIZE);
 rbuf = (int*)malloc(sizeof(int)*BUFSIZE);

 MPI_Comm_rank(MPI_COMM_WORLD, &lrank);

 rrank = 1 - lrank;
 for(i=0; i<BUFSIZE; ++i){
 sbuf[i] = (int)rrank;
 rbuf[i] = INVALID;
 }

- 71 -

 laddr = FJMPI_Rdma_reg_mem(MEMID_S, (void*)sbuf, BUFSIZE*sizeof(int));
 FJMPI_Rdma_reg_mem(MEMID_R, (void*)rbuf, BUFSIZE*sizeof(int));

 /* Waits until the RDMA address of the remote reception buffer can be fetched*/
 while((raddr = FJMPI_Rdma_get_remote_addr(rrank, MEMID_R)) == FJMPI_RDMA_ERROR);

 if(rrank == 0){
 flag_nic = FJMPI_RDMA_LOCAL_NIC0 | FJMPI_RDMA_REMOTE_NIC0;
 send_nic = FJMPI_RDMA_NIC0;
 recv_nic = FJMPI_RDMA_NIC1;
 }else{
 flag_nic = FJMPI_RDMA_LOCAL_NIC1 | FJMPI_RDMA_REMOTE_NIC1;
 send_nic = FJMPI_RDMA_NIC1;
 recv_nic = FJMPI_RDMA_NIC0;
 }

#if DATA_POLLING /* Data polling */
 FJMPI_Rdma_put(rrank, 0, raddr, laddr, BUFSIZE*sizeof(int), flag_nic | FJMPI_RDMA_STRONG_ORDER);
#else /* Completion queue polling*/
 FJMPI_Rdma_put(rrank, 0, raddr, laddr, BUFSIZE*sizeof(int), flag_nic | FJMPI_RDMA_REMOTE_NOTICE);
#endif

 while(FJMPI_Rdma_poll_cq(send_nic, &cq) != FJMPI_RDMA_NOTICE);
#if DATA_POLLING /* Data polling */
 while(rbuf[BUFSIZE-1] != lrank);
#else /* Completion queue polling*/
 while(FJMPI_Rdma_poll_cq(recv_nic, &cq) != FJMPI_RDMA_HALFWAY_NOTICE);
#endif
 FJMPI_Rdma_dereg_mem(MEMID_S);
 FJMPI_Rdma_dereg_mem(MEMID_R);
 free((void*)sbuf);
 free((void*)rbuf);
}

int main(int argc, char **argv){
 int size;

 MPI_Init(&argc, &argv);
 FJMPI_Rdma_init();

 MPI_Comm_size(MPI_COMM_WORLD, &size);
 if(size != 2) return 1;

 communicate();

 FJMPI_Rdma_finalize();
 MPI_Finalize();

 return 0;
}

#include <stdlib.h>
#include <stdio.h>
#include <mpi.h>
#include <mpi-ext.h>

#define MEMID1 10
#define MEMID2 11
#define BUFSIZE 1024

#define FAILURE 1

- 72 -

int main(int argc, char *argv[])
{
 int lrank, rrank;
 int i;
 uint64_t laddr1;
 uint64_t raddr2;
 struct FJMPI_Rdma_cq cq;
 volatile int *sbuf = malloc(BUFSIZE*sizeof(int));
 volatile int *rbuf = malloc(BUFSIZE*sizeof(int));

 MPI_Init(&argc, &argv);
 FJMPI_Rdma_init();

 MPI_Comm_rank(MPI_COMM_WORLD,&lrank);
 if((lrank%2)==0){
 rrank=lrank+1;
 }else{
 rrank=lrank-1;
 }

 for(i=0;i<BUFSIZE;++i){
 sbuf[i]=i;
 rbuf[i]=-1;
 }
 laddr1 = FJMPI_Rdma_reg_mem(MEMID1, (void *)sbuf, BUFSIZE*sizeof(int));
 FJMPI_Rdma_reg_mem(MEMID2, (void *)rbuf, BUFSIZE*sizeof(int));
 while((raddr2 = FJMPI_Rdma_get_remote_addr(rrank, MEMID2)) == FJMPI_RDMA_ERROR);
 if((lrank%2)==0){
 for(i=0;i<BUFSIZE;++i){
 if(FJMPI_Rdma_put(rrank, i%14, raddr2+i*sizeof(int), laddr1+i*sizeof(int), sizeof(int),
 FJMPI_RDMA_LOCAL_NIC0 | FJMPI_RDMA_REMOTE_NIC0 | FJMPI_RDMA_STRONG_ORDER)){
 fprintf(stderr, "FJMPI_Rdma_put ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 while(FJMPI_Rdma_poll_cq(FJMPI_RDMA_NIC0, &cq)!=FJMPI_RDMA_NOTICE);
 if((cq.pid != rrank) || (cq.tag != (i%14))){
 fprintf(stderr, "CQ ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 while(rbuf[i]!=i);
 }
 }else{
 for(i=0;i<BUFSIZE;++i){
 while(rbuf[i]!=i);
 if(FJMPI_Rdma_put(rrank, i%14, raddr2+i*sizeof(int), laddr1+i*sizeof(int), sizeof(int),
 FJMPI_RDMA_LOCAL_NIC0 | FJMPI_RDMA_REMOTE_NIC0 | FJMPI_RDMA_STRONG_ORDER)){
 fprintf(stderr, "FJMPI_Rdma_put ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 while(FJMPI_Rdma_poll_cq(FJMPI_RDMA_NIC0, &cq)!=FJMPI_RDMA_NOTICE);
 if((cq.pid != rrank) || (cq.tag != (i%14))){
 fprintf(stderr, "CQ ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 }
 }
 FJMPI_Rdma_dereg_mem(MEMID1);
 FJMPI_Rdma_dereg_mem(MEMID2);
 FJMPI_Rdma_finalize();
 MPI_Finalize();
 free((void*)sbuf);
 free((void*)rbuf);

- 73 -

 return 0;
}

#include <stdlib.h>
#include <stdio.h>
#include <mpi.h>
#include <mpi-ext.h>

#define BUFSIZE 16
#define INVALID 0xaaaaaaaa

#define MEMID_R 0
#define FAILURE 1

void test(size_t length) {
 int i;
 int lrank, rrank;
 int tag = 5;
 uint64_t raddr;
 uint64_t write_val = 0x77777777dddddddd;
 uint64_t comp_val = 0;
 int op = FJMPI_RDMA_ARMW_AND;
 volatile uint32_t *rbuf;
 uint64_t *rbuf64;
 struct FJMPI_Rdma_cq_ret_data cq_rd;

 rbuf = (uint32_t *)malloc(BUFSIZE);
 rbuf64 = (uint64_t *)rbuf;

 MPI_Comm_rank(MPI_COMM_WORLD, &lrank);

 if(lrank % 2 == 0){
 rrank = lrank + 1;
 }else{
 rrank = lrank - 1;
 }

 for(i=0; i<(BUFSIZE/4); ++i){
 rbuf[i] = INVALID;
 }

 FJMPI_Rdma_reg_mem(MEMID_R, (void*)rbuf, BUFSIZE);
 while((raddr = FJMPI_Rdma_get_remote_addr(rrank, MEMID_R)) == FJMPI_RDMA_ERROR);

 MPI_Barrier(MPI_COMM_WORLD);

 if(lrank % 2 == 0){
 FJMPI_Rdma_armw(rrank, tag, raddr, length, write_val, comp_val, op,
 FJMPI_RDMA_LOCAL_NIC0 | FJMPI_RDMA_STRONG_ORDER);
 while(FJMPI_Rdma_poll_cq_ret_data(FJMPI_RDMA_NIC0, &cq_rd) != FJMPI_RDMA_NOTICE);
 if((cq_rd.pid != rrank) || (cq_rd.tag != tag) || (cq_rd.rdma_type != FJMPI_RDMA_TYPE_ARMW)){
 fprintf(stderr, "CQ ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 if(length == 4){
 /* Check the data which was in the specified area of the remote node before ARMW */
 if(cq_rd.ret_data != (uint32_t)INVALID){
 fprintf(stderr, "CQ ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 /* Data polling */
 while(rbuf[0] != ((uint32_t)INVALID & (uint32_t)write_val));
 }else{/* length == 8 */

- 74 -

 /* Check the data which was in the specified area of the remote node before ARMW */
 if(cq_rd.ret_data != ((uint64_t)INVALID << 32) + (uint64_t)INVALID){
 fprintf(stderr, "CQ ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 /* Data polling */
 while(rbuf64[0] != ((((uint64_t)INVALID << 32) + (uint64_t)INVALID) & write_val));
 }
 }else{
 if(length == 4){
 while(rbuf[0] != ((uint32_t)INVALID & (uint32_t)write_val));
 }else{
 while(rbuf64[0] != ((((uint64_t)INVALID << 32) + (uint64_t)INVALID) & write_val));
 }
 FJMPI_Rdma_armw(rrank, tag, raddr, length, write_val, comp_val, op,
 FJMPI_RDMA_LOCAL_NIC1 | FJMPI_RDMA_REMOTE_NOTICE);
 while(FJMPI_Rdma_poll_cq_ret_data(FJMPI_RDMA_NIC1, &cq_rd) != FJMPI_RDMA_NOTICE);
 if((cq_rd.pid != rrank) || (cq_rd.tag != tag) || (cq_rd.rdma_type != FJMPI_RDMA_TYPE_ARMW)){
 fprintf(stderr, "CQ ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 if(length == 4){
 if(cq_rd.ret_data != (uint32_t)INVALID){
 fprintf(stderr, "CQ ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 }else{
 if(cq_rd.ret_data != ((uint64_t)INVALID << 32) + (uint64_t)INVALID){
 fprintf(stderr, "CQ ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }
 }
 }

 FJMPI_Rdma_dereg_mem(MEMID_R);
 free((void*)rbuf);
}

int main(int argc, char **argv){
 MPI_Init(&argc, &argv);
 FJMPI_Rdma_init();

 test(4);
 MPI_Barrier(MPI_COMM_WORLD);
 test(8);

 FJMPI_Rdma_finalize();
 MPI_Finalize();

 return 0;
}

5.3 MPI Statistical Information Section Specifying Interface
The MPI statistical information section specifying function is a function to specify the range to measure the communication data of MPI.
To specify the analyzing range on the source code, please insert the functions in the measurement beginning and end position. These
functions are meaningful only if a value of MCA parameter mpi_print_stats is equal to 3 or 4.

Table below shows the overview of section specifying function of MPI statistical information.

- 75 -

Table 5.4 Overview of MPI statistical information section specifying functions list
Function name Function overview

FJMPI_Collection_start Starts MPI statistical information measurement

FJMPI_Collection_stop Stops MPI statistical information measurement

FJMPI_Collection_print Prints MPI statistical information measurement

FJMPI_Collection_clear Initializes MPI statistical information

5.3.1 The MPI Statistical Information Section Specifying Function

5.3.1.1 FJMPI_Collection_start
<Format>

C language format

#include <mpi-ext.h>
void FJMPI_Collection_start()

Fortran format

CALL FJMPI_COLLECTION_START()

<Explanation>

This function starts measuring MPI statistics. This function is meaningful only if a value of MCA parameter mpi_print_stats is equal
to 3 or 4. This function is ignored if any of the conditions are met below.

- When this subroutine is called before MPI_Init.

- When this subroutine is called after MPI_Finalize.

<Return value>

None.

<Notes>

When this function is continuously called, the first start instruction becomes effective.

5.3.1.2 FJMPI_Collection_stop
<Format>

C language format

#include <mpi-ext.h>
void FJMPI_Collection_stop()

Fortran format

CALL FJMPI_COLLECTION_STOP()

<Explanation>

This function stops measuring MPI statistics. This function is meaningful only if a value of MCA parameter mpi_print_stats is equal
to 3 or 4. This function is ignored if any of the conditions below are met.

- When this subroutine is called before MPI_Init.

- When this subroutine is called after MPI_Finalize.

<Return value>

None.

- 76 -

<Notes>

It accumulates the collection result when the data collection is repeated.

When this function is continuously called, the first stop instruction becomes effective.

5.3.1.3 FJMPI_Collection_print
<Format>

C language format

#include <mpi-ext.h>
void FJMPI_Collection_print (char *str)

Fortran format

CALL FJMPI_COLLECTION_PRINT(STR)
CHARACTER*(*) STR

<Explanation>

Type Variable Explanation IN/OUT

char* str Character string to be output each section to standard error output. IN

str is a string of up to 30 alphanumeric characters for distinguishing statistical information. The characters over the 30th character of
str are dropped.

This function prints measuring MPI statistical information to standard error output. This function is meaningful only if a value of MCA
parameter mpi_print_stats is equal to 3 or 4. This function is ignored if any of the conditions are met below.

- When this subroutine is called before MPI_Init.

- When this subroutine is called after MPI_Finalize.

This function changes depending on the value of MCA parameter mpi_print_stats.

mpi_print_stats Operation Explanation

3 The collective operation This function must be executed by all processes in
MPI_COMM_WORLD.

4 The independent
operation

This function can be executed independently of other processes.

<Return value>

None.

<Notes>

Please specify a string of printable single-byte characters.

MPI statistical information is printed only if the program executed this function.

5.3.1.4 FJMPI_Collection_clear
<Format>

C language format

#include <mpi-ext.h>
void FJMPI_Collection_clear ()

Fortran format

CALL FJMPI_COLLECTION_CLEAR()

- 77 -

<Explanation>

This function clears all MPI statistical data. This function is meaningful only a value of MCA parameter mpi_print_stats is equal to 3
or 4. This function is ignored if any of the conditions are met below.

- When this subroutine is called before MPI_Init.

- When this subroutine is called after MPI_Finalize.

<Return value>

None.

<Notes>

This function clears all statistical data including collected data and elapsed time.

5.3.2 Sample Program
The sample program of the MPI statistical information section specifying interface is shown below. This program measures the MPI
statistical information that is section specifying of the MPI_Alltoall and section specifying of the user function including MPI_Allgather.

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#include <mpi-ext.h>

int test_aa = 200;
int test_ag = 300;

void func_aa(int,int,MPI_Comm,int);
void func_ag(int,int,MPI_Comm,int);

int main(int argc, char *argv[])
{
 int size,rank,loop;
 MPI_Comm comm=MPI_COMM_WORLD;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(comm, &size);
 MPI_Comm_rank(comm, &rank);

 loop=20;
 func_aa(rank,size,comm,loop);
 FJMPI_Collection_print("alltoall");

 FJMPI_Collection_clear();

 FJMPI_Collection_start();
 loop=40;
 func_ag(rank,size,comm,loop);
 FJMPI_Collection_print("func_ag");

 MPI_Finalize();

 return 0;
}
void func_aa(int rank,int size,MPI_Comm comm, int comm_count)
{
 int i,*sendbuf,*recvbuf;

 sendbuf = (int*)malloc(sizeof(int) * test_aa * size);
 recvbuf = (int*)malloc(sizeof(int) * test_aa * size);

 for(i = 0; i < test_aa * size; i++) {

- 78 -

 sendbuf[i] = rank;
 recvbuf[i] = -1;
 }

 FJMPI_Collection_start();
 for(i = 0; i < comm_count ; i++) {
 MPI_Alltoall(sendbuf, test_aa, MPI_INT,
 recvbuf, test_aa, MPI_INT, comm);
 }
 FJMPI_Collection_stop();

 free(sendbuf);
 free(recvbuf);
 MPI_Barrier(comm);
}
void func_ag(int rank,int size,MPI_Comm comm, int comm_count)
{
 int *sendbuf,*recvbuf;
 int i;

 sendbuf = (int*)malloc(sizeof(int) * test_ag * size);
 recvbuf = (int*)malloc(sizeof(int) * test_ag * size);

 for(i = 0; i < test_ag * size; i++) {
 sendbuf[i] = rank;
 recvbuf[i] = -1;
 }

 for(i = 0; i < comm_count ; i++) {
 MPI_Allgather(sendbuf, test_ag, MPI_INT,
 recvbuf, test_ag, MPI_INT, comm);
 }

 free(sendbuf);
 free(recvbuf);
 MPI_Barrier(comm);
}

The sample program of the section specifying MPI statistical information interface is shown. This program is section specifying of
MPI_Bcast, a program that is section specifying of MPI_Allreduce, and either one node one process or a process two or more one node
operates by a parallel number of arbitrary.

program main
use mpi
implicit none
integer i,ierr,myrank,size
real(8) buf1(100),buf2(100)

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,myrank,ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,size,ierr)
buf2 = -1
do i=1,100
 buf1(i) = (size - myrank) * 0.001
end do

call FJMPI_COLLECTION_START()
do i=1,50
 call MPI_BCAST(buf1,100,MPI_REAL8,0,MPI_COMM_WORLD,ierr)
end do
call FJMPI_COLLECTION_STOP()
call FJMPI_COLLECTION_PRINT('Bcast')

- 79 -

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call FJMPI_COLLECTION_CLEAR()
call FJMPI_COLLECTION_START()
do i=1,100
 call MPI_ALLREDUCE(buf1,buf2,100,MPI_REAL8,MPI_SUM,MPI_COMM_WORLD,ierr)
end do
call FJMPI_COLLECTION_PRINT('Allreduce')

call MPI_BARRIER(MPI_COMM_WORLD,ierr)
call MPI_FINALIZE(ierr)
end program main

5.4 Extended Persistent Communication Requests Interface
Using this interface, overlap of computation and communication, which could not be achieved completely by using only the persistent
communication request interface in the MPI standard, can be achieved by starting communication asynchronously.

See table below for a list of the practical functions for the extended persistent communication requests interface supported by this system.

Table 5.5 Extended persistent communication requests interface function list

Function name Function overview

FJMPI_Prequest_send_init Initialization of send using an extended persistent communication requests interface

FJMPI_Prequest_recv_init Initialization of receive using an extended persistent communication requests interface

FJMPI_Prequest_start Starts communication using an extended persistent communication requests interface

FJMPI_Prequest_startall Starts all communication using persistent an extended persistent communication requests
interface

5.4.1 Overview
The extended persistent communication requests interface overlaps computation and communication by the following mechanism.

Table 5.6 The extended persistent communication requests interface mechanism

FJMPI_Prequest_send_init...
 1. Notify the partner process of information

FJMPI_Prequest_start
 2. Begin the send of message body with start

(computation)

MPI_Wait

FJMPI_Prequest_recv_init...
 1. Notify the partner process of information

FJMPI_Preqeust_start
 2. Begin the recieve of message body with start

(computation)

MPI_Wait

Note that the communication performance may degrade compared to the MPI function if a derived datatype which represents
non-contiguous message on memory is specified.

- 80 -

5.4.2 Extended Persistent Communication Requests Interface
Specifications

5.4.2.1 FJMPI_Prequest_send_init
<Format>

C language format

#include <mpi-ext.h>
int FJMPI_Prequest_send_init(void *buf, int count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm,
 MPI_Request *request)

Fortran format

FJMPI_PREQUEST_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

<Explanation>

The arguments are same as those of the MPI_Send_init function.

The request generated with this function can be used with the request operation function which is defined in the MPI standard.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

If the job type is node-sharing job A value other than 0 is returned.

Refer to the Job Operation Software manual for information on node-
sharing job.

<Notes>

- The request generated with this function can be initiated only by the FJMPI_Prequest_start function or the FJMPI_Prequest_startall
function.

- The communication using the request generated with this function must be received using the request generated with
FJMPI_Prequest_recv_init function.

- It is not possible to cancel using the MPI_Cancel function. In that case, the MPI_Cancel function returns an error.

- Communication requests that have same source/destination rank, message tag, and communicator cannot exist at the same time.
The following message is output if another communication request that was created with the same arguments already exists on
calling this function.

[mpi::fjmpi-prequest::same-request-args] The arguments of source/destination rank, message tag,
and communicator for the request are identical to those of another request.

5.4.2.2 FJMPI_Prequest_recv_init
<Format>

C language format

#include <mpi-ext.h>
int FJMPI_Prequest_recv_init(void *buf, int count, MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm,
 MPI_Request *request)

Fortran format

- 81 -

FJMPI_PREQUEST_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

<Explanation>

The arguments are same as those of the MPI_Recv_init function.

The request generated with this function can be used with the request operation function which is defined in the MPI standard.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

If the job type is node-sharing job A value other than 0 is returned.

Refer to the Job Operation Software manual for information on node-
sharing job.

<Notes>

- MPI_ANY_SOURCE cannot be specified for the argument source.

- The communication using the request generated with this function must be received using the request generated with
FJMPI_Prequest_send_init function.

- The request generated with this function can be initiated only by the FJMPI_Prequest_start function or the FJMPI_Prequest_startall
function.

- It is not possible to cancel using the MPI_Cancel function. In that case, the MPI_Cancel function returns an error.

- The probe functions such as MPI_Probe cannot check for incoming messages which are bound to requests created by this function.

- Communication requests that have same source/destination rank, message tag, and communicator cannot exist at the same time.
The following message is output if another communication request that was created with the same arguments already exists on
calling this function.

[mpi::fjmpi-prequest::same-request-args] The arguments of source/destination rank, message tag,
and communicator for the request are identical to those of another request.

5.4.2.3 FJMPI_Prequest_start
<Format>

C language format

#include <mpi-ext.h>
int FJMPI_Prequest_start(MPI_Request *request)

Fortran format

FJMPI_PREQUEST_START(REQUEST, IERROR)
INTEGER REQUEST, IERROR

<Explanation>

The arguments are same as those of the MPI_Start function.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

If the job type is node-sharing job A value other than 0 is returned.

Refer to the Job Operation Software manual for information on node-
sharing job.

- 82 -

<Notes>

- Only communication requests that were created by FJMPI_Prequest_send_init function or FJMPI_Prequest_recv_init function
can be passed to this function.

- When the request generated with a FJMPI_Prequest_send_init function is used, the procedure is non-local and waits calling
FJMPI_Prequest_start or FJMPI_Prequest_startall function by the process which executes receive function.

5.4.2.4 FJMPI_Prequest_startall
<Format>

C language format

#include <mpi-ext.h>
int FJMPI_Prequest_startall(int count, MPI_Request *requests)

Fortran format

FJMPI_PREQUEST_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

<Explanation>

The arguments are same as those of the MPI_Startall function.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

If the job type is node-sharing job A value other than 0 is returned.

Refer to the Job Operation Software manual for information on node-
sharing job.

<Notes>

- Only communication requests that were created by FJMPI_Prequest_send_init function or FJMPI_Prequest_recv_init function
can be passed to this function.

- When the request generated with a FJMPI_Prequest_send_init function is included, the procedure of the request is non-local and
wait calling FJMPI_Prequest_start or FJMPI_Prequest_startall function by the process which executes receive function.

5.4.3 Sample Program
The sample program of the extended persistent communication requests interface is shown below.

#include <stdio.h>
#include <mpi.h>
#include <mpi-ext.h>

#define VEC_LEN (4*1024*1024)
#define BSIZE (1024*1024)

static double x[VEC_LEN], y[VEC_LEN], a = 0.1;

int main(int argc, char *argv[])
{
 int j, rank, size, prev, next;
 double sb[BSIZE], rb[BSIZE];
 MPI_Request reqs[2];
 double stime, etime;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&size);

- 83 -

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 prev = (rank - 1 + size) % size;
 next = (rank + 1) % size;

 MPI_Barrier(MPI_COMM_WORLD);

 FJMPI_Prequest_recv_init(rb,BSIZE,MPI_DOUBLE,prev,1000,MPI_COMM_WORLD,&reqs[0]);
 FJMPI_Prequest_send_init(sb,BSIZE,MPI_DOUBLE,next,1000,MPI_COMM_WORLD,&reqs[1]);

 MPI_Barrier(MPI_COMM_WORLD);
 stime = MPI_Wtime();

 FJMPI_Prequest_startall(2,&reqs[0]);

 for (j = 0; j < VEC_LEN; j++) {
 y[j] = a * x[j] + y[j];
 }

 MPI_Waitall(2,&reqs[0],MPI_STATUSES_IGNORE);

 etime = MPI_Wtime();

 MPI_Barrier(MPI_COMM_WORLD);

 if (0 == rank) {
 printf("%.6f sec\n", etime - stime);
 }

 MPI_Finalize();

 return (0);
}

5.5 MPI Asynchronous Communication Promotion Section
Specifying Interface

The MPI asynchronous communication promotion section specifying function is a function to specify the range to promote asynchronous
communication using an assistant core. Refer to "6.2 Promoting Asynchronous Communication Using an Assistant Core" for details of
the asynchronous communication promotion.

These functions are meaningful only if a value of MCA parameter opal_progress_thread_mode is equal to 1 or 2.

Table below shows the overview of asynchronous communication promotion section specifying function.

Table 5.7 Overview of asynchronous communication promotion section specifying functions list

Function name Function overview

FJMPI_Progress_start Starts the promotion of asynchronous communication

FJMPI_Progress_stop Stops the promotion of asynchronous communication

5.5.1 The MPI Asynchronous Communication Promotion Section Specifying
Function

5.5.1.1 FJMPI_Progress_start
<Format>

C language format

- 84 -

#include <mpi-ext.h>
void FJMPI_Progress_start(void);

Fortran format

CALL FJMPI_PROGRESS_START()

<Explanation>

This function starts the promotion of asynchronous communication on the manual section (without MPI call) mode or the manual
section (with MPI call) mode of the MPI asynchronous processing progress thread.

