

FUJITSU Software

SSL II User’s Guide
(Scientific Subroutine Library)

J2UL-1903-01ENZ0(00)
October 2014

PREFACE

This manual describes the functions and use of the Scientific Subroutine Library II (SSL II),

SSL II can be used for various systems ranging from personal computers to vector computers.

The interface between a user-created program and SSL II is always the same regardless of the

system type. Therefore, this manual can be used for all systems that use SSL II. When using

SSL II for the first time, the user should read “How to Use This Manual” first.

 The contents of SSL II or this manual may be amended to keep up with the latest state of

technology, that is, if the revised or added subroutines should functionally include or surpass

some of the old subroutines, those old subroutines will be deleted in a time of allowance.

Note:

Some of the SSL II functions may be restricted in certain systems due to hardware

restrictions. These functions are in the SSL II Subroutine List in this manual.

i

Export Controls
 Exportation/release of this document may require necessary procedures in accordance with
 the regulations of your resident country and/or US export control laws.

Date of Publication and Version

Version Manual code

October 2014, 2nd Version J2UL-1901-01ENZ0(00)

December 1987, 1st Version ―

Copyright

Copyright FUJITSU LIMITED 1987-2014

Update History

Changes Location Version

Rework format Cover, PREFACE 2nd Version

• All rights reserved.
• The information in this manual is subject to change without notice.

ii

ACKNOWLEDGEMENTS

We believe that a scientific subroutine library can be one of convenient vehicles for the
dissemination of the fruits of investigation made by experts concerned with numerical
analysis, furthermore, through the library a user can make use of these new fruits without
ever having to become familiar with the technical details.
 This led us to conclude that we had better request as many experts as possible to
implement their new methods, and then promote distribution of them to a wide community of
users. As a result of our efforts to show our idea to many experts or authorities and to
discuss continuously with them, we could fortunately get a common consensus from them.
We are pleased to enumerate below experts who have contributed to SSL II until now in
acknowledgment of their efforts.

Contributors
Name Organization

Masatsugu Tanaka Faculty of Engineering, Yamanashi
University, Japan

Ichizo Ninomiya Faculty of Management Information
Chubu University, Japan

Tatsuo Torii Faculty of Engineering, Nagoya
University, Japan

Takemitsu Hasegawa Faculty of Engineering, Fukui
University, Japan

Kazuo Hatano Faculty of Engineering, Aichi Technical
University, Japan

Yasuyo Hatano Department of Education, Chukyo
University, Japan

Toshio Yoshida Faculty of Management Information
Chubu University, Japan

Kaoru Tone Graduate School for Policy Science,
Saitama University, Japan

Takashi Kobayashi Graduate School for Policy Science,
Saitama University, Japan

Toshio Hosono College of Science and Technology,
Nihon University, Japan

(Nov., 1987)

 Also, our thanks are due to many universities and research institutes, especially those
shown below, for helpful discussions and advises on our project, for providing information
on recent algorithms, numerical comparisons, and for suggesting several important
improvements in this users’ guide.

Organizations
Computation Center, Hokkaido University
Computation Center, Nagoya University
Computation Center, Kyoto University
Computation Center, Kyusyu University
Japan Atomic Energy Research Institute

 It would be another pleasure that users would appreciate the efforts by contributors, and on
the occasions of publication of users’ own technical papers they would advertise on the
papers as possible the fact of having used SSL II.

iii

CONTENTS

Page

SSL II SUBROUTINE LIST ... 1

HOW TO USE THIS MANUAL .. 12

PART I GENERAL DESCRIPTION .. 15

CHAPTER 1 SSL II OUTLINE ... 17
1.1 Background of Development ... 17
1.2 Development Objectives .. 17
1.3 Features ... 17
1.4 System That Can Use SSL II ... 18

CHAPTER 2 GENERAL RULES .. 19
2.1 Types of Subroutines ... 19
2.2 Classification Codes .. 19
2.3 Subroutine Names.. 19
2.4 Parameters ... 19
2.5 Definitions ... 21
2.6 Return Conditions of Processing ... 23
2.7 Array .. 23
2.8 Data Storage .. 24
2.9 Unit Round Off .. 27
2.10 Accumulation of Sums ... 27
2.11 Computer Constants .. 27

CHAPTER 3 LINEAR ALGEBRA .. 28
3.1 Outline ... 28
3.2 Matrix Storage Mode Conversion ... 28
3.3 Matrix Manipulation .. 28
3.4 Linear Equations and Matrix Inversion (Direct Method) .. 29
3.5 Least Squares Solution .. 32

CHAPTER 4 EIGENVALUES AND EIGENVECTORS .. 35
4.1 Outline ... 35
4.2 Eigenvalues and Eigenvectors of a Real Matrix .. 35
4.3 Eigenvalues and Eigenvectors of a Complex Matrix ... 36
4.4 Eigenvalues and Eigenvectors of a Real Symmetric Matrix .. 38
4.5 Eigenvalues and Eigenvectors of a Hermitian Matrix ... 40
4.6 Eigenvalues and Eigenvectors of a Real Symmetric Band Matrix ... 41

ii

4.7 Eigenvalues and Eigenvectors of a Real Symmetric Generalized Eigenproblem .. 43
4.8 Eigenvalues and Eigenvectors of a Real Symmetric Band Generalized Eigenproblem 45

CHAPTER 5 NONLINEAR EQUATIONS ... 46
5.1 Outline ... 46
5.2 Polynomial Equations .. 46
5.3 Transcendental Equations .. 47
5.4 Nonlinear Simultaneous Equations .. 47

CHAPTER 6 EXTREMA... 49
6.1 Outline ... 49
6.2 Minimization of Function with a Variable ... 49
6.3 Unconstrained Minimization of Multivariable Function ... 49
6.4 Unconstrained Minimization of Sum of Squares of Functions

(Nonlinear Least Squares Solution) ... 51
6.5 Linear Programming .. 52
6.6 Nonlinear Programming (Constrained Minimization of Multivariable Function) ... 54

CHAPTER 7 INTERPOLATION AND APPROXIMATION ... 55
7.1 Outline ... 55
7.2 Interpolation .. 60
7.3 Approximation ... 60
7.4 Smoothing ... 60
7.5 Series ... 62

CHAPTER 8 TRANSFORMS ... 63
8.1 Outline ... 63
8.2 Discrete Real Fourier Transforms ... 63
8.3 Discrete Cosine Transforms .. 63
8.4 Discrete Sine Transforms .. 64
8.5 Discrete Complex Fourier Transforms .. 64
8.6 Laplace Transform .. 66

CHAPTER 9 NUMERICAL DIFFERENTIATION AND QUADRATURE .. 70
9.1 Outline ... 70
9.2 Numerical Differentiation .. 70
9.3 Numerical Quadrature ... 70

CHAPTER 10 DIFFERENTIAL EQUATIONS .. 75
10.1 Outline ... 75
10.2 Ordinary Differential Equations .. 75

CHAPTER 11 SPECIAL FUNCTIONS .. 78
11.1 Outline ... 78
11.2 Elliptic Integrals .. 78

iii

11.3 Exponential Integral .. 79
11.4 Sine and Cosine Integrals .. 79
11.5 Fresnel Integrals .. 79
11.6 Gamma Functions .. 79
11.7 Error Functions .. 79
11.8 Bessel Functions .. 80
11.9 Normal Distribution Functions .. 80

CHAPTER 12 PSEUDO RANDOM NUMBERS .. 81
12.1 Outline ... 81
12.2 Pseudo Random Generation .. 81
12.3 Pseudo Random Testing .. 81

PART II USAGE OF SSL II SUBROUTINES .. 83

APPENDICES ... 606

APPENDIX A AUXILIARY SUBROUTINES .. 607
A.1 Outline ... 607
A.2 AMACH, DMACH ... 608
A.3 MGSSL .. 609
A.4 MGSET ... 610
A.5 ASUM (BSUM), DSUM (DBSUM) ... 611
A.6 CSUM, DCSUM.. 612
A.7 IRADIX ... 613
A.8 AFMAX, DFMAX, AFMIN, DFMIN ... 614

APPENDIX B ALPHABETIC GUIDE FOR SUBROUTINES ... 615
B.1 General Subroutines .. 615
B.2 Slave Subroutines .. 618
B.3 Auxiliary Subroutines .. 619

APPENDIX C CLASSIFICATION CODES AND SUBROUTINES .. 620

APPENDIX D REFERENCES ... 622

CONTRIBUTORS AND THEIR WORKS ... 626

iv

SSL II SUBROUTINE LIST

The SSL II functions are listed below. Generally, a single-precision routine and a
double-precision routine are available for each function. The subroutine name column gives
the names of single-precision routines. Double-precision routine names start with a D,
followed by the single-precision names. If the use of a function is restricted due to
hardware restrictions, it is indicated in the remarks column.
The symbols that appear in the remarks column mean the following:

#: Only the single-precision routine is available in all systems.

A. Linear Algebra

Storage mode conversion of matrices

Subroutine name Item Page Remarks
CGSM Storage mode conversion of matrices (real symmetric to real general) 264
CSGM Storage mode conversion of matrices (real general to real symmetric) 290
CGSBM Storage mode conversion of matrices (real general to real symmetric band) 263
CSBGM Storage mode conversion of matrices (real symmetric band to real general) 287
CSSBM Storage mode conversion of matrices (real symmetric to real symmetric band) 291
CSBSM Storage mode conversion of matrices (real symmetric band to real symmetric) 289

Matrix manipulation

Subroutine name Item Page Remarks
AGGM Addition of two matrices (real general + real general) 85
SGGM Subtraction of two matrices (real general – real general) 563
MGGM Multiplication of two matrices (real general by real general) 454
MGSM Multiplication of two matrices (real general by real symmetric) 465
ASSM Addition of two matrices (real symmetric + real symmetric) 131
SSSM Subtraction of two matrices (real symmetric – real symmetric) 582
MSSM Multiplication of two matrices (real symmetric by real symmetric) 477
MSGM Multiplication of two matrices (real symmetric by real general) 476
MAV Multiplication of a real matrix by a real vector 456
MCV Multiplication of a complex matrix by a complex vector 460
MSV Multiplication of a real symmetric matrix by a real vector 478
MSBV Multiplication of a real symmetric band matrix and a real vector 474
MBV Multiplication of a real band matrix and a real vector 458

1

Linear equations

Subroutine name Item Page Remarks
LAX A system of linear equations with a real general matrix (Crout’s method) 388

LCX A system of linear equations with a complex general matrix (Crout’s method) 407

LSX
A system of linear equations with a positive-definite symmetric matrix (Modified
Cholesky’s method)

445

LSIX
A system of linear equations with a real indefinite symmetric matrix (Block diagonal
pivoting method)

438

LSBX
A system of linear equations with a positive-definite symmetric band matrix
(Modified Cholesky’s method)

433

LSBIX
A system of linear equations with a real indefinite symmetric band matrix (block
diagonal pivoting method)

431

LBX1
A system of linear equations with a real general band matrix (Gaussian elimination
method)

402

LSTX
A system of linear equations with a positive-definite symmetric tridiagonal matrix
(Modified Cholesky’s method)

442

LTX
A system of linear equations with a real tridiagonal matrix (Gaussian elimination
method)

449

LAXR
Iterative refinement of the solution to a system of linear equations with a real
general matrix

399

LCXR
Iterative refinament of the solution to a system of linear equations with a complex
general matrix

409

LSXR
Iterative refinement of the solution to a system of linear equations with a
positive-definite symmetric matrix

447

LSIXR
Iterative refinament of the solution to a system of linear equations with a real
indefinite symmetric matrix

440

LSBXR
Iterative refinament of the solution to a system of linear equations with a
positive-definite symmetric band matrix

435

LBX1R
Iterative refinement of the solution to a system of linear equations with a real
general band matrix

404

Matrix inversion

Subroutine name Item Page Remarks
LUIV The inverse of a real general matrix decomposed into the factors L and U 452

CLUIV The inverse of a complex general matrix decomposed into the factors L and U 279

LDIV
The inverse of a positive-definite symmetric matrix decomposed into the factors L, D and
LT

412

Decomposition of matrices

Subroutine name Item Page Remarks
ALU LU-decomposition of a real general matrix (Crout’s method) 98

CLU LU-decomposition of a complex general matrix (Crout’s method) 277

SLDL
LDLT-decomposition of a positive-definite symmetric matrix (Modified Cholesky’s
method)

570

SMDM
MDMT-decomposition of a real indefinite symmetric matrix (Block diagonal pivoting
method)

572

SBDL
LDLT-decomposition of a positive-definite symmetric band matrix (Modified
Cholesky’s method)

553

SBMDM
MDMT-decomposition of a real indefinite symmetric band matrix (block diagonal
pivoting method)

555

BLU1 LU-decomposition of a real general band matrix (Gaussian elimination method) 189

2

Solution of decomposed system

Subroutine name Item Page Remarks

LUX
A system of linear equations with a real general matrix decomposed into the
factors L and U

454

CLUX
A system of linear equations with a complex general matrix decomposed into the
factors L and U

281

LDLX
A system of linear equations with a positive-definite symmetric matrix
decomposed into the factors L, D and LT

414

MDMX
A system of linear equations with a real indefinite symmetric matrix decomposed
into the factors M, D and MT

462

BDLX
A system of linear equations with a positive-definite symmetric band matrix
decomposed into the factors L, D and LT

136

BMDMX
A system of linear equations with a real indefinite symmetric band matrix
decomposed into factors M, D, and MT

192

BLUX1
A system of linear equations with a real general band matrix decomposed into the
factors L and U

186

Least squares solution

Subroutine name Item Page Remarks
LAXL Least squares solution with a real matrix (Householder transformation) 390
LAXLR Iterative refinement of the least squares solution with a real matrix 397

LAXLM
Least squares minimal norm solution with a real matrix (Singular value
decomposition method)

393

GINV Generalized Inverse of a real matrix (Singular value decomposition method) 341
ASVD1 Singular value decomposition of a real matrix (Householder and QR methods) 132

B. Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors

Subroutine name Item Page Remarks
EIG1 Eigenvalues and corresponding eigenvectors of a real matrix (double QR method) 298
CEIG2 Eigenvalues and corresponding eigenvectors of a complex matrix (QR method) 242

SEIG1
Eigenvalues and corresponding eigenvectors of a real symmetric matrix (QL
method)

558

SEIG2
Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix
(Bisection method, inverse iteration method)

560

HEIG2
Eigenvalues and corresponding eigenvectors of an Hermition matrix (Householder
method, bisection method, and inverse iteration method)

356

BSEG
Eigenvalues and eigenvectors of a real symmetric band matrix
(Rutishauser-Schwarz method, bisection method and inverse iteration method)

206

BSEGJ Eigenvalues and eigenvectors of a real symmetric band matrix (Jennings method) 208

TEIG1
Eigenvalues and corresponding eigenvectors of a real symmetric tridiagonal
matrix (QL method)

583

TEIG2
Selected eigenvalues and corresponding eigenvectors of a real symmetric
tridiagonal matrix (Bisection method, inverse iteration method)

585

GSEG2
Eigenvalues and corresponding eigenvectors of a real symmetric generalized
matrix system Ax = λ Bx (Bisection method, inverse iteration method)

347

GBSEG
Eigenvalues and corresponding eigenvectors of a real symmetric band
generalized eigenproblem (Jennings method)

335

3

Eigenvalues

Subroutine name Item Page Remarks
HSQR Eigenvalues of a real Hessenberg matrix (double QR method) 361
CHSQR Eigenvalues of a complex Hessenberg matrix (QR method) 270
TRQL Eigenvalues of a real symmetric tridiagonal matrix (QL method) 598
BSCT1 Selected eigenvalues of a real symmetric tridiagonal matrix (Bisection method) 198

