
J2UL-1891-02ENZ0(00)
November 2015

FUJITSU Software
Technical Computing Suite V2.0

Profiler User's Guide
(PRIMEHPC FX100)

Preface

Purpose of This Manual

This guide describes the features and usage of the Profiler statistical information (referred to as the "Instant Profiler" in this guide), the
section information (referred to as the "Advanced Profiler" in this guide), and the time series information (referred to as the "Tracer" in
this guide).

Intended Readers

This guide is intended for those who use the Profiler to tune up applications. It is assumed that readers of this guide have the following
knowledge:

- Knowledge of developing programs and basic Linux commands

- Knowledge of Microsoft(R) Excel(R)

Organization of This Manual

Chapter 1 Overview of the Profiler

Provides a functional overview of the Profiler

Chapter 2 Instant Profiler

Describes the output information of the Instant Profiler, including the types of information and how to use it

Chapter 3 Advanced Profiler

Describes the output information of the Advanced Profiler, including the types of information and how to use it

Chapter 4 Tracer

Explains how to use the Tracer

Chapter 5 Tofu PA

Explains how to use Tofu PA

Chapter 6 Open Source Profiler

Explains how to use mpiP as open source profiler.

Chapter 7 Glossary

Describes the terminology used in this guide

Appendix A Considerations for Using the Profiler

Describes the key points to consider when using the Profiler

Appendix B Troubleshooting

Explains how to troubleshoot the Profiler

Appendix C Notes on Migration from FX10 system to FX100 system

Explains notes when migrating from FX10 to FX100

Appendix D Compatibility Information (FX10 system)

Provides compatibility information as notes on migrating

Syntax Description Symbols

A syntax description symbol is a symbol that has specific meaning in syntax. The following symbols are used in this guide.

Symbol name Symbol Description

Selection symbols { } Indicates that only one of the enclosed items can be selected

- i -

Symbol name Symbol Description

| Indicates that it is used as a delimiter in a list of items

Optional symbol []

Indicates that the enclosed item can be omitted

The { } (braces selection symbols) and [] (brackets optional symbol) have the same
meaning.

Default symbol
_

(underline)
Indicates the default value when all items enclosed in [] (brackets optional symbol) are
omitted

Repeat symbol ... Indicates that the item just before this can be specified repeatedly

Abbreviations

The following abbreviations are used in this manual:

Full Name Abbreviation

Microsoft(R) Office Excel(R) 2007
Microsoft(R) Excel(R) 2010
Microsoft(R) Excel(R) 2013
Microsoft(R) Excel(R) 2011 for Mac

Excel

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country
and/or US export control laws.

Trademarks

- Linux is a trademark or registered trademark of Linus Torvalds in the United States and other countries.

- OpenMP is a trademark of OpenMP Architecture Review Board.

- Microsoft, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

- Mac is a registered trademark of Apple Inc.

- All other trademarks or registered trademarks appearing in this manual are trademarks or registered trademarks of their respective
owners.

Date of Publication and Version

Version Manual code

November 2015, 2nd Version J2UL-1891-02ENZ0(00)

February 2015, Version 1.1 J2UL-1891-01ENZ0(01)

October 2014, 1st Version J2UL-1891-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2014-2015

Update History

Changes Location Version

The article COARRAY feature is added. 2.2.2
A.1
A.2

2nd Version

- ii -

Changes Location Version

A.3
A.5

The article Link Time Optimization is added. 2.2.2
A.1

Table 2.1 fipp command options is modified. 2.2.3

The article of Instant Profiler information (GUI format) is modified. 2.3.3.3.2

Table 3.4 fapp command options is modified. 3.2.5

The article of Advanced Profiler information (GUI format) is modified. 3.3.3.3.1

The article "MPI 3.0 function" is added. 3.4.4

The article of Largepage information is modified. 3.4.6

The article of Precision PA visibility function (Excel format) is modified. 3.5.4

The article of Sampling intervals is modified. A.1

The article of SIGVTALRM is modified. A.1

The article of Output of loop/line information is modified. 2.2.2
2.3.3.3.1
A.1

The article of Cost information is modified. A.1

The article of DT_RPATH is modified. A.1
A.2

The article of -H event_number option is added. A.2

The article of vtunify-mpi application is added. A.3

Fixed the error in writing. -

The article on "-T t_no" and "-p p_no" in Table 2.2 fipppx command options is corrected. 2.2.4 Version 1.1

The article of Advanced Profiler routine is corrected. 3.2.1

The article of Advanced Profiler routine (precision PA) is corrected. 3.2.2

The article on "-p p_no" in Table 3.5 fapppx command options is corrected. 3.2.6

Viewing the Excel sheets is changed. 3.5.4

The function to insert MPI_Barrier before or after collective communication functions is
added.

6.2.3
6.3
A.5

The article of DT_RPATH is corrected. A.1
A.2

The article of cost information is corrected. A.1

MPI profiling interface is added. A.1
A.2

All rights reserved.
The information in this manual is subject to change without notice.

- iii -

Contents
Chapter 1 Overview of the Profiler... 1

1.1 Tuning and Profiler..1
1.2 Functional overview.. 1

Chapter 2 Instant Profiler..3
2.1 Overview of the Instant Profiler.. 3
2.2 Using the Instant Profiler...3

2.2.1 Environment variables.. 4
2.2.2 Compilation.. 5
2.2.3 fipp command... 5
2.2.4 fipppx command... 8
2.2.5 Section specification feature of the Instant Profiler..10

2.3 Instant Profiler information (GUI format)... 11
2.3.1 Overview of the Profiler feature... 12
2.3.2 Starting the Profiler...12
2.3.3 Profiler information window.. 12

2.3.3.1 Profiling data selection window.. 13
2.3.3.2 Overview of the Instant Profiler information window...13
2.3.3.3 Instant Profiler information... 16

2.3.3.3.1 Summary information... 16
2.3.3.3.2 Topology/Panel information... 26
2.3.3.3.3 Bar Chart information...29
2.3.3.3.4 Data Compare information... 29

2.3.3.4 Source code information..30
2.3.3.5 Call Graph information..32

2.4 Instant Profiler information (text/CSV formats)..34
2.4.1 Overview of the Profiler feature... 34
2.4.2 Environment information for instant profiling data collection...35
2.4.3 Time statistical information.. 36
2.4.4 Hardware monitor information... 36

2.4.4.1 Measured information of the Hardware monitor information... 37
2.4.4.2 Formulas of the Hardware monitor information..38
2.4.4.3 Using the Hardware monitor information..41
2.4.4.4 Output format of the Hardware monitor information.. 41

2.4.5 Cost information... 43
2.4.6 Call Graph information...47
2.4.7 Source code information...47

Chapter 3 Advanced Profiler.. 49
3.1 Overview of the Advanced Profiler... 49
3.2 Using the Advanced Profiler..50

3.2.1 Advanced Profiler routine...50
3.2.2 Advanced Profiler routine (precision PA).. 52
3.2.3 Environment variables.. 53
3.2.4 Compilation.. 53
3.2.5 fapp command...53
3.2.6 fapppx command...56

3.3 Advanced Profiler information (GUI format)..58
3.3.1 Overview of the Profiler feature... 58
3.3.2 Starting the Profiler...59
3.3.3 Profiler information window.. 59

3.3.3.1 Profiling data selection window.. 59
3.3.3.2 Overview of the Advanced Profiler information window... 60
3.3.3.3 Advanced Profiler information.. 62

3.3.3.3.1 Topology/Panel information... 63

- iv -

3.3.3.3.2 Bar Chart information...85
3.3.3.3.3 Data Compare information... 85

3.4 Advanced Profiler information (text/CSV formats).. 85
3.4.1 Overview of the Advanced Profiler feature..85
3.4.2 Environment information for advanced profiling data collection.. 86
3.4.3 Basic information..87
3.4.4 MPI information... 87

3.4.4.1 Formulas of the message length...88
3.4.4.2 Output format of the MPI information.. 90

3.4.5 Hardware monitor information... 91
3.4.5.1 Events list...91
3.4.5.2 Formulas of the Hardware monitor information..94
3.4.5.3 Using the Hardware monitor information..99
3.4.5.4 Output format of the Hardware monitor information.. 100

3.4.6 Largepage information..114
3.4.6.1 Measurement information on Largepage memory use information.. 114
3.4.6.2 Output format of largepage memory use information... 115
3.4.6.3 Measurement information on Largepage statistical information...115
3.4.6.4 Output format of largepage statistical information..117

3.5 Precision PA visibility function (Excel format).. 119
3.5.1 Overview...119
3.5.2 Collecting data (execution)...120

3.5.2.1 Specifying the measurement range.. 120
3.5.2.2 Compiling/linking..120
3.5.2.3 Collecting data... 120

3.5.3 Analyzing data.. 121
3.5.3.1 Converting data..121
3.5.3.2 Excel operations...121

3.5.3.2.1 Resolving security warnings...121
3.5.3.2.2 Specifying a process number.. 121
3.5.3.2.3 Specifying the segment name (measurement range).. 122
3.5.3.2.4 Generating Excel sheets..122

3.5.4 Viewing the Excel sheets..123
3.5.4.1 Performance information... 124
3.5.4.2 Memory Cache information...125
3.5.4.3 SIMD information..126
3.5.4.4 Cache information..127
3.5.4.5 Instruction information.. 128
3.5.4.6 Balance information...129
3.5.4.7 XFILL flag...129
3.5.4.8 Time information... 130

Chapter 4 Tracer.. 133
4.1 Overview of the Tracer.. 133

4.1.1 Overview of features...133
4.1.1.1 Information collection feature... 133
4.1.1.2 Local trace data files integration feature..133

4.1.2 Preparation for using the Tracer... 133
4.1.2.1 Compilation/Integration environment..133
4.1.2.2 Compilation/Execution/Integration environment.. 134

4.1.3 Flow for using the Tracer..134
4.1.3.1 Compilation... 135
4.1.3.2 Information collection..135
4.1.3.3 Local trace data files integration..136

4.2 Using the Tracer...137
4.2.1 Compilation.. 137

4.2.1.1 Format..137

- v -

4.2.1.2 Options...138
4.2.1.3 Operand..139
4.2.1.4 Environment variables for compilation... 139
4.2.1.5 Example of compilation...140

4.2.2 Information collection...141
4.2.2.1 Environment variables for execution...141

4.2.3 Local trace data file integration feature.. 143
4.2.3.1 Format..145
4.2.3.2 Operand..145
4.2.3.3 Options...146
4.2.3.4 Example of execution.. 146
4.2.3.5 Trace data files...147

4.3 Trace information.. 148
4.3.1 MPI trace...148

4.3.1.1 Compilation... 148
4.3.1.2 Execution... 148
4.3.1.3 MPI functions collected by the Tracer...148

4.3.2 User function trace..150
4.3.2.1 Compilation... 150
4.3.2.2 Execution... 151

4.3.3 VampirTrace API trace...151
4.3.3.1 Usage... 151
4.3.3.2 Compilation... 152
4.3.3.3 Execution... 152

4.3.4 I/O trace.. 152
4.3.4.1 Compilation... 152
4.3.4.2 Execution... 153
4.3.4.3 I/O functions collected by the Tracer.. 153

4.3.5 Memory trace..153
4.3.5.1 Compilation... 153
4.3.5.2 Execution... 154
4.3.5.3 Memory functions collected by the Tracer.. 154

Chapter 5 Tofu PA..155
5.1 Overview of Tofu PA.. 155

5.1.1 Tuning and Tofu PA information acquisition feature...155
5.1.2 Overview of the feature.. 155

5.2 Using the Tofu PA information acquisition feature...155
5.2.1 Overview of the Tofu PA information acquisition feature... 155
5.2.2 Specifying the measurement section...157
5.2.3 Compilation.. 160
5.2.4 Execution.. 160
5.2.5 Output file name... 162
5.2.6 File formats... 162
5.2.7 Visibility... 164

Chapter 6 Open Source Profiler... 166
6.1 Overview of mpiP..166
6.2 Using mpiP.. 166

6.2.1 Compilation.. 166
6.2.2 Linking..166
6.2.3 Execution.. 167
6.2.4 mpiP Output..168

6.3 Functional Detail..169
6.3.1 mpiP Report Information.. 169

6.3.1.1 Header Information..169
6.3.1.2 MPI Time Information...170
6.3.1.3 Callsite Information... 170

- vi -

6.3.1.4 Aggregate Time Information... 171
6.3.1.5 Aggregate Sent Message Size..171
6.3.1.6 Callsite Time Statics.. 172
6.3.1.7 Callsite Message Sent Statistics...172

6.3.2 Control of Profiling Range for mpiP.. 173
6.3.3 MPI functions collected by mpiP..173

Chapter 7 Glossary...176

Appendix A Considerations for Using the Profiler.. 180
A.1 Instant Profiler.. 180
A.2 Advanced Profiler... 184
A.3 Tracer.. 186
A.4 Tofu PA...187
A.5 Open Source Profiler...188

Appendix B Troubleshooting.. 189
B.1 Instant Profiler...189
B.2 Advanced Profiler... 189
B.3 Tracer.. 189
B.4 Tofu PA...190

Appendix C Notes on Migration from FX10 system to FX100 system..191
C.1 Measured information of Hardware monitor information in Instant Profiler is changed... 191
C.2 Measured information of Hardware monitor information in Advanced Profiler is changed..191
C.3 Frequency of the collection data and the analyzing data for the precision PA visibility function (Excel format) in Advanced Profiler

is changed... 192
C.4 Presentation item of the precision PA visibility function (Excel format) in Advanced Profiler is changed.................................. 193

Appendix D Compatibility Information (FX10 system)..196
D.1 Migration to V1.0L30(Generation Number:09)... 196

D.1.1 The -c option of the vtunifypx command and vtunify-mpi application of the tracer is abolished.. 196
D.1.2 VT_MAX_MPI_COMMS/VT_MAX_MPI_WINS of the environment variable for execution is abolished........................ 196
D.1.3 The record in the trace data of the MPI_Address function is abolished..197

- vii -

Chapter 1 Overview of the Profiler
This chapter describes the features and usage of the Profiler.

1.1 Tuning and Profiler
Tuning means the improvement of an application so that the execution of the application takes considerably less time. To tune an
application, collect the tuning information, consider a way to improve the application, modify it, and measure the performance, as shown
in "Figure 1.1 Tuning operation". Usually, significant tuning can be achieved by finding the part in the application with the most executions
and speeding it up. The tuning information (for example, the distribution of execution time) can be obtained using the Profiler. When
tuning starts, it is recommended you analyze the application using the Profiler.

The Profiler can collect the tuning information for an application created by the compiler of this product.

Figure 1.1 Tuning operation

1.2 Functional overview
The Profiler consists of the Instant Profiler and the Advanced Profiler. The former collects the tuning information by the sampling system,
and the latter collects the tuning information of a specific section. Additionally, the Tracer collects the tuning information on the time
series. The basic features of the Instant Profiler, the Advanced Profiler, and the Tracer are listed below.

The Instant Profiler collects and outputs the execution performance information for an application by using commands. Refer to "Chapter 2
Instant Profiler" for information on the commands.

The Instant Profiler outputs the following information. Refer to "Chapter 2 Instant Profiler" for details.

- 1 -

- Time statistical information
Outputs the breakdown of the elapsed time, the user CPU time, and the system CPU time

- Cost information
Performs sampling while executing an application and outputs the count by the unit of the procedure, loop, or line as a cost

- Hardware monitor information
Outputs the processor state on executing an application

- Call Graph information
Outputs the call route of a procedure with the cost

- Source code information
Outputs the source code with the cost information added to each line

The Advanced Profiler collects and outputs execution performance information for an application by using commands. Refer to "Chapter 3
Advanced Profiler" for information on the commands.

The Advanced Profiler outputs the following information. Refer to "Chapter 3 Advanced Profiler" for details.

- Basic information
Outputs the call count and time information of the measurement section

- MPI information
Outputs the average, maximum, and minimum values of the count, message length, elapsed time, and wait time of MPI functions

- Hardware monitor information
Outputs the processor state on executing an application

- Largepage performance information
Largepage performance information in the measurement section is output.

The Tracer collects the execution information for the time series of an application. Refer to "Chapter 4 Tracer" for details.

- Execution information
Collects the execution information for the time series of the MPI library and user functions

- 2 -

Chapter 2 Instant Profiler
This chapter describes the features and usage of the Instant Profiler.

2.1 Overview of the Instant Profiler
The Instant Profiler collects the statistical tuning information for an entire application.

The basic functions of the Instant Profiler are described below.

The Instant Profiler collects and outputs execution performance information for an application using the fipp and fipppx commands.

Refer to "2.2.3 fipp command" for information on the fipp command.
The Instant Profiler outputs the following information:

Time statistical information

Outputs the breakdown of the elapsed time, the user CPU time, and the system CPU time

Cost information

Performs sampling while executing an application and outputs the count by the unit of procedure, loop, or line as a cost

Hardware monitor information

Outputs the processor state on executing the application

Call Graph information

Outputs the call route of a procedure with the cost

Source code information

Outputs the source code with the Cost information added to each line

Moreover, it is also possible to output the tuning information for a specific section by using the following feature:

Section specification feature of the Instant Profiler

The Time statistical information, the Cost information, the Hardware monitor information, the Call Graph information, and the Source
code information for the specified time base range are output.

2.2 Using the Instant Profiler
The following commands can be used with the Instant Profiler.

fipp

Collects the instant profiling data for an application in the compute node of the FX100 system

fipppx

Outputs the contents of the instant profiling data on the login node at the front end

- 3 -

Figure 2.1 Collection of the instant profiling data and output of the Instant Profiler information

fipp -C : Collects the instant profiling data

fipppx -A : Outputs the Instant Profiler information

Collection of the instant profiling data

The fipp command collects the instant profiling data.

Output of the Instant Profiler information

The Instant Profiler information is output in the following formats:

GUI format

The Instant Profiler information can be output in the GUI format.

Refer to "2.3 Instant Profiler information (GUI format)" for information on how to output the GUI format.

Text format/CSV format

The fipppx command outputs the Instant Profiler information in the text or CSV format. It uses the saved instant profiling data to
output the Instant Profiler information in the text or CSV format.

Refer to "2.4 Instant Profiler information (text/CSV formats)" for details.

The usage of the Instant Profiler is described below.

2.2.1 Environment variables
It is necessary to correctly set the following environment variables to use the Instant Profiler.

Environment variable Value

PATH /opt/FJSVmxlang/bin

LD_LIBRARY_PATH /opt/FJSVmxlang/lib64

To use the batch queuing system and the MPI processing system, setting additional values besides those mentioned above may be necessary.
Refer to the "Job Operation Software First Step Guide" for information on the batch queuing system. Refer to the "MPI User's Guide" for
information on the MPI system.

Usage example

Usage example of the Instant Profiler is shown below:

- 4 -

- Example 1 : An MPI application, a.out, of two parallels is executed, and the tuning information is collected.

$ fipp -C -d FIPP_Example mpiexec -n 2 ./a.out

- Example2 : The Instant Profiler information is output in the text format using the output instant profiling data, "FIPP_Example".

$ fipppx -A FIPP_Example

2.2.2 Compilation
To use the Instant Profiler, it is necessary to create an application that is linked with the tool library.

The behavior of the tool can be manipulated by using options of the frtpx/fccpx/FCCpx/mpifrtpx/mpifccpx/mpiFCCpx commands.

Refer to the "Fortran User's Guide", the "C User's Guide", the "C++ User's Guide", or the "MPI User's Guide" for information on how to
specify these options.

The format and description of the option for the tool are described below.

[-Ntl_trt | -Ntl_notrt]

This option specifies whether to create an application that is linked with the tool libraries. It is necessary to specify this option when
linking. The default is "-Ntl_trt".

-Ntl_trt

An application that is linked with the tool libraries is created. In this case, when the application is executed, the Debugger and the
Profiler features can be used.

-Ntl_notrt

An application is created without linking it with the tool libraries. In this case, when the application is executed, the Debugger and
the Profiler features cannot be used.

These following points must be taken into consideration when using the Instant Profiler.

Notes

Fortran

Refer to "-P userfunc option" in "Appendix A Considerations for Using the Profiler" if "-Nnoline" (compiler option) is enabled.

Refer to "COARRAY feature" in "Appendix A Considerations for Using the Profiler" if "-Ncoarray" (compiler option) is enabled.

Refer to "Link Time Optimization" in "Appendix A Considerations for Using the Profiler" if "-Klto" (compiler option) is enabled.

C/C++ language

Refer to "Output of loop information" in "Appendix A Considerations for Using the Profiler" if "-O0" (optimization option) is used.

Refer to "-P userfunc option" in "Appendix A Considerations for Using the Profiler" if "-Nnoline" (compiler option) is used.

Refer to "Link Time Optimization" in "Appendix A Considerations for Using the Profiler" if "-Klto" (compiler option) is enabled.

XPFortran

An XPFortran program is treated as an MPI program.

It is translated to an MPI program, and the XPFortran program is translated and executed in the translation and the execution
environment of the MPI program. Specify the option for the tool when you translate the MPI program. If the "-Nxpfline" option of the
XPFortran translator command is used, the line number and source information on the XPFortran program can be output.

Refer to the "XPFortran User's Guide" for details.

2.2.3 fipp command
The fipp command collects the instant profiling data of an application.

- 5 -

Format

fipp -C -d profiling_data [-I item] [-l limit] [-H [hardmon]] [-P cost_typ]
 [-S section] [-i interval] [-m memsize] [-L cost_line] exec-file [exec_option ...]

Options

The table below describes the options that can be specified for the fipp command.

Table 2.1 fipp command options

Option Description/Specified value (unit)

-C Specifies the collection processing of the instant profiling data.

This option is mandatory.

-I item Specifies the collection items of the Instant Profiler information.

Delimit using a comma if two or more items are specified for item.

item : { { call | nocall } | { hwm | nohwm } }

The default is "-Inocall,nohwm".

call | nocall Specifies whether to collect the Call Graph information.

- call : Collects the Call Graph information

- nocall : Does not collect the Call Graph information

The default is "nocall".

hwm | nohwm Specifies whether to collect the Hardware monitor information.

- hwm : Collects the Hardware monitor information

- nohwm : Does not collect the Hardware monitor information

The default is "nohwm".

-l limit Specifies the output number of the procedure information output to the instant profiling data.

- limit : Integers from 0 through 2,147,483,647 can be specified to define the range (output
number)

Everything is output in case of 0.

Procedure information more than the output number is output as "__other__".

The default is 0.

-H [hardmon] Specifies measurement of the Hardware monitor information.

- hardmon : Measures the Hardware monitor information

hardmon can be omitted (only "-H" can be specified).

Delimit using commas if two or more items are specified for hardmon.

The default is as follows:

- If the "-Ihwm" option is used : -Hevent=Statistics,mode=sys

- If the "-Inohwm" option is used : Hardware monitor information is not collected

It is considered that "-Ihwm" is specified when this option is specified.

hardmon : { event=event | mode=mode }

event=event :

{ Instruction_SIMD |
MEM_access | Statistics }

Specifies the measurement event of the Hardware monitor information.

Any of the following can be specified for event:

- Instructions_SIMD : Execution instruction detail (SIMD)

- 6 -

Option Description/Specified value (unit)

- MEM_access : Memory access situation

- Statistics : CPU core operation situation

The default is "event=Statistics".

mode=mode :

{ sys | usr }

Specifies the measurement mode of the Hardware monitor information.

One of the following can be specified for mode.

- sys : Collects information on the kernel mode and the user mode

- usr : Collects information on the user mode

The default is "mode=sys".

-L cost_line Specifies how to collect the detail information of shared library.

The default is "-Lnoshared".

shared | noshared Specifies whether to collect the Cost information for the shared library in the unit of the loop and
in each line.

- shared : For the shared library, start line number and end line number of procedure cost
distribution, loop cost distribution information and line cost distribution information is
collected.

- noshared : For the shared library, start line number and end line number of procedure cost
distribution, loop cost distribution information and line cost distribution information is not
collected.

-P cost_typ Specifies how to collect the library Cost information.

The default is "-Pnouserfunc".

userfunc | nouserfunc Specifies how to collect the costs of the library called from a user procedure.

- userfunc : The library cost called from the procedure is included in the cost of the call former
user procedure. When userfunc is specified, it is necessary to specify the "-Icall" option.

- nouserfunc : The library cost called from the procedure is not included in the cost of the user
procedure. Costs of the library are individually collected.

-S section Specifies the measurement range of the Instant Profiler information

The default is "-Stotal".

total | range - total : Collects the Instant Profiler information for an entire application

- range : Collects the Instant Profiler information within the range specified by the Instant Profiler
routine

-d profiling_data Specifies the name of instant profiling data (directory that contains the instant profiling data file)
to profiling_data by using the relative path or the absolute path.

If the directory does not exist, it is created. If the directory exists, it must be empty.

This option is mandatory.

-i interval Specifies the time interval between successive measurements of the Instant Profiler information.

- interval : Integers from 10 through 3,600,000 can be specified to define the range (millisecond)

The default is 100.

Incidentally, the time interval of measurements might be changed by the measure against noise of
the OS (*1).

Refer to "Sampling interval" in "Appendix A Considerations for Using the Profiler" for details.

*1 : It is the measure to reduce the impact of system daemons on the job.

- 7 -

Option Description/Specified value (unit)

-m memsize Specifies the working memory size required for collecting the instant profiling data. This size area
of each thread is reserved.

- memsize : Integers from 1 through 2,147,483 can be specified to define the range (KB)

The default is 3000.

exec-file [exec_option ...] Specifies the target execution file for the instant profiling data collection and the option.

- exec-file : Specifies mpiexec when MPI application is used.
Specify the absolute path or the relative path containing the current directory ("./") if specifying
the execution file that starts in "-".
The shell script cannot be specified.

- exec_option ... : Specifies the option to exec-file.
The character string following an execution file name is regarded as the option to an execution
file.

2.2.4 fipppx command
The fipppx command outputs the Instant Profiler information in the text or CSV format.

Format

fipppx -A [-I item] [-l limit] [-T t_no] [-f func_name] [-o outfile]
 [-p p_no] [-t type] -d profiling_data

Options

The table below describes the options that can be specified for the fipppx command.

Table 2.2 fipppx command options

Option Description/Specified value (unit)

-A Specifies the output processing of the Instant Profiler information.

This option is mandatory.

-I item Specifies the output items of the Instant Profiler information.

Delimit using commas if two or more items are specified for item.

item : { { cpu | nocpu } | { balance | nobalance } | { call | nocall } | { hwm | nohwm } |
{ src[:path]... | nosrc } }

The default is "-Icpu".

cpu | nocpu Specifies whether to output the Cost information.

- cpu : Outputs the Cost information

- nocpu : Does not output the Cost information

The default is "nocpu".

balance | nobalance Specifies whether to output the parallel balance graph of the Cost information.

However, the "nobalance" option becomes effective in sequential applications, and the balance
information on the Cost information is not output.

- balance : Outputs parallel balance graph of the Cost information

- nobalance : Does not output parallel balance graph of the Cost information

The default is "nobalance".

call | nocall Specifies whether to output the Call Graph information.

- 8 -

Option Description/Specified value (unit)

- call : Outputs the Call Graph information

- nocall : Does not output the Call Graph information

The default is "nocall ".

hwm | nohwm Specifies whether to output the Hardware monitor information.

- hwm : Outputs the Hardware monitor information

- nohwm : Does not output the Hardware monitor information

The default is "nohwm".

src[:path] ... | nosrc Specifies whether to output the Source code information.

- src[:path] ... : Outputs the Source code information
Specify the directory path where the source code exists as path. Delimit using colon(:) if two
or more items are specified for path. If path is omitted, the source file path specified at
application compilation is referred.

- nosrc : Does not output the Source code information

The default is "nosrc".

-l limit Specifies the number of procedure information output to the Cost information of the Instant Profiler
information.

- limit : Integers from 0 through 2,147,483,647 can be specified to define the range (output
number)

Everything is output in case of 0.

The default is 10.

-T t_no Specifies the target thread to output the Instant Profiler information.

Delimit using commas if two or more target thread numbers (t_no) are specified.
The one specified later is valid, if two or more target thread numbers (t_no) are specified.
An error is detected, if t_no is omitted.

t_no : { all | N[,N]... | limit=n }

The default is "-Tall".

all | N[,N] ... | limit=n - all : Information on all threads is output in order with a high cost.

- N[,N] ... : Information on thread number N is output ahead of information on the thread with a
high cost.
When thread number N does not exist, specification is disregarded.

- limit=n : Information on n threads is output.
When 0 or the value that exceeds the number of threads is specified for n, information on all
threads is output.
The default is "limit=0".

-f func_name Specifies to output the Instant Profiler information of a specific procedure (func_name).

func_name is the procedure name used by the application.

Even if the cost of the procedure func_name is outside the range of the "-l" option, the Instant
Profiler information about func_name is output.

The Instant Profiler information about func_name is not output in the following cases.

- If the information of the procedure func_name is not output to the instant profiling data.

- If the cost of the procedure func_name is 0.

-o outfile Specifies the output destination of the Instant Profiler information.

- 9 -

Option Description/Specified value (unit)

If stdout is specified as outfile, the Instant Profiler information is output to the standard output.
Specify the absolute path or the relative path containing the current directory ("./") if specifying
outfile that starts in "-".

The default is "-ostdout".

-p p_no Specifies the target process to be input and output with the Instant Profiler information.

The information of application unit of the Instant Profiler information is calculated using the instant
profiling data of target process specified by this option.

Delimit using commas if two or more target process numbers (p_no) are specified.
The one specified later is valid, if two or more target process numbers (p_no) are specified.
An error is detected, if p_no is omitted.

p_no : { all | N[,N]... | input=n | limit=m }

The default is "-pinput=0,limit=16".

all | N[,N] ... | input=n |
limit=m

- all : Data on all processes is input and information on all processes is output in order with a
high cost.

- N[,N] ... : Data on process number N is input and information on process number N is output
ahead of information on the process with a high cost.
When process number N does not exist, specification is disregarded.

- input=n : Data on n processes is input.
When the value that exceeds 0 or the number of processes is specified for n, data on all processes
is input.
The default is "input=0".

- limit=m : Information on m processes is output.
When 0 or the value that exceeds n is specified for m, information on n processes is output.
The default is "limit=16".

-t type Specifies the output format of the Instant Profiler information.

The default is "-ttext".

csv | text - csv : Outputs the Instant Profiler information in the CSV format
If the "csv", "-Ibalance", or "-Isrc" option is specified with any other option of them, the cost
balance information or the Source code information is not output.

- text : Outputs the Instant Profiler information in the text format

-d profiling_data Specifies the name of instant profiling data (directory that contains the instant profiling data file)
to profiling_data by using the relative path or the absolute path.

If specifying profiling_data that starts in "-", specify the absolute path or the relative path containing
the current directory ("./").

When this option is specified at the end of an optional list of the fipppx command, "-d" can be
omitted.

This option is mandatory.

2.2.5 Section specification feature of the Instant Profiler
The Instant Profiler section specification feature allows you to specify a range to measure the Cost information. To specify a time base
range on the source code, a subroutine is inserted at the measurement start position and the position where the Cost information
measurement ends.

The Instant Profiler section specification feature can be used as a subroutine of the Fortran language or a function of the C/C++ language.
When a function of the C or C++ language is used, the prototype of the function is declared. Otherwise, you need to include the header
file of the Instant Profiler section specification feature. To collect the instant profiling data by using the Instant Profiler section specification
feature, specify the object application for an operand of the fipp command and specify the "-Srange" option.

- 10 -

Refer to "2.2.3 fipp command" for information on the "-Srange" option.

The following table provides an overview of the section specification feature of the Instant Profiler.

Table 2.3 Overview of the section specification feature of the Instant Profiler

Language Header file Function name

(Instant Profiler routine)

Function Arguments

Fortran - fipp_start Starts the Cost information measurement -

fipp_stop Ends the Cost information measurement -

C/C++ fj_tool/fipp.h void fipp_start Starts the Cost information measurement -

void fipp_stop Ends the Cost information measurement -

Two or more time base ranges of the Cost information can be specified. However, the time base range of the Cost information cannot be
specified for a nest.

A usage example of the Instant Profiler section specification feature is given below.

 Example

Usage example of the section specification feature of the Instant Profiler

#include <fj_tool/fipp.h>

#define SIZE 3000
double a[SIZE][SIZE],b[SIZE][SIZE],c[SIZE][SIZE];

main()
{
 int i,j;

 fipp_start();

 for(i=0;i<SIZE;i++){
 for(j=0;j<SIZE;j++){
 a[i][j]=(double)(i+j*0.5);
 b[i][j]=(double)(i+j*1.5);
 c[i][j]=a[i][j]+b[i][j];
 }
 }

 fipp_stop();
}

Execute the Instant Profiler section specification feature for a parallel-process application in the process whose Cost information is to be
measured.

For instance, to measure the Cost information for all processes in a parallel-process application, execute the Instant Profiler section
specification feature in the part where all the processes operate.

2.3 Instant Profiler information (GUI format)
This section describes the Instant Profiler information.

The Instant Profiler information is displayed using the Profiler GUI.

- 11 -

2.3.1 Overview of the Profiler feature
The profiler function analyses and gives visibility to the profiling data collected by the Instant Profiler (fipp command) and the Advanced
Profiler (fapp command).

The data collected by the Instant Profiler is referred to as the instant profiling data, and the data collected by the Advanced Profiler is
referred to as the advanced profiling data.

The diagram of Profiler information is shown below.

Figure 2.2 Diagram of Profiler information

Specify the profiling data on the login node to visualize it using the Profiler feature of the user terminal.

2.3.2 Starting the Profiler
Click the Profiler icon in the main window of FUJITSU Software Development Tools (FSDT) to start the Profiler. Refer to the
"Programming Workbench User's Guide" for information on FSDT.

Figure 2.3 Profiler icon

2.3.3 Profiler information window
This section describes the Profiler information window.

- 12 -

2.3.3.1 Profiling data selection window
When the Profiler is started, the Profiling data selection window is displayed. The directories on the login node are displayed in the profiling
data selection window in a tree structure. Select the instant profiling data from the tree, and then click Load to start the data reading. When
the data reading completes, the Instant Profiler information window is displayed.

Note that the instant profiling data is a directory.

Up to 9216 parallel processes can be displayed by the Profiler. Profiling data of parallel processes that exceed this count cannot be used
by the Profiler.

Figure 2.4 Profiling data selection window

2.3.3.2 Overview of the Instant Profiler information window
When the instant profiling data is input, the Instant Profiler information window is displayed. This window comprises the following
elements:

(1) Display unit switching buttons

(2) Measured Information button

(3) Instant Profiler information area

- 13 -

Figure 2.5 Instant Profiler information window

(1)Display unit switching buttons

The unit of display shown in the Instant Profiler information window can be switched.

Table 2.4 Display unit

Button Display unit

Application View Total information on each application is displayed.

Rank View Total information on a specific rank is displayed

Thread View Information on a specific thread is displayed

If either Rank View or Thread View is selected, a box for rank selection is displayed.

If Thread View is selected, a box for thread selection is displayed.

(2)Measured Information button

Click the Measured Information button in the Instant Profiler information window to display the Measured Information window. The
measured state of an application, such as the frequency of the machine and the measured information type, is displayed in the Measured
Information window.

- 14 -

Figure 2.6 Measured Information window

Table 2.5 Measured Information

Label Information

Profiler version Version of the Profiler feature

Profiling Data Name of the displayed profiling data

Measured time Measured date and time

CPU frequency Frequency of the measured machine

Type of program Execution format of the application

- SERIAL : Sequential

- Thread : Thread parallel

- Thread (OpenMP) : Thread parallel by OpenMP

- Thread (AUTO) : Thread parallel by automatic parallel function of the compiler

- MPI : MPI

Number of rank Number of ranks

Number of thread Number of threads

Sampling interval Average sampling interval

Measured range Measured range

- All range : Measurement of the entire application (default)

- Selected range : Sampling section specification measurement ("-Srange" is used in the fipp
command)

Information is measured Collected information

- Default : the Time statistical information, and the Cost information

- Call graph (-Icall) : the Time statistical information, the Cost information, and the Call Graph
information

- Hardware monitor (-Ihwm) : the Time statistical information, the Cost information, and the
Hardware monitor information

- Call graph (-Icall) Hardware monitor (-Ihwm) : the Time statistical information, the Cost
information, the Call Graph information, and the Hardware monitor information

- 15 -

(3)Instant Profiler information area

The following information is displayed in the Instant Profiler information area. The information display can be switched by using the
available tabs.

Table 2.6 Instant Profiler information

Tab Information

Profile The Cost information is displayed according to the unit of display, such as procedure, loop, or line.

Source View Information on the total cost of each source is displayed.

Call Graph Information related to the call of a procedure is displayed.

This information is only displayed in Thread View.

Moreover, it is only displayed when the Call Graph information is measured (if "-Icall" is used in the
fipp command).

2.3.3.3 Instant Profiler information
A description of the elements on the Profile tab is given below.

The display method can be switched using the display switch buttons in Application View and Rank View.

In the Thread View, there is no display switch and the summary information is always displayed.

Table 2.7 Display methods

Button Information

Summary The Cost information is displayed in the table format for the unit of display, such as procedure, loop,
or line.

Topology The distribution information to the rank on the Cost information for the unit of display, such as
procedure, loop, or line, is displayed according to the topology shape of the application.

This information is only displayed in Application View.

Panel The distribution information to the thread on the Cost information for the unit of display, such as
procedure, loop, or line is displayed.

This information is only displayed in Rank View.

Bar Chart The distribution information to the rank or the thread on the Cost information for the unit of display,
such as procedure, loop, or line is displayed in the form of a Bar Chart.

This information is only displayed in Application View and Rank View.

Data Compare The whole graph of three times (for three items) of displayed by selecting the row in the Topology,
Panel and Bar Chart is arranged vertically and displayed.

This information is only available in Application View and Rank View.

2.3.3.3.1 Summary information

The total Cost information for each unit is displayed in the table format. The items of the Cost information differ according to the unit of
the total.

Table 2.8 Total unit

Tab Total unit

Basic The cost is totaled by each display.

This information becomes a display only of one line.

Procedure The cost is totaled in the unit of the procedure.

The cost of the synchronous thread barrier waiting function and the MPI function calls and is summed
up to the cost of former user procedure.

- 16 -

Tab Total unit

Loop The cost is totaled in the unit of the loop. When compiling, optional optimization should be effective
to total each loop.

Refer to "Output of loop information" in "Appendix A Considerations for Using the Profiler" for
details.

Line The cost of each line of the user source is totaled.

The display items are described below.

In case of Thread View, because the hit cannot be downed more than it, it becomes the item of considerable Total respectively. Moreover,
deflection is done and the female Bar Chart is not displayed.