On the manual section (without MPI call) mode, any MPI functions or extended interfaces cannot be called before FJMPI_Progress_stop
function is called. Function calls in the section are not checked and the behavior on the calls is uncertain. On the manual section (with
MPI call) mode, those functions can be called but they involves a performance overhead.

This function also can be called when one or more active requests exist. Also, this function can be called when no active request exists.
The latter case causes almost no performance effect.

Call of this function is ignored in any of the following cases.

- The operation mode is not the manual section (without MPI call) mode nor the manual section (with MPI call) mode.

- The promotion of asynchronous communication was started already. That is, FJMPI_Progress_start function was already called
and FJMPI_Progress_stop function is not called yet.

<Return value>

None.

5.5.1.2 FJMPI_Progress_stop
<Format>

C language format

#include <mpi-ext.h>
void FJMPI_Progress_stop(void);

Fortran format

CALL FJMPI_PROGRESS_STOP()

<Explanation>

This function stops the promotion of asynchronous communication on the manual section (without MPI call) mode or the manual
section (with MPI call) mode of the MPI asynchronous processing progress thread.

Call of this function is ignored in any of the following cases.

- The operation mode is not the manual section (without MPI call) mode nor the manual section (with MPI call) mode

- The promotion of asynchronous communication is not started yet. That is, FJMPI_Progress_start function has never called, or
FJMPI_Progress_start function was called and corresponding FJMPI_Progress_stop function was also already called

<Return value>

None.

5.5.2 Sample Program
A sample program of a MPI asynchronous communication promotion section specifying interface is shown below. This program performs
computation and four communications concurrently.

You can see an execution time difference between the case of value 0 and 1 that is specified for the MCA parameter
opal_progress_thread_mode. But if the difference of the execution time of computation only and the execution time of communication
only is large, the effect of the overlap of computation and communication becomes small. So the degree of the effect varies greatly depend
on the compiler options on the compilation, the process layout on the execution, and so on.

- 85 -

#include <stdio.h>
#include <mpi.h>
#include <mpi-ext.h>

#define VEC_LEN (4*1024*1024)
#define MSG_LEN (16*1024*1024)

static double x[VEC_LEN], y[VEC_LEN], a = 0.1;
static double sbuf[2][MSG_LEN], rbuf[2][MSG_LEN];

int main(int argc, char *argv[])
{
 int i, j, size, rank, prev, next;
 MPI_Request reqs[4];
 double stime, etime;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 prev = (rank - 1 + size) % size;
 next = (rank + 1) % size;

 for (i = 0; i < 2; i++) {

 stime = MPI_Wtime();

 MPI_Irecv(rbuf[0], MSG_LEN, MPI_DOUBLE, prev, 0, MPI_COMM_WORLD, &reqs[0]);
 MPI_Irecv(rbuf[1], MSG_LEN, MPI_DOUBLE, next, 0, MPI_COMM_WORLD, &reqs[1]);
 MPI_Isend(sbuf[0], MSG_LEN, MPI_DOUBLE, prev, 0, MPI_COMM_WORLD, &reqs[2]);
 MPI_Isend(sbuf[1], MSG_LEN, MPI_DOUBLE, next, 0, MPI_COMM_WORLD, &reqs[3]);

 FJMPI_Progress_start();

 for (j = 0; j < VEC_LEN; j++) {
 y[j] = a * x[j] + y[j];
 }

 FJMPI_Progress_stop();

 MPI_Waitall(4, reqs, MPI_STATUSES_IGNORE);

 etime = MPI_Wtime();

 }

 MPI_Finalize();

 if (rank == 0) {
 printf("%.6f sec\n", etime - stime);
 }

 return 0;
}

- 86 -

Chapter 6 Supplementary Items

6.1 Tofu Interconnect

6.1.1 Tofu Interconnect Configuration
A Tofu interconnect is physically comprised of a 6-dimensional mesh/torus network. The coordinates of the 6-dimensional mesh/torus
network are given by the six dimensions X, Y, Z, A, B, and C. The unit comprised of the A, B, and C axes of size 2 x 3 x 2 is known as
a Tofu unit.

Figure 6.1 A Tofu unit

Neighboring Tofu units are connected by the X, Y, and Z axes, and constructed such that nodes having the same A, B, and C axis coordinates
are tied together. Accordingly, a Tofu unit has 12 connections in each X, Y, and Z direction.

- 87 -

Figure 6.2 Connections to other Tofu units

6.1.2 Routing
Packets move in the Tofu interconnect in the coordinate axis sequence of B, C, A, X, Y, Z, A, C, B. The initial ABC axis routes are aimed
at avoiding faulty nodes and distributing routes. The rest routes are aimed at reaching the destination node. The MPI library specifies
which route to be used among 12 initial ABC routes. The Tofu interconnect's routing have more routes than ordinary dimension order
routing. Therefore, this is known as extended dimension order routing.

- 88 -

Figure 6.3 Example of initial ABC axis routing moving all ABC axes

6.1.3 Configuration within a Node
Each node contains a module known as an Interconnect Controller (ICC) for controlling communication with other nodes. Internally there
are four RDMA engines, known as Tofu Network Interfaces (TNI). Each TNI is capable of one send and one receive simultaneously. By
using four TNIs, an ICC is capable of four sends and four receives simultaneously. There are a total of 10 ports, six in the XYZ direction
and four in the ABC direction.

The MPI library uses these four RDMA engines, and executes RDMA communication.

Figure 6.4 ICC configuration

- 89 -

6.2 Promoting Asynchronous Communication Using an Assistant
Core

On this system, even if you use nonblocking communication with an expectation of overlap of computation and communication, the
communication may not progress completely asynchronously behind the computation, and the transfer of the message body may begin
when a completion function such as MPI_Wait is called. In this case, the expected overlap cannot be achieved. SPARC64 XIfx, the CPU
of the FX100 system, has 2 assistant cores that are dedicated to the OS and IO processing, in addition to 32 calculation cores that are
dedicated to execution of user programs submitted as jobs. So this system has a function to promote asynchronous communication in an
MPI programs that use nonblocking communication, by using the assistant core. This function creates a thread called "MPI asynchronous
processing progress thread" on the assistant core in order to progress nonblocking communication when an MPI program is executed. This
enables asynchronous communication on the assistant core behind computation on the calculation cores. In other words, it encourages
overlap of computation and communication, aiming for a reduced MPI program execution time. This effect tends to be larger when the
message size to be sent by nonblocking communication is large, especially when the message size is equal to or more than the threshold
value.

However, as the assistant core is shared and used by multiple user processes, daemon processes, and OS in the compute node, there is a
possibility that the side effects are generated that the execution times vary on multiple runs or the execution time is increased. These side
effects may become larger especially if there are more than four processes at one node as a guide.

Moreover, when an MPI program calls an MPI function, an exclusive lock operation needed between a thread that processes the MPI
function on the calculation core and the MPI asynchronous processing progress thread on the assistant core becomes a high cost. Therefore
this system provides three operation modes shown in the "Table 6.1 Operation modes of the MPI asynchronous processing progress
thread" below. The "value" column means values to specify for the MCA parameter opal_progress_thread_mode.

Table 6.1 Operation modes of the MPI asynchronous processing progress thread

Operation mode name Value Explanation of operation mode

Manual section (without MPI call) mode 1 Promote asynchronous communication in the sections specified by
section specifying functions. MPI functions and extended interfaces
cannot be called in the section. Modification of the MPI program is
required to use this mode. In this mode, the exclusive lock operation is
processed only when the section specifying functions are called.
Therefore the performance overhead is smallest among three modes.

Manual section (with MPI call) mode 2 Promote asynchronous communication in the sections specified by
section specifying functions. MPI functions and extended interfaces can
be called in the section. Modification of the MPI program is required to
use this mode. In this mode, the exclusive lock operation is processed
only when the section specifying functions are called and when any MPI
functions are called in the section. Therefore the performance overhead
is relatively small if there are few MPI function calls in the section. But
each MPI function call involves a small overhead even on the outside
the section.

Automatic section mode 3 Promote asynchronous communication in the sections where at least one
active request of nonblocking communication exists. MPI functions and
extended interfaces can be called in the section. Modification of the MPI
program is not required to use this mode. The section is automatically
detected by this system. In this mode, the exclusive lock operation is
processed when MPI functions are called in the section. Therefore the
performance overhead is large if the MPI program calls many MPI
functions between the start of the nonblocking communication by
MPI_Isend function etc. and the completion the nonblocking
communication by MPI_Wait function etc.

Refer to "5.5 MPI Asynchronous Communication Promotion Section Specifying Interface" for details of the section specifying functions
described above.

To use this function, the MCA parameter opal_progress_thread_mode must be specified. Refer to "Table 4.41 opal_progress_thread_mode
(specifies the operation mode of the MPI asynchronous processing progress thread)" for details.

- 90 -

Though this function can be used in combination with the extended interface described in "5.4 Extended Persistent Communication
Requests Interface", there will be almost no performance gain.

 Example

Extract from a program where asynchronous communications are promoted

MPI_Isend(sendbuf, 1048576, MPI_BYTE, sendpeer, tag, MPI_COMM_WORLD, &request[0]);
MPI_Irecv(recvbuf, 1048576, MPI_BYTE, recvpeer, tag, MPI_COMM_WORLD, &request[1]);
(computations)
MPI_Waitall(2, request, stat);

6.3 Notes Concerning MPI Standards Specifications

6.3.1 Supported Level of MPI Standards
The MPI library provided by this system conforms to the MPI-3.0 Standard specifications.

C++ is supported within the range of the MPI-2.2 Standard.

6.3.2 Predefined Datatypes that can be Used in This System
The predefined MPI datatypes and the corresponding data types of each program language that can be used in this system are shown below.
The predefined MPI datatypes for Fortran are listed in "Table 6.2 Predefined MPI datatypes usable by Fortran", the predefined MPI
datatypes for C are listed in "Table 6.3 Predefined MPI datatypes usable by C", and the predefined MPI datatypes for C++ are listed in
"Table 6.4 Predefined MPI datatypes usable by C++".

Table 6.2 Predefined MPI datatypes usable by Fortran

Predefined MPI datatypes Fortran data types

[Basic datatypes]
MPI_CHARACTER
MPI_LOGICAL
MPI_LOGICAL1
MPI_LOGICAL2
MPI_LOGICAL4
MPI_LOGICAL8
MPI_INTEGER
MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGER8
MPI_REAL
MPI_REAL4
MPI_REAL8
MPI_REAL16
MPI_DOUBLE_PRECISION
MPI_COMPLEX
MPI_COMPLEX8
MPI_COMPLEX16
MPI_COMPLEX32
MPI_DOUBLE_COMPLEX

MPI_BYTE
MPI_PACKED

MPI_AINT
MPI_OFFSET
MPI_COUNT

CHARACTER
LOGICAL
LOGICAL(1)
LOGICAL(2)
LOGICAL(4)
LOGICAL(8)
INTEGER
INTEGER(1)
INTEGER(2)
INTEGER(4)
INTEGER(8)
REAL
REAL(4)
REAL(8)
REAL(16)
DOUBLE PRECISION
COMPLEX
COMPLEX(4)
COMPLEX(8)
COMPLEX(16)
COMPLEX(8)

INTEGER (KIND=MPI_ADDRESS_KIND)
INTEGER (KIND=MPI_OFFSET_KIND)
INTEGER (KIND=MPI_COUNT_KIND)

- 91 -

Predefined MPI datatypes Fortran data types

MPI_LB
MPI_UB

MPI_2REAL
MPI_2DOUBLE_PRECISION
MPI_2INTEGER
MPI_2COMPLEX
MPI_2DOUBLE_COMPLEX

REAL pair
DOUBLE PRECISION pair
INTEGER pair
COMPLEX pair
DOUBLE COMPLEX pair

Table 6.3 Predefined MPI datatypes usable by C

Predefined MPI datatypes C data types

[Basic datatypes]
MPI_CHAR
MPI_SHORT
MPI_INT
MPI_LONG
MPI_LONG_LONG_INT
MPI_LONG_LONG
MPI_SIGNED_CHAR
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_WCHAR

MPI_BYTE
MPI_PACKED

MPI_C_BOOL
MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T

MPI_AINT
MPI_OFFSET
MPI_COUNT

char
signed short int
signed int
signed long int
signed long long int
signed long long int
signed char
unsigned char
unsigned short int
unsigned int
unsigned long int
unsigned long long int
float
double
long double
wchar_t

_Bool
int8_t
int16_t
int32_t
int64_t
uint8_t
uint16_t
uint32_t
uint64_t

MPI_Aint
MPI_Offset
MPI_Count

MPI_LB
MPI_UB

MPI_FLOAT_INT
MPI_DOUBLE_INT
MPI_LONG_INT
MPI_2INT
MPI_SHORT_INT
MPI_LONG_DOUBLE_INT

MPI_C_COMPLEX
MPI_C_FLOAT_COMPLEX
MPI_C_DOUBLE_COMPLEX

float and signed int pair
double and signed int pair
signed long int and signed int pair
signed int pair
signed short int and signed int pair
long double and signed int pair

float _Complex
float _Complex
double _Complex

- 92 -

Predefined MPI datatypes C data types

MPI_C_LONG_DOUBLE_COMPLEX

MPI_CHARACTER
MPI_LOGICAL
MPI_LOGICAL1
MPI_LOGICAL2
MPI_LOGICAL4
MPI_LOGICAL8
MPI_INTEGER
MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGER8
MPI_REAL
MPI_REAL4
MPI_REAL8
MPI_REAL16
MPI_DOUBLE_PRECISION
MPI_COMPLEX
MPI_COMPLEX8
MPI_COMPLEX16
MPI_COMPLEX32
MPI_DOUBLE_COMPLEX

MPI_2REAL
MPI_2DOUBLE_PRECISION
MPI_2INTEGER
MPI_2COMPLEX
MPI_2DOUBLE_COMPLEX

MPI_CXX_BOOL
MPI_CXX_FLOAT_COMPLEX
MPI_CXX_DOUBLE_COMPLEX
MPI_CXX_LONG_DOUBLE_COMPLEX

long double _Complex

CHARACTER (Fortran)
LOGICAL (Fortran)
LOGICAL(1) (Fortran)
LOGICAL(2) (Fortran)
LOGICAL(4) (Fortran)
LOGICAL(8) (Fortran)
INTEGER (Fortran)
INTEGER(1) (Fortran)
INTEGER(2) (Fortran)
INTEGER(4) (Fortran)
INTEGER(8) (Fortran)
REAL (Fortran)
REAL(4) (Fortran)
REAL(8) (Fortran)
REAL(16) (Fortran)
DOUBLE PRECISION (Fortran)
COMPLEX (Fortran)
COMPLEX(4) (Fortran)
COMPLEX(8) (Fortran)
COMPLEX(16) (Fortran)
COMPLEX(8) (Fortran)

REAL (Fortran) pair
DOUBLE PRECISION (Fortran) pair
INTEGER (Fortran) pair
COMPLEX (Fortran) pair
COMPLEX(8) (Fortran) pair

bool (C++)
std::complex<float> (C++)
std::complex<double> (C++)
std::complex<long double> (C++)

Table 6.4 Predefined MPI datatypes usable by C++

Predefined MPI datatypes C++ data types

[Basic datatypes]
MPI::CHAR
MPI::SHORT
MPI::INT
MPI::LONG
MPI::LONG_LONG
MPI::SIGNED_CHAR
MPI::UNSIGNED_CHAR
MPI::UNSIGNED_SHORT
MPI::UNSIGNED
MPI::UNSIGNED_LONG
MPI::UNSIGNED_LONG_LONG
MPI::FLOAT
MPI::DOUBLE
MPI::LONG_DOUBLE
MPI::WCHAR

MPI::BYTE
MPI::PACKED

char
signed short int
signed int
signed long int
signed long long int
signed char
unsigned char
unsigned short int
unsigned int
unsigned long int
unsigned long long int
float
double
long double
wchar_t

MPI::LB
MPI::UB

- 93 -

Predefined MPI datatypes C++ data types

MPI::BOOL
MPI::COMPLEX
MPI::DOUBLE_COMPLEX
MPI::LONG_DOUBLE_COMPLEX

MPI::FLOAT_INT
MPI::DOUBLE_INT
MPI::LONG_INT
MPI::TWOINT
MPI::SHORT_INT
MPI::LONG_DOUBLE_INT

MPI::INTEGER
MPI::INTEGER1
MPI::INTEGER2
MPI::INTEGER4
MPI::REAL
MPI::REAL4
MPI::REAL8
MPI::DOUBLE_PRECISION
MPI::F_COMPLEX
MPI::LOGICAL
MPI::CHARACTER

MPI::TWOREAL
MPI::TWODOUBLE_PRECISION
MPI::TWOINTEGER

bool
Complex<float>
Complex<double>
Complex<long double>

float and signed int pair
double and signed int pair
signed long int and signed int pair
signed int pair
signed short int and signed int pair
long double and signed int pair

INTEGER (Fortran)
INTEGER(1) (Fortran)
INTEGER(2) (Fortran)
INTEGER(4) (Fortran)
REAL (Fortran)
REAL(4) (Fortran)
REAL(8) (Fortran)
DOUBLE PRECISION (Fortran)
COMPLEX (Fortran)
LOGICAL (Fortran)
CHARACTER(1) (Fortran)

REAL (Fortran) pair
DOUBLE PRECISION (Fortran) pair
INTEGER (Fortran) pair

6.3.3 Allowed Datatypes in Collective Communication
(Reduction Operation)

Table below shows the datatypes that can be specified in collective communication reduction operations.

Table 6.5 Datatypes that can be specified in collective communication reduction operations

Operation Datatypes C C/C++ Fortran

[C/
Fortran]
MPI_MAX
MPI_MIN

[C++]
MPI::MAX
MPI::MIN

C integer
datatypes

Fortran
integer
datatypes

MPI_SIGNED_CHAR
MPI_SHORT
MPI_INT
MPI_LONG
MPI_LONG_LONG_INT
MPI_LONG_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T

MPI::SIGNED_CHAR
MPI::SHORT
MPI::INT
MPI::LONG
MPI::LONG_LONG
MPI::UNSIGNED_CHAR
MPI::UNSIGNED_SHORT
MPI::UNSIGNED
MPI::UNSIGNED_LONG
MPI::UNSIGNED_LONG_LO
NG
MPI::INTEGER
MPI::INTEGER1
MPI::INTEGER2
MPI::INTEGER4

MPI_INTEGER
MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGER8
MPI_AINT
MPI_OFFSET

Return value of
MPI_TYPE_CREATE_F
90_INTEGER(handle
)

Floating
point
datatypes

MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE

MPI::FLOAT
MPI::DOUBLE
MPI::LONG_DOUBLE

MPI_REAL
MPI_REAL4
MPI_REAL8

- 94 -

Operation Datatypes C C/C++ Fortran

MPI::REAL
MPI::REAL4
MPI::REAL8
MPI::DOUBLE_PRECISION

MPI_REAL16
MPI_DOUBLE_PRECIS
ION

Return value of
MPI_TYPE_CREATE_F
90_REAL(handle)

[C/
Fortran]
MPI_SUM
MPI_PROD

[C++]
MPI::SUM
MPI::PROD

C integer
datatypes

Fortran
integer
datatypes

MPI_SIGNED_CHAR
MPI_SHORT
MPI_INT
MPI_LONG
MPI_LONG_LONG_INT
MPI_LONG_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T

MPI::SIGNED_CHAR
MPI::SHORT
MPI::INT
MPI::LONG
MPI::LONG_LONG
MPI::UNSIGNED_CHAR
MPI::UNSIGNED_SHORT
MPI::UNSIGNED
MPI::UNSIGNED_LONG
MPI::UNSIGNED_LONG_LO
NG
MPI::INTEGER
MPI::INTEGER1
MPI::INTEGER2
MPI::INTEGER4

MPI_INTEGER
MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGER8
MPI_AINT
MPI_OFFSET

Return value of
MPI_TYPE_CREATE_F
90_INTEGER(handle
)

Floating
point
datatypes

MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE

MPI::FLOAT
MPI::DOUBLE
MPI::LONG_DOUBLE
MPI::REAL
MPI::REAL4
MPI::REAL8
MPI::DOUBLE_PRECISION

MPI_REAL
MPI_REAL4
MPI_REAL8
MPI_REAL16
MPI_DOUBLE_PRECIS
ION

Return value of
MPI_TYPE_CREATE_F
90_REAL(handle)

Complex
number
datatypes

MPI_C_COMPLEX
MPI_C_FLOAT_COMPLEX
MPI_C_DOUBLE_COMPLEX
MPI_C_LONG_DOUBLE_COMP
LEX
MPI_CXX_FLOAT_COMPLEX
MPI_CXX_DOUBLE_COMPLEX
MPI_CXX_LONG_DOUBLE_CO

MPLEX

MPI::F_COMPLEX
MPI::COMPLEX
MPI::F_DOUBLE_COMPLEX
MPI::DOUBLE_COMPLEX
MPI::LONG_DOUBLE_COMP
LEX

MPI_COMPLEX
MPI_COMPLEX4
MPI_COMPLEX8
MPI_COMPLEX16
MPI_COMPLEX32
MPI_DOUBLE_COMPLE
X

Return value of
MPI_TYPE_CREATE_F
90_COMPLEX(handle
)

[C/
Fortran]
MPI_LAND
MPI_LOR
MPI_LXOR

[C++]

C integer
datatypes

Logical
datatypes

MPI_SIGNED_CHAR
MPI_SHORT
MPI_INT
MPI_LONG
MPI_LONG_LONG_INT
MPI_LONG_LONG
MPI_UNSIGNED_CHAR

MPI::SIGNED_CHAR
MPI::SHORT
MPI::INT
MPI::LONG
MPI::LONG_LONG
MPI::UNSIGNED_CHAR
MPI::UNSIGNED_SHORT

MPI_LOGICAL
MPI_LOGICAL1
MPI_LOGICAL2
MPI_LOGICAL4
MPI_LOGICAL8
MPI_AINT
MPI_OFFSET

- 95 -

Operation Datatypes C C/C++ Fortran

MPI::LAND
MPI::LOR
MPI::LXOR

MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T
MPI_C_BOOL

MPI::UNSIGNED
MPI::UNSIGNED_LONG
MPI::UNSIGNED_LONG_LO
NG
MPI::LOGICAL
MPI::BOOL

Return value of
MPI_TYPE_CREATE_F
90_INTEGER(handle
)

[C/
Fortran]
MPI_BAND
MPI_BOR
MPI_BXOR

[C++]
MPI::BAND
MPI::BOR
MPI::BXOR

C integer
datatypes

Fortran
integer
datatypes

MPI_SIGNED_CHAR
MPI_SHORT
MPI_INT
MPI_LONG
MPI_LONG_LONG_INT
MPI_LONG_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T

MPI::SIGNED_CHAR
MPI::SHORT
MPI::INT
MPI::LONG
MPI::LONG_LONG
MPI::UNSIGNED_CHAR
MPI::UNSIGNED_SHORT
MPI::UNSIGNED
MPI::UNSIGNED_LONG
MPI::UNSIGNED_LONG_LO
NG
MPI::INTEGER
MPI::INTEGER1
MPI::INTEGER2
MPI::INTEGER4

MPI_INTEGER
MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGER8
MPI_AINT
MPI_OFFSET

Return value of
MPI_TYPE_CREATE_F
90_INTEGER(handle
)

Byte
datatypes

MPI_BYTE MPI::BYTE MPI_BYTE

[C/
Fortran]
MPI_MAXLO
C
MPI_MINLO
C

[C++]
MPI::MAXL
OC
MPI::MINL
OC

- MPI_FLOAT_INT
MPI_DOUBLE_INT
MPI_LONG_DOUBLE_INT
MPI_LONG_INT
MPI_2INT
MPI_SHORT_INT

MPI::FLOAT_INT
MPI::DOUBLE_INT
MPI::LONG_DOUBLE_INT
MPI::LONG_INT
MPI::TWOINT
MPI::SHORT_INT
MPI::TWOREAL
MPI::TWODOUBLE_PRECIS
ION
MPI::TWOINTEGER

MPI_2REAL
MPI_2DOUBLE_PRECI
SION
MPI_2INTEGER

6.3.4 Reserved Communicators
As specified in the MPI standards, the following communicators are reserved in this system:

- MPI_COMM_WORLD

- MPI_COMM_SELF

In addition, MPI_COMM_NULL is reserved as a predefined constant.

- 96 -

6.3.5 Operations in a Multi-Threaded Environment
This system supports operations in a multi-thread environment. The thread support level of this system is MPI_THREAD_SERIALIZED.

MPI_THREAD_SERIALIZED means that MPI can be called from multiple threads but that they cannot be called simultaneously. In other
words, the invocation of MPI from all of the threads must be serialized. A user application program must internally support this serialization
of MPI calls. Note that the behavior of an MPI program is not guaranteed if MPI invocation is not serialized. Refer to the MPI standards
for details.

6.3.6 Signal Operation Changes
In this system, the system standard operation of the signals shown in table below is changed.