Eigenvectors

Subroutine name Item Page Remarks
HVEC Eigenvectors of a real Hessenberg matrix (Inverse iteration method) 363
CHVEC Eigenvectors of a complex Hessenberg matrix (Inverse iteration method) 272
BSVEC Eigenvectors of a real symmetric band matrix (Inverse iteration method) 218

Others

Subroutine name Item Page Remarks
BLNC Balancing of a real matrix 184
CBLNC Balancing of a complex matrix 239
HES1 Reduction of a real matrix to a real Hessenberg matrix (Householder method) 358

CHES2
Reduction of a complex matrix to a complex Hessenberg matrix (Stabilized
elementary transformation)

268

TRID1
Reduction of a real symmetric matrix to a real symmetric tridiagonal matrix
(Householder method)

596

TRIDH
Reduction of an Hermition matrix to a real symmetric tridiagonal matrix
(Householder method and diagonal unitary transformation)

593

BTRID
Reduction of a real symmetric band matrix to a tridiagonal matrix
(Rutishauser-Schwarz method)

221

HBK1
Back transformation and normalization of the eigenvectors of a real Hessenberg
matrix

354

CHBK2
Back transformation of the eigenvectors of a complex Hessenberg matrix to the
eigenvectors of a complex matrix

266

TRBK
Back transformation of the eigenvectors of a tridiagonal matrix to the eigenvectors
of a real symmetric matrix

589

TRBKH
Back transformation of eigenvectors of a tridiagonal matrix to the eigenvectors of an
Hermition matrix

591

NRML Normalization of eigenvectors 498
CNRML Normalization of eigenvectors of a complex matrix 283
GSCHL Reduction of a real symmetric matrix system Ax = λ Bx to a standard form 345

GSBK
Back transformation of the eigenvectors of the standard form the eigenvectors of
the real symmetric generalized matrix system

343

4

C. Nonlinear Equations

Subroutine name Item Page Remarks
RQDR Zeros of a quadratic with real coefficients 552
CQDR Zeros of a quadratic with complex coefficients 286
LOWP Zeros of a low degree polynomial with real coefficients (fifth degree or lower) 423
RJETR Zeros of a polynomial with real coefficients (Jenkins-Traub method) 546
CJART Zeros of a polynomial with complex coefficients (Jarratt method) 275

TSD1
Zero of a real function which changes sign in a given interval (derivative not
required)

604

TSDM Zero of a real function (Muller’s method) 601
CTSDM Zero of complex function (Muller’s method) 292
NOLBR Solution of a system of nonlinear equations (Brent’s method) 487

D. Extrema

Subroutine name Item Page Remarks

LMINF
Minimization of function with a variable (quadratic interpolation using function values
only)

418

LMING
Minimization of function with a variable (cubic interpolation using function values and
its derivatives)

420

MINF1
Minimization of function with several variables (revised quasi-Newton method, uses
function values only)

466

MING1
Minimization of a function with several variables (Quasi-Newton method, using
function values and its derivatives)

470

NOLF1
Minimization of the sum of squares of functions with several variables (Revised
Marquardt method, using function values only)

490

NOLG1
Minimization of the sum of squares of functions (revised Marquardt method using
function values and its derivatives)

494

LPRS1 Solution of a linear programming problem (Revised simplex method) 425

NLPG1 Nonlinear programming (Powell’s method using function values and its derivatives) 482

E. Interpolation and Approximation

Interpolation

Subroutine name Item Page Remarks
AKLAG Aitken-Lagrange interpolation 89
AKHER Aitkan-Hermite interpolation 86
SPLV Cubic spline interpolation 579
BIF1 B-spline interpolation (I) 156
BIF2 B-spline interpolation (II) 158
BIF3 B-spline interpolation (III) 160
BIF4 B-spline interpolation (IV) 162
BIFD1 B-spline two-dimensional interpolation (I-I) 151
BIFD3 B-spline two-dimensional interpolation (III-III) 154
AKMID Two-dimensional quasi-Hermite Interpolation 91
INSPL Cubic spline interpolation coefficient calculation 377
AKMIN Quasi-Hermite interpolation coefficient calculation 95
BIC1 B-spline interpolation coefficient calculation (I) 143
BIC2 B-spline interpolation coefficient calculation (II) 145
BIC3 B-spline interpolation coefficient calculation (III) 147
BIC4 B-spline interpolation coefficient calculation (IV) 149
BICD1 B-spline two-dimensional interpolation coefficient calculation (I-I) 138
BICD3 B-spline two-dimensional interpolation coefficient calculation (III-III) 141

5

Approximation

Subroutine name Item Page Remarks
LESQ1 Polynomial least squares approximation 416

Smoothing

Subroutine name Item Page Remarks
SMLE1 Data smoothing by local least squares polynomials (equally spaced data points) 575
SMLE2 Data smoothing by local least squares polynomials (unequally spaced data points) 577
BSF1 B-spline smoothing 216
BSC1 B-spline smoothing coefficient calculation 201
BSC2 B-spline smoothing coefficient calculation (variable knots) 203
BSFD1 B-spline two-dimensional smoothing 214
BSCD2 B-spline two-dimensional smoothing coefficient calculation (variable knots) 194

Series

Subroutine name Item Page Remarks

FCOSF
Fourier Cosine series expansion of an even function (Function input, fast cosine
transform)

312

ECOSP Evaluation of a cosine series 296
FSINF Fourier sine series expansion of an odd function (Function input, fast sine transform) 324
ESINP Evaluation of a sine series 302
FCHEB Chabyshev series expansion of a real function (Function input, fast cosine transform) 306
ECHEB Evaluation of a Chebyshev series 294
GCHEB Differentiation of a Chebyshev series 339
ICHEB Indefinite integral of a Chebyshev series 367

6

F. Transforms

Subroutine name Item Page Remarks
FCOST Discrete cosine transform (Trapezoidal rule, radix 2 FFT) 321
FCOSM Discrete cosine transform (midpoint rule, radix 2 FFT) 318
FSINT Discrete since transform (Trapezoidal rule, radix 2 FFT) 333
FSINM Discrete sine transform (midpoint rule, radix 2 FFT) 330
RFT Discrete real Fourier transform 543
CFTM Multi-variate discrete complex Fourier transform (mixed radix FFT) 250
CFT Multi-variate discrete complex Fourier transform (radix 8 and 2 FFT) 247
CFTN Discrete complex Fourier transforms (radix 8 and 2 FFT, reverse binary order output) 254
CFTR Discrete complex Fourier transforms (radix 8 and 2 FFT, reverse binary order input) 259
PNR Permutation of data (reverse binary transformation) 522
LAPS1 Inversion of Laplace transform of a rational function (regular in the right-half plane) 379
LAPS2 Inversion of Laplace transform of a general rational function 381
LAPS3 Inversion of Laplace transform of a general function 383
HRWIZ Judgment on Hurwiz polynomials 360

G. Numerical Differentiation and Quadrature

Numerical Differentiation

Subroutine name Item Page Remarks
SPLV Cubic spline differentiation 579
BIF1
BIF2
BIF3
BIF4

Differentiation (Unequally spaced discrete points, B-spline Interpolation) 156
158
160
162

BSF1 Differentiation by B-spline least squares fit (Fixed knots) 216
BIFD1
BIFD3

Two-dimensional differentiation (unequally spaced lattice points.
B-spline two-dimensional interpolation)

151
154

BSFD1 Two-dimensional differentiation by B-spline least squares fit 214
GCHEB Differentiation of a Chebyshev series 339

7

Numerical Quadrature

Subroutine name Item Page Remarks
SIMP1 Integration of a tabulated function by Simpson’s rule (equally spaced) 564
TRAP Integration of a tabulated function by trapezoidal rule (unequally spaced) 588
BIF1
BIF2
BIF3
BIF4

Intergration of a tabulated function by B-spline interpolation (unequally spaced
discrete points, B-spline interpolation)

156
158
160
162

BSF1
Smoothing differentiation and integration of a tabulated function by B-spline least
squares fit (fixed knots)

216

BIFD1
BIFD3

Integration of a two-dimensional tabulated function (unequally spaced lattice points,
B-spline two-dimensional interpolation)

151
154

BSFD1 Two-dimensional integration of a tabulated function by B-spline interpolation 214
SIMP2 Integration of a function by adaptive Simpson’s rule 565
AQN9 Integration of a function by adaptive Newton-Cotes 9-point rule 126
AQC8 Integration of a function by a modified Clenshaw-Curtis rule 100
AQE Integration of a function by double exponential formula 106
AQEH Integration of a function over the semi-infinite interval by double exponential formula 110
AQEI Integration of a function over the infinite interval by double exponential formula 112
AQMC8 Multiple integration of a function by a modified Clenshaw-Curtis integration rule 115
AQME Multiple integration of a function by double exponential formula 121

H. Differential equations

Subroutine name Item Page Remarks
RKG A system of first order ordinary differential equations (Runge-Kutta method) 550

HAMNG A system of first order ordinary differential equations (Hamming method) 350

ODRK1 A system of first order ordinary differential equations (Runge-Kutta-Verner method) 518

ODAM A system of first order ordinary differential equations (Adams method) 500

ODGE A stiff system of first order ordinary differential equations (Gear’s method) 509

8

I. Special Functions

Subroutine name Item Page Remarks
CELI1 Complete elliptic Integral of the first kind K(x) 244
CELI2 Complete elliptic integral of the second kind E(x) 245

EXPI)(,)(xExE ii integral lExponentia 304

SINI Sine integral Si (x) 569
COSI Cosine integral Ci (x) 285
SFRI Sine Fresnel integral S(x) 562
CFRI Cosine Fresnel integral C(x) 246
IGAM1 Incomplete Gamma function of the first kind γ (ν , x) 372
IGAM2 Incomplete Gamma function of the second kind Γ (ν , x) 373
IERF Inverse error function erf -1(x) 369
IERFC Inverse complimented error function erfc-1(x) 370
BJ0 Zero-order Bessel function of the first kind J0(x) 173
BJ1 First-order Bessel function of the first kind J1(x) 175
BY0 Zero-order Bessel function of the second kind Y0(x) 228
BY1 First-order Bessel function of the second kind Y1(x) 230
BI0 Modified Zero-order Bessel function of the first kind I0(x) 167

BI1 Modified First-order Bessel function of the first kind I1(x) 168

BK0 Modified Zero-order Bessel function of the second kind K0(x) 182
BK1 Modified First-order Bessel function of the second kind K1(x) 183
BJN Nth-order Bessel function of the first kind Jn (x) 169
BYN Nth-order Bessel function of the second kind Yn (x) 223
BIN Modified Nth-order Bessel function of the first kind In (x) 164
BKN Modified Nth-order Bessel function of the second kind Kn (x) 177
CBIN Modified Nth-order Bessel function of the first kind In (z) with complex variable 232
CBKN Modified Nth-order Bessel function of the second kind Kn (z) with complex variable 236
CBJN Integer order Bessel function of the first kind with complex variable Jn (z) 233
CBYN Integer order Bessel function of the second kind with complex variable Yn (z) 241
BJR Real-order Bessel function of the first kind Jν (x) 171
BYR Real-order Bessel function of the second kind Yν (x) 224
BIR Modified real-order Bessel function of the first kind Iν (x) 166
BKR Real order modified Bessel function of the second kind Kν (x) 178
CBJR Real-order Bessel function of the first kind with a complex variable Jν (z) 234
NDF Normal distribution function φ (x) 480
NDFC Complementary normal distribution function ψ (x) 481
INDF Inverse normal distribution function φ -1(x) 375
INDFC Inverse complementary normal distribution function ψ -1(x) 376

9

J. Pseudo Random Numbers

Subroutine name Item Page Remarks
RANU2 Uniform (0, 1) pseudo random numbers 533 #
RANU3 Shuffled uniform (0, 1) pseudo random numbers 536 #
RANN1 Fast normal pseudo random numbers 528 #
RANN2 Normal pseudo random numbers 530 #
RANE2 Exponential pseudo random numbers 527 #
RANP2 Poisson pseudo random integers 531 #
RANB2 Binominal pseudo random numbers 525 #
RATF1 Frequency test for uniform (0, 1) pseudo random numbers 538 #
RATR1 Run test of up-and-down for uniform (0, 1) pseudo random numbers 540 #

10

11

HOW TO USE THIS MANUAL

This section describes the logical organization of this
manual, and the way in which the user can quickly and
accurately get informations necessary to him from the
manual.
 This manual consists of two parts. Part I describes an
outline of SSL II. Part II describes usage of SSL II
subroutines.
 Part I consists of twelve chapters.
 Chapter 2 describes the general rules which apply to
each SSL II subroutine. It is suggested that the user
read this chapter first.
 Chapters 3 through 12 are concerned with certain
fields of numerical computation, and were edited as
independently as possible for easy reference. At the
beginning of every chapter, the section “OUTLINE” is
given, which describes the classification of available
subroutines in the chapter, and how to select subroutines
suitable for a certain purpose. The user should read the
section at least once.
As mentioned above, there is no confusing or difficult
relation between the chapters: it is quite simple as shown
in the following diagram.

Chapter 12

Chapter 3

Chapter 4

Chapter 5Chapter 2Chapter 1

 Each chapter from chapter 3 on has several sections,
the first of which is the section “OUTLINE” that, as
noted previously, introduces the following sections.
 As the diagram shows, if the user wants to obtain
eigenvalues, for example, of a certain matrix, he should
first read Chapter 2, then jump to Chapter 4, where he
can select subroutines suitable for his purposes.
 Part II describes how to use SSL II subroutines. The
subroutines are listed in alphabetical order.
 When describing an individual subroutine, the
following contents associated with the subroutine are
shown:
• Function
• Parameters
• Comments on use
• Method
 and what we intend to describe under each title above
are as follows:

Function
Describes explanation of the functions.

Parameters
Describes variables and arrays used for transmitting
information into or from the subroutine. Generally,
parameter names, which are commonly used in SSL II,
are those habitually used so far in many libraries.

Comments on use
This consists of the following three parts.
• Subprograms used

If other SSL II subroutines are used internally by the
subroutine, they are listed under “SSL II”. Also, if
FORTRAN intrinsic functions or basic external
functions are used, they are listed under “FORTRAN
basic functions”.

• Notes
Discusses various considerations that the user should
be aware of when using the subroutine.

• Example
An example of the use of the subroutine is shown.
For clarity and ease of understanding, any applications
to a certain field of engineering or physical science
have not been described. In case other subroutines
must be used as well as the subroutine to obtain a
mathematical solution, the example has been designed
to show how other subroutines are involved. This is
especially true in the chapters concerning linear
equations or eigenvalues etc. Conditions assumed in
an example are mentioned at the beginning of the
example.

Method
The method used by the subroutine is outlined. Since
this is a usage manual, only practical aspects of the
algorithm or computational procedures are described.
References on which the implementation is based and
those which are important in theory, are listed in
Appendix D “References”, so refer to them for further
information or details beyond the scope of the “Method”
section.
 In this manual, included are the SSL II Subroutine list
and four appendices. In the SSL II Subroutine list, SSL
II Subroutines are arranged in the order of fields and then
in the order of their classification codes. This list can
be used for quick reference of subroutines.