Table 2.9 Display items of Basic

Label Description

Name Display unit name

Elapsed (S) Elapsed time

Total Elapsed time as the unit of display

Maximum elapsed time between ranks in Application View

Maximum elapsed time between threads in Rank View

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

User (S) User CPU time

Total Time of user CPU as the unit of display

Total value between ranks in Application View

Total value between threads in Rank View

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

System (S) System CPU time

Total System CPU time as the unit of display

Total value between ranks in Application View

Total value between threads in Rank View

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

- 17 -

Label Description

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Operation (S) Operation time

Total Operation time as the unit of display

Total value between ranks in Application View

Total value between threads in Rank View

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Communication (S) Communication time

Total Communication time as the unit of display

Total value between ranks in Application View

Total value between threads in Rank View

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

MFLOPS Floating-point arithmetic execution efficiency (average of the number of floating-point arithmetic
executions per second)

Number of operations is obtained by multiplying by 1 + 2 * Number of operations is obtained by
multiplying by 2 + 4 * Number of operations is obtained by multiplying by 4 + 8 * Number of operations
is obtained by multiplying by 8 + 16 * Number of operations is obtained by multiplying by 16) / Elapsed
time / 1.0e+6

Number of operations is obtained by multiplying by 1 : 1FLOPS_instructions

Number of operations is obtained by multiplying by 2 : 2FLOPS_instructions

Number of operations is obtained by multiplying by 4 : 4FLOPS_instructions

Number of operations is obtained by multiplying by 8 : 8FLOPS_instructions

Number of operations is obtained by multiplying by 16 : 16FLOPS_instructions

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Statistics

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

- 18 -

Label Description

Maximum value between threads in Rank View

MFLOPS/PEAK (%) Rate of actual measurement values to the logical peak value of MFLOPS

MFLOPS / (Number of execution core * MFLOPS peak value of each core) * 100

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Statistics

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

MIPS Instruction execution efficiency (average of the number of instruction executions per second)

Number of instruction executions / Elapsed time / 1.0e+6

Number of instruction executions : effective_instruction_counts

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and, -Hevent=Statistics or -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

MIPS/PEAK (%) Rate of actual measurement values to the logical peak value of MIPS

MIPS / (Number of execution cores * MIPS peak value of each core) * 100

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and, -Hevent=Statistics or -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Floating point operations
(%)

Rate of the number of floating-point arithmetic executions in operand of instruction

(Number of operations is obtained by multiplying by 1 + 2 * Number of operations is obtained by
multiplying by 2 + 4 * Number of operations is obtained by multiplying by 4 + 8 * Number of operations
is obtained by multiplying by 8 + 16 * Number of operations is obtained by multiplying by 16) / (Number
of instruction executions + Number of operations is obtained by multiplying by 2 + 3 * Number of
operations is obtained by multiplying by 4 + 7 * Number of operations is obtained by multiplying by 8 +
15 * Number of operations is obtained by multiplying by 16) * 100

Number of operations is obtained by multiplying by 1 : 1FLOPS_instructions

Number of operations is obtained by multiplying by 2 : 2FLOPS_instructions

- 19 -

Label Description

Number of operations is obtained by multiplying by 4 : 4FLOPS_instructions

Number of operations is obtained by multiplying by 8 : 8FLOPS_instructions

Number of operations is obtained by multiplying by 16 : 16FLOPS_instructions

Number of instruction executions : effective_instruction_counts

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Statistics

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Instructions Executed number of instructions (number of instruction executions)

Number of instruction executions : effective_instruction_counts

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Load/Store (SIMD) (%) Rate of SIMD and 4SIMD load/store instruction number of instruction executions

Number of committed "SIMD and 4SIMD load/store" instructions / Number of instruction executions *
100

Number of committed "SIMD and 4SIMD load/store" instructions : XSIMD_load_store_instructions

Number of instruction executions : effective_instruction_counts

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and, -Hevent=Instructions_SIMD or -Hevent=MEM_access

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Floating operand (SIMD)
(%)

Rate of SIMD and 4SIMD floating-point instruction number of instruction executions

Number of committed "SIMD and 4SIMD floating-point" instruction / Number of instruction executions
* 100

Number of committed "SIMD and 4SIMD floating-point" instruction : XSIMD_floating_instructions

Number of instruction executions : effective_instruction_counts

- 20 -

Label Description

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

FMA (SIMD) (%) Rate of floating-point FMA instructions (SIMD execution) in number of instruction executions

Number of committed "4SIMD floating-point multiply and add/sub" and "4SIMD floating-point
trigonometric" instructions / Number of instruction execution * 100

Number of committed "4SIMD floating-point multiply and add/sub" and "4SIMD floating-point
trigonometric" instructions : XSIMD_fma_instructions

Number of instruction executions : effective_instruction_counts

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Fixed operand (SIMD)
(%)

Rate of SIMD and 4SIMD fixed point partitioned add/sub and integer multiply add instructions in number
of instruction executions

Number of committed "SIMD and 4SIMD fixed point partitioned add/sub" and "integer multiply add"
instructions / Number of instruction execution * 100

Number of committed "SIMD and 4SIMD fixed point partitioned add/sub" and "integer multiply add"
instructions : fixed_point_instructions

Number of instruction executions : effective_instruction_counts

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

SIMD (%) Rate of SIMD instructions to the number of total instruction executions

(Number of committed "SIMD and 4SIMD load/store" instructions + Number of committed "4SIMD
floating-point" instructions + Number of committed "4SIMD floating-point multiply and add/sub" and
"4SIMD floating-point trigonometric" instructions) / Number of instruction executions * 100

- 21 -

Label Description

Number of committed "SIMD and 4SIMD load/store" instructions : XSIMD_load_store_instructions

Number of committed "SIMD and 4SIMD floating-point" instructions : XSIMD_floating_instructions

Number of committed "4SIMD floating-point multiply and add/sub" and "4SIMD floating-point
trigonometric" instructions : XSIMD_fma_instructions

Number of committed "SIMD and 4SIMD fixed point partitioned add/sub" and "integer multiply add"
instructions : fixed_point_instructions

Number of instruction executions : effective_instruction_counts

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

SIMD Load/Store (%) Rate of SIMD and 4SIMD floating-point loading store instructions that occupies it to the number of
floating-point loading store instructions

Number of committed "SIMD and 4SIMD load/store" instructions / (Number of committed "SIMD and
4SIMD load/store" instructions + Number of committed "load/store" instructions) * 100

Number of committed "SIMD and 4SIMD load/store" instructions : XSIMD_load_store_instructions

Number of committed "load/store" instructions : load_store_instructions

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Prefetch Number of prefetch instructions

Number of committed "prefetch" instructions + Number of committed "NonSIMD, SIMD and 4SIMD of
indirect prefetch" instructions

Number of committed "prefetch" instructions : prefetch_instructions

Number of committed "NonSIMD, SIMD and 4SIMD of indirect prefetch" instructions :
nonSIMD_XSIMD_indirect_prefetch_instructions

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

- 22 -

Label Description

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Indirect Prefetch Number of committed "NonSIMD, SIMD and 4SIMD of indirect prefetch" instructions

Number of committed "NonSIMD, SIMD and 4SIMD of indirect prefetch" instructions :
nonSIMD_XSIMD_indirect_prefetch_instructions

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Load/Store (NOSIMD)
(%)

Rate of load/store instruction number of instruction executions (NOSIMD execution) in number of
instruction executions

Number of committed "load/store" instruction (NOSIMD execution) / Number of instruction executions
* 100

Number of committed "load/store" instruction (NOSIMD execution) : load_store_instructions

Number of instruction executions : effective_instruction_counts

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=Instructions_SIMD

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Memory access
throughput (core) (GB/S)

Average of the amount of data transfer per second between memory and CPU core

Zero in Thread View

Amount of data transfer between memory and CPU core * 256 / Elapsed time / 1.0e+9

Amount of data transfer between memory and CPU core : L2_miss_dm + L2_miss_pf + L2_wb_dm +
L2_wb_pf

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=MEM_access

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

- 23 -

Label Description

Write back (Ratio) Rate of writeback in memory access

Zero in Thread View

Memory CPU core writing data amount / Amount of data transfer between memory CPU cores * 100

Memory CPU core writing data amount : L2_wb_dm + L2_wb_pf

Amount of data transfer between memory CPU cores : L2_miss_dm + L2_miss_pf + L2_wb_dm +
L2_wb_pf

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=MEM_access

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Memory access
throughput (peak)(core)
(GB/S)

Memory access throughput peak value of each core

Zero in Thread View

- When the write backing rate is smaller than 50%
240 + 240 * ((Memory CPU core writing data amount / Amount of data transfer between memory
CPU cores) / (1 - Memory CPU core writing data amount / Amount of data transfer between memory
CPU cores))

- When the write backing rate is 50% or more
240 + 240 * ((1 - Memory CPU core writing data amount / Amount of data transfer between memory
CPU cores) / (Memory CPU core writing data amount / Amount of data transfer between memory
CPU cores))

Memory CPU core writing data amount : L2_wb_dm + L2_wb_pf

Amount of data transfer between memory CPU cores : L2_miss_dm + L2_miss_pf + L2_wb_dm +
L2_wb_pf

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=MEM_access

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Memory access
throughput / PEAK (core)
(%)

Rate of memory access throughput peak value in memory access throughput

Zero in Thread View

Memory access throughput (core) / memory access throughput (peak)(core) * 100

When the following options are all effective in the fipp command, this value is displayed.

-Ihwm and -Hevent=MEM_access

AVE. Average value between ranks in Application View

- 24 -

Label Description

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Table 2.10 Display items of Procedure/Loop/Line

Label Description of item Procedure Loop Line

Name Procedure name Y Y Y

Start Beginning line number within the range

"-" when it is not a user procedure
Y Y N

End End line number within the range

"-" when it is not a user procedure
Y Y N

Line Line number N N Y

Operation (S)
(Bar Chart)

Graph where deflection to which it is lucky at
operation time is shown

Y Y Y

Communication (S)
(Bar Chart)

Graph where deflection to which it is lucky at
communication time is shown

Y Y Y

Cost (Bar Chart) Graph where deflection of cost is shown Y Y Y

Thread Barrier Cost
(Bar Chart)

Graph where deflection of cost of synchronous
thread barrier waiting is shown

Y Y Y

MPI Library Cost
(Bar Chart)

Graph where deflection of MPI library cost is
shown

Y Y Y

Operation (S) Operation time Y Y Y

Total Value at operation time as unit

The total of the unit broken down by 1 degree

Y Y Y

AVE. The average value of unit broken down by 1 degree Y Y Y

MIN The minimum value of unit broken down by 1
degree

Y Y Y

MAX The maximum value of unit broken down by 1
degree

Y Y Y

Communication (S) Communication time Y Y Y

Total Value at communication time as unit

The total of the unit broken down by 1 degree

Y Y Y

AVE. The average value of unit broken down by 1 degree Y Y Y

MIN The minimum value of unit broken down by 1
degree

Y Y Y

MAX The maximum value of unit broken down by 1
degree

Y Y Y

Cost Cost Y Y Y

Total Value of cost as unit

Total of unit broken down by 1 degree
Y Y Y

- 25 -

Label Description of item Procedure Loop Line

AVE. Average value of unit broken down by 1 degree Y Y Y

MIN Minimum value of unit broken down by 1 degree Y Y Y

MAX Maximum value of unit broken down by 1 degree Y Y Y

Thread Barrier Cost Cost of synchronous thread barrier waiting Y Y Y

Total Value of synchronous thread barrier waiting as unit

Total of unit broken down by 1 degree
Y Y Y

AVE. Average value of unit broken down by 1 degree Y Y Y

MIN Minimum value of unit broken down by 1 degree Y Y Y

MAX Maximum value of unit broken down by 1 degree Y Y Y

MPI Library Cost Cost of MPI library Y Y Y

Total Value of cost of MPI library as unit

Total of unit broken down by 1 degree
Y Y Y

AVE. Average value of unit broken down by 1 degree Y Y Y

MIN Minimum value of unit broken down by 1 degree Y Y Y

MAX Maximum value of unit broken down by 1 degree Y Y Y

Nest Nest level of loop N Y N

Kind Type of loop

(DO, WHILE, UNTIL, ARRAY, FOR, GOTO,
OTHER)

N Y N

Exec Execution form of loop (information when
compiling)

SERIAL : Sequential

OpenMP : OpenMP

AUTO : Automatic parallel

N Y N

Table 2.11 Colors in Bar Chart

Color Description of color

Blue Minimum value

Green Average value

Red Maximum value

2.3.3.3.2 Topology/Panel information

In the Topology information, the distribution shape to the rank of the cost displayed by summary information can be displayed by the form
along the communication topology.

In the Panel information, the distribution shape to the thread of the cost displayed by the summary information can be displayed.

The display form of Panel information becomes one dimension shape and the same of Topology information.

The Topology/Panel information window comprises the following elements:

(1) Instant Profiler information list

(2) Whole graph

(3) Color histogram

(4) Zoom information panel

- 26 -

Figure 2.7 Topology information window

(1)Instant Profiler information list

Information that excludes the row of the Bar Chart form is displayed from summary information in the Instant Profiler information list by
the table form. Refer to "2.3.3.3.1 Summary information" for information on the summary information.

By clicking the cell, distribution situations between parallel about item information on selection row concerning selection line are displayed
in the whole graph. Moreover, the selected unit name and item name are displayed in the title of the zoom information panel.

The item of displayed distribution information becomes information as the group row of the selected cell. Even if either TOTAL, AVE.,
MIN or MAX is selected, it becomes a same deal. Moreover, it is an item that has distribution information that shows the performance.
The row of Name, Start, End, Line, Nest, Kind, and Exec does not have distribution information. It is assumed the one having been selected
for the row with the distribution information at the right of the selection row when selected. It is assumed the one having been selected
for the row with the first distribution information of the line when there is no row with the distribution information right.

In the initial state, the Basic tab is displayed with the distribution information selected in the first row.

(2)Whole graph

Distribution information between parallels on the item selected by the Instant Profiler information list is displayed in the whole graph by
the graph form.

A range selection frame is displayed when the cursor is moved to the whole graph, and information that corresponds to the range selection
frame is displayed in the zoom information panel.

The range selection frame is a fixed size that can be displayed in the zoom information panel for parallel numbers.

The range selection position can be fixed or released by clicking in the whole graph.

When all parallel numbers are installed on the zoom information panel, the range selection frame is not displayed.

Shape in the selection border for the color and three dimension shape used for the whole graph can be changed by the color histogram.

The example of a whole graph is shown as follows. A white frame in figure is a range selection frame.

- 27 -

Figure 2.8 Example of the whole graph with one-dimensional shape/Panel information

In case of a one-dimensional shape and the Panel information, a parallel unit is arranged from the left to the right. It moves to the next
line if it is not possible to display it in one line.

Figure 2.9 Example of the whole graph with two-dimensional shape

In case of a two-dimensional shape, the bottom left is the starting point (0,0).

Figure 2.10 Example of the whole graph with three-dimensional shape

In case of a three-dimensional shape, the intersection of the vertical Y axis (red axis line), the diagonal Z axis (blue axis line), and the
horizontal X axis (green axis line) is the starting point.

(3)Color histogram

The color histogram shows the relation between the color and the value used for the whole graph and the graph in the zoom information
panel. Note that the occurrence rate of a value is shown according to the height of the color Bar Chart.

The color histogram comprises the following elements:

a. Range selection frame buttons

The range selection frame button is displayed when displayed by three dimension shape. The range of the selection of the range
selection frame is revocable because of the button that has been selected. Moreover, the coordinates location information about the
dimension on the axis selected in Whole graph is displayed under the button that has been selected.

Button label Selected range

X X axis is fixed. Aspect on the same X axis can be selected.

Y Y axis is fixed. Aspect on the same Y axis can be selected.

Z Z axis is fixed. Aspect on the same Z axis can be selected.

b. Histogram

It displays a histogram. The occurrence rate of a value and the relation between the value and the color is shown.

- 28 -

c. Color mode box

The color mode of the color histogram can be changed. The color modes are described below.

When the Instant Profiler is started, "Hue (Blue to Red)" is selected by default.

Table 2.12 Color mode

Label Description

Hue (Blue to Red) The cost is allocated from blue to red in 256 colors. By default, the color becomes red from blue as
the cost rises from low-cost.

Tone (Blue to Red) The cost is allocated blue, white, and red tones. By default, the color becomes blue, white, and red
as the cost rises from low-cost.

4 colors The cost is allocated four colors (blue, green, yellow, and red). By default, the color becomes blue,
green, yellow, and red as the cost rises from low-cost. The color allocation threshold can be changed
by the operation of the thumb. The default position of thumb is as follows:

First thumb: Center of the average value and the minimum value

Second thumb: Average value

Third thumb: Center of the average value and the maximum value

d. Color histogram controlled check boxes

The minimum value of the histogram and the color order can be changed.

Label Description

MIN is ZERO Uses 0 as the minimum value for the color histogram

Color reversal Reverses the order of the color histogram color scheme

(4)Zoom information panel

In the zoom information panel, information within the range selected in the whole graph is expanded and displayed. A white frame to
select one unit is displayed when the cursor is moved to the zoom information panel. The Cost information on the selected unit is displayed
in a table in the panel. The displayed item is an item displayed in the Instant Profiler information list. The range selection position can be
fixed or released by clicking in the zoom information panel. The unit that has been selected in the Zoom information panel is told to the
box where the rank of Rank View and Thread View is selected and the box and where the thread is selected.

2.3.3.3.3 Bar Chart information

In the Bar Chart information, the distribution between parallel units of the cost displayed in the Cost information is displayed as a Bar
Chart. The displayed items and the operation methods are the same as the Topology/Panel information.

2.3.3.3.4 Data Compare information

In the Data Compare information, the whole graph of three times (for three items) of information displayed in the Topology, Panel and
Bar Chart information is arranged vertically and displayed.

The graph of the same item with a different form is updated without being added.

When the cursor is moved to the whole graph, the range selection frame is displayed, and the information that corresponds to the selection
frame is extracted to the left and displayed.

- 29 -

Figure 2.11 Data Compare information window

2.3.3.4 Source code information
The information displayed on the Source View tab is described below.

There are two windows for the Source code information:

(a)Source list information window

A list of source files with their respective cost is displayed in the source list information window for source files of an application.

Select a source, and then click the Open button located at bottom right of the window to display the source list information window, based
on information on the Path row of the selected row.

- 30 -

Figure 2.12 Source list information window

Table 2.13 Items in the source list information window

Label Description

Source Source file name

Cost Cost for a source

Ratio Ratio of the cost of the source to the cost of the entire unit of display

Path Path of the source file

The file selection dialog box appears when the button located on the right is pressed.

When a file is selected from the file selection dialog box, the selected file is replaced as the value of Path.

(b)Source code information window

The Source code information window is displayed as a window besides the main window in the Profiler. The Source code information
window can be displayed by switching two or more source codes by the window of the tab type in one window. The Cost information to
make them correspond to the source code about the source code selected from the source list window on the Source code information
window is displayed. The source code cannot be edited from the Source code information window. Each tab of the Source code information
window comprises the following elements:

(1) Line number

(2) Cost value

(3) Source code

(4) Jump map

- 31 -

Figure 2.13 Source code information window

(1)Line number

It is a line number in the source code.

(2)Cost value

It is the cost value that corresponds to each line of the source code. The value is not displayed in the line without the cost. The high
load part where the cost exceeds 50% of the entire unit of display is displayed in red.

(3)Source code

It is the source code. The line parallel made a thread when compiling is displayed in green. The high load part where the cost exceeds
50% of the entire unit of display is displayed in red.

(4)Jump map

The part colored green and red in the cost value and the source code areas is mapped and displayed. It corresponds to the scrollbar,
and information on the corresponding line can be displayed by scrolling the scrollbar to the area of pigmented material of the map.
Moreover, a relevant position can be displayed by clicking on the map.

2.3.3.5 Call Graph information
The information displayed on the Call Graph tab is described below.

The Call Graph information window comprises the following elements:

(1) Call Graph

(2) Search function

(3) Caller list

- 32 -

(4) Call list

Figure 2.14 Call Graph information window

(1)Call graph

The Call Graph displays information on the call relation of a procedure in the tree format.

The Caller and Call lists are renewed by centering there when the procedure is clicked from the Call graph.

Table 2.14 Items in the Call Graph information window

Label Description

- A red circle is displayed around the high load part where the call cost exceeds 50 % of the entire unit of display.

Cost Cost value that hangs to the procedure on call relation

Cumulative Accumulation value of the cost that hangs to the procedure on call relation and route from now on

Name Procedure name

(2)Search function

The retrieval function circulating retrieves the input function name. It goes for the retrieval toward from the selection position or the head
to the under when the Next button is clicked. It lives in the retrieval toward from the selection position or the end on when the Back button
is clicked. The retrieval key should be completely corresponding.

(3)Caller list

The procedure name in which the procedure that has been selected is called is having a look displayed by the Call graph. Not only parents
with the node that has been selected but also the call origins of the same procedure that exists in another route are displayed. It changes
into the display centering on the corresponding section in the Call graph when the procedure name displayed in the Caller list is selected.

- 33 -

(4)Call list

The procedure name that the procedure that has been selected calls is having a look displayed by the Call graph. Not only the child with
the node that has been selected but also the procedure that the same procedure that existed in another route called is displayed. It changes
into the display centering on the corresponding section in the Call graph when the procedure name displayed in the Call list is selected.

2.4 Instant Profiler information (text/CSV formats)
This chapter describes the Instant Profiler information (text/CSV formats) output by the fipppx command.

2.4.1 Overview of the Profiler feature
The Instant Profiler information comprises the following information:

The output of each information can be controlled by using options of the fipppx command.

Refer to "Table 2.2 fipppx command options" for information on options that control information.

- Environment information for instant profiling data collection

- Time statistical information

- Hardware monitor information

- Cost information

- Call Graph information

- Source code information

The following figure shows the composition of the Instant Profiler information in the text format.

- 34 -

Figure 2.15 Composition of the Instant Profiler information in the text format

2.4.2 Environment information for instant profiling data collection
The environment information outputs the details of the execution environment where the instant profiling data is collected.

Figure 2.16 Output format of the environment information for instant profiling data collection

Table 2.15 Output items of the environment information for instant profiling data collection

Output item Description

@vl Version level

@date Collection date of instant profiling data

@pno Process number

@frequency Frequency of execution processor

- 35 -

Output item Description

@type Execution format of the application

SERIAL : Sequential

Thread (AUTO) : Automatic parallel

Thread (OpenMP) : OpenMP

MPI : MPI

MPI (AUTO) : MPI + Automatic parallel

MPI (OpenMP) : MPI + OpenMP

@interval Sampling interval

The average value of the sampling interval is output.

@range Measured range

All ranges : Entire application

selected range : Specified range of the section specifying function of Instant Profiler

@x, @y, @z Logical shape of an MPI application execution (displayed in case of MPIs)

2.4.3 Time statistical information
The elapsed time, the user CPU time, and the system CPU time of an application, each process, and each thread is output in the Time
statistical information.

Figure 2.17 Output format of the Time statistical information

Table 2.16 Output items of the Time statistical information

Output item Description

@elapse Elapsed time (s)

@user User CPU time (s)

@system System CPU time (s)

@level Information total level (Application, process number, or thread number)

@pno Process number or thread number

2.4.4 Hardware monitor information
The Hardware monitor information outputs the operating condition of the processor during application execution.

This information is output when the "-Ihwm" option is used.

Applications written in Fortran, C, or C++ are converted to hardware instructions by the compiler and are executed by the processor.

Some functions to execute the instruction at fast are prepared in the processor.

By using each speed-up function, the execution CPU time of the application can be decreased.

The Hardware monitor information shows the measured value of the operating condition of the processor during application execution.

Each measurement of the Hardware monitor information is aggregated by the following unit and is output:

- 36 -

- Application

- Process

- Thread

2.4.4.1 Measured information of the Hardware monitor information
The following table describes the measured information of the Hardware monitor information.

Table 2.17 Measured information of the Hardware monitor information

Event name Measured information Description

Instructions_SIMD Elapsed time (s) Elapsed time for executing instructions of the
measured range

Instructions Executed number of instructions

MIPS Instruction execution efficiency (average of number
of instructions executed per second)

MIPS/PEAK (%) Rate of actual measurement values to the logical
peak value of MIPS

Load/Store (SIMD) (%) (*1) Rate of floating-point loading store SIMD or SIMD
instruction that occupies it to the number of
instruction executions

Floating operand (SIMD) (%) (*1) Rate of floating-point operation instructions (SIMD
executions) that occupies it to the number of
instruction executions

FMA (SIMD) (%) (*1) Rate of floating-point FMA instructions (SIMD
execution) in number of instruction executions

Fixed operand (SIMD) (%) (*1) Rate of fixed-point operation instructions (SIMD
executions) that occupies it to the number of
instruction executions

SIMD (%) (*1) Rate of number of SIMD instructions in number of

instruction executions

SIMD load store instruction rate (%) Rate of SIMD instruction that occupies it to load
store instruction

Prefetch Number of prefetch instructions

Indirect prefetch Number of indirect prefetch instructions

MEM_access Elapsed time (s) Elapsed time for executing instructions of the
measured range

Load/Store (SIMD) (%) (*1) Rate of floating-point loading store SIMD or SIMD
instructions that occupies it to the number of
instruction executions

Load/Store (NOSIMD) (%) (*1) Rate of number of floating-point loading store
instructions in number of instruction executions

Memory access throughput (core) (GB/S) Average data transfer between memory and CPU
core per second

Write back rate (%) (*2) Rate of writing data amount to the data transfer
between memory CPU cores

Memory access throughput (PEAK) (*2) Peak value of memory throughput calculated based
on write backing rate

- 37 -

Event name Measured information Description

Memory access throughput peak rate (%) (*2) Rate of survey data to memory throughput peak
value

Statistics Elapsed time (s) Elapsed time for executing instructions of the
measured range

MFLOPS Floating-point arithmetic execution efficiency

(average floating-point arithmetic executions per
second)

MFLOPS/PEAK (%) Rate of actual measurement values to the logical
peak value of MFLOPS

MIPS Instruction execution efficiency(average of number
of instruction executions per second)

MIPS/PEAK (%) Rate of actual measurement values to the logical
peak value of MIPS

Floating operand (%) Rate of number of floating-point arithmetic
execution in operand of instruction

*1 : SIMD instruction processes two or more operands in one instruction. NOSIMD instruction processes one operand in one instruction.

*2 :"Write back rate", "Memory access throughput (PEAK)", and "Memory access throughput peak rate" output only the unit of the
application, and the power output of the unit of the process and each thread becomes 0.

2.4.4.2 Formulas of the Hardware monitor information
The following table describes the calculation formulas for events in the Hardware monitor information.

Table 2.18 Formulas of the Hardware monitor information (Instructions_SIMD)

Event name Measured information (unit) Formula

Instructions_SIMD Elapsed time (s) Elapsed time for executing instructions of the measured range

Instructions Executed number of instructions

MIPS Number of instruction executions / Elapsed time / 1.0e+6

MIPS/PEAK (%) (*1) MIPS / (Number of execution cores * MIPS peak value of each
core) * 100

Load/Store(SIMD) (%) Number of floating-point loading store SIMD instructions
(SIMD and 4SIMD) /

Number of instruction executions * 100

Floating operand(SIMD) (%) Number of floating-point arithmetic SIMD instructions (SIMD
and 4SIMD) / Number of instruction executions * 100

FMA(SIMD) (%) Number of floating-point FMA SIMD instructions (SIMD and
4SIMD) / Number of instruction executions * 100

Fixed operand(SIMD) (%) Number of fixed-point arithmetic SIMD instructions (SIMD and
4SIMD) / Number of instruction executions * 100

SIMD (%) (Number of floating-point loading store SIMD instructions
(SIMD and 4SIMD) + Number of floating-point arithmetic
SIMD instructions (SIMD and 4SIMD) + Number of floating-
point FMA SIMD instructions (SIMD and 4SIMD) + Number
of fixed-point arithmetic SIMD instructions (SIMD and
4SIMD)) / Number of instruction executions * 100

SIMD load store instruction rate (%) Number of floating-point loading SIMD store instructions
(SIMD and 4SIMD) / (Number of floating-point loading store

- 38 -

Event name Measured information (unit) Formula

instructions + Number of floating-point loading store SIMD
instructions (SIMD and 4SIMD)) * 100

Prefetch Number of prefetch instructions (exclude "indirect prefetch"
instruction) + Number of indirect prefetch instructions

Indirect prefetch Number of indirect prefetch instructions

*1 : The MIPS peak value of each core is calculated by the following expression:

Frequency in CPU core * Number of instructions that can be issued per cycle * 1000(MIPS)

The values in the calculation expressions are used from the following PA events.

(1) effective_instruction_counts (2) XSIMD_load_store_instructions

(3) XSIMD_floating_instructions (4) XSIMD_fma_instructions

(5) XSIMD_fixed_point_instructions (6) prefetch_instructions

(7) nonSIMD_XSIMD_indirect_prefetch_instructions (8) load_store_instructions

Executed number of instructions (1)

Number of floating-point loading store SIMD instructions (SIMD and 4SIMD) (2)

Number of floating-point arithmetic SIMD instructions (SIMD and 4SIMD) (3)

Number of floating-point FMA SIMD instructions (SIMD and 4SIMD) (4)

Number of fixed-point arithmetic SIMD instructions (SIMD and 4SIMD) (5)

Number of floating-point loading store instructions (8)

Number of prefetch instructions (exclude "indirect prefetch" instruction) (6)

Number of indirect prefetch instructions (7)

Table 2.19 Formulas of the Hardware monitor information (MEM_access)

Event name Measured information (unit) Formula

MEM_access Elapsed time (s) Elapsed time for executing instructions of the measured range

Load/Store(SIMD) (%) Number of floating-point loading store SIMD instructions
(SIMD and 4SIMD) / Number of instruction executions * 100

Load/Store(NOSIMD) (%) Number of floating-point loading store instructions / Number
of instruction executions * 100

Memory access throughput (core) (GB/
S)

Amount of data transfer between memory and CPU core * 256 /
Elapsed time / 1.0e+9

Write back rate (%) Memory CPU core writing data amount / Amount of data
transfer between memory CPU cores * 100

Memory access throughput (PEAK) - When the write backing rate is smaller than 50%
240 + 240 * ((Memory CPU core writing data amount /
Amount of data transfer between memory CPU cores) / (1
- Memory CPU core writing data amount / Amount of data
transfer between memory CPU cores))

- When the write backing rate is 50% or more
240 + 240 * ((1 - Memory CPU core writing data amount /
Amount of data transfer between memory CPU cores) /
(Memory CPU core writing data amount / Amount of data
transfer between memory CPU cores))

- 39 -

Event name Measured information (unit) Formula

Memory access throughput peak rate
(%)

Memory access throughput / Memory access throughput
(PEAK) * 100

The values in the calculation expressions are used from the following PA events.

(1) effective_instruction_counts (2) XSIMD_load_store_instructions

(3) load_store_instructions (4) L2_miss_dm

(5) L2_miss_pf (6) L2_wb_dm

(7) L2_wb_pf

Number of instruction executions (1)

Number of floating-point loading store SIMD instructions (SIMD and 4SIMD) (2)

Number of floating-point loading store instructions (3)

Amount of data transfer between memory CPU cores (4) + (5) + (6) + (7)

Memory CPU core writing data amount (6) + (7)

Table 2.20 Formulas of the Hardware monitor information (Statistics)

Event name Measured information (unit) Formula

Statistics Elapsed time (s) Elapsed time for executing instructions of the measured range

MFLOPS Number of floating-point arithmetic instructions / Elapsed
time / 1.0e+6

MFLOPS/PEAK (%) (*1) MFLOPS / (Number of execution cores * MFLOPS peak value
of each core) * 100

MIPS Number of instruction executions / Elapsed time / 1.0e+6

MIPS/PEAK (%) (*2) MIPS / (Number of execution cores * MIPS peak value of each
core) * 100

Floating operand (%) Number of floating-point arithmetic instructions / Total
operand * 100

*1 : The MFLOPS peak value of each core is calculated by the following expression:

Frequency in CPU core * Number of product sum operation of floating-point * Number of floating-point
functional units * Number of operand processing of SIMD instructions* 1000(MFLOPS)

*2 : The MIPS peak value of each core is calculated by the following expression:

Frequency in CPU core * Number of instructions that can be issued per cycle * 1000(MIPS)

The values in the calculation expressions are used from the following PA events.

(1) effective_instruction_counts (2) 1FLOPS_instructions

(3) 2FLOPS_instructions (4) 4FLOPS_instructions

(5) 8FLOPS_instructions (6) 16FLOPS_instructions

Number of instruction executions (1)

Number of floating-point arithmetic instructions (2) + 2*(3) + 4*(4) + 8*(5) + 16*(6)

Total operand (1) + (3) + 3*(4) + 7*(5) + 15*(6)

- 40 -

2.4.4.3 Using the Hardware monitor information
The Hardware monitor information is used to confirm the execution performance of a program.

As MIPS and MFLOPS values are close to each peak value, it is a program of the high execution and operation performances.

2.4.4.4 Output format of the Hardware monitor information
The following shows the output format of the Hardware monitor information.

Figure 2.18 Output format of the Hardware monitor information (Instructions_SIMD)

Table 2.21 Output items of the Hardware monitor information (Instructions_SIMD)

Output item Description

@elapsed Elapsed time (s)

@inst Number of instruction executions

@mips MIPS

@mips/peak MIPS peak performance rate (%)

@ls_simd Loading store instruction rate (SIMD) (%)

@float_simd Floating-point arithmetic instruction rate (SIMD) (%)

@fma_simd Floating-point FMA instruction rate (SIMD) (%)

@fixed_simd Fixed-point arithmetic instruction rate (SIMD) (%)

@simd SIMD instruction rate (%)

@ls_simd_rate SIMD loading store instruction rate (%)

@prefetch Number of prefetch instructions

@indirect_pf Number of indirect prefetch instructions

@name Group name

@no Advance number

@pno Process number

@thno Thread number

- 41 -

Figure 2.19 Output format of the Hardware monitor information (MEM_access)

Table 2.22 Output format of the Hardware monitor information (MEM_access)

Output item Description

@elapsed Elapsed time (s)

@ls_simd Loading store instruction rate (SIMD) (%)

@ls Loading store instruction rate (NOSIMD) (%)

@mem Memory access throughput (core) (GB/S)

@mem_write Write back rate (%)

@mem_tp_peak Memory access throughput (PEAK)

@mem_tp/peak Memory access throughput / PEAK (%)

@name Group name

@no Advance number

@pno Process number

@thno Thread number

Figure 2.20 Output items of the Hardware monitor information (Statistics)

- 42 -

Table 2.23 Output format of the Hardware monitor information (Statistics)
Output item Description

@elapsed Elapsed time (s)

@mflops MFLOPS

@mflops/peak MFLOPS peak performance rate (%)

@mips MIPS

@mips/peak MIPS peak performance rate (%)

@fl-op Floating-point arithmetic rate (%)

@name Group name

@no Advance number

@pno Process number

@thno Thread number

2.4.5 Cost information
The Cost information comprises the following information:

- Procedure cost distribution information

- Loop cost distribution information

- Line cost distribution information

In case of parallel applications, the cost balance information can be output as the procedure cost distribution information and the loop cost
distribution information.

Procedure cost distribution information

In the procedure cost distribution information, the procedure cost and the synchronous waiting cost between threads and the start and end
line number of a procedure and the procedure name are output for each application, process, or thread.

This information is output when the "-Icpu" option is used.

However, the cost balance information in the procedure cost distribution information will be output when the "-Icpu" and "-Ibalance"
options are used.

The following figure shows the output format of the procedure cost distribution information, while the following table describes the items
output in the procedure cost distribution information.

- 43 -

Figure 2.21 Output format of the procedure cost distribution information

*1 : The cost balance information is output when the "-Ibalance" option is used.

Table 2.24 Output items of the procedure cost distribution information

Output item Meaning of output item

@level Information total level (Application, process number, or thread number)

@cost Procedure cost

@cost-rate Rate of the cost of @level or @name to the cost of information of the total level (%)

@ope Operation time (s)

@barrier Synchronous wait cost between threads (*1)

@barrier-rate Rate of synchronous waiting cost between threads to the procedure cost (%) (*1)

@mpi MPI cost (*2)

@mpi-rate Rate of MPI cost to the procedure cost (%) (*2)

@comm Communication time (s) (*2)

@start Start line number of a procedure

@end End line number of a procedure

@name Procedure name

@balance Cost balance of a procedure between processes or threads (%) (*3)

@pno Process number or thread number

*1 : Output when a thread-parallel application is measured

*2 : Output when an MPI application is measured

*3 : Output when the "-Ibalance" option is used

For a thread-parallel application, the parallel part is output as information on the created procedure.

The identifier is added to the created procedure after the procedure name.

The following table provides the procedure names of thread-parallel applications.

- 44 -

Table 2.25 Procedure names of thread-parallel applications
Language Type of created procedure Created procedure name

Fortran Automatic-parallel procedure Procedure._PRL_Number_

OpenMP-parallel procedure Procedure._OMP_Number_

TASK syntax Procedure._TSK_Number_

C/C++ Automatic-parallel procedure Procedure._PRL_Number

OpenMP-parallel procedure Procedure._OMP_Number

TASK syntax Procedure._TSK_Number

Loop cost distribution information

In the loop cost distribution information, the loop cost and the synchronous waiting cost between threads and the nest level and the loop
type and the compilation type of loop and the start/end line number of loop and the procedure name that the loop belongs are output for
each application, process, or thread.

This information is output when the "-Icpu" option is used.

However, the cost balance information in the loop cost distribution information will be output when the "-Icpu" and "-Ibalance" options
are used.

The following figure shows the output format of the loop cost distribution information, while the following table describes the items output
in the loop cost distribution information.

Figure 2.22 Output format of the loop cost distribution information

*1 : The cost balance information is output when the "-Ibalance" option is used.

Table 2.26 Output items of the loop cost distribution information

Output item Description

@level Information total level (Application, process number, or thread number)

@cost Loop cost

@cost-rate Rate of the cost of @level or @name to the cost of information of the total level (%)

@ope Operation time (s)

@barrier Synchronous waiting cost between threads (*1)

- 45 -

Output item Description

@barrier-rate Rate of synchronous waiting cost between threads to the loop cost (%) (*1)

@mpi MPI cost (*2)

@mpi-rate Rate of MPI cost to the loop cost (%) (*2)

@comm Communication time (s) (*2)

@nest Nested level

@kind Loop type (DO, WHILE, UNTIL, ARRAY, FOR, GOTO, OTHER)

@exec Compilation type of loop (SERIAL : Sequential, OpenMP : OpenMP, AUTO : Automatic parallel)

@start Start line number of a loop

@end End line number of a loop

@name Procedure name

@balance Cost balance of loop between processes or threads (%) (*3)

@pno Process number or thread number

*1 : Output when a thread-parallel application is measured

*2 : Output when an MPI application is measured

*3 : Output when the "-Ibalance" option is used

Line cost distribution information

In the line cost distribution information, the line cost and the line number, including the procedure name that the line belongs to are output
for each application, process, or thread.