Table 6.6 Names of signals with changed system standard operation

Signal name

SIGABRT
SIGBUS
SIGFPE
SIGSEGV
SIGCHLD

In addition, this system uses one realtime signal. Refer to the commercial Linux-related publications for information on realtime signals.

6.3.7 One-sided Communications
This section provides notes on one-sided communications.

6.3.7.1 Assertions for Optimization
In this system, the argument assert of MPI_WIN_POST, MPI_WIN_START, MPI_WIN_FENCE, MPI_WIN_LOCK, and
MPI_WIN_LOCK_ALL is used for optimization. Assertions supported in this system are shown in table below.

Table 6.7 Assertions for optimizations in one-sided communications

MPI function name Assertion Operation in this system

MPI_WIN_POST MPI_MODE_NOCHECK Ignored

MPI_MODE_NOSTORE Ignored

MPI_MODE_NOPUT Ignored

MPI_WIN_START MPI_MODE_NOCHECK Ignored

MPI_WIN_FENCE MPI_MODE_NOSTORE Ignored

MPI_MODE_NOPUT Ignored

MPI_MODE_NOPRECEDE The fence does not complete any sequence of locally issued RMA
calls. If this assertion is given by any group, then by any process in the
window group, then it must be given by all processes in the group.

MPI_MODE_NOSUCCEED The fence does not start sequence of locally issued RMA calls. If this
assertion is given by any group, then by any process in the window
group, then it must be given by all processes in the group.

MPI_WIN_LOCK,
MPI_WIN_LOCK_ALL

MPI_MODE_NOCHECK Ignored

6.3.7.2 Info Argument
In this system, the info argument of MPI_WIN_CREATE, MPI_WIN_ALLOCATE, MPI_WIN_CREATE_DYNAMIC, and
MPI_WIN_ALLOCATE_SHARED functions is used to decide the behavior of the window created by these functions.

The info keys that can be specified for an info argument in this system are shown below.

- 97 -

Table 6.8 Info key for MPI_WIN_CREATE, MPI_WIN_ALLOCATE, and MPI_WIN_CREATE_DYNAMIC
functions

Info key Operation in this system

accumulate_ops The behavior when the same_op is specified as a key value is the same as when the
same_op_no_op is specified.

The default value for this info key is the same_op_no_op.

Table 6.9 Info key for MPI_WIN_ALLOCATE_SHARED function

Info key Operation in this system

alloc_shared_noncontig When true is specified for the value of this info key, the memory is allocated in a location that
is close to each process.
When false is specified for the value of this info key, the memory is allocated continuously
across process ranks.
The default value for this info key is false.

6.3.8 Establishing Communication between Groups not Sharing a
Communicator

This section provides notes on establishing communication between two MPI program groups that do not share a communicator.

This communication can be established using background execution within one job, in particular, by using background execution and
specifying execution of the corresponding multiple mpiexec(1) in the job script. The -vcoordfile option or the --vcoordfile option must be
specified for mpiexec(1). Refer to "4.1 Execution Command Formats" for details.

6.3.8.1 info Argument Value
Specify MPI_INFO_NULL as the info input argument of the MPI_Open_port function, the MPI_Comm_accept function, the
MPI_Comm_connect function, the MPI_Publish_name function, the MPI_Unpublish_name function, and the MPI_Lookup_name
function.

6.3.8.2 MPI_Open_port Function Behavior
One MPI_Open_port function call consumes one TCP port. The number of available TCP ports is limited and depends on the system you
use. MPI_Open_port function call may fail by the shortage of TCP ports if you call MPI_Open_port function repeatedly without closing
TCP port by MPI_Close_port function. In this case, an error message is output and an error of the error class MPI_ERR_INTERN may
occur.

6.3.8.3 MPI_Comm_join Function Return Value
The output of the MPI_Comm_join function is MPI_COMM_NULL.

6.3.8.4 Service Names in the MPI_Publish_name Function
The maximum length of a service name in this system is 63 characters (63 bytes) (NULL characters are not included in C or C++). In this
system, the job unit is the effective range for a published service name. If there is an attempt to publish the same service name again within
one job, an error of the error class MPI_ERR_SERVICE may occur.

6.3.8.5 MPI_Unpublish_name Function Behavior
In this system, if a process other than the MPI process that published a service name attempts to unpublish that service name using the
MPI_Unpublish_name function, an error of the error class MPI_ERR_ACCESS may occur.

6.3.8.6 Socket Communication Wait Time
Socket communication is used to establish communication. In this system, the socket communication wait time is normally set as unlimited.
This wait time can be changed using the MCA parameter dpm_ple_socket_timeout. However, if this wait time is exceeded during socket

- 98 -

communication, an error message is output and an error of the error class MPI_ERR_PORT may occur. Refer to "Table 4.33
dpm_ple_socket_timeout (specifies the socket communication wait time when establishing communication)" for information on the MCA
parameter dpm_ple_socket_timeout.

After communication is established, the socket communication path between the MPI process groups is disconnected. Socket
communication is not used for communication between MPI processes.

6.3.9 Dynamic Process Generation
This section provides notes on dynamic process generation,

6.3.9.1 Socket Communication Wait Time
When the MPI_Comm_spawn and MPI_Comm_spawn_multiple functions are called to launch processes dynamically and establish
communication, socket communication is used to establish communication with the dynamically generated processes as described in
"6.3.8.6 Socket Communication Wait Time".

6.3.9.2 info Argument Value
For the MPI_Comm_spawn and MPI_Comm_spawn_multiple functions provided by this system, wdir is the only key that can be specified
in the info argument. If a key other than wdir is specified, it is ignored.

The current directory path name can be passed by specifying the wdir key as the info argument of the MPI_Comm_spawn and the
MPI_Comm_spawn_multiple functions of this system. Alternatively, Job Operation Software also provides an option (rankdir
specification) related to specifying the current directory. The current directory interpretation varies, depending on the combination of wdir
key and rankdir specifications. Table below shows the current directory interpretation for each wdir key and rankdir specification. Refer
to the Job Operation Software manual for details.

Table 6.10 Current directory interpretation for each wdir key and rankdir specification

Info argument wdir rankdir specification Current directory of dynamically generated process

Not specified Specified Job number directory (/path/jobid)

Not specified Current directory when the MPI_Comm_spawn function is called

Specified

Relative path specified

Specified Specified relative path from the job number directory (/path/jobid)

Not specified Specified relative path from the current directory when the
MPI_Comm_spawn function is called

Specified

Absolute path specified

Specified Specified absolute path

Not specified Specified absolute path

6.3.9.3 Notes
Do not use the dynamic process generation function of this system when the following conditions apply:

- The --vcoordfile option for mpiexec(1) execution is specified for background execution.

- The total invocation count for the MPI_Comm_spawn function or the MPI_Comm_spawn_multiple function exceeds 4294967295
for one execution of mpiexec(1) when dynamic process generation is used

- The number of MPI_COMM_WORLD for the dynamic processes that exists at the same time exceeds 65535.

- Dynamic process generation executes something other than an MPI program

If dynamic process generation is used under the first three conditions, Job Operation Software outputs an error message and then the MPI
program ends abnormally.

Note that the behavior is not guaranteed if something other than an MPI program is executed under the fourth condition.

Refer to the Job Operation Software manual for details on the Job Operation Software.

If the same process repeatedly executes dynamic process generation, the generated process generation information and communicator
information accumulates in memory and may cause memory shortages. Use with care,

- 99 -

6.3.10 Rank Changes in Accordance with Cartesian Topology
When the MPI_Cart_create function is used to generate a new communicator with attached Cartesian topology, new rank numbers can be
allocated in the order of the Cartesian coordinates, to the parallel processes belonging to the generated communicator by specifying true
in the reorder argument. In other words, ranks can be changed on the basis of the Cartesian coordinates.

The conditions for changing ranks on the basis of Cartesian coordinates and the rules for rank changes are explained below.

6.3.10.1 Conditions Enabling Rank Changes
This section explains the conditions that must be met in order to change ranks using the MPI_Cart_create function.

Note that rank changes are performed on the basis of the coordinates of the node space that Job Operation Software allocates to each
parallel process. To distinguish the coordinates of parallel processes from Cartesian coordinates, this manual refers to them as "logical
coordinates" or simply "coordinates".

The MPI_Cart_create function changes ranks if all the following conditions are met:

- true is specified for the reorder argument

- The process shape of the input communicator comm_old (that is, the number of dimensions and the number of processes in each
dimension) is the same as the shape of the Cartesian topology being newly attached

- The process shape of the input communicator comm_old has no logical coordinate duplications or gaps

In this system, shape matching when changing ranks compares the X, Y, and Z axes of the logical coordinates in sequence from the start
of the array in the dims argument of the MPI_Cart_create function.

6.3.10.2 Rules for Rank Changes
When a Cartesian topology is generated by the MPI_Cart_create function, the Cartesian coordinates allocate rank numbers in ascending
order starting from 0, based on the logical coordinates of the process shape in accordance with the sequence below, to the parallel processes
belonging to input communicator comm_old.

- If the shape is one-dimensional (X axis), the process with coordinates closest to the logical coordinates starting point (0) is set as rank
0, and ranks are set, with that as a starting point, in sequence as processes become further away on the X axis.

- If the shape is two-dimensional (X axis and Y axis), the process with coordinates closest to the logical coordinates starting point (0,0)
is set as rank 0, and ranks are set, with that as a starting point, in sequence as processes become further away on the Y axis, and then
the X axis.

- If the shape is three-dimensional (X axis, Y axis, and Z axis), the process with coordinates closest to the logical coordinates starting
point (0,0,0) is set as rank 0, and ranks are set, with that as a starting point, in sequence as processes become further away on the Z
axis, then the Y axis, and then the X axis.

6.3.10.3 Checking Rank Changes
This system provides the extended interface FJMPI_Topology_cart_reorder for checking whether or not ranks have been changed. Refer
to "5.1 Rank Query Interface" for information on the extended interface FJMPI_Topology_cart_reorder.

6.3.10.4 Sample Program
The MPI program example below executes the MPI_Cart_create function for a communicator with the following conditions and checks
whether or not the ranks have actually been changed:

1. Dimensions: 3 dimensions

2. Node shape (X:2,Y:3,Z:4)

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <mpi.h>
#include <mpi-ext.h>

- 100 -

#define FAILURE 1

int main(int argc, char *argv[])
{
 MPI_Comm cart_comm_on;
 MPI_Comm cart_comm_off;
 int size, rank;
 int dims_on[3] = {2, 3, 4}; /* 3-dimensions 2x3x4 is reordered. */
 int dims_off[3] = {3, 4, 2}; /* 3-dimensions 3x4x2 is not reordered. */
 int periods[3] = {1, 1, 1}; /* cyclic fixed */
 int cart_result;
 char host[255];

 gethostname(host, 255);

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 fprintf(stderr, "[%s] MPI_COMM_WORLD's MPI_Comm_size : %d\n", host, size);
 fprintf(stderr, "[%s] rank of MPI_COMM_WORLD = %d\n", host, rank);

 MPI_Cart_create(MPI_COMM_WORLD, 3, dims_on, periods, 1, &cart_comm_on);

 MPI_Comm_rank(cart_comm_on, &rank);
 fprintf(stderr, "rank after MPI_Cart_create() = %d\n", rank);

 if(MPI_SUCCESS != FJMPI_Topology_cart_reorder(cart_comm_on, &cart_result)) {
 fprintf(stderr, "FJMPI_Topology_cart_reorder ERROR\n");
 MPI_Abort(cart_comm_on, FAILURE);
 }

 fprintf(stderr, "[%s] Cartesian Reorder cart_comm_on --> %s \n",
 host, cart_result ? "ON" : "OFF");

 MPI_Cart_create(MPI_COMM_WORLD, 3, dims_off, periods, 1, &cart_comm_off);

 if(MPI_SUCCESS != FJMPI_Topology_cart_reorder(cart_comm_off, &cart_result)) {
 fprintf(stderr, "FJMPI_Topology_cart_reorder ERROR\n");
 MPI_Abort(MPI_COMM_WORLD, FAILURE);
 }

 fprintf(stderr, "[%s] Cartesian Reorder cart_comm_off --> %s \n",
 host, cart_result ? "ON" : "OFF");

 MPI_Finalize();

 return 0;

}

Ranks are changed by the first MPI_Cart_create function invocation, but not by the second invocation. This is because the Cartesian
topology shape specified in the argument in the second MPI_Cart_create function invocation is not the same as the process shape specified
when the MPI program was executed.

After these MPI_Cart_create functions are called, the program uses the FJMPI_Topology_cart_reorder function to evaluate whether or
not the ranks have in fact been changed.

The evaluation result is returned to the second argument (cart_result variable in the program) of the FJMPI_Topology_cart_reorder
function. If the evaluation result value is 0, this indicates that the ranks were not changed.

- 101 -

6.3.11 Notes on Send Buffer and Receive Buffer
A memory area to which an MPI program parallel process cannot write should not be specified in the send buffer or receive buffer. Behavior
is not guaranteed if the incorrect type of memory area is specified in the send buffer.

Memory areas to which an MPI program parallel process cannot write include, for example, MPI program instruction areas (.text sections),
and similar.

6.3.12 MPI Input-Output
The behavior of the I/O of MPI in this system conforms to the implementation of ROMIO.

Information concerning ROMIO is available from http://www.mcs.anl.gov/research/projects/romio/ .

The following restrictions exist.

- In FEFS, when the MPI_File_open function is executed without specifying MPI_MODE_CREATE and the file does not exist, the
file is created, and it succeeds in executing the function. In other filesystems, it fails in the execution of the function.

- The file input-output data size that can be handled once is less than 2GiB. The data size is "the datatypes size of one element * number
of elements".

The file systems handled as MPI input-output are FEFS, UFS, and NFS. Other file systems are not supported. In addition, for NFS, you
must specify noac for mount option to prevent the unmatch of the content because of the data update delay. Refer to the FEFS manual for
information on FEFS.

If external32 is specified for data expression, do not use the following datatypes:

- MPI_LONG

- MPI_UNSIGNED_LONG

- MPI_WCHAR

The MPI_File_open function provided by this system does not change the size of the existing file.

The input-output function of this system may create a temporary file in the same directory as the user's input-output file. These are the
files generated when MPI_File_open is used to open a file. The size of one of these files is about eight bytes. The MPI_File_close function
usually deletes this file but it may remain if the program is forcibly ended, or if an error occurs in the system.

If a file with a name like the one below remains after MPI program execution has ended, manually delete the file.

.[MPI I/O filename].shfp.numeric

The information set in the status of collective input-output functions (MPI_File_read_all and similar) is always based on the argument
information at the time of invocation.

If the rank number directory (rankdir) is used in Job Operation Software, create the shared file to be used by MPI input-output in the
directory ("../") that is one level higher than the current directory. Refer to the Job Operation Software manual for information on the rank
number directory.

Table below shows the Info object keys and values that can be used by MPI input-output in this system.

Table 6.11 Info object keys and values that can be used by MPI input-output

Key Default value Description

cb_buffer_size "16777216" Size of the temporary buffer area used for collective
access

cb_nodes Number of hosts assigned to communicator
that performs the input-output

Number of processes that actually perform input-
output using collective access

ind_rd_buffer_size "4194304" Size of buffer area at time of individual process read

ind_wr_buffer_size "524288" Size of buffer area at time of individual process write

In addition to the above, the key shown in table below can be specified if the file system is FEFS.

- 102 -

Table 6.12 Info object keys and values that can be used with FEFS
Key Default value Meaning

direct_read "false" Specify whether or not to perform direct I-O (read).

Specify either "true" or "TRUE" to use direct I-O (read).

direct_write "false" Specify whether or not to perform direct I-O (write).

Specify either "true" or "TRUE" to use direct I-O (write).

striping_unit New directory
settings value

Width of one stripe

striping_factor New directory
settings value

Number of input-output devices that perform file striping

 Note

1. The "striping_unit" value must be a whole number multiple of "65536"(64KiB). The minimum "striping_unit" value is
"65536"(64KiB) and the maximum is "2147483648"(2GiB). If "0" is specified, 1048576 is used.

2. The "striping_factor" value must be within the range "-1" to "20000". If the value exceeds the number of OSTs in the FEFS file
system, the entire number of OSTs in the file system is used as the specified value. If "-1" is specified, striping is performed using
all OSTs. If "0" is specified, 1 is used.

6.3.13 Use of the Profiling Interface
- For C programs, MPI calls can be intercepted using the C binding of the profiling interface.

- For Fortran programs, MPI calls can be intercepted using the Fortran binding and the C binding of the profiling interface as described
below.

- MPI calls can be intercepted using Fortran binding.

- MPI calls can also be intercepted using C binding except for some Fortran-specific subroutines/functions as follows:

- MPI_ATTR_GET

- MPI_ATTR_PUT

- MPI_COMM_CREATE_ERRHANDLER

- MPI_COMM_CREATE_KEYVAL

- MPI_COMM_GET_ATTR

- MPI_COMM_SET_ATTR

- MPI_ERRHANDLER_CREATE

- MPI_FILE_CREATE_ERRHANDLER

- MPI_KEYVAL_CREATE

- MPI_TYPE_CREATE_HVECTOR

- MPI_TYPE_CREATE_KEYVAL

- MPI_TYPE_GET_ATTR

- MPI_TYPE_MATCH_SIZE

- MPI_TYPE_SET_ATTR

- MPI_WIN_CREATE_ERRHANDLER

- MPI_WIN_CREATE_KEYVAL

- 103 -

- MPI_WIN_GET_ATTR

- MPI_WIN_SET_ATTR

- MPI calls are intercepted in two levels if the subroutines/functions are configured to be intercepted using both the C binding and
the Fortran binding.

- For C++ programs, MPI calls can be intercepted using the C binding of the profiling interface.

6.3.14 MPI Tool Information Interface
In this system, the MPI tool information interface is supported. But no control variables and no performance variables are exposed.

6.4 Eager Protocol and Rendezvous Protocol
This system implements two communication protocols, the Eager protocol and the Rendezvous protocol, for message communication.

Under the Eager protocol, the send side sends messages regardless of the receive side status. This is referred to as an asynchronous type
of communication. In contrast, under the Rendezvous protocol, the send side and receive side perform linkage processing, and the send
side does not send the message until the receive side message storage destination is established. This is referred to as a synchronous type
of communication. Under the Eager protocol communication, the send side process sends messages without having information about the
receive destination memory area of the user program. Therefore, it prepares in advance a buffer area, the size of the message or greater,
in the internal MPI library area. The Eager protocol communication does not have the overhead of performing linkage processing between
the send side and the receive side, but it does have the overhead of copying between the internal buffer area and the user program memory
space. In contrast, under the Rendezvous protocol, the send side and receive side perform linkage processing in advance, and the send side
process sends the message after the receive destination memory area of the user program is established. Thus, even if a large message is
sent, a large internal buffer area is not required. In particular, if a message is continuous data, the message can be copied directly from the
send side memory space to the receive side memory space of the user program without using the internal buffer area.

This system internally switches between these protocols according to the size of the message being sent. The Eager protocol is selected
for short messages, and the Rendezvous protocol is selected for communication of large messages. More precisely, the distance (number
of hops) of the message communication is also taken into account, not just the message size. The compute nodes in an FX100 system are
physically connected by a mesh or torus format, and message communication between any two compute nodes is performed via a number
of other compute nodes, as required. In this system, the "threshold value" (number of bytes) for switching between Eager communication
and Rendezvous communication in the fast communication mode is obtained using the following formula:

Threshold value = 45,056 + number-of-hops x 296

In the memory-saving communication mode, this system automatically sets appropriate "threshold values" that reduce memory usage.
Refer to "6.10 Suppressing Memory Usage" for information on the fast communication mode and the memory-saving communication
mode.

In the following cases, the Rendezvous protocol communication may be faster regardless of the message size:

- MPI programs that use nonblocking communication to perform multiple communications simultaneously

- MPI programs (when Hasty Rendezvous communication is enabled) that execute receive functions (the MPI_Recv function, etc.)
more quickly than send functions (the MPI_Send function, etc.)

In these cases, improved MPI program performance can be expected due to changing this "threshold value". The MCA parameter
btl_tofu_eager_limit can be used to change the "threshold value". Refer to "Table 4.11 btl_tofu_eager_limit (changes the threshold value
for switching the communication method)" for information on the MCA parameter btl_tofu_eager_limit.

6.5 Hasty Rendezvous Communication
Under Rendezvous protocol linkage processing is performed internally in advance, in order to synchronize the send side and receive side
before messages are actually sent. This advance linkage processing performs control communications, that is, a request to communicate
and a response to the request, under the Rendezvous protocol.

This system provides two mechanisms with different processing operations for Rendezvous control communications. The first mechanism
synchronizes the responses. The second mechanism performs control communications asynchronously without synchronizing control
communication responses. In this system, this second mechanism is known as Hasty Rendezvous communication. Normally, this system

- 104 -

is set not to use Hasty Rendezvous communication. The Hasty Rendezvous communication setting can be changed by switching the MCA
parameter pml_ob1_use_hasty_rendezvous value. Refer to "Table 4.46 pml_ob1_use_hasty_rendezvous (use of Hasty Rendezvous
communication)" for information on the MCA parameter pml_ob1_use_hasty_rendezvous.

When the setting is changed to use the Hasty Rendezvous communication, there is the following restriction. Be careful when specifying
message size to be sent and received.

- An error occurrence related to the threshold value for switching between Eager communication and Rendezvous communication
When a communication that message size less than the threshold value is specified in the sender side and message size equal to or
more than the threshold value is specified in the corresponding receiver side is performed, an error of the error class
MPI_ERR_TRUNCATE may occur after that.

Hasty Rendezvous communication increases the promotion of asynchronous communication in MPI programs that use nonblocking
communication. In other words, it encourages overlap of calculations and communication, aiming for a reduced MPI program execution
time.
Specifically, in case all the following conditions are satisfied, Hasty Rendezvous communication is used in the system.

- Message size to be sent equal to or more than the threshold value

- Message data are continuous on both buffers of the send side and the receive side

- Neither MPI_ANY_SOURCE nor MPI_ANY_TAG is used

- Receive function is invoked before the corresponding send function (necessary only if the value of the MCA parameter
pml_ob1_use_hasty_rendezvous is 1)

- Message data with size of more than the threshold value are sent continuously

However, memory usage may increase and, in the specific case where the send side and the receive side both perform nonblocking
communication, performance is more likely to drop.

 Example

Extract from a program where Hasty Rendezvous communication is applied

 if(myrank == 0){
 MPI_Send(sendbuf0, 1048576, MPI_BYTE, 1, tag, MPI_COMM_WORLD);
 MPI_Send(sendbuf1, 1048576, MPI_BYTE, 1, tag, MPI_COMM_WORLD);
 MPI_Send(sendbuf2, 1048576, MPI_BYTE, 1, tag, MPI_COMM_WORLD);
 }
 if(myrank == 1){
 MPI_Recv(recvbuf0, 1048576, MPI_BYTE, 0, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 MPI_Irecv(recvbuf1, 1048576, MPI_BYTE, 0, tag, MPI_COMM_WORLD, &request[0]);
 MPI_Irecv(recvbuf2, 1048576, MPI_BYTE, 0, tag, MPI_COMM_WORLD, &request[1]);
 (computations)
 MPI_Waitall(2,request, stat);
 }

6.6 Stride RDMA Communication
With general derived datatype message communication, messages are split into multiple messages internally, and using Eager
communication, messages are sent via a message pipeline. An internal buffer area is secured and the split message fragments are temporarily
copied to that buffer area. As a result, the time taken for communication increases significantly for large messages.

This system uses the Tofu interconnect RDMA communication function instead of the pipeline-type processing used under Eager protocol.
This improves communication because messages are copied directly from the user program data area and the internal buffer area is not
used. In this system, this mechanism is called Stride RDMA communication. Stride RDMA communication enables better communication
performance if the derived datatype configuration is relatively simple and the overall message size is large.
In practical terms, Stride RDMA communication is effective if all the following conditions are met:

- Same datatype on the receive side and the send side

- Datatype created using the MPI_Type_vector function or the MPI_Type_hvector function

- 105 -

- 16 or less contiguous blocks in the datatype

- Two or more entities in each block

- Address of each block adjusted to a 4-byte boundary

- Total size (number of bytes) of messages being sent is the same or greater than the "threshold value" for switching the protocol

Refer to "6.4 Eager Protocol and Rendezvous Protocol" for information on the "threshold value" for switching the protocol.

Stride RDMA communication can be stopped by setting 0 as the value of the MCA parameter pml_ob1_use_stride_rdma. Refer to
"Table 4.47 pml_ob1_use_stride_rdma (use of Stride RDMA communication)" for information on the MCA parameter
pml_ob1_use_stride_rdma.