Appendix A explains the functions of the auxiliary
subroutines and Appendix B contains the three lists,
which are concerned respectively with
• General subroutines
• Slave subroutines
• Auxiliary subroutines

General subroutines is an alphabetical listing of all
subroutines. In the list, if a certain entry uses other
subroutines, they are shown on the right. Slave
subroutines is an alphabetical listing of slave subroutines

12

(as for the definition of them, see Section 2.1), and in the
list, general subroutines which use the slave subroutine
are shown on the right. Auxiliary subroutines is a listing
of auxiliary subroutines, and it is also alphabetical.
Appendix C explains the subroutine names in order of
classification code. This list can be used for quick
reference of subroutines by classification code.

Appendix D lists the documents referred for SSL II
development and/or logically important theory.
Although no preliminary knowledge except the ability to
understand FORTRAN is required to use this manual.
Mathematical symbols used in this manual are listed
below. We expect that the user has same interest in, or
some familiarity with numerical analysis.

Mathematical symbol table

Symbol Example Meaning Remarks
T AT Transposed matrix of matrix A
 xT Transposed vector of column vector x
 x = (x1 ,..., xn)T Column vector Refer to the symbol ().
-1 A-1 Inverse of matrix A
* A* Conjugate transposed matrix of matrix A
 x* Conjugate transposed vector of column vector x
 z* Conjugate complex number of complex number z ibaz +=

ibaz −=*
*zz =

 z

=

nnn

n

aa

aa
aaa

1

2221

11211

A

A is an n × n matrix whose elements are aij.

()

x = (x1 ,..., xn)T x is an n-dimensional column vector whose elements are
xi.

 A = (aij) Elements of matrix A are defined as aij.
 x = (xi) Elements of column vector x are defined as xi.

diag A = diag(aii) Matrix A is a diagonal matrix whose elements are aii.
I Unit matrix

det det(A) Determinant of matrix A
rank rank(A) Rank of matrix A
|| || ||x|| Norm of vector x

For n-dimensional vector x , x = (xj) :

∑
=

=
n

i
ix

1
1 |||||| x : Uniform norm

∑
=

=
n

i
ix

1

2
2 |||||| x : Euclidean norm

||xi
i

max|||| =∞x : Infinity norm

max,, symbols Refer to ∑

 A Norm of matrix A
For a matrix A = (aij) of order n:

∑

=∞
=

n

j
iji

a
1

maxA : Infinity norm

(,) (x, y) Inner product of vectors x and y When x and y are complex vectors,
yxyx T),(=

[,]

(a, b) Open interval
[a, b] Closed interval

>> a >> b a is much greater than b.
≠ a ≠ b a is not equal to b.
≈ f (x) ≈ P(x) f (x) is approximately equal to P(x).
≡ f (x) ≡ f ′ (x) / f (x) f (x) is defined as f ′ (x) / f (x).
{ } {xi} Sequence of numbers

13

Symbol Example Meaning Remarks

∑ ∑
=

n

mi
ix
 Summation (xm ,..., xn) Sum cannot be given if n < m

If ∑
≠
=

n

li
mi

ix summation excludes xl.

∑ +
i

jix 2 Summation with respect to i

y′, f ′(x)
dx

xdf
xf

dx

dy
y

)(
)(, =′=′ For n-order derivative:

f (n) (x) = n

n

dx
xfd)(

 z Absolute value of z If z = a + ib

 22 baz +=

max max(x1 , ..., xn) The maximum value of (x1, ..., xn)

min i

i
xmax

The minimum value of (x1, ..., xn)

 min(x1 , ..., xn)

sign i

i
xmin

Sign of x

When x is positive, 1.
When x is negative, -1. sign(x)

log log x Natural logarithm of x
Re Re(z) Real part of complex number z
Im Im(z) Imaginary part of complex number z
arg Arg z Argument of complex number z

ijδ Kronecker’s delta

γ Euler’s constant
π Ratio of the circumference of the circle to its diameter
 i z = a + ib Imaginary unit 1−=i
P.V.

∫ ∞−

x t

dt
t

e P.V.
Principal value of an integral

 ⋅⋅⋅+++
2

2

1

1
0 b

a
b
a

b Continued fraction

∈ x ∈ X Element x is contained in set X.
{ | } { })(xxx ϕ= All elements of set x satisfy the equation.

C k []baCxf k ,)(∈
f (x) and up to k-th derivatives are continuous in the
interval [a , b].

Note: This table defines how each symbol is used in this guide. A symbol may have a different meaning elsewhere. Commonly used

symbols, such as + and – , were not included in the list.

14

PART I
GENERAL DESCRIPTION

17

CHAPTER 1
SSL II OUTLINE

1.1 BACKGROUND OF DEVELOPMENT

Many years have passed since SSL (Scientific Subroutine
Library) was first developed. Due to advancements in
numerical calculation techniques and to increased power
of computers, SSL has been updated and new functions
have been added on many occasions. However, users
have further requested the followings:
• Better balance of the functions and uses of individual

subroutines
• That addition of new functions not adversely affect the

organization of the system
• Better documentation of various functions and their

uses

 SSLII was developed with these requirements in mind.

1.2 DEVELOPMENT OBJECTIVES

Systematizing
It is important for a library to enable the user to quickly
identify subroutines which will suit his purposes.
SSLII is organized with emphasis on the following
points:
• We classify numerical computations as follows:

A Linear algebra
B Eigenvalues and eigenvectors
C Nonlinear equations
D Extrema
E Interpolations and approximations
F Transforms
G Numerical differentiation and quadrature
H Differential equations
I Special functions
J Pseudo random numbers

 These categories are further subdivided for each branch.
The library is made in a hierarchy organization. The
organization allows easier identifying the locations of
individual subroutines.
• Some branches have subdivided functions. We present

not only general purpose-oriented subroutines but also
those which perform as components of the former, so
that the user can use the components when he wishes to
analize the sequence of the computational procedures.

Performance improvement
Through algorithmic and programming revisions,
improvements have been made both in accuracy and
speed.
• The algorithmic methods which are stable and precise

are newly adopted. Some of the standard methods used
in the past are neglected.

• In programming, importance is attached to reducing
execution time. Thus, the subroutines, are written in
FORTRAN to enjoy the optimization of the compiler.
 SSLII improves the locality of the virtual storage
system program, but does not decrease the efficiency of
a computer without virtual storage.

Improvement of reliability
In most cases, single and double precision routines are
generated from the same source program.

Maintenance of compatibility
Nowadays, developed softwares are easily transferred
between different type systems. The SSL II subroutines
are structured to maintain compatibility. A few auxiliary
subroutines which are dependent of the system are
created.

1.3 FEATURES

• SSL II is a collection of subroutines written in
FORTRAN and desired subroutines are called in user
programs using the CALL statement.

• All subroutines are written without input statements,
user data is assumed to be in main storage.

• Data size is defined with subroutine parameters. No
restrictions are applied to data size within subroutines.

• To save storage space for linear and eigenvalue-

GENERAL DESCRIPTION

 18

eigenvector calculus, symmetric and band matrices are
stored in a compressed mode (see Section 2.8 “Data
Storage Methods”).

• All subroutines have an output parameter which
indicates status after execution. A code giving the state
of the processing is returned with this parameter (refer
to Section 2.6 “Return Conditions of Processing”).
Subroutines will always return control to the calling
program. The user can check the contents of this
parameter to determine proper processing.

• If specified, the condition messages are output (refer to
section 2.6 “return conditions of processing”).

1.4 SYSTEM THAT CAN USE SSL II

If the FORTRAN compilers can be used on the user’s
system, SSL II can also be used regardless of the system
configuration. But, the storage size depends on the
number and size of SSL II subroutines, the size of the
user program, and the size of the data.
Although, as shown above, SSL II subroutines are usually
called by FORTRAN programs, they can also be called
by programs written in ALGOL, PL/1, COBOL, etc., if
the system permits.
When the user wishes to do that, refer to the section in
FORTRAN (or another compiler) User’s Guide which
describes the interlanguage linkage.

19

CHAPTER 2
GENERAL RULES

2.1 TYPES OF SUBROUTINES

There are three types of SSL II subroutines, as shown in
Table 2.1.

Table 2.1 Types of subroutines

Subroutine
type

Subprogram
division

Use

General
subroutine

Subroutine
subprogram

Used by the user.

Slave
subroutine

Subroutine
subprogram
of function
subprogram

Called by general subroutines
and cannot be called directly
by the user.

Auxiliary
subroutine

 Support general subroutines
and slave subroutines.

The general subroutines in Table 2.1 are further divided,
as shown in Table 2.2, into two levels according to the
function. This division occurs when, in order to performs
a particular function, a routine is internally subdivided
into elementary functions.

Table 2.2 Subroutine levels

Level Function
Standard
routine

A single unified function is performed, for
instance, when solving a system of linear
equations.

Component
routine

An elementary function is performed, for
instance, for triangular factoring of a coefficient
matrix. Several component routines are grouped
to make a standard routine.

2.2 CLASSIFICATION CODES

Each of SSL II general subroutines has the eleven
character classification codes according to the
conventions in Fig. 2.1.

2.3 SUBROUTINE NAMES

Each of SSL II subroutines has the inherent subroutine
name according to the subroutine type on following
conventions.

General subroutine names
Names begin with S or D depending on the working
precision, as shown in Fig. 2.2.

Slave subroutine names
• For subroutine subprograms or real function

subprograms
Names begin with the working precision identifier
which is same as in general subroutines followed by a
letter ‘U’ as shown in Fig. 2.3.

• For complex function subprograms
Names begin with letter ‘Z’. The other positions are
similar to those shown above. See Fig. 2.4.

Auxiliary subroutines
Auxiliary subroutines are appropriately named according
to their functions, see Appendix A for details.

2.4 PARAMETERS

Transmission of data between SSL II subroutines and
user programs is performed only through parameters.
This section describes the types of SSL II parameters,
their order, and precautions.

Usage of parameters
• Input/output parameters

These parameters are used for supplying values to the
subroutine on input, and the resultant values are
returned in the same areas on output.

• Input parameters

These parameters are used for only supplying values to
the subroutine on input. The values are unchanged on
output. If values are changed by subroutine, it is
described as “The contents of

GENERAL DESCRIPTION

 20

[S]…Single precision(normally S is omitted)
 D …Double precision

1 alphabetic letter:
This letter identifies the working precision.

This alphanumeric string of up to 5 characters
identifies the function of the subroutines.
The last character, if numeric, groups subroutines
with related functions.

Fig. 2.2 General subroutine names

U

An alphanumeric string of up to 4 characters:
Corresponds to that of general subroutine.

Fixed
1 alphabetic letter:
Identifies the working precision.

Fig. 2.3 Subroutine names of slave subroutines (1)

Z U

An alphanumeric string
of up to 3 characters.Fixed

1 alphabetic letter:
Identifies the working precision.

Fixed
Fig. 2.4 Subroutine names of slave subroutines (2)

parameter are altered on output” in parameter description.

• Output parameters

The resultant values are returned on output.

• Work parameters

These are used as work areas. In general, the contents
of these parameters are meaningless on output.

 In addition, parameters can be also classified as
follows:

• Main parameters

These parameters contain the data which is used as the
object of numerical calculations (for example, the
elements of matrices).

• Control parameters

These parameters contain data which is not used as the
object of numerical calculations (for example, the order
of matrices, decision values, etc.).

Order of parameter
Generally, parameters are ordered according to their kind
as shown in Fig. 2.5.

2 digits: Minor classification and appending
classification

3 digits: Subroutine number
Serial number assigned under
the same classification

1…Standard routine
2…Component routine

Alphabetic letter + 1 digit: Major classification

1 digit: Middle classification

A Linear algebra
B Eigenvalues and eigenvectors
C Non-linear equations
D Extrema
E Interpolation and approximation
F Transforms
G Numerical differentiation and quadrature
H Differential equations
I Special functions
J Pseudo random numbers

1 digit: Subroutine level

1 2 3 4 5 6 7 8 9 10 11

Fig. 2.1 Classification code layout

GENERAL RULES

21

Work parameters

Output parameters
Input parameters

Input/output parameters

ICON)(, , , , , , ,,

Note:
The unshaded blocks indicate main parameters: the shaded
blocks indicate control parameters. The ICON parameter
indicates the return conditions of processing.

Fig. 2.5 Parameter ordering

Some control parameters cannot conform to Fig. 2.5 (for
instance, adjustable dimension of array), therefore the
explanation of each subroutine gives the actual ordering.

Handling of parameters
• Type of parameter

Type of parameter conforms to the ‘implicit typing’
convention of FORTRAN except parameters that begin
with the letter ‘Z’. For instance, A is a 4 byte real
number (8 byte real number in double precision
subroutines) and IA is a standard-byte-length integer.
When complex data is handled with complex variables,
Z is the first letter of the parameter. ZA is an 8-byte
complex number (16-byte complex number in double
precision subroutines).

• External procedure name

When external procedure names are specified for
parameters, those names must be declared with an

EXTERNAL statement in the user program which calls
the SSL II subroutines.

• Status after execution

SSL II subroutines have a parameter named ICON
which indicates the return conditions of processing.
See Section 2.6.

2.5 DEFINITIONS

Matrix classifications
Matrices handled by SSL II are classified as shown in
Table 2.3.

Table 2.3 Matrix classification

Factors Classifications
Structure • Dense matrix

• Band matrix
Form • Symmetric matrix

• Unsymmetric matrix
Type • Real matrix

• Complex matrix
Character • Positive definite

• Non singular
• Singular

Portion names of matrix
In SSL II, the portion names of matrix are defined as
shown in Fig. 2.6. The portion names are usually used
for collective reference of matrix elements.
Where, the elements of the matrix are referred to as aij.

A=

(*) Sometimes called diagonal line

Upper band width h2
Lower band width h1

Upper band portion
{Upper band elements | aij ∈ A, i+h2 ≥ j ≥ i+1}
Lower band portion
{Upper band elements | aij ∈ A, j+h1 ≥ i ≥ j+1}

Upper triangular portion
{Upper triangular elements |aij ∈ A , j ≥ i+1}

Lower triangular portion
{Lower triangular elements | aij ∈ A, i ≥ j+1}

Second super-diagonal portion (*)
{Second super-diagonal elements | aij ∈ A, j=i+2}
(First) super-diagonal portion(*)
{(First) super-diagonal elements | aij ∈ A, j=i+1}
(Main) diagonal portion (*)
{(Main) diagonal elements | aij ∈ A, i=j}
(First)sub-diagonal portion
{(First) sub-diagonal elements | aij ∈ A, i=j+1}
Second sub-diagonal portion(*)
{Second sub-diagonal elements | aij ∈ A, i=j+2}

Fig. 2.6 Portion names of matrix

GENERAL DESCRIPTION

 22

Matrix definition and naming
Matrices handled by SSL II have special names
depending on their construction.

• Upper triangular matrix

The upper triangular matrix is defined as

ijaij <= ,0 (2.1)

 Namely, the elements of the lower triangular portion are
zero.

• Unit upper triangular matrix

The unit upper triangular matrix is defined as

<
=

=
ij
ij

aij ,0
,1

 (2.2)

 Namely, this matrix is the same as an upper triangular
matrix whose diagonal elements are all 1.

• Lower triangular matrix

The lower triangular matrix is defined as

ijaij >= ,0 (2.3)

 Namely, the elements of the upper triangular portion are
zero.

• Unit lower triangular matrix

The unit lower triangular matrix is defined as

>
=

=
ij
ij

aij ,0
,1

 (2.4)

 This matrix is the same as a lower triangular matrix
whose diagonal elements are all 1.

• Diagonal matrix

The diagonal matrix is defined as

ijaij ≠= ,0 (2.5)

 Namely, all of the elements of the lower and the upper
triangular portions are zero.