This information is output when the "-Icpu" option is used.

The following figure shows the output format of the line cost distribution information, while the following table describes the items output
in the line cost distribution information.

Figure 2.23 Output format of the line cost distribution information

Table 2.27 Output items of the line cost distribution information

Output item Description

@level Information total level (Application, process number, or thread number)

@cost Line cost

@cost-rate Rate of the cost of @level or @name to the cost of information of the total level (%)

@ope Operation time (s)

- 46 -

Output item Description

@barrier Synchronous waiting cost between threads (*1)

@barrier-rate Rate of synchronous waiting cost between threads to the line cost (%) (*1)

@mpi MPI cost (*2)

@mpi-rate Rate of MPI cost to the line cost (%) (*2)

@comm Communication time (s) (*2)

@line Line number

@name Procedure name

*1 : Output when a thread-parallel application is measured

*2 : Output when an MPI application is measured

2.4.6 Call Graph information
In the Call Graph information, the call route of a procedure and the cost of each call route is output.

This information is output when the "-Icall" option is used.

The following figure shows the output format of the Call Graph information, while the following table describes the items output in the
Call Graph information.

Figure 2.24 Output format of the Call Graph information

Table 2.28 Output items of the Call Graph information

Output item Description

@pno Process number

@thno Thread number

@rate Rate of the procedure cost to the cost of the whole thread (%)

@nest Nested levels of procedure call

@name Procedure name

@cost Procedure cost

@accumulation Procedure cost, including the cost of the called procedure

If any interruption by sampling of the Instant Profiler occurs during the execution of the input or output statement of the application, the
Call Graph information may not be output correctly.

If "<???>" is output for the nested level of the Call Graph information, it implies either of the following:

- The call route of a procedure is uncertain.

- The nested levels of the calling procedure are 128 or more.

2.4.7 Source code information
In the Source code information, the cost is added and output in each line of the source code.

This information is output when the "-Isrc" option is used.

- 47 -

The following figure shows the output format of the Source code information, while the following table describes the items output in the
Source code information.

Figure 2.25 Output format of the Source code information

Table 2.29 Output items of the Source code information

Output item Description

@file-name Source code file name

@line Line number

@cost Line cost

@source-code Source code

- 48 -

Chapter 3 Advanced Profiler
This chapter describes the features and usage of the Advanced Profiler.

3.1 Overview of the Advanced Profiler
The Advanced Profiler collects and outputs the execution performance information for a specific section of an application. The Advanced
Profiler can output the following information:

Basic information

Outputs the breakdown of the call count, the elapsed time, the user CPU time, and the system CPU time of the measurement section

MPI information

Outputs the MPI library information of the measurement section

Hardware monitor information

Outputs the Hardware monitor information of the measurement section

Largepage performance information

Outputs the Largepage performance information of the measurement section

The following commands must be used to use the Advanced Profiler.

fapp

Collects the advanced profiling data of an application in the compute node of the FX100 system

fapppx

Outputs the advanced profiling data in the text or CSV format on the login node at the front end

"Figure 3.1 Collection and output of the advanced profiling data" shows the relation between the collection and the output of the advanced
profiling data.

Figure 3.1 Collection and output of the advanced profiling data

fapp -C : Collects the advanced profiling data

fapppx -A : Outputs the Advanced Profiler information in the text format

- 49 -

fapppx -A -Hpa -tcsv : Outputs the Advanced Profiler information on the Hardware monitor information (precision PA)
in the CSV format

Collection of advanced profiling data

The fapp command is used for collecting the advanced profiling data.

Output of the Advanced Profiler information

The Advanced Profiler information can be output in following formats:

GUI format

The Advanced Profiler information can be output in the GUI format.

However, the following Advanced Profiler information cannot be output in the GUI format.

- Hardware monitor information (precision PA)

- Largepage memory use information

- Largepage statistical information

Refer to "3.3 Advanced Profiler information (GUI format)" for information on how to output the GUI format.

Text format

The fapppx command is used to output the Advanced Profiler information in the text format. The fapppx command can output the
Advanced Profiler information from the preserved advanced profiling data in the text format.

Refer to "3.2.6 fapppx command" for information on how to output the Advanced Profiler information in the text format.

CSV format

The fapppx command is used to output the Advanced Profiler information on the Hardware monitor information (precision PA) in the
CSV format. The fapppx command can output the Advanced Profiler information from the preserved advanced profiling data in the
CSV format.

Refer to "3.2.6 fapppx command" for information on how to output the Advanced Profiler information in the CSV format.

3.2 Using the Advanced Profiler
This section describes the usage of the Advanced Profiler.

3.2.1 Advanced Profiler routine
It is necessary to set the measurement section for using the Advanced Profiler.

Refer to "3.3 Advanced Profiler information (GUI format)" for the GUI formats for the executive summary of the detail profiler. Refer to
"3.4 Advanced Profiler information (text/CSV formats)" for the text formats and CSV formats.

Setting the measurement section

Setting the measurement section involves inserting the Advanced Profiler routine at the measurement start position and the measurement
end position in the source code. The Advanced Profiler routine can use Fortran subroutines or C/C++ functions. If a C/C++ function is
used, the prototype of the function should be declared, or the header file of the Advanced Profiler section specification function should
be included.

The table below provides an overview of the Advanced Profiler routine.

Table 3.1 Overview of the Advanced Profiler routine

Language Header file Function name

(Advanced Profiler routine)

Function Arguments

Fortran - fapp_start Starts information
measurement

(name, number, level)

- 50 -

Language Header file Function name

(Advanced Profiler routine)

Function Arguments

fapp_stop Ends information
measurement

(name, number, level)

C/C++ fj_tool/fapp.h void fapp_start Starts information
measurement

(const char *name, int
number, int level)

void fapp_stop Ends information
measurement

(const char *name, int
number, int level)

Outline of arguments

name: Group name (basic character type scalar)

A group name can comprise alphabets, numbers, and underscores.

- Alphabets

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

- Numbers

0 1 2 3 4 5 6 7 8 9

- Underscore

_

number: Detailed number (4 Bytes integer)

level: Priority level (4 Bytes integer of 0 or more)

The start and the end of the Advanced Profiler specified by a group name and a detailed number are specified.

(The name comprising a group name and a detailed number is distinguished as a measurement range name.)

If the priority level is greater than the value of "-L" option of the fapp command, it does not measure it.

When either the same beginning of the measurement of information on the measurement range name or the specification of the information
measurement end is not described, the Advanced Profiler information is not output.

The Advanced Profiler information is output as information for the entire application by the measurement range name of group name
("all") and detailed number (0) besides the specified time base range.

Two or more time base ranges can be specified. A time base range can specify the nest and the overlap.

However, when the same measurement range name is specified for a nest and an overlap, the Advanced Profiler information in the time
base range begun first is output.

As for the measurement of thread information, processing of the master thread is begun.

Make it to the time base range including the section where the master thread operates when you measure the range where threads other
than the master thread are called.

The Advanced Profiler information in this time base range is not output if the Advanced Profiler routine under measurement does not do
the measurement end and it becomes a process end.

An example of setting the Advanced Profiler routine is shown in the figure below.

 Example

Example of setting the Advanced Profiler routine

#include <fj_tool/fapp.h>

#define SIZE 3000
double a[SIZE][SIZE],b[SIZE][SIZE],c[SIZE][SIZE];

- 51 -

main()
{
 int i,j;

 fapp_start("region",1,1);

 for(i=0;i<SIZE;i++){
 for(j=0;j<SIZE;j++){
 a[i][j]=(double)(i+j*0.5);
 b[i][j]=(double)(i+j*1.5);
 c[i][j]=a[i][j]+b[i][j];
 }
 }

 fapp_stop("region",1,1);
}

3.2.2 Advanced Profiler routine (precision PA)
It is necessary to set the measurement section for using the Advanced Profiler routine (precision PA).

Refer to "3.5 Precision PA visibility function (Excel format)" for the executive summary of the Precision PA visibility function.

Setting of measurement section

Setting the measurement section involves inserting the Advanced Profiler routine (precision PA) at the measurement start position and
the measurement end position in the source code. The Advanced Profiler routine (precision PA) can use Fortran subroutines or C/C++
functions. If a C/C++ function is used, the prototype of the function should be declared, or the header file of the Advanced Profiler section
specification function should be included.

The table below provides an overview of the Advanced Profiler routine (precision PA).

Table 3.2 Overview of the Advanced Profiler routine (precision PA)

Language Header file Function name
(Advanced Profiler routine

(precision PA))

Function Arguments (*1)

Fortran - start_collection Starts information
measurement

Basic character type scalar

stop_collection Ends information
measurement

Basic character type scalar

C/C++ fjcoll.h void start_collection Starts information
measurement

Basic character type scalar

void stop_collection Ends information
measurement

Basic character type scalar

*1: An argument is used to identify the time base range. The time base ranges between the start_collection and stop_collection functions
with the same value as the argument.

Two or more time base ranges can be specified. A time base range can specify the nest and the overlap. An example of the measurement
range specification routine is shown in the figure below.

 Example

Example of the measurement range specification routine

#include <fjcoll.h>

#define SIZE 3000
double a[SIZE][SIZE],b[SIZE][SIZE],c[SIZE][SIZE];

- 52 -

main()
{
 int i,j;

 start_collection("region");

 for(i=0;i<SIZE;i++){
 for(j=0;j<SIZE;j++){
 a[i][j]=(double)(i+j*0.5);
 b[i][j]=(double)(i+j*1.5);
 c[i][j]=a[i][j]+b[i][j];
 }
 }

 stop_collection("region");
}

Even if a subroutine is inserted outside the parallel execution part (parallel region or loop that the loop slice is done), the Hardware monitor
information on all threads of a thread-parallel application can be measured. Insert the subroutine in the part where all the processes operate
to measure the Hardware monitor information on all the processes in a process-parallel application.

3.2.3 Environment variables
To use the Advanced Profiler, it is necessary to correctly set the environment variables described in the table below.

Table 3.3 Environment variables

Environment variable Value

PATH /opt/FJSVmxlang/bin

LD_LIBRARY_PATH /opt/FJSVmxlang/lib64

To use the batch queuing system and the MPI processing system, setting additional values besides those mentioned above may be necessary.

Refer to the "Job Operation Software First Step Guide" for information on the batch queuing system. Refer to the "MPI User's Guide" for
information on the MPI system.

3.2.4 Compilation
For using the Advanced Profiler, it is necessary to create an application linked with the tool library.

Refer to "2.2.2 Compilation" for information on the tool.

3.2.5 fapp command
The fapp command collects the advanced profiling data of an application.

Format

fapp -C -d profiling_data [-I item] [-L level] [-H [hardmon]] exec-file [exec_option ...]

Options

The table below describes the options that can be specified for the fapp command.

Table 3.4 fapp command options

Option Description/Specified value (unit)

-C Specifies the collection processing of the advanced profiling data

This option is mandatory.

- 53 -

Option Description/Specified value (unit)

-d profiling_data Specifies the name of the advanced profiling data (directory of the advanced profiling data file) to
profiling_data by using the relative path or the absolute path.

If the directory does not exist, it is newly created. If the directory exists, it must be empty.

This option is mandatory.

-I item Specifies the collecting items of the Advanced Profiler information

Delimit using commas if two or more items are specified for item.

item: { { mpi | nompi } | { hwm | nohwm } | { lpgusage | nolpgusage } | { lpgstats | nolpgstats } }

The default is as follows:

- MPI application: -Impi,nohwm,nolpgusage,nolpgstats

- Sequential application: -Inompi,nohwm,nolpgusage,nolpgstats

mpi | nompi Specifies whether to collect the MPI information on the MPI application

- mpi: Collects the MPI information. This option cannot be specified in a sequential application.

- nompi: Does not collect the MPI information.

"mpi" cannot be specified in a sequential application.

The default is as follows:

- MPI application: mpi

- Sequential application: nompi

hwm | nohwm Specifies whether to collect the Hardware monitor information

- hwm: Collects the Hardware monitor information

- nohwm: Does not collect the Hardware monitor information

The default is "nohwm".

lpgusage | nolpgusage Specifies whether to collect the Largepage memory use information.

- lpgusage: Collects the Largepage memory use information.

- nolpgusage: Does not collect the Largepage memory use information.

The default is "nolpgusage".

When the "-Ilpgusag"e is specified, cannot be specified at the same time as "-Impi", "-Ihwm", "-
Ilpgstats", or "-H" option.

When the "-Ilpgusage" is specified in MPI applications, "-Impi" of the default value becomes
ineffective, and MPI information is not collected.

When the "-Ilpgusage" is specified, the Largepage memory use information cannot be output in the
GUI format.

lpgstats | nolpgstats Specifies whether to collect the Largepage statistical information.

- lpgstats: Collects the Largepage statistical information.

- nolpgstats: Does not collect the Largepage statistical information.

The default is "nolpgstats".

When the "-Ilpgstats" is specified, cannot be specified at the same time as "-Impi", "-Ihwm", "-
Ilpgusage", or "-H" option.

When the "-Ilpgstats" is specified in MPI applications, "-Impi" of the default value becomes
ineffective, and MPI information is not collected.

- 54 -

Option Description/Specified value (unit)

When the "-Ilpgstats" is specified, the Largepage statistical information cannot be output in the GUI
format.

-L level Specifies the start level of the measuring object

The Advanced Profiler measures when the level is more than the priority level of the section specified
for the Advanced Profiler routine.

The default is 0.

-H [hardmon] Specifies measurement of the Hardware monitor information

hardmon can be omitted (only "-H" can be specified).

Delimit using commas if two or more items are specified for hardmon.

The default is as follows:

- "-Ihwm" option is used: -Hevent=Statistics,mode=sys,method=normal

- "-Inohwm" option is used: Does not collect the Hardware monitor information

If this option is specified, it is considered that "-Ihwm" was specified.

hardmon: { event=event | event_number=no | mode=mode | pa=no | method=method }

event=event:
{ Cache |
Instructions_SIMD |
Instructions_NOSIMD |
MEM_access |
Performance | Statistics |
TLB}

Specifies the measurement event of the Hardware monitor information

Any of the following can be specified for event:

- Cache: Cache miss rate

- Instructions_SIMD : Execution instruction detail (SIMD)

- Instructions_NOSIMD : Execution instruction detail (NOSIMD)

- MEM_access: Memory access situation

- Performance: Instruction execution efficiency

- Statistics: CPU core operation situation

- TLB : TLB miss rate

The default is "event=Statistics".

event_number=no Specifies the measurement event number of Hardware monitor information.

- no : 0 - 127

The measurement event number "no" is a value specified as "no" of the PA counter corresponding to
eight PIC (picu0, picl0, picu1, picl1, picu2, picl2,picu3, picl3).

Delimit using commas if two or more numbers are specified.

For more information about the event number and PIC, refer to the SPARC64 XIfx Architecture
Manuals.

When this option is specified, Advanced Profiler routine (precision PA) becomes effective and the
Advanced Profiler routine becomes ineffective. Refer to "3.2.2 Advanced Profiler routine (precision
PA)" for the detail of the Advanced Profiler routine (precision PA).

This option cannot be specified at the same time as "-Impi" option.

Specify "-Hpa" of fapppx in the option to display the Hardware monitor information on the specified
measurement event number.

When this option is specified, the output profiling data cannot be analyzed by the GUI format.

mode=mode:
{ sys | usr }

Specifies the measurement mode of the Hardware monitor information

One of the following is specified for mode.

- 55 -

Option Description/Specified value (unit)

- sys: Collects information on the kernel mode and the user mode

- usr: Collects information on the user mode

The default is "mode=sys".

pa=no The frequencies (times no) that Hardware monitor information (precision PA) collects are specified.

- no : 1 - 11

When this option is specified, Advanced Profiler routine (precision PA) becomes effective and the
Advanced Profiler routine becomes ineffective. Refer to "3.2.2 Advanced Profiler routine (precision
PA)" for the detail of the Advanced Profiler routine (precision PA).

This option cannot be specified at the same time as "-Impi" option.

When this option is specified, the output profiling data cannot be analyzed by the GUI format.

method=method:
{ raw | normal }

Specifies the measurement mode of Hardware monitor information.

- raw : This mode measures hardware information directly, thus performing highly precise
measurement of Hardware monitor information.
However, processing such as direct I/O to global file systems might fail in Hardware monitor
information measurements.
Refer to "Hardware monitor information" under "A.2 Advanced Profiler", in "Appendix A
Considerations for Using the Profiler", for details.

- normal : This mode makes measurements via the operating system to measure Hardware monitor
information.

Please make "-Hpa=no" or "-Hevent_number=no" effective when you specify "raw".

The default is "method=normal".

exec-file [exec_option ...] Specifies the target execution file for the Advanced profiling data collection and the option.

- exec-file : Specifies mpiexec when MPI application is used.
Specify the absolute path or the relative path containing the current directory ("./") if specifying
the execution file that starts in "-".
The shell script cannot be specified.

- exec_option ... : Specifies the option to exec-file.
The character string following an execution file name is regarded as the option to an execution
file.

 Example

Example: An MPI application, a.out, of two parallels is executed, and the MPI information is obtained.

$ fapp -C -d FAPP_Example mpiexec -n 2 ./a.out

In this example, the advanced profiling data collected by the fapp command is stored in the FAPP_Example directory.

3.2.6 fapppx command
The fapppx command outputs the Advanced Profiler information in the text or CSV format.

Format

fapppx -A [-I item] [-o outfile] [-p p_no] [-H hardmon] [-l limit] [-t type]
 -d profiling_data

- 56 -

Options

The table below describes the options that can be specified for the fapppx command.

Table 3.5 fapppx command options

Option Description/Specified value (unit)

-A Specifies the output processing of the Advanced Profiler information.

This option is mandatory.

-I item Specifies the output items of the Advanced Profiler information

Delimit using commas if two or more items are specified for item.

item: { { mpi | nompi } | { hwm | nohwm } | { lpg | nolpg } }

The default is as follows:

- MPI application: -Impi,nohwm,nolpg

- Sequential application: -Inompi,nohwm,nolpg

mpi | nompi Specifies whether to output of the MPI information on the MPI application

- mpi: Outputs the MPI information. Nothing is output in a sequential application.

- nompi: Does not output the MPI information.

The default is as follows:

- MPI application: mpi

- Sequential application: nompi

hwm | nohwm Specifies whether to output of the Hardware monitor information

- hwm: Outputs the Hardware monitor information

- nohwm: Does not output the Hardware monitor information

The default is "nohwm".

lpg | nolpg Specifies whether to output the Largepage (Largepage memory use information or Largepage
statistical information) information.

- lpg: Outputs the Largepage information

- nolpg: Does not output the Largepage information

The default is "nolpg".

-o outfile Specifies the output destination of the Advanced Profiler information

If stdout is specified for outfile, the Advanced Profiler information is output to a standard output.

Specify the absolute path or the relative path containing the current directory ("./") if specifying outfile
that starts in "-".

The default is "-ostdout".

-p p_no Specifies the target process to be input and output with the Advanced Profiler information.

The information of application unit of the Advanced Profiler information is calculated using the
advanced profiling data of target process specified by this option.

Delimit using commas if two or more target process numbers (p_no) are specified.
The one specified later is valid, if two or more target process numbers (p_no) are specified.
An error is detected, if p_no is omitted.

p_no : { all | N[,N]... | input=n | limit=m }

The default is "-pinput=0,limit=16".

- 57 -

Option Description/Specified value (unit)

all | N[,N] ... | input=n
| limit=m

- all : Data on all processes is input and information on all processes is output in order with a high
cost.

- N[,N] ... : Data on process number N is input and information on process number N is output ahead
of information on the process with a high cost.
When process number N does not exist, specification is disregarded.

- input=n : Data on n processes is input.
When the value that exceeds 0 or the number of processes is specified for n, data on all processes
is input.
The default is "input=0".

- limit=m : Information on m processes is output.
When 0 or the value that exceeds n is specified for m, information on n processes is output.
The default is "limit=16".

-t type Specifies the output format of the Advanced Profiler information

The default is "-ttext".

csv | text - csv: Specifies to output the Advanced Profiler information in the CSV format.

- text: Specifies to output the Advanced Profiler information in the text format.

-H hardmon Output the Hardware monitor information (precision PA) or the measurement event number
specification.

This option only targets the advanced profiling data collected by the fapp command and analyzes it
by specifying the "-Hpa=no" or "-Hevent_number=no" option.

pa - pa: Outputs in the precise PA format or measurement event number specification.

-l limit The output number in the time base range output to the form of Hardware monitor information
(precision PA) is specified.

- limit : Integers from 0 through 2,147,483,647 can be specified to define the range (output number)

Everything is output in case of 0.

The default is 10.

Please specify "-Hpa" option to make this option effective.

-d profiling_data Specifies the name of the advanced profiling data (name of the directory that stores the advanced
profiling data file) to profiling_data by using the relative path or the absolute path.

If specifying profiling_data that starts in "-", specify the absolute path or the relative path containing
the current directory ("./").

When this option is specified at the end of an optional list of the fapppx command, "-d" can be omitted.

This option is mandatory.

3.3 Advanced Profiler information (GUI format)
This section explains the contents of the Advanced Profiler information.

The Advanced Profiler information is displayed using the Profiler GUI.

3.3.1 Overview of the Profiler feature
The profiler function analyses and gives visibility to the profiling data collected by the Instant Profiler (fipp command) and the Advanced
Profiler (fapp command).

The "Figure 3.2 Diagram of Profiler information" is shown below.

- 58 -

Figure 3.2 Diagram of Profiler information

Specify the profiling data on the login node to visualize it using the Profiler feature of the user terminal.

3.3.2 Starting the Profiler
Click the Profiler icon in the main window of FUJITSU Software Development Tools (FSDT) to start the Profiler. Refer to the
"Programming Workbench User's Guide" for information on FSDT.

Figure 3.3 Profiler icon

3.3.3 Profiler information window
This section describes the profiler information window.

3.3.3.1 Profiling data selection window
When the Profiler is started, the profiling data selection window is displayed. The directories on the login node are displayed in the profiling
data selection window in a tree structure. Select the advanced profiling data from the tree, and then click Load to start the data reading.
When the data reading completes, the Advanced Profiler information window is displayed.

Note that the advanced profiling data is a directory.

Up to 9216 parallel processes can be displayed in the Profiler. Parallel profiling data that exceeds this count cannot be used by the Profiler.

- 59 -

Figure 3.4 Profiling data selection window

3.3.3.2 Overview of the Advanced Profiler information window
When the advanced profiling data is input, the Advanced Profiler information window is displayed. The Advanced Profiler information
window comprises the following elements:

(1) Display unit switching buttons

(2) Measured Information button

(3) Advanced Profiler information area

- 60 -

Figure 3.5 Advanced Profiler information window

(1)Display unit switching buttons

The unit of display shown in the Advanced Profiler information window can be switched.

Table 3.6 Display unit

Button Display unit

Application View Total information on each application is displayed

Rank View Total information on a specific rank is displayed

Thread View Information on a specific thread is displayed

The Rank View and the Thread View buttons are only enabled if the Hardware monitor information is measured. If the Hardware monitor
information is not measured, these buttons are disabled.

If either Rank View or Thread View is selected, a box for rank selection is displayed. The rank to be displayed can be selected by using
the box.

If Thread View is selected, a box for thread selection is displayed. The thread to be displayed can be selected using the box.

(2)Measured Information button

Click the Measured Information button to display the Measured Information window. The measured state of an application, such as
the frequency of the machine, is displayed in the Measured Information window.

- 61 -

Figure 3.6 Measured Information window

Table 3.7 Measured Information

Label Description

Profiler version Version of Profiler

Profiling Data Name of the displayed profiling data

Measured time Measured date and time

CPU frequency Frequency of the measured machine

Type of program Execution format of the application

- SERIAL : Sequential

- Thread : Thread parallel

- Thread (OpenMP) : Thread parallel by OpenMP

- Thread (AUTO) : Thread parallel by automatic parallel function of the compiler

- MPI : MPI

Number of rank Number of ranks, topology shape

Number of thread Number of threads

Information is measured Collected information

- Default : the Basic information

- Hardware monitor (-Ihwm) : the Basic information, and the Hardware monitor information

- MPI information (-Impi) : the Basic information, and the MPI information

- Hardware monitor (-Ihwm) MPI information (-Impi) : the Basic information, the Hardware
monitor information, and the MPI information

(3)Advanced Profiler information area

The Advanced Profiler information is displayed.

3.3.3.3 Advanced Profiler information
The display can be switched using the display switch buttons in Application View and Rank View.

In Thread View, there is no display switch button and the information is displayed in the table format.

- 62 -

Table 3.8 Display methods
Button Information

Topology Distribution information to the rank on detailed performance information in the measurement section
is displayed according to the topology shape of the application.

This information can only be viewed in Application View.

Panel Distribution information to the thread on detailed performance information in the measurement
section is displayed.

This information can only be viewed in Rank View.

Bar Chart Distribution information to the rank or the thread on detailed performance information in the
measurement section is displayed as a bar chart.

This information can only be viewed in Application View and Rank View.

Data Compare The whole graph of three times (for three items) of displayed by selecting the row in the Topology,
Panel and Bar Chart is arranged vertically and displayed.

This information is only available in Application View and Rank View.

3.3.3.3.1 Topology/Panel information

In the Topology information, the distribution shape to the rank of the cost information can be displayed by the form along the
communication topology. In the Panel information, the distribution shape to the thread of the cost information can be displayed.

The display form of Panel information becomes one dimension shape and the same of Topology information.

The Topology or Panel information window comprises the following elements:

(1) Advanced Profiler information list

(2) Whole graph

(3) Color histogram

(4) Zoom information panel

- 63 -

Figure 3.7 Topology information window

(1)Advanced Profiler information list

The Advanced Profiler information list displays the cost information in the table format.

By clicking a cell, the distribution situation between parallel about item information on selection row concerning selection line are displayed
in whole graph. Moreover, the selected unit name and item name are displayed in the title of the zoom information panel.The item of
displayed distribution information becomes information as the group row of the selected cell. Even if AVE, MIN, or MAX is selected, it
becomes a same deal. Moreover, it is an item that has distribution information that shows the performance. The Name, Number, and MPI
columns do not have distribution information. It is assumed the one having been selected for the row with the distribution information at
the right of the selection row when selected. It is assumed the one having been selected for the row with the first distribution information
of the line when there is no row with the distribution information right.

In the initial state, the Basic tab is displayed with the distribution information selected in the first row.

The cost information is as follows:

a. Basic information

The basic information is displayed on the Basic tab.

Information on the call frequency in the measurement section and time is displayed.

Table 3.9 Items of Basic information

Label Description

Name Measurement section name

Number Measurement section group number

Call Count Call frequency for the measurement section

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

- 64 -

Label Description

Elapsed (S) Elapsed time

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

User (S) User CPU time

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

System (S) System CPU time

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

Communication (S) Communication time of processes (Only the whole application)

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

b. MPI information

The MPI information is displayed on the MPI tab.

It displays information about MPI functions called from the measurement section.

Table 3.10 Items of MPI information (parent node)

Label Description

Name Measurement section name

Number Measurement section group number

Table 3.11 Items of MPI information (child node)

Label Description

MPI MPI function name

Call Count Call frequency for the measurement section

Total Frequency for MPI functions called from the measurement section

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

0KB <= message < 4KB Call frequency when transferring from 0 KB to less than 4 KB of message length

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

4KB <= message < 64KB Call frequency when transferring from 4 KB to less than 64 KB of message length

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

- 65 -

Label Description

64KB <= message < 1024KB Call frequency when transferring from 64 KB to less than 1024 KB of message length

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

1024KB <= message Call frequency when transferring 1024 KB or more of message length

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

Elapsed (S) Elapsed time

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

Wait (S) Communication latency

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

Average message (Byte) Average forwarding message length

AVE. Average value between ranks

MIN Minimum value between ranks

MAX Maximum value between ranks

c. Hardware monitor information

The operation situation of the processor during application execution is output.

The Hardware monitor information is classified into groups that comprise two or more items and is called an event.

The events of the Hardware monitor information are listed below. A group is specified on measuring.

1. Cache

The Cache event is used to check the cache miss and memory access.

Table 3.12 Items of Cache

Label Description

Name Measurement section name

Number Measurement section group number

Elapsed (S) Elapsed time

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Instructions Executed number of instructions (number of instruction executions)

Number of instruction executions : effective_instruction_counts

- 66 -

Label Description

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

L1 instruction miss
(%)

First instruction cache miss rate generated in instruction executions

Number of occurrences of first instruction cache misses / Number of instruction executions * 100

Number of occurrences of first instruction cache misses : L1I_miss

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

L1 operand miss
(%)

First data cache miss rate generated in memory access (loading store) instruction execution

Number of occurrences of first data cache cache misses / Number of committed "load/store"
instructions * 100

Number of occurrences of first data cache cache misses : L1D_miss

Number of committed "load/store" instructions : load_store_instructions + 2 *
SIMD_load_store_instructions + 4 * 4SIMD_load_store_instructions

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

L2 cache miss (%) Level 2 cache miss rate generated in memory access (loading store) instruction execution

Number of level 2 cache miss / Number of committed "load/store" instructions * 100

Number of level 2 cache miss : L2_miss_dm + L2_miss_pf

Number of committed "load/store" instructions: load_store_instructions + 2 *
SIMD_load_store_instructions + 4 * 4SIMD_load_store_instructions

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

- 67 -

Label Description

L2 demand cache
miss (%)

Rate of demand demand misses in level 2 cache miss

The demand demand is to access the level 2 cache with the resources necessary for memory access
was able to be acquired.

Number of level 2 cache misses caused by demand requests / Number of level 2 cache miss * 100

Number of level 2 cache misses caused by demand requests : L2_miss_dm

Number of level 2 cache miss : L2_miss_dm + L2_miss_pf

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

L2 prefetch cache
miss (%)

Rate of prefetch demand misses in level 2 cache miss

The prefetch demand is the hardware prefetch state that cannot acquire the resources necessary for
memory access, and it accesses the level 2 cache.

Number of level 2 cache misses caused by prefetch requests / Number of level 2 cache miss * 100

Number of level 2 cache misses caused by prefetch requests : L2_miss_pf

Number of level 2 cache miss : L2_miss_dm + L2_miss_pf

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

2. Instructions_SIMD

The Instructions_SIMD event is used to check the instructions for processing floating-point data which SIMD conversion is
applied to.

SIMD instruction processes two or more operands in one instruction.

Table 3.13 Items of Instructions_SIMD

Label Description

Name Measurement section name

Number Measurement section group number

Elapsed (S) Elapsed time

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

- 68 -

Label Description

Instructions Executed number of instructions (number of instruction executions)

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

MIPS Instruction execution efficiency (average of the number of instruction executions per second)

Number of instruction executions / Elapsed time / 1.0e+6

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

MIPS/PEAK (%) Rate of actual measurement values to the logical peak value of MIPS

MIPS / (Number of execution cores * MIPS peak value of each core) * 100

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Load/Store
(SIMD) (%)

Rate of SIMD and 4SIMD load/store instruction number of instruction executions

Number of committed "SIMD and 4SIMD load/store" instructions / Number of instruction
executions * 100

Number of committed "SIMD and 4SIMD load/store" instructions :
XSIMD_load_store_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Floating operand
(SIMD) (%)

Rate of SIMD and 4SIMD floating-point instruction number of instruction executions

Number of committed "SIMD and 4SIMD floating-point" instruction / Number of instruction
executions * 100

- 69 -

Label Description

Number of committed "SIMD and 4SIMD floating-point" instruction :
XSIMD_floating_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

FMA (SIMD) (%) Rate of floating-point FMA instructions (SIMD execution) in number of instruction execution

Number of committed "4SIMD floating point multiply and add/sub" and "4SIMD floating point
trigonometric" instructions / Number of instruction execution * 100

Number of committed "4SIMD floating point multiply and add/sub" and "4SIMD floating point
trigonometric" instructions : XSIMD_fma_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Fixed operand
(SIMD) (%)

Rate of SIMD and 4SIMD fixed point partitioned add/sub and integer multiply add instructions in
number of instruction executions

Number of committed "SIMD and 4SIMD fixed point partitioned add/sub" and "integer multiply
add" instructions / Number of instruction execution * 100

Number of committed "SIMD and 4SIMD fixed point partitioned add/sub" and "integer multiply
add" instructions : XSIMD_fixed_point_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

SIMD (%) Rate of SIMD instructions to the number of total instruction executions

(Number of committed "SIMD and 4SIMD load/store" instructions + Number of committed "4SIMD
floating point" instructions + Number of committed "4SIMD floating point multiply and add/sub"
and "4SIMD floating point trigonometric" instructions + Number of committed "SIMD and 4SIMD
fixed point partitioned add/sub" and "integer multiply add" instructions) / Number of instruction
executions * 100

Number of committed "SIMD and 4SIMD load/store" instructions :
XSIMD_load_store_instructions

- 70 -

Label Description

Number of committed "SIMD and 4SIMD floating point" instructions :
XSIMD_floating_instructions

Number of committed "4SIMD floating point multiply and add/sub" and "4SIMD floating point
trigonometric" instructions : XSIMD_fma_instructions

Number of committed "SIMD and 4SIMD fixed point partitioned add/sub" and "integer multiply
add" instructions : XSIMD_fixed_point_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

SIMD Load/Store
(%)

Rate of SIMD and 4SIMD floating-point loading store instructions that occupies it to the number
of floating-point loading store instructions

Number of committed "SIMD and 4SIMD load/store" instructions / (Number of committed "SIMD
and 4SIMD load/store" instructions + Number of committed "load/store" instructions) * 100

Number of committed "SIMD and 4SIMD load/store" instructions :
XSIMD_load_store_instructions

Number of committed "load/store" instructions : load_store_instructions

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Prefetch Number of prefetch instructions

Number of committed "prefetch" instructions + Number of committed "NonSIMD, SIMD and
4SIMD of indirect prefetch" instructions

Number of committed "prefetch" instructions : prefetch_instructions

Number of committed "NonSIMD, SIMD and 4SIMD of indirect prefetch" instructions :
nonSIMD_XSIMD_indirect_prefetch_instructions

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Indirect Prefetch Number of committed "NonSIMD, SIMD and 4SIMD of indirect prefetch" instructions

Number of committed "NonSIMD, SIMD and 4SIMD of indirect prefetch" instructions :
nonSIMD_XSIMD_indirect_prefetch_instructions

AVE. Average value between ranks in Application View

- 71 -

Label Description

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

3. Instructions_NOSIMD

The Instructions_NOSIMD event is used to check the instructions for processing floating-point data which SIMD conversion
is not applied to.

NOSIMD instruction processes one operand in one instruction.

Table 3.14 Items of Instructions_NOSIMD

Label Description

Name Measurement section name

Number Measurement section group number

Elapsed (S) Elapsed time

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

MIPS Instruction execution efficiency (average of the number of instruction executions per second)

Number of instruction executions / Elapsed time / 1.0e+6

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

MIPS/PEAK (%) Rate of actual measurement values to the logical peak value of MIPS

MIPS / (Number of execution cores * MIPS peak value of each core) * 100

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Load/Store
(NOSIMD) (%)

Rate of load/store instruction number of instruction executions (NOSIMD execution) in number of
instruction executions

- 72 -

Label Description

Number of committed "load/store" instruction (NOSIMD execution) / Number of instruction
executions * 100

Number of committed "load/store" instruction (NOSIMD execution) : load_store_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Floating operand
(NOSIMD) (%)

Rate of floating-point instructions (NOSIMD execution) that occupies it to the number of instruction
executions

Number of committed "floating-point" instructions (NOSIMD execution) / Number of instruction
executions * 100

Number of committed "floating-point" instructions (NOSIMD execution) : floating_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

FMA (NOSIMD)
(%)

Rate of floating-point multiply and add/sub and floating-point trigonometric instructions (NOSIMD
execution) in number of instruction executions

Number of committed "floating-point multiply and add/sub" and "floating-point trigonometric"
instructions / Number of instruction executions * 100

Number of committed "floating-point multiply and add/sub" and "floating-point trigonometric"
instructions : fma_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Fixed operand
(NOSIMD) (%)

Rate of fixed point partitioned add/sub and integer multiply-add instruction (NOSIMD execution)
in number of instruction executions

Number of committed "fixed point partitioned add/sub and integer multiply-add" instruction
(NOSIMD execution) / Number of instruction executions * 100

Number of committed "fixed point partitioned add/sub and integer multiply-add" instruction
(NOSIMD execution) : fixed_point_instructions

Number of instruction executions : effective_instruction_counts

- 73 -

Label Description

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

NOSIMD (%) Rate of NOSIMD instructions in number of instruction executions

(Number of committed "floating-point loading store" instructions + Number of committed "floating-
point" instructions + Number of committed "floating-point multiply and add/sub" and "floating-
point trigonometric" instructions + Number of committed "fixed point partitioned add/sub and
integer multiply-add" instructions) / Number of instruction executions * 100

Number of committed "floating-point loading store" instructions : load_store_instructions

Number of committed "floating-point" instructions : floating_instructions

Number of committed "floating-point multiply and add/sub" and "floating-point trigonometric"
instructions : fma_instructions

Number of committed "fixed point partitioned add/sub and integer multiply-add" instruction
(NOSIMD execution) : fixed_point_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

NOSIMD Load/
Store (%)

Rate of SIMD and 4SIMD floating-point loading store instructions that occupies it to the number
of floating-point loading store instructions

Number of committed "load/store" instructions / (Number of committed "SIMD and 4SIMD load/
store" instructions + Number of committed "load/store" instructions) * 100

Number of committed "load/store" instructions : load_store_instructions

Number of committed "SIMD and 4SIMD load/store" instructions :
XSIMD_load_store_instructions

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Prefetch Number of prefetch instructions

Number of committed "prefetch" instructions + Number of committed "NonSIMD, SIMD and
4SIMD of indirect prefetch" instructions

Number of committed "prefetch" instructions : prefetch_instructions

- 74 -

Label Description

Number of committed "NonSIMD, SIMD and 4SIMD of indirect prefetch" instructions :
nonSIMD_XSIMD_indirect_prefetch_instructions

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Indirect Prefetch Number of committed "NonSIMD, SIMD and 4SIMD of indirect prefetch" instructions

Number of committed "NonSIMD, SIMD and 4SIMD of indirect prefetch" instructions :
nonSIMD_XSIMD_indirect_prefetch_instructions

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

4. MEM_access

The MEM_access event is used to check the execution status of instructions accessing the data transfer efficiency and the
memory between CPU core and the memory.

Memory access throughput large enough, data transfer among many of the between memory and CPU core.