 Example

Extract from a program where Stride RDMA communication is applied

count = 4;
blength = 16384;
stride = blength * 2;

MPI_Type_vector(count, blength, stride, MPI_BYTE, &newtype);
MPI_Type_commit(&newtype);

if (myrank ==0) {
 MPI_Send(sendbuf, 1, newtype, 1, tag, MPI_COMM_WORLD);
 MPI_Recv(recvbuf, 1, newtype, 1, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
if (myrank == 1) {
 MPI_Recv(recvbuf, 1, newtype, 0, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 MPI_Send(sendbuf, 1, newtype, 0, tag, MPI_COMM_WORLD);
}

6.7 Using Multiple TNIs
FX100 systems are connected by means of Tofu interconnects. A network interface device, known as a TNI (Tofu Network Interface), is
deployed at each compute node. FX100 systems have four TNIs at each compute node. The MPI programs allocated to each node use
these TNIs, thus enabling highly efficient message send-receive. For MPI programs that have a small number of simultaneous
communications, the communication time for small-sized messages can be shortened by reducing the number of TNIs. The upper limit
for the number of TNIs to be used can be changed using the MCA parameter common_tofu_max_tnis. Refer to "Table 4.24
common_tofu_max_tnis (changes the upper limit for the number of TNIs to be used)" for information on the MCA parameter
common_tofu_max_tnis.

Using multiple TNIs can improve the throughput performance of point-to-point communication by providing more opportunities to use
multiple communication paths, even for large messages. The use of multiple communication paths makes it possible to split the message,
thus increasing the potential for efficient communication. This is referred to as trunking. Trunking can be enabled by specifying a value
of 1 in the MCA parameter common_tofu_use_multi_path. Refer to "Table 4.31 common_tofu_use_multi_path (performs point-to-point
communication using multiple communication paths)" for information on using the MCA parameter common_tofu_use_multi_path.

Communication performance throughput can be expected to improve using trunking as described above. However, conversely, the multiple
TNIs may be used exclusively for one communication partner even if there are multiple communication partners. This may affect the
overall throughput performance when message communication is implemented with the other communication partners. In addition, if the
communication path that is to be used is already in use by another communication process, contention occurs and the overall communication
performance may decrease instead of improving. Thus, depending on the application program and other communication environment
factors, the benefits of trunking may not be realized. Trunking should therefore be used with care.

The number of TNIs that can be used for trunking depends on the number of processes executed in the same node or the MCA parameter
common_tofu_max_tnis specification. For example, if 2 is specified as the value for common_tofu_max_tnis, a maximum of 2 TNIs can
be used by MPI processes. In this case, 2 is also the maximum number of TNIs that can be used for trunking.

- 106 -

6.8 Reduction Operation Sequence Guarantee in Collective
Communication

This system may change the sequence of reduction operations performed by the collective communication functions MPI_Reduce,
MPI_Ireduce, MPI_Allreduce, MPI_Iallreduce, MPI_Reduce_scatter, MPI_Ireduce_scatter, MPI_Reduce_scatter_block and
MPI_Ireduce_scatter_block. The sequence is changed internally depending on communicator size, message size, rank placement, and
other communication conditions in order to optimize the execution time for collective communication. For floating point data, changing
the sequence of reduction operations may affect the accuracy of the computed results.

This system provides a function that fixes and guarantees the reduction operation sequence in order to prevent these types of reduction
operations from affecting the computed results. To configure this, specify 1 for the MCA parameter coll_base_reduce_commute_safe to
guarantee that the reduction operation sequence is always fixed. However, note that when this function is used, the execution time for
collective communication will increase because the reduction operation sequence is fixed. Refer to "Table 4.12
coll_base_reduce_commute_safe (guarantees the reduction operation sequence)" for information on the MCA parameter
coll_base_reduce_commute_safe.

Normally, the default value of 0 is set for the MCA parameter coll_base_reduce_commute_safe. Use of the default settings as much as
possible is recommended, except when it is necessary to take precautions with the reduction operation sequence changing.

Note that the MPI_Op_create function can be used in an MPI program to achieve a result that is equivalent to using this sequence guarantee
function. For example, if false is specified as the commute argument of the MPI_Op_create function, a new non-commute operation is
defined and this new operation is used to perform reduction operations, giving an equivalent result to that of the sequence guarantee
function.

Moreover, when you want to specify the reduction operation order expressly, collect the data used for the operation in a specific rank, use
the MPI_Reduce_local function, and execute while specifying the order.

6.9 Process Creation in MPI Program
In this system, if you use system call or system library functions to create processes without using MPI functions in your MPI program,
there are the following restrictions.

- Data allocated into the data section in the shared object created by user can't be transferred with MPI functions

Data allocated into the data section (".data" section) include data object in common block (Fortran) and initialized data object.

6.10 Suppressing Memory Usage
When an MPI program is executed, this system internally secures the memory, such as receive buffers in each parallel process, required
by the MPI library itself. For each parallel process, memory must be secured for each of the communication partner processes. In order
to avoid unnecessary allocation of memory, this system only secures memory for a communication partner process at the time of the first
communication with that process. In this manual, this method is referred to as dynamic connection. Use of uses dynamic connection
enables memory usage to be suppressed to a certain extent. However, even when the dynamic connection mode is used and the memory
usage is low immediately after execution of the MPI_Init function, actual memory usage increases if the number of communication partner
processes increases during execution of the MPI program.

This section describes methods for minimizing the amount of memory used by this system.

6.10.1 Switching between Fast Communication Mode and Memory-Saving
Communication Mode

In order to suppress memory usage as much as possible without greatly hindering overall communication performance, this system provides
two communication modes, the fast communication mode and the memory-saving communication mode. This system distinguishes
internally between these two communication modes for each of the communication partner processes.

The fast communication mode uses a comparatively large receive buffer, called the Large receive buffer, and an additional receive buffer,
called the Small receive buffer, and performs communication as fast as possible. In contrast, the memory-saving communication mode
uses only a comparatively small receive buffer, called the Medium receive buffer, and communicates in a way that uses the smallest
possible amount of memory. In other words, the memory-saving communication mode can suppress the communication memory usage
even though it sacrifices a small degree of communication performance. It is important to achieve a good balance in the way these two

- 107 -

communication modes are used by, for example, using the fast communication mode for communications that are performed frequently
and using the memory-saving communication mode for communications that are infrequent.

At the time of execution, the MPI program communication patterns determine the communication partner processes with which fast
communication mode is used. Normally, initial communication with any communication partner process is performed in memory-saving
communication mode. When the communication count with that process is reached the standard value, subsequent communication with
that process is switched from the memory-saving to the fast communication mode. However, an upper limit can be set for the number of
processes that use fast communication mode. When the number of processes that have been switched to use the fast communication mode
reaches this limit, no further switching is performed.

Normally, 1024 is set as the upper limit for the number of processes that use the fast communication mode. This upper limit can be changed
using the MCA parameter common_tofu_max_fastmode_procs. This MCA parameter setting method can also be used to perform all
communication in the fast communication mode. Alternatively, it can be used to set that all communication be performed in the memory-
saving communication mode. Refer to "Table 4.23 common_tofu_max_fastmode_procs (changes the upper limit for the number of
processes that can communicate in fast communication mode)" for information on the MCA parameter
common_tofu_max_fastmode_procs.

Normally, 16 is set as the communication count standard value that is the condition for switching from the memory-saving communication
mode to the fast communication mode. This standard value can be changed using the MCA parameter common_tofu_fastmode_threshold.
However, this value includes the count of control communications executed in the MPI library. Therefore this switching may occur before
calling MPI functions fewer times than the specified value. Refer to "Table 4.21 common_tofu_fastmode_threshold (changes the conditions
for switching to fast communication mode)" for information on the MCA parameter common_tofu_fastmode_threshold.

The sizes of the Large receive buffer and the Medium receive buffer can be changed using the MCA parameters
common_tofu_large_recv_buf_size and common_tofu_medium_recv_buf_size. Refer to "Table 4.22 common_tofu_large_recv_buf_size
(changes the size of the Large receive buffer)" and "Table 4.25 common_tofu_medium_recv_buf_size (changes the size of the Medium
receive buffer)" for information on the MCA parameters common_tofu_large_recv_buf_size and common_tofu_medium_recv_buf_size
respectively.

If there are a large number of parallel processes, it is important to use these MCA parameters to tune the system according to the amount
of memory required for the MPI program itself and the desired communication performance. Refer to "6.11 Memory Usage Estimation
Formulae and Tuning Guidelines" for details.

6.10.2 Influence of Dynamic Connection on Performance
The dynamic connection built in this system executes some processes including control communications at the time of the first
communication with that process. Therefore, the first communication time is longer than subsequent usual communication time.

For example, if an MPI program has a loop including a code that performs a broadcast changing root rank with each cycle, without using
MPI_Bcast/MPI_Ibcast function, the root rank in each cycle of the loop becomes bottleneck and communication performance may come
down significantly. In that case, all the code that performs the first communication with each of the communication partner processes
should be moved out of (and before) the loop. Such significant communication performance degradation may be prevented.

6.11 Memory Usage Estimation Formulae and Tuning Guidelines
Each job has a limit in size of usable memory on each compute node, and the size of memory which an MPI program including MPI library
uses on each node cannot exceed the limit. In case an MPI program is not likely to be executed under the memory limitation, program
tuning is required from the efficiency viewpoint on memory usage.

This section describes memory usage estimation formulae, tuning guidelines, and the specification of restriction values.

6.11.1 Memory Usage Estimation Formulae
The MPI library memory usage for a specific MPI process can be estimated using the formula shown in "Figure 6.5 Estimation formula".
However, note the following:

- Because the memory management of operating system is done per page, more memory than the estimated result may be required
depending on page size.

- Use the estimation formula shown in the figure below if the number of parallel processes in the MPI program is about 200 or more.
If the number of parallel processes is less than this, note that there will be large errors in the calculated results, so they do not make
good references. Also note that the values obtained are not necessarily accurate even if the number of parallel processes is over 200.

- 108 -

- The estimation formula shown in the figure below cannot be used if the MPI program uses one-sided communication, if dynamic
process generation is being used, or if communication is established between MPI process groups that do not share a communicator.

"Table 6.13 Variables in memory usage estimation formulae" shows the meanings of the variables in this estimation formula.

Figure 6.5 Estimation formula

The first line in the estimation formula shown in the Figure above indicates the minimum amount of memory consumed by any MPI
program. This is the amount of memory secured when execution of the MPI program is started and the MPI_Init function is called. This
value depends on the total number of processes.

The value in the second line through the fourth line in the estimation formula shown in the Figure above changes depending on the total
number of communication partner processes, the number of processes communicating in the fast communication mode, and whether the
process has MPI communications with itself or not. This value increases at the point when communication with a new communication
partner process is first performed.

The fifth line in the estimation formula shown in the figure above indicates the sum of the memory amounts consumed by each
communicator. These communicators include MPI_COMM_WORLD. The value increases at the point when each communicator is created
and when a communication is issued by that communicator.

The sixth line in the estimation formula shown in the Figure above becomes larger when an unexpected message is issued. An unexpected
message is a message for which invocation of a receive function, such as the MPI_Recv function, in response to a send function, such as
the MPI_Send function, is delayed. The receive side process uses memory to temporarily save the received message.

Table 6.13 Variables in memory usage estimation formulae

Variable Meaning of variable Explanation of variable Value

NProc Total number of
processes

The number of processes belonging to the
communicator MPI_COMM_WORLD including
that process.

NPeer Number of
communication partner
processes

The number of communication partner processes of
that MPI process. The value is 0 immediately after
the MPI_Init function is called, but the value
increases at the point of the first communication with
a new communication partner process. This value
includes processes performed by communication
internally in the MPI library during collective
communication or similar, not just the number of
processes performed by point-to-point
communication coded in the MPI program.

- 109 -

Variable Meaning of variable Explanation of variable Value

NFastPeer Number of
communication partner
processes using fast
communication mode

Out of the number of communication partner
processes, the number of processes that use the fast
communication mode. If the memory-saving
communication mode is not used, this value is the
same as the number of communication partner
processes. The value specified in the MCA
parameter common_tofu_max_fastmode_procs
becomes the upper limit value.

NLoopback Whether the process has
MPI communications
with itself or not

The value is 1 if the process has MPI communication
with itself. The value is 0 immediately after the
MPI_Init function is called, but the value becomes
1 at the point of the first communication with itself.

NMember Number of processes
belonging to that
communicator

The size of that communicator. The value varies for
different communicators.

NPeerMember Number of
communication partner
processes in that
communicator

Number of communication partner processes that
communicate using that communicator. The value
varies for different communicators. The value is 0
immediately after the communicator is created, but
the value increases at the point of the first
communication with a new communication partner
process. This value includes processes performed by
communication internally in the MPI library during
collective communication or similar, not just the
number of processes performed by point-to-point
communication coded in the MPI program. If
multiple communicators are used for
communication with a particular MPI process, the
values for those communicators are added.

BLarge Size of Large receive
buffer

The value specified in the MCA parameter
common_tofu_large_recv_buf_size

Default value: 1MiB

BSmall Size of Small receive
buffer

A constant 32KiB

BMedium Size of Medium receive
buffer

The value specified in the MCA parameter
common_tofu_medium_recv_buf_size

Default value: 2KiB

BLoopback Size of buffer for
communication with the
process itself

A constant 4MiB

BUnexpectedMessage Quantity of unexpected
messages

Increases with each unexpected message that is
stored

KBuffer Efficiency of memory
allocation

A constant 1.0

CBase Coefficient A constant determined in accordance with the
number of processes per node (referred to as "ppn"
in the next column)

1ppn: 53MiB
2ppn: 52MiB
3-4ppn: 52MiB
5-8ppn: 30MiB
9-16ppn: 19MiB
17-32ppn: 15MiB

CProc Coefficient A constant determined in accordance with the
number of processes per node (referred to as "ppn"
in the next column)

1ppn: 1640B
2ppn: 1848B
3-4ppn: 1704B

- 110 -

Variable Meaning of variable Explanation of variable Value

5-8ppn: 1224B
9-16ppn: 944B
17-32ppn: 904B

CMember Coefficient A constant 336B

CPeerMember Coefficient A constant. This is 0 if Hasty Rendezvous
communication is disabled. This is 256 if Hasty
Rendezvous communication is enabled.

0 or 256

6.11.2 Memory Usage Tuning Guidelines
Tuning considerations vary for different MPI program patterns. Table below shows the tuning issues to be considered for the various
patterns.

Table 6.14 Tuning guidelines

Pattern Tuning considerations

The number of processes which require communication
performance is fewer compared with the number of all
communication partner processes

Use the MCA parameter common_tofu_max_fastmode_procs to set the
upper limit for the number of processes that use the fast communication
mode for communications.

However, consider the performance of communication with the
communication partners (processes) that are unable to switch to fast
communication mode after the upper limit for the number of processes
that can use the fast communication mode for communication has been
reached.

If the processes to which the fast communication mode and the memory-
saving communication mode are assigned are not as anticipated, use the
MCA parameter common_tofu_fastmode_threshold to adjust the number
at which communication switches from the memory-saving
communication mode to the fast communication mode.

Almost all communication partner processes require equal
communication performance

Use the MCA parameter common_tofu_large_recv_buf_size to adjust the
size of the Large receive buffer for the fast communication mode.

However, note that communication performance may deteriorate
uniformly if the data size ranges from several KiB to several 10s of KiBs.

If the above measures are insufficient In addition to tuning using the MCA parameters
common_tofu_max_fastmode_procs and
common_tofu_large_recv_buf_size, use the MCA parameter
common_tofu_medium_recv_buf_size to adjust the size of the Medium
receive buffer for the memory-saving communication mode.

6.11.3 Specifying Memory Allocation Restriction Values
As described in "6.11.2 Memory Usage Tuning Guidelines", when using the memory-saving communication mode, the upper limit for
the number of communication partner processes using the fast communication mode must be specified in MCA parameter
common_tofu_max_fastmode_procs. However, just specifying this upper limit may not be sufficient to achieve both performance and
memory allocation. If not, the reception buffer size must also be specified.

Using a different approach, if the user knows the amount of memory used by the MPI program itself, and if the MPI library can operate
in the remaining memory range, the user need not calculate a value for the above MCA parameter. In practice, the memory allocation that
the MPI library is allowed to use can be specified. If the user specifies this limit, the system automatically tunes the MCA parameters
internally and, as much as possible, operates within the specified range of restriction values for memory allocations. The actual memory
allocation when an MPI program is executed will vary depending on the MPI functions used within the MPI program, the number of
parallels, the execution method, and so on. Operation is not necessarily possible within the specified range of restriction values for memory
allocations. Refer to the notes in "6.11.3.3 Notes on Execution When Memory Allocation Restriction Values are Specified" that apply to
your usage circumstances.

- 111 -

Note that memory allocation restriction values cannot be specified if dynamic process generation is used or if communication is being
established between MPI process groups that do not share a communicator. If specified, the behavior is unpredictable.

6.11.3.1 Specification Memory Allocation Restriction Values
In practice, memory allocation restrictions are enabled if at least one value is specified in MCA parameter common_tofu_memory_limit.
The value specified in this MCA parameter is interpreted as being the restriction value (MiB) for the memory allocation that can be used
by the MPI library, and other MCA parameters are tuned automatically. At this time, the value specified in MCA parameter
common_tofu_memory_limit_peers is used as the number of communication partner processes. If the MCA parameter
common_tofu_memory_limit_peers is not specified, the number of processes belonging to the same communicator
MPI_COMM_WORLD is used as the number of communication partner processes. Refer to "Table 4.26 common_tofu_memory_limit
(specifies the memory allocation limit value)" and "Table 4.27 common_tofu_memory_limit_peers (specifies the assumed number of
communication partner processes when the memory allocation is limited)" for information on the MCA parameters
common_tofu_memory_limit and common_tofu_memory_limit_peers respectively.

Note that if the MPI library for debug is being used, operations do not necessarily conform to the specified values and, for example, more
memory than the specified restriction values for memory allocations may be used.

6.11.3.2 MCA Parameters Targeted by Automatic Tuning
Table below shows the MCA parameters targeted for automatic tuning.

Table 6.15 MCA parameters tuned automatically in accordance with memory allocation restriction values

MCA parameter Description Priority

common_tofu_max_fastmode_procs Upper limit for the number of communication partner
processes that use the fast communication mode

1

common_tofu_large_recv_buf_size Large receive buffer size 2

common_tofu_medium_recv_buf_size Medium receive buffer size 3

Note: Smaller priority values indicate a higher priority.

If automatic tuning of specified memory allocations can be achieved just by using the highest priority MCA parameter, tuning is not
required for the lower priority MCA parameters and, therefore, the default values remain unchanged.

Regardless of whether a value of 1 or higher is specified in MCA parameter common_tofu_memory_limit, if two or fewer of the MCA
parameters shown in the table above are specified simultaneously, the specified values are enabled as is for the specified MCA parameters.
Then, the remaining unspecified MCA parameters in the table above are the only parameters tuned automatically, in order of highest
priority (smallest numerical value).

If the three MCA parameters shown in the table above and the MCA parameter common_tofu_memory_limit are specified simultaneously,
automatic tuning is not performed.

Assume, for example, that the maximum number of partner processes that one process communicates with is known from MPI statistical
information, and that the MCA parameters common_tofu_memory_limit, common_tofu_memory_limit_peers, and
common_tofu_max_fastmode_procs are specified. In this case, the MCA parameter common_tofu_large_recv_buf_size value is tuned
automatically first. If this is insufficient, the MCA parameter common_tofu_medium_recv_buf_size is then also tuned automatically.

6.11.3.3 Notes on Execution When Memory Allocation Restriction Values are Specified
Automatic tuning is performed by calculating back from the estimation expressions in "Figure 6.5 Estimation formula". Therefore, note
the following when executing MPI programs in which memory allocation restriction values are specified.

The minimum memory allocation required by the MPI library of this system varies in accordance with the number of parallel processes
and other conditions. Therefore, the memory allocation restriction values specified by the user may be exceeded.

For example, if unexpected messages are issued, these are saved within the MPI library, and may therefore affect the amount of memory
used. MPI library automatic tuning does not consider the likelihood of unexpected messages because the number of unexpected messages
issued during execution of an MPI program cannot be known. This means that the memory allocation restriction values specified by the
user may be exceeded for MPI programs that issue a large number of unexpected messages.

- 112 -

Additional memory is also used if automatic process generation is performed, if communicators are created, if communications are issued
using Hasty Rendezvous, and so on. These allocations are also excluded from the calculations performed internally during automatic
tuning because the system cannot know these memory allocations in advance. Note that in these cases too, the memory allocation restriction
values specified by the user may be exceeded.

6.12 Use of Tofu Barrier Communication to Increase Speeds
When the functions MPI_Barrier, MPI_Bcast, MPI_Reduce, and MPI_Allreduce are executed, faster communication speeds can be
achieved by using Tofu barrier communication provided by this system as a Tofu interconnect hardware function.

This section describes the conditions that apply to Tofu barrier communication for each of the MPI functions, and gives notes about this
communication.

6.12.1 MPI_Barrier Function
The MPI_Barrier function can apply the Tofu barrier communication function if all the following conditions are met:

- The communicator is a communicator in a group (intra-communicator).

- If multiple processes are allocated within one node and the communicator is a sub-communicator, the communicator meets all the
following conditions:

- The communicator is a sub-communicator created directly from MPI_COMM_WORLD.

- The communicator is a sub-communicator created by the MPI_Comm_split function.

- The communicator is a sub-communicator created with color=0.

- A total of four or more compute nodes are allocated to the communicator.

- The required number of barrier gates, explained in "6.12.4 Notes on Tofu Barrier Communication", can be secured.

6.12.2 MPI_Bcast Function
The MPI_Bcast function can apply the Tofu barrier communication function if all the following conditions are met:

- MCA parameter coll_tbi_use_on_bcast is not set to 0.

- The communicator is a communicator in a group (intra-communicator).

- If multiple processes are allocated within one node and the communicator is a sub-communicator, the communicator meets all the
following conditions:

- The communicator is a sub-communicator created directly from MPI_COMM_WORLD.

- The communicator is a sub-communicator created by the MPI_Comm_split function.

- The communicator is a sub-communicator created with color=0.

- A total of four or more compute nodes are allocated to the communicator.

- The required number of barrier gates, explained in "6.12.4 Notes on Tofu Barrier Communication", can be secured.

- The number of message requests is 1.

- The message size is 8 bytes or less.

- The message datatype is one of the following:

- Basic datatypes

- A derived datatypes that can be derived from one component element of a basic datatype

If the type signature of the send side of MPI_Bcast function is different from that of the receive side, that is incorrect according to the MPI
standard. The MPI program may not work correctly, such as abnormal end, because Tofu barrier cannot be used correctly. This is a problem
that causes inconsistency in the environment of Tofu barrier communication because any of conditions above is not met on either side.
Originally, such a program is incorrect according to the MPI standard, but you can avoid using Tofu barrier when executing the MPI
program including MPI_Bcast by setting 0 in the MCA parameter coll_tbi_use_on_bcast value.

- 113 -

Refer to "Table 4.14 coll_tbi_use_on_bcast (uses Tofu barrier communication in MPI_Bcast function)" for information on the MCA
parameter coll_tbi_use_on_bcast.

6.12.3 MPI_Reduce Function and MPI_Allreduce Function
The MPI_Reduce function and the MPI_Allreduce function can apply the Tofu barrier communication function if all the following
conditions are met:

- The communicator is a communicator in a group (intra-communicator).

- If multiple processes are allocated within one node and the communicator is a sub-communicator, the communicator meets all the
following conditions:

- The communicator is a sub-communicator created directly from MPI_COMM_WORLD.

- The communicator is a sub-communicator created by the MPI_Comm_split function.

- The communicator is a sub-communicator created with color=0.

- A total of four or more compute nodes are allocated to the communicator.

- The required number of barrier gates, explained in "6.12.4 Notes on Tofu Barrier Communication", can be secured.

- The MCA parameter coll_base_reduce_commute_safe is not set to guarantee the sequence of reduction operations.

- The number of message requests is 1.

- The message datatype is one of the following:

- Basic datatypes

- A derived datatypes that can be derived from one component element of a basic datatype

- The reduction operation, datatype (if a derived datatype, the component element datatype), and the size combine in one of the ways
shown in "Table 6.16 Operation combinations that allow the MPI_Reduce and MPI_Allreduce functions to apply Tofu barrier
communication".

Table 6.16 Operation combinations that allow the MPI_Reduce and MPI_Allreduce functions to apply Tofu
barrier communication

MPI predefined operation Datatypes Size

[C/Fortran]
MPI_MAX
MPI_MIN

[C++]
MPI::MAX
MPI::MIN

Integer datatypes

(Floating point datatypes (*))

8 bytes or less

[C/Fortran]
MPI_SUM

[C++]
MPI::SUM

Integer datatypes

Floating point datatypes

8 bytes or less

Complex datatypes 8 bytes (4 bytesx2)
or
16 bytes (8 bytesx2)

[C/Fortran]
MPI_LAND
MPI_LOR
MPI_LXOR

[C++]
MPI::LAND
MPI::LOR
MPI::LXOR

Integer datatypes

Logical datatypes

8 bytes or less

- 114 -

MPI predefined operation Datatypes Size

[C/Fortran]
MPI_BAND
MPI_BOR
MPI_BXOR

[C++]
MPI::BAND
MPI::BOR
MPI::BXOR

Integer datatypes

Byte datatypes

8 bytes or less

*1:Tofu barrier communication is applied only when 1 is specified for the value of MCA parameter coll_tbi_use_on_max_min.
Refer to "Table 4.16 coll_tbi_use_on_max_min (uses Tofu barrier communication for floating point datatypes MPI_MAX and
MPI_MIN)" for details of MCA parameter coll_tbi_use_on_max_min.