• Tridiagonal matrix

The tridiagonal matrix is defined as

+>
−<

=
1,0
1,0

ij
ij

aij (2.6)

 Namely, all of the elements except for ones of the upper
and lower sub-diagonal and main-diagonal portions are
zero.

• Block diagonal matrix
Considering an ji nn × matrix Aij (i.e. a block) within

an nn× matrix A, where n n ni j=∑ =∑ , then the block
diagonal matrix is defined as

jiij ≠= ,0A (2.7)

 In other words, all the blocks are on the diagonal line so
that the block diagonal matrix is represented by a direct
sum of those blocks.

• Hessenberg matrix

The Hessenberg matrix is defined as

1,0 −<= ijaij (2.8)

 Namely, all of the elements except for ones of the upper
triangular, the main-diagonal and the lower sub-diagonal
portions are zero.

• Symmetric band matrix

The symmetric band matrix whose both upper and
lower band widths are h is defined as

≤−

>−
=

hjia

hji
a

ji
ij ,

,0
 (2.9)

 Namely, all of the elements except for ones of the
diagonal, upper and lower band portions are zero.

• Band matrix

The band matrix whose upper band width is h1, and
lower band width is h2 is defined as

+>
+>

=
1

2

,0
,0

hji
hij

aij (2.10)

 Namely, all of the elements except for ones of the
diagonal, the upper and lower band portions are zero.

• Upper band matrix

The upper band matrix whose upper band width is h is
defined as

<

+>
=

ij

hij
aij ,0

,0
 (2.11)

 Namely, all of the elements except for ones of the
diagonal and upper band portions are zero.

• Unit upper band matrix
The unit upper band matrix whose upper band width is h
is defined as

GENERAL RULES

23

<
+>

=
=

ij
hij

ij
aij

,0
,0
,1

 (2.12)

 This matrix is the same as an upper band matrix whose
diagonal elements are all 1.

• Lower band matrix

The lower band matrix whose lower band width is h is
defined as

>
−<

=
ij

hij
aij ,0

,0
 (2.13)

 Namely, all of the elements except for ones of the
diagonal and lower band portions are zero.

• Unit lower ban matrix

The unit lower band matrix whose lower band width is
h is defined as

>
−<

=
=

ij
hij

ij
aij

,0
,0
,1

 (2.14)

 Namely, this matrix is the same as a lower band matrix
whose diagonal elements are all 1.

• Hermitian matrix

The hermitian matrix is defined as

*
ijji aa = (2.15)

 Namely, this matrix equals its conjugate transpose
matrix.

2.6 RETURN CONDITIONS OF PRO-
CESSING

The SSL II subroutines have a parameter called ICON
which indicates the conditions of processing. The
subroutine returns control with a condition code set in
ICON. The values of the condition code should be tested
before using the results.

Condition codes
The code value is a positive integer values that ranges
from 0 to 30000. The code values are classified as
shown in Table 2.4.
 Each subroutine has appropriate codes that are
described in the condition code table given in the section
where each subroutine description is.

Table 2.4 Condition codes

Code Meaning Integrity of the
result

Status

0 Processing has
ended normally.

1 ~
9999

Processing has
ended normally.
Auxiliary
information was
given.

The results
are correct.

Normal

10000
~
19999

Restrictions were
employed during
execution in order
to complete the
processing.

The results
are correct
on the
restrictions.

Caution

20000
~
29999

Processing was
aborted due to
abnormal
conditions which
had occurred
during processing.

The results
are not
correct.

Abnorma
l

30000 Processing was
aborted due to
invalid input
parameters.

Comments about condition codes
• Processing control by code testing

The condition code had better be tested in the user’s
program immediately after the statement which calls
the SSL II subroutine. Then, the processing should be
controlled depending on whether the results are correct
or not.

 :
CALL LSX (A, N, B, EPSZ, ISW, ICON)
IF (ICON. GE. 20000) STOP
 :

• Output of condition messages

The SSL II subroutines have a function to output
condition messages. Normally, these messages are not
output. When the user uses message output control
routine MGSET (SSL II auxiliary subroutine) messages
are automatically output.

2.7 ARRAY

SSL II uses arrays to process vectors or matrices. This
section describes the arrays used as parameters and their
handling.
 Adjustable arrays, whose sizes are declared in an array
declaration in the program, are used by SSL II. The user
may prepare arrays the size of which are determined
corresponding to the size of the data processed in the user
program.

One-dimensional arrays
When the user stores n (= N) - dimensional vector b
(=(b1,, bn)T) in a one-dimensional array B of size N,

GENERAL DESCRIPTION

 24

as shown below, various ways are possible. In examples
below, an attention should be paid to the parameter B
used in calling the subroutine LAX, which solves systems
of linear equations (n ≤ 10 is assumed).
• A general example

The following describes the case in which a constant
vector b is stored in a one-dimensional array B of size
10, as B(1) = b1, B(2) = b2, ...

DIMENSION B(10)
 :
CALL LAX (... , N, B, ...)
 :

• An application example

The following describes the case in which a constant
vector b is stored in the I-th column of a two-
dimensional array C (10, 10), such that C (1, I) = b1, C
(2, I) = b2,

DIMENSION C(10, 10)
 :
CALL LAX (... , N, C(1, I), ...)
 :

 As shown in the above example, in parameter B, if a
leading element (leading address) of one array in which
the data is stored consecutively is specified it is not
constrained to a one-dimensional array of size N.
Therefore, if vector b is stored in I-th row of array C as
C(I, 1) = b1 C (I, 2) = b2... it is impossible to call as
follows.

 :
CALL LAX (... , N, C(I, 1), ...)
 :

Two-dimensional arrays
Consider an n × n real matrix A (=(aij)) being stored in a
two-dimensional array A (K, N). Note that in handling
two dimensional arrays in SSL II subroutines, adjustable
dimension K is required as an input parameter in addition
to the array A and the order N. The adjustable dimension
used by SSL II means the number of rows K of two-
dimensional array A declared in the user program. An
example using a two-dimensional array along with an
adjustable dimension K is shown next. The key points of
the example are parameters A and K of the subroutine
LAX. (Here n ≤ 10).
 The following describes the case in which coefficient
matrix is stored in a two-dimensional array A (10, 10) as
shown in Fig. 2.7, as A (1, 1) = a11, A (2, 1) = a21,, A
(1, 2) = a 12

DIMENSION A (10, 10)
 :
K = 10
CALL LAX (A, K, N, ...)
 :

 In this case, regardless of the value of N, the adjustable
dimension must be given as K = 10.

The n × n coefficient matrix is
stored in this region which
becomes the object of the
processing of the SSL II
subroutine.

This is declared in the user
program as a two-dimensional
array A (10,10).

10
Adjustable
dimension

N

Fig. 2.7 Example of a two-dimensional adjustable array

 When equations of different order are to be solved, if
the largest order is NMAX, then a two-dimensional array
A (NMAX, NMAX) should be declared in the user
program. That array can then be used to solve all of the
sets of equations. In this case, the value of NMAX must
always be specified as the adjustable dimension.

2.8 DATA STORAGE

This section describes data storage modes for matrices or
vectors.

Matrices
The methods for storing matrices depend on structure and
form of the matrices. All elements of unsymmetric dense
matrices, called general matrices, are stored in two-
dimensional arrays. For all other matrices, only
necessary elements can be stored in a one-dimensional
array. The former storage method is called “general
mode,” the latter “compressed mode.” Detailed
definition of storage modes are as follows.

• General mode

General mode is shown in Fig. 2.8.

• Compressed mode for symmetric matrix

As shown in Fig. 2.9, the elements of the diagonal and
the lower triangular portions of the symmetric dense
matrix A are stored row by row in the one-dimensional
array A.

• Compressed mode for Hermitian matrix

The elements of the diagonal and the lower triangular
portions of the Hermitian matrix A are stored in a two-
dimensional array A as shown in Fig. 2.10.

GENERAL RULES

25

A

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

=

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

NOTE: · Correspondence aij → A (I,J)
· K is the adjustable dimension

K

5

L

Two-demensional array A(K,L)

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

Fig. 2.8 Storage of unsymmetric dense matrices

A

a

a i b a

a i b a i b a

a i b a i b a i b a

a i b a i b a i b a i b a

=

+ ⋅

+ ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅

11

21 21 22

31 31 32 32 33

41 41 42 42 43 43 44

51 51 52 52 53 53 54 54 55

Note: Correspondence aij → A(I,J)(i ≥ j)
bij → A(J,I)(i > j)

Two-demensional array A(K,L)

L

K

5

a11 b21 b31 b41 b51

a21 a22 b32 b42 b52

a31 a32 a33 b43 b53

a41 a42 a43 a44 b54

a51 a52 a53 a54 a55

Fig. 2.10 Storage of Hermitian matrices

()

()

matrix oforder : Where
2

1

is NT of valueThe

2

1

enceCorrespond:Note

n

nn
NT

J
II

Aaij

+
=

+
−

→

A

a

a a

a a a

a a a a

=

11

21 22

31 32 33

41 42 43 44

One-dimensinal array A
of size NT

a44

a43

a42

a41

a33

a32

a31

a22

a21

a11

NT

Fig. 2.9 Storage of symmetric dense matrices

• Compressed mode for symmetric band matrix
The elements of the diagonal and the lower band
portions of a symmetric band matrix A are stored row
by row in a one-dimensional array A as shown in Fig.
2.11.

• Compressed mode for band matrix
The elements of the diagonal and the upper and lower
band portions of an unsymmetric band matrix A are
stored row by row in a one-dimensional array A as
shown in Fig. 2.12.

A

a

a a

a a a

a a a

a a a

=

11

21 22

31 32 33

42 43 44

53 54 550

a55

a44

a54

a43

a42

a53

a33

a32

a31

a22

a21

a11

()()
()()

() ()

widthband

matrixoforder ere Wh

211NT

is NT of valueThe

21,1For

21,1For

enceCorrespond:Note

=

=

+−+=

+−+→+>

+−→≤

h

n

hhhn

hhJhIAahj

JIIAah+i

ij

ij

One dimensional
array A of size NT

NT

Fig. 2.11 Storage of symmetric band matrices

Vectors
Vector is stored as shown in Fig. 2.13.

GENERAL DESCRIPTION

 26

Note:
· NT =nh

h =min(h1+h2+1,n)

where h2: Upper band width
h1: Lower band width
n : Order of metrix

· * Indicates an arbitrary value a54

a55

a45

a53

a43

a44

a34

a42

a32

a31

a33

a11

a21

a22

a23

a12

One dimensinal array A of size NT

NT

h

h

h

h

*

*

*
*A

a a
a a a
a a a a

a a a a
a a a

=

11 12

21 22 23

31 32 33 34

42 43 44 45

53 54 55

0

0

h

Fig. 2.12 Storage of unsymmetric band matrices

=

nx

x
x
x

3

2

1

x

xn

x3

x2

x1

n

One dimensional array A of size n

Fig. 2.13 Storage of vectors

Coefficients of polynomial equations
The general form of polynomial equation is shown in
(2.16)

0.... 1
1

10 =++++ −
−

nn
nn axaxaxa (2.16)

 Regarding the coefficients as the elements of a vector,
the vector is stored as shown in Fig. 2.14.

Coefficients of approximating polynomials
The general form of approximating polynomial is shown
in (2.17).

() n
nn xcxcxccxP ++++=2

210 (2.17)

 Regarding the coefficients as the elements of a vector,
the vector is stored as shown in Fig. 2.15.

One dimensional array A of size n+1

=

na

a
a
a

2

1

0

a

an

a2

a1

a0

n + 1

Fig. 2.14 Storage of the coefficients of polynomial equations

One dimensional array A of size n+1

=

nc

c
c
c

2

1

0

c

cn

c2

c1

c0

n + 1

Fig. 2.15 Storage of the coefficients of approximating polynomials

GENERAL RULES

27

2.9 UNIT ROUND OFF

SSL II subroutines frequently use the unit round off.
The unit round off is a basic concept in error analysis

for floating point arithmetic.

Definition
The unit round off of floating-point arithmetic are

defined as follows:

u = M1-L / 2, for (correctly) rounded arithmetic
u = M1-L, for chopped arithmetic,

where M is the base for a floating-point number system,

and L is the number of digits used to hold the mantissa.

In SSL II, the unit round off is used for convergence

criterion or testing loss of significant figures.
Error analysis for floating point arithmetic is covered in

the following references:

[1] Yamashita, S.

On the Error Estimation in Floating-point
Arithmetic
Information Processing in Japan Vol. 15, PP.935-
939, 1974

[2] Wilkinson, J.H.
Rounding Errors in Algebraic Process
Her Britannic Majesty’s Stationery Office,
London 1963

2.10 ACCUMULATION OF SUMS

Accumulation of sums is often used in numerical
calculations. For instance, it occurs in solving a system
of linear equations as sum of products, and in
calculations of various vector operations.
 On the theory of error analysis for floating point
arithmetic, in order to preserve the significant figures
during the operation, it is important that accumulation of
sums must be computed as exactly as possible.
 As a rule, in SSL II the higher precision accumulation is
used to reduce the effect of round off errors.

2.11 Computer Constants

This manual uses symbols to express computer hardware
constants. The symbols are defined as follows:
• flmax: Positive maximum value for the floating-point

number system
(See AFMAX in Appendix A.)

• flmin: Positive minimum value for the floating-point
number system
(See AFMIN in Appendix A.)

• tmax: Upper limit of an argument for a trigonometric
function (sin and cos)

Upper limit of argument Application
Single
precision

8.23 x 105 FACOM M series
FACOM S series

Double
precision

3.53 × 1015 SX/G 100/200 series
FM series

28

CHAPTER 3
LINEAR ALGEBRA

3.1 OUTLINE

Operations of linear algebra are classified as in Table 3.1
depending on the structure of the coefficient matrix and
related problems.

Table 3.1 Classification of operation for linear equations

Structures Problem Item
Conversion of matrix storage mode 3.2

Matrix manipulation 3.3
Systems of linear equations
Matrix inversion

3.4
Dense
matrix

Least squares solution 3.5
Matrix manipulation 3.3 Band

matrix Systems of linear
equations

Direct method 3.4

 This classification allows selecting the most suitable
solution method according to the structure and form of
the matrices when solving system of linear equations.
The method of storing band matrix elements in memory
is especially important. It is therefore important when
performing linear equations to first determine the
structure of the matrices.

3.2 MATRIX STORAGE MODE
CONVERSION

In mode conversion the storage mode of a matrix is
converted as follows:

Real general matrix

Real symmetric matrix Real symmetric band matrix

 The method to store the elements of a matrix depends
on the structure and form of the matrix.
For example, when storing the elements of a real
symmetric matrix, only elements on the diagonal and
lower triangle portion are stored. (See Section 2.8).
 Therefore, to solve systems of linear equations, SSL II
provides various subroutines to handle different matrices.
The mode conversion is required when the subroutine
assumes a particular storage mode. The mode conversion
subroutines shown in Table 3.2 are provided for this
purpose.

3.3 MATRIX MANIPULATION

In manipulating matrices, the following basic
manipulations are performed.