Table 3.15 Items of MEM_access

Label Description

Name Measurement section name

Number Measurement section group number

Elapsed (S) Elapsed time

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Load/Store (SIMD)
(%)

Rate of SIMD and 4SIMD load/store instruction number of instruction executions

Number of committed "SIMD and 4SIMD load/store" instructions / Number of instruction
executions * 100

Number of committed "SIMD and 4SIMD load/store" instructions :
XSIMD_load_store_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

- 75 -

Label Description

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Load/Store
(NOSIMD) (%)

Rate of load/store instruction number of instruction executions (NOSIMD execution) in number
of instruction executions

Number of committed "load/store" instruction (NOSIMD execution) / Number of instruction
executions * 100

Number of committed "load/store" instruction (NOSIMD execution) : load_store_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Memory access
throughput (core) (GB/
s)

Average of the amount of data transfer per second between memory and CPU core

Amount of data transfer between memory and CPU core * 256 / Elapsed time / 1.0e+9

Amount of data transfer between memory and CPU core : L2_miss_dm + L2_miss_pf +
L2_wb_dm + L2_wb_pf

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Write back (Ratio) Rate of writeback in memory access

Memory CPU core writing data amount / Amount of data transfer between memory CPU cores
* 100

Memory CPU core writing data amount : L2_wb_dm + L2_wb_pf

Amount of data transfer between memory CPU cores : L2_miss_dm + L2_miss_pf + L2_wb_dm
+ L2_wb_pf

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Memory access
throughput (peak)
(core)(GB/s)

Memory access throughput peak value of each core

- When the write backing rate is smaller than 50%
240 + 240 * ((Memory CPU core writing data amount / Amount of data transfer between

- 76 -

Label Description

memory CPU cores) / (1 - Memory CPU core writing data amount / Amount of data transfer
between memory CPU cores))

- When the write backing rate is 50% or more
240 + 240 * ((1 - Memory CPU core writing data amount / Amount of data transfer between
memory CPU cores) / (Memory CPU core writing data amount / Amount of data transfer
between memory CPU cores))

Memory CPU core writing data amount : L2_wb_dm + L2_wb_pf

Amount of data transfer between memory CPU cores : L2_miss_dm + L2_miss_pf + L2_wb_dm
+ L2_wb_pf

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Memory access
throughput / PEAK
(core) (%)

Rate of memory access throughput peak value in memory access throughput

Memory access throughput (core) / memory access throughput (peak)(core) * 100

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

5. Performance

The Performance event is used to check the ratio at the time that is executed and waited for with the instruction row.

Moreover, the rate in which two or more instructions are executed in parallel and the rate at the execution waiting time
according to the cause can be confirmed.

Execution efficiency can be improved wait time is small and 2-4 instruction commit is greater.

Table 3.16 Items of Performance

Label Description

Name Measurement section name

Number Measurement section name

Elapsed (S) Measurement section group number

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

- 77 -

Label Description

2-4 instruction
commit (S)

Time when number of completion instructions is two or more

(CPU cycle number - (Number of cycles where no instructions are committed + Number of cycles
where 1 instruction is committed)) / Frequency in CPU core

CPU cycle number : cycle_counts

Number of cycles where no instructions are committed : 0endop

Number of cycles where 1 instruction is committed : 1endop

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

1 instruction
commit (S)

Time when number of completion instructions is one

Number of cycles where 1 instruction is committed / Frequency in CPU core

Number of cycles where 1 instruction is committed : 1endop

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Operation wait (S) Oldest instruction in the instruction when being executing it is time when the operation of the
floating-point number and the number of completion instructions are 0

Number of cycles where no instructions are committed and the oldest / Frequency in CPU core

Number of cycles where no instructions are committed and the oldest : eu_comp_wait

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Cache access wait
(S)

Time according to the cache access waiting when the number of completion instructions is 0

(Number of cycles where no instructions are committed because the oldest - Number of cycle where
waiting by level 2 cache miss) / Frequency in CPU core

Number of cycles where no instructions are committed because the oldest : op_stv_wait

Number of cycle where waiting by level 2 cache miss : op_stv_wait_sxmiss

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

- 78 -

Label Description

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Memory access
wait (S)

Within the range of the measurement, time according to the memory access waiting when the number
of completion instructions is 0

CSE is a buffer to hold the information on the instruction currently executing (it is issued, but not
completed yet).

(Number of cycle where waiting by level 2 cache miss + Number of cycles where no instructions
are committed because the CSE is empty) / Frequency in CPU core

(Number of cycle where waiting by level 2 cache miss : op_stv_wait_sxmiss

Number of cycles where no instructions are committed because the CSE is empty :
cse_window_empty_sp_full

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Fetch wait (S) Time when number of completion instructions is 0 because CSE is empty

CSE is a buffer to hold the information on the instruction currently executing (it is issued, but not
completed yet).

(Number of cycles where no instructions are committed because the CSE is empty - Number of
cycles where no instructions are committed because the CSE is empty and the store ports are full) /
Frequency in CPU core

Number of cycles where no instructions are committed because the CSE is empty :
cse_window_empty

Number of cycles where no instructions are committed because the CSE is empty and the store ports
are full : cse_window_empty_sp_full

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Other wait (S) Time when number of completion instructions is 0 for reasons other than the above

Time when number of cycles where no instructions are committed - (Operation waiting time + Cache
access waiting time + Memory access waiting time + Instruction fetch waiting time)

Time when number of cycles where no instructions are committed : 0endop / Frequency in CPU
core

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

- 79 -

Label Description

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

6. Statistics

The Statistics event is used to check the execution efficiency.

High performance as the MIPS and FLOPS is close to peak value.

Table 3.17 Items of Statistics

Label Description

Name Measurement section name

Number Measurement section group number

Elapsed (S) Elapsed time

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

MFLOPS Floating-point arithmetic execution efficiency (average of the number of floating-point arithmetic
executions per second)

(Number of operations is obtained by multiplying by 1 + 2 * Number of operations is obtained by
multiplying by 2 + 4 * Number of operations is obtained by multiplying by 4 + 8 * Number of
operations is obtained by multiplying by 8 + 16 * Number of operations is obtained by multiplying
by 16) / Elapsed time / 1.0e+6

Number of operations is obtained by multiplying by 1 : 1FLOPS_instructions

Number of operations is obtained by multiplying by 2 : 2FLOPS_instructions

Number of operations is obtained by multiplying by 4 : 4FLOPS_instructions

Number of operations is obtained by multiplying by 8 : 8FLOPS_instructions

Number of operations is obtained by multiplying by 16 : 16FLOPS_instructions

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

MFLOPS/PEAK
(%)

Rate of actual measurement values to the logical peak value of MFLOPS

MFLOPS / (Number of execution core * MFLOPS peak value of each core) * 100

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

- 80 -

Label Description

Maximum value between threads in Rank View

MIPS Instruction execution efficiency (average of the number of instruction executions per second)

Number of instruction executions / Elapsed time / 1.0e+6

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

MIPS/PEAK (%) Rate of actual measurement values to the logical peak value of MIPS

MIPS / (Number of execution cores * MIPS peak value of each core) * 100

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Floating point
operations (%)

Rate of the number of floating-point arithmetic executions in operand of instruction

(Number of operations is obtained by multiplying by 1 + 2 * Number of operations is obtained by
multiplying by 2 + 4 * Number of operations is obtained by multiplying by 4 + 8 * Number of
operations is obtained by multiplying by 8 + 16 * Number of operations is obtained by multiplying
by 16) / (Number of instruction executions + Number of operations is obtained by multiplying by
2 + 3 * Number of operations is obtained by multiplying by 4 + 7 * Number of operations is obtained
by multiplying by 8 + 15 * Number of operations is obtained by multiplying by 16) * 100

Number of operations is obtained by multiplying by 1 : 1FLOPS_instructions

Number of operations is obtained by multiplying by 2 : 2FLOPS_instructions

Number of operations is obtained by multiplying by 4 : 4FLOPS_instructions

Number of operations is obtained by multiplying by 8 : 8FLOPS_instructions

Number of operations is obtained by multiplying by 16 : 16FLOPS_instructions

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

7. TLB

The TLB event is used to check the TLB miss at the data transfer between memory and CPU core.

- 81 -

Table 3.18 Items of TLB
Label Description

Name Measurement section name

Number Measurement section group number

Elapsed (S) Elapsed time

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

Instructions Executed number of instructions (number of instruction executions)

Number of instruction executions : effective_instruction_counts

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

uDTLB miss (%) Rate of data uTLB misses

Number of uTLB misses / Number of memory access instructions * 100

Number of uTLB misses : uDTLB_miss

Number of memory access instructions : load_store_instructions + 2 *
SIMD_load_store_instructions + 4 * 4SIMD_load_store_instructions

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

DTLB miss (%) Rate of data DTLB misses

Number of DTLB write via the Hardware Tablealk caused by a data access DTLB miss / Number
of memory access instructions * 100

Number of DTLB write via the Hardware Tablealk caused by a data access DTLB miss :
DTLB_write

Number of memory access instructions : load_store_instructions + 2 *
SIMD_load_store_instructions + 4 * 4SIMD_load_store_instructions

AVE. Average value between ranks in Application View

Average value between threads in Rank View

MIN Minimum value between ranks in Application View

Minimum value between threads in Rank View

- 82 -

Label Description

MAX Maximum value between ranks in Application View

Maximum value between threads in Rank View

(2)Whole graph

Distribution information between parallels on the item selected by the Advanced Profiler information list is displayed in the whole graph
by the graph form.

A range selection frame is displayed when the cursor is moved to the whole graph area, and information that corresponds to the range
selection frame is displayed in the zoom information panel.

The range selection frame is a fixed size that can be displayed in the zoom information panel for parallel numbers.

The range selection position can be fixed or released by clicking on the whole graph.

When all parallel numbers are installed on the zoom information panel, the range selection frame is not displayed.

Shape in the selection border for the color and three dimension shape used for the whole graph can be changed by the color histogram.

The example of a whole graph is shown as follows. A white frame in figure is a range selection frame.

Figure 3.8 Example of one-dimensional shape/Panel information

In case of a one-dimensional shape and the Panel information, a parallel unit is arranged from the left to the right. It moves to the next
line if it is not possible to display it in one line.

Figure 3.9 Example of a two-dimensional shape

In case of a two-dimensional shape, the bottom left is the starting point (0,0).

Figure 3.10 Example of a three-dimensional shape

In case of a three-dimensional shape, the intersection of the vertical Y axis (red axis line), the diagonal Z axis (blue axis line), and the
horizontal X axis (green axis line) is the starting point.

- 83 -

(3)Color histogram

The color histogram shows the relation between the color and the value used for the whole graph and the graph in the zoom information
panel. Note that the occurrence rate of a value is shown according to the height of the color bar chart.

The color histogram comprises the following elements:

1. Range selection frame buttons

Using the range selection frame buttons and layout switch buttons, the layout of the figure (only three-dimensional shapes) displayed
in the zoom information panel and the selection border of the range selection frame can be changed.

The range selection frame button is displayed when displayed by three dimension shape. The range of the selection of the range
selection frame is revocable because of the button that has been selected. Moreover, the coordinates location information about the
dimension on the axis selected in Whole graph is displayed under the button that has been selected.

Table 3.19 Range selection frame

Button Selected range

X X axis is fixed. Aspect on the same X axis can be selected.

Y Y axis is fixed. Aspect on the same Y axis can be selected.

Z Z axis is fixed. Aspect on the same Z axis can be selected.

2. Histogram

It displays a histogram. The occurrence rate of a value and the relation between the value and the color is shown.

3. Color mode box

The color mode of the color histogram can be changed. The color modes are described below.

When the Advanced Profiler is started, "Hue (Blue to Red)" is selected by default.

Table 3.20 Color modes

Label Description

Hue (Blue to Red) The cost is allocated from blue to red in 256 colors. By default, the color becomes red from blue
as the cost rises from low-cost.

Tone (Blue to Red) The cost is allocated blue, white, and red tones. By default, the color becomes blue, white, and red
as the cost rises from low-cost.

4 colors The cost is allocated four colors (blue, green, yellow, and red). By default, the color becomes blue,
green, yellow, and red as the cost rises from low-cost. The color allocation threshold can be changed
by the operation of the thumb. The default position of thumb is as follows:

First thumb: Center of the average value and the minimum value

Second thumb: Average value

Third thumb: Center of the average value and the maximum value

4. Color histogram controlled check boxes

The minimum value of the histogram and the color order can be changed.

Table 3.21 Check boxes

Label Description

MIN is ZERO Uses 0 as the minimum value for the color histogram

Color reversal Reverses the order of the color histogram color scheme

(4)Zoom information panel

In the zoom information panel, information within the range selected in the whole graph is expanded and displayed. A white frame to
select one unit is displayed when the cursor is moved to the zoom information panel. The cost information on the selected unit is displayed
in a table in the panel. The displayed item is an item displayed in the Advanced Profiler information list. The range selection position can

- 84 -

be fixed or released by clicking in the zoom information panel. The unit that has been selected in the zoom information panel is the box
where the rank of Rank View and Thread View is selected and the box and where the thread is selected.

3.3.3.3.2 Bar Chart information

In the Bar Chart information, the distribution between parallel units of the cost displayed in the cost information is displayed as a bar chart.
The displayed items and the operation methods are the same as the Topology or Panel information.

However, there is no distribution information selected when the initial state of Rank view is displayed.

3.3.3.3.3 Data Compare information

In the Data Compare information, the whole graph of three times (for three items) of displayed by selecting the row in the Topology, Panel
and Bar Chart is arranged vertically and displayed.

The graph of the same item with a different form is updated without being added.

When the cursor is moved to the whole graph, the range selection frame is displayed, and the information that corresponds to the selection
frame is extracted to the left and displayed.

Figure 3.11 Data Compare information window

3.4 Advanced Profiler information (text/CSV formats)
This section describes the Advanced Profiler information (text/CSV formats) output by the fapppx command.

3.4.1 Overview of the Advanced Profiler feature
The Advanced Profiler information comprises the following information.

The output of each information can be controlled by using options of the fapppx command.

Refer to "3.2.6 fapppx command" for information on the options that control information.

- Environment information for advanced profiling data collection

- 85 -

- Basic information

- MPI information

- Hardware monitor information

- Largepage information

The following figure shows the composition of the Advanced Profiler information in the text format.

Figure 3.12 Composition of the Advanced Profiler information in the text format

3.4.2 Environment information for advanced profiling data collection
The environment information outputs the details of the execution environment where the advanced profiling data is collected.

Figure 3.13 Output format of the environment information for advanced profiling data collection

Table 3.22 Output items of the environment information for advanced profiling data collection

Output item Description

@vl Version level

@date Date for advanced profiling data collection

@pno Process number

@frequency Frequency of execution processor

@type Execution format of an application

SERIAL : Sequential

Thread(AUTO) : Automatic parallel

Thread(OpenMP) : OpenMP

MPI : MPI

- 86 -

Output item Description

MPI(AUTO) : MPI + Automatic parallel

MPI(OpenMP) : MPI + OpenMP

@thno Thread number (displayed in case of parallel threads)

@x, @y, @z Logical shape of an MPI application on execution (displayed in case of MPIs)

3.4.3 Basic information
The average, minimum, and maximum values for the call count, the elapsed time, the user CPU time, and the system CPU time of each
measurement section is output in the basic information.

Figure 3.14 Output format of the basic information

Table 3.23 Output items of the basic information

Output item Description

@elapse Elapsed time (s)

@user User CPU time (s)

@sys System CPU time (s)

@call Call count

@name Group name

@no Advanced number

@pno Process number

3.4.4 MPI information
The average, minimum, and maximum values for the call count, the message length, the elapsed time, and the wait time are output in the
MPI information.

- 87 -

3.4.4.1 Formulas of the message length
The formulas of the message length of each MPI subroutine and the MPI function are shown in the table below:

Table 3.24 Formulas of the message length

MPI subroutine/function Formula

MPI_SEND

MPI_BSEND

MPI_SSEND

MPI_RSEND

MPI_ISEND

MPI_IBSEND

MPI_ISSEND

MPI_IRSEND

Number of elements in the send buffer * Size of data type in the each send buffer element

MPI_RECV Received number of elements * Size of data type in the each receive buffer element

MPI_IRECV Number of elements in the receive buffer * Size of data type in the each receive buffer
element

MPI_SENDRECV (Number of elements in the send buffer * Size of type of elements in the send buffer) +
(Number of elements in the receive buffer * Size of type of elements in the receive buffer)

MPI_SENDRECV_REPLACE (Number of elements in the send and receive buffer * Size of type of elements in the send
and receive buffer *2)

MPI_BCAST

MPI_IBCAST

- For the root process
Number of elements in the buffer * Size of data type in the buffer * 2

- Except the root process
Number of elements in the buffer * Size of data type in the buffer

MPI_GATHER

MPI_IGATHER

- For the root process
(Number of elements in the send buffer * Size of data type in the send buffer elements)
+ (Number of total processes * Number of elements for any single receive * Size of
data type in the receive buffer elements)

- Except the root process
Number of elements in the send buffer * Size of data type in the send buffer elements

MPI_GATHERV

MPI_IGATHERV

- For the root process
(Number of elements in the send buffer * Size of data type in the send buffer elements)
+ (Containing the number of elements that are received from each process * Size of
data type in the receive buffer elements)

- Except the root process
Number of elements in the send buffer * Size of data type in the send buffer elements

MPI_SCATTER

MPI_ISCATTER

- For the root process
(Number of total processes * Number of elements sent to each process * Size of data
type in the send buffer elements) + (Number of elements in the receive buffer * Size
of data type in the receive buffer elements)

- Except the root process
Number of elements in the receive buffer * Size of data type in the receive buffer
elements

MPI_SCATTERV

MPI_ISCATTERV

- For the root process
(Specifying the number of elements to send to each process * Size of data type in the
send buffer elements) + (Number of elements in the receive buffer * Size of data type
in the receive buffer elements)

- 88 -

MPI subroutine/function Formula

- Except the root process
Number of elements in the receive buffer * Size of data type in the receive buffer
elements

MPI_ALLGATHER

MPI_IALLGATHER

(Number of elements in the send buffer * Size of data type in the send buffer elements)
+ (Number of total processes * Number of elements in the receive buffer * Size of data
type in the receive buffer elements)

MPI_ALLGATHERV

MPI_IALLGATHERV

(Number of elements in the send buffer * Size of data type in the send buffer elements)
+ (Containing the number of elements that are received from each process * Size of data
type in the receive buffer elements)

MPI_ALLTOALL

MPI_IALLTOALL

(Number of total processes * Number of elements send to each process * Size of data type
in the send buffer elements) + (Number of total processes * Number of elements received
from one process * Size of data type in the receive buffer elements)

MPI_ALLTOALLV

MPI_IALLTOALLV

(Total of number of elements in the data send to each process * Size of data type in the
send buffer elements) + (Total of element in the data received from each process * Size
of data type in the receive buffer elements)

MPI_REDUCE

MPI_IREDUCE

- For the root process
Number of elements in the send buffer * Size of data type in the send buffer elements
* 2

- Except the root process
Number of elements in the send buffer * Size of data type in the send buffer elements

MPI_ALLREDUCE

MPI_IALLREDUCE

Number of elements in the send buffer * Size of data type in the send buffer elements *
2

MPI_REDUCE_SCATTER

MPI_IREDUCE_SCATTER

(Total of number of elements in the data send to each process * Size of data type in the
buffer elements) + (Number of receive elements * Size of data type in the buffer elements)

MPI_SCAN

MPI_ISCAN

Number of elements in the input buffer * Size of data type in the input buffer * 2

MPI_PUT

MPI_RPUT

Number of elements in the origin buffer * Size of data type in the origin buffer

MPI_GET

MPI_RGET

Number of elements in the target buffer * Size of data type in the target buffer

MPI_ACCUMULATE

MPI_RACCUMULATE

Number of elements in the origin buffer * Size of data type in the origin buffer

MPI_ALLTOALLW

MPI_IALLTOALLW

(Number of elements of send buffers in the each process * Size of data type of send buffer
in the each process) + (Number of elements of receive buffers in the each process * Size
of data type of receive buffer in the each process)

MPI_EXSCAN

MPI_IEXSCAN

Number of elements in the input buffer * Size of data type in the input buffer * 2

MPI_REDUCE_SCATTER_BLOCK

MPI_IREDUCE_SCATTER_BLOCK

(Size of data type in the buffer elements * Number of total processes * Number of element
per block) + (Size of data type in the buffer elements * Number of elements per block)

MPI_MRECV

MPI_IMRECV

Size of data type in the each receive buffer element * Number of elements in receive buffer

MPI_COMPARE_AND_SWAP Size of data type of elements in all buffers * 2

MPI_GET_ACCUMULATE

MPI_RGET_ACCUMULATE

(Size of each entry in origin buffer * Number of entries in origin buffer)+(Size of each
entry in target buffer * Number of entries in target buffer)

- 89 -

MPI subroutine/function Formula

MPI_NEIGHBOR_ALLGATHER

MPI_INEIGHBOR_ALLGATHER

(Number of elements in the send buffer * Size of data type in the send buffer elements)+
(Number of a edges becoming the input * Number of elements in the receive buffer * Size
of data type in the receive buffer elements)

MPI_NEIGHBOR_ALLGATHERV

MPI_INEIGHBOR_ALLGATHERV

(Number of elements in the send buffer * Size of data type in the send buffer elements)+
(Total of elements in the receive buffer of a edges becoming each input * Size of data type
in the receive buffer elements)

MPI_NEIGHBOR_ALLTOALL

MPI_INEIGHBOR_ALLTOALL

(Number of a edges becoming the output * Number of elements in the send buffer * Size
of data type in the send buffer elements)+(Number of a edges becoming the input *
Number of elements in the receive buffer * Size of data type in the receive buffer elements)

MPI_NEIGHBOR_ALLTOALLV

MPI_INEIGHBOR_ALLTOALLV

(Total of elements in the receive buffer of a edges becoming each output * Size of data
type in the send buffer elements)+(Total of elements in the receive buffer of a edges
becoming each input * Size of data type in the receive buffer elements)

MPI_NEIGHBOR_ALLTOALLW

MPI_INEIGHBOR_ALLTOALLW

(Total of elements in the receive buffer of a edges becoming each output * Size of data
type in the send buffer elements of a edges becoming each output)+(Total of elements in
the receive buffer of a edges becoming each input * Size of data type in the receive buffer
elements of a edges becoming each input)

3.4.4.2 Output format of the MPI information
The output format of the MPI information is shown in the figure below.

Figure 3.15 Output format of the MPI information

The output items of the MPI information are shown in the table below.

Table 3.25 Output items of the MPI information

Output item Description

@elapse Elapsed time(s)

@wait Wait time(s)

@byte Average message length(Byte)

@call Call count of an MPI function

@ma Call count of MPI functions when the message length is more than 0 B but less than 4 KB

- 90 -

Output item Description

@mb Message length MPI functions when the message length is more than 4 KB but less than 64 KB

@mc Call count of MPI functions when the message length is more than 64 KB but less than 1024 KB

@md Call count of MPI functions when the message length is more than 1024 KB

@name Group name

@no Advanced number

@mfunc MPI function name

@pno Process number

3.4.5 Hardware monitor information
The Hardware monitor information is composed of two or more items.

Each item is classified into a group referred to as an event.

To collect specific information on the processor using the Advanced Profiler, the fapp command is executed specifying the event that
contains the information to be measured.

 Example

Example to the fapp command specifying an event

$ fapp -C -d FAPP_Example -Ihwm -Hevent=Statistics ./a.out

Refer to "3.2.5 fapp command" for information on how to collect the Hardware monitor information.

3.4.5.1 Events list
The following table describes the Hardware monitor information events.

Table 3.26 Hardware monitor information events

Event name Measured information Description

Cache Elapsed time (s) Elapsed time for executing instructions of the measured
range

Instructions Executed number of instructions

L1 instruction cache miss (%) Level 1 instruction cache miss rate generated in memory
access (loading store) instruction execution

L1 operand cache miss (%) Level 1 data cache miss rate generated in memory access
(loading store) instruction execution

L2 cache miss (%) Level 2 cache miss rate generated in memory access
(loading store) instruction execution

L2 demand cache miss (%) (*2) Rate of demand demand miss in level 2 cache miss

L2 prefetch miss (%) (*3) Rate of prefetch demand miss in level 2 cache miss

Instructions_SIMD Elapsed time (s) Elapsed time for executing instructions of the measured
range

Instructions Executed number of instructions

MIPS Instruction execution efficiency (average of number of
instructions executed per second)

MIPS/PEAK (%) Rate of actual measurement values to the logical peak value
of MIPS

- 91 -

Event name Measured information Description

Load/Store (SIMD) (%) (*1) Rate of floating-point loading store SIMD or SIMD
instruction that occupies it to the number of instruction
executions

Floating operand (SIMD) (%) (*1) Rate of floating-point operation instructions (SIMD
executions) that occupies it to the number of instruction
executions

FMA (SIMD) (%) (*1) Rate of floating-point FMA instructions (SIMD execution)
in number of instruction executions

Fixed operand (SIMD) (%) (*1) Rate of fixed-point operation instructions (SIMD
executions) that occupies it to the number of instruction
executions

SIMD (%) (*1) Rate of number of SIMD instructions in number of

instruction executions

SIMD load store instruction rate (%) Rate of SIMD instruction that occupies it to load store
instruction

Prefetch Number of prefetch instructions

Indirect prefetch Number of indirect prefetch instructions

Instructions_NOSIMD Elapsed time (s) Elapsed time for executing instructions of the measured
range

Instructions Executed number of instructions

MIPS Instruction execution efficiency (average of number of
instructions executed per second)

MIPS/PEAK (%) Rate of actual measurement values to the logical peak value
of MIPS

Load/Store (NOSIMD) (%) (*1) Rate of floating-point operation instructions (NOSIMD
execution) that occupies it to the number of instruction
executions

Floating operand (NOSIMD) (%)
(*1)

Rate of floating-point operation instructions (NOSIMD
execution) that occupies it to the number of instruction
executions

FMA (NOSIMD) (%) (*1) Rate of floating-point FMA instructions (NOSIMD
execution) in number of instruction executions

Fixed operand (NOSIMD) (%) (*1) Rate of fixed-point operation instructions (NOSIMD
executions) that occupies it to the number of instruction
executions

NOSIMD (%) (*1) Rate of NOSIMD instructions in number of instruction
executions

NOSIMD load store instruction rate
(%)

Rate of NOSIMD instruction that occupies it to load store
instruction

Prefetch Number of prefetch instructions

Indirect prefetch Number of indirect prefetch instructions

MEM_access Elapsed time (s) Elapsed time for executing instructions of the measured
range

Load/Store (SIMD) (%) (*1) Rate of floating-point loading store SIMD or SIMD
instructions that occupies it to the number of instruction
executions

- 92 -

Event name Measured information Description

Load/Store (NOSIMD) (%) (*1) Rate of number of floating-point loading store instructions
in number of instruction executions

Memory access throughput (core)
(GB/s)

Average data transfer between memory and CPU core per
second

Write back rate (%) (*5) Rate of writing data amount to the data transfer between
memory CPU cores

Memory access throughput (PEAK)
(*5)

Peak value of memory throughput calculated based on write
backing rate

Memory access throughput peak rate
(%) (*5)

Rate of survey data to memory throughput peak value

Performance Elapsed time (s) Elapsed time for executing instructions of the measured
range

2-4 instruction commit Time when number of completion instructions is two or
more

1 instruction commit Time when number of completion instructions is one

Operation wait Oldest instruction in the instruction when being executing
it is time when the operation of the floating-point number
and the number of completion instructions are 0

Cache access wait Time according to the cache access waiting when the
number of completion instructions is 0

Memory access wait Within the range of the measurement, time according to the
memory access waiting when the number of completion
instructions is 0

Fetch wait Time when number of completion instructions is 0 because
CSE is empty (*4)

Other wait Time when number of completion instructions is 0 for
reasons other than the above

Statistics Elapsed time (s) Elapsed time for executing instructions of the measured
range

MFLOPS Floating-point arithmetic execution efficiency

(average floating-point arithmetic executions per second)

MFLOPS/PEAK (%) Rate of actual measurement values to the logical peak value
of MFLOPS

MIPS Instruction execution efficiency(average of number of
instruction executions per second)

MIPS/PEAK (%) Rate of actual measurement values to the logical peak value
of MIPS

Floating operand Rate of number of floating-point arithmetic execution in
operand of instruction

TLB Elapsed time (s) Elapsed time for executing instructions of the measured
range

Instructions Executed number of instructions

uTLB miss (%) Rate of the uTLB miss to the number of instruction
executions

mTLB miss (%) Rate of the main TLB miss to the number of instruction
executions

- 93 -

*1 : SIMD instruction processes two or more operands in one instruction. NOSIMD instruction processes one operand in one instruction.

*2 : The demand demand is to access the level 2 cache with the resources necessary for memory access was able to be acquired.

*3 : The prefetch demand is the hardware prefetch state that cannot acquire the resources necessary for memory access, and it accesses
the level 2 cache.

*4 : CSE is a buffer to hold the information on the instruction currently executing (it is issued, but not completed yet).

*5 : "Write back rate", "Memory access throughput (PEAK)", and "Memory access throughput peak rate" output only the unit of the
application, and the power output of the unit of the process and each thread becomes 0.

3.4.5.2 Formulas of the Hardware monitor information
The following table describes the calculation formulas for events in the Hardware monitor information.

Table 3.27 Formulas of the Hardware monitor information (Cache)

Event name Measured information (unit) Formula

Cache Elapsed time (s) Elapsed time for executing instructions of the measured range

Instructions Executed number of instructions

L1 instruction cache miss (%) Level 1 instruction cache miss frequency / Executed number of
instructions * 100

L1 operand cache miss (%) (*1) Level 1 data cache miss frequency / Number of memory access
instructions * 100

L2 cache miss (%) (*1) Level 2 cache miss frequency / Number of memory access
instructions * 100

L2 demand cache miss (%) Level 2 cache miss frequency of demand / Level 2 cache miss
frequency * 100

L2 prefetch miss (%) Level 2 cache miss frequency of prefetch demand / Level 2 cache
miss frequency * 100

*1 : Memory access instructions are calculated by the following expression:

Number of Integer or floating-point loading store instructions(load_store_instructions) + (Number of
floating-point loading store SIMD instructions(SIMD_load_store_instructions) * 2) + (Number of
floating-point loading store 4SIMD instructions(4SIMD_load_store_instructions) * 4)

The values in the calculation expressions are used from the following PA events.

(1) effective_instruction_counts (2) load_store_instructions

(3) SIMD_load_store_instructions (4) 4SIMD_load_store_instructions

(5) L1I_miss (6) L1D_miss

(7) L2_miss_dm (8) L2_miss_pf

Executed number of instructions (1)

Number of memory access instructions (2) + 2 * (3) + 4 * (4)

Level 1 instruction cache miss frequency (5)

Level 1 data cache miss frequency (6)

Level 2 cache miss frequency (7) + (8)

Level 2 cache miss frequency of demand (7)

Level 2 cache miss frequency of prefetch demand (8)

- 94 -

Table 3.28 Formulas of the Hardware monitor information (Instructions_SIMD)
Event name Measured information (unit) Formula

Instructions_SIMD Elapsed time (s) Elapsed time for executing instructions of the measured range

Instructions Executed number of instructions

MIPS Number of instruction executions / Elapsed time / 1.0e+6

MIPS/PEAK (%)(*1) MIPS / (Number of execution cores * MIPS peak value of each
core) * 100

Load/Store (SIMD) (%) Number of floating-point loading store SIMD instructions (SIMD
and 4SIMD) /

Number of instruction executions * 100

Floating operand (SIMD) (%) Number of floating-point arithmetic SIMD instructions (SIMD
and 4SIMD) / Number of instruction executions * 100

FMA (SIMD) (%) Number of floating-point FMA SIMD instructions (SIMD and
4SIMD) / Number of instruction executions * 100

Fixed operand (SIMD) (%) Number of fixed-point arithmetic SIMD instructions (SIMD and
4SIMD) / Number of instruction executions * 100

SIMD (%) (Number of floating-point loading store SIMD instructions (SIMD
and 4SIMD) + Number of floating-point arithmetic SIMD
instructions (SIMD and 4SIMD) + Number of floating-point FMA
SIMD instructions (SIMD and 4SIMD) + Number of fixed-point
arithmetic SIMD instructions (SIMD and 4SIMD)) / Number of
instruction executions * 100

SIMD load store instruction rate
(%)

Number of floating-point loading SIMD store instructions (SIMD
and 4SIMD) / (Number of floating-point loading store instructions
+ Number of floating-point loading store SIMD instructions
(SIMD and 4SIMD)) * 100

Prefetch Number of prefetch instructions (exclude "indirect prefetch"
instruction) + Number of indirect prefetch instructions

Indirect prefetch Number of indirect prefetch instructions

*1 : The MIPS peak value of each core is calculated by the following expression:

Frequency in CPU core * Number of instructions that can be issued per cycle * 1000(MIPS)

The values in the calculation expressions are used from the following PA events.

(1) effective_instruction_counts (2) XSIMD_load_store_instructions

(3) XSIMD_floating_instructions (4) XSIMD_fma_instructions

(5) XSIMD_fixed_point_instructions (6) prefetch_instructions

(7) nonSIMD_XSIMD_indirect_prefetch_instructions (8) load_store_instructions

Executed number of instructions (1)

Number of floating-point loading store SIMD instructions (SIMD and 4SIMD) (2)

Number of floating-point arithmetic SIMD instructions (SIMD and 4SIMD) (3)

Number of floating-point FMA SIMD instructions (SIMD and 4SIMD) (4)

Number of fixed-point arithmetic SIMD instructions (SIMD and 4SIMD) (5)

Number of floating-point loading store instructions (8)

- 95 -

Number of prefetch instructions (exclude "indirect prefetch" instruction) (6)

Number of indirect prefetch instructions (7)

Table 3.29 Formulas of the Hardware monitor information (Instructions_NOSIMD)

Event name Measured information (unit) Formula

Instructions_NOSIMD Elapsed time (s) Elapsed time for executing instructions of the measured range

Instructions Executed number of instructions

MIPS Number of instruction executions / Elapsed time / 1.0e+6

MIPS/PEAK (%) (*3) MIPS / (Number of execution cores * MIPS peak value of each
core) * 100

Load/Store (NOSIMD) (%) Number of floating-point loading store instructions / Number of
instruction executions * 100

Floating operand (NOSIMD) (%) Number of floating-point arithmetic instructions / Number of
instruction executions * 100

FMA (NOSIMD) (%) Number of floating-point FMA instructions / Number of

instruction executions * 100

Fixed operand (NOSIMD) (%) Number of fixed-point arithmetic instructions / Number of
instruction executions * 100

NOSIMD (%) (Number of floating-point loading store instructions + Number
of floating-point arithmetic instructions + Number of floating-
point FMA instructions + Number of fixed-point arithmetic
instructions) / Number of instruction executions * 100

NOSIMD load store instruction rate
(%)

Number of floating-point loading store instructions / (Number of
floating-point loading store instructions + Number of floating-
point loading store SIMD instructions (SIMD and 4SIMD)) *
100

Prefetch Number of prefetch instructions (exclude "indirect prefetch"
instruction)+ Number of indirect prefetch instructions

Indirect prefetch Number of indirect prefetch instructions

The values in the calculation expressions are used from the following PA events.

(1) effective_instruction_counts (2) load_store_instructions

(3) floating_instructions (4) fma_instructions

(5) fixed_point_instructions (6) prefetch_instructions

(7) nonSIMD_XSIMD_indirect_prefetch_instructions (8) XSIMD_load_store_instructions

Executed number of instructions (1)

Number of floating-point loading store instructions (2)

Number of floating-point arithmetic instructions (3)

Number of floating-point FMA instructions (4)

Number of fixed-point arithmetic instructions (5)

Number of floating-point loading store SIMD instructions (SIMD and 4SIMD) (8)

Number of prefetch instructions (exclude "indirect prefetch" instruction) (6)

Number of indirect prefetch instructions (7)

- 96 -

Table 3.30 Formulas of the Hardware monitor information (MEM_access)
Event name Measured information (unit) Formula

MEM_access Elapsed time (s) Elapsed time for executing instructions of the measured range

Load/Store (SIMD) (%) Number of floating-point loading store SIMD instructions (SIMD
and 4SIMD) / Number of instruction executions * 100

Load/Store (NOSIMD) (%) Number of floating-point loading store instructions / Number of
instruction executions * 100

Memory access throughput (core) (GB/
s)

Amount of data transfer between memory and CPU core * 256 /
Elapsed time / 1.0e+9

Write back rate (%) Memory CPU core writing data amount / Amount of data transfer
between memory CPU cores * 100

Memory access throughput (PEAK) - When the write backing rate is smaller than 50%
240 + 240 * ((Memory CPU core writing data amount / Amount
of data transfer between memory CPU cores) / (1 - Memory
CPU core writing data amount / Amount of data transfer
between memory CPU cores))

- When the write backing rate is 50% or more
240 + 240 * ((1 - Memory CPU core writing data amount /
Amount of data transfer between memory CPU cores) /
(Memory CPU core writing data amount / Amount of data
transfer between memory CPU cores))

Memory access throughput peak rate
(%)

Memory access throughput / Memory access throughput (PEAK) *
100

The values in the calculation expressions are used from the following PA events.

(1) effective_instruction_counts (2) XSIMD_load_store_instructions

(3) load_store_instructions (4) L2_miss_dm

(5) L2_miss_pf (6) L2_wb_dm

(7) L2_wb_pf

Number of instruction executions (1)

Number of floating-point loading store SIMD instructions (SIMD and 4SIMD) (2)

Number of floating-point loading store instructions (3)

Amount of data transfer between memory CPU cores (4) + (5) + (6) + (7)

Memory CPU core writing data amount (6) + (7)

Table 3.31 Formulas of the Hardware monitor information (Performance)

Event name Measured information (unit) Formula

Performance Elapsed time (s) Elapsed time for executing instructions of the measured range

2-4 instruction commit (S) (CPU cycle number - (Cycle when number of completion
instructions is 0 + Cycle when number of completion instructions
is 1)) / Frequency in CPU core

1 instruction commit (S) Cycle when number of completion instructions is 1 / Frequency in
CPU core

Operation wait (S) Cycle when number of floating-point numbers of operation
execution completion instructions is 0 / Frequency in CPU core

- 97 -

Event name Measured information (unit) Formula

Cache access wait (S) (Cycle when the number of completion instructions is 0 numerical
according to the data waiting by the memory access - Cycle of
waiting by level 2 cache miss number) / Frequency in CPU core

Memory access wait (S) (Cycle of waiting by level 2 cache miss number + A store port full
factor makes CSE empty and the number of completion instructions
is cycle that 0 number) / Frequency in CPU core (*1),(*2)

Fetch wait (S) (CSE is cycle when the number of completion instructions is 0
because of emptiness number - A store port full factor makes CSE
empty and the number of completion instructions is cycle that 0
number) / Frequency in CPU core (*1),(*2)

Other wait (S) Time when number of completion instructions is 0 - (Operation
waiting time + Cache access waiting time + Memory access waiting
time + Instruction fetch waiting time)

*1 : CSE is a buffer to hold the information on the instruction currently executing (it is issued, but not completed yet).