6.12.4 Notes on Tofu Barrier Communication
Tofu barrier communication is performed by securing the required number of barrier gates from the multiple Tofu interconnect barrier
gates provided in each compute node, and then configuring a barrier network within the corresponding communicator. To configure a
barrier network for one occurrence of Tofu barrier communication, one barrier gate that fulfils the role of the start point and end point,
and multiple barrier gates that fulfil the role of relay points, must be secured in each node. A maximum total number of 8 barrier gates in
each node can be used to perform the start point and end point roles. A maximum total number of 56 barrier gates in each node can be
used to perform the relay point role. Note that these maximum values are provided as guidelines, and the total number of barrier gates
may be changed by system conditions or future product version upgrades. In addition, if Tofu barrier communication is applied by the
MPI_Barrier, MPI_Bcast, MPI_Reduce, or MPI_Allreduce function with N processes in one occurrence of Tofu barrier communication,
the current maximum for the number of barrier gates used to fulfil the relay role is about 2log2N barrier gates at each node.

If the maximum number of barrier gates in each node is exceeded, the required number of barrier gates will not be able to be secured and
Tofu barrier communication will not be able to be used. As a result, the MPI_Barrier, MPI_Bcast, MPI_Reduce, and MPI_Allreduce
functions will all be executed by software. Execution by software results in longer communication times compared with when Tofu barrier
communication is applied, and so care is required concerning the execution performance aspect.

A barrier network is configured when a communicator or a window is created. The execution time might become longer by barrier networks
frequently configured in the MPI program that repeats duplication of communicators by the MPI_Comm_dup function or repeats creation
of windows. In such a case, the execution time becomes faster by setting 0 in the MCA parameter coll_tbi_use_on_comm_dup value.

Read "Table 4.15 coll_tbi_use_on_comm_dup (uses Tofu barrier communication for a communicator created by MPI_Comm_dup
function)" for more information on the MCA parameter coll_tbi_use_on_comm_dup.

6.12.5 Fast Reduction Operations for Floating Point Type and Complex Type
Data within a Node

If the conditions for Tofu barrier communication are met, the Tofu interconnect hardware functions are used for communication between
nodes. In this case, hardware functions cannot be used for communication within the same node so this is executed by means of software.

If there are many processes within one node, speeds can be increased by specifying 2 as the value of the MCA parameter
coll_tbi_intra_node_reduction. This changes the algorithm used by the floating point type and complex type data reduction operations.

Changing the value specified for this MCA parameter changes the reduction operation sequence, and so the calculation results might be
different due to precision error. This fact must be noted if the value specified for the MCA parameter is being changed.

6.13 MPI_Bcast Function When the Same Count is Used among the
Processes

In this system, a faster communication mechanism is available when MPI_Bcast function is used with the same count among the processes.
This mechanism can be used by specifying 1 for the MCA parameter coll_tuned_bcast_same_count.

- 115 -

But, when this mechanism is used in MPI programs that use MPI_Bcast function with different counts among the processes, a deadlock
may be caused in the MPI library. According to the MPI standard, MPI_Bcast function allows to use different datatypes and counts among
the processes as long as type signature of datatype and count on any process is equal to that on the root process.

For example, the following condition is valid:

- rank 0: datatype = MPI_INT, count = 2

- rank 1: datatype = derived datatype of two MPI_INTs, count = 1

The default value for the MCA parameter coll_tuned_bcast_same_count is usually set to 0 in order to execute such MPI programs correctly.

If it is guaranteed that MPI_Bcast function is used with the same count among the processes, it is recommended to specify 1 for this
parameter for faster communication speeds. Refer to "Table 4.17 coll_tuned_bcast_same_count (achieves faster communication when
MPI_Bcast/MPI_Ibcast function is used with the same count among the processes)" for information on the MCA parameter
coll_tuned_bcast_same_count.

6.14 Algorithms Tuned with Recognition of Tofu Coordinates
As in the assumed knowledge concerning "6.1 Tofu Interconnect", Tofu coordinates are allocated to compute nodes. If the MCA parameter
coll_tuned_use_6d_algorithm is enabled, usable algorithms perform communication based on Tofu coordinate information.

In order to enable use of these algorithms, it is necessary that "the communicator that invokes collective communication is a 6-dimensional
rectangle". A 6-dimensional rectangle is defined as being one in which both the following are the same:

- Product of the axis lengths

- Number of nodes belonging to the communicator

For Tofu coordinates within a particular communicator, the length of each axis is defined as being the difference between the minimum
value and maximum value of the coordinate plus one. This is explained with reference to the 6-dimensional rectangle examples in
"Figure 6.6 Example of 6-dimenional rectangle communicator" and "Figure 6.7 Example of communicator that is not a 6-dimensional
rectangle". In each figure, the circles represent compute nodes, and the lines represent links. The colored circles represent compute nodes
belonging to the communicator. "Figure 6.6 Example of 6-dimenional rectangle communicator" is an example of a communicator that is
a 6-dimensional rectangle. "Figure 6.7 Example of communicator that is not a 6-dimensional rectangle" is an example of a communicator
that is not a 6-dimensional rectangle. In both figures, the axis lengths of the X, Y, Z, A, B, and C axes are the same, being 1, 1, 1, 2, 3,
and 2. The product of the axis lengths is 12. In "Figure 6.6 Example of 6-dimenional rectangle communicator", the number of nodes
belonging to the communicator is 12. However, in "Figure 6.7 Example of communicator that is not a 6-dimensional rectangle" the number
of nodes belonging to the communicator is 10. Therefore, "Figure 6.6 Example of 6-dimenional rectangle communicator" is a 6-dimensional
rectangle, but "Figure 6.7 Example of communicator that is not a 6-dimensional rectangle" is not.

Refer to the Tofu coordinates to check whether a communicator is a 6-dimensional rectangle or not. Check "5.1 Rank Query Interface"
for information on how to reference Tofu coordinates. Read "Table 4.20 coll_tuned_use_6d_algorithm (use of algorithms tuned with
recognition of Tofu coordinates)" for details of the MCA parameter coll_tuned_use_6d_algorithm.

- 116 -

Figure 6.6 Example of 6-dimenional rectangle communicator

Figure 6.7 Example of communicator that is not a 6-dimensional rectangle

6.15 MPI Statistical Information
This system can display statistical information concerning MPI communications. In this manual, this information is referred to as MPI
statistical information.

- 117 -

There are 2 varieties of a whole output mode and the section specifying output mode in the method of outputting the MPI statistical
information.

The output of MPI statistical information can be controlled by the MCA parameter mpi_print_stats. Refer to "Table 4.39 mpi_print_stats
(outputs MPI statistical information)" for details.

"Table 6.17 Contents of MPI statistical information output for whole output mode" shows the MPI statistical information that can be output
in this system.

If 1 is specified for the MCA parameter mpi_print_stats, maximum values, minimum values, and average values are output for all parallel
processes for all output items other than Process Mapping shown in whole output mode "Table 6.17 Contents of MPI statistical information
output for whole output mode". For maximum values and minimum values, the corresponding parallel process rank numbers are also
output.

If 2 is specified for the MCA parameter mpi_print_stats, information is output for the corresponding parallel processes for all output items
other than Process Mapping shown in whole output mode "Table 6.17 Contents of MPI statistical information output for whole output
mode". In this case, the parallel processes targeted for MPI statistical information output can be indicated using the MCA parameter
mpi_print_stats_ranks. Refer to "Table 4.40 mpi_print_stats_ranks (specifies the parallel process that outputs MPI statistical
information)" for details on mpi_print_stats_ranks. Note that these statistics are output to the standard error output. To avoid output overlaps
when statistics are output for multiple parallel processes, specifications that suit the mpiexec(1) options -of-proc/-std-proc, --of-proc/--
std-proc, -oferr-proc/-stderr-proc, or --oferr-proc/--stderr-proc are recommended.

"Table 6.18 Contents of MPI statistical information output for section specifying output mode" shows the contents of section specifying
function of MPI statistical information. If a value of MCA parameter mpi_print_stats is equal to 3, all items except "Process Mapping" is
output when a value of MCA parameter mpi_print_stats is equal to 1. However, the header part, the body part and the footer part are output
separately.

If a value of MCA parameter mpi_print_stats is equal to 4, all items except "Process Mapping" is output when a value of MCA parameter
mpi_print_stats is equal to 2. However, the header part, the body part and the footer part are output separately.

Refer to "5.3 MPI Statistical Information Section Specifying Interface" for details.

The Process Mapping output item of MPI statistical information is output only for parallel processes with a rank number of 0, regardless
of the value in the above MCA parameter mpi_print_stats_ranks.

When you use section specifying output mode, the specified section is ignored for Connection, Max_Hop and Average_Hop output items
of MPI statistical information. The information at the point of an FJMPI_Collection_print function call or an MPI_Finalize function call
is always output.

Output item Per-protocol Nonblocking/Persistent Communication Count and Per-protocol Nonblocking/Persistent Communication Count
Started in Wait of the MPI statistical information will be a reference when MCA parameter opal_progress_thread_mode is used. Refer to
"6.2 Promoting Asynchronous Communication Using an Assistant Core" for details.

Table 6.17 Contents of MPI statistical information output for whole output mode

Output title and output item name Output content

MPI Information

Dimension Number of dimensions in the torus structure where the parallel processes belonging
to MPI_COMM_WORLD are deployed

Shape Process shape of the torus structure where the parallel processes belonging to
MPI_COMM_WORLD are deployed

MPI Memory Usage

Estimated_Memory_Size Estimated MPI library memory allocation

Estimated memory allocation value described in "6.11.1 Memory Usage Estimation
Formulae"

Per-peer Communication Count

In_Node Communication count within node for point-to-point communication

Neighbor Communication count between neighboring nodes for point-to-point communication

Not_Neighbor Communication count between non-neighboring nodes for point-to-point
communication

- 118 -

Output title and output item name Output content

Total_Count Total communication count for point-to-point communication

Connection Number of connections for Tofu communication

Max_Hop Maximum number of hops between processes for Tofu communication

Average_Hop Average number of hops between processes for Tofu communication

Per-peer Transmission size

In_Node Transfer data size within node for point-to-point communication

Neighbor Transfer data size between neighboring nodes for point-to-point communication

Not_Neighbor Transfer data size between non-neighboring nodes for point-to-point communication

Total_Size Transfer data size for point-to-point communication

Per-protocol Communication Count

Eager Eager communication mode use count at send side for point-to-point communication

Rendezvous Rendezvous communication mode use count at send side for point-to-point
communication

Hasty_Rendezvous Hasty Rendezvous communication mode use count at send side for point-to-point
communication

Prequest_Extended_IF Extended persistent communication requests interface use count at send side for point-
to-point communication

Unexpected_Message Maximum number of messages saved temporarily in the internal buffer during point-
to-point communication

Barrier Communication Count

Tofu Count for barriers using the Tofu barrier communication function

Soft Count for software-style barriers executed

Tofu Barrier Collective Communication Count

Bcast Invocation count for collective communication MPI_Bcast using the Tofu barrier
communication function

Reduce Invocation count for collective communication MPI_Reduce using the Tofu barrier
communication function

Allreduce Invocation count for collective communication MPI_Allreduce using the Tofu barrier
communication function

6D-Tofu-specific Collective Communication Count

Alltoall Invocation count for collective communication MPI_Alltoall using the algorithms
tuned with recognition of Tofu interconnect 6-dimensional coordinates.

This is the count for algorithms tuned with recognition of Tofu coordinates and
invoked by enabling the MCA parameter coll_tuned_use_6d_algorithm.

Read "Table 4.20 coll_tuned_use_6d_algorithm (use of algorithms tuned with
recognition of Tofu coordinates)" for details of the MCA parameter
coll_tuned_use_6d_algorithm.

Tofu-specific Collective Communication Count

Bcast Count for collective communication MPI_Bcast invocations that specifically invoke
algorithms tuned for Tofu interconnect

Reduce Count for collective communication MPI_Reduce invocations that specifically invoke
algorithms tuned for Tofu interconnect

Gather Count for collective communication MPI_Gather invocations that specifically invoke
algorithms tuned for Tofu interconnect

- 119 -

Output title and output item name Output content

Gatherv Count for collective communication MPI_Gatherv invocations that specifically
invoke algorithms tuned for Tofu interconnect

Allreduce Count for collective communication MPI_Allreduce invocations that specifically
invoke algorithms tuned for Tofu interconnect

Alltoall Count for collective communication MPI_Alltoall invocations that specifically
invoke algorithms tuned for Tofu interconnect

Alltoallv Count for collective communication MPI_Alltoallv invocations that specifically
invoke algorithms tuned for Tofu interconnect

Allgather Count for collective communication MPI_Allgather invocations that specifically
invoke algorithms tuned for Tofu interconnect

Allgatherv Count for collective communication MPI_Allgatherv invocations that specifically
invoke algorithms tuned for Tofu interconnect

Non-Tofu-specific Collective Communication Count

Bcast Count for collective communication MPI_Bcast invocations that could not
specifically use algorithms tuned for Tofu interconnect

Reduce Count for collective communication MPI_Reduce invocations that could not
specifically use algorithms tuned for Tofu interconnect

Gather Count for collective communication MPI_Gather invocations that could not
specifically use algorithms tuned for Tofu interconnect

Gatherv Count for collective communication MPI_Gatherv invocations that could not
specifically use algorithms tuned for Tofu interconnect

Allreduce Count for collective communication MPI_Allreduce invocations that could not
specifically use algorithms tuned for Tofu interconnect

Alltoall Count for collective communication MPI_Alltoall invocations that could not
specifically use algorithms tuned for Tofu interconnect

Alltoallv Count for collective communication MPI_ Alltoallv invocations that could not
specifically use algorithms tuned for Tofu interconnect

Allgather Count for collective communication MPI_Allgather invocations that could not
specifically use algorithms tuned for Tofu interconnect

Allgatherv Count for collective communication MPI_Allgatherv invocations that could not
specifically use algorithms tuned for Tofu interconnect

Per-protocol Nonblocking/Persistent Communication Count

Eager Eager communication mode use count at send side for point-to-point communication
that used a nonblocking or persistent request

Rendezvous Rendezvous communication mode use count at send side for point-to-point
communication that used a nonblocking or persistent request

Hasty_Rendezvous Hasty Rendezvous communication mode use count at send side for point-to-point
communication that used a nonblocking or persistent request

Collective Nonblocking collective operations use count

Per-protocol Nonblocking/Persistent Communication Count Started in Wait

Eager Eager communication mode use count at send side for point-to-point communication
that used a nonblocking or persistent request and the transfer of the message body
started when any of MPI_Wait, MPI_Waitany, MPI_Waitall, or MPI_Waitsome
function is called

Rendezvous Rendezvous communication mode use count at send side for point-to-point
communication that used a nonblocking or persistent request and the transfer of the

- 120 -

Output title and output item name Output content

message body started when any of MPI_Wait, MPI_Waitany, MPI_Waitall, or
MPI_Waitsome function is called

Hasty_Rendezvous Hasty Rendezvous communication mode use count at send side for point-to-point
communication that used a nonblocking or persistent request and the transfer of the
message body started when any of MPI_Wait, MPI_Waitany, MPI_Waitall, or
MPI_Waitsome function is called

Process Mapping

List of rank numbers and coordinate correspondences of all parallel processes
belonging to MPI_COMM_WORLD

However, this information is output for only parallel processes having rank number
0.

 Example

Example of MPI statistical information output when 1 is specified as the value of MCA parameter mpi_print_stats

===
/****************** MPI Statistical Information ******************/
===

------------------------- MPI Information -------------------------
Dimension 3
Shape 2x3x4

---------------------- MPI Memory Usage (MiB) ---------------------
 MAX MIN AVE
Estimated_Memory_Size 93.90 [0] 44.39 [1] 47.29

------------------- Per-peer Communication Count ------------------
 MAX MIN AVE
In_Node 1024 [0] 0 [1] 512.0
Neighbor 3072 [1] 0 [8] 1621.3
Not_Neighbor 3072 [11] 0 [0] 938.7
Total_Count 3072 [0] 3072 [0] 3072.0
Connection 46 [0] 9 [4] 11.8
Max_Hop 4 [0] 2 [4] 3.1
Average_Hop 2.27 [35] 1.60 [6] 1.84

----------------- Per-peer Transmission Size (MiB) ----------------
 MAX MIN AVE
In_Node 256.00 [0] 0.00 [1] 128.00
Neighbor 768.00 [1] 0.00 [8] 405.33
Not_Neighbor 768.00 [11] 0.00 [0] 234.67
Total_Size 768.00 [0] 768.00 [0] 768.00

----------------- Per-protocol Communication Count ----------------
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 3072 [0] 3072 [0] 3072.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0
Persistent_Extended_IF 0 [0] 0 [0] 0.0
Unexpected_Message 1 [0] 1 [0] 1.0

------------------- Barrier Communication Count -------------------
 MAX MIN AVE
Tofu 8217 [0] 8217 [0] 8217.0
Soft 1 [0] 1 [0] 1.0

- 121 -

----------- Tofu Barrier Collective Communication Count -----------
 MAX MIN AVE
Bcast 0 [0] 0 [0] 0.0
Reduce 0 [0] 0 [0] 0.0
Allreduce 32 [0] 32 [0] 32.0

--------- 6D-Tofu-specific Collective Communication Count ---------
 MAX MIN AVE
Alltoall 0 [0] 0 [0] 0.0

----------- Tofu-specific Collective Communication Count ----------
 MAX MIN AVE
Bcast 512 [0] 512 [0] 512.0
Reduce 0 [0] 0 [0] 0.0
Gather 8 [0] 8 [0] 8.0
Gatherv 0 [0] 0 [0] 0.0
Allreduce 0 [0] 0 [0] 0.0
Alltoall 1024 [0] 1024 [0] 1024.0
Alltoallv 512 [0] 512 [0] 512.0
Allgather 0 [0] 0 [0] 0.0
Allgatherv 0 [0] 0 [0] 0.0

--------- Non-Tofu-specific Collective Communication Count --------
 MAX MIN AVE
Bcast 0 [0] 0 [0] 0.0
Reduce 128 [0] 128 [0] 128.0
Gather 0 [0] 0 [0] 0.0
Gatherv 4 [0] 4 [0] 4.0
Allreduce 0 [0] 0 [0] 0.0
Alltoall 0 [0] 0 [0] 0.0
Alltoallv 0 [0] 0 [0] 0.0
Allgather 128 [0] 128 [0] 128.0
Allgatherv 256 [0] 256 [0] 256.0

----- Per-protocol Nonblocking/Persistent Communication Count -----
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 0 [0] 0 [0] 0.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0
Collective 0 [0] 0 [0] 0.0

-- Per-protocol Nonblocking/Persistent Communication Count Started in Wait --
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 0 [0] 0 [0] 0.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0

------------------------- Process Mapping -------------------------
(0,0,0) 0,1
(1,0,0) 2,3
(0,1,0) 4,5
(1,1,0) 6,7
(0,2,0) 8,9
(1,2,0) 10,11
(0,0,1) 12,13
(1,0,1) 14,15
(0,1,1) 16,17
(1,1,1) 18,19
(0,2,1) 20,21
(1,2,1) 22,23
(0,0,2) 24,25
(1,0,2) 26,27

- 122 -

(0,1,2) 28,29
(1,1,2) 30,31
(0,2,2) 32,33
(1,2,2) 34,35
(0,0,3) 36,37
(1,0,3) 38,39
(0,1,3) 40,41
(1,1,3) 42,43
(0,2,3) 44,45
(1,2,3) 46,47

Table 6.18 Contents of MPI statistical information output for section specifying output mode

Output title and output item name Output content

Header part

Content output by FJMPI_Collection_print execution time of the first time point

MPI Information

Dimension
*Refer to a whole output mode

Shape

Body part

Content output with FJMPI_Collection_print run unit

Section

Time(Sec) Execution time at each section specifying (second)

Per-peer Communication Count

In_Node

*Refer to a whole output mode

Neighbor

Not_Neighbor

Total_Count

Connection

Max_Hop

Average_Hop

Per-peer Transmission size

In_Node

*Refer to a whole output mode
Neighbor

Not_Neighbor

Total_Size

Per-protocol Communication Count

Eager

*Refer to a whole output mode

Rendezvous

Hasty_Rendezvous

Persistent_Extended_IF

Unexpected_Message

Barrier Communication Count

Tofu
*Refer to a whole output mode

Soft

- 123 -

Output title and output item name Output content

Tofu Barrier Collective Communication Count

Bcast

*Refer to a whole output modeReduce

Allreduce

6D-Tofu-specific Collective Communication Count

Alltoall *Refer to a whole output mode

Tofu-specific Collective Communication Count

Bcast

*Refer to a whole output mode

Reduce

Gather

Gatherv

Allreduce

Alltoall

Alltoallv

Allgather

Allgatherv

Non-Tofu-specific Collective Communication Count

Bcast

*Refer to a whole output mode

Reduce

Gather

Gatherv

Allreduce

Alltoall

Alltoallv

Allgather

Allgatherv

Per-protocol Nonblocking/Persistent Communication Count

Eager

*Refer to a whole output mode
Rendezvous

Hasty_Rendezvous

Collective

Per-protocol Nonblocking/Persistent Communication Count Started in Wait

Eager

*Refer to a whole output modeRendezvous

Hasty_Rendezvous

Footer part

Content output when MPI_Finalize is executed

MPI Memory Usage

Estimated_Memory_Size *Refer to a whole output mode

- 124 -

Output title and output item name Output content

Process Mapping

List of rank numbers and coordinate correspondences of all parallel processes
belonging to MPI_COMM_WORLD

However, this information is output for only parallel processes having rank number
0.