Table 3.2 Mode conversion subroutines

After
conversion

Before
conversion

General mode
Compressed mode

for symmetric
matrices

Compressed mode
for symmetric
band matrices

General mode CGSM
(A11-10-0101)

CGSBM
 (A11-40-0101)

Compressed mode for
symmetric matrices

CSGM
(A11-10-201)

 CSSBM
(A11-50-0101)

Compressed mode for
symmetric band matrices

CSBGM
 (A11-40-0201)

CSBSM
 (A11-50-0201)

LINEAR ALGEBRA

29

Table 3.3 Subroutines for matrix manipulation

A

B or x Real general
matrix

Real symmetric
matrix

Vector

Real general matrix Addition AGGM
(A21-11-0101)

 Subtraction SGGM
 (A21-11-0301)

 Multiplication MGGM
 (A21-11-0301)

MGSM
 (A21-11-0401)

MAV
(A21-13-0101)

Complex general matrix Multiplication MCV
 (A21-15-0101)

Real symmetric matrix Addition ASSM
 (A21-12-0101)

 Subtraction SSSM
 (A21-12-0201)

 Multiplication MSGM
 (A21-12-0401)

MSSM
 (A21-12-0301)

MSV
 (A21-14-0101)

Real general band matrix Multiplication MBV
 (A51-11-0101)

Real symmetric band matrix Multiplication MSBV
(A51-14-0101)

• Addition/Subtraction of two matrices A ± B
• Multiplication of a matrix by a vector Ax
• Multiplication of two matrices AB

SSL II provides the subroutines for matrix manipulation,
as listed in Table 3.3.

Comments on use

These subroutines for multiplication of matrix by

vector are designed to obtain the residual vector as well,
so that the subroutines can be used for iterative methods
for linear equations.

3.4 LINEAR EQUATIONS AND
MATRIX INVERSION (DIRECT METHOD)

This section describes the subroutines that is used to
solve the following problems.
• Solve systems of linear equations

Ax = b

A is an n × n matrix, x and b are n-dimensional
vectors.

• Obtain the inverse of a matrix A.
• Obtain the determinant of a matrix A.

In order to solve the above problems, SSL II provides

the following basic subroutines (here we call them
component subroutines) for each matrix structure.

(a) Numeric decomposition of a coefficient matrix
(b) Solving based on the decomposed coefficient matrix
(c) Iterative refinement of the initial solution
(d) Matrix inversion based on the decomposed matrix

 Combinations of the subroutines ensure that systems of
linear equations, inverse matrices, and the determinants
can be obtained.

• Linear equations

The solution of the equations can be obtained by
calling the component routines consecutively as
follows:

 :
CALL Component routine from (a)
CALL Component routine from (b)
 :

• Matrix inversion

The inverse can be obtained by calling the above
components routines serially as follows:

 :
CALL Component routine from (a)
CALL Component routine from (b)
 :

The inverse of band matrices generally result in dense
matrices so that to obtain such the inverse is not
beneficial. That is why those component routines for
the inverse are not prepared in SSL II.

GENERAL DESCRIPTION

30

• Determinants
There is no component routine which computes the
values of determinant. However, the values can be
obtained from the elements resulting from
decomposion (a).

 Though any problem can be solved by properly
combining these component routines, SSL II also has
routines, called standard routines, in which component
routines are called internally. It is recommended that the
user calls these standard routines.
 Table 3.4 lists the standard routines and component
routines.

Comments on uses
• Iterative refinement of a solution

In order to refine the accuracy of solution obtained by
standard routines, component routines (c) should be
successively called regarding the solution as the initial
approximation. In addition, the component routine (c)
serves to estimate the accuracy of the initial
approximation.

• Matrix inversion

Usually, it is not advisable to invert a matrix when
solving a system of linear equations.

Ax = b (3.1)

 That is, in solving equations (3.1), the solution should
not be obtained by calculating the inverse A-1 and then
multiplying b by A-1 from the left side as shown in (3.2).

x = A-1 b (3.2)

 Instead, it is advisable to compute the LU-
decomposition of A and then perform the operations
(forward and backward substitutions) shown in (3.3).

yUx
bLy

=
=

 (3.3)

 Higher operating speed and accuracy can be attained
by using method (3.3). The approximate number of
multiplications involved in the two methods (3.2) and
(3.3) are compared in (3.4).

3(3.3)For

(3.2)For
3

23

/n

nn +
 (3.4)

Therefore, matrix inversion should only be performed
when absolutely necessary.

• Equations with identical coefficient matrices

When solving a number of systems of linear equations
as in (3.5) where the coefficient matrices are the
identical and the constant vectors are the different,

=

=
=

mm bAx

bAx
bAx

:
22

11

 (3.5)

 it is not advisable to decompose the coefficient A for
each equation. After decomposing A when solving the
first equation, only the forward and backward
substitution shown in (3.3) should be performed for
solving the other equations. In standard routines, a
parameter ISW is provided for the user to control
whether or not the equations is the first one to solve with
the coefficient matrix.

Notes and internal processing
When using subroutines, the following should be noted
from the viewpoint of internal processing.

• Crout’s method, modified Cholesky’s method

In SSL II, the Crout’s method is used for decomposing a
general matrix. Generally the Gaussian elimination and
the Crout’s method are known for decomposing (as in
(3.6)) general matrices.

A = LU (3.6)

 where: L is a lower triangular matrix and U is an upper
triangular matrix.

 The two methods require the different calculation order,
that is, the former is that intermediate values are
calculated during decomposition and all elements are
available only after decomposition. The latter is that
each element is available during decomposition.
Numerically the latter involves inner products for two
vecters, so if that calculations can be performed
precisely, the final decomposed matrices are more
accurate than the former.
 Also, the data reference order in the Crout’s method is
more localized during the decomposition process than in
the Gaussian method. Therefore, in SSL II, the Crout’s
method is used, and the inner products are carried out
minimizing the effect of rounding errors.
 On the other hand, the modified Cholesky method is
used for positive-definite symmetric matrices, that is, the
decomposition shown in (3.7) is done.

LINEAR ALGEBRA

31

Table 3.4 Standard and component routines

 Standard routines Component routines
Problem Basic

functions
Types
of matrix

Systems of
linear equations (a) (b) (c) (d)

Real general matrix LAX
(A22-11-0101)

ALU
(A22-11-0202)

LUX
(A22-11-0302)

LAXR
(A32-11-0401)

LUIV
(A22-11-0602)

Complex general
matrix

LCX
(A22-15-0101)

CLU
(A22-15-0202)

CLUX
(A22-15-0302)

LCXR
(A22-15-0401)

CLUIV
(A22-15-0602)

Real symmetric
matrix

LSIX
(A22-21-0101)

SMDM
(A22-21-0202)

MDMX
(A22-21-0302)

LSIXR
(A22-21-0401)

Real positive-
definite symmetric
matrix

LSX
(A22-51-0101)

SLDL
(A22-51-0202)

LDLX
(A22-51-0302)

LSXR
(A22-51-0401)

LDIV
(A22-51-0702)

Real general band
matrix

Real tridiagonal
matrix

LBX1
(A52-11-0101)

LTX
(A52 - 11- 0501)

BLU1
(A52-11-0202)

BLUX1
(A52-11-0302)

LBX1R
(A52-11-0401)

Real symmetric
band matrix

LSBIX
(A52-21-0101)

SBMDM
(A52-21-0202)

BMDMX
(A52-21-0302)

Real positive-
definite symmetric
band matrix

Positive - definite
symmetric
tridiagonal matrix

LSBX
(A52-31-0101)

LSTX

(A52-31-0501)

SBDL
(A52-31-0202)

BDLX
(A52-31-0302)

LSBXR
(A52-31-0401)

A = LDLT (3.7)

 where: L is a lower triangular matrix and D is a
diagonal matrix.

Matrices are decomposed as shown in Table 3.5.

Table 3.5 Decomposed matrices

Kinds of matrices Contents of decomposed matrices
General matrices PA = LU

L: Lower triangular matrix
U: Unit upper triangular matrix
P is a permutation matrix.

Positive-definite
symmetric
matrices

A = LDLT
L: Unit lower triangular matrix
D: Diagonal matrix
To minimize calculation, the
diagonal matrix is given as D-1

• Pivoting and scaling

Let us take a look at decomposition of the non-
singular matrix given by (3.6).

A =

0 0 10
2 0 0 0
. .
. .

 (3.8)

 In this state, LU decomposition is impossible. And also
in the case of (3.9)

A =

0 0001 10
10 10

. .
. .

 (3.9)

 Decomposing by floating point arithmetic with the only
three working digits (in decimal) will cause unstable

solutions. These unfavorable conditions can frequently
occur when the condition of a matrix is not proper. This
can be avoided by pivoting, which selects the element
with the maximum absolute value for the pivot.
 In the case of (3.9), problems can be avoided by
exchanging the first row with the second row.
 In order to perform pivoting, the method used to select
the maximum absolute value must be unique. By
multiplying all of the elements of a row by a large enough
constant, any absolute value of non-zero element in the
row can be made larger than those of elements in the
other rows.
 Therefore, it is just as important to equilibrate the rows
and columns as it is to validly determine a pivot element
of the maximum size in pivoting. SSL II uses partial
pivoting with row equilibration.
 The row equilibration is performed by scaling so that
the maximum absolute value of each row of the matrix
becomes 1. However, actually the values of the elements
are not changed in scaling; the scaling factor is used
when selecting the pivot.
 Since row exchanges are performed in pivoting, the
history data is stored as the transposition vector. The
matrix decomposition which accompanies this partial
pivoting can be expressed as;

PA = LU (3.10)

 Where P is the permutation matrix which performs row
exchanges.

GENERAL DESCRIPTION

32

• Transposition vectors
As mentioned above, row exchange with pivoting is
indicated by the permutation matrix P of (3.10) in SSL
II. This permutation matrix P is not stored directly, but
is handled as a transposition vector. In other words, in
the j-th stage (j = 1, ... , n) of decomposition, if the i-th
row (i ≥ j) is selected as the j-th pivotal row, the i-th
row and the j-th row of the matrix in the decomposition
process are exchanged and the j-th element of the
transposition vector is set to i.

• How to test the zero or relatively zero pivot

In the decomposition process, if the zero or relatively
zero pivot is detected, the matrix can be considered to
be singular. In such a case, proceeding the calculation
might fail to obtain the accurate result. In SSL II,
parameter EPSZ is used in such a case to determine
whether to continue or discontinue processing. In other
words, when EPSZ is set to 10-s and, if a loss of over s
significant digits occurred, the pivot might be
considered to be relatively zero.

• Iterative refinement of a solution

To solve a system of linear equations numerically
means to obtain only an approximate solution to:

Ax = b (3.11)

 SSL II provides a subroutine to refine the accuracy of
the obtained approximate solution.
 SSL II repeats the following calculations until a certain
convergence criterion is satisfied.

)()(ss Axbr −= (3.12)
)()(ss rAd = (3.13)

)()()1(sss dxx +=+ (3.14)

where s = 1, 2, ... and x(1) the initial solution obtained
from (3.11).
 The x(2) could become the exact solution of (3.11) if all
the computations from (3.12) through (3.14) were carried
out exactly, as can be seen by the following.

() () ()() () ()Ax A x d Ax r b2 1 1 1 1= + = + =

 Actually, however, rounding errors will be generated in
the computation of Eqs. (3.12), (3.13) and (3.14).
 If we assume that rounding errors occur only when the
correction d(s) is computed in Eq. (3.13), d(s) can be
regarded to be the exact solution of the following
equation

())()(ss rdEA =+ (3.15)

where E is an error matrix.

From Eqs. (3.12), (3.14) and (3.15), the following
relationships can be obtained.

()[] ()xxAEAIxx −+−=− −+)1(1)1(ss (3.16)

()[])1(1)1(
rEAAIr

ss −+
+−= (3.17)

 As can be seen from Eqs. (3.16) and (3.17), if the
following conditions are satisfied, x (s+1) and r (s+1)
converge to the solutions X and 0, respectively, as s→∞.

() () 1, 11 <+−+−
∞

−

∞

− EAAIAEAI

In other words, if the following condition is satisfied, an
refined solution can be obtained.

2/11 <⋅
∞

−
∞ AE (3.18)

 This method described above is called the iterative
refinement of a solution
 The SSL II repeats the computation until when the
solution can be refined by no more than one binary digit.
 This method will not work if the matrix A conditions are
poor.

∞
−1A may become large, so that no refined

solution will be obtained.

• Accuracy estimation for approximate solution

Suppose e(1) (= x(1) – x) is an error generated when the
approximate solution x(1) is computed to solve a linear
equations. The relative error is represented by

∞∞
)1()1(/ xe .

From the relationship between d(1) and e(1), and (3.12),
(3.15), we obtain Eq.(3.19).

() () ())1(11)1(1)1(eEAIAxbEAd
−−− +=−+= (3.19)

 If the iterative method satisfies the condition (3.18) and
converges,

∞
)1(d is assumed to be almost equal to

∞
)1(e . Consequently, a relative error for an

approximate solution can be estimated by
∞

)1(d /
∞

)1(x .

3.5 LEAST SQUARES SOLUTION

Here, the following problems are handled:
• Least squares solution
• Least squares minimal norm solution
• Generalized inverse
• Singular value decomposition
 SSL II provides the subroutines for the above functions
as listed in Table 3.6.

LINEAR ALGEBRA

33

Table 3.6 Subroutines for m × n matrices

 Kinds of matrix
Function

Real matrix

Least squares solution LAXL
(A25-11-0101)

Iterative refinement of the
least squares solution

LAXLR
(A25-11-0401)

Least squares minimal
norm solution

LAXLM
(A25-21-0101)

Generalized inverse GINV
(A25-31-0101)

Singular value
decomposition

ASVD1
(A25-31-0201)

• Least squares solution

The least squares solution means the solution x~ which
minimizes 2bAx − , where A is an m × n matrix (m ≥

n, rank (A) = n), x is an n-dimensional vector and b is
an m-dimensional vector.
 SSL II has two subroutines which perform the
following functions.
− Obtaining the least squares solution
− Iterative refinement of the least squares solution

• Least squares minimal norm solution

The least squares minimal norm solution means the
solution x+ which minimizes 2x within the set of x

where 2bAx − has been minimized, where A is an m

× n matrix, x is an n-dimensional vector and b is an m-
dimensional vector.

• Generalized inverse
When n × m matrix X satisfies the following equations
in (3.20) for a given m × n matrix A, it is called a
Moor-Penrose generalized inverse of the matrix A.

()
()

=

=

=
=

XAXA

AXAX

XXAX
AAXA

T

T (3.20)

 The generalized inverse always exists uniquely. The
generalized inverse X of a matrix A is denoted by A+
 SSL II calculates the generalized inverse as above.
 SSL II can handle any m × n matrices where:

− m is larger than n
− m is equal to n
− m is smaller than n

• Singular value decomposition

Singular value decomposition is obtained by
decomposing a real matrix A of m × n as shown in
(3.21).

 A = U0ΣΣΣΣ0V T (3.21)

 Here U0 and V are orthogonal matrices of m × m and n ×
n respectively, ΣΣΣΣ 0 is an m × n diagonal matrix where
ΣΣΣΣ 0=diag(σ i) and σ i ≥ 0. The σ i are called singular
values of a real matrix A. Suppose m ≥ n in real matrix A
with matrix m × n. Since ΣΣΣΣ 0 is an m × n diagonal matrix,
the first n columns of U0 are used for U0ΣΣΣΣ 0V T in (3.21).
That is, U0 may be considered as an n × n matrix. Let U
be this matrix, and let ΣΣΣΣ be an n × n matrix consisting of
matrix ΣΣΣΣ 0 without the zero part, (m-n) × n, of ΣΣΣΣ 0. When
using matrices U and ΣΣΣΣ , if m is far larger than n, the
storage space can be reduced. So matrices U and ΣΣΣΣ are
more convenient than U0 and ΣΣΣΣ 0 in practice. The same
discussion holds when m < n, in which case only the first
m raws of V T are used and therefore V T can be
considered as m × n matrix.
 Considering above ideas SSL II performs the following
singular value decomposition.