*2 : The store port is a queue that stores the store data.

The values in the calculation expressions are used from the following PA events.

(1) cycle_counts (2) 0endop

(3) 1endop (4) eu_comp_wait

(5) op_stv_wait (6) op_stv_wait_sxmiss

(7) cse_window_empty (8) cse_window_empty_sp_full

CPU cycle number (1)

Cycle when number of completion instructions is 0 (2)

Cycle when number of completion instructions is 1 (3)

Cycle when number of integer or floating-point numbers of operation execution completion instructions is 0 (4)

Cycle when the number of completion instructions is 0 numerical according to the data waiting by the memory access (5)

Cycle of waiting by level 2 cache miss number (6)

CSE is cycle when the number of completion instructions is 0 because of emptiness number (7)

A store port full factor makes CSE empty and the number of completion instructions is cycle that 0 number (8)

Table 3.32 Formulas of the Hardware monitor information (Statistics)

Event name Measured information (unit) Formula

Statistics Elapsed time (s) Elapsed time for executing instructions of the measured range

MFLOPS Number of floating-point arithmetic instructions / Elapsed time /
1.0e+6

MFLOPS/PEAK (%) (*1) MFLOPS / (Number of execution cores * MFLOPS peak value of
each core) * 100

MIPS Number of instruction executions / Elapsed time / 1.0e+6

MIPS/PEAK (%) (*2) MIPS / (Number of execution cores * MIPS peak value of each core)
* 100

Floating operand (%) Number of floating-point arithmetic instructions / Total operand *
100

*1 : The MFLOPS peak value of each core is calculated by the following expression:

- 98 -

Frequency in CPU core * Number of floating-point FMA SIMD instructions * Number of floating-point
arithmetic instructions * Number of processing of operand of SIMD of floating-point instructions *
1000(MFLOPS)

*2 : The MIPS peak value of each core is calculated by the following expression:

Frequency in CPU core * Number of instructions that can be issued per cycle * 1000(MIPS)

The values in the calculation expressions are used from the following PA events.

(1) effective_instruction_counts (2) 1FLOPS_instructions

(3) 2FLOPS_instructions (4) 4FLOPS_instructions

(5) 8FLOPS_instructions (6) 16FLOPS_instructions

Number of instruction executions (1)

Number of floating-point arithmetic instructions (2) + 2*(3) + 4*(4) + 8*(5) + 16*(6)

Total operand (1) + (3) + 3*(4) + 7*(5) + 15*(6)

Table 3.33 Formulas of the Hardware monitor information (TLB)

Event name Measured information (unit) Formula

TLB Elapsed time (s) Elapsed time for executing instructions of the measured range

Instructions Executed number of instructions

uTLB miss (%) uTLB miss frequency of data / Number of memory access
instructions * 100

mTLB miss (%) Main TLB miss frequency of data / Number of memory access
instructions * 100

The values in the calculation expressions are used from the following PA events.

(1) effective_instruction_counts (2) load_store_instructions

(3) SIMD_load_store_instructions (4) 4SIMD_load_store_instructions

(5) uDTLB_miss (6) DTLB_write

Executed number of instructions (1)

uTLB miss frequency of data (5)

Main TLB miss frequency of data (6)

Number of memory access instructions (2) + 2*(3) + 4*(4)

3.4.5.3 Using the Hardware monitor information
The usage of each event of the Hardware monitor information is explained below.

(1) Cache

Cache is used to confirm the execution status of instructions accessing the memory and the occurrence of cache miss.

The execution performance of a program improves if the cache miss rate is low.

(2) Instructions_SIMD

Instructions are used to confirm the following execution status of instructions that process floating-point data.

- 99 -

- Execution rate of loading, store instruction, and floating-point operation instruction of floating-point data

- Execution rate of SIMD instruction

The operation performance of a program improves by the execution rate of the floating-point arithmetic and the execution rate of SIMD
instruction large.

(3) Instructions_NOSIMD

Instructions are used to confirm the following execution status of instructions that process floating-point data.

- Execution rate of loading, store instruction, and floating-point operation instruction of floating-point data

- Execution rate of NOSIMD instruction

The operation performance of a program improves by the execution rate of the floating-point arithmetic and the execution rate of SIMD
instruction large.

(4) MEM_access

MEM_access confirms the execution status of instructions accessing the data transfer efficiency and the memory between CPU core
and the memory.

It is a program that executes a lot of data transfers by the memory access throughput large between CPU and the memory.

(5) Performance

Performance is used to confirm the rate at the time that is executed and waited for with the instruction row.

Moreover, the rate in which two or more instructions are executed in parallel and the rate at the execution waiting time according to
the cause can be confirmed.

The execution performance of the program improves by the rate at 2-4 instruction committing time large, the rate at the execution
waiting time small.

(6) Statistics

A program has a high execution performance and operation performance as the peak value of each performance gets closer to the MIPS
value and MFLOPS value.

(7) TLB

TLB is used to confirm the occurrence situation of the TLB mistake between CPU core and the memory at the data transfer.

3.4.5.4 Output format of the Hardware monitor information
The Hardware monitor information is output for an entire application, processes, and threads.

The following figure shows the output format of the Hardware monitor information.

- 100 -

Figure 3.16 Output format of the Hardware monitor information

The output items of "Figure 3.16 Output format of the Hardware monitor information" are described in below:

Table 3.34 Output items of the Hardware monitor information

Output item Description

@category Category name of the Hardware monitor information

@item n Output items of the Hardware monitor information

@name Group name

@no Advance number

@value n Value of the Hardware monitor information

@pno Process number

@thno Thread number

The items that are output according to the category of the Hardware monitor information are shown below.

- 101 -

Figure 3.17 Output format of Cache

Table 3.35 Output items of Cache

Output item Description

@elapsed Elapsed time (s)

@inst Number of instruction executions

@l1i_miss First instruction cache miss rate (%)

@l1d_miss First data cache miss rate (%)

@l2_miss Second data cache miss rate (%)

@l2_dm_miss Second data cache demand miss rate (%)

@l2_pf_miss Second data cache prefetch miss rate (%)

@name Group name

- 102 -

Output item Description

@no Advance number

@pno Process number

@thno Thread number

- 103 -

Figure 3.18 Output format of Instruction_SIMD

- 104 -

Table 3.36 Output items of Instruction_SIMD
Output item Description

@elapsed Elapsed time (s)

@inst Number of instruction executions

@mips MIPS

@mips/peak MIPS peak performance rate (%)

@ls_simd Loading store instruction rate (SIMD) (%)

@float_simd Floating-point arithmetic instruction rate (SIMD) (%)

@fma_simd Floating-point FMA instruction rate (SIMD) (%)

@fixed_simd Fixed-point arithmetic instruction rate (SIMD) (%)

@simd SIMD instruction rate (%)

@ls_simd_rate SIMD loading store instruction rate (%)

@prefetch Number of prefetch instructions

@indirect_pf Number of indirect prefetch instructions

@name Group name

@no Advance number

@pno Process number

@thno Thread number

- 105 -

Figure 3.19 Output format of Instruction_NOSIMD

- 106 -

Table 3.37 Output items of Instruction_NOSIMD
Output item Description

@elapsed Elapsed time (s)

@inst Number of instruction executions

@mips MIPS

@mips/peak MIPS peak performance rate (%)

@ls Loading store instruction rate (NOSIMD) (%)

@float Floating-point arithmetic instruction rate (NOSIMD) (%)

@fma Floating-point FMA instruction rate (NOSIMD) (%)

@fixed Fixed-point arithmetic instruction rate (SIMD) (%)

@nosimd NOSIMD instruction rate (%)

@ls_rate NOSIMD loading store instruction rate (%)

@prefetch Number of prefetch instructions

@indirect_pf Number of indirect prefetch instructions

@name Group name

@no Advance number

@pno Process number

@thno Thread number

- 107 -

Figure 3.20 Output format of MEM_access

Table 3.38 Output items of MEM_access

Output item Description

@elapsed Elapsed time (s)

@ls_simd Loading store instruction rate (SIMD) (%)

@ls Loading store instruction rate (NOSIMD) (%)

@mem Memory access throughput (core) (GB/s)

@mem_write Write back rate (%)

- 108 -

Output item Description

@mem_tp_peak Memory access throughput (PEAK) (GB/s)

@mem_tp/peak Memory access throughput / PEAK (%)

@name Group name

@no Advance number

@pno Process number

@thno Thread number

Figure 3.21 Output format of Performance

Table 3.39 Output items of Performance

Output item Description

@elapsed Elapsed time (s)

- 109 -

Output item Description

@2-4i_cmit 2-4 instructions committing time (S)

@1i_cmit One instruction committing time (S)

@op_wait Operation waiting time (S)

@cache wait Cache access waiting time (S)

@mem_wait Memory access waiting time (S)

@fetch_wait Instruction fetch waiting (S)

@other_wait Other waiting time (S)

@name Group name

@no Advance number

@pno Process number

@thno Thread number

- 110 -

Figure 3.22 Output format of Statistics

Table 3.40 Output items of Statistics

Output item Description

@elapsed Elapsed time (s)

@mflops MFLOPS

@mflops/peak MFLOPS peak performance rate (%)

@mips MIPS

@mips/peak MIPS peak performance rate (%)

@fl-op Floating-point arithmetic rate (%)

@name Group name

@no Advance number

- 111 -

Output item Description

@pno Process number

@thno Thread number

Figure 3.23 Output format of TLB

Table 3.41 Output items of TLB

Output item Description

@elapsed Elapsed time (s)

@inst Number of instruction executions

@uTLB-op Micro data TLB miss rate of data (%)

@mTLB-op Main TLB miss rate of data (%)

@name Group name

@no Advance number

@pno Process number

@thno Thread number

The output form when the measurement event number is specified ("-Hevent_number" Option is specified) is shown below.

- 112 -

Figure 3.24 Output form of measurement event number specification

- 113 -

Table 3.42 Output item of measurement event number specification

Output item Description

@picu0_no Event number specified for picu0

@picl0_no Event number specified for picl0

@picu1_no Event number specified for picu1

@picl1_no Event number specified for picl1

@picu2_no Event number specified for picu2

@picl2_no Event number specified for picl2

@picu3_no Event number specified for picu3

@picl3_no Event number specified for picl3

@picu0_value Measurements of picu0

@picl0_value Measurements of picl0

@picu1_value Measurements of picu1

@picl1_value Measurements of picl1

@picu2_value Measurements of picu2

@picl2_value Measurements of picl2

@picu3_value Measurements of picu3

@picl3_value Measurements of picl3

@name Measurement range name

@pno Process number

@thno Thread number

3.4.6 Largepage information

3.4.6.1 Measurement information on Largepage memory use information
The table below shows measurement information on Largepage memory information.

Measured information Description

All memory gain Memory size acquired from System (Byte)

Number of arenas Number of arenas used

Arena memory gain Memory size acquired from System for arena (Byte)

Arena memory usage Memory size allocated from arena in process (Byte)

Arena memory unused amount Memory size that it is arena and unused (Byte)

Arena memory usage rate (At start) Arena memory usage rate at measurement start (%)

Arena memory usage rate (At end) Arena memory usage rate when measurement ends (%)

Number of mmapped chunks Number of mmapped chunks

Mmapped chunk gain Memory size acquired from System for mmapped_chunk (Byte)

 Note

When region reduces between from the measurement beginning to the end, the value of "Measured information" might reach a minus
value.

- 114 -

3.4.6.2 Output format of largepage memory use information

Figure 3.25 Output format of largepage memory use information

Table 3.43 Output item of Largepage memory use information

Measured information Unit

@memtotal All memory gain (Byte)

@arena Number of arenas

@arenatotal Arena memory gain (Byte)

@arenainuse Arena memory usage (Byte)

@arenafree Arena memory unused amount (Byte)

@arena_rate_S Arena memory usage rate (At start) (%)

@arena_rate_E Arena memory usage rate (At end) (%)

@mmapped Number of mmapped chunks

@mmappedtotal Mmapped chunk gain (Byte)

@pno Process number

@name Group name

@no Advance number

3.4.6.3 Measurement information on Largepage statistical information

Measured information Description

Counts Memory acquisition number of issuances

Time (MIN) Minimum value at memory acquisition processing time
(microsecond)

Time (MAX) Maximum value at memory acquisition processing time
(microsecond)

Time (AVG) Average value at memory acquisition processing time
(microsecond)

Size (MIN) Minimum value of demand size (Byte)

Size (MAX) Maximum value of demand size (Byte)

Size (AVG) Average value of demand size (Byte)

Arena generation frequency Frequency in which mmapped arena is generated

Arena liberating frequency Frequency in which mmapped arena is liberated

- 115 -

Measured information Description

Heap area expansion frequency Frequency in which heap area is extended with sbrk

Arena extended partition generation frequency Frequency in which enhancing mmap region in main arena is
generated

Mmapped chunk generation frequency Mmapped chunk generation frequency

Mmapped chunk deletion frequency Mmapped chunk deletion frequency

Seek frequency Frequency that succeeds in free area acquisition because of
acquisition of memory in less than 128 Bytes (high speed)
(FASTBIN)

The maximum search frequency of free area The maximum search frequency of free area

Average search frequency of free area Average search frequency of free area

The maximum search frequency of free area The maximum search frequency of free area (When succeeding in
acquisition)

Average search frequency of free area Average search frequency of free area (When succeeding in
acquisition)

The maximum search frequency of free area The maximum search frequency of free area (When failing in
acquisition)

Average search frequency of free area Average search frequency of free area (When failing in
acquisition)

- 116 -

3.4.6.4 Output format of largepage statistical information

Figure 3.26 Output format of largepage statistical information

- 117 -

The value of allocstats_total (*1) is an additional value of the statistical information of each source library (*2).

Table 3.44 Output item of memory acquisition function (malloc, calloc, memalign, valloc, pvalloc, p_memalign,
free)

Measured information Unit

@library_name Library name that outputs memory acquisition information

@count Memory acquisition number of issuances

@time_min Minimum time (microsecond)

@time_max Maximum time (microsecond)

@time_avg Average time (microsecond)

@size_min Minimum size (Byte)

@size_max Maximum size (Byte)

@size_avg Average size (Byte)

@pno Process number

@name Group name

@no Advance number

 Note

@size_min of free, @size_max, and @size_avg are always displayed by 0.

- 118 -

Table 3.45 Output item of arena information
Measured information Description

@newheap Arena generation frequency

@delheap Arena liberating frequency

@expbrk Heap area expansion frequency

@expmmap Arena extended partition generation frequency

@newmmap Mmapped chunk generation frequency

@delmmap Mmapped chunk deletion frequency

@name Group name

@no Advance number

Table 3.46 Output item of seek information

Measured information Description

@s_fastbin Seek frequency

@s_allmax The maximum search frequency of free area

@s_allavg Average search frequency of free area

@s_succmax The maximum search frequency of free area (When succeeding in
acquisition)

@s_succavg Average search frequency of free area (When succeeding in
acquisition)

@s_failmax The maximum search frequency of free area (When failing in
acquisition)

@s_failavg Average search frequency of free area (When failing in
acquisition)

@name Group name

@no Advance number

3.5 Precision PA visibility function (Excel format)
This section explains the content of the precision PA visibility function (Excel format) output by the fapppx command.

 Note

It is necessary to install Excel to use the precision PA visibility function (Excel format).

3.5.1 Overview
The precise PA visibility function (Excel format) is a function to analyze the Advanced Profiler information output by CSV by using the
Excel sheet in which the analysis procedure is defined by the macro beforehand, and to display the result in the graph and the table.

For this analysis, fapp must be executed 11 times. This is because 11 lots of hardware counter information are required. This means that
differences might arise over the execution time. Minus numerical values might be output for some information due to these differences.

Follow the procedures below to perform these tasks:

1. Determine the measurement range, and incorporate the information collection routine in the program.

2. Compile.

3. Collect data.

- 119 -

4. Convert the data.

5. Use Excel sheets to analyze the data.

3.5.2 Collecting data (execution)

3.5.2.1 Specifying the measurement range
Determine the measurement range and incorporate the Advanced Profiler routine (precision PA) in the program.

Refer to "3.2.2 Advanced Profiler routine (precision PA)" for the method for incorporating the Advanced Profiler routine (precision PA).

3.5.2.2 Compiling/linking
Compile the program.

Refer to "3.2.4 Compilation" for the compilation method.

3.5.2.3 Collecting data
Use the fapp command to collect the data. Refer to "3.2.5 fapp command" for details of the fapp command.

Execute the command 11 times to collect data.

The "-H" option shown below must be added when collecting the data.

Table 3.47 -H option when collecting data

Collection count -H option

First -Hpa=1

Second -Hpa=2

Third -Hpa=3

Fourth -Hpa=4

Fifth -Hpa=5

Sixth -Hpa=6

Seventh -Hpa=7

Eighth -Hpa=8

Ninth -Hpa=9

Tenth -Hpa=10

Eleventh -Hpa=11

In addition the "-C" option and the "-d" option, specifying the data storage destination, must also be added.

Refer to "3.2.5 fapp command" for option details.

 Example

Example of how to write a job launch script for collecting data

fapp -C -d pa1 -Hpa=1 mpiexec -n 8 ./a.out
fapp -C -d pa2 -Hpa=2 mpiexec -n 8 ./a.out
fapp -C -d pa3 -Hpa=3 mpiexec -n 8 ./a.out
fapp -C -d pa4 -Hpa=4 mpiexec -n 8 ./a.out
fapp -C -d pa5 -Hpa=5 mpiexec -n 8 ./a.out
fapp -C -d pa6 -Hpa=6 mpiexec -n 8 ./a.out
fapp -C -d pa7 -Hpa=7 mpiexec -n 8 ./a.out
fapp -C -d pa8 -Hpa=8 mpiexec -n 8 ./a.out
fapp -C -d pa9 -Hpa=9 mpiexec -n 8 ./a.out

- 120 -

fapp -C -d pa10 -Hpa=10 mpiexec -n 8 ./a.out
fapp -C -d pa11 -Hpa=11 mpiexec -n 8 ./a.out

3.5.3 Analyzing data

3.5.3.1 Converting data
Data must be converted to csv format before it is analyzed in Excel sheets.

Also, the data file names must be changed to output_prof_1.csv to output_prof_11.csv

Use the fapppx command to convert the data. Refer to "3.2.6 fapppx command" for details of the fapppx command.

 Example

Example of converting the collected data

$ fapppx -A -d pa1 -o output_prof_1.csv -tcsv -Hpa
$ fapppx -A -d pa2 -o output_prof_2.csv -tcsv -Hpa
$ fapppx -A -d pa3 -o output_prof_3.csv -tcsv -Hpa
$ fapppx -A -d pa4 -o output_prof_4.csv -tcsv -Hpa
$ fapppx -A -d pa5 -o output_prof_5.csv -tcsv -Hpa
$ fapppx -A -d pa6 -o output_prof_6.csv -tcsv -Hpa
$ fapppx -A -d pa7 -o output_prof_7.csv -tcsv -Hpa
$ fapppx -A -d pa8 -o output_prof_8.csv -tcsv -Hpa
$ fapppx -A -d pa9 -o output_prof_9.csv -tcsv -Hpa
$ fapppx -A -d pa10 -o output_prof_10.csv -tcsv -Hpa
$ fapppx -A -d pa11 -o output_prof_11.csv -tcsv -Hpa

3.5.3.2 Excel operations
Use the Excel sheets to analyze the data.

Since the Excel sheets are under the login node, first transfer them to the user terminal.

/opt/FJSVmxlang/misc/CPUPA/FSDT_CPUPA_ENG.xlsm

Place the data files (output_prof_1.csv to output_prof_11.csv) in the same folder as the Excel sheets.

Double-click the Excel sheets to start Excel. This runs a macro and read starts.

3.5.3.2.1 Resolving security warnings

These Excel sheets use macros.

Therefore, security settings might stop the macros from starting and prevent operation.

If macros have been disabled, enable macros.

The method for enabling macros varies for different versions of Excel.

3.5.3.2.2 Specifying a process number

When the macro starts, a process number specification dialog is displayed automatically.

Enter the number of the process you want to analyze, then click the OK button.

If the specified process number is not in the data, a message indicating that is displayed and the process number specification dialog is
displayed again.

If the Cancel button is clicked, processing stops and Excel ends.

- 121 -

Figure 3.27 Process number specification dialog

3.5.3.2.3 Specifying the segment name (measurement range)

If there are no problems with the process specification, a segment name specification dialog is displayed.

Enter the name of the segment you want to analyze, then click the OK button.

For the segment name, enter the segment name specified in "3.5.2.1 Specifying the measurement range".

If the specified segment name does not exist, a message indicating that is displayed and the segment name specification dialog is displayed
again.

If the Cancel button is clicked, processing stops and Excel ends.

Figure 3.28 Segment name specification dialog

3.5.3.2.4 Generating Excel sheets

If there are no problems with the measurement range specification, Excel sheet generation starts.

Data collection is executed 11 times, and the execution time causes small differences. This difference is displayed in the lower part of the
second Excel sheet.

A warning dialog is displayed if there is a difference of 5% or more either way (displayed as 95% or less, or as 105% or more) in the
execution time compared with the first execution time.

If a high degree of precision is required, check this execution time. If there is a big difference, it is recommended to perform data collection
again and use data that has small differences.

- 122 -

Figure 3.29 Warning dialog

3.5.4 Viewing the Excel sheets
The precision PA visibility function (Excel format) is comprised of the following information:

- Performance information

- Memory Cache information

- SIMD information

- Cache information

- Instruction information

- Balance information

- XFILL flag

- Time information

The Excel sheet displays information for 16 threads or less in the TOP sheet, and displays information for 32 threads or less in the TOP32
sheet. Please use the TOP32 sheet when you want to analyze data more than 17 threads.

The precision PA visibility function (Excel format) TOP sheet is organized as two pages of print output. The first page outputs Performance
information, Memory Cache information, SIMD information, Cache information, Instruction information, Balance information, and
XFILL flag. The second page displays Time information.

The precision PA visibility function (Excel format) TOP32 sheet is organized as four pages of print output.

The item cell of each measurement item with the possibility to be a bottleneck is displayed in pink.

The figure below shows the structure of the precision PA visibility function (Excel format) TOP sheet.

- 123 -

Figure 3.30 First page of the precision PA visibility function (Excel format) TOP sheet

Figure 3.31 Second page of the precision PA visibility function (Excel format) TOP sheet

3.5.4.1 Performance information
The performance information displays the execution time and other information.

- 124 -

Figure 3.32 Performance information

The items below are displayed.

Table 3.48 Performance information items output

Output item Explanation of output item

Execution time (sec) Displays the execution time for each thread. The execution time of the thread having the longest
execution in the process line is displayed.

Floating-point operation peak
rate

Displays the rate of the actual measured value against the MFLOPS logical peak value (%).

MFLOPS Displays the floating point operation execution rate.

MIPS Displays the instruction execution rate.

Integer operation performance
(MINOPS)

Displays the performance of the integer arithmetic.

Floating-point operation Displays the total number of floating point operations.

Integer operation Displays the total number of integer operations.
The instruction that calculates the memory address is included in the integer operand.

3.5.4.2 Memory Cache information
The Memory cache information displays the memory throughput and other information.

- 125 -

Figure 3.33 Memory Cache information

The items below are displayed.

Table 3.49 Memory Cache information items output

Output item Explanation of output item

L1 busy rate (*1) Displays the L1 engine busy rate (%).

L2 busy rate (*2) Displays the L2 busy rate (%).

Memory busy rate Displays the Memory busy rate (%).

L2 throughput (GB/sec) Displays the value of the L2 throughput.

Memory throughput (GB/sec) Displays the value of the memory throughput.

*1 : "L1 busy rate" is a capacity usage rate of the device that controls the forwarding between registers <->L1D and the forwarding
between L1D <-> L2.

*2 : "L2 busy rate" is a capacity usage rate of the device that controls the forwarding between L1D <-> L2 and the forwarding between
the L2 <-> memories.

3.5.4.3 SIMD information
The SIMD information displays the SIMD instruction rate and other information.

Figure 3.34 SIMD information

The items below are displayed.

- 126 -

Table 3.50 SIMD information items output
Output item Explanation of output item

SIMD instruction rate
(/Effective instruction)

Displays the rate (%) of SIMD instructions amongst the total number of effective
instructions

SIMD floating point instruction rate
(/SIMD target floating point instruction)

Displays the rate (%) of floating point instructions changed to SIMD amongst the
number of floating point instructions to be changed to SIMD

SIMD integer instruction rate
(/SIMD target integer instruction)

Displays the rate (%) of integer instructions changed to SIMD amongst the number
of integer instructions to be changed to SIMD

SIMD load-store instruction rate
(/SIMD target load-store instruction)

Displays the rate (%) of load-store instructions changed to SIMD amongst the number
of load-store instructions to be changed to SIMD

3.5.4.4 Cache information
The cache information displays the cache miss rate and other information.

Figure 3.35 Cache information

The items below are displayed.

Table 3.51 Cache information items output

Output item Explanation of output item

L1I miss rate (/Effective instruction) Displays the rate (%) of level 1 instruction cache misses in the total number of effective
instructions

L1D miss rate (/Load-store instruction) Displays the rate (%) of level 1 data cache misses in the load/store instructions count

Load-store instruction Displays the total number of load/store instructions

L1D miss Displays the total number of level 1 data cache misses

L1D miss dm rate (/L1D miss) Displays the rate (%) of level 1 data cache misses from load/store instructions in the level1
data cache misses

L1D miss hwpf rate (/L1D miss) Displays the rate (%) of level 1 data cache misses from hardware prefetch in the level1
data cache misses

L1D miss swpf rate (/L1D miss) Displays the rate (%) of level 1 data cache misses from software prefetch instructions in
the level1 data cache misses

L2 miss rate (/Load-store instruction) Displays the rate (%) of level 2 cache misses in the load/store count

L2 miss Displays the total number of level 2 cache misses

L2 miss dm rate (/L2 miss) Displays the rate (%) of level 2 cache demand misses

L2 miss pf rate (/L2 miss) Displays the rate (%) of level 2 cache prefetch misses

uDTLB miss rate (/Load-store instruction) Displays the micro data TLB miss rate (%)

- 127 -

Output item Explanation of output item

mDTLB miss rate (/Load-store
instruction)

Displays the data main TLB miss rate (%)

3.5.4.5 Instruction information
For instruction information, the rate (%) of each type of instruction is displayed. Also counts are displayed in the lower cells.

The total number of effective instructions is used as the rate denominator.

Figure 3.36 Instruction information

The items below are displayed.

Table 3.52 Instruction information items output

Output item Explanation of output item

Load-store instruction rate Displays the rate (%) of load/store instructions. Details are displayed in the lower cells.

The detail items are the SIMD floating point load instruction rate(4SIMD,2SIMD), the SIMD
floating point store instruction rate(4SIMD,2SIMD), the SIMD indirect load instruction
rate(4SIMD), the SIMD indirect store instruction rate(4SIMD), the SIMD stride load
instruction rate(4SIMD), the SIMD stride store instruction rate(4SIMD), the SIMD broadcast
load instruction rate(4SIMD), the other SIMD load-store instruction rate, the floating point
load instruction rate, the floating point store instruction rate, the integer load instruction rate,
and the integer store instruction rate.

Floating-point instruction rate Displays the rate (%) of floating point operation instructions. Details are displayed in the lower
cells.

The detail items are the SIMD floating point operation instruction rate(4SIMD,2SIMD), the
SIMD floating point multiply-and-add instruction rate(4SIMD,2SIMD), the SIMD floating
point DSP operation instruction rate(4SIMD)(*1), the SIMD floating point DSP multiply-and-
add instruction rate(4SIMD)(*1),the floating point operation instruction rate, and the floating
point multiply-and-add instruction rate.

Integer instruction rate Displays the rate (%) of integer operation instructions. Details are displayed in the lower cells.

The detail items are the SIMD integer operation instruction rate(4SIMD), and the SIMD
integer multiply-and-add instruction rate(4SIMD).

Prefetch instruction rate Displays the rate (%) of prefetch instructions. Details are displayed in the lower cells.

The detail items are the prefetch instruction rate and the indirect prefetch instruction rate.

Branch instruction rate Displays the rate (%) of branch instructions.

Permutation instruction rate Displays the rate (%) of permutation instructions.

Concatenate shift left instruction rate Displays the rate (%) of concatenate shift left instructions.(*2)

Other instructions rate Displays the rate (%) of instructions other than the above.

- 128 -

Output item Explanation of output item

Effective instruction rate Displays the total of the above. In principle, this is 100%.

*1 : DSP is abbreviation of Dual Single Precision. The DSP operation instruction is an instruction that delimits the double precision
register to the half and treats as two floating point of single precision data.

*2 : concatenate shift left instruction is an instruction to which effective all elements of the floating point of double precision register
are connected and the left shifts.

3.5.4.6 Balance information
The balance information displays the load balance and other information.

Figure 3.37 Balance information

The items below are displayed.

Table 3.53 Balance information items output

Output item Explanation of output item

Load balance Displays comparison of the time of "Cycle_counts-barrier synchronization waiting" of each
thread (rate to thread of the longest execution time).

Instruction balance Displays the comparison of total number of effective instructions of each thread (rate to thread
with most numbers of instructions).

3.5.4.7 XFILL flag
Please set 1(ON) when you are using XFILL instruction.

The default is 0(OFF).

Figure 3.38 XFILL flag

- 129 -

3.5.4.8 Time information
The second page of the print output is the time information.

Figure 3.39 Time information

(1) Graphs

The bar graphs of the time information are displayed for each thread.

L1 busy time, L2 busy time, and memory busy time are displayed at the right of the bar chart of thread 0.

Busy time is an indicator made a busy rate easy to compare than an actual execution time.

L1 busy time [second] is the maximum value of L1 busy rate of thread i * execution time of thread i. (i is a thread number.)

L2 busy time [second] is a value of calculating L2 busy rate * execution time of process.

Memory busy time [second] is a value of calculating memory busy rate * execution time of process.

Refer to "Table 3.54 Time information items and graph element detail items output" for details of the element on the bar graphs.

Refer to "3.5.4.2 Memory Cache information" for the detail of L1 busy rate, L2 busy rate, and memory busy rate.

(2) Graph element details

The graph element details display the times and rates (%) of the elements that make up the graphs.

The items below are displayed.

Table 3.54 Time information items and graph element detail items output

Output item Explanation of output item

memory cache busy wait Indicates the number of cycles where the number of completion instructions is 0 due to waits
caused by memory cache busy

Integer load memory access wait Indicates the number of cycles where the number of completion instructions is 0 due to data
waits caused by integer load memory access by the oldest instruction amongst the instructions
currently being executed

- 130 -

Output item Explanation of output item

Floating point load memory access
wait

Indicates the number of cycles where the number of completion instructions is 0 due to data
waits caused by floating point load memory access by the oldest instruction amongst the
instructions currently being executed

Store wait Indicates the number of cycles where the number of completion instructions is 0 due to waits
caused by no space in the store port

Integer load L2 cache access wait Indicates the number of cycles where the number of completion instructions is 0 due to data
waits caused by integer load L2 cache access by the oldest instruction amongst the instructions
currently being executed

Integer load L1D cache access wait Indicates the number of cycles where the number of completion instructions is 0 due to data
waits caused by integer load L1D cache access by the oldest instruction amongst the
instructions currently being executed

Floating-point load L2 cache access
wait

Indicates the number of cycles where the number of completion instructions is 0 due to data
waits caused by floating point load L2 cache access by the oldest instruction amongst the
instructions currently being executed

Floating-point load L1D cache access
wait

Indicates the number of cycles where the number of completion instructions is 0 due to data
waits caused by floating point load L1D cache access by the oldest instruction amongst the
instructions currently being executed

Integer operation wait Indicates the number of cycles where the number of completion instructions is 0 because the
oldest instruction amongst the instructions currently being executed is currently executing an
integer operation

Floating-point operation wait Indicates the number of cycles where the number of completion instructions is 0 because the
oldest instruction amongst the instructions currently being executed is currently executing a
floating point operation

Branch instruction wait Indicates the number of cycles where the number of completion instructions is 0 because the
oldest instruction amongst the instructions currently being executed is currently executing a
Branch instruction

Instruction fetch wait Indicates the number of cycles where the number of completion instructions is 0 because the
CSE is empty

The CSE is the buffer used to hold information for the instruction currently being executed
(issued but not yet completed)

Barrier synchronization wait Indicates the number of cycles where the number of completion instructions is 0 as a result of
the oldest instruction amongst the instructions currently being executed using a SLEEP
instruction to stop the instruction control part

Other waits Indicates the processing of waits other than the above

1 instruction commit Indicates number of cycles having one completion instruction

2/3 instruction commit (other) Indicates number of cycles having two or three completion instruction

4 instruction commit Indicates number of cycles having four completion instruction

(3) Comparison with first execution times

Display the comparison between the 11 lots of execution times performed to complete the Excel sheets

The closer the whole is to 100%, the more precise the information.

A warning dialog is displayed if there is a difference of 5% or more either way (displayed as 95% or less, or as 105% or more) in the
execution time compared with the first execution time. Even after the warning dialog is closed, the cells are displayed in red.

Refer to "3.5.3.2.4 Generating Excel sheets" for information on the warning dialog.

(4) Execution times for one occurrence

Display the execution times for one occurrence of the specified segment name (measurement range).

- 131 -

If the execution times for one occurrence are 150 microseconds or less, a warning dialog is displayed to notify that the precision of the
Hardware monitor information is low.

Even after the warning dialog is closed, the cells are displayed in red.

Figure 3.40 Warning dialog when the execution times for one occurrence are low

- 132 -

Chapter 4 Tracer
This chapter describes the features and usage of the Tracer.

4.1 Overview of the Tracer

4.1.1 Overview of features
The Tracer collects the execution information on the function that the user called in the source code in the time series.

- The MPI library for high-end, technical computing server PRIMEHPC FX100 system

- User function

- I/O function defined in standard C library

- Memory function defined in standard C library

The execution information means the following, the performance of the application can be improved by tuning based on these information.

- start/end time of the MPI library and the wire traffic

- start/end time of the user function

- start/end time of the I/O function and number of bytes for data read/write

- start/end time of the Memory function and the number of bytes for allocated memory

The following features are provided by the Tracer.

VampirTrace is used for the realization of these features.

4.1.1.1 Information collection feature
The execution information for an application is collected. It is the information on the function that is called in the source code. The order
of calling functions is arranged according to the time series, and the information regarding the start and end time of each function is
maintained.

4.1.1.2 Local trace data files integration feature
Local trace data files are integrated, and a trace data file is created. Local trace data files signify the information collected by the information
collection feature. Refer to "4.2.3.5 Trace data files" for information on local trace data files. The Vampir parallel program performance
analysis tool can give GUI displays of the trace data file. Refer to "http://www.vampir.eu" for information on Vampir.

4.1.2 Preparation for using the Tracer
The FX100 system prepares the MPI described with the C language, the C++ language, or Fortran and translation/uniting command that
one-by-one translates a multithreaded and a hybrid program, unites, and makes an executable program for the FX100 system. There are
two kinds of translation/uniting command of own compiler (vtfcc/vtFCC/vtfrt)that operates by cross compiler (vtfccpx/vtFCCpx/
vtfrtpx)and the compute node that operates by the login node in the front end.

Use this translation/uniting command according to the kind of MPI and each language that one-by-one describes a multithreaded and a
hybrid program. Refer to "4.2.1 Compilation" for information on vtfccpx/vtFCCpx/vtfrtpx/vtfcc/vtFCC/vtfrt commands.

Set the following environment before using the Tracer.

4.1.2.1 Compilation/Integration environment
It is necessary to set the following environment variable on the login node at the front end to use the compilation feature of the Tracer by
the vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler) commands.

- 133 -

Environment variable Value

PATH /opt/FJSVmxlang/bin

In addition to the above mentioned variable, it is necessary to set the following environment variable to use the integration feature on the
login node at the front end by the vtunifypx command.

Environment variable Value

LD_LIBRARY_PATH /opt/FJSVmxlang/lib

Refer to "4.2.3 Local trace data file integration feature" for information on the vtunifypx command.

Additionally, the following settings besides those mentioned above are necessary:

- Environment variables, PATH and LD_LIBRARY_PATH, for using the MPI system

Refer to the "MPI User's Guide".

- Environment variables, PATH and LD_LIBRARY_PATH, for using the compiler and the library of each language

Refer to the relevant user's guide.

4.1.2.2 Compilation/Execution/Integration environment
When a job is turned on, it is necessary to specify the following environment variables in the job script to use the integration feature by
execution and the vtunify-mpi application of the application (executable program) made by using the execution of the application
(executable program) made by same command of the Tracer by the vtfcc/vtFCC/vtfrt command as the translation function,vtfccpx/
vtFCCpx/vtfrtpx command.

Environment variable Value

PATH /opt/FJSVmxlang/bin

LD_LIBRARY_PATH /opt/FJSVmxlang/lib64

Refer to "4.2.3 Local trace data file integration feature" for information on the vtunify-mpi command.

Refer to the "Job Operation Software First Step Guide" for information on job submission and the job script.

Additionally, the following settings besides those mentioned above are necessary:

- Environment variables, PATH and LD_LIBRARY_PATH, for using the MPI system

Refer to the "MPI User's Guide".

- Environment variables, PATH and LD_LIBRARY_PATH, for using the compiler and the library of each language

Refer to the relevant user's guide.

4.1.3 Flow for using the Tracer
The following figure shows the flow for using the Tracer.

- 134 -

Figure 4.1 Flow for using the Tracer

4.1.3.1 Compilation
An application (executable program) is created using the vtfccpx/vtFCCpx/vtfrtpx commands or the vtfcc/vtFCC/vtfrt commands.

 Example

Compilation of the C language program "sample.c"

$ vtfccpx sample.c

Refer to "4.2.1 Compilation" for details.

4.1.3.2 Information collection
The application created by the vtfccpx/vtFCCpx/vtfrtpx commands or the vtfcc/vtFCC/vtfrt command is executed, and local trace data
files are generated.

- 135 -

Local trace data files have the "def", "events", or "uctl" file name extensions.

The def and events files are created for each rank or thread.

Refer to "4.2.3.5 Trace data files" for information on each local trace data file. Refer to "4.2.2 Information collection" for details.