 Example

Example of MPI statistical information output when 3 is specified as the value of MCA parameter mpi_print_stats

===
/****************** MPI Statistical Information ******************/
===

------------------------- MPI Information -------------------------
Dimension 3
Shape 2x3x4

----------- Section 1 My message (Execute section1) -----------
 MAX MIN AVE
Time(Sec) 191.82 [25] 191.65 [0] 191.78

------------------- Per-peer Communication Count ------------------
 MAX MIN AVE
In_Node 512 [0] 0 [1] 256.0
Neighbor 1536 [1] 0 [8] 810.7
Not_Neighbor 1536 [11] 0 [0] 469.3
Total_Count 1536 [0] 1536 [0] 1536.0
Connection 46 [0] 9 [4] 11.8
Max_Hop 4 [0] 2 [4] 3.1
Average_Hop 2.27 [35] 1.60 [6] 1.84

----------------- Per-peer Transmission Size (MiB) ----------------
 MAX MIN AVE
In_Node 128.00 [0] 0.00 [1] 64.00
Neighbor 384.00 [1] 0.00 [8] 202.67
Not_Neighbor 384.00 [11] 0.00 [0] 117.33
Total_Size 384.00 [0] 384.00 [0] 384.00

----------------- Per-protocol Communication Count ----------------
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 1536 [0] 1536 [0] 1536.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0
Persistent_Extended_IF 0 [0] 0 [0] 0.0
Unexpected_Message 1 [0] 1 [0] 1.0

------------------- Barrier Communication Count -------------------
 MAX MIN AVE
Tofu 4108 [0] 4108 [0] 4108.0
Soft 0 [0] 0 [0] 0.0

----------- Tofu Barrier Collective Communication Count -----------
 MAX MIN AVE
Bcast 0 [0] 0 [0] 0.0
Reduce 0 [0] 0 [0] 0.0
Allreduce 16 [0] 16 [0] 16.0

--------- 6D-Tofu-specific Collective Communication Count ---------

- 125 -

 MAX MIN AVE
Alltoall 0 [0] 0 [0] 0.0

----------- Tofu-specific Collective Communication Count ----------
 MAX MIN AVE
Bcast 256 [0] 256 [0] 256.0
Reduce 0 [0] 0 [0] 0.0
Gather 4 [0] 4 [0] 4.0
Gatherv 0 [0] 0 [0] 0.0
Allreduce 0 [0] 0 [0] 0.0
Alltoall 512 [0] 512 [0] 512.0
Alltoallv 256 [0] 256 [0] 256.0
Allgather 0 [0] 0 [0] 0.0
Allgatherv 0 [0] 0 [0] 0.0
--------- Non-Tofu-specific Collective Communication Count --------
 MAX MIN AVE
Bcast 0 [0] 0 [0] 0.0
Reduce 64 [0] 64 [0] 64.0
Gather 0 [0] 0 [0] 0.0
Gatherv 8 [0] 8 [0] 8.0
Allreduce 0 [0] 0 [0] 0.0
Alltoall 0 [0] 0 [0] 0.0
Alltoallv 0 [0] 0 [0] 0.0
Allgather 64 [0] 64 [0] 64.0
Allgatherv 128 [0] 128 [0] 128.0

----- Per-protocol Nonblocking/Persistent Communication Count -----
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 0 [0] 0 [0] 0.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0
Collective 0 [0] 0 [0] 0.0

-- Per-protocol Nonblocking/Persistent Communication Count Started in Wait --
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 0 [0] 0 [0] 0.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0

----------- Section 2 My message (Execute section2) -----------
 MAX MIN AVE
Time(Sec) 14.35 [34] 14.35 [0] 14.35

------------------- Per-peer Communication Count ------------------
 MAX MIN AVE
In_Node 512 [0] 0 [1] 256.0
Neighbor 1536 [1] 0 [8] 810.7
Not_Neighbor 1536 [11] 0 [0] 469.3
Total_Count 1536 [0] 1536 [0] 1536.0
Connection 46 [0] 9 [4] 11.8
Max_Hop 4 [0] 2 [4] 3.1
Average_Hop 2.27 [35] 1.60 [6] 1.84

----------------- Per-peer Transmission Size (MiB) ----------------
 MAX MIN AVE
In_Node 128.00 [0] 0.00 [1] 64.00
Neighbor 384.00 [1] 0.00 [8] 202.67
Not_Neighbor 384.00 [11] 0.00 [0] 117.33
Total_Size 384.00 [0] 384.00 [0] 384.00

----------------- Per-protocol Communication Count ----------------
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0

- 126 -

Rendezvous 1536 [0] 1536 [0] 1536.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0
Persistent_Extended_IF 0 [0] 0 [0] 0.0
Unexpected_Message 1 [0] 1 [0] 1.0

------------------- Barrier Communication Count -------------------
 MAX MIN AVE
Tofu 4096 [0] 4096 [0] 4096.0
Soft 0 [0] 0 [0] 0.0

----------- Tofu Barrier Collective Communication Count -----------
 MAX MIN AVE
Bcast 0 [0] 0 [0] 0.0
Reduce 0 [0] 0 [0] 0.0
Allreduce 16 [0] 16 [0] 16.0

--------- 6D-Tofu-specific Collective Communication Count ---------
 MAX MIN AVE
Alltoall 0 [0] 0 [0] 0.0

----------- Tofu-specific Collective Communication Count ----------
 MAX MIN AVE
Bcast 256 [0] 256 [0] 256.0
Reduce 0 [0] 0 [0] 0.0
Gather 0 [0] 0 [0] 0.0
Gatherv 0 [0] 0 [0] 0.0
Allreduce 0 [0] 0 [0] 0.0
Alltoall 512 [0] 512 [0] 512.0
Alltoallv 256 [0] 256 [0] 256.0
Allgather 0 [0] 0 [0] 0.0
Allgatherv 0 [0] 0 [0] 0.0

--------- Non-Tofu-specific Collective Communication Count --------
 MAX MIN AVE
Bcast 0 [0] 0 [0] 0.0
Reduce 0 [0] 0 [0] 0.0
Gather 0 [0] 0 [0] 0.0
Gatherv 8 [0] 8 [0] 8.0
Allreduce 0 [0] 0 [0] 0.0
Alltoall 0 [0] 0 [0] 0.0
Alltoallv 0 [0] 0 [0] 0.0
Allgather 64 [0] 64 [0] 64.0
Allgatherv 128 [0] 128 [0] 128.0

----- Per-protocol Nonblocking/Persistent Communication Count -----
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 0 [0] 0 [0] 0.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0
Collective 0 [0] 0 [0] 0.0

-- Per-protocol Nonblocking/Persistent Communication Count Started in Wait --
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 0 [0] 0 [0] 0.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0

----------- Section 3 My message (Execute section3) -----------
 MAX MIN AVE
Time(Sec) 177.47 [25] 177.29 [0] 177.43

------------------- Per-peer Communication Count ------------------
 MAX MIN AVE

- 127 -

In_Node 0 [0] 0 [0] 0.0
Neighbor 0 [0] 0 [0] 0.0
Not_Neighbor 0 [0] 0 [0] 0.0
Total_Count 0 [0] 0 [0] 0.0
Connection 46 [0] 9 [4] 11.8
Max_Hop 4 [0] 2 [4] 3.1
Average_Hop 2.27 [35] 1.60 [6] 1.84

----------------- Per-peer Transmission Size (MiB) ----------------
 MAX MIN AVE
In_Node 0.00 [0] 0.00 [0] 0.00
Neighbor 0.00 [0] 0.00 [0] 0.00
Not_Neighbor 0.00 [0] 0.00 [0] 0.00
Total_Size 0.00 [0] 0.00 [0] 0.00

----------------- Per-protocol Communication Count ----------------
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 0 [0] 0 [0] 0.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0
Persistent_Extended_IF 0 [0] 0 [0] 0.0
Unexpected_Message 1 [0] 0 [6] 0.8

------------------- Barrier Communication Count -------------------
 MAX MIN AVE
Tofu 12 [0] 12 [0] 12.0
Soft 0 [0] 0 [0] 0.0

----------- Tofu Barrier Collective Communication Count -----------
 MAX MIN AVE
Bcast 0 [0] 0 [0] 0.0
Reduce 0 [0] 0 [0] 0.0
Allreduce 0 [0] 0 [0] 0.0

--------- 6D-Tofu-specific Collective Communication Count ---------
 MAX MIN AVE
Alltoall 0 [0] 0 [0] 0.0

----------- Tofu-specific Collective Communication Count ----------
 MAX MIN AVE
Bcast 512 [0] 512 [0] 512.0
Reduce 0 [0] 0 [0] 0.0
Gather 4 [0] 4 [0] 4.0
Gatherv 0 [0] 0 [0] 0.0
Allreduce 0 [0] 0 [0] 0.0
Alltoall 0 [0] 0 [0] 0.0
Alltoallv 0 [0] 0 [0] 0.0
Allgather 0 [0] 0 [0] 0.0
Allgatherv 0 [0] 0 [0] 0.0

--------- Non-Tofu-specific Collective Communication Count --------
 MAX MIN AVE
Bcast 0 [0] 0 [0] 0.0
Reduce 64 [0] 64 [0] 64.0
Gather 0 [0] 0 [0] 0.0
Gatherv 0 [0] 0 [0] 0.0
Allreduce 0 [0] 0 [0] 0.0
Alltoall 0 [0] 0 [0] 0.0
Alltoallv 0 [0] 0 [0] 0.0
Allgather 0 [0] 0 [0] 0.0
Allgatherv 0 [0] 0 [0] 0.0

----- Per-protocol Nonblocking/Persistent Communication Count -----

- 128 -

 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 0 [0] 0 [0] 0.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0
Collective 0 [0] 0 [0] 0.0

-- Per-protocol Nonblocking/Persistent Communication Count Started in Wait --
 MAX MIN AVE
Eager 0 [0] 0 [0] 0.0
Rendezvous 0 [0] 0 [0] 0.0
Hasty_Rendezvous 0 [0] 0 [0] 0.0

---------------------- MPI Memory Usage (MiB) ---------------------
 MAX MIN AVE
Estimated_Memory_Size 93.90 [0] 44.39 [4] 48.13

------------------------- Process Mapping -------------------------
(0,0,0) 0,1
(1,0,0) 2,3
(0,1,0) 4,5
(1,1,0) 6,7
(0,2,0) 8,9
(1,2,0) 10,11
(0,0,1) 12,13
(1,0,1) 14,15
(0,1,1) 16,17
(1,1,1) 18,19
(0,2,1) 20,21
(1,2,1) 22,23
(0,0,2) 24,25
(1,0,2) 26,27
(0,1,2) 28,29
(1,1,2) 30,31
(0,2,2) 32,33
(1,2,2) 34,35
(0,0,3) 36,37
(1,0,3) 38,39
(0,1,3) 40,41
(1,1,3) 42,43
(0,2,3) 44,45
(1,2,3) 46,47

6.16 Dynamic Debug during MPI Program Execution
This system provides the following functions for performing debugging during MPI program execution:

- Deadlock detection (communication wait truncation)

- Monitoring of write damage in MPI communication buffer

- Argument check function

Note that MPI program execution speeds may become slower if these debug functions are used. Use these functions with care.

6.16.1 Deadlock Detection
If a continuing message communication wait status occurs in MPI communication, a deadlock may have occurred in the execution of the
MPI program. This system provides a procedure for breaking out of a state where a communication wait continues for a long time in case
an unexpected deadlock occurs. An upper limit value for communication waits during MPI program execution can be set, and if the
communication wait time exceeds this upper limit during MPI program execution, an appropriate message can be output and execution
of the MPI program ended.

- 129 -

The MCA parameter mpi_deadlock_timeout can be used to set an upper limit value (seconds) for communication waits. Stack trace
information is also output in the message. However, to display symbol names (function names) in the trace information, specify the linker
option -export-dynamic in advance at the time of MPI program compilation. In particular, specify "-Wl,-export-dynamic" as an option
passed to the compiler by the MPI program compile/edit command. Refer to "Table 4.36 mpi_deadlock_timeout (specifies the
communication wait timeout time)" for information on the MCA parameter mpi_deadlock_timeout.

However, this deadlock detection function makes judgments solely on communication wait times. Therefore, great care is needed in using
this function because, if there are no errors in the MPI program coding and communication wait times are truly long enough to exceed the
specified wait time upper limit values, MPI program execution is ended. In addition, the process or the location within the MPI program
at the time of deadlock detection is not necessarily the location where the deadlock actually occurred. Therefore, tracking back through
the processes and reviewing the program may be needed to identify the location that caused the deadlock.

This function cannot necessarily detect all deadlocks. One method of detecting deadlocks effectively is to insert the MPI_Barrier function
before and after communication locations. Another effective method is to use the MCA parameter mpi_deadlock_timeout_delay function
to allow plenty of wait time after deadlock detection until the program ends to check the status of other processes.

The actual timing for ending a program when a deadlock is detected can be delayed by using the MCA parameter
mpi_deadlock_timeout_delay. Delaying the time when the program is ended can increase the chances for detecting deadlocks in other
processes. Refer to "Table 4.37 mpi_deadlock_timeout_delay (delays program termination caused by detection of a deadlock)" for
information on the MCA parameter mpi_deadlock_timeout_delay.

6.16.2 Monitoring of Write Damage in MPI Communication Buffer
If another write is issued for a send buffer before send is completed for nonblocking communication, this may cause result errors, area
corruption, or other incorrect operation that reduces reproducibility. In order to detect this sort of incorrect operation, this system provides
a procedure for monitoring area corruption caused by writing to a nonblocking communication send buffer.

The MCA parameter mpi_check_buffer_write can be used to monitor a nonblocking communication send buffer. With this monitoring,
if write to a nonblocking communication send buffer occurs, an appropriate message is output, and execution of the MPI program ends.
Stack trace information is also output in the message. However, to display symbol names (function names) in the trace information, specify
the linker option -export-dynamic in advance at the time of MPI program compilation. In particular, specify "-Wl,-export-dynamic" as an
option passed to the compiler by the MPI program compile/edit command. Refer to "Table 4.35 mpi_check_buffer_write (monitors
communication buffer write damage)" for information on the MCA parameter mpi_check_buffer_write.

Note that nonblocking communication is not monitored if send is in buffer mode (MPI_Ibsend function).

 Example

Example

Set monitoring of the send buffer for a program like the one below.

main()
{
 ...
 int buf = 0;
 MPI_Isend(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &req);

 buf = 1;
 MPI_Wait(&req, &status);
 ...
 }

Specify the "-Wl,-export-dynamic" option and use the MPI program compile/link command mpifccpx(1) to compile the above program.
Next, specify 1 as the value for the MCA parameter mpi_check_buffer_write. When the above program is executed, an error message like
the one below is output to the standard error output.

[mpi::opal-util::check-buffer-write] The buffer was destroyed in this process.
/.../FJSVmxlang/lib64/libmpi.so.0(PMPI_Wait+0x50) [0xffffffff20296ad0] (1)
./a.out(main+0x4a4) [0x1012e4](2)
/.../... (...) [0xffffffffa07f381c]
./a.out(...)[0x100cec]

- 130 -

Lines 2 to 5 in the above error message are stack trace information. The location displayed in this stack trace information shows the
completion location of the send processing of the nonblocking communication that used the send buffer when the write to the send buffer
occurred. From the upper part of the stack (locations (1) and (2) in the output example in the above message), it is known that a write
occurred to the send buffer used by the send (MPI_Isend function) of the nonblocking communication corresponding to the request checked
by the MPI_Wait function called from the main function.

6.16.3 Argument Check Function
By using the debug MPI library of this system, it is easy to investigate whether or not MPI function call arguments are correct when an
MPI program is executed.

To use this argument check function, specify either the -debuglib or --debuglib option when executing mpiexec(1). Refer to "4.1 Execution
Command Formats" for the specification method.

If the argument check function detects an error, a message indicating this is output and it returns with the error class below. See "Appendix A
Error Class List" for a list of the error classes output by this system.

MPI_ERR_COMM Invalid communicator
MPI_ERR_COUNT Invalid count
MPI_ERR_TAG Invalid tag
MPI_ERR_RANK Invalid rank
MPI_ERR_TYPE Invalid data type
MPI_ERR_BUFFER Invalid buffer pointer
MPI_ERR_REQUEST Invalid request
MPI_ERR_TOPOLOGY Invalid topology
MPI_ERR_DIMS Invalid dimension
MPI_ERR_ROOT Invalid root
MPI_ERR_GROUP Invalid group
MPI_ERR_OP Invalid operation
MPI_ERR_ARG Other invalid argument

 Example

Example

#include <mpi.h>

int main(int argc, char *argv[]){
 int sbuf = 1, rbuf;

 MPI_Init(&argc, &argv);
 MPI_Reduce(&sbuf, &rbuf, 1, MPI_INT, MPI_SUM, -1, MPI_COMM_WORLD); // root(-1) is invalid
 MPI_Finalize();
}

In this program example, an incorrect root process is specified in the argument of the MPI_Reduce function. If this MPI program is used
and an argument check is performed, an error message like the one below is output. The [em99-cn071:18342] output at the start of the
second and subsequent lines is the host name and pid information.

[mpi::mpi-errors::mpi_errors_are_fatal]
[em99-cn071:18342] *** An error occurred in MPI_Reduce
[em99-cn071:18342] *** reported by process [11111,0]
[em99-cn071:18342] *** on communicator MPI_COMM_WORLD
[em99-cn071:18342] *** MPI_ERR_ROOT: invalid root
[em99-cn071:18342] *** MPI_ERRORS_ARE_FATAL (processes in this communicator will now abort,
[em99-cn071:18342] *** and potentially your MPI job)

- 131 -

6.17 Behavior on Forced Termination of MPI Programs
When the -nompi option is not specfied for mpiexec(1), a message that indicates the MPI program terminated abnormally by a
communication error or a received signal may be output, if the job executing an MPI program is force-quitted, or the MPI program
terminates before calling MPI_Finalize function.

- 132 -

Chapter 7 Error Messages
This chapter explains the error messages output for this system.

7.1 Output Format for Information Related to Parallel Processes
At the start of a message specifically related to parallel processes, the host name (host) and process ID (pid) corresponding to that parallel
process may be output. If so, the output format is as follows:

[host:pid] message ID and message text character string

7.2 mpiexec Command Error Messages

[mpi::mca-base::duplicated-mca-params]
The following MCA parameter has been listed multiple times on
the command line:

 MCA param: MCA parameter

MCA parameters can only be listed once on a command line to ensure there
is no ambiguity as to its value. Please correct the situation and
try again.

- Description

The same MCA parameter can only be listed once on a command line.

- Parameters

MCA parameter: MCA parameter

- Action method

Check the MCA parameters.

--
[mpi::mca-base::find-available:not-valid]
A requested component was not found, or was unable to be opened. This
means that this component is either not installed or is unable to be
used on your system (e.g., sometimes this means that shared libraries
that the component requires are unable to be found/loaded). Note that
Open MPI stopped checking at the first component that it did not find.

Host: host
Framework: frame
Component: comp
--

- Description

The specified MPI library function (framework component) could not be selected. An unsupported function may have been
specified. Execution of the mpiexec command or the MPI program ends.

- Parameters

host: Host name

frame: Framework name

- 133 -

comp: Component name

- Action method

Check the value specified for the MCA parameter.

[mpi::mca-base::getcwd-error] Error: Unable to get the current working directory

- Description

Processing failed for the system call getcwd. The current path is set as the current directory. Execution of the mpiexec command
continues.

- Action method

The system may not be operating correctly. Contact the system administrator.

--
[mpi::mca-var::missing-param-file]
Process pid Unable to locate the variable file "file" in the following search path:
 wdir
--

- Description

The AMCA parameter file (MCA parameter settings file) could not be found in the specified path. After message output, execution
of the mpiexec command or the MPI program continues.

- Parameters

pid: Process ID

file: Specified file path

wdir: Directory path executed by the mpiexec command

- Action method

Check the AMCA parameter file (MCA parameter settings file) specification.

[mpi::opal-util::keyval-error] keyval parser: error num reading file file at line lineno:
 code

- Description

The AMCA parameter file (MCA parameter settings file) contains characters that cannot be used. After message output, execution
of the mpiexec command or the MPI program continues.

- Parameters

num: Error number

file: File path of the AMCA parameter file (MCA parameter settings file)

lineno: Line number

code: Character that cannot be used

- Action method

Check whether there are any characters that cannot be used in the AMCA parameter file (MCA parameter settings file)

[mpi::opal-util::memory-error] Unable to allocate memory for the private addresses array

- Description

Memory cannot be allocated for the private address array. Memory acquisition failed. After message output, execution of the
mpiexec command or the MPI program continues.

- 134 -

- Action method

Check the maximum memory size limit value of the program. If there is no problem, the system may not be operating correctly.
Contact the system administrator.

[mpi::opal-util::param-option] Error: option "opt" did not have enough parameters (num)

- Description

There are not enough arguments in the option specified in the mpiexec command. Execution of the mpiexec command ends.

- Parameters

opt: Relevant option

num: Number of required arguments

- Action method

Specify the arguments required for the relevant mpiexec command option.

[mpi::opal-util::private-ipv4-error] FOUND BAD!

- Description

An unsupported MCA parameter may have been specified. (OMPI_MCA_opal_net_private_ipv4) After message output, execution
of the mpiexec command or the MPI program continues.

- Action method

Check the value specified for the MCA parameter.

[mpi::opal-util::unknown-option] Error: unknown option "opt"

- Description

An unsupported option was specified in the mpiexec command. Execution of the mpiexec command ends.

- Parameters

opt: Relevant option

- Action method

Specify the correct option in the mpiexec command.

--
[mpi::orterun::event-def-failed]
mpiexec was unable to define an event required for proper operation of
the system. The reason for this error was:

Error: syserr
--

- Description

System call execution failed. Execution of the mpiexec command ends.

- Parameters

syserr: System error details

- Action method

The system may not be operating correctly. Contact the system administrator.

--
[mpi::orterun::multi-apps-and-zero-np]
mpiexec found multiple applications specified on the command line, with
at least one that failed to specify the number of processes to execute.

- 135 -

When specifying multiple applications, you must specify how many processes
of each to launch via the -np argument.
--

- Description

Processing cannot continue because the number of parallel processes for each MPI program was not specified when executing in
MPMD model. Execution of the mpiexec command ends.

- Action method

Specify the number of parallel processes for each of the MPI programs specified in the mpiexec command.

--
[mpi::orterun::nothing-to-do]
mpiexec could not find anything to do.

It is possible that you forgot to specify how many processes to run
via the "-np" argument.
--

- Description

An internal error may have occurred. Execution of the mpiexec command ends.

- Action method

Consult System Engineer about the message that was output.

--
[mpi::orterun::orterun:appfile-not-found]
Unable to open the appfile:

 file

Double check that this file exists and is readable.
--

- Description

The file specified by the execution definition file specification method is not found. Execution of the mpiexec command ends.

- Parameters

file: Specified file path

- Action method

Check the file path.

--
[mpi::orterun::orterun:executable-not-specified]
No executable was specified on the mpiexec command line.

Aborting.
--

- Description

No MPI programs were specified in the mpiexec command. Execution of the mpiexec command ends.

- Action method

Specify an MPI program in the mpiexec command.

--
[mpi::orterun::precondition]

- 136 -

mpiexec was unable to precondition transports
Returned value errno instead of ORTE_SUCCESS.
--

- Description

An internal error occurred. Execution of the mpiexec command ends.

- Parameters

errno: Error number

- Action method

Consult System Engineer about the message that was output.

--
[mpi::orte-runtime::orte_init:startup:internal-failure]
It looks like orte_init failed for some reason; your parallel process is
likely to abort. There are many reasons that a parallel process can
fail during orte_init; some of which are due to configuration or
environment problems. This failure appears to be an internal failure;
here's some additional information (which may only be relevant to an
Open MPI developer):

 fun failed
 --> Returned value errinfo (errno) instead of ORTE_SUCCESS
--

- Description

Initialization processing failed for the mpiexec command or the MPI program. Execution of the mpiexec command or the MPI
program ends.

- Parameters

fun: Error function name

errinfo: Error details

errno: Error number

- Action method

Check whether there are errors in the MCA parameter specification. If there are no errors in the specification, consult System
Engineer about the message that was output.

[mpi::plm-ple::exec-plexec] Failed to invoke PLE. [errinfo:errinfo(errno) path:com]

- Description

Execution of the plexec command failed. The parallel execution environment (PLE) of Job Operation Software may not be
operating correctly. Execution of the mpiexec command ends.

- Parameters

errinfo: Error details

errno: Error number

com: Executing command

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

- 137 -

[mpi::plm-ple::parallel] Specified number of parallel processes is incorrect.

- Description

The number of parallel processes specified in the mpiexec command is incorrect. Execution of the mpiexec command ends.

- Action method

Check the number of parallel processes in the mpiexec command.

[mpi::plm-ple::recursive-mpiexec] mpiexec cannot be invoked recursively.

- Description

Duplicate startup of the mpiexec command from the mpiexec command is not possible. Execution of the mpiexec command ends.

- Action method

Specify an MPI program in the mpiexec command.

[mpi::plm-ple::signal-plexec] Received signal sent by PLE. [signo:signo]

- Description

The plexec command received a signal and ended abnormally. The parallel execution environment (PLE) of Job Operation Software
may not be operating correctly. Execution of the mpiexec command ends.

- Parameters

signo: Signal number received by child process

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

[mpi::plm-ple::wait-plexec] System error caused by waitpid. [errinfo:errinfo(errno)]

- Description

Operation failed for the system call waitpid. Execution of the mpiexec command ends.

- Parameters

errinfo: Error details

errno: Error number

- Action method

The system may not be operating correctly. Contact the system administrator.

[mpi::tools-orterun::param-env] Warning: could not find environment variable "env"

- Description

The specified environment variable value has not been set. After message output, execution of the mpiexec command continues.

- Parameters

env: Specified environment variable

- Action method

Check the value of the environment variable specified in the option (-x) of the mpiexec command.

7.3 Communication Library Error Messages

- 138 -

[mpi::btl-tofu::memory-error] Unable to allocate memory. [data]

- Description

Memory acquisition failed when communicating through Tofu interconnect. Execution of the MPI program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Check the memory usage and memory size limit of the program. If there is a problem in the memory usage, reduce memory usage.

[mpi::coll-mtofu::memory-error] Unable to allocate memory. [data]

- Description

Memory acquisition failed.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Check the amount of memory used and the maximum memory size limit value of the program. If the amount of memory used is
too high, reduce it.

[mpi::coll-tbi::comm-query-failure] Internal error. [reason]

- Description

Creation of a Tofu barrier network failed.

- Parameters

reason: Cause of failure

- Action method

Consult System Engineer about the message that was output.

[mpi::coll-tbi::internal-file-error] Unable to operate file file.

- Description

Access to the file used internally by the Tofu barrier failed.

- Parameters

operate: Operation

file: File path

- Action method

The file system may not be operating correctly. Contact the system administrator.

[mpi::coll-tbi::memory-error] Unable to allocate memory. [errno]

- Description

Memory acquisition failed for the tofu barrier.

- Parameters

errno: Error number

- Action method

Check the memory usage. If there is no problem, the system may not be operating correctly. Contact the system administrator.

- 139 -

[mpi::coll-tbi::operation-error] Operation error is reported by Tofu barrier communication. [function
arguments] [data]

<Stack trace information>

- Description

An operation error was detected in the Tofu barrier communication. Execution of the MPI program ends.

- Parameters

function: MPI function

arguments: Argument of MPI function

data: Data for System Engineer for analysis purposes

- Action method

Check whether there is either of the following descriptions at the shown MPI function in your MPI program.

The reduction operation is showed in arguments as op.

- Different reduction operations were specified among processes

- Different collective communication functions were specified among processes

If this checking indicates no errors, an internal error may have occurred. Consult the System Engineer about the message that was
output.

[mpi::coll-tuned::init-subcommunicator-failure] Internal error. [reason]

- Description

Initialization processing failed for the collective communication subcommunicator processing.

- Parameters

reason: Cause of failure

- Action method

Consult System Engineer about the message that was output.

[mpi::coll-tuned::memory-error] Unable to allocate memory.

- Description

Memory acquisition failed.

- Action method

Check the amount of memory used and the maximum memory size limit value of the program. If the amount of memory used is
too high, reduce it.

[mpi::common-ple::jrm-open-failure] dlopen error caused by PLE. [dlerr:dlerr]

- Description

dlopen failed. A problem may have occurred in the parallel execution environment (PLE) of Job Operation Software. Execution
of the MPI program ends.