A = UΣΣΣΣ V T (3.22)

where: l = min (m, n) is assumed and U is an m × l matrix,
ΣΣΣΣ is an l × l diagonal matrix where
ΣΣΣΣ = diag (σ i), and σ i ≥ 0, and V is an n × l matrix.
When l = n (m ≥ n),

nIVVVVUU === TTT

when l = m (m < n),

mIVVUUUU === TTT

Matrices U, V and ΣΣΣΣ which are obtained by computing
singular values of matrix A are used and described as
follows;
 (For details, refer to reference [86],)
– Singular values σ i, i = 1, 2, ... , l are the positive
square roots of the largest l eigenvalues of matrices ATA
and AAT. The i-th column of matrix V is the eigenvector
of matrix ATA corresponding to eigenvalue σ i

2. The i-th
column of matrix U is the eigenvector of matrix AAT
corresponding to eigenvalue σ i

2. This can be seen by
multiplying AT = VΣΣΣΣ U T from the right and left sides of
(3.22) and apply U TU = V TV = Il as follows:

 ATAV = VΣΣΣΣ 2 (3.23)
 AATU = UΣΣΣΣ 2 (3.24)

– Condition number of matrix A
If σ i > 0, i = 1, 2, ..., l, then condition number of matrix
A is given as follows;

 cond(A) = σ 1 / σ l (3.25)

– Rank of matrix A
If σ r > 0, and σ r+1 = ... = σ l = 0, then the rank of A is
given as follows:

GENERAL DESCRIPTION

34

rank (A) = r (3.26)

– Basic solution of homogeneous linear equations Ax = 0
and AT y = 0
The set of non-trivial linearly independent solutions of
Ax = 0 and AT y = 0 is the set of those columns of
matrices V and U, respectively, corresponding to
singular values σ i = 0. This can be easily seen from
equations AV = UΣΣΣΣ and ATU = VΣΣΣΣ .

– Least squares minimal norm solution of Ax = b.
 The solution x is represented by using singular value
decomposition of A ;

 x = VΣΣΣΣ +U Tb (3.27)

where diagonal matrix ΣΣΣΣ + is defined as follows:

),...,,diag(21
++++ σσσ=Σ l (3.28)

=σ
>σσ

=σ+

0 , 0
0 , /1

i

ii
i (3.29)

For details, refer to “Method” of subroutine LAXLM.

– Generalized inverse of a matrix

Generalized inverse A+ of A is given after decomposing
A into singular value as follows;

 A+ = VΣΣΣΣ +U T (3.30)

Comments on uses
– Systems of linear equations and the rank of coefficient

matrices
Solving the systems of linear equations (Ax = b) with
an m × n matrix as coefficient, the least squares
minimal norm solution can be obtained regardless of
the number of columns or rows, or ranks of coefficient
matrix A. That is, the least squares minimal norm
solution can be applied to any type of equations.
However, this solution requires a great amount of
calculation for each process. If the coefficient matrix is
rectangular and number of rows is larger than that of
columns and the rank is full (full rank, rank(A) = n),
you should use the subroutine for least squares solution
because of less calculation. In this case, the least
squares solution is logically as least squares minimal
norm solution.

• Least squares minimal norm solution and generalized

inverse
The solution of linear equations Ax = b with m × n
matrix A (m ≥ n or m < n, rank(A) ≠ 0) is not uniquely
obtained. However, the least squares minimal norm
solution always exists uniquely.
This solution can be calculated by x = A+ b after
generalized inverse A+ of coefficient matrix A is
obtained. This requires a great amount of calculation.
It is advisable to use the subroutine for the least

squares minimal norm solution, for the sake of high
speed processing. This subroutine provides parameter
ISW by which the user can specify to solve the
equations with the same coefficient matrix with less
calculation or to solve the single equation with
efficiency.

• Equations with the identical coefficient matrix

The least squares solution or least squares minimal
norm solution of a system of linear equations can be
obtained in the following procedures;
− Decomposition of coefficient matrices

For the least squares solution a matrix A is
decomposed into triangular matrices , and for the
least squares minimal norm solution A is
decomposed into singular values

− Obtaining solution
Backward substitution and multiplication of matrices
or vectors are performed for the least-squares
solution and the least squares minimal norm solution,
respectively.

 When obtaining the least squares solution or least
squares minimal norm solution of a number of systems
with the identical coefficient matrices, it is not advisable
to repeat the decomposition for each system.

mm bAx

bAx
bAx

=

=
=

:
22

11

 In this case, the matrix needs to be decomposed only
once for the first equations, and the decomposed form
can be used for subsequent systems , thereby reducing the
amount of calculation.
 SSL II provides parameter ISW which can controls
whether matrix A is decomposed or not.

• Obtaining singular values

The singular value will be obtained by singular value
decomposition as shown in (3.31):

A = UΣΣΣΣ V T (3.31)

 As shown in (3.31), matrices U and V are involved
along with matrix ΣΣΣΣ which consists of singular values.
Since singular value decomposition requires a great
amount of calculation, the user need not to calculate U
and V when they are no use. SSL II provides parameter
ISW to control whether matrices U or V should be
obtained. SSL II can handle any type of m × n matrices
(m > n, m = n, m < n).

35

CHAPTER 4
EIGENVALUES AND EIGENVECTORS

4.1 OUTLINE

Eigenvalue problems can be organized as show in Table
4.1 according to the type of problem (Ax =λx, Ax =λBx)
and the shape (dense, band), type (real, complex), and
form (symmetric, unsymmetric) of the matrices. The
reader should refer to the appropriate section specified
in the table.

Table 4.1 Organization of eigenvalue problem

Shape of

matrix

Type of
problem

Matrix type and form

Expla-
nation
section

Dense
matrix

Ax =λx Real matrix
Complex matrix
Real symmetric matrix
Hermitian matrix

4.2
4.3
4.4
4.5

 Ax =λBx Real symmetric matrix 4.7
Band
matrix

Ax =λx Real symmetric band
matrix

4.6

 Ax =λBx Real symmetric band
matrix

4.8

Note:
Refer to the section on a real symmetric matrix concerning a
real symmetric tridiagonal matrix.

4.2 EIGENVALUES AND
EIGENVECTORS OF A REAL MATRIX

 A standard sequenses of procedures are shown here
when SSL II routines are used to solve the eigenvalue
problems.
 SSL II provides the following:
− Standard routines by which the entire procedures for

obtaining eigenvalues and eigenvectors of real
matrices may be performed at one time.

− Component routines performing component functions.
 For details, see Table 4.2.
User problems are classified as follows :
• Obtaining all eigenvalues
• Obtaining all eigenvalues and corresponding

eigenvectors (or selected eigenvectors)
 In the first and second items that follow, the use of
component routines and standard routines is explained
by describing their procedures. Further comments on
processing are in the third item.
 When obtaining eigenvalues and eigenvectors of a real
matrix, the choice of calling the various component
routines or calling the standard routine is up to the user.
However, the standard routine, which is easier to use, is
recommended to be called.

Table 4.2 Subroutines used for standard eigenproblem of a real matrix

Level Function Subroutine name

Standard routines Eigenvalues and eigenvectors of a real matrix
EIG1

(B21-11-0101)

Balancing of a real matrix
BLNC

(B21-11-0202)

Reduction of a real matrix to a Hessenberg matrix
HES1

(B21-11-0302)

Obtaining the eigenvalues of a real Hessenberg
matrix

HSQR
(B21-11-0402)

Obtaining the eigenvectors of a real Hessenberg
matrix

HVEC
(B21-11-0502)

Back transformation to and normalization of the
eigenvectors of a real matrix

HBK1
(B21-11-0602)

Component
routines

Normalization of the eigenvectors of a real matrix
NRML

(B21-11-0702)

GENERAL DESCRIPTION

36

 In addition, obtaining the eigenvectors corresponding to
specified eigenvalues can only be done by calling a series
of component routines.

Obtaining all eigenvalues
In the following programs, all eigenvalues of the real
matrix A are obtained through the use of the component
routines shown in steps 1), 2), 3).

 :
CALL BLNC (A, K, N, DV, ICON) 1)
IF (ICON .EQ. 30000) GO TO 1000
CALL HES1 (A, K, N, PV, ICON) 2)
CALL HSQR (A, K, N, ER, EI, M,ICON)
 3)
IF (ICON .EQ. 20000) GO TO 2000
 :

1) A is balanced, if balancing is not necessary, this step

is omitted.
2) Using the Householder method, A is reduced to a

Hessenberg matrix.
3) By calculating the eigenvalues of the Hessenberg

matrix using the double QR method, the eigenvalues
of A are obtained.

Obtaining all eigenvalues and corresponding
eigenvectors (or selected eigenvectors)
All eigenvalues and corresponding eigenvectors of real
matrix A can be obtained by calling the component
routines shown in 1) to 5) or by calling the standard
routine shown in 6).

 :
CALL BLNC (A, K, N, DV, ICON) 1)
IF (ICON .EQ. 30000) GO TO 1000
CALL HES1 (A, K, N, PV, ICON) 2)
DO 10 I = 1, N
DO 10 J = 1, N
AW (J, I) = A (J, I)

10 CONTINUE
CALL HSQR (A, K, N, ER, EI, M,ICON)
 3)
IF (ICON .GE. 20000) GO TO 2000
DO 20 I = 1, M
IND (I) = 1

20 CONTINUE
CALL HVEC (AW, K, N, ER, EI, IND,

*M, EV, MK, VW, ICON) 4)
IF (ICON .GE. 20000) GO TO 3000
CALL HBK1 (EV, K, N, IND, M, A, PV,

* DV, ICON) 5)
 :

or standard routine.

 :
CALL EIG1 (A, K, N, MODE, ER, EI, EV, VW, ICON) 6)
IF(ICON .GE. 20000) GO TO 1000
 :

1), 2), and 3) were explained in the preceding example

“Obtaining all eigenvalues”. However since 3)
destroys parameter A, A must be stored in array AW
after 2) so that contents of A before 3) can be used in
4).

4) The eigenvectors corresponding to the eigenvalues
are obtained using the inverse iteration method. The
parameter IND is an index vector which indicates the
eigenvalues from which eigenvectors are to be
obtained. The user can select eigenvectors using this
parameter.

5) Back transformation of the eigenvectors obtained in
4) is performed. The transformed eigenvectors are
normalized at the same time.
 From the processing of 1) and 2), the eigenvectors of
4) are not the eigenvectors of real matrix A. The
eigenvectors of A are obtained by performing the
post-processing corresponding to 1) and 2).
 Each column (i.e., each eigenvector) of parameter
EV is normalized such that its Euclidean norm is 1.

6) When obtaining all eigenvalues and corresponding
eigenvectors of a real matrix, the functions of 1) to 5)
can be performed by calling this standard routine,
however, instead of using the inverse iteration method,
all eigenvectors are obtained at a time by multiplying
all the transformation matrices obtained successively.
This calculation will not work if even one eigenvalue
is missing.
However, if eigenvalues are close roots or multiple
roots, eigenvectors can be determined more
accurately using this method than the inverse iteration
method. The standard routine 6) does not always
perform the process in step 1). The parameter MODE
can be used to specify whether step 1) is performed or
not.

Balancing of matrices
Errors on calculating eigenvalues and eigenvectors can be
reduced by reducing the norm of real matrix A. Routine
1) is used for this purpose. By diagonal similarity
transformation the absolute sum of row i and that of
column i in A is made equal (this is called balancing).
 Symmetric matrices and Hermitian matrices are already
balanced. Since this method is especially effective when
magnitudes of elements in A differ greatly, balancing
should be done. Except in certain cases (i.e. when the
number of the order of A is small), balancing should not
take more than 10% of the total processing time.

4.3 EIGENVALUES AND
EIGENVECTORS OF A COMPLEX
MATRIX

An example will be used to show how the various SSL II
subroutines obtain eigenvalues and eigenvectors of a
complex matrix.

EIGENVALUES AND EIGENVECTORS

37

Table 4.3 Subroutines used for standard eigenproblem of a complex matrix

Level Function Subroutine name

Standard routine Eigenvalues and eigenvectors of a complex matrix CEIG2
(B21-15-0101)

 Balancing of a complex matrix CBLNC
(B21-15-0202)

 Reduction of a complex matrix to a complex
Hessenberg matrix

CHES2
(B21-15-0302)

Component
routine

Obtaining the eigenvalues of a complex Hessenberg
matrix

CHSQR
(B21-15-0402)

 Obtaining the eigenvectors of a complex Hessenberg
matrix

CHVEC
(B21-15-0502)

 Back transformation to the eigenvectors of a complex
matrix

CHBK2
(B21-15-0602)

 Normalization of the eigenvectors of a complex matrix CNRML
(B21-15-0702)

SSL II provides the following:
− Standard routines by which the entire procedures for

obtaining eigenvalues and eigenvectors of complex
matrices may be performed at one time.

− Component routines performing component functions
 For details, see Table 4.3
User problems are classified as follows:
• Obtaining all eigenvalues
• Obtaining all eigenvalues and corresponding

eigenvectors (or selected eigenvectors)
 In the first and second items that follow, the use of
component routines and standard routines are explained
by describing their procedures.
 When obtaining all eigenvalues and corresponding
eigenvectors whether the standard routines only or the
various corresponding component routines are used is up
to the user. However it is recommended to call the
former for its easy handling.

Obtaining all eigenvalues
In the following programs, all eigenvalues of the complex
matrix A are obtained through the use of the component
routines shown in steps 1), 2), and 3).

CALL CBLNC (ZA, K, N, DV, ICON) 1)
IF (ICON. EQ. 30000) GO TO 1000
CALL CHES2 (ZA, K, N, IP, ICON) 2)
CALL CHSQR (ZA, K, N, ZE, M, ICON) 3)
IF (ICON. GE. 15000) GO TO 2000

1) A is balanced. If balancing is not necessary, this step

is omitted.
2) Using the stabilized elementary transformation, A is

reduced to a complex Hessenberg matrix.
3) By calculating the eigenvalues of the complex

Hessenberg matrix using the complex QR method, the
eigenvalues of A are obtained.

Obtaining all eigenvalues and the corresponding
eigenvectors (or selected eigenvectors)
All eigenvalues and the corresponding eigenvectors of a
complex matrix A can be obtained by calling the
component routines shown in 1) to 6) or by calling the
standard routine shown in 7).

 :
CALL CBLNC (ZA, K, N, DV, ICON) 1)
IF (ICON. EQ. 30000) GO TO 1000
CALL CHES2 (ZA, K, N, IP, ICON) 2)
DO 10 J = 1, N
DO 10 I = 1, N
ZAW (I, J) = ZA (I, J)

10 CONTINUE
CALL CHSQR (ZA, K, N, ZE, M, ICON) 3)
IF (ICON. GE. 15000) GO TO 2000
DO 20 I = 1, M
IND (I) = 1

20 CONTINUE
CALL CHVEC (ZAW, K, N, ZE, IND,

* M, ZEV, ZW, ICON) 4)
IF (ICON. GE. 15000) GO TO 3000
CALL CHBK2 (ZEV, K, N, IND, M, ZP,

* IP, DV, ICON) 5)
CALL CNRML (ZEV, K, N, IND, M, 1,

* ICON) 6)

or standard routine

 :
CALL CEIG2 (ZA, K, N, MODE, ZE,

*ZEV, VW, IVW, ICON) 7)
IF (ICON. GE. 20000) GO TO 1000
 :

1), 2), and 3) were explained in the preceding example

“Obtaining all eigenvalues”. However since 3)
destroys parameter ZA, ZA must be stored in array
ZAW after 2) so that contents of ZA before 3) can be
used in 4) and the subsequent routines.