 Example

- Execution by 2 processes and 4 threads of the application program "a.out"

$ mpiexec -n 2 ./a.out

- List of Local trace data files

Rank 0 Rank 1

Description
Process Thread Process Thread

a.1.def.z

0 -

a.2.def.z

0 -

List file
1 a.10001.def.z 1 a.20001.def.z

2 a.10002.def.z 2 a.20002.def.z

3 a.10003.def.z 3 a.20003.def.z

a.1.events.z

0 -

a.2.events.z

0 -

Time series record file
1 a.10001.events.z 1 a.20001.events.z

2 a.10002.events.z 2 a.20002.events.z

3 a.10003.events.z 3 a.20003.events.z

a.uctl Unify control file

Information regarding thread 0 is included in the process file, so the thread 0 file does not exist.

4.1.3.3 Local trace data files integration
Vampir of the parallel program performance analysis tool reads the file with the otf file name extension as an input file, and starts drawing.
Perform tuning by analyzing the performance with Vampir. The otf file is one of the trace data files created by the local trace data files
integration feature.

Therefore, it is necessary to integrate local trace data files after they are created, and to create the trace data files. Local trace data files
are integrated using the vtunify-mpi application that operates on the vtunifypx command or the compute node operating on the login node
at the front end for making, and the trace data file is created.

Refer to "Table 4.1 Created trace data files" for an example of the trace data files created for two processes and four threads.

The trace data files with the file name extensions of def, otf, and events are created for each rank thread.

Refer to "4.2.3.5 Trace data files" for information on each trace data file.

Refer to "4.2.3 Local trace data file integration feature" for information on the vtunifypx command and the vtunify-mpi application.

Table 4.1 Created trace data files

File name Description

a.0.def.z List file

a.1.events.z Time series recorded file of rank 0 and thread 0

a.2.events.z Time series recorded file of rank 1 and thread 0

a.10001.events.z Time series recorded file of thread 1 to rank 0

a.10002.events.z Time series recorded file of thread 2 to rank 0

a.10003.events.z Time series recorded file of thread 3 to rank 0

- 136 -

File name Description

a.20001.events.z Time series recorded file of thread 1 to rank 1

a.20002.events.z Time series recorded file of thread 2 to rank 1

a.20003.events.z Time series recorded file of thread 3 to rank 1

a.otf Open trace format file (otf file)

4.2 Using the Tracer
This section explains compilation and the local trace data file integration feature using the Tracer.

4.2.1 Compilation
The Fujitsu compiler of fccpx/FCCpx/frtpx (fcc/FCC/frt for own compiler) is used for the compilation of a sequential program, and the
Fujitsu compiler of mpifccpx/mpiFCCpx/mpifrtpx (mpifcc/mpiFCC/mpifrt for own compiler) is used for the compilation of MPI programs.

However, when a part of the include specification and the Fujitsu compiler of the header file of VampirTrace is translated in addition to
the call of each Fujitsu compiler, it is necessary to specify some additional options when the Tracer is used and compiled. The wrapper
command of the Fujitsu compiler is provided in the Tracer for compilation of programs so that users need not specify additional options.
The Tracer provides the vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler) commands as the wrapper commands. When these
commands are executed, the Fujitsu compiler of mpifccpx/mpiFCCpx/mpifrtpx (mpifcc/mpiFCC/mpifrt for own compiler) is internally
called by default.

When a sequential program and a multithreaded program are compiled, it is necessary to change the compiler internally called to fccpx
(fcc for own compiler).

The compiler internally called is optional, and can be changed by specifying the environment variable when compiling.

Refer to "4.2.1.2 Options" for information on the options. Refer to "4.2.1.4 Environment variables for compilation" for information on
the environment variables used during compilation.

Users can use the vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler) command by a method similar to the Fujitsu compiler.
As a result, users can compile programs by using the vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler) commands without
considering various libraries used with the header file and VampirTrace of VampirTrace.

For compilation, it is necessary to specify the VT_PREFIX environment variable if the installation destination is changed from "/opt/
FJSVmxlang".

Refer to "4.2.2.1 Environment variables for execution" for information on the environment variables used during execution.

The Fujitsu MPI compilers for each command are given below.

Table 4.2 Fujitsu MPI compilers

Command Compiler Language

cross compiler vtfccpx

vtFCCpx

vtfrtpx

mpifccpx

mpiFCCpx

mpifrtpx

C

C++

Fortran

own compiler vtfcc

vtFCC

vtfrt

mpifcc

mpiFCC

mpifrt

C

C++

Fortran

4.2.1.1 Format

Cross compiler

{ vtfccpx | vtFCCpx | vtfrtpx }
[-vt: { cc | cxx | f90 } cmd]
[-vt: { seq | mpi | mt | hyb }]

- 137 -

[-vt:inst { compinst | manual }] [-DVTRACE]
[-vt:version] [-vt: { verbose | show }]
[-vt:showme-compile] [-vt:showme-link] [-vt:help]
[compiler_arguments]
file ...

Own compiler

{ vtfcc | vtFCC | vtfrt }
[-vt: { cc | cxx | f90 } cmd]
[-vt: { seq | mpi | mt | hyb }]
[-vt:inst { compinst | manual }] [-DVTRACE]
[-vt:version] [-vt: { verbose | show }]
[-vt:showme-compile] [-vt:showme-link] [-vt:help]
[compiler_arguments]
file ...

4.2.1.2 Options
The table below lists the options that can be specified for vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler).

Table 4.3 Options list

Option Description

-vt:cc cmd
Changes the compiler, called internally by vtfccpx (vtfcc for own compiler), from mpifccpx (mpifcc for
own compiler) to cmd The possible value for cmd is fccpx (fcc for own compiler).

-vt:cxx cmd

Changes the compiler, called internally by vtFCCpx (vtFCC for own compiler),from mpiFCCpx (mpiFCC
for own compiler) to cmd

The possible value for cmd is FCCpx (FCC for own compiler).

-vt:f90 cmd

Changes the compiler, called internally by vtfrtpx (vtfrt for own compiler), from mpifrtpx (mpifrt for own
compiler) to cmd

The possible value for cmd is frtpx (frt for own compiler).

-vt:seq
Collects information of a sequential program

The start and end time of a user function is collected.

-vt:mpi

Collects information of an MPI program

The start and end time of an MPI function called in an MPI program, argument information, and the number
of ranks is collected.

-vt:mt

Collects information of a multithreaded program

Start/end time of the user function called in Start/end time of the user function called in the multithreaded
program and the OpenMP instruction sentence is collected and the amounts of the number of threads are
collected.

-vt:hyb

Collects information of a hybrid program

The hybrid program is a parallel program that combines an MPI program with a multithreaded-parallel
program.

Start/end time of the user function called in start/end time of start/end time of the MPI function called in
a hybrid program and argument information and the user function and the OpenMP instruction sentence
is collected and the amounts of the number of threads are collected.

-vt:inst compinst

Trace user function

Refer to "4.3.2 User function trace" for information on the user function trace.

It is the default value.

-vt:inst manual Inhibits the trace function of a user function

- 138 -

Option Description

This option does not induce the "-g" option, and optimizes it effectively.

-DVTRACE
Trace VampirTrace API

Refer to "4.3.3 VampirTrace API trace" for information on the VampirTrace API.

-vt:verbose

-vt:show

Displays the Fujitsu compiler that the vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler) called
and the specified compiler options

An application is created if "-vt:verbose" is specified, and if "-vt:show" is specified, an application is not
created.

-vt:showme-compile

Displays the compiler options led from config file by tracer and arguments specified in command line
(program name and so on).

When this option is specified, an application is not created.

-vt:showme-link

Displays the linker options led from config file by tracer and arguments specified in command line
(program name and so on).

When this option is specified, an application is not created.

-vt:version Outputs a version of VampirTrace

-vt:help Outputs the help message

compiler_arguments

Specifies the options passed to the Fujitsu compiler by vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for
own compiler) calls

Refer to the manual of each Fujitsu compiler for information on the options that can be specified.

4.2.1.3 Operand
file

Specify the source code written in each language in file.

4.2.1.4 Environment variables for compilation
The operation of vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler) can be controlled by specifying environment variables
during compilation. If an option and an environment variable functionally equivalent to the option are specified at the same time, the value
of the option takes precedence. The environment variables for compilation are given below.

Table 4.4 Environment variables for compilation

Environment variable Description

VT_INST
Same as the "-vt:inst" option.

Either compinst or manual can be specified.

VT_CC
Same as the "-vt:cc" option.

The value that can be specified is fccpx (fcc for own compiler).

VT_CXX
Same as the "-vt:cxx" option.

The value that can be specified is FCCpx (FCC for own compiler).

VT_FC
Same as the "-vt:f90" option.

The value that can be specified is frtpx (frt for own compiler).

VT_CFLAGS Specify the option passed to the C compiler.

VT_CXXFLAGS Specify the option passed to the C++ compiler.

VT_FCFLAGS Specify the option passed to the Fortran compiler.

VT_LDFLAGS Specify the option passed to the linker.

VT_LIBS Specify the library passed to the linker.

- 139 -

4.2.1.5 Example of compilation
Examples of compiling a source code in each language are given below.

 Example

C language

- MPI program

$ vtfccpx sample.c

Collects the start and end time of a user function, an MPI function, and the argument information called in an MPI program

- Sequential program

$ vtfccpx -vt:cc fccpx -vt:seq sample.c

Collects the start and end time of a user function called in a sequential program

- Multithreaded program

$ vtfccpx -Kopenmp -vt:cc fccpx -vt:mt sample.c

Start/end time of the user function called in start/end time of the user function called in the multithreaded program and the OpenMP
instruction sentence is collected and the amounts of the number of threads are collected.

- Hybrid program

$ vtfccpx -Kopenmp -vt:hyb sample.c

Start/end time of the user function called in start/end time of start/end time of the MPI function called in a hybrid program and argument
information and the user function and the OpenMP instruction sentence is collected and the amounts of the number of threads are
collected.

C++ language

- MPI program

$ vtFCCpx sample.cc

Collects the start and end time of a user function, an MPI function, and the argument information called in an MPI program

- Sequential program

$ vtFCCpx -vt:cxx FCCpx -vt:seq sample.cc

Collects the start and end time of a user function called in a sequential program

- Multithreaded program

$ vtFCCpx -Kopenmp -vt:cxx FCCpx -vt:mt sample.cc

Start/end time of the user function called in Start/end time of the user function called in the multithreaded program and the OpenMP
instruction sentence is collected and the amounts of the number of threads are collected.

- Hybrid program

$ vtFCCpx -Kopenmp -vt:hyb sample.cc

Start/end time of the user function called in start/end time of start/end time of the MPI function called in a hybrid program and argument
information and the user function and the OpenMP instruction sentence is collected and the amounts of the number of threads are
collected.

Fortran

- 140 -

- MPI program

$ vtfrtpx sample.f90

Collects the start and end time of a user function, an MPI function, and the argument information called in an MPI program

- Sequential program

$ vtfrtpx -vt:f90 frtpx -vt:seq sample.f90

Collects the start and end time of a user function called in a sequential program

- Multithreaded program

$ vtfrtpx -Kopenmp -vt:f90 frtpx -vt:mt sample.f90

Start/end time of the user function called in start/end time of the user function called in the multithreaded program and the OpenMP
instruction sentence is collected and the amounts of the number of threads are collected.

- Hybrid program

$ vtfrtpx -Kopenmp -vt:hyb sample.f90

Start/end time of the user function called in start/end time of start/end time of the MPI function called in a hybrid program and argument
information and the user function and the OpenMP instruction sentence is collected and the amounts of the number of threads are
collected.

4.2.2 Information collection
The information collection feature executes applications created by the vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler)
commands, and collects relevant information about the applications.

The Tracer can collect the following information:

- MPI trace (Refer to "4.3.1 MPI trace")

- User function trace (Refer to "4.3.2 User function trace")

- VampirTrace API trace (Refer to "4.3.3 VampirTrace API trace")

- I/O trace (Refer to "4.3.4 I/O trace")

- Memory trace (Refer to "4.3.5 Memory trace")

After an application is executed, the local trace data file of each rank thread is created. Refer to "4.2.3.5 Trace data files" for information
on local trace data files.

When an application is executed, the collection operations can be controlled by specifying environment variables. Refer to "4.2.2.1
Environment variables for execution" for information on environment variables.

4.2.2.1 Environment variables for execution
The following table describes the environment variables that can be specified when an application is executed.

Table 4.5 Environment variables for execution

Environment variable Description Default value

VT_BUFFER_SIZE

Specifies the size of the buffer (unit of byte) where the time series
collection information is recorded before it is written to the events
file.

If less than 100 KB, it is resized to 100 KB.

A negative value cannot be specified.

32M

VT_CLEAN
Specifies whether to delete local trace data files temporarily output
to "VT_PFORM_LDIR".

yes

- 141 -

Environment variable Description Default value

Only "yes" or "no" can be specified.

VT_COMPRESSION

Specifies whether to compresses a local trace data file when it is
output; if compressed, a local trace data file is output with the file
name extension of ".z".

Only "yes" or "no" can be specified.

yes

VT_FILE_PREFIX

Adds a name at the top of local trace data files.

The default is "a", or the application name specified by "-o" during
translation.

a or
application name

VT_FILE_UNIQUE
Prevents overwriting to a local trace data file.

Specify "yes", "no", or a positive integer.
no

VT_GNU_NMFILE

Specifies the file that records the symbol information when the Tracer
fails to acquire the symbol information of an application.

 Example

If an application is named "a.out":

$ nm --demangle --line-numbers a.out > a.nm
$ export VT_GNU_NMFILE="a.nm"

-

VT_MAX_FLUSHES

Specifies the upper bound of the frequency of the buffer flash.

Either 0 or a positive value can be specified.

It is considered that there is no upper bound in case 0 is specified.

1

VT_MAX_THREADS
Specifies the maximum number of threads per process for
VampirTrace to secure a resource.

65536

VT_PFORM_GDIR Specifies the directory that stores local trace data files. Current directory

VT_PFORM_LDIR
Specifies the directory name that temporarily stores local trace data
files.

Current directory

VT_THREAD_BUFFER_SIZE

Specifies the size (unit of byte) of the buffer per a thread to create the
events file.

If less than 100 KB, it is resized to 100 KB.

If more than 1GB, it is resized to 1GB.

A negative value cannot be specified.

If you do not define this environment variable, as for the memory
consumption of the tracer, 10% of the value specified with
VT_BUFFER_SIZE is consumed.

The calculating formula of the memory consumption is the following.

- When VT_THREAD_BUFFER_SIZE is unspecified

M = N * VT_BUFFER_SIZE * 0.7 + N * T *
VT_BUFFER_SIZE * 0.1

- When VT_THREAD_BUFFER_SIZE is specified

M = N * VT_BUFFER_SIZE + N * T *
VT_THREAD_BUFFER_SIZE

0

- 142 -

Environment variable Description Default value

M : Value of total of memory allocation
N : Number of processes
T : Number of threads a process

VT_VERBOSE

Specifies the level of the information message related to
VampirTrace.

A value of 0, 1, or 2 can be specified.

- "Quiet: 0" or "Critical: 1"

If 0 or 1 is specified, nothing is output.

- "Information: 2"

The making situation of the local trace data file is output.

1

VT_MPITRACE

Specifies whether an MPI function is traced. If "no" is specified, the
information on the MPI function is not recorded in the events file.

Only "yes" or "no" can be specified.

Refer to "4.3.1 MPI trace" for information on the MPI trace.

yes

VT_IOTRACE

Specifies whether the I/O function is traced.

If "no" is specified, the information on the I/O function is not recorded
in the events file.

Only "yes" or "no" can be specified.

Refer to "4.3.4 I/O trace" for information on the I/O trace.

no

VT_MEMTRACE

Specifies whether the memory function is traced.

If "no" is specified, the information on the memory function is not
recorded in the events file.

Only "yes" or "no" can be specified.

Refer to "4.3.5 Memory trace" for information on the memory trace.

no

VT_SYNC_FLUSH
Specifies whether the buffer flash synchronization is effectively
done.

no

VT_SYNC_FLUSH_LEVEL

Specifies the minimum buffer level for the buffer flash
synchronization in rate.

A value from 0 through 100 can be specified.

80

VT_MAX_STACK_DEPTH
Specifies the maximum number of stack levels to be traced.

0 means unrestricted.
0

VT_PREFIX
Specifies the directory after the change if the installation destination
of the Tracer is changed from "/opt/FJSVmxlang".

-

4.2.3 Local trace data file integration feature
This section explains the local trace data files integration feature.

This feature integrates local trace data files by using the vtunifypx command or the vtunify-mpi application after an application is executed,
and the local trace data file is gathered of making by the vtfccpx/vtFCCpx/vtfrtpx commands (vtfcc/vtFCC/vtfrt for own compiler).

The vtunifypx command or the vtunify-mpi application is a tool that integrates local trace data files created for each rank, and generates
the trace data file.

The vtunifypx command operates at the front end. The operation of the vtunifypx command should have the local trace data file of all
ranks. As the vtunifypx command does not operate at the compute node, the CPU resource of the compute node is not consumed. The
vtunify-mpi application operates by MPI parallel version on the compute node. The operation of the vtunify-mpi application should have

- 143 -

a local trace data file for each rank in each compute node. It is possible to say for high parallel execution because it integrates it more
high-speed than vtunifypx though CPU resource of the compute node is consumed so that the vtunify-mpi application may operate by the
compute node.

The method for creating trace data at the front end is shown in "Figure 4.2 Flow for using vtunifypx", and the method for creating trace
data by the compute node is shown in "Figure 4.3 Flow for using vtunify-mpi".

Figure 4.2 Flow for using vtunifypx

- 144 -

Figure 4.3 Flow for using vtunify-mpi

4.2.3.1 Format
vtunifypx

vtunifypx iprefix
[-o trace_filename] [{-h | --help}] [{-V | --version}] [--nocompress]
[{-k | --keeplocal}] [{-p | --progress}] [{-q | --quiet}] [{-v | --verbose}]

vtunify-mpi

vtunify-mpi iprefix
[-o trace_filename] [{-h | --help}] [{-V | --version}] [--nocompress]
[{-k | --keeplocal}] [{-q | --quiet}] [{-v | --verbose}]

4.2.3.2 Operand
iprefix

This is the name of the local trace data file.

For example, if an application named "sample" is executed, the name of the local trace data file starts with "sample".

In this case, "sample" is specified for iprefix.

Moreover, if the name of an application is "sample.out" or "sample.exe", "sample" is specified for iprefix.

If the storage location of a local trace data file is specified by the VT_PFORM_GDIR environment variable when an application is
executed, the storage directory name, the slash ("/"), and the local trace data file name are specified for iprefix.

Refer to "4.2.2.1 Environment variables for execution" for information on environment variables.

- 145 -

4.2.3.3 Options
The options that can be specified for the vtunifypx command or the vtunify-mpi application are described in "Table 4.6 Options".

Table 4.6 Options

Option Description

-o trace_filename Assigns a unique value to the first name of the trace data file

-h or --help Outputs the help message

-V or --version Outputs the version of VampirTrace

--nocompress

Does not compress the def or events file

Refer to "4.2.3.5 Trace data files" for information on the def and events files.

The option takes precedence over the VT_COMPRESSION environment variable.

-k or --keeplocal
Creates an otf file without deleting the def, events, or uctl files

If this option is specified, the def, the events, and the otf file that starts with "u_" are output.

-p or --progress
Displays the progress of the vtunifypx command

This option is only valid for the vtunifypx command.

-q or --quiet

Controls the output of the execution log

This option provides the same functionality as the environment variable VT_VERBOSE=0 or 1.

The option takes precedence over the VT_VERBOSE environment variable. As for the priority level
with "-v", the option specified at the end is given priority.

-v or --verbose

Outputs the execution log

This option has the same functionality as the environment variable VT_VERBOSE=2.

The option takes precedence over the VT_VERBOSE environment variable. As for the priority level
with "-q", the option specified at the end is given priority.

4.2.3.4 Example of execution
An execution example is given below.

 Example

- Example 1: Consider an application named "sample.out" where local trace data files that start with "sample" exist in the current
directory.

- Example 1-1: When local trace data files of all ranks exists at the front end.

$ vtunifypx sample

- Example 1-2: When the local trace data file of each rank exists at each compute node after executing 1000 in parallel.

$ mpiexec -n 1000 vtunify-mpi sample

- Example 2: Consider an application named "sample.out", and two is executed in parallel, and the local trace data file that starts with
"sample" exists at a location other than the current directory.

- Example 2-1: When the local trace data file of all ranks exists at the front end.

$ vtunifypx absolute_or_relative_path/sample

- Example 2-2: When the local trace data file of each rank exists at each compute node after executing 1000 in parallel.

$ mpiexec -n 1000 vtunify-mpi absolute_or_relative_path/sample

- 146 -

absolute_or_relative_path

The absolute or relative path of the directory where the local trace data file exists.

4.2.3.5 Trace data files
After an application is executed, the result of collecting the information is written to a file.

Moreover, the user creates the def, events, and the otf file using the vtunifypx command or the vtunify-mpi application.

These files are called trace data files.

A trace data file is usually output to the current directory. The output destination can be changed by VT_PFORM_GDIR.

Neither def nor the events file are compressed, and the file name extension of ".z" is removed if "no" is specified for VT_COMPRESSION.

The types and the names of trace data files that are created are given below.

Trace data files

DEF file

The whole definition file to function for each collection, user API, and the trace from which the identification number is distributed,
and made a list respectively.

trace-filename_exec-count.0.def.z

EVENTS file

The trace result of the function called by the source program is recorded in the time series.

trace-filename_exec-count.parallel_or_thread-number.events.z

OTF file

This is the final file required for GUI display using Vampir.

trace-filename_exec-count.otf

Only local trace data files

UCTL file

This is a file necessary for the *.otf file creation.

trace-filename_exec-count.parallel-number.uctl

Trace data files and local trace data files commonness

LOCK file

This file records the execution frequency of an application when VT_FILE_UNIQUE=yes is specified.

trace-filename.lock

- trace-filename

This is the trace file name specified by the VT_FILE_PREFIX environment variable. The reference value becomes the application
name specified by "-o" when compiling or "a".

- exec-count

If "yes" or an arbitrary numerical value is specified for the VT_FILE_UNIQUE environment variable, it becomes the execution
frequency. The trace data file is overwritten and "_exec-count" is not added to the file name when VT_FILE_UNIQUE is not specified.

- parallel_or_thread-number

This is a parallel rank number or a thread number. It is expressed as a hexadecimal number.

- parallel-number

This is a parallel rank number. It is expressed as a hexadecimal number.

- 147 -

4.3 Trace information

4.3.1 MPI trace
The MPI trace collects the start time, the end time, and the argument information for an MPI function.

4.3.1.1 Compilation
The MPI trace compiles an MPI program using the vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler) command, and creates
an application. A compilation example is given below.

 Example

Compilation of the C language program "sample.c"

$ vtfccpx sample.c

4.3.1.2 Execution
Default need not consider and the user consider VT_MPITRACE specially for "yes" though he or she should specify "yes" for the
VT_MPITRACE environment variable as for the MPI trace when executing it.

An execution example is given below.

 Example

Execution by 2 processes of the application program "a.out"

$ mpiexec -n 2 ./a.out

4.3.1.3 MPI functions collected by the Tracer
MPI functions that the Tracer collects are given below.

The Tracer makes the function of MPI-1 and MPI-2 a collection object.

Refer to "Table 4.7 MPI functions collected by the Tracer (MPI 1)" for information on MPI-1.

Refer to "Table 4.8 MPI functions collected by the Tracer (MPI 2)" for information on MPI-2.

Table 4.7 MPI functions collected by the Tracer (MPI 1)

MPI_Abort MPI_Error_string MPI_Recv

MPI_Allgather MPI_Finalize MPI_Recv_init

MPI_Allgatherv MPI_Gather MPI_Reduce

MPI_Allreduce MPI_Gatherv MPI_Reduce_scatter

MPI_Alltoall MPI_Get_count MPI_Request_free

MPI_Alltoallv MPI_Get_elements MPI_Rsend

MPI_Attr_delete MPI_Get_processor_name MPI_Rsend_init

MPI_Attr_get MPI_Graph_create MPI_Scan

MPI_Attr_put MPI_Graph_get MPI_Scatter

MPI_Barrier MPI_Graph_map MPI_Scatterv

MPI_Bcast MPI_Graph_neighbors MPI_Send

MPI_Bsend MPI_Graph_neighbors_count MPI_Send_init

- 148 -

MPI_Bsend_init MPI_Graphdims_get MPI_Sendrecv

MPI_Buffer_attach MPI_Group_compare MPI_Sendrecv_replace

MPI_Buffer_detach MPI_Group_difference MPI_Ssend

MPI_Cancel MPI_Group_excl MPI_Ssend_init

MPI_Cart_coords MPI_Group_free MPI_Start

MPI_Cart_create MPI_Group_incl MPI_Startall

MPI_Cart_get MPI_Group_intersection MPI_Test

MPI_Cart_map MPI_Group_range_excl MPI_Test_cancelled

MPI_Cart_rank MPI_Group_range_incl MPI_Testall

MPI_Cart_shift MPI_Group_rank MPI_Testany

MPI_Cart_sub MPI_Group_size MPI_Testsome

MPI_Cartdim_get MPI_Group_translate_ranks MPI_Topo_test

MPI_Comm_compare MPI_Group_union MPI_Type_commit

MPI_Comm_create MPI_Ibsend MPI_Type_contiguous

MPI_Comm_dup MPI_Init MPI_Type_extent

MPI_Comm_free MPI_Intercomm_create MPI_Type_free

MPI_Comm_group MPI_Intercomm_merge MPI_Type_hindexed

MPI_Comm_rank MPI_Iprobe MPI_Type_hvector

MPI_Comm_remote_group MPI_Irecv MPI_Type_indexed

MPI_Comm_remote_size MPI_Irsend MPI_Type_lb

MPI_Comm_size MPI_Isend MPI_Type_size

MPI_Comm_split MPI_Issend MPI_Type_struct

MPI_Comm_test_inter MPI_Keyval_create MPI_Type_ub

MPI_Dims_create MPI_Keyval_free MPI_Type_vector

MPI_Errhandler_create MPI_Op_create MPI_Unpack

MPI_Errhandler_free MPI_Op_free MPI_Wait

MPI_Errhandler_get MPI_Pack MPI_Waitall

MPI_Errhandler_set MPI_Pack_size MPI_Waitany

MPI_Error_class MPI_Probe MPI_Waitsome

Table 4.8 MPI functions collected by the Tracer (MPI 2)

MPI_Accumulate MPI_File_read_ordered_begin MPI_Type_create_darray

MPI_Alltoallw MPI_File_read_ordered_end MPI_Type_create_f90_complex

MPI_Add_error_class MPI_File_read_shared MPI_Type_create_f90_integer

MPI_Add_error_code MPI_File_seek MPI_Type_create_f90_real

MPI_Alloc_mem MPI_File_seek_shared MPI_Type_create_hindexed

MPI_Comm_create_keyval MPI_File_set_atomicity MPI_Type_create_hvector

MPI_Comm_delete_attr MPI_File_set_info MPI_Type_create_indexed_block

MPI_Comm_free_keyval MPI_File_set_size MPI_Type_create_keyval

MPI_Comm_get_attr MPI_File_set_view MPI_Type_create_resized

MPI_Comm_get_name MPI_File_sync MPI_Type_create_struct

- 149 -

MPI_Comm_set_attr MPI_File_write MPI_Type_create_subarray

MPI_Comm_set_name MPI_File_write_all MPI_Type_delete_attr

MPI_Exscan MPI_File_write_all_begin MPI_Type_dup

MPI_File_close MPI_File_write_all_end MPI_Type_free_keyval

MPI_File_delete MPI_File_write_at MPI_Type_get_attr

MPI_File_get_amode MPI_File_write_at_all MPI_Type_get_contents

MPI_File_get_atomicity MPI_File_write_at_all_begin MPI_Type_get_envelope

MPI_File_get_byte_offset MPI_File_write_at_all_end MPI_Type_get_extent

MPI_File_get_group MPI_File_write_ordered MPI_Type_get_name

MPI_File_get_info MPI_File_write_ordered_begin MPI_Type_get_true_extent

MPI_File_get_position MPI_File_write_ordered_end MPI_Type_match_size

MPI_File_get_position_shared MPI_File_write_shared MPI_Type_set_attr

MPI_File_get_size MPI_Free_mem MPI_Type_set_name

MPI_File_get_type_extent MPI_Get MPI_Unpack_external

MPI_File_get_view MPI_Get_version MPI_Win_complete

MPI_File_iread MPI_Grequest_start MPI_Win_create

MPI_File_iread_at MPI_Info_create MPI_Win_create_keyval

MPI_File_iread_shared MPI_Info_dup MPI_Win_delete_attr

MPI_File_iwrite MPI_Info_free MPI_Win_fence

MPI_File_iwrite_at MPI_Info_get_nkeys MPI_Win_free

MPI_File_iwrite_shared MPI_Info_get_nthkey MPI_Win_free_keyval

MPI_File_open MPI_Init_thread MPI_Win_get_attr

MPI_File_preallocate MPI_Is_thread_main MPI_Win_get_group

MPI_File_read MPI_Initialized MPI_Win_get_name

MPI_File_read_all MPI_Pack_external MPI_Win_lock

MPI_File_read_all_begin MPI_Pack_external_size MPI_Win_post

MPI_File_read_all_end MPI_Put MPI_Win_set_attr

MPI_File_read_at MPI_Query_thread MPI_Win_set_name

MPI_File_read_at_all MPI_Register_datarep MPI_Win_start

MPI_File_read_at_all_begin MPI_Request_get_status MPI_Win_test

MPI_File_read_at_all_end MPI_Status_set_cancelled MPI_Win_unlock

MPI_File_read_ordered MPI_Status_set_elements MPI_Win_wait

4.3.2 User function trace
The user function trace collects the original beginning the function that the user defined in the source program and information at the end
time.

4.3.2.1 Compilation
A compilation example is given below.

- 150 -

 Example

Compilation of the C language program "sample.c"

$ vtfccpx sample.c

4.3.2.2 Execution
An execution example is given below.

 Example

Execution by 2 processes of the application program "a.out"

$ mpiexec -n 2 ./a.out

4.3.3 VampirTrace API trace
Trace data can be generated using the VampirTrace API trace.

Users can manually insert VT_USER_START (for C language/Fortran), VT_USER_END (for C language/Fortran), and VT_TRACER
(for the C++ language) in the source program, and then the section is specified, and the trace data is generated.

4.3.3.1 Usage
The method for specifying the VampirTrace API trace in each language is given below.

 Example

C language and Fortran

For the C language

#include "vt_user.h"
VT_USER_START("name");
...
VT_USER_END("name");

For Fortran

#include "vt_user.inc"
VT_USER_START('name')
...
VT_USER_END('name')

VT_USER_START and VT_USER_END should pair for the C language and Fortran during execution.

Therefore, it is necessary to specify VT_USER_END for all exits if there is an exit in the block of each VT_USER_START and
VT_USER_END.

It is necessary to specify if "-Cpp" of the Fortran compiler option is translated, if the VampirTrace API trace is used with FORTRAN77
and Fortran90, or to change the extension to ".F" and ".F90", and to call the preprocessor.

Refer to the "Fortran User's Guide" for information on the Fortran compiler.

C++ language

For C++ language

#include "vt_user.h"
{
VT_TRACER("name");

- 151 -

...
}

Specify VT_TRACER only for the entrance of scope when you specify the section by the source program of the C++ language.

You cannot use the VT_TRACE function multiple times within a single scope. In the exit of scope, the trace data is automatically
output.

4.3.3.2 Compilation
A compilation example is given below.

 Example

- Example 1: When only VampirTrace API trace is used

$ vtfccpx -vt:inst manual -DVTRACE sample.c

If only the VampirTrace API trace is performed, it is necessary to specify "-vt:inst manual -DVTRACE" for compilation.

- Example 2: When VampirTrace API is traced, and a user function trace is used

$ vtfccpx -DVTRACE sample.c

If both the VampirTrace API trace and the user function trace are performed, it is necessary to specify the "-DVTRACE" option for
compilation.

- Example 3: When neither the VampirTrace API trace nor the user function trace is used

$ vtfccpx -vt:inst manual sample.c

The VampirTrace API trace does not operate if the "-DVTRACE" option is not specified.

Refer to "4.2.1.2 Options" for information on options.

4.3.3.3 Execution

 Example

Execution by 2 processes of the application program "a.out"

$ mpiexec -n 2 ./a.out

4.3.4 I/O trace
The I/O trace collects the start/end time of the I/O function and number of bytes for data read/write.

4.3.4.1 Compilation
The I/O trace compiles a program using the vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler) command, and creates an
application.

A compilation example is given below.

 Example

Compilation of the sequential program of C language with vtfcc

- 152 -

$ vtfccpx -vt:cc fccpx -vt:seq file_io.c

4.3.4.2 Execution
When executing, it is necessary to specify "yes" for environment variable VT_IOTRACE to make the I/O trace feature effective. The
default is "no".

An execution example is given below.

 Example

Execution of the sequential application program "a.out"

$ export VT_IOTRACE=yes
$./a.out

4.3.4.3 I/O functions collected by the Tracer
The I/O function that tracers collect is shown Table 4.9 I/O functions collected by the Tracer below.

Table 4.9 I/O functions collected by the Tracer

close creat creat64 dup dup2

fclose fdopen fgetc fgets flockfile

fopen fopen64 fputc fputs fread

fscanf fseek fseeko fseeko64 fsetpos

fsetpos64 ftrylockfile funlockfile fwrite getc

gets lockf lseek lseek64 open

open64 pread pread64 putc puts

pwrite pwrite64 read readv rewind

unlink write writev

4.3.5 Memory trace
The memory trace collects the start time, the end time, the number of bytes for allocated memory.

The memory trace feature cannot be used with the multithreaded program (OpenMP and the automatic parallelization are included).

4.3.5.1 Compilation
The Memory trace compiles a program using the vtfccpx/vtFCCpx/vtfrtpx (vtfcc/vtFCC/vtfrt for own compiler) command, and creates
an application.

A compilation example is given below.

 Example

Compilation of the sequential program of C language with vtfcc

$ vtfccpx -vt:cc fccpx -vt:seq memory.c

- 153 -

4.3.5.2 Execution
When executing, it is necessary to specify "yes" for environment variable VT_MEMTRACE to make the memory trace feature effective.
The default is "no".

An execution example is given below.

 Example

Execution of the sequential application program "a.out"

$ export VT_MEMTRACE=yes
$./a.out

4.3.5.3 Memory functions collected by the Tracer
The memory function that tracers collect is shown Table 4.10 Memory functions collected by the Tracer below.

Table 4.10 Memory functions collected by the Tracer

calloc free malloc memalign

posix_memalign realloc valloc

- 154 -

Chapter 5 Tofu PA

5.1 Overview of Tofu PA
This chapter describes the features and usage of the Tofu PA information.

5.1.1 Tuning and Tofu PA information acquisition feature
Tuning work related to the communication performance of an application comprises two stages of optimization: optimization of the overall
communication performance and optimization of the local communication performance. In the former stage, the optimal process mapping
is decided based on the communication pattern and the topology shape. It is possible to generate it by using the rank arrangement
optimization tool, though the optimal process mapping can also be generated manually. Refer to the "Rank Map Automatic Tuning Tools
User's Guide" for information how to optimize process mapping using this tool. In the latter stage, performance improvement is done by
finding communication performance problems in a specific communication section or a specific node, and determining corrective strategies
such as specifying runtime options or fine-tuning process mapping. If performance issues are not discovered, it is confirmed that
performance issues have been resolved because of the optimal process mapping generated using the former stage. The cause of a
communication performance problem in a specific communication section or a specific node can be identified by using the Tofu PA
acquisition feature, and it is useful for determining the method for improving the performance and to verify the resolution of performance
issues.

5.1.2 Overview of the feature
The Tofu PA acquisition feature acquires the Tofu PA information (statistical information regarding communication in the Tofu
interconnect) using the Performance Analysis (PA) feature mounted on the Tofu interconnect.

The following information is output:

Tofu PA information

The elapsed time in the 0 state during data transfer (send port and receive port) and the amount of the remaining destination buffer is
output.

5.2 Using the Tofu PA information acquisition feature
This section describes the acquisition of the Tofu PA information and the specification of the measurement section in an application.

5.2.1 Overview of the Tofu PA information acquisition feature
"Figure 5.1 Tofu PA information acquisition feature" shows the relation between the collection and output of Tofu PA information.

Figure 5.1 Tofu PA information acquisition feature

- 155 -

Acquisition of the Tofu PA information

To collect the Tofu PA information, it is necessary to execute the application linked with the Tofu PA object file.

The following information is acquired on executing an application. It is also possible to select the information you want to acquire. However,
you can only acquire the PA information for 10 ports of a network router, but the PA information for a network interface cannot be acquired.

- Elapsed time in the 0 state in amount of the destination buffer remainder: The total of the accumulation time in the state that becoming
empty is lost in the receive buffer of the destination node is shown. The aggregate is calculated for each virtual channel.

- Number of sent and received TLP, and number of sent and received TLP bytes: The total number of packets transmitted or received,
and total number of bytes transferred.

Depending on the timing of acquisition, the Tofu PA information is of two types as specified below. You can switch across these two
types by using specific settings during operation.

- When the Tofu PA information is acquired at the start point and the end point of a communication section (refer to "Figure 5.2 Operation
example of Tofu PA information acquisition" below)

The interface to specify the start point and the end point of a code section that acts as the measuring object is provided. The Tofu PA
information is acquired at the time when these interfaces are called. The code section specified by this interface is called the
measurement section. The measurement timing may differ across nodes.

- When the Tofu PA information is acquired at the start point and the end point of a communication section and the collection timing
is set between nodes (refer to "Figure 5.3 Operation example when the timing for Tofu PA information acquisition is set between
nodes" below)

When the Tofu PA information is acquired at the start point and the end point in a section that acts as the measuring object, the
measurement timing of each node is set in accordance to one of the nodes. The node that acts as the standard for the measurement
timing is specified. As the measurement timing is set by not synchronization but interrupt, change in the behavior of the program on
execution can be suppressed to the minimum. (This feature is a limitation in the first edition and cannot be used.)

(This feature is a limitation in the first edition and cannot be used.)

Figure 5.2 Operation example of Tofu PA information acquisition

- 156 -

Figure 5.3 Operation example when the timing for Tofu PA information acquisition is set between nodes

The total of the Tofu PA information acquired for each measuring object section can be calculated by using the following two methods,
and can be switched by using specific settings during operation.

- Aggregate of all measurement sections

The Tofu PA information is acquired for the start point and the end point of a measurement section, the difference value is requested,
and each measurement section is aggregated.

- Separately record the information for each measurement section

When a measurement section is executed, the difference value of the Tofu PA information is requested. Each section for the
measurement is not aggregated, and the difference value of each times of execution in each section for the measurement and the section
for the measurement is recorded.

When two or more processes start in a node, the Tofu PA information is acquired only for one process automatically selected.