- Parameters

dlerr: dlopen error details

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

- 140 -

[mpi::common-ple::jrm-symbol-failure] dlsym error caused by PLE. [dlerr:dlerr]

- Description

dlsym failed. A problem may have occurred in the parallel execution environment (PLE) of Job Operation Software. Execution
of the MPI program ends.

- Parameters

dlerr: dlsym error details

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

[mpi::common-tofu::connection-error] Connection error. [data]

- Description

An error was detected when establishing the connection of communication through Tofu interconnect. Execution of the MPI
program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::common-tofu::memory-error] Unable to allocate memory. [data]

- Description

Memory acquisition failed when communicating through Tofu interconnect. Execution of the MPI program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Check the memory usage and memory size limit of the program. If there is a problem in the memory usage, reduce memory usage.

[mpi::common-tofu::mrq-error] Communication error is reported by Tofu MRQ. [data]

- Description

The Tofu interconnect detected a problem. Execution of the MPI program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::common-tofu::mrq-memory-error] Communication memory error is reported by Tofu MRQ. [data]

- Description

The Tofu interconnect detected a communication memory specification error. Execution of the MPI program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- 141 -

- Action method

Check whether there is an error in the start address, datatype, or number of elements in the send buffer and receive buffer specified
in the MPI communication function.

[mpi::common-tofu::mrq-peer-error] Communication peer error is reported by Tofu MRQ. This error may
be caused by abort of peer process. [data]

- Description

The Tofu interconnect detected an error on the compute node where the communication partner process is being executed. The
error may be caused by reason that the communication partner process was stopped or that the communication partner process
released the send buffer or the receive buffer. Execution of the MPI program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

In case the job was force-quitted, or the MPI program was terminated before MPI_Finalize is called, ignore this message. In case
the send buffer or the receive buffer is released before the completion of communication, revise the processing of releasing buffer.
Otherwise, consult System Engineer about the message that was output.

[mpi::common-tofu::set-signal] Failed to set realtime signal. [rc:rc]

- Description

An internal error was detected. Realtime signal settings failed. Execution of the MPI program ends.

- Parameters

rc: Error number

- Action method

Consult System Engineer about the message that was output.

[mpi::common-tofu::tcq-error] Communication error is reported by Tofu TCQ. [data]

- Description

The Tofu interconnect detected a communication error. Execution of the MPI program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::common-tofu::tcq-memory-error] Communication memory error is reported by Tofu TCQ. [data]

- Description

The Tofu interconnect detected a communication memory specification error. Execution of the MPI program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Check whether there is an error in the start address, datatype, or number of elements in the send buffer and receive buffer specified
in the MPI communication function.

- 142 -

[mpi::common-tofu::tofu-init-failure] Internal error. [reason]

- Description

Initialization processing for the Tofu interconnect failed. Execution of the MPI program ends.

- Parameters

reason: Cause of initialization processing failure

- Action method

The system may not be operating correctly. Contact the system administrator.

[mpi::common-tofu::tofu-signal-corruption] Tofu driver detected corruption of system reserved area.
[signo:signo cq:num]

- Description

Tofu driver detected corruption of system reserved area. Execution of the MPI program ends.

- Parameters

signo: Signal number

num: CQ number

- Action method

Check whether there is an error code that causes memory corruption in your MPI program. If there is no problem in the program,
a system internal error or a hardware fault may have occurred. Consult System Engineer about the message that was output.

[mpi::common-tofu::tofu-signal-exception] Internal error of exception with signal. [signo:signo
error:error cq:num]

- Description

An internal error was detected. Execution of the MPI program ends.

- Parameters

signo: Signal number

error: Error number

num: CQ number

- Action method

Consult System Engineer about the message that was output.

[mpi::common-tofu::tofu-signal-failure] Tofu interconnect detected an error. [signo:signo error:error
cq:num]

- Description

An internal error was detected. A signal was received because a Tofu interconnect error was detected. Execution of the MPI
program ends.

- Parameters

signo: Signal number

error: Error number

num: CQ number

- Action method

If the error number is a value from 37 to 44 and your MPI program applies conditions of Tofu barrier communication, explained
in "6.12 Use of Tofu Barrier Communication to Increase Speeds", check whether there is either of the following descriptions in
your MPI program.

- 143 -

- Different reduction operations were specified among processes.

- Different collective communication functions were specified among processes.

If this checking indicates no errors or the error number is a value other than the above, an internal error may have occurred. Consult
the System Engineer about the message that was output.

[mpi::common-tofu::tofu-signal-mrq] Tofu interconnect detected MRQ overflow. [signo:signo cq:num]

- Description

An error was detected and a signal was received because the upper limit value for the nonblocking communication instruction
queue of the Tofu interconnect was exceeded. There is a problem with the issue count for MPI program nonblocking communication
processing. Execution of the MPI program ends.

- Parameters

signo: Signal number

num: CQ number

- Action method

Revise the termination process for MPI program nonblocking communication processing or for sending using the Eager
communication mode. Or increase the number of entries in a completion queue of Tofu interconnect as described in "Table 4.28
common_tofu_num_mrq_entries (change the number of entries in a completion queue)".

[mpi::common-tofu::tofu-stag-error] Failed query/register Tofu STag. [data]

- Description

A buffer usage error or a shortage in a Tofu interconnect memory management resource was detected.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Check for errors in the start address of the send buffer and receive buffer, the data type, and the number of elements. Memory
areas that MPI program parallel processes cannot write to cannot be specified in send or receive buffers. Alternatively, if the large
page is not used, use the large page, or decrease patterns of the start address and number of elements in the send buffer and receive
buffer specified in the MPI communication function. If the large page is used and there are no specification errors, an internal error
may have occurred. Consult System Engineer about the message that was output.

[mpi::common-tofu::tofu-stag-release-error] Failed to release Tofu STag. [data]

- Description

Inconsistency was detected when releasing Tofu interconnect memory management resource.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::dpm-ple::init-failure] [[jobid,snum],rank] PLE is not yet initialized.

- Description

Initialization of the Job Operation Software parallel execution environment (PLE) did not complete. Execution of the MPI program
ends.

- Parameters

jobid: MPI job ID

snum: spawn number

- 144 -

rank: Rank number

- Action method

Check that the MPI function was not executed before the MPI_Init function or after the MPI_Finalize function. If there are no
errors, an internal error may have occurred. Consult the System Engineer about the message that was output.

[mpi::dpm-ple::invalid-arg] [[jobid,snum],rank] Error by invalid argument.

- Description

An invalid value was passed to the Job Operation Software parallel execution environment (PLE). Execution of the MPI program
ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

Consult System Engineer about the message that was output.

[mpi::dpm-ple::jrm-spawn-failure] [[jobid,snum],rank] Error caused by PLE. [errno:errno]

- Description

Dynamic process generation failed in the Job Operation Software parallel execution environment (PLE). A problem may have
occurred in the parallel execution environment (PLE). Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

errno: Error number

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

[mpi::dpm-ple::mpi-jobid-invalid] [[jobid,snum],rank] MPI jobid was invalid.

- Description

The MPI program job ID is invalid. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

An internal error may have occurred. Consult System Engineer about the message that was output.

- 145 -

[mpi::dpm-ple::port-name-error] [[jobid,snum],rank] The specified port name was invalid.
[port_name:name]

- Description

The port name specified in the argument is invalid. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

name: Port number

- Action method

Revise and specify the correct value for the port name. Alternatively, check whether or not the MPI process to which connection
is being attempted using the port name is correctly in the reception wait state. If this checking indicates no errors, an internal error
may have occurred. Consult the System Engineer about the message that was output.

[mpi::dpm-ple::recv-wait-timeout] [[jobid,snum],rank] The wait time for the socket communication has
passed.

- Description

The value set as the reception wait time for socket communication was exceeded. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

Revise the configured reception wait time for socket communication. If the set value is correct, the MPI program may not be
operating correctly, so revise the MPI program.

[mpi::dpm-ple::spawn-limit-error] [[jobid,snum],rank] The occurrences of dynamic process creation
exceeded the upper limit.

- Description

The upper limit value for the dynamic process generation count was exceeded. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

Set 4294967295 or less as the dynamic process generation count.

[mpi::dpm-ple::spawn-limit-error] [[jobid,snum],rank] The maximum number of dynamic process
creation that was able to be generated at the same time exceeded the upper limit.

- Description

The upper limit number of MPI_COMM_WORLD for the dynamic processes that can exist at the same time was exceeded.
Execution of the MPI program ends.

- 146 -

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

Set 65535 or less as the number of MPI_COMM_WORLD for the dynamic processes that exists at the same time.

[mpi::dpm-ple::spawn-vcoordfile-error] [[jobid,snum],rank] Dynamic process creation is not allowed if
case the option "vcoordfile" is specified.

- Description

Dynamic process generation cannot be executed if -vcoordfile or --vcoordfile is specified in the mpiexec command. Execution of
the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

If --vcoordfile is specified in the mpiexec command, do not call dynamic process generation.

[mpi::dpm-ple::spawn-resource-error] [[jobid,snum],rank] There are not enough compute nodes to
create the specified processes dynamically.

- Description

There are no free nodes that can execute the specified dynamic process generation. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

Check if a free node, required for dynamic process generation, is available.

[mpi::dpm-ple::tofu-update-failure] [[jobid,snum],rank] Internal error caused by Tofu. [errno:errno]

- Description

An internal error was detected. Tofu interconnect update processing failed. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

errno: Error number

- Action method

Consult System Engineer about the message that was output.

- 147 -

[mpi::dpm-ple::violated-establishing-communication] MPI_Comm_connect or MPI_Comm_accept is
called despite the MCA parameter dpm_ple_no_establish_connection.

- Description

The program tried to establish communication between two groups of MPI processes that do not share a communicator even the
MCA parameter dpm_ple_no_establish_connection is specified. Execution of the MPI program ends.

- Action method

Check the value specified for the MCA parameter or that the program does not establish communication between two groups of
MPI processes that do not share a communicator.

[mpi::errmgr-base::orte-error] [[jobid,snum],rank] ORTE_ERROR_LOG:error in file file at line lineno

- Description

An internal error occurred. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

error: Error details

file: Error file path

lineno: Line number

- Action method

Consult System Engineer about the message that was output.

[mpi::ess-ple::init-failure] [[jobid,snum],rank] PLE is not yet initialized.

- Description

Initialization of the Job Operation Software parallel execution environment (PLE) did not complete. Execution of the MPI program
ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

Check that the MPI function was not executed before the MPI_Init function or after the MPI_Finalize function. If there are no
errors, an internal error may have occurred. Consult the System Engineer about the message that was output.

[mpi::ess-ple::invalid-arg] [[jobid,snum],rank] Error by invalid argument.

- Description

An invalid value was passed to the Job Operation Software parallel execution environment (PLE). Execution of the MPI program
ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- 148 -

- Action method

Consult System Engineer about the message that was output.

[mpi::ess-ple::jrm-abort-failure] [[jobid,snum],rank] Error caused by PLE. [errno:errno]

- Description

Job harvesting processing failed for the parallel execution environment (PLE) of Job Operation Software. A problem may have
occurred in the parallel execution environment (PLE). Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

errno: Error number

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

[mpi::ess-ple::jrm-fin-failure] [[jobid,snum],rank] Error caused by PLE. [errno:errno]

- Description

End processing failed for the parallel execution environment (PLE) of Job Operation Software. A problem may have occurred in
the parallel execution environment (PLE). Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

errno: Error number

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

[mpi::ess-ple::jrm-init-failure] [[jobid,snum],rank] Error caused by PLE. [errno:errno]

- Description

Initialization processing failed for the parallel execution environment (PLE) of Job Operation Software. A problem may have
occurred in the parallel execution environment (PLE). Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

errno: Error number

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

- 149 -

[mpi::ess-ple::jrm-rank-failure] [[jobid,snum],rank] Error caused by PLE. [errno:errno]

- Description

Acquisition of process mapping information failed. A problem may have occurred in the parallel execution environment (PLE) of
Job Operation Software. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

errno: Error number

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

[mpi::ess-ple::process-illegal] [[jobid,snum],rank] Process rank or size illegal. [size:num rank:rank]

- Description

The rank number and number of parallel processes for the MPI program are incorrect. There is a problem in the environment
variable content set by the parallel execution environment (PLE) of Job Operation Software. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

num: Number of processes for the MPI program

rank: Rank number

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

[mpi::ess-ple::recursive-mpiexec] [[jobid,snum],rank] mpiexec cannot be invoked recursively.

- Description

Duplicate startup of the mpiexec command from the mpiexec command is not possible. Execution of the mpiexec command ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

Specify an MPI program in the mpiexec command.

[mpi::ess-ple::tofu-address-failure] [[jobid,snum],rank] Internal error caused by Tofu. [errno:errno]

- Description

An internal error was detected. The address information fetch processing failed. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

- 150 -

snum: spawn number

rank: Rank number

errno: Error number

- Action method

Consult System Engineer about the message that was output.

[mpi::fjmpi-prequest::same-request-args] The arguments of source/destination rank, message tag, and
communicator for the request are identical to those of another request.

- Description

The arguments of source/destination rank, message tag, and communicator for the request are identical to those of another request.

- Action method

Specify other source/destination rank, message tag, or the communicator as the arguments of the FJMPI_Prequest_send_init
function or the FJMPI_Prequest_send_init function. Or execute the FJMPI_Prequest_send_init function or
FJMPI_Prequest_send_init function after freeing another request that already exists by the MPI_Request_free function.

[mpi::fjmpi-rdma::deregmem-not-allocated] Memory ID id not allocated.

- Description

The memory ID specified as an argument is not associated to any buffer. It is impossible to unregister an unalloced memory ID.
Execution of the MPI program ends.

- Parameters

id: Memory ID

- Action method

Revise the memory ID specification in the MPI program.

[mpi::fjmpi-rdma::get-timeout] Cannot get remote address in several seconds.

- Description

The processing to get the remote node DMA address timed out. After message output, execution of the MPI program continues.

- Action method

If this error continues, the system may not be operating correctly. Consult the system administrator.

[mpi::fjmpi-rdma::init-alloc] Out of memory.

- Description

Memory cannot be allocated for Extended RDMA interface internal data. Memory acquisition failed. Execution of the MPI program
ends.

- Action method

Check the memory usage and memory size limit of the program. If there is a problem in the memory usage, reduce memory usage.

[mpi::fjmpi-rdma::init-mpi] MPI initialization error.

- Description

An error was detected in MPI internal communication resource management during Extended RDMA interface initialization.
Execution of the MPI program ends.

- Action method

If the job type is node-sharing job, Extended RDMA interface cannot be used.

In other cases, consult System Engineer about the message that was output.

- 151 -

Refer to the Job Operation Software manual for information on node-sharing job.

[mpi::fjmpi-rdma::init-stag] STag allocation error. [data]

- Description

A Tofu interconnect memory management resource shortage was detected during Extended RDMA interface initialization.
Execution of the MPI program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::fjmpi-rdma::memid-alloc] Out of memory.

- Description

Memory cannot be allocated for Extended RDMA interface internal data. Memory acquisition failed. Execution of the MPI program
ends.

- Action method

Check the memory usage and memory size limit of the program. If there is a problem in the memory usage, reduce memory usage.

[mpi::fjmpi-rdma::memid-error] Memory ID id out of range.

- Description

An unsuitable memory ID was specified in an argument. Execution of the MPI program ends.

- Parameters

id: Memory ID

- Action method

Revise the memory ID specification in the MPI program. Refer to the manual for the allowable values.

[mpi::fjmpi-rdma::mrq-error] Communication error is reported by Tofu MRQ. [data]

- Description

The Tofu interconnect detected a problem. Execution of the MPI program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::fjmpi-rdma::mrq-overflow] Complete queue overflow.

- Description

The Extended RDMA interface internal completion queue has overflowed. The CQ polling processing in the MPI program may
be inadequate. Execution of the MPI program ends.

- Action method

Revise the CQ polling processing in the MPI program.

[mpi::fjmpi-rdma::pid-error] Process ID id out of range.

- Description

An unsuitable rank number was specified in an argument. Execution of the MPI program ends.

- 152 -

- Parameters

id: Rank number

- Action method

Revise the rank number specification in the MPI program.

[mpi::fjmpi-rdma::raddr-error] Remote DMA address raddr invalid.

- Description

An unsuitable remote node DMA address was specified in an argument. Execution of the MPI program ends.

- Parameters

raddr: Remote node DMA address

- Action method

Revise the remote node DMA address specification in the MPI program.

[mpi::fjmpi-rdma::regmem-allocated] Memory ID id already allocated.

- Description

The memory ID specified in the argument is already in use. Multiple addresses cannot be registered for the same memory ID.
Execution of the MPI program ends.

- Parameters

id: Memory ID

- Action method

Revise the memory ID specification in the MPI program.

[mpi::fjmpi-rdma::regmem-stag] STag allocation error. [data]

- Description

A Tofu interconnect memory management resource shortage was detected during memory ID registration. Execution of the MPI
program ends.

- Parameters

data: Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

--
[mpi::mpi-api::mpi-abort]
MPI_ABORT was invoked on rank rank in communicator comm
with errorcode rc.

NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes.
You may or may not see output from other processes, depending on
exactly when Open MPI kills them.
--

- Description

The MPI_Abort function was called. Execution of the MPI program ends.

- Parameters

rank: Rank number

comm: Detailed information of the communicator in the MPI_Abort function first argument

- 153 -

rc: MPI_Abort function second argument

- Action method

Check whether there is an error in the MPI program content.

--
[mpi::mpi-api::mpi-function-after-finalize]
Calling any MPI-function after calling MPI_Finalize is erroneous.
The only exceptions are MPI_Initialized, MPI_Finalized and MPI_Get_version.
--

- Description

After MPI_Finalize, an MPI function that cannot be called after MPI_Finalize due to MPI specifications was called.

- Action method

Check if an MPI function was called after MPI_Finalize in the program.

If called, this contravenes MPI specifications, so correct the program.

However, the following functions can be called after MPI_Finalize:

MPI_Initialized

MPI_Finalized

MPI_Get_version

--
[mpi::mpi-api::mpi-initialize-twice]
Calling MPI_Init or MPI_Init_thread twice is erroneous.
--

- Description

Either the MPI_Init function or the MPI_Init_thread function was called twice.

- Action method

Check if either the MPI_Init function or the MPI_Init_thread function was called more than once in the program. Either the MPI_Init
function or the MPI_Init_thread function can be called only once due to MPI specifications. If called more than once, correct the
program.

--
[mpi::mpi-runtime::mpi-param-check-enabled-but-compiled-out]
WARNING: The MCA parameter mpi_param_check has been set to true, but
parameter checking has been compiled out of Open MPI. The
mpi_param_check value has therefore been ignored.
--

- Description

The MCA parameter "mpi_param_check" was set. MCA parameter check cannot be specified unless the library is the debug MPI
library. After message output, execution of the MPI program continues.

- Action method

Remove the MCA parameter "mpi_param_check" specification.

--
[mpi::mpi-errors::mpi_errors_are_fatal]
[info] *** An error occurred [msg]
[info] *** reported by process [[jobid,rank]]
[info] *** on [type]
[info] *** [error class]

- 154 -

[info] *** MPI_ERRORS_ARE_FATAL (processes in this [type] will now abort,
[info] *** and potentially your MPI job)
--

- Description

A fatal error occurred during execution of the MPI program. The program will abort.

- Parameters

info: Host name and pid information

msg: Explanation of the cause of the problem

jobid: MPI job ID

rank: Rank number under MPI_COMM_WORLD

type: Information on either the communicator, file, or window (depending on the cause of the problem)

error class: See Appendix A

- Action method

Refer to the msg and error class and check for problems in the program. If there is no problem, note the message that is output
and contact the system administrator.

[mpi::ompi-communicator::error] [[jobid,snum],rank] Internal error. [rc:rc]

- Description

An internal error was detected. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

rc: Function return value

- Action method

Consult System Engineer about the message that was output.

[mpi::ompi-communicator::recv-wait-timeout] [[jobid,snum],rank] The wait time for the socket
communication has passed.

- Description

The value set as the reception wait time for socket communication was exceeded. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

Revise the configured reception wait time for socket communication. If the set value is correct, the MPI program may not be
operating correctly, so revise the MPI program.

[mpi::ompi-free-list::memory-error] Out of memory.

- Description

Memory acquisition failed. Execution of the MPI program ends.

- 155 -

- Action method

- Check the memory usage and memory size limit of the program. If there is a problem in the memory usage, reduce memory
usage.

- Because the MPI library saves messages to other regions if corresponding receive calls are delayed, these saved messages
affect the amount of memory used. Therefore, if the number of all communication partner processes is more than the upper
limit for the number of processes that can use the fast communication mode, and MPI program issues a large number of
unexpected messages, then this problem might be avoided by speeding up the communication according to the following
procedure.

1. Execute the MPI program after specifying value 2 for the MCA parameter mpi_print_stats. Do not specify MCA
parameter mpi_print_stats_ranks. When you use the MCA parameter, you must specify -1 for mpi_print_stats_ranks,
and the output from all the parallel processes must enable. Confirm the number of unexpected messages by outputting
the MPI statistical information. Refer to "6.15 MPI Statistical Information" for details.

2. If the number of unexpected messages increased, enlarge the size of the Medium receive buffer. Refer to "Table 4.25
common_tofu_medium_recv_buf_size (changes the size of the Medium receive buffer)" for details.

[mpi::opal-runtime::assistant-core-bind-failed] Failed to bind the progress thread to an assistant core.
Your program needs relinking.

- Description

The MPI asynchronous processing progress thread could not be bound to an assistant core because the MPI program was linked
by a compilation/linkage command in an old system. After message output, function of promoting asynchronous communication
using an assistant core is disabled and execution of the MPI program continues.

- Action method

Relink the MPI program by a compilation/linkage command in this system.

[mpi::opal-util::check-buffer-write] The buffer was destroyed in this process.

<Stack trace information>

- Description

Another write occurred in the nonblocking communication send buffer. Execution of the MPI program ends.

- Action method

Refer to the stack trace information and revise the MPI program so that no processes overwrite the nonblocking communication
send buffer.

[mpi::opal-util::deadlock-timeout] This process detected a deadlock.

<Stack trace information>

- Description

The communication wait time exceeded the upper limit (seconds) specified by the user. A deadlock may have occurred. Execution
of the MPI program ends.

- Action method

Refer to the stack trace information and revise the MPI program to ensure that there is no code that causes deadlocks.

[mpi::opal-util::dynamic-debug-failure] Internal error. [reason]

- Description

Execution of the dynamic debug function failed.

- Parameters

reason: Cause of failure

- 156 -

- Action method

Consult System Engineer about the message that was output.

[mpi::opal-util::dynamic-debug-memory-error] Unable to allocate memory. [errno]

- Description

Memory allocation for use by the dynamic debug function failed.

- Parameters

errno: Error number

- Action method

Check the memory usage. If there is no problem, the system may not be operating correctly. Contact the system administrator.

[mpi::pubsub-ple::init-failure] [[jobid,snum],rank] PLE is not yet initialized.

- Description

Initialization of the Job Operation Software parallel execution environment (PLE) did not complete. Execution of the MPI program
ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

Check that the MPI function was not executed before the MPI_Init function or after the MPI_Finalize function. If there are no
errors, an internal error may have occurred. Consult the System Engineer about the message that was output.

[mpi::pubsub-ple::invalid-arg] [[jobid,snum],rank] Error by invalid argument.

- Description

An invalid value was passed to the Job Operation Software parallel execution environment (PLE). Execution of the MPI program
ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

- Action method

Consult System Engineer about the message that was output.

[mpi::pubsub-ple::jrm-port-failure] [[jobid,snum],rank] Error caused by PLE. [errno:errno]

- Description

Information related to socket communication failed to be set for the Job Operation Software parallel execution environment (PLE).
Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

errno: Function return value

- 157 -

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

[mpi::pubsub-ple::memory-error] [[jobid,snum],rank] Unable to allocate memory. [errno:errno]

- Description

Allocation of the memory required for getting the port name failed. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

errno: Error number

- Action method

Check the memory usage and memory size limit of the program. If there is a problem in the memory usage, reduce memory usage.

[mpi::pubsub-ple::port-name-error] [[jobid,snum],rank] The specified port name was invalid.
[port_name:name]

- Description

The port name specified in the argument is invalid. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

name: Port number

- Action method

Check if the value specified as the port name is correct. Alternatively, revise so that the MPI process connected to using the port
name is executed.

[mpi::pubsub-ple::service-delete-cannot] [[jobid,snum],rank] The specified service name cannot be
unpublished by any process other than the one that published it. [service_name:name]

- Description

The specified service name cannot be unpublished because it was published by a different process. Execution of the MPI program
ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

name: Service name

- Action method

Do not unpublish a service name from an MPI process other than the one that published it.

- 158 -

[mpi::pubsub-ple::service-delete-error] [[jobid,snum],rank] The specified service name was not open to
the public. [service_name:name]

- Description

The specified service name is not open to the public. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

name: Service name

- Action method

Revise the specified service name.