4) The eigenvectors of the complex Hessenberg matrix
corresponding to the eigenvalues are obtained using
the inverse iteration method. The parameter IND is
an index vector which indicates the eigenvalues from
which eigenvectors are to be obtained. The user can
select eigenvectors using this parameter.

5) Back transformation of the eigenvectors obtained in
4) is performed to obtain the eigenvectors of A.

6) The eigenvectors transformed in 5) are normalized.
When normalizing the eigenvectors (set norm to 1),
the user can select whether an Euclidean or infinity
norm should be used. Here the former is applied for
normalization.

7) When obtaining all eigenvalues and corresponding
eigenvectors of a complex matrix, the functions of 1)
through 6) can be performed by calling this standard

GENERAL DESCRIPTION

38

routine, however, instead of using the inverse iteration
method, all eigenvectors are obtained at one time by
multiplying all the obtained transformation matrices.
This calculation will not work if even one of the
eigenvalues is missing. The parameter MODE can be
used to specify whether the matrix is to be balanced
or not.

4.4 EIGENVALUES AND
EIGENVECTORS OF A REAL
SYMMETRIC MATRIX

An example will be used here to show how the various
SSL II subroutines are used to obtain eigenvalues and
eigenvectors of a real symmetric matrix.
 SSL II provides the followings:
− Standard routines by which the entire procedures for

obtaining eigenvalues and eigenvectors of a real
symmetric matrix may be performed at one time.

− Component routines decomposed by functions.
 For details, see Table 4.4.

The problems can be classified as follows:
• Obtaining all eigenvalues.

• Obtaining selected eigenvalues.
• Obtaining all eigenvalues and corresponding

eigenvectors.
• Obtaining selected eigenvalues and corresponding

eigenvectors.

 In the above order, the first four items below explain the
use of component routines and standard routines. The
last two items provide additional information.
 The choice of calling individual component routines or
of calling a single standard routine for obtaining all
eigenvalues and corresponding eigenvectors or selected
eigenvalues and corresponding eigenvectors is up to the
user. Normally, standard routines which are easier to use,
are selected. Component routines TEIG1 or TEIG2
should be used if the real symmetric matrix is originally
tridiagonal.
 SSL II handles the real symmetric matrix in symmetric
matrix compressed mode (For details, refer to Section
2.8).

Obtaining all eigenvalues
All eigenvalues of a real symmetric matrix A can be
obtained as shown below 1) and 2). A is handled in the
compressed storage mode, i.e., as a one-dimensional
array, for a real symmetric matrix.

 :
CALL TRID1 (A, N, D, SD, ICON) 1)
IF (ICON .EQ. 30000) GO TO 1000
CALL TRQL (D, SD, N, E, M, ICON) 2)
 :

1) A is reduced to a tridiagonal matrix using the

Householder method. Omit this step if A is already a
tridiagonal matrix.

2) Using the QL method, the eigenvalues of A i.e. all the
eigenvalues of the tridiagonal matrix are obtained.

Table 4.4 Subroutines used for standard eigenproblem of a real symmetric matrix

Level Function Subroutine name
 SEIG1

(B21-21-0101)
 SEIG2

(B21-21-0201)
 Reduction of a real symmetric matrix to a real

symmetric tridiagonal matrix
TRID1

(B21-21-0302)
 TRQL

(B21-21-0402)

Component
routines

 BSCT1
(B21-21-0502)

 TEIG1
(B21-21-0602)

 TEIG2
(B21-21-0702)

 Back transformation to the eigenvectors of a real
symmetric matrix

TRBK
(B21-21-0802)

Standard routine Eigenvalues and eigenvectors of a real symmetric
matrix

 Obtaining eigenvalues of a real symmetric tridiagonal
matrix

 Obtaining eigenvalues and eigenvectors of a real
symmetric tridiagonal matrix

EIGENVALUES AND EIGENVECTORS

39

Obtaining selected eigenvalues
Selected eigenvalues of real symmetric matrix A can be
obtained as shown:

 :
CALL TRID1 (A, N, D, SD, ICON) 1)
IF (ICON.EQ. 30000) GO TO 1000
CALL BSCT1 (D, SD, N, M, EPST, E,

* VW, ICON) 2)
 :

1) Same as step 1) in the first item “Obtaining all

eigenvalues”.
2) The eigenvalues of the tridiagonal matrix are obtained

using the Bisection method. Using the parameter M,
the user specifies the number of eigenvalues to be
determined by starting from the largest eigenvalue or
starting from the smallest eigenvalue.
 If n/4 or more eigenvalues are to be determined for
A, it is faster to use the procedure explained in item
“Obtaining all eigenvalues”.

Obtaining all eigenvalues and corresponding
eigenvectors
All eigenvalues and corresponding eigenvectors of real
symmetric matrix A can be obtained by using 1) to 3) or
by using step 4).

 :
CALL TRID1(A,N,D,SD,ICON) 1)
IF(ICON .EQ. 30000)GO TO 1000
CALL TEIG1(D,SD,N,E,EV,K,M,ICON) 2)
IF(ICON .GE. 20000)GO TO 2000
CALL TRBK(EV,K,N,M,A,ICON) 3)
 :

or standard routine

 :
CALL SEIG1(A,N,E,EV,K,M,VW,ICON) 4)
IF(ICON .GE. 20000)GO TO 1000
 :

1) Same as step 1) in item “Obtaining all eigenvalues”.
2) All eigenvalues and corresponding eigenvectors of the

real symmetric tridiagonal matrix can be obtained by
the QL method and by multiplying each of the
transformation matrices obtained by the QL method.
Each eigenvector is normalized such that the
Euclidean norm is 1.

3) From step 1), the eigenvectors in 2) are not those of
real symmetric matrix A. Therefore the back
transformation in 1) is performed to obtain the
eigenvectors of real symmetric matrix A.

4) All processing of 1) to 3) is performed.

Obtaining selected eigenvalues and corresponding
eigenvectors
Selected eigenvalues and corresponding eigenvectors of

a real symmetric matrix A can be obtained either by 1) to
3) or by 4).

 :
CALL TRID1 (A,N,D,SD,ICON) 1)
IF(ICON .EQ. 30000)GO TO 1000
CALL TEIG2(D,SD,N,M,E,EV,K,VW,ICON)
 2)
IF(ICON .GE. 20000)GO TO 2000
CALL TRBK(EV,K,N,M,A,ICON) 3)
 :

or standard routine

 :
CALL SEIG2(A,N,M,E,EV,K,VW,ICON) 4)
IF(ICON .GE. 20000)GO TO 1000
 :

1) Same as step 1) in item “Obtaining all eigenvalues”
2) Selected eigenvalues and corresponding eigenvectors

of a tridiagonal matrix are determined using the
Bisection method and the Inverse Iteration method. If
the eigenvalues are close, it is not always true that the
eigenvectors obtained using the Inverse Iteration are
orthogonal. Therefore in 2), the eigenvectors of close
eigenvalues are corrected to orthogonalize to those
which have already been obtained. The obtained
eigenvectors are normalized such that each Euclidean
norm is 1.

3) From processing 1), the eigenvectors of 2) are not
those of a real symmetric matrix A. Therefore the
eigenvectors of a real symmetric matrix A are
obtained by performing back transformation
corresponding to 1).

4) This subroutine process steps 1) to 3).

QL method
1) Comparison with the QR method

The QL method used in 2) of the first and third
paragraphs is basically the same as the QR method
used to determine the eigenvalues of a real matrix.
However, while the QR method determines
eigenvalues from the lower right corner of matrices,
the QL method determines eigenvalues from the
upper left. The choice of these methods is based on
how the data in the matrix is organized. The QR
method is ideal when the magnitude of the matrix
element is “graded decreasingly”, i.e., decreases from
the upper left to the lower right. If the magnitude of
the matrix element is graded increasingly, the QL
method is better. Normally, in tridiagonal matrix
output by TRID1 in 1) of the first paragraph and 2) of
the second paragraph, the magnitude of the element
tends to be graded increasingly. For this reason, the
QL method is used following TRID1 as in 2) of the
first and third paragraphs.

2) Implicit origin shift of the QL method
There are explicit and implicit QL methods. The
difference between the two methods is whether origin
shift for improving the rate of convergence when
determining eigenvalues is performed explicitly or

GENERAL DESCRIPTION

40

implicitly. (See subroutine TRQL.) The explicit QL
method is suitable when the magnitude of the matrix
element is graded increasingly.
 However, when the magnitude is graded decreasing,
the precision of the smaller eigenvalues is affected.
 For this reason, the implicit QL method is used in 2)
of the first and third paragraphs.

Direct sum of submatrices
When a matrix is a direct sum of submatrices, the
processing speed and precision in determining
eigenvalues and eigenvectors increase if eigenvalues and
eigenvectors are obtained from each of the submatrices.
In each 2) of the first four paragraphs, a tridiagonal
matrix is split into submatrices according to (4.1), and
then the eigenvalues and eigenvectors are determined.

),...,3,2()(1 nibbuc iii =+≤ − (4.1)

u is the unit round off; ci, bi are as shown in Fig. 4.1.

nn

n

i

iii

iii

i

bc
c

c
cbc

cbc
c

c
cb

0
0

0

0
0

0

1

1

11

1

2

21

+

+

−−

−

Note: Element ci is regarded to be zero according to (4.1).

Fig. 4.1 Example in which a tridiagonal matrix is the direct sum of
two submatrices

4.5 EIGENVALUES AND
EIGENVECTORS OF A HERMITIAN
MATRIX

The use of SSL II subroutines for obtaining eigenvalues
and eigenvectors is briefly explained using standard
examples.
 The sequence to obtain eigenvalues and eigenvectors of
a Hermitian matrix consists of the following four steps:
1) Reduction of a Hermitian matrix to real symmetric

tridiagonal matrix.
2) Obtaining eigenvalues of the real symmetric

tridiagonal matrix.
3) Obtaining eigenvectors of the real symmetric

tridiagonal matrix.
4) Back transformation of the eigenvectors of the real

symmetric tridiagonal matrix to form the eigenvectors
of the Hermitian matrix.

 SSL II provides component routines corresponding to
steps 1) through 4), and a standard routine to do all the
steps at one time. (See Table 4.5.)
 The problems of an Hermite matrix is classified into the
following categories:
• Obtaining all eigenvalues
• Obtaining selected eigenvalues
• Obtaining all eigenvalues and corresponding

eigenvectors
• Obtaining selected eigenvalues and corresponding

eigenvectors

 In the following four paragraphs, the use of component
routines and standard routine will be described for each
objective category.
 It is up to the user whether he uses the standard routine
or each component routine to obtain all or selected
eigenvalues and corresponding eigenvectors. Normally,
using the standard routine is recommended since it is
easier to use.
 SSL II handles the Hermitian matrix in the compressed

Table 4.5 Subroutines used for standard eigenproblems of a Hermitian matrix

Level Function Subroutine name

Standard routine Obtaining eigenvalues and eigenvectors of a
Hermitian matrix

HEIG2
(B21-25-0201)

 Reduction of a Hermitian matrix to a real symmetric
tridiagonal matrix

TRIDH
(B21-25-0302)

 TRQL
(B21-21-0402)

Component
routines

 BSCT1
(B21-21-0502)

 TEIG1
(B21-21-0602)

 TEIG2
(B21-21-0702)

 Back transformation to the eigenvectors of a
Hermitian matrix

TRBKH
(B21-25-0402)

 Obtaining eigenvalues of a real symmetric tridiagonal
matrix

 Obtaining eigenvalues and eigenvectors of a real
symmetric tridiagonal matrix

EIGENVALUES AND EIGENVECTORS

41

storage mode. (For details, see Section 2.8)

Obtaining all eigenvalues
All eigenvalues of a Hermitian matrix A can be obtained
in steps 1) and 2) below.

 :
CALL TRIDH(A,K,N,D,SD,V,ICON) 1)
IF(ICON .EQ. 30000)GO TO 1000
CALL TRQL(D,SD,N,E,M,ICON) 2)
 :

1) A Hermitian matrix A is reduced to a real symmetric

tridiagonal matrix using the Householder method.
2) All eigenvalues of the real symmetric tridiagonal

matrix are obtained using the QL method.

Obtaining selected eigenvalues
By using steps 1) and 2) below, the largest (or smallest)
m eigenvalues of a matrix A can be obtained.

 :
CALL TRIDH(A,K,N,D,SD,V,ICON) 1)
IF(ICON .EQ. 30000)GO TO 1000
CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 2)
 :

1) A Hermitian metrics A is reduced to a real symmetric

tridiagonal matrix by the Householder method.
2) The largest (or smallest) m eigenvalues of the real

symmetric tridiagonal matrix are obtained using the
bisection method.

 When obtaining more than n/4 eigenvalues of A of order
n, it is generally faster to use subroutines TRIDH and
TRQL as described in “Obtaining all eigenvalues”.

Obtaining all eigenvalues and corresponding
eigenvectors
All eigenvalues and corresponding eigenvectors can be
obtained either by using steps 1) through 3)or by using
step 4), (see below).

 :
CALL TRIDH(A,K,N,D,SD,V,ICON) 1)
IF(ICON .EQ. 30000)GO TO 1000
CALL TEIG1(D,SD,N,E,EV,K,M,ICON) 2)
IF(ICON .GE. 20000)GO TO 2000
CALL TRBKH(EV,EVI,K,N,M,P,V,ICON) 3)
IF(ICON .EQ. 30000)GO TO 3000
 :

or standard routine

 :
CALL HEIG2(A,K,N,N,E,EVR,EVI,VW,

*ICON) 4)
IF(ICON .GE. 20000)GO TO 1000
 :

1) A Hermitian matrix A is reduced to a real symmetric
tridiagonal matrix

2) Eigenvalues of the real symmetric tridiagonal matrix
(i.e., eigenvalues of A) and corresponding
eigenvectors are obtained using the QL method.

3) The Eigenvectors obtained in 2) are transformed to
the eigenvectors of A.

4) The standard routine HEIG2 can perform all the
above steps 1) through 3). In this case, the fourth
parameter N of HEIG2 indicates to obtain the largest
n eigenvalues.

Obtaining selected eigenvalues and corresponding
eigenvectors
A selected number of eigenvalues (m) and corresponding
eigenvectors of a Hermitian matrix can be obtained either
by using steps 1) through 3)or by using step 4), (see
below).

 :
CALL TRIDH(A,K,N,D,SD,V,ICON) 1)
IF(ICON .EQ. 30000)GO TO 1000
CALL TEIG2(D,SD,N,M,E,EV,K,VW,ICON) 2)
IF(ICON .GE. 20000)GO TO 2000
CALL TRBKH(EV,EVI,K,N,M,P,V,ICON) 3)
IF(ICON .EQ. 30000)GO TO 3000
 :

or standard routine

 :
CALL HEIG2(A,K,N,M,E,EVR,EVI,VW,ICON) 4)
IF(ICON .GE. 20000)GO TO 1000
 :

1) A Hermitian matrix A is reduced to a real symmetric

tridiagonal matrix.
2) The largest (or smallest) m eigenvalues and

corresponding eigenvectors of the real symmetric
tridiagonal matrix are obtained using the bisection
method and the inverse iteration method.

3) Back transformation of the eigenvectors obtained in
2) are performed.

4) The standard routine HEIG2 can perform all the
above steps 1) through 3).