Output of the Tofu PA information

When an application terminates, the Tofu PA information is output to a file in the text format on each node. In addition to the Tofu PA
information, the node address is output to each file. Refer to "5.2.6 File formats" for details.

Visualization of the Tofu PA information

It is possible to visualize it by loading the output file to a special tool. Additionally, it is possible to read the spreadsheet software, and
generate graphs. Refer to "5.2.7 Visibility" for details.

5.2.2 Specifying the measurement section
Specifying a measurement section involves specifying a measurement range for the Tofu PA information. To specify a measurement range
in the source code, insert subroutines at the start position and the end position for measuring the Tofu PA information. Functions of the
C/C++ languages or Fortran subroutines can be used to specify a measurement section.

If using C/C++ functions, include the header file or function prototype declaration.

Overview of the functions used to specify a measurement section is given below.

- 157 -

Language Header file Function name

(Procedure name)
Description Arguments Return

value

C/C++ fj_tool/fjtofupa.h fj_tofupa_start Starts a measurement section Described in
the next table

-

fj_tofupa_stop Ends a measurement section

Fortran - fj_tofupa_start Starts a measurement section -

fj_tofupa_stop Ends a measurement section

The arguments for each function (procedure) are described below.

Argument Type (C/C++) Type (FORTRAN) Description

name char * CHARACTER Group name (not used)

region int INTEGER Number of measurement sections (Integer value from 1 - 4095)

level int INTEGER Priority level (Integer value of 0 or more)

Take the following points into consideration when calling these functions (procedure).

- Call fj_tofupa_start or fj_tofupa_stop between MPI_Init (or MPI_Init_thread) and MPI_Finalize.

- In case of a multithreaded program, call fj_tofupa_start and fj_tofupa_stop by the thread where an MPI function is called.

- The method for calling MPI_Init, MPI_Init_thread, or MPI_Finalize must conform to the requirements of the MPI library. Refer to
the "MPI User's Guide" for details.

- The section with the same number of the section for the measurement for the measurement overlaps or it cannot have the inclusion
relation though can a part of the section with a different number of the section for the measurement for the measurement overlap or
the other side be included in one.

- Tofu PA information in the section from MPI_Init (or, MPI_Init_thread) to MPI_Finalize is acquired as data of the measurement
object section number 0 and the priority level 0 besides the specified section for the measurement. Please specify the value of 0 or
more for environment variable FJ_TOFUPA_LEVEL to do the above-mentioned measurement effectively.

 Example

- Example 1: The measurement section contains a point-to-point communication section of an application written in C.

#include <mpi.h>
#include "fj_tool/fjtofupa.h"

int main(int argc, char ** argv)
{
 int rank, size, l, r, j;
 int b[2][262144];
 MPI_Request Rq[2];
 MPI_Status St[2];
 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 l = (rank - 1 + size) % size;
 r = (rank + 1) % size;

 MPI_Barrier(MPI_COMM_WORLD);

 fj_tofupa_start("", 1, 0);
 MPI_Isend(&b[0], 262144, MPI_INT, l, 0, MPI_COMM_WORLD, &Rq[0]);
 MPI_Irecv(&b[1], 262144, MPI_INT, r, 0, MPI_COMM_WORLD, &Rq[1]);
 MPI_Waitall(2, Rq, St);

- 158 -

 fj_tofupa_stop("", 1, 0);

 MPI_Finalize();
 return 0;
}

- Example 2: The measurement section contains a point-to-point communication section of an application written in C++.

#include <mpi.h>
#include "fj_tool/fjtofupa.h"
using namespace std;

int main(int argc, char ** argv)
{
 int rank, size, l, r, j;
 int b[2][262144];
 MPI::Request Rq[2];
 MPI::Status St[2];
 MPI::Init(argc, argv);

 rank = MPI::COMM_WORLD.Get_rank();
 size = MPI::COMM_WORLD.Get_size();

 l = (rank - 1 + size) % size;
 r = (rank + 1) % size;

 MPI::COMM_WORLD.Barrier();

 fj_tofupa_start("", 1, 0);
 Rq[0] = MPI::COMM_WORLD.Isend(&b[0], 262144, MPI_INT, l, 0);
 Rq[1] = MPI::COMM_WORLD.Irecv(&b[1], 262144, MPI_INT, r, 0);
 Rq[0].Waitall(2, Rq, St);
 fj_tofupa_stop("", 1, 0);

 MPI::Finalize();
 return 0;
}

- Example 3: The measurement section contains a point-to-point communication section of an application written in Fortran 90.

program prg
 implicit none
 include 'mpif.h'
 integer myrank, mysize, l, r, j, ierr
 integer,dimension(262144,2) :: b
 integer Rq(2)
 integer St(MPI_STATUS_SIZE,2)
 call MPI_Init(ierr)

 call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
 call MPI_Comm_size(MPI_COMM_WORLD, mysize, ierr)

 l = mod((myrank - 1 + mysize), mysize)
 r = mod((myrank + 1), mysize)

 call MPI_Barrier(MPI_COMM_WORLD,ierr)

 call fj_tofupa_start('', 1, 0)
 call MPI_Isend(b(1,1),262144,MPI_INTEGER,l,0,MPI_COMM_WORLD,Rq(1),ierr)
 call MPI_Irecv(b(1,2),262144,MPI_INTEGER,r,0,MPI_COMM_WORLD,Rq(2),ierr)
 call MPI_Waitall(2, Rq, St, ierr)
 call fj_tofupa_stop('', 1, 0)

- 159 -

 call MPI_Finalize(ierr)
end

5.2.3 Compilation
It is necessary to create an application that links with a special object file to use the Tofu PA acquisition feature.

Specify the object file (/opt/FJSVmxlang/lib64/libtofupa.o) in the options of the mpifccpx, mpiFCCpx, and mpifrtpx commands.

5.2.4 Execution

Environment variable

It is necessary to set the environment variable correctly.

Environment variable Value

LD_LIBRARY_PATH /opt/FJSVmxlang/lib64

To use the batch queuing system and the MPI processing system, additional settings besides those mentioned above may be necessary.
Refer to the "Job Operation Software First Step Guide" for information on the batch queuing system. Refer to the "MPI User's Guide" for
information on the MPI system.

The operation of the Tofu PA acquisition feature can be controlled by specifying the following environment variables.

Environment variable Value

FJ_TOFUPA_LEVEL The priority level counter is set. The PA information is acquired if the "level" value
specified for the measurement section is less than this value. The default is -1, and all
PA information is not acquired.

FJ_TOFUPA_DIR The file output destination directory is specified. The default is the current directory.

FJ_TOFUPA_PA The Tofu PA information to be output is specified. The name of the Tofu PA information
or the "Table 5.2 Tofu PA information groups" is specified for this environment variable
(refer to "Table 5.1 Tofu PA information name" below). A Tofu PA information group
contains two or more Tofu PA information. The default is "STD", and all Tofu PA
information is acquired.

FJ_TOFUPA_MAXREGION The maximum number of measurement sections is specified.

However, because the number of measurement sections starts from 0, the value obtained
by subtracting 1 from the value specified for this environment variable becomes the
maximum number of measurement sections. The default is 4096, while a value from 1
through 4095 can be specified for the number of measurement sections. A value of 0 for
the number of measurement sections is reserved, and disregarded even if specified.

FJ_TOFUPA_MAXITERATION The maximum record frequency when Tofu PA information on each section for the
measurement is not aggregated, and each times of execution in the section for the
measurement are recorded is specified. The default is 0 that aggregates the Tofu PA
information on each measurement section. The Tofu PA information is recorded at each
execution of the measurement section if a value of 1 or more is specified. However, if
the record frequency specified by this environment variable is exceeded, the Tofu PA
information is discarded.

The different types of Tofu PA information that can be acquired with their description are described below. Each Tofu PA information is
output for each port of a network router of each node. Refer to "Chapter 7 Glossary" for information on the glossary related to Tofu
interconnect.

- 160 -

Table 5.1 Tofu PA information name
Tofu PA information Description

TxVc0ZeroCreditCount In the virtual channel 0 (VC0) of each port of the network router of each node, it shows
between total time in 0 states in the amount of the destination buffer remainder. This time
is expressed in "cycles". One cycle corresponds to 2.56 nanoseconds.

TxVc1ZeroCreditCount In the virtual channel 1 (VC1) of each port of the network router of each node, it shows
between total time in 0 states in the amount of the destination buffer remainder. This time
is expressed in "cycles". One cycle corresponds to 2.56 nanoseconds.

TxVc2ZeroCreditCount In the virtual channel 2 (VC2) of each port of the network router of each node, it shows
between total time in 0 states in the amount of the destination buffer remainder. This time
is expressed in "cycles". One cycle corresponds at 2.56 nanoseconds.

TxVc3ZeroCreditCount In the virtual channel 3 (VC3) of each port of the network router of each node, it shows
between total time in 0 states in the amount of the destination buffer remainder. This time
is expressed in "cycle". One cycle corresponds at 2.56 nanoseconds.

NumSendTLP The total number of packets (TLP) transmitted from each port of the network router of each
node is displayed.

ByteSendTLP The total number of bytes for packets (TLP) transmitted from each port of the network
router of each node is displayed. The number of bytes includes the packet header and the
MPI header.

NumReceiveTLP The total number of packets (TLP) received at each port of the network router of each node
is displayed.

ByteReceiveTLP The total number of bytes for packets (TLP) received at each port of the network router of
each node is displayed. The number of bytes includes the packet header and the MPI header.

TxVc[0-3]ZeroCreditCount displays the time duration when the destination buffer had been buried by the packet. Neither time that the
packet that had to be transmitted did the transmission waiting nor the packet that should be transmitted exist and both at the time that
nothing but passes are included at this time. When latter time is generally shorter than the former, it is also possible to consider this value
to be an approximate value of the former because it is surmisable. When such how to catch is done, the situation of the occurrence of the
packet forwarding waiting in the network router of each node can be presumed according to these values.

The Tofu PA information groups and the Tofu PA information included in each group is shown below.

Table 5.2 Tofu PA information groups

Tofu PA group Description

STD Specifies the following Tofu PA information names at the same time:

TxVc0ZeroCreditCount, TxVc1ZeroCreditCount,
TxVc2ZeroCreditCount, TxVc3ZeroCreditCount,
NumSendTLP, ByteSendTLP, NumReceiveTLP, ByteReceiveTLP

CreditCount Specifies the following Tofu PA information names at the same time:

TxVc0ZeroCreditCount, TxVc1ZeroCreditCount, TxVc2ZeroCreditCount,
TxVc3ZeroCreditCount

ZeroCreditCount Same as CreditCount.

TLP Specifies the following Tofu PA information names at the same time:

NumSendTLP, ByteSendTLP, NumReceiveTLP, ByteReceiveTLP

SendTLP Specifies the following Tofu PA information names at the same time:

NumSendTLP, ByteSendTLP

ReceiveTLP Specifies the following Tofu PA information names at the same time:

NumReceiveTLP, ByteReceiveTLP

ByteTLP Specifies the following Tofu PA information names at the same time:

- 161 -

Tofu PA group Description

ByteSendTLP, ByteReceiveTLP

NumTLP Specifies the following Tofu PA information names at the same time:

NumSendTLP, NumReceiveTLP

Options specified when a job is submitted

When the Tofu PA information is acquired, a job may be executed two or more times for tuning. To maintain constant physical shape of
the node resources allocated at the time of job execution (shape in six-dimensional coordinate system), the following options must be
specified, and for this, the node shape must not become three-dimensional and breakdown nodes must not to be included. Two or more
candidates are in physical shape in the specification of 1-2 dimensions, and physical shape might change at job execution.

Option Description

--mpi "assign-online-node" The breakdown node is not included in the allocated space. It is guaranteed that the alternative
path is not included in routing.

-L "node=XxYxZ:strict" The physical shape of the allocated resource is fixed. Any arbitrary rotation is prohibited.

To control the operations of the Tofu PA acquisition feature, the above options are executed for some environment variables. This is
exemplified in the following example.

 Example

An MPI application, a.out, is executed by 16 parallels (16 nodes are allocated, and one process per node is started) and the Tofu PA
information is obtained

#!/bin/sh
#PJM -L "rscunit=unit1"
#PJM --mpi "assign-online-node"
#PJM -L "node=2x2x4:strict"

export LD_LIBRARY_PATH=/opt/FJSVmxlang/lib64:$LD_LIBRARY_PATH
export FJ_TOFUPA_LEVEL=100
mpiexec -n 16 ./a.out

5.2.5 Output file name
The name of each file is decided based on the address of the node. The format of the file name is given below.

File name format

tofupa.<job ID>.<node address>.txt

5.2.6 File formats
Each file consists of the following lines.

Line Description

Six-dimensional physical
node address

Coordinates (X,Y,Z,A,B,C) of the six-dimensional physical node address are output by switching off the
space district following the "# NODE_ADDR " character string.

Only one line per file is output.

Example: "# NODE_ADDR 3 4 5 0 2 1"

Three-dimensional
logical address

Coordinates (X), (X,Y) or (X,Y,Z) of the node address in 1-3 dimensional logical space is output by
switching off the space district following the "# LOGICAL_ADDR" character string.

- 162 -

Line Description

Only one line per file is output.

Example: "# LOGICAL_ADDR 0 1 2"

Rank The rank in MPI_COMM_WORLD is output following the "# RANK" character string.

Only one line per file is output.

Example: "# RANK 0"

Port The number of ports and the port names are output following the "# PORT" character string.

Only one line per file is output.

Example: "# PORT 10 X+ X- Y+ Y- Z+ Z- A B+ B- C"

PA information kind The number of output PA information (port) and the names of PA information is output following the "#
PA" character string.

Only one line per file is output.

Example: "# PA 3 TxVc0ZeroCreditCount TxVc1ZeroCreditCount ByteSendTLP"

PA information output The line of each measurement section is delimited and it is output. PA information in the number of the
section for the measurement and the section for a measurement concerned is output to each line by
switching off the space district. A colon is added after the number of the section for the measurement when
Tofu PA information on each times of execution is recorded, and the record frequency is output.

PA information is as many as 8 pieces or less port, and the number becomes 80 or less in ten ports.

The PA information is output in the order of the ports (X+, X-, Y+, Y-, Z+, Z-, A, B+, B-, C).

As for this line, the same number of lines as products of the number of sections for the measurement and
the number are output about one file.

The final line The "# EOF" character string is output. Only one line per file is output.

The port names are described below.

The length of X,Y,Z axis of the Tofu interconnect is assumed to be X_SIZE,Y_SIZE,Z_SIZE, and the operation symbol from which the
remainder is requested is the rate symbol (%).

Port name Description

X+ Port connected to the node adjacent to the + direction of the X axis

(Node of ((X+1)%X_SIZE,Y,Z,A,B,C) when the six-dimensional node address is (X,Y,Z,A,B,C))

X- Port connected to the node adjacent to the - direction of the X axis

(Node of ((X-1+X_SIZE)%X_SIZE,Y,Z,A,B,C) when the six-dimensional address of the node is (X,Y,Z,A,B,C))

Y+ Port connected to the node adjacent to the + direction of the Y axis

(Node of (X,(Y+1)%Y_SIZE,Z,A,B,C) when the six-dimensional address of the node is (X,Y,Z,A,B,C))

Y- Port connected to the node adjacent to the - direction of the Y axis

(Node of (X,(Y-1+Y_SIZE)%Y_SIZE,Z,A,B,C) when the six-dimensional address of the node is (X,Y,Z,A,B,C))

Z+ Port connected to the node adjacent to the + direction of Z axis

(Node of (X,Y,(Z+1)%Z_SIZE,A,B,C) when the six-dimensional address of the node is (X,Y,Z,A,B,C))

Z- Port connected to the node adjacent to the - direction of the Z axis

(Node of (X,Y,(Z-1+Z_SIZE)%Z_SIZE,A,B,C) when the six-dimensional address of the node is (X,Y,Z,A,B,C))

A Port connected to the node adjacent to the A axis

(Node of (X,Y,Z,(1-A),B,C) when the six-dimensional address of the node is (X,Y,Z,A,B,C))

B+ Port connected to the node adjacent to the + direction of the B axis

- 163 -

Port name Description

(Node of (X,Y,Z,A,(B+1)%3,C) when the six-dimensional address of the node is (X,Y,Z,A,B,C))

B- Port connected to the node adjacent to the - direction of the B axis

(Node of (X,Y,Z,A,(B+2)%3,C) when the six-dimensional address of the node is (X,Y,Z,A,B,C))

C Port connected to the node adjacent to the C axis

(Node of (X,Y,Z,A,B,(1-C)) when the six-dimensional address of the node is (X,Y,Z,A,B,C))

 Example

Contents of an output file

NODE_ADDR 1 1 0 0 0 0
LOGICAL_ADDR 0 0 0
RANK 0
PORT 10 X+ X- Y+ Y- Z+ Z- A B+ B- C
PA 8 tx_vc0_zero_credit_count tx_vc1_zero_credit_count tx_vc2_zero_credit_count
tx_vc3_zero_credit_count num_send_tlp byte_send_tlp num_receive_tlp byte_receive_tlp
0 0 0 0 0 0 167 87176 157 65432 0 0 0 0 219 68584 227 86216 0 0 0 0 0 0 0 0 0 0 0 0 208 97104 208
97072 ...

5.2.7 Visibility
It is possible to convert the Tofu PA information output on each node into the spreadsheet format that is easy to read by using the following
script. The file output on each node is read by a batch by executing the following script in the directory where the output file exists, and
the node and each port are output to one file as a record of one row. In the spreadsheet, the statistics can be visually understood by graphs
between total time 0 states in the transmission volume of data, the amount of data received, and the amount of each port of the destination
buffer remainder. Moreover, the difference in the statistics due to the difference of the place can be confirmed by changing the sort order
for the node address.

#!/bin/sh

cat tofupa.*.txt |
awk '\
BEGIN{
 init=0;
}
/# EOF/{
 next;
}
/# NODE_ADDR/{
 x=$3;
 y=$4;
 z=$5;
 a=$6;
 b=$7;
 c=$8;
 next;
}
/# PORT/{
 n_port = $3;
 for (i = 0; i < n_port; i++)
 namePort[i] = $(i+4);
 next;
}
/# PA/{
 n_pa = $3;
 for (i = 0; i < n_pa; i++)

- 164 -

 namePa[i] = $(i+4);
 next;
}
{
 if (init == 0) {
 init = 1;
 printf "6d_addr\taxis\trid\titer";
 for (i=0; i<n_pa; i++) {
 printf "\t%s", namePa[i];
 }
 printf "\n";
 }

 tmp = $1;
 split(tmp, arr, ":");
 rid = arr[1];
 itr = arr[2];
 for (i=0; i<n_port; i++){
 printf "%d,%d,%d,%d,%d,%d\t%s\t%d\t%d", x,y,z,a,b,c, namePort[i], rid, itr;
 for (j=0; j<n_pa; j++){
 printf "\t%s", $(i*n_pa + j + 2)
 }
 printf "\n";
 }
}'

- 165 -

Chapter 6 Open Source Profiler
The profiler that is released as open source software is installed in this system.

This chapter describes the features and usage of mpiP that is the one of the open source profiler.

6.1 Overview of mpiP
mpiP is a lightweight profiling library for MPI applications. Because it only collects statistical information about MPI functions, mpiP
generates considerably less overhead and much less data than tracing tools

For more information about mpiP, refer to the following website.

http://mpip.sourceforge.net/

6.2 Using mpiP
This section describes compiling steps and the execution method required to use the mpiP.

Figure 6.1 Collection and output of mpiP information

6.2.1 Compilation
You don't have to recompile your object file if you just use mpiP. But you might have to recompile to include the "-g" option if you need
line number in a source code.

6.2.2 Linking
By specifying the following options in the linking, an application is linked with mpiP library (libmpiP.a). And mpiP information is output
when the application runs.

-L${mpiP_root}/lib64 -lmpiP -lm -lbfd -liberty -Ntl_notrt

- ${mpiP_root} is the following directory that the FJSVmxlang package is installed.

- /opt/FJSVmxlang

- "-lm", "-lbfd" and "-liberty" are libraries used by mpiP.

- "-Ntl_notrt" is an option to disable the feature of the tool library conflicting with mpiP.

 Example

Example of linking C program

- 166 -

$ mpifccpx sample1.c -o sample1.out -L/opt/FJSVmxlang/lib64 -lmpiP -lm -lbfd -liberty -Ntl_notrt

6.2.3 Execution
By the application linked with mpiP library is executed, mpiP information is collected.

Environment variables

When the application runs, mpiP output format is changed by specifying the environment variable MPIP such as the follows.

MPIP="-p -t 10.0"

The following table lists the options for the environment variable MPIP.

Table 6.1 Options for the environment variable MPIP

Option Description Note

-ba MPI_Barrier is inserted after collective communication, and the beginning
timing of the processing after collective communication is arranged between the
ranks.

As a result, the influence of the imbalance by collective communication of
preceding is excluded, and the measurement of the clear time of following
process is supported.

For more information, refer to "Table 6.14 MPI function of target for options (-
ba,-bb) of environment variable MPIP".

-bb MPI_Barrier is inserted before collective communication, and the beginning
timing of collective communication is arranged between the ranks.

As a result, the influence of the imbalance by the processing of preceding
(operation etc.) is excluded, and the measurement of the clear collective
communication time is supported.

For more information, refer to "Table 6.14 MPI function of target for options (-
ba,-bb) of environment variable MPIP".

-c Generates concise version of report, omitting callsite process-specific detail.

-d Suppresses printing of callsite detail sections.

-e Prints report data using floating-point format.

-f dir Records output file in directory dir. When "-f dir" option or dir is not
specified, the output file is stored in
the current directory.

-g Enables mpiP debug mode.

-k n Sets callsite stack traceback depth to n. When "-k n" option or n is not
specified, the depth is 1.

-l Uses less memory to generate the report by using MPI collectives to generate
callsite information on a callsite-by-callsite basis.

-n Do not truncate full pathname of filename in callsites.

-o Disable profiling at initialization. Application must enable profiling with
MPI_Pcontrol(). For more information, refer to "6.3.2 Control of Profiling Range
for mpiP".

-p Point-to-point Communication histogram reporting on message size and
communicator used.

-r Generates the report by aggregating data at a single task. When "-r" option is not specified, the
report is generated.

- 167 -

Option Description Note

-s n Sets hash table size to n. When "-s n" option or n is not
specified, the size is 256.

-t x Sets print threshold for report, where x is the MPI rate of time for each callsite. When "-t x" option or x is not
specified, the rate is 0.0.

-v Generates both concise and verbose report output.

-x exe Information on the line number of the source code output to the mpiP information
is searched from the application specified for exe.

The application name is specified for exe by the full path.

When "-x exe" option or exe is not
specified, it is searched from the
executed application.

-y Collective Communication histogram reporting on message size and
communicator used.

-z Suppresses printing of the report at MPI_Finalize.

6.2.4 mpiP Output
When the application exits, the following message is printed in standard output.

mpiP:
mpiP: mpiP: mpiP V3.4.1 (Build May 7 2014/14:46:10)
mpiP: Direct questions and errors to mpip-help@lists.sourceforge.net
mpiP:
mpiP:
mpiP: Storing mpiP output in [./sample.out.2.8670.1.mpiP].
mpiP:

The above example shows that mpiP information is output to the new file sample.out.2.8670.1.mpiP.

The example of mpiP information output is the follows.

@ mpiP
@ Command : ./sample.out
@ Version : 3.4.1
@ MPIP Build date : May 7 2014, 14:46:10
@ Start time : 2014 05 27 10:41:00
@ Stop time : 2014 05 27 10:41:00
@ Timer Used : PMPI_Wtime
@ MPIP env var : -p -v -y
@ Collector Rank : 0
@ Collector PID : 9339
@ Final Output Dir : .
@ Report generation : Single collector task

@--- Task Time Statistics (seconds) ---------------------------------------

 AppTime MPITime MPI% App Task MPI Task
Max 0.000564 0.000479 3 3
Mean 0.000510 0.000360
Min 0.000385 0.000050 0 0
Stddev 0.000084 0.000207
Aggregate 0.002040 0.001442 70.69

@--- Aggregate Time (top twenty, descending, milliseconds) ----------------

Call Site Time App% MPI% COV
Reduce 1 1.44 70.69 100.00 0.57

@--- Aggregate Sent Message Size (top twenty, descending, bytes) ----------

- 168 -

Call Site Count Total Avrg Sent%
Reduce 1 4 16 4 100.00

@--- Aggregate Collective Time (top twenty, descending) -------------------

Call MPI Time % Comm Size Data Size
Reduce 100 0 - 7 0 - 7

@--- Aggregate Point-To-Point Sent (top twenty, descending) ---------------

No point to point operations to report

@--- Callsites: 1 ---

 ID Lev File/Address Line Parent_Funct MPI_Call
 1 0 sample.f 23 MAIN__ Reduce

@--- Callsite Time statistics (all callsites, milliseconds): 1 ------------

Name Site Tasks Max Mean Min MaxRnk MinRnk
Reduce 1 4 0.479 0.3605 0.05 3 0

@--- End of Report --

6.3 Functional Detail

6.3.1 mpiP Report Information
This section describes the items in information of the mpiP report. Refer to "6.2.4 mpiP Output" for details.

6.3.1.1 Header Information
Basic information is output as the header at the top of the mpiP report.

Figure 6.2 Output format of header information

Table 6.2 Output items of header information

Output item Description

@commd Executed command name

@ver Version of mpiP (Fixed value; system-dependent)

@bdate Build date of mpiP (Fixed value; system-dependent)

@stime Start time

- 169 -

Output item Description

@etime Stop time

@env Value of the environment variable MPIP

@rank Rank number of the collector process

@pid PID of the collector process

@outdir Output directory of the mpiP report

@repgen Generation type of the mpiP report

@tid Task ID

@node Node name that is assigned the task

6.3.1.2 MPI Time Information
An overview of the application's time in MPI is output.

Figure 6.3 Output format of MPI time information

Table 6.3 Output items of MPI time information

Output item Description

@tid Task ID.
The task number line displayed with asterisk (*) shows the output item information that totals the value
for the entire application.

@atime The wall-clock time from the end of MPI_Init until the beginning of MPI_Finalize. (Second)

@mtime The wall-clock time for all the MPI calls contained within @atime. (Second)

@mper @mtime/@atime (%)

6.3.1.3 Callsite Information
Information about all the MPI callsites within the application is output.

Figure 6.4 Output format of callsite information

Table 6.4 Output items of callsite information

Output item Description

@num Total number of callsites

@i The callsite ID for this mpiP file

@lv The callsite stack traceback depth

@fname The filename that includes the callsite

- 170 -

Output item Description

@ln The line number of the callsite in the source code

@func The function name that includes the callsite

@mcall The type of MPI function (w/o MPI_ prefix)
MPI_Barrier inserted after collective communication by specifying optional "-ba" is displayed as
BarrierAfterColl.
MPI_Barrier inserted before collective communication by specifying optional "-bb" is displayed as
BarrierBeforeColl.

6.3.1.4 Aggregate Time Information
The top twenty MPI callsites that consume the most aggregate time are output.

Figure 6.5 Output format of aggregate time information

Table 6.5 Output items of aggregate time information

Output item Description

@mcall The type of MPI function (w/o MPI_ prefix)
MPI_Barrier inserted after collective communication by specifying optional "-ba" is displayed as
BarrierAfterColl.
MPI_Barrier inserted before collective communication by specifying optional "-bb" is displayed as
BarrierBeforeColl.

@i The callsite ID for this mpiP file (as listed in the callsite section)

@time The aggregate time for the callsite (Millisecond)

@apr The aggregate time for the callsite / The total application time (%)

@mper The aggregate time for the callsite / The total MPI time (%)

@cov The coefficient of variation as calculated from the individual process times.

The variation in times of individual processes for the callsite is indicated. A larger value indicates more
variation between the process times.

6.3.1.5 Aggregate Sent Message Size
The top twenty MPI callsites for total sent message size are output.

Figure 6.6 Output format of aggregate sent message size

Table 6.6 Output items of aggregate sent message size

Output item Description

@mcall The type of MPI function (w/o MPI_ prefix)

- 171 -

Output item Description

@i The callsite ID for this mpiP file (as listed in the callsite section)

@cnt Number of times this function was executed

@tl The total of sent message sizes (Byte)

@avg The average of sent message sizes (Byte)

@mper The total of sent message sizes / The total of sent message sizes for all MPI function (%)

6.3.1.6 Callsite Time Statics
The wall-clock time of callsites for each rank is output.

If the threshold is specified by "-t" option, the lines where MPI% was less than the threshold are not printed. The default value of the
threshold is 0 (all aggregate lines are printed).

Figure 6.7 Output format of callsite time statistics

Table 6.7 Output items of callsite time statistics

Output item Description

@num Total number of callsites per rank

@mcall The type of MPI function (w/o MPI_ prefix).
MPI_Barrier inserted after collective communication by specifying optional "-ba" is displayed as
BarrierAfterColl.
MPI_Barrier inserted before collective communication by specifying optional "-bb" is displayed as
BarrierBeforeColl.

@i The callsite ID for this mpiP file (as listed in the callsite section)

@r Task rank in MPI_COMM_WORLD
The rank number line displayed with asterisk (*) shows the output item information that totals the value
of all ranks.

@cnt Number of times this function was executed

@max Maximum wall-clock time for one call (Millisecond)

@avg Arithmetic mean of the wall-clock time for one call (Millisecond)

@min Minimum wall-clock time for one call (Millisecond)

@apr The wall-clock time for this call / The wall-clock time of the overall application (%)

@mper The wall-clock time for this call / The wall-clock time of the overall MPI (%)

6.3.1.7 Callsite Message Sent Statistics
The message sent size of callsites for each rank is output.

- 172 -

Figure 6.8 Output format of callsite message sent statistics

Table 6.8 Output items of callsite messages sent statistics

Output item Description

@mcall The type of MPI function (w/o MPI_ prefix)

@i The callsite ID for this mpiP file (as listed in the callsite section)

@r Task rank in MPI_COMM_WORLD
The rank number line displayed with asterisk (*) shows the output item information that totals the value
of all ranks.

@cnt Number of times this function was executed

@max Maximum sent message size for one call (Byte)

@avg Arithmetic mean of the sent message sizes for one call (Byte)

@min Minimum sent message size for one call (Byte)

@sum Total of all message sizes for the this operation and callsite (Byte)

6.3.2 Control of Profiling Range for mpiP
By using the following function in the application, it is possible to control the profiling range of the source code.

MPI_Pcontrol(const int flag)

The following values are specified as the argument "flag".

Table 6.9 Argument Value of MPI_Pcontrol

Argument Behavior

0 Disable profiling.

1 Enable profiling.

2 Reset all callsite data.

3 Generate verbose report.

4 Generate concise report.

6.3.3 MPI functions collected by mpiP
The following table lists MPI functions profiled with mpiP.

Table 6.10 MPI functions profiled with mpiP

MPI_Allgather MPI_File_seek MPI_Rsend_init

MPI_Allgatherv MPI_File_set_view MPI_Scan

MPI_Allreduce MPI_File_write MPI_Scatter

MPI_Alltoall MPI_File_write_all MPI_Scatterv

MPI_Alltoallv MPI_File_write_at MPI_Send

MPI_Attr_delete MPI_Gather MPI_Send_init

MPI_Attr_get MPI_Gatherv MPI_Sendrecv

- 173 -

MPI_Attr_put MPI_Graph_create MPI_Sendrecv_replace

MPI_Barrier MPI_Graph_get MPI_Ssend

MPI_Bcast MPI_Graph_map MPI_Ssend_init

MPI_Bsend MPI_Graph_neighbors_count MPI_Start

MPI_Bsend_init MPI_Graphdims_get MPI_Startall

MPI_Buffer_attach MPI_Group_compare MPI_Test

MPI_Buffer_detach MPI_Group_difference MPI_Testall

MPI_Cancel MPI_Group_excl MPI_Testany

MPI_Cart_coords MPI_Group_free MPI_Testsome

MPI_Cart_create MPI_Group_incl MPI_Topo_test

MPI_Cart_get MPI_Group_intersection MPI_Type_commit

MPI_Cart_map MPI_Group_translate_ranks MPI_Type_free

MPI_Cart_rank MPI_Group_union MPI_Type_get_contents

MPI_Cart_shift MPI_Ibsend MPI_Type_get_envelope

MPI_Cart_sub MPI_Intercomm_create MPI_Unpack

MPI_Cartdim_get MPI_Intercomm_merge MPI_Wait

MPI_Comm_create MPI_Iprobe MPI_Waitall

MPI_Comm_dup MPI_Irecv MPI_Waitany

MPI_Comm_group MPI_Irsend MPI_Waitsome

MPI_Comm_remote_group MPI_Isend MPI_Win_complete

MPI_Comm_remote_size MPI_Issend MPI_Win_create

MPI_Comm_split MPI_Keyval_create MPI_Win_fence

MPI_Comm_test_inter MPI_Keyval_free MPI_Win_free

MPI_Dims_create MPI_Pack MPI_Win_get_group

MPI_Error_class MPI_Probe MPI_Win_lock

MPI_File_close MPI_Recv MPI_Win_post

MPI_File_open MPI_Recv_init MPI_Win_start

MPI_File_preallocate MPI_Reduce MPI_Win_test

MPI_File_read MPI_Reduce_scatter MPI_Win_unlock

MPI_File_read_all MPI_Request_free MPI_Win_wait

MPI_File_read_at MPI_Rsend

Table 6.11 MPI functions for which mpiP gather sent message size data

MPI_Allgather MPI_Gatherv MPI_Scan

MPI_Allgatherv MPI_Ibsend MPI_Scatter

MPI_Allreduce MPI_Irsend MPI_Send

MPI_Alltoall MPI_Isend MPI_Sendrecv

MPI_Bcast MPI_Issend MPI_Sendrecv_replace

MPI_Bsend MPI_Reduce MPI_Ssend

MPI_Gather MPI_Rsend

- 174 -

Table 6.12 MPI functions for which mpiP gather I/O data
MPI_File_close MPI_File_read_all MPI_File_write

MPI_File_open MPI_File_read_at MPI_File_write_all

MPI_File_preallocate MPI_File_seek MPI_File_write_at

MPI_File_read MPI_File_set_view

Table 6.13 MPI functions for which mpiP gather RMA origin data

MPI_Accumulate MPI_Get MPI_Put

Table 6.14 MPI function of target for options (-ba,-bb) of environment variable MPIP

MPI_Allgather MPI_Allgatherv MPI_Allreduce

MPI_Alltoall MPI_Alltoallv MPI_Bcast

MPI_Gather MPI_Gatherv MPI_Reduce

MPI_Reduce_scatter MPI_Scatter MPI_Scatterv

- 175 -

Chapter 7 Glossary

Application

An application is an executable program created by a user. Applications processed by the Profiler are categorized as sequential applications
and parallel applications. Parallel applications are further categorized as process-parallel applications and thread-parallel applications.
Process-parallel applications are categorized as MPI applications. Thread-parallel applications are categorized as OpenMP applications
and auto-parallel applications. All applications are categorized based on their compilation format.

The following table shows application categorization.

Table 7.1 Application categorization for the Profiler

Class Middle class Subclass Compilation mode

Sequential application Sequential compilation

Parallel application Process-parallel application MPI application MPI compilation

Thread-parallel application OpenMP application -Kopenmp specification

Auto-parallel application -Kparallel specification

Primary cache

Primary cache refers to the level 1 cache. Primary cache has level 1 data cache (L1D) and level 1 instruction cache (L1I).

Kernel mode

The kernel mode is the mode in which the operating system executes on the processor.

Instant Profiler information

The Instant Profiler information is the information that has been edited to visualize the profiling data.

Instant profiling data

Refer to "Profiling data".

Cache miss

Cache miss signifies that the instruction or data used by the instruction does not exist in the cache. If a cache miss occurs, the data string,
including pertinent data, is accessed (cache line) by a large-scale cache or memory.

Cache line

Cache line is the access unit of data to the cache. If a cache miss occurs, the data, including pertinent data, is accessed by a unit called
cache line. Generally, the size of a cache line is from 64 bytes through 256 bytes.

Clock cycle

Clock cycle is the minimum unit for the internal processing time of the processor.

Cost

Cost is the hitting frequency of an instruction that corresponds to a process, thread, procedure, loop, or line of source code by interrupting
an application at specific CPU intervals while the application is being executed.

Cost balance information

The cost balance information relates to costs between parallel execution units.

Cycle number

Cycle number is the total of the clock cycle required to execute an instruction line of the performance measurement section.

- 176 -

Sampling

Sampling is the collection of information related to processes, threads, procedures, loops, or lines by interrupting an application at specific
user CPU intervals.

Advanced profiling data

Refer to "Profiling data".

Belonging procedure name

A belonging procedure name is the name of a procedure or a subroutine that the loop and line are constituted.

Measurement section

It is the code section specified by the following functions in the source code of an application.

- Instant Profiler: fipp_start, fipp_stop

- Advanced Profiler: fapp_start, fapp_stop

- Tofu PA: fj_tofupa_start, fj_tofupa_stop

Communication section

It is the code section that calls the communication functions of the MPI library and communicates between processes in an application.

Secondary cache

Secondary cache signifies the level 2 cache. Secondary cache has level 2 data cache (L2D) and level 2 instruction cache (L2I).

Network interface

It is the interface of a Tofu interconnection. It is connected with the network router of a Tofu interconnection. The network interfaces are
installed by four a node (refer to "Figure 7.1 Node imitative chart").

Network router

It is the router of a Tofu interconnection. It is installed on one, single node (refer to "Figure 7.1 Node imitative chart").

- 177 -

Figure 7.1 Node imitative chart

 Note

It is pattern diagrams, and does not show the implementation correctly.

Processor frequency

Processor frequency is the total number of clock cycles executed per second.

Profiling data

Profiling data is the performance information collected during one execution of an application. Profiling data consists of one or more files
stored in a directory, and these files are called "profiling data files". The profiler uses "profiling data name" as the directory name to
identify the directory where profiling data files are stored. Profiling data includes the following:

- Instant profiling data

- Advanced profiling data

Parallel execution unit

Parallel execution unit refers to each thread in a thread-parallel application or each process in a process-parallel application.

Ports (send port, receive port)

It is the interface installed to connect network routers of different nodes with a special cable electrically (refer to "Figure 7.1 Node imitative
chart"). In one node, ten ports (X+,X-,Y+,Y-,Z+,Z-,A,B+,B-,C) are installed in each axis of the six dimensions (X,Y,Z,A,B,C) and in each
direction (+,- of X,Y,Z,B axis). Two-sided communication (send and receive) is done in one port on each axis and each direction. Two-
sided communication is done in one port physically. However, it is considered that two ports with the function (send and receive) are
installed individually for convenience, and are referred to as the send port and the receive port.

- 178 -

Memory access throughput

Memory access throughput is the data transfer efficiency between the processor and the memory system. This value increases in an
application when data is consumed in large quantity.

User mode

User mode is the mode when an application executes on the processor.