[mpi::pubsub-ple::service-get-error] [[jobid,snum],rank] The specified service name was not open to the
public. [service_name:name]

- Description

The specified service name is not open to the public. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

name: Service name

- Action method

Revise the specified service name value.

[mpi::pubsub-ple::service-set-error] [[jobid,snum],rank] The specified service name was already open to
the public. [service_name:name]

- Description

The specified service name is already open to the public. Execution of the MPI program ends.

- Parameters

jobid: MPI job ID

snum: spawn number

rank: Rank number

name: Service name

- Action method

Revise the specified service name value.

- 159 -

Appendix A Error Class List
This appendix lists the error classes output by this system. These are the error classes regulated by the MPI standards. Refer to the MPI
standards for details.

A.1 MPI1 Error Class List

Table A.1 MPI1 error class list

Error class Description Value

MPI_SUCCESS No errors 0

MPI_ERR_BUFFER Invalid buffer pointer 1

MPI_ERR_COUNT Invalid count argument 2

MPI_ERR_TYPE Invalid data type argument 3

MPI_ERR_TAG Invalid tag argument 4

MPI_ERR_COMM Invalid communicator 5

MPI_ERR_RANK Invalid rank 6

MPI_ERR_REQUEST Invalid request (handle) 7

MPI_ERR_ROOT Invalid root 8

MPI_ERR_GROUP Invalid group 9

MPI_ERR_OP Invalid operation 10

MPI_ERR_TOPOLOGY Invalid topology 11

MPI_ERR_DIMS Invalid dimension argument 12

MPI_ERR_ARG Invalid argument 13

MPI_ERR_UNKNOWN Error with unknown cause 14

MPI_ERR_TRUNCATE Message truncated at reception 15

MPI_ERR_OTHER An error not in this list 16

MPI_ERR_INTERN MPI internal error 17

MPI_ERR_IN_STATUS Error code in status 18

MPI_ERR_PENDING Reserve requested 19

MPI_ERR_LASTCODE Last error code 92

A.2 MPI2 Error Class List

Table A.2 MPI2 error class list

Error class Description Value

MPI_ERR_ACCESS Permission error 20

MPI_ERR_AMODE Invalid amode 21

MPI_ERR_ASSERT Invalid assert argument 22

MPI_ERR_BAD_FILE Invalid filename 23

MPI_ERR_BASE Invalid base argument 24

MPI_ERR_CONVERSION Error during conversion of user-defined data 25

- 160 -

Error class Description Value

MPI_ERR_DISP Invalid displacement argument 26

MPI_ERR_DUP_DATAREP datarep already defined 27

MPI_ERR_FILE_EXISTS File already exists 28

MPI_ERR_FILE_IN_USE File operations by multiple processes not yet completed for the
open file

29

MPI_ERR_FILE Invalid file handle 30

MPI_ERR_INFO_KEY Invalid Info key 31

MPI_ERR_INFO_NOKEY Key is not defined 32

MPI_ERR_INFO_VALUE Invalid Info value 33

MPI_ERR_INFO Invalid Info argument 34

MPI_ERR_IO Other I/O error 35

MPI_ERR_KEYVAL Invalid key value 36

MPI_ERR_LOCKTYPE Invalid locktype argument 37

MPI_ERR_NAME Not an established name 38

MPI_ERR_NO_MEM No valid memory 39

MPI_ERR_NOT_SAME collective argument is different 40

MPI_ERR_NO_SPACE Insufficient space 41

MPI_ERR_NO_SUCH_FILE File does not exist 42

MPI_ERR_PORT Port does not exist 43

MPI_ERR_QUOTA quota exceeded 44

MPI_ERR_READ_ONLY Read-only file or file system 45

MPI_ERR_RMA_CONFLICT Window access conflict 46

MPI_ERR_RMA_SYNC Incorrect synchronization for RMA invocation 47

MPI_ERR_SERVICE Service already established 48

MPI_ERR_SIZE Invalid size argument 49

MPI_ERR_SPAWN Child process cannot be generated 50

MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep 51

MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation 52

MPI_ERR_WIN Invalid window argument 53

MPI_ERR_NOT_IMPLEMENTED Unsupported function None

A.3 MPI3 Error Class List

Table A.3 MPI3 error class list

Error class Description Value

MPI_T_ERR_MEMORY Out of memory 54

MPI_T_ERR_NOT_INITIALIZED Interface not initialized 55

MPI_T_ERR_CANNOT_INIT Interface not in the state to be initialized 56

MPI_T_ERR_INVALID_INDEX The enumeration index is invalid or has been deleted 57

MPI_T_ERR_INVALID_ITEM The item index queried is out of range 58

- 161 -

Error class Description Value

MPI_T_ERR_INVALID_HANDLE The handle is invalid 59

MPI_T_ERR_OUT_OF_HANDLES No more handles available 60

MPI_T_ERR_OUT_OF_SESSIONS No more sessions available 61

MPI_T_ERR_INVALID_SESSION Session argument is not a valid session 62

MPI_T_ERR_CVAR_SET_NOT_NOW Variable cannot be set at this moment 63

MPI_T_ERR_CVAR_SET_NEVER Variable cannot be set until end of execution 64

MPI_T_ERR_PVAR_NO_STARTSTOP Variable cannot be started or stopped 65

MPI_T_ERR_PVAR_NO_WRITE Variable cannot be written or reset 66

MPI_T_ERR_PVAR_NO_ATOMIC Variable cannot be read and written atomically 67

MPI_ERR_RMA_RANGE Target memory is not part of the window 68

MPI_ERR_RMA_ATTACH Memory cannot be attached 69

MPI_ERR_RMA_FLAVOR Passed window has the wrong flavor for the called function 70

MPI_ERR_RMA_SHARED Memory cannot be shared 71

- 162 -

Appendix B Notes on Migration from FX10 System to
FX100 System

This appendix provides notes on migrating from FX10 system (Generation number:09 or later) to FX100 system.

For migrating from FX10 system (Generation number:08 or earlier), refer to "Appendix C Compatibility Information (FX10 system)"
also.

B.1 Behavior of mpiexec(1) when a same MCA parameter is
specified more than once is changed

This note corresponds to the migration to FX100 system (Generation Number:03 or later).

Refer to "D.1.1 Behavior of mpiexec(1) when a same MCA parameter is specified more than once is changed".

B.2 Value of MPI_ERR_LASTCODE is changed
This note corresponds to the migration to FX100 system (Generation Number:03 or later).

Refer to "D.1.2 Value of MPI_ERR_LASTCODE is changed".

B.3 Change of the "Threshold Value" for Switching between Eager
Protocol and Rendezvous Protocol

a. Changes

The formula of the "threshold value" for switching between Eager protocol and Rendezvous protocol is changed.

[Previous version]

The "threshold value" was obtained by using the following formula.

Threshold value = 13,312 + number-of-hops * 296

[This version]

The "threshold value" is obtained by using the following formula.

Threshold value = 45,056 + number-of-hops * 296

b. Influence

The "threshold value" for switching between Eager protocol and Rendezvous protocol is changed if the MCA parameter
btl_tofu_eager_limit is not specified. If your MPI program transfers a message which has a size between the threshold values of
previous version and this version, the protocol to transfer the message changes. This may cause changes of runtime performance
characteristics of the MPI program because these two protocols have different characteristics. These performance characteristics
include whether a nonblocking communication overlaps with computation or other communications.

c. Coping

Set the MCA parameter btl_tofu_eager_limit to change the "threshold value".

B.4 Change of Extended RDMA Interface Error Message
This note corresponds to the migration from FX10 system (Generation Number:09 or earlier).

Refer to "C.1.1 Change of Extended RDMA Interface Error Message".

- 163 -

B.5 The default value of MCA parameter orte_abort_print_stack is
changed from 0 to 1

This note corresponds to the migration from FX10 system (Generation Number:09 or earlier).

Refer to "C.1.2 The default value of MCA parameter orte_abort_print_stack is changed from 0 to 1".

- 164 -

Appendix C Compatibility Information (FX10 system)
This appendix provides compatibility information as notes on migrating.

C.1 Migrating to V2.0L10 (Generation Number:10)

C.1.1 Change of Extended RDMA Interface Error Message
a. Changes

When an unsuitable remote node DMA address raddr is specified in an argument of communication functions of extended RDMA
interface, the error message is different from before.

[Previous version]

When an unsuitable remote node DMA address is specified in an argument of the FJMPI_Rdma_put function or the
FJMPI_Rdma_get function, the following message was output.

[mpi::common-tofu::mrq-peer-error] Communication peer error is reported by Tofu MRQ. This
error may be caused by abort of peer process. [data]

[This version]

When an unsuitable remote node DMA address is specified in an argument of the FJMPI_Rdma_put function or the
FJMPI_Rdma_get function, the following message is output.

[mpi::fjmpi-rdma::raddr-error] Remote DMA address raddr invalid.

b. Influence

When an unsuitable remote node DMA address is specified in an argument of the FJMPI_Rdma_put function or the
FJMPI_Rdma_get function in a user program, the error message in [This version] is output.

c. Coping

It is not necessary to action.

C.1.2 The default value of MCA parameter orte_abort_print_stack is
changed from 0 to 1

a. Changes

The default value of MCA parameter orte_abort_print_stack is changed from 0 to 1.

[Previous version]

The default value for this parameter was 0.

[This version]

The default value for this parameter is 1.

b. Influence

If MPI_Abort function is called, or if the MPI library ends the execution of the MPI program detecting abnormalities of the execution
environment and the communication, stack trace information are output following the error message to the standard error.

c. Coping

It is not necessary to action.

- 165 -

C.2 Migrating to V1.0L30 (Generation Number:09)

C.2.1 Change of Communication Library Error Message
a. Changes

Communication Library Error Message is changed.

[Previous version]

When some problems occur in the communicator, the file, or the window managed in MPI, the following message was output.

--
[mpi::mpi-errors::mpi_errors_are_fatal]
[info] *** An error occurred [msg]
[info] *** on [type]
[info] *** [error class]
[info] *** MPI_ERRORS_ARE_FATAL (your MPI job will now abort)
--

[This version]

When some problems occur in the communicator, the file, or the window managed in MPI, the following message is output.

--
[mpi::mpi-errors::mpi_errors_are_fatal]
[info] *** An error occurred [msg]
[info] *** on [type]
[info] *** [error class]
[info] *** MPI_ERRORS_ARE_FATAL: your MPI job will now abort
--

b. Influence

When some problems occur in the communicator, the file, or the window managed in MPI, the error message in [This version] is
output.

c. Coping

It is not necessary to action.

C.3 Migrating to V1.0L20

C.3.1 Changes To Retrieved Values Of The Predefined Attributes
a. Changes

The values of the predefined attributes of the communicator duplicated from MPI_COMM_WORLD are changed if these values
are retrieved by using the subroutine MPI_COMM_GET_ATTR or MPI_ATTR_GET in Fortran programs.

[Previous version]

- MPI_COMM_GET_ATTR

The address of the predefined attribute was retrieved.

- MPI_ATTR_GET

The address of the predefined attribute copied into default integer type was retrieved.

[This version]

- MPI_COMM_GET_ATTR

The value of the predefined attribute is retrieved.

- 166 -

- MPI_ATTR_GET

The value of the predefined attribute is retrieved.

b. Influence

When the values of the predefined attributes of the communicator duplicated from MPI_COMM_WORLD are retrieved by using
the subroutine MPI_COMM_GET_ATTR or MPI_ATTR_GET, and those values are used in Fortran programs, the behavior of the
program may change.

c. Coping

Modify the source program.

- 167 -

Appendix D Compatibility Information (FX100 system)
This appendix provides compatibility information as notes on migrating.

D.1 Migrating to V2.0L20 (Generation Number:03)

D.1.1 Behavior of mpiexec(1) when a same MCA parameter is specified
more than once is changed

a. Changes

The behavior of mpiexec(1) when a same MCA parameter is specified more than once is changed.

[Previous version]

If there are multiple specifications for the same MCA parameter name for one program, the value specified first in the parameter
specification contents was enabled.

[This version]

The following error message is output.

[mpi::mca-base::duplicated-mca-params]
The following MCA parameter has been listed multiple times on the command line:

 MCA param: MCA parameter

MCA parameters can only be listed once on a command line to ensure there is no ambiguity as
to its value.
Please correct the situation and try again.

b. Influence

The mpiexec(1) outputs error message when a same MCA parameter is specified more than once.

c. Coping

Execute the MPI program with eliminating duplicated parameters.

D.1.2 Value of MPI_ERR_LASTCODE is changed
a. Changes

The value of MPI_ERR_LASTCODE is changed.

[Previous version]

The value of MPI_ERR_LASTCODE was 54.

[This version]

The value of MPI_ERR_LASTCODE is 92.

b. Influence

The behavior of a program is changed when the program where MPI_ERR_LASTCODE is referred is compiled using a compiler
released before V2.0L20 (Generation Number:03) and is executed using the MPI library in V2.0L20 (Generation Number:03 or
later).

c. Coping

Recompile the program where MPI_ERR_LASTCODE is referred using the compiler in V2.0L20 (Generation Number:03 or later).

- 168 -

Glossary

barrier gate

A hardware resource used for performing Tofu barrier communication. Barrier gates include two types of gates: input-output gates
that fulfil the role of a start point and end point, and relay gates that fulfil the role of relay points. MPI can use a maximum of
8 input-output gates and 56 relay gates. These maximum numbers may be changed when the edition number of this system product is
changed.

blocking communication

Indicates message send-receive for which the user buffer specified at MPI function invocation can be re-used if there is a return from
the MPI function.

maximum transmission unit

Message transfer is performed by transmitting units, known as packets, within the MPI library. Each packet has an upper limit value,
and the maximum transmission unit indicates this upper limit.

Messages that are larger than the maximum transmission unit are split into multiple packets such that the size of each packet is the
maximum transmission unit or less, and then transferred.

message length

Indicates the number of elements in a message. This conforms to the message length definition in the MPI standards.

message size

The message size expressed as the number of bytes. In this manual, this term is used to distinguish the number of bytes from the
"message length".

MPMD

Acronym meaning Multiple Program/Multiple Data. This is one parallel programming model. It uses two or more different MPI
programs and operates by sharing processing.

nonblocking communication

Indicates message send-receive for which it is possible that there will be a return from the MPI function before the actual procedures
of the MPI function are completed. The user buffer specified at MPI function invocation cannot be re-used until completion of operations
is confirmed.

parallel process

A process started on the compute node by mpiexec(1) is called a parallel process. A number, starting from 0, is assigned to each parallel
process. In this system, these numbers correspond to the rank numbers of the MPI program communicator MPI_COMM_WORLD.

SPMD

Acronym meaning Single Program/Multiple Data. This is one parallel programming model. It uses the same MPI program for each
process and operates by sharing processing.

Tofu barrier communication

A hardware communication mechanism that provides a data reduction function for data that is eight bytes or less and that performs
barrier synchronization between nodes under a Tofu interconnect.

type signature

It is essential that the messages transmitted by MPI functions can be split into basic data type data lists. The type signatures are these
"basic data type lists". Type signature is a term defined in the MPI standards.

- 169 -

unexpected message

A message that needs to be left saved in the temporary buffer during the receive-side process due to a delay in calling a receive-type
function (such as the MPI_Recv function) in response to a send-type function (such as the MPI_Send function.)

- 170 -

	Title Page
	Preface
	Update History
	Contents
	Chapter 1 Overview
	1.1 System Features
	1.2 Outline of How to Use This System
	1.2.1 Flow from Compilation to Execution of an MPI Program

	Chapter 2 Environment and Advance Settings
	2.1 MPI Program Compilation/Linkage Environment
	2.2 MPI Program Execution Environment
	2.3 Online Manual

	Chapter 3 MPI Program Compilation/Linkage
	3.1 Overview of Compilation/Linkage Commands
	3.2 Compilation/Linkage Command Format

	Chapter 4 MPI Program Execution
	4.1 Execution Command Formats
	4.2 MCA Parameters
	4.3 Environment Variables
	4.4 mpiexec(1) Return Values
	4.5 VCOORD_FILE file format
	4.6 Settings in NUMA system
	4.6.1 Setting value of NUMA memory allocation policy
	4.6.2 Setting value of CPU (core) allocation policy

	Chapter 5 Extended Interfaces
	5.1 Rank Query Interface
	5.1.1 Querying the Number of Dimensions and Shape
	5.1.1.1 FJMPI_Topology_get_dimension
	5.1.1.2 FJMPI_Topology_get_shape

	5.1.2 Querying the Coordinates
	5.1.2.1 FJMPI_Topology_rank2x
	5.1.2.2 FJMPI_Topology_rank2xy
	5.1.2.3 FJMPI_Topology_rank2xyz
	5.1.2.4 FJMPI_Topology_sys_rank2xyzabc
	5.1.2.5 FJMPI_Topology_rel_rank2xyzabc

	5.1.3 Querying the Rank
	5.1.3.1 FJMPI_Topology_x2rank
	5.1.3.2 FJMPI_Topology_xy2rank
	5.1.3.3 FJMPI_Topology_xyz2rank
	5.1.3.4 FJMPI_Topology_sys_xyzabc2rank
	5.1.3.5 FJMPI_Topology_rel_xyzabc2rank

	5.1.4 Querying the Ranking of a Communicator that Has a Cartesian Structure
	5.1.4.1 FJMPI_Topology_cart_reorder

	5.1.5 Sample Program

	5.2 Extended RDMA Interface
	5.2.1 Extended RDMA Interface Assumed Knowledge
	5.2.1.1 Terminology
	5.2.1.2 RDMA Communication Execution Model
	5.2.1.2.1 Preparation
	5.2.1.2.2 RDMA WRITE
	5.2.1.2.3 RDMA READ
	5.2.1.2.4 RDMA ARMW
	5.2.1.2.5 Confirmation of Communication Notification

	5.2.1.3 Process Identification
	5.2.1.4 Communication Resource Allocation
	5.2.1.5 Communication Route Selection
	5.2.1.6 Sequence Guarantee within a Single RDMA
	5.2.1.7 Sequence Guarantee between Multiple RDMAs
	5.2.1.8 Method for Checking RDMA Communication Completion for RDMA WRITE
	5.2.1.9 Method for Checking RDMA Communication Completion for RDMA READ
	5.2.1.10 Method for Checking RDMA Communication Completion for RDMA ARMW
	5.2.1.11 RDMA WRITE/RDMA READ/RDMA ARMW Immediate Return

	5.2.2 Extended RDMA Interface Specifications
	5.2.2.1 FJMPI_Rdma_init
	5.2.2.2 FJMPI_Rdma_finalize
	5.2.2.3 FJMPI_Rdma_reg_mem
	5.2.2.4 FJMPI_Rdma_dereg_mem
	5.2.2.5 FJMPI_Rdma_get_remote_addr
	5.2.2.6 FJMPI_Rdma_put
	5.2.2.7 FJMPI_Rdma_get
	5.2.2.8 FJMPI_Rdma_armw
	5.2.2.9 FJMPI_Rdma_poll_cq
	5.2.2.10 FJMPI_Rdma_poll_cq_ret_data

	5.2.3 Sample Program

	5.3 MPI Statistical Information Section Specifying Interface
	5.3.1 The MPI Statistical Information Section Specifying Function
	5.3.1.1 FJMPI_Collection_start
	5.3.1.2 FJMPI_Collection_stop
	5.3.1.3 FJMPI_Collection_print
	5.3.1.4 FJMPI_Collection_clear

	5.3.2 Sample Program

	5.4 Extended Persistent Communication Requests Interface
	5.4.1 Overview
	5.4.2 Extended Persistent Communication Requests Interface Specifications
	5.4.2.1 FJMPI_Prequest_send_init
	5.4.2.2 FJMPI_Prequest_recv_init
	5.4.2.3 FJMPI_Prequest_start
	5.4.2.4 FJMPI_Prequest_startall

	5.4.3 Sample Program

	5.5 MPI Asynchronous Communication Promotion Section Specifying Interface
	5.5.1 The MPI Asynchronous Communication Promotion Section Specifying Function
	5.5.1.1 FJMPI_Progress_start
	5.5.1.2 FJMPI_Progress_stop

	5.5.2 Sample Program

	Chapter 6 Supplementary Items
	6.1 Tofu Interconnect
	6.1.1 Tofu Interconnect Configuration
	6.1.2 Routing
	6.1.3 Configuration within a Node

	6.2 Promoting Asynchronous Communication Using an Assistant Core
	6.3 Notes Concerning MPI Standards Specifications
	6.3.1 Supported Level of MPI Standards
	6.3.2 Predefined Datatypes that can be Used in This System
	6.3.3 Allowed Datatypes in Collective Communication
(Reduction Operation)
	6.3.4 Reserved Communicators
	6.3.5 Operations in a Multi-Threaded Environment
	6.3.6 Signal Operation Changes
	6.3.7 One-sided Communications
	6.3.7.1 Assertions for Optimization
	6.3.7.2 Info Argument

	6.3.8 Establishing Communication between Groups not Sharing a Communicator
	6.3.8.1 info Argument Value
	6.3.8.2 MPI_Open_port Function Behavior
	6.3.8.3 MPI_Comm_join Function Return Value
	6.3.8.4 Service Names in the MPI_Publish_name Function
	6.3.8.5 MPI_Unpublish_name Function Behavior
	6.3.8.6 Socket Communication Wait Time

	6.3.9 Dynamic Process Generation
	6.3.9.1 Socket Communication Wait Time
	6.3.9.2 info Argument Value
	6.3.9.3 Notes

	6.3.10 Rank Changes in Accordance with Cartesian Topology
	6.3.10.1 Conditions Enabling Rank Changes
	6.3.10.2 Rules for Rank Changes
	6.3.10.3 Checking Rank Changes
	6.3.10.4 Sample Program

	6.3.11 Notes on Send Buffer and Receive Buffer
	6.3.12 MPI Input-Output
	6.3.13 Use of the Profiling Interface
	6.3.14 MPI Tool Information Interface

	6.4 Eager Protocol and Rendezvous Protocol
	6.5 Hasty Rendezvous Communication
	6.6 Stride RDMA Communication
	6.7 Using Multiple TNIs
	6.8 Reduction Operation Sequence Guarantee in Collective Communication
	6.9 Process Creation in MPI Program
	6.10 Suppressing Memory Usage
	6.10.1 Switching between Fast Communication Mode and Memory-Saving Communication Mode
	6.10.2 Influence of Dynamic Connection on Performance

	6.11 Memory Usage Estimation Formulae and Tuning Guidelines
	6.11.1 Memory Usage Estimation Formulae
	6.11.2 Memory Usage Tuning Guidelines
	6.11.3 Specifying Memory Allocation Restriction Values
	6.11.3.1 Specification Memory Allocation Restriction Values
	6.11.3.2 MCA Parameters Targeted by Automatic Tuning
	6.11.3.3 Notes on Execution When Memory Allocation Restriction Values are Specified

	6.12 Use of Tofu Barrier Communication to Increase Speeds
	6.12.1 MPI_Barrier Function
	6.12.2 MPI_Bcast Function
	6.12.3 MPI_Reduce Function and MPI_Allreduce Function
	6.12.4 Notes on Tofu Barrier Communication
	6.12.5 Fast Reduction Operations for Floating Point Type and Complex Type Data within a Node

	6.13 MPI_Bcast Function When the Same Count is Used among the Processes
	6.14 Algorithms Tuned with Recognition of Tofu Coordinates
	6.15 MPI Statistical Information
	6.16 Dynamic Debug during MPI Program Execution
	6.16.1 Deadlock Detection
	6.16.2 Monitoring of Write Damage in MPI Communication Buffer
	6.16.3 Argument Check Function

	6.17 Behavior on Forced Termination of MPI Programs

	Chapter 7 Error Messages
	7.1 Output Format for Information Related to Parallel Processes
	7.2 mpiexec Command Error Messages
	7.3 Communication Library Error Messages

	Appendix A Error Class List
	A.1 MPI1 Error Class List
	A.2 MPI2 Error Class List
	A.3 MPI3 Error Class List

	Appendix B Notes on Migration from FX10 System to FX100 System
	B.1 Behavior of mpiexec(1) when a same MCA parameter is specified more than once is changed
	B.2 Value of MPI_ERR_LASTCODE is changed
	B.3 Change of the "Threshold Value" for Switching between Eager Protocol and Rendezvous Protocol
	B.4 Change of Extended RDMA Interface Error Message
	B.5 The default value of MCA parameter orte_abort_print_stack is changed from 0 to 1

	Appendix C Compatibility Information (FX10 system)
	C.1 Migrating to V2.0L10 (Generation Number:10)
	C.1.1 Change of Extended RDMA Interface Error Message
	C.1.2 The default value of MCA parameter orte_abort_print_stack is changed from 0 to 1

	C.2 Migrating to V1.0L30 (Generation Number:09)
	C.2.1 Change of Communication Library Error Message

	C.3 Migrating to V1.0L20
	C.3.1 Changes To Retrieved Values Of The Predefined Attributes

	Appendix D Compatibility Information (FX100 system)
	D.1 Migrating to V2.0L20 (Generation Number:03)
	D.1.1 Behavior of mpiexec(1) when a same MCA parameter is specified more than once is changed
	D.1.2 Value of MPI_ERR_LASTCODE is changed

	Glossary