L1 engine

The L1 engine is a device that controls the forwarding between the register and L1D and the forwarding between L1D and L2.

L2 engine

The L2 engine is a device that controls the forwarding between L1D and L2 and the forwarding between L2 and the memory.

MPI library

The MPI library includes MPI subroutines in Fortran or MPI functions in C/C++ language.

Performance Analysis (PA) feature

It is the feature that collects data for performance tuning, monitoring, and troubleshooting.

PA information

It is the data collected by the PA feature.

Translation Lookaside Buffer (TLB)

TLB comprises the data (main) TLB and the instruction TLB.

Transaction Layer Packet (TLP)

TLP is the packet that sends and receives data between transport layers of a Tofu interconnection. The maximum length, including the
header, is 2048 bytes. TLP may be created by the communication of MPI and file access.

Virtual Channel (VC)

VC is a method that shows a channel virtually to prevent the deadlock of a packet by using two or more buffers in a torus system network.
It is the buffer (refer to "Figure 7.1 Node imitative chart"). Four VCs per port are supported.

- 179 -

Appendix A Considerations for Using the Profiler
This appendix describes the considerations for using this system.

A.1 Instant Profiler

Programs with short execution time

A program that is executed within one second cannot be analyzed by the Instant Profiler.

Effects of applying modifications

If using a different version of the Instant Profiler or if applying any modification, the title, the items, and the display position of the Instant
Profiler may not necessarily be the same. Therefore, the analytical result of the Instant Profiler may be different than before.

Instant Profiler workspace

When the instant profiling data is collected, information of the function included in the library is stored in the Instant Profiler workspace.
If the Instant Profiler workspace has a shortage, the following message is output when an application terminated.

fipp: work memory overflowed. Specify memsize or more to -m option and retry.

In the above message, memsize is the recommended size of the Instant Profiler workspace. If this message is output, collect the instant
profiling data again by specifying the "-m memsize" option of the fipp command. The default size is 3000 * process number * thread
number. The unit is Kbyte.

Refer to "Chapter 2 Instant Profiler" for information on the fipp command and the "-m memsize" option.

Environment variable names

Environment variables that start with "FIPP_" or "PROF_" are used by the Instant Profiler. Do not use these environment variables.

The application for measurement

Do not use strip(1) for an executable program. If the symbol is deleted, the instant profiling data cannot be correctly collected. If the current
directory of the application being analyzed is changed during execution, specify the absolute path of the instant profiling data to the "-d
profiling_data" option of the fipp command.

Refer to "Chapter 2 Instant Profiler" for information on the fipp command and the "-d profiling_data" option.

Instant profiling data

Strictly adhere to the following guidelines for the instant profiling data and file. The operation cannot be guaranteed in such cases.

- Do not change the instant profiling data and file (adding , removing, or editing files)

- Do not change the instant profiling data file name

If the measurement program is interrupted during instant profiling data collection by the fipp command, incomplete instant profiling data
may remain. In such cases, delete the instant profiling data (file name : DProf_xxxxx).

If there is no file system shared between processes, create the instant profiling data file from the local file system and collect the profiling
data using the fipp command.

Sampling interval

The sampling interval for collecting the instant profiling data is rounded off to the nearest multiple of the timer interrupt interval of OS.

But, if the sampling interval that is smaller than the timer interrupt interval is specified, it is rounded up to the timer interrupt interval.

Interval of the timer interrupt depends on the measure against noise of the OS (*1), and it is from about 11 to 14 milliseconds.

The following is an example for comparing of the sampling interval and the timer interrupt interval.

If the timer interrupt interval is 14 milliseconds:

- 180 -

- When the value specified by "-i" option is 10, the sampling interval is 14 milliseconds.

- When the value specified by "-i" option is 25, the sampling interval is 14 milliseconds.

- When the value specified by "-i" option is 100, the sampling interval is 98 (=14*7) milliseconds.

*1 : It is the measure to reduce the impact of system daemons on the job.

SIGVTALRM

The Instant Profiler collects the instant profiling data by catching the signal SIGVTALRM.

When signal SIGVTALRM is caught or is issued by the application, the instant profiling data cannot be correctly collected.

Call Graph information

In case of the Call Graph information, the call route may not be analyzed for the following applications.

When the frame pointer register is not kept

When the nest level of the call route is one, the nest level is output as "<???>". When the nest level of the call route is two or more,
Call Graph information is output by mistake.

For example, the made application was measured specifying "-Komitfp" (compiler option). Refer to "Fortran User's Guide", "C User's
Guide", or "C++ User's Guide" for details.

Nest level of a call route is 128 or more

The nest level is output as "<???>".

If the cost is in the entry or exit of a procedure, the Call Graph information may be output incorrectly. If the following line is included
in line cost information, this phenomenon may occur.

Fortran application

- SUBROUTINE statement

- FUNCTION statement

- ENTRY statement

- RETURN statement

- END statement

C/C++ language applications

- Brackets that show a function start

- Brackets that show a function end

- return statement

The horizontal scrollbar may not operate correctly in the Call Graph information window.

Output of loop information

For C/C++ language applications, specify the optimization option ("-O1" or more) of compilation to measure loop information on the
application with the Instant Profiler.

Cost of the shared library

Regarding the cost of the shared library of the system, information on the unit of loop/line cannot be output on analyzing.

If you want to measure the cost of user's shared library with "-L shared" option, do not use strip(1) for the shared library.

When symbols are removed, the instant profiling data is not correctly collected.

- 181 -

Include file and inline expansion

In case of applications created by the source code containing the include file, the cost information in the include file is output by the line
number of the include file. Additionally, for applications with inline expansion, the cost information in inline expansion is output by the
line number of the procedure of inline expansion origin.

-p all option

If the "-p all" option is specified for the fipppx command, information on all processes is output. Especially, when a parallel process is
large, it takes time for processing. Information gathering processing (fipp -C) does the information gathering for all processes, and the
instant profiling data is preserved. In information analysis processing (fipppx -A), we will recommend limiting the process by using the
instant profiling data that is not output information on all the processes at a time but is preserved , divided into plurals and outputting it.

-P userfunc option

If the "-P userfunc" option of the fipp command is used, the cost information cannot be output correctly for the following applications.

- Fortran/C/C++ language applications compiled with "-Nnoline" option

For such applications, confirm the actual cost by again executing with the "-P nouserfunc" option.

Maximum number of processes

The maximum number of processes supported by the Profiler GUI feature is 9216. The instant profiling data that exceeds this count cannot
be displayed by the Profiler GUI feature.

Display limit of the Topology information window

The maximum number of directions available in the overall view of the Topology information window is given below. If the upper bound
is exceeded by even one direction, it cannot be displayed.

- One-dimensional shape : Same as the maximum number of processes

- Two-dimensional shape : X=512, Y=64

- Three-dimensional shape : X=32, Y=18, Z=16

MPI applications

If an MPI function of a dynamic process creation is executed, the operation cannot be guaranteed.

Hardware monitor information

If the FLIB_FASTOMP environment variable is FALSE, the Hardware monitor information cannot be correctly acquired. Refer to the
"Fortran User's Guide", "C User's Guide", or "C++ User's Guide" for FLIB_FASTOMP.

Color histogram

If the difference between the min and the max is less than 0.1, the thumb may not operate correctly.

Applications that generates processes

In an application, do not generate a process with, for example, fork, vfork, the popen system call, or system functions. If it is generated,
the instant profiling data cannot be correctly collected.

Source code information

The source code information is not output in case of the following conditions:

- The Instant Profiler information is output in the text format.

- There is a cost in the user procedure.

- In procedure cost distribution information, the user procedure does not exist in the top five ranks.

The following message is output if any of the above conditions is met.

- 182 -

Symbol information up to the 5th do not include information which relates to the source code.

And, only one source code information is displayed to one user procedure in the output of the text format.

For example, in case of inline expansion, one user procedure might be composed by two or more source codes. In this instance, the source
code which has smaller beginning line number of the procedure of inline function or its caller is only displayed. If the beginning line
number of the procedure is the same, the source code information that has been expanded inline in first is displayed.

Runtime Information Output Function

It is not possible to use it at the same time as Runtime Information Output Function.

Please refer to "Runtime Information Output Function User's Guide" for Runtime Information Output Function.

MPI library cost

The MPI library cost of the cost information is not correctly output in the following applications.

- Fortran/C/C++ language applications compiled with "-Nnoline" option

DT_RPATH

If the DT_RPATH dynamic section attribute exists in an executable application and /opt/FJSVmxlang/lib64 is included in the DT_RPATH
attribute, it fails that the Instant Profiler gathers information.

When environment variable LD_RUN_PATH or "-rpath" option is specified at compiling, DT_RPATH is set to the execution application.
Confirm whether DT_RPATH exists in the execution application by outputting the readelf -d command. If "(RPATH)" exists in Type of
output information, DT_RPATH is set to the execution application.

Please use the application where /opt/FJSVmxlang/lib64 is not included in the DT_RPATH attribute to gather information. (Relinking
application and so on)

Node-sharing job

If the job type is node-sharing job, the operation of the profiler cannot be guaranteed.

It fails that the profiler collects the instant profiling data for MPI execution. And the processing of the MPI application halts.

Refer to the "Job Operation Software End-user's Guide" for more information on node-sharing job.

Cost information

Even if different entities are used on the function with the same name, the cost of the operation is calculated as for one function.

When the optimization option ("-O1" or more) is specified at compiling, line information on each instruction might be different from the
line of the source according to the influence of optimization.

For example, the line information on each order will be the start position of a loop, and the cost is calculated according to this start position.

pthread

The Instant Profiler works in cooperation with the Fujitsu compiler.
Therefore, thread parallel information on "automatic parallelization by the Fujitsu compiler" and "OpenMP parallelization" is collected.
Thread parallel information on "pthread parallelization" is not collected.

MPI profiling interface

The tool library is given to priority more than user's libraries at linking when "-Ntl_notrt" is not specified (the default is "-Ntl_trt") because
the Instant Profiler, the Advanced Profiler, the Tracer, and the mpiP functions are implemented by hooking MPI functions. Therefore, the
tool functions cannot be used together with the MPI profiling interface.

COARRAY feature

Note the following when "-Ncoarray" (compiler option) is enabled.

- The value in which one is added to the rank number or the process number corresponds to the image index.

- 183 -

- The cost might be post as for the MPI library that COARRAY used.

Refer to the "Fortran User's Guide" and "Fortran User's Guide Additional Volume COARRAY" for "-Ncoarray" option.

Link Time Optimization

The following information which the profiler outputs may not be guaranteed, when "-Klto" (compiler option) is enabled.

- Call graph information.

The function names in call graph information may include the function name which is generated internally by link time optimization.

- Source code information.

The each line cost may not be displayed correctly.

A.2 Advanced Profiler

Effects of applying modifications

If using a different version of the Advanced Profiler or if applying any modification, the title, the items, and the display position of the
Advanced Profiler may not necessarily be the same. Therefore, the analytical result of the Advanced Profiler may be different than before.

Environment variable names

Environment variables that start with "FAPP_" are used by the Advanced Profiler. Do not use these environment variables.

Group name

If the following characters are used, the Profiler GUI feature cannot be analyzed.

" ' < > &

The application for measurement

Do not use strip(1) for an executable program. If the symbol is deleted, the advanced profiling data cannot be correctly collected. If an
application that changes the current directory in execution is analyzed, specify the absolute path of the advanced profiling data to the "-d
profiling_data" option of the fapp command.

Refer to "3.2.5 fapp command" for information on the fapp command and the "-d profiling_data" option.

Advanced profiling data

Strictly adhere to the following guidelines for the advanced profiling data and file. The operation cannot be guaranteed in such cases.

- Do not change the advanced profiling data and file (File increasing, file decreasing, or editing)

- Do not change the advanced profiling data file name

If the measurement program is interrupted during advanced profiling data collection by the fapp command, incomplete advanced profiling
data may remain. In such cases, delete the advanced profiling data (file name : EProf_xxxxx). If there is no file system shared between
processes, create the advanced profiling data file from the local file system and collect the profiling data using the fapp command.

Elapsed time information of the MPI library

In case of applications created by the mpiFCC command, the member function name of the C++ language is output to the MPI library
name of the elapsed time information. The elapsed time information of an MPI function called from a child thread cannot be analyzed by
the Advanced Profiler.

MPI applications

If an MPI function of a dynamic process creation is executed, the operation cannot be guaranteed. The MPI_THREAD_SERIALIZED
and MPI_THREAD_MULTIPLE (level of thread support) are not supported.

- 184 -

Hardware monitor information

If the FLIB_FASTOMP environment variable is FALSE, the Hardware monitor information cannot be acquired correctly. Refer to the
"Fortran User's Guide", "C User's Guide", or "C++ User's Guide" for information on FLIB_FASTOMP.

When the "-Hmethod=raw" option is specified, processing such as direct I/O to global file systems might fail in Hardware monitor
information measurements. Either perform measurements outside global file systems, or avoid I/O instructions when making
measurements.

When the "-Hmethod=raw" option is specified, information while the measured process is not being allocated to CPU with Sleep is
measured. For instance, the value of execution time (second) of the Precision PA visibility function (Excel format) might become large
compared with the case to specify "-Hmethod=normal" option.

Maximum number of processes

The maximum number of processes supported by the Profiler GUI feature is 9216. The advanced profiling data that exceeds this count
cannot be displayed by the Profiler GUI feature.

Display limit of the Topology information window

The maximum number of directions available in the overall view of the Topology information window is given below. If the upper bound
is exceeded by even one direction, it cannot be displayed.

- One-dimensional shape : Same as the maximum number of processes

- Two-dimensional shape : X=512, Y=64

- Three-dimensional shape : X=32, Y=18, Z=16

Color histogram

If the difference between the min and the max is less than 0.1, the thumb may not operate correctly.

Applications that generates processes

In an application, do not generate a process with, for example, fork, vfork, the popen system call, or system functions. If it is generated,
the advanced profiling data cannot be collected correctly.

Runtime Information Output Function

It is not possible to use it at the same time as Runtime Information Output Function.

Please refer to "Runtime Information Output Function User's Guide" for Runtime Information Output Function.

DT_RPATH

If the DT_RPATH dynamic section attribute exists in an executable application and /opt/FJSVmxlang/lib64 is included in the DT_RPATH
attribute, it fails that the Advanced Profiler gathers information.

When environment variable LD_RUN_PATH or "-rpath" option is specified at compiling, DT_RPATH is set to the execution application.
Confirm whether DT_RPATH exists in the execution application by outputting the readelf "-d" command. If "(RPATH)" exists in Type
of output information, DT_RPATH is set to the execution application.

Please use the application where /opt/FJSVmxlang/lib64 is not included in the DT_RPATH attribute to gather information. (Relinking
application and so on)

Node-sharing job

If the job type is node-sharing job, the operation of the profiler cannot be guaranteed.

It fails that the profiler collects the advanced profiling data for MPI execution. And the processing of the MPI application halts.

Refer to the "Job Operation Software End-user's Guide" for more information on node-sharing job.

- 185 -

pthread

The Advanced Profiler works in cooperation with the Fujitsu compiler.
Therefore, thread parallel information on "automatic parallelization by the Fujitsu compiler" and "OpenMP parallelization" is collected.
Thread parallel information on "pthread parallelization" is not collected.

MPI profiling interface

The tool library is given to priority more than user's libraries at linking when "-Ntl_notrt" is not specified (the default is "-Ntl_trt") because
the Instant Profiler, the Advanced Profiler, the Tracer, and the mpiP functions are implemented by hooking MPI functions. Therefore, the
tool functions cannot be used together with the MPI profiling interface.

COARRAY feature

Note the following when "-Ncoarray" (compiler option) is enabled.

- The value in which one is added to the rank number or the process number corresponds to the image index.

- The MPI library information that COARRAY used is also output to MPI information.

Refer to the "Fortran User's Guide" and "Fortran User's Guide Additional Volume COARRAY" for "-Ncoarray" option.

-H event_number option

If the "-Hevent_number" option is specified at the same time as "-Hmethod=normal" option, the same PA event cannot be specified for
two or more PIC.
The following error message is output and processing ends.

RTINF2xxx : Internal error. PAPI return code = xxx.

A.3 Tracer

Temporary local trace data file

Operations when the current directory is changed, for example, by the chdir(2) system call, in a traced application cannot be secured.

If it is necessary to use, for example, the chdir(2) system call, specify the directory name using the full path to the VT_PFORM_LDIR
environment variable.

Environment variable names

If environment variables that start with "VT_" other than those described in this guide are used, the operation cannot be guaranteed.

Function names

- If functions that start with "VT_" other than those described in this guide are used, the operation cannot be guaranteed.

- If functions that start with "PMPI_" are defined in an MPI program, the Tracer operations cannot be guaranteed.

MPI trace

- If a program is compulsorily ended by the MPI_Abort or MPI_Cancel functions, an incomplete local trace data file may be output.
Refer to "4.2.3.5 Trace data files" for information on local trace data files.

- MPI_THREAD_SERIALIZED and MPI_THREAD_MULTIPLE (level of thread support) of the MPI_Init_thread function are not
supported.

- If an MPI program of an invalid communicator or a group operation is executed, the operation cannot be guaranteed.

- When the MPI trace feature by Fortran is used, the following functions are not considered to be a trace object.

MPI_Comm_create_keyval MPI_Comm_get_attr MPI_Comm_set_attr

MPI_Type_create_hvector MPI_Type_create_keyval MPI_Type_get_attr

- 186 -

MPI_Type_match_size MPI_Type_set_attr MPI_Win_create_keyval

MPI_Win_get_attr MPI_Win_set_attr

I/O trace

Perform the following operation when you trace information on fscanf, getc and putc function by using the I/O trace feature.

- C language(only fscanf)

Specify "-ansi" option at compiling, and compile based on the C89 specification.

Refer to "C User's Guide" for "-ansi" option.

- C++ language(fscanf, getc, putc)

Add the "#undef function-name" directive behind the part where stdio.h is included in the application.

 Example

Example of fscanf

#include <stdio.h>
#undef fscanf
int main(){
 :

The tracer does not trace the linguistic level of Fortran.
The tracer traces the call of the LIBC I/O function.
Therefore, one I/O processing to the file might be divided into two or more LIBC I/O functions by linguistic level Fortran and it be recorded
in the events file.

Memory trace

The tracer does not trace the linguistic level of Fortran.
The tracer traces the call of the LIBC memory function.
Therefore, one memory processing might be divided into two or more LIBC memory functions by linguistic level and it be recorded in
the events file.

COARRAY feature

Tracer is not intended for COARRAY feature. The following error message is output and processing ends.

VampirTrace: FATAL: Cannot find window

vtunify-mpi application

If you want to run the vtunify-mpi application, please set the environment variable FLIB_FASTOMP to FALSE. If you do not have this
configuration, it is an error of jwe1041i-s and the vtunify-mpi execution ends.

Refer to the "Fortran User's Guide", "C User's Guide", or "C++ User's Guide" for FLIB_FASTOMP. Refer to the "Fortran/C/C++ Runtime
Messages" for more information about the error.

A.4 Tofu PA

Simultaneous use with the Profiler

Tofu PA cannot be used concurrently with the Instant Profiler, Advanced Profiler, Tracer, and mpiP. Moreover, it cannot be used
concurrently with the tool, library, and application that hook following functions:

- MPI_Init

- MPI_Init_thread

- 187 -

- MPI_Finalize function

Node-sharing job

If the job type is node-sharing job, the operation of the Tofu PA cannot be guaranteed.

Refer to the "Job Operation Software End-user's Guide" for more information on node-sharing job.

A.5 Open Source Profiler

MPMD model

Statistical information of the program executed by the MPMD model cannot be collected.

Simultaneous use with the Profiler

mpiP cannot be used concurrently with the Instant Profiler, Advanced Profiler, Tracer, and Tofu PA. Moreover, it cannot be used
concurrently with the tool, library, and application that hook following functions:

- MPI_Init

- MPI_Init_thread

- MPI_Finalize function

Function names

If functions that start with "PMPI_" are defined in an MPI program, the mpiP operations cannot be guaranteed.

MPI applications

MPI_THREAD_SERIALIZED and MPI_THREAD_MULTIPLE (level of thread support) of the MPI_Init_thread function are not
supported.

Options (-ba,-bb) of environment variable MPIP

When you execute the program specifying "-ba,-bb" in the option, MPI_Barrier is inserted before or after collective communication
functions.

Therefore, the execution time of the program might be longer compared to the case where "-ba,-bb" is not specified.

COARRAY feature

The MPI function information that COARRAY internally uses cannot not be collected and be displayed.

MPI_Init / MPI_Finalize is inserted in the COARRAY program, and the MPI function information executed between those can be collected
and be displayed.

- 188 -

Appendix B Troubleshooting

B.1 Instant Profiler

When the instant profiling data is collected, the execution time takes longer than usual

Specify a longer sampling interval using the "-i" option of the fipp command to decrease the execution time of the Instant Profiler. Refer
to "2.2.3 fipp command" for information on the fipp command.

A procedure name (such as the library name) that does not exist in the source code is output in the Instant
Profiler information

Specify the "-P userfunc" option of the fipp command to collect only user procedures in the Instant Profiler information. Refer to "2.2.3
fipp command" for information on the fipp command.

The instant profiling data file cannot be opened.

The application for which the instant profiling data is to be collected may not have ended normally. Collect the instant profiling data again.

The symbol "__?unknown" is output

The cost may not correspond to any procedure on collecting the instant profiling data. The cost is output as the "__?unknown" symbol. If
the sampling interval is increased when collecting the instant profiling data, this symbol may not be output. Refer to "2.2.3 fipp
command" for information on how to specify the sampling interval.

B.2 Advanced Profiler

When the advanced profiling data is collected, the execution time takes longer than usual

Reduce the number of measured sections or calls of the Advanced Profiler routine to decrease the execution time of the Advanced Profiler.

The advanced profiling data file cannot be opened

The application for which the advanced profiling data is to be collected may not have ended normally. Collect the advanced profiling data
again.

B.3 Tracer

Failure to output the local trace data file

When an application is executed, the following error message may be output due to memory shortage of the compute node, and then the
application terminates.

VampirTrace: FATAL: Failed to execute /usr/bin/nm --demangle --line-numbers $WORK_DIR/a.out
Please set the environment variable VT_GNU_NM to the 'nm' command including command line switches
which lists symbol/addresses of an object file in BSD-style or set VT_GNU_NMFILE to a pre-created
symbol list file.

Specify the file that records the symbol information for the VT_GNU_NMFILE environment variable.

Refer to "4.2.2.1 Environment variables for execution" for information on how to specify the environment variable.

The MPI application information is not collected

"no" may be specified for the VT_MPITRACE environment variable. Specify the value "yes". Refer to "4.2.2.1 Environment variables
for execution" for information on the environment variable.

- 189 -

B.4 Tofu PA

The file is not output

Check if the FJ_TOFUPA_LEVEL environment variable is set correctly.

- 190 -

Appendix C Notes on Migration from FX10 system to
FX100 system

This appendix provides notes on migrating from FX10 system on V1.0L30 (Generation number:09 or later) to FX100 system.

If migrating from FX10 system on V1.0L30 (Generation number:08 or earlier), refer to "Appendix D Compatibility Information (FX10
system)" also.

C.1 Measured information of Hardware monitor information in
Instant Profiler is changed

a. Changes

The measured information of the Hardware monitor information in Instant Profiler is changed.

[Previous version]

The Hardware monitor information of Instant Profiler outputted "Elapsed time", "MFLOPS", "MFLOPS peak performance rate",
"MIPS", "MIPS peak performance rate", "Memory access throughput (unit of chip)", "Memory access throughput (chip) /
PEAK)", and "SIMD instruction rate".

[This version]

The Hardware monitor information (Statistics) of Instant Profiler outputs "Elapsed time", "MFLOPS", "MFLOPS peak
performance rate", "MIPS", "MIPS peak performance rate", and "Floating-point arithmetic instruction rate".

"Memory access throughput (unit of chip)" and "Memory access throughput (chip) /PEAK)" are output as memory throughput
information in each core by specifying "-Hevent=MEM_access".

"SIMD instruction rate" is output by specifying "-Hevent=Instructions_SIMD".

b. Influence

The measurement items output in the Hardware monitor information in Instant Profiler

The measurement items output in the Hardware monitor information of Instant Profiler are measured separately for events "-Hevent=
Statistics", "-Hevent=MEM_access" and "-Hevent=Instructions_SIMD".

"Memory access throughput (unit of chip)" is output as memory throughput information in each core by specifying "-
Hevent=MEM_access".

c. Coping

Execute the fipp command specifying the event being included for measurement information to be acquired in "-Hevent option".

Refer to measurement information on Hardware monitor information for more information.

C.2 Measured information of Hardware monitor information in
Advanced Profiler is changed

a. Changes

The measured information of Hardware monitor information in Advanced Profiler is changed.

[Previous version]

The following measurement events were in the measured information of Hardware monitor information.

- Cache

- Instructions

- MEM_access

- Performance

- 191 -

- Statistics

[This version]

The following measurement events are in the measured information of Hardware monitor information.

- Cache

- Instructions_SIMD

- Instructions_NOSIMD

- MEM_access

- Performance

- Statistics

- TLB

b. Influence

The event including necessary measurement information might change.

"Memory access throughput (unit of chip)" information collected with Statistics is output with MEM_access as information on the
memory access throughput in each core.

c. Coping

Specifies the event name including necessary measurement information in "-Hevent" option and executes the fapp command.

C.3 Frequency of the collection data and the analyzing data for the
precision PA visibility function (Excel format) in Advanced
Profiler is changed

a. Changes

The frequency of the collection data and the analyzing data is changed from 7 to 11.

[Previous version]

The collecting data and the analyzing data were executed 7 times for displaying the precision PA visibility function (Excel
format).

[This version]

The collecting data and the analyzing data are executed 7 times for displaying the precision PA visibility function (Excel format).

b. Influence

The collecting data and the analyzing data are executed 11 times for displaying the precision PA visibility function (Excel format).

c. Coping

[Collecting data]

Adds the 8th, 9th, 10th, and 11th data collection processing.

fapp -C -d pa8 -Hpa=8 mpiexec -n 8 ./a.out
fapp -C -d pa9 -Hpa=9 mpiexec -n 8 ./a.out
fapp -C -d pa10 -Hpa=10 mpiexec -n 8 ./a.out
fapp -C -d pa11 -Hpa=11 mpiexec -n 8 ./a.out

[Analyzing data]

Adds the 8th, 9th, 10th, and 11th data conversion processing, and prepare the csv file.

fapppx -A -d pa8 -o output_prof_8.csv -tcsv -Hpa
fapppx -A -d pa9 -o output_prof_9.csv -tcsv -Hpa

- 192 -

fapppx -A -d pa10 -o output_prof_10.csv -tcsv -Hpa
fapppx -A -d pa11 -o output_prof_11.csv -tcsv -Hpa

It becomes an error when there are no 8th, 9th, 10th, and 11th csv files.

C.4 Presentation item of the precision PA visibility function (Excel
format) in Advanced Profiler is changed

a. Changes

b. "Execution time items (/Execution time)", "No instruction commit waiting for a micro-operation to be completed", and "Two or
three instructions commit due to the number of GPR write ports" are deleted from the display items of the precision PA visibility
function (Excel format).

[Previous version]

The deleted part is shown in red.

- 193 -

[This version]

- 194 -

c. Influence

- In (1), "Execution time items (/Execution time)" and "Instruction items (/Effective instruction)"are deleted, and "Load balance"
and "Instruction balance" are moved to second page.

- In (2), "Breakdown of time" in "Graph element details" is deleted.

- In (2), "No instruction commit waiting for a micro-operation to be completed" is deleted from display items of the Graph.

- In (3), "Two or three instructions commit due to the number of GPR write ports" is deleted from display items of Graph.

- In (4), "Execution time items (outline)" is deleted.

d. Coping

- "Execution time items (/Execution time)" is confirmed from "Breakdown execution time".

- "Instruction items (/Effective instruction)" is confirmed from "Rate of time breakdown (%)".

- "Breakdown of time" of "Graph element details" is confirmed from "Rate of time breakdown (%)".

- The value counted in "No instruction commit waiting for a micro-operation to be completed" is included in "No instruction
commit for other reasons".

- The value counted in "Two or three instructions commit due to the number of GPR write ports" is included in "Two or three
instructions commit for other reasons".

- "Execution time items (outline)" is confirmed from "Rate of time breakdown (%)"

- 195 -

Appendix D Compatibility Information (FX10 system)

D.1 Migration to V1.0L30(Generation Number:09)

D.1.1 The -c option of the vtunifypx command and vtunify-mpi application
of the tracer is abolished

a. Changes

The "-c" option of the vtunifypx command and vtunify-mpi application of the tracer is abolished.

[Previous version]

The trace data of non-compressed format was able to be output by the "-c" option specification of the vtunifypx command and
vtunify-mpi application.

[This version]

If "-c" option of the vtunifypx command and vtunify-mpi application is specified, the trace data of the error end doing and non-
compressed format cannot be output.

b. Influence

The following error messages are output and processing ends if "-c" option was specified.

vtunifypx

invalid option -- -c

vtunify-mpi

invalid option -- -c

c. Coping

Specify --nocompress option if you want to output the trace data file of non-compressed format.

D.1.2 VT_MAX_MPI_COMMS/VT_MAX_MPI_WINS of the environment
variable for execution is abolished

a. Changes

VT_MAX_MPI_COMMS/VT_MAX_MPI_WINS of the environment variable for execution is abolished.

[Previous version]

The maximum number of communicator/window used by specifying environment variable for execution
VT_MAX_MPI_COMMS/VT_MAX_MPI_WINS in the application (Both defaults are 100) was able to be changed.

[This version]

The limitation of the maximum number of communicator/window used in the application was removed therefore, the user does
not consider the maximum number and create the application becomes possible.

Because environment variable for execution VT_MAX_MPI_COMMS/VT_MAX_MPI_WINS was abolished.

b. Influence

Even if environment variable VT_MAX_MPI_COMMS/VT_MAX_MPI_WINS is specified, it does not become effective.

Moreover, there is no influence on the user who has already specified these environment variables because the interruption of
processing by the error end is not generated by specifying these environment variables.

c. Coping

There is no method of the object. However, there is no influence on the user like the description in "b. Influence").

- 196 -

D.1.3 The record in the trace data of the MPI_Address function is abolished
a. Changes

The MPI_Address function is excluded from the MPI function collect by the Tracer.

[Previous version]

The MPI_Address function called in the application could be recorded in the trace data.

[This version]

The MPI_Address function called in the application cannot be recorded in the trace data.

b. Influence

The MPI_Address function called in the application cannot be recorded in the trace data.

c. Coping

There is no alternate method for the change of the specification of OSS.

- 197 -

	Title Page
	Preface
	Update History
	Contents
	Chapter 1 Overview of the Profiler
	1.1 Tuning and Profiler
	1.2 Functional overview

	Chapter 2 Instant Profiler
	2.1 Overview of the Instant Profiler
	2.2 Using the Instant Profiler
	2.2.1 Environment variables
	2.2.2 Compilation
	2.2.3 fipp command
	2.2.4 fipppx command
	2.2.5 Section specification feature of the Instant Profiler

	2.3 Instant Profiler information (GUI format)
	2.3.1 Overview of the Profiler feature
	2.3.2 Starting the Profiler
	2.3.3 Profiler information window
	2.3.3.1 Profiling data selection window
	2.3.3.2 Overview of the Instant Profiler information window
	2.3.3.3 Instant Profiler information
	2.3.3.3.1 Summary information
	2.3.3.3.2 Topology/Panel information
	2.3.3.3.3 Bar Chart information
	2.3.3.3.4 Data Compare information

	2.3.3.4 Source code information
	2.3.3.5 Call Graph information

	2.4 Instant Profiler information (text/CSV formats)
	2.4.1 Overview of the Profiler feature
	2.4.2 Environment information for instant profiling data collection
	2.4.3 Time statistical information
	2.4.4 Hardware monitor information
	2.4.4.1 Measured information of the Hardware monitor information
	2.4.4.2 Formulas of the Hardware monitor information
	2.4.4.3 Using the Hardware monitor information
	2.4.4.4 Output format of the Hardware monitor information

	2.4.5 Cost information
	2.4.6 Call Graph information
	2.4.7 Source code information

	Chapter 3 Advanced Profiler
	3.1 Overview of the Advanced Profiler
	3.2 Using the Advanced Profiler
	3.2.1 Advanced Profiler routine
	3.2.2 Advanced Profiler routine (precision PA)
	3.2.3 Environment variables
	3.2.4 Compilation
	3.2.5 fapp command
	3.2.6 fapppx command

	3.3 Advanced Profiler information (GUI format)
	3.3.1 Overview of the Profiler feature
	3.3.2 Starting the Profiler
	3.3.3 Profiler information window
	3.3.3.1 Profiling data selection window
	3.3.3.2 Overview of the Advanced Profiler information window
	3.3.3.3 Advanced Profiler information
	3.3.3.3.1 Topology/Panel information
	3.3.3.3.2 Bar Chart information
	3.3.3.3.3 Data Compare information

	3.4 Advanced Profiler information (text/CSV formats)
	3.4.1 Overview of the Advanced Profiler feature
	3.4.2 Environment information for advanced profiling data collection
	3.4.3 Basic information
	3.4.4 MPI information
	3.4.4.1 Formulas of the message length
	3.4.4.2 Output format of the MPI information

	3.4.5 Hardware monitor information
	3.4.5.1 Events list
	3.4.5.2 Formulas of the Hardware monitor information
	3.4.5.3 Using the Hardware monitor information
	3.4.5.4 Output format of the Hardware monitor information

	3.4.6 Largepage information
	3.4.6.1 Measurement information on Largepage memory use information
	3.4.6.2 Output format of largepage memory use information
	3.4.6.3 Measurement information on Largepage statistical information
	3.4.6.4 Output format of largepage statistical information

	3.5 Precision PA visibility function (Excel format)
	3.5.1 Overview
	3.5.2 Collecting data (execution)
	3.5.2.1 Specifying the measurement range
	3.5.2.2 Compiling/linking
	3.5.2.3 Collecting data

	3.5.3 Analyzing data
	3.5.3.1 Converting data
	3.5.3.2 Excel operations
	3.5.3.2.1 Resolving security warnings
	3.5.3.2.2 Specifying a process number
	3.5.3.2.3 Specifying the segment name (measurement range)
	3.5.3.2.4 Generating Excel sheets

	3.5.4 Viewing the Excel sheets
	3.5.4.1 Performance information
	3.5.4.2 Memory Cache information
	3.5.4.3 SIMD information
	3.5.4.4 Cache information
	3.5.4.5 Instruction information
	3.5.4.6 Balance information
	3.5.4.7 XFILL flag
	3.5.4.8 Time information

	Chapter 4 Tracer
	4.1 Overview of the Tracer
	4.1.1 Overview of features
	4.1.1.1 Information collection feature
	4.1.1.2 Local trace data files integration feature

	4.1.2 Preparation for using the Tracer
	4.1.2.1 Compilation/Integration environment
	4.1.2.2 Compilation/Execution/Integration environment

	4.1.3 Flow for using the Tracer
	4.1.3.1 Compilation
	4.1.3.2 Information collection
	4.1.3.3 Local trace data files integration

	4.2 Using the Tracer
	4.2.1 Compilation
	4.2.1.1 Format
	4.2.1.2 Options
	4.2.1.3 Operand
	4.2.1.4 Environment variables for compilation
	4.2.1.5 Example of compilation

	4.2.2 Information collection
	4.2.2.1 Environment variables for execution

	4.2.3 Local trace data file integration feature
	4.2.3.1 Format
	4.2.3.2 Operand
	4.2.3.3 Options
	4.2.3.4 Example of execution
	4.2.3.5 Trace data files

	4.3 Trace information
	4.3.1 MPI trace
	4.3.1.1 Compilation
	4.3.1.2 Execution
	4.3.1.3 MPI functions collected by the Tracer

	4.3.2 User function trace
	4.3.2.1 Compilation
	4.3.2.2 Execution

	4.3.3 VampirTrace API trace
	4.3.3.1 Usage
	4.3.3.2 Compilation
	4.3.3.3 Execution

	4.3.4 I/O trace
	4.3.4.1 Compilation
	4.3.4.2 Execution
	4.3.4.3 I/O functions collected by the Tracer

	4.3.5 Memory trace
	4.3.5.1 Compilation
	4.3.5.2 Execution
	4.3.5.3 Memory functions collected by the Tracer

	Chapter 5 Tofu PA
	5.1 Overview of Tofu PA
	5.1.1 Tuning and Tofu PA information acquisition feature
	5.1.2 Overview of the feature

	5.2 Using the Tofu PA information acquisition feature
	5.2.1 Overview of the Tofu PA information acquisition feature
	5.2.2 Specifying the measurement section
	5.2.3 Compilation
	5.2.4 Execution
	5.2.5 Output file name
	5.2.6 File formats
	5.2.7 Visibility

	Chapter 6 Open Source Profiler
	6.1 Overview of mpiP
	6.2 Using mpiP
	6.2.1 Compilation
	6.2.2 Linking
	6.2.3 Execution
	6.2.4 mpiP Output

	6.3 Functional Detail
	6.3.1 mpiP Report Information
	6.3.1.1 Header Information
	6.3.1.2 MPI Time Information
	6.3.1.3 Callsite Information
	6.3.1.4 Aggregate Time Information
	6.3.1.5 Aggregate Sent Message Size
	6.3.1.6 Callsite Time Statics
	6.3.1.7 Callsite Message Sent Statistics

	6.3.2 Control of Profiling Range for mpiP
	6.3.3 MPI functions collected by mpiP

	Chapter 7 Glossary
	Appendix A Considerations for Using the Profiler
	A.1 Instant Profiler
	A.2 Advanced Profiler
	A.3 Tracer
	A.4 Tofu PA
	A.5 Open Source Profiler

	Appendix B Troubleshooting
	B.1 Instant Profiler
	B.2 Advanced Profiler
	B.3 Tracer
	B.4 Tofu PA

	Appendix C Notes on Migration from FX10 system to FX100 system
	C.1 Measured information of Hardware monitor information in Instant Profiler is changed
	C.2 Measured information of Hardware monitor information in Advanced Profiler is changed
	C.3 Frequency of the collection data and the analyzing data for the precision PA visibility function (Excel format) in Advanced Profiler is changed
	C.4 Presentation item of the precision PA visibility function (Excel format) in Advanced Profiler is changed

	Appendix D Compatibility Information (FX10 system)
	D.1 Migration to V1.0L30(Generation Number:09)
	D.1.1 The -c option of the vtunifypx command and vtunify-mpi application of the tracer is abolished
	D.1.2 VT_MAX_MPI_COMMS/VT_MAX_MPI_WINS of the environment variable for execution is abolished
	D.1.3 The record in the trace data of the MPI_Address function is abolished