4.6 EIGENVALUES AND
EIGENVECTORS OF A REAL
SYMMETRIC BAND MATRIX

Subroutines BSEG, BTRID, BSVEC and BSEGJ are
provided for obtaining eigenvalues and eigenvectors of a
real symmetric band matrix.
 These subroutines are suitable for large matrices, for
example, matrices of the order n > 100 and h/n < 1/6,

GENERAL DESCRIPTION

42

where h is the band-width. Subroutine BSEGJ, which
uses the Jennings method, is effective for obtaining less
than n/10 eigenvalues. Obtaining of all eigenvalues and
corresponding eigenvectors of a real symmetric band
matrix is not required in most cases and therefore only
standard routines for some eigenvalues and
corresponding eigenvectors are provided.
Subroutines BSEG and BSEGJ are standard routines and
BTRID and BSVEC are component routines of BSEG
(see Table 4.6). Examples of the use of these subroutines
are given below. SSL II handles the real symmetric band
matrix in compressed mode (see Section 2.8).

Obtaining selected eigenvalues
• Using standard routines

 :
CALL BSEG(A,N,NH,M,0,EPST,E,EV,K,

* VW,ICON) 1)
IF(ICON.GE.20000)GO TO 1000
 :

1) The largest (or smallest) m eigenvalues of a real

symmetric band matrix A of order n and bandwidth h
are obtained. The fifth parameter, 0 indicates that no
eigenvectors are required.

• Using component routines

 :
CALL BTRID(A,N,NH,D,SD,ICON) 1)
IF(ICON.EQ.30000) GO TO 1000
CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 2)

IF(ICON.EQ.30000) GO TO 2000
 :

1) Real symmetric band matrix A or order n and

bandwidth h is reduced to the real symmetric
tridiagonal matrix T by using the Rutishauser-
Schwarz method.

2) The largest (or smallest) m eigenvalues of T are
obtained.

Obtaining all eigenvalues
• Using the standard routine

All the eigenvalues can be obtained by specifying N as
the fourth parameter in the example of BSEG used to
obtain some eigenvalues. However, the following
component routines are recommended instead.

• Using component routines

 :
CALL BTRID(A,N,NH,D,SD,ICON) 1)
IF(ICON.EQ.30000) GO TO 1000
CALL TRQL(D,SD,N,E,M,ICON) 2)
 :

1) Real symmetric band matrix A of order n and

bandwidth h is reduced to the real symmetric
tridiagonal matrix T by using the Rutishauser-
Schwarz method.

2) All eigenvalues of T are obtained by using the QL
method.

Obtaining selected eigenvalues and corresponding
eigenvectors
• Using standard routines

The following two standard routines are provided.

 :
CALL BSEG(A,N,NH,M,NV,EPST,E,EV,K,

* VW,ICON) 1)
IF(ICON.GE.20000)GO TO 1000
 :
CALL BSEGJ(A,N,NH,M,EPST,LM,E,EV,K,

* IT,VW,ICON) 1)’
IF(ICON.GE.20000)GO TO 1000
 :

 The subroutine indicated by 1) obtains eigenvalues by
using the Rutishauser-Schwarz method, the bisection
method and the inverse iteration method consecutively.
The subroutine indicated by 1)’ obtains both eigenvalues
and eigenvectors by using the Jennings method based on
a simultaneous iteration.

Table 4.6 Subroutines used for standard eigenproblem of a real symmetric band matrix

Level Function Subroutine name
 BSEG

(B51-21-0201)
 BSEGJ

(B51-21-1001)
 Reduction of a real symmetric band matrix to a

tridiagonal matrix
BTRID

(B51-21-0302)
 TRQL

(B21-21-0402)
 BSCT1

(B21-21-0502)
 Obtaining eigenvectors of a real symmetric band

matrix

BSVEC
(B51-21-0402)

Standard routine Obtaining eigenvalues and eigenvectors of a real
symmetric band matrix

Component routine Obtaining eigenvalues of a real symmetric tridiagonal
matrix

EIGENVALUES AND EIGENVECTORS

43

Further, 1) obtains the largest (or smallest) eigenvalue
and 1)’ obtains the largest (or smallest) absolute value of
eigenvalues. The subroutine indicated by 1)’ is only
recommended where a very small number of eigenvalues
and eigenvectors (no more than n/10) compared to the
matrix order n are to be obtained.
1) The m eigenvalues and nv, number of eigenvectors of

a real symmetric band matrix A of order n and
bandwidth h are obtained.

1)’ Eigenvectors of A as described above are obtained
based on the m initial eigenvectors given. At the
same time, the corresponding eigenvalues can be also
obtained. Care needs to be taken when giving initial
eigenvectors to EV and upper limit for the number of
iterations to LM.

• Using component routines

The following subroutines are called consecutively to
achieve the same effect as executing subroutine BSEG.

 :
NN = (NH + 1)∗ (N + N -NH)/2
DO 10 I = 1, NN

10 AW (I) = A (I)
CALL BTRID(A,N,NH,D,SD,ICON) 1)
IF(ICON.EQ.30000) GOTO 1000
CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON)
 2)
IF(ICON.EQ.30000) GO TO 2000
CALL BSVEC(AW,N,NH,NV,E,EV,K,VW,

*ICON) 3)
IF(ICON.GE.20000) GO TO 3000
 :

1) 2) These are the same paths taken when obtaining

selected eigenvalues. Since BTRID destroys the
contents of parameter A, they need to be stored in
array AW for step 3).

3) The eigenvectors corresponding to the first nv
eigenvalues of the m eigenvalues given by 2) are
obtained by using the inverse iteration method.

Obtaining all eigenvalues and corresponding
eigenvectors
• Using standard routines

By specifying N for the fourth and fifth parameters of
the subroutine BSEG shown earlier in the example on
obtaining selected eigenvalues and their corresponding
eigenvectors, all eigenvalues and corresponding
eigenvectors can be obtained. If a solution is desired
more quickly, the following path using component
routines is recommended.

• Using component routines

 :
NN=(N+1)∗ (N+N–NH)/2
DO 10 I=1,NN

10 AW(I)=A(I)
N1 = NN+1
N2 = N1 + N
CALL BTRID(A,N,NH,VW(N1),VW(N2),

*ICON) 1)
IF(ICON.EQ.30000) GO TO 1000
CALL TRQL(VW(N1),VW(N2),N,E,M,ICON)
 2)
IF(ICON.GE.15000) GO TO 2000
CALL BSVEC(AW,N,NH,N,E,EV,K,VW,

*ICON) 3)
IF(ICON.GE.20000) GO TO 3000
 :

1) 2) These are the same as the component routines used

when obtaining all of the eigenvalues. Since
subroutine BTRID destroys the contents of parameter
A, they need to stored in array AW for step 3).

3) The eigenvectors corresponding to all eigenvalues
given in step 2) are obtained by using the inverse
iteration method.

4.7 EIGENVALUES AND
EIGENVECTORS OF A REAL SYMMETRIC
GENERALIZED EIGENPROBLEM

When obtaining eigenvalues and eigenvectors of Ax=λBx
(A: symmetric matrix and B: positive definite symmetric
matrix), how each SSL II subroutine is used is briefly
explained using standard examples.
The sequence to obtain eigenvalues and eigenvectors of a
real symmetric matrix consists of the following six steps:
1) Reduction of the generalized eigenvalue problem

(Ax=λBx) to the standard eigenvalue problem of a
real symmetric matrix (Sy=λy)

2) Reduction of the real symmetric matrix S to a real
symmetric tridiagonal matrix T(Sy =λy →→→→ Ty ′=λy ′).

3) Obtaining eigenvalue λ of the real symmetric
tridiagonal matrix T.

4) Obtaining eigenvector y ′ of the real symmetric
tridiagonal matrix T.

5) Back transformation of eigenvector y ′ of the real
symmetric tridiagonal matrix T to eigenvector y of the
real symmetric matrix S.

6) Back transformation of eigenvector y of the real
symmetric matrix S to eigenvector x of the
generalized eigenproblem.

 SSL II provides component routines corresponding to
these steps and a standard routine to do all the steps at
one time. (See Table 4.7.)
 Practically, in this section, user’s generalized
eigenproblems of a real symmetric matrix are classified
into the following categories:
• Obtaining all eigenvalues
• Obtaining selected eigenvalues
• Obtaining all eigenvalues and corresponding

eigenvectors
• Obtaining selected eigenvalues and corresponding

eigenvectors

GENERAL DESCRIPTION

44

Table 4.7 Subroutines used for generalized eigenproblems of a real symmetric matrix

Level Function Subroutine name

Standard routine Obtaining general eigenvalue and eigenvector of a
real symmetric matrix

GSEG2
(B22-21-0201)

 Reduction of the generalized eigenproblem to the
standard eigenproblem

GSCHL
(B22-21-0302)

 Reduction of a real symmetric matrix to a real
symmetric tridiagonal matrix

TRID1
(B21-21-0302)

 TRQL
(B21-21-0402)

 BSCT1
(B21-21-0502)

 TEIG1
(B21-21-0602)

 TEIG2
(B21-21-0702)

 Back transformation to eigenvectors of a real
symmetric matrix

TRBK
(B21-21-0802)

 Back transformation to generalized eigenvectors GSBK
(B22-21-0402)

 In the following paragraphs, the use of component
routines and standard routine will be described. It is up
to the user whether he successively calls the component
routines one after another or uses the standard routine to
obtain all or selected eigenvalues and eigenvectors.
Normally, using the latter routine is recommended since
that method is easier to use.
 SSL II handles the real symmetric matrix in the
compressed storage mode (see Section 2.8).

Obtaining all eigenvalues
All the eigenvalues can be obtained from the steps 1), 2),
and 3) below.

 :
CALL GSCHL(A,B,N,EPSZ,ICON) 1)
IF(ICON.GE.20000) GO TO 1000
CALL TRID1(A,N,D,SD,ICON) 2)
CALL TRQL(D,SD,N,E,M,ICON) 3)
 :

1) The generalized eigenproblem (Ax = λBx) is reduced

to the standard eigenproblem (Sy = λy)
2) The real symmetric matrix S is reduced to a real

symmetric tridiagonal matrix using the Householder
method.

3) All the eigenvalues of the real symmetric tridiagonal
matrix are obtained using the QL method.

Obtaining selected eigenvalues
From the following steps 1), 2), and 3), the largest (or
smallest) m eigenvalues can be obtained.

 :
CALL GSCHL(A,B,N,EPSZ,ICON) 1)
IF(ICON.GE.20000) GO TO 1000
CALL TRID1(A,N,D,SD,ICON) 2)
CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON)
 3)
 :

1), 2) Same as step 1) and 2) in “Obtaining all

eigenvalues”.
3) The largest (or smallest) m eigenvalues of the real

symmetric tridiagonal matrix are obtained using the
bisection method.

 When obtaining more than n/4 eigenvalues of A, it is
generally faster to use the example shown in “Obtaining
all eigenvalues”.

Obtaining all eigenvalues and corresponding
eigenvectors
From either steps 1) through 5), or from step 6), all of the
eigenvalues and their corresponding eigenvectors can be
obtained.

 :
CALL GSCHL(A,B,N,EPSZ,ICON) 1)
IF(ICON.GE.20000) GO TO 1000
CALL TRID1(A,N,D,SD,ICON) 2)
CALL TEIG1(D,SD,N,E,EV,K,M,ICON) 3)
IF(ICON.GE.20000)GO TO 3000
CALL TRBK(EV,K,N,M,A,ICON) 4)
CALL GSBK(EV,K,N,M,B,ICON) 5)
 :

or standard routine

Component routine Obtaining eigenvalues of a real symmetric tridiagonal
matrix

 Obtaining eigenvalues and eigenvectors of a real
symmetric tridiagonal matrix

EIGENVALUES AND EIGENVECTORS

45

 :
CALL GSEG2(A,B,N,N,EPSZ,EPST,E,EV,K,

* VW,ICON) 6)
IF(ICON.GE.20000) GO TO 1000
 :

1), 2) Same as step 1), 2) in “Obtaining all eigenvalues”.
3) All engenvalues and corresponding eigenvectors of

the real symmetric tridiagonal matrix are obtained by
the QL method.

4) The eigenvectors of the real symmetric tridiagonal
matrix are back-transformed to the eigenvectors of the
real symmetric matrix S

5) The eigenvectors of the real symmetric matrix S are
back-transformed to the eigenvectors of Ax=λBx.

6) The standard routine GSEG2 can perform steps 1)
through 5) at a time. In this case, the fourth
parameter N of GSEG2 indicates to obtain the largest
n number of eigenvalues.

Obtaining selected eigenvalues and corresponding
eigenvectors
From either steps 1) through 5), or from step 6), m
number of eigenvalues and their corresponding
eigenvectors can be obtained.

 :
CALL GSCHL(A,B,N,EPSZ,ICON) 1)
IF(ICON.GE.20000) GO TO 1000
CALL TRID1(A,N,D,SD,ICON) 2)
IF(ICON.EQ.3000) GO TO 2000
CALL TEIG2(D,SD,N,M,E,EV,K,VW,ICON) 3)
IF(ICON.GE.20000) GO TO 3000
CALL TRBK(EV,K,N,M,A,ICON) 4)
CALL GSBK(EV,K,N,M,B,ICON) 5)
 :

or standard routine

 :
CALL GSEG2(A,B,N,M,EPSZ,EPST,E,EV,K,

* VW,ICON) 6)
IF(ICON.GE.20000) GO TO 1000
 :

1), 2) Same as step 1), 2) in “Obtaining all eigenvalues”.
3) The largest (or smallest) m eigenvalues of the real

symmetric tridiagonal matrix and the corresponding
eigenvectors are obtained using the bisection and
inverse iteration methods.

4), 5) Same as step 4), 5) in above paragraphs.
6) The standard routine GSEG2 can perform steps 1)

through 5) at a time.

4.8 EIGENVALUES AND
EIGENVECTORS OF A REAL
SYMMETRIC BAND GENERALIZED
EIGENPROBLEM

SSL II provides subroutines as shown in Fig. 4.8 to
obtain eigenvalues and eigenvectors of Ax=λBx(A:
symmetric band matrix and B: positive definite
symmetric band matrix). These are used for a large
matrix of order n with h/n < 1/6, where h is the
bandwidth. Subroutine GBSEG, which uses the Jennings
method, is effective when obtaining less than n /10
eigenvalues and eigenvectors. Since subroutine GBSEG
obtains the specified m eigenvalues and eigenvectors at
one time, if it terminates abnormally, no eigenvalues and
eigenvectors will be obtained.
 An example of the use of this routine is shown below.
 SSL II handles the real symmetric band matrix in
compressed storage mode (see Section 2.8).

Obtaining selected eigenvalues and eigenvectors

 :
CALL GBSEG(A,B,N,NH,M,EPSZ,EPST,

* LM,E,EV,K,IT,VW,ICON) 1)
IF(ICON.GE.20000) GO TO 1000
 :

The eigenvalues and eigenvectors are obtained by using
the Jennings method of simultaneous iteration method.
Parameter M is used to specify the largest (or smallest) m
eigenvalues and eigenvectors to be obtained.

Table 4.8 Subroutines used for generalized eigenproblem of a real symmetric band matrix

Level Function Subroutine name

Standard routine Obtaining eigenvalues and eigenvectors of a real
band generalized eigenproblem

GBSEG
(B52-11-0101)

46

CHAPTER 5
NONLINEAR EQUATIONS

5.1 OUTLINE

This chapter is concerned with the following types of
problems.
• Roots of non-linear equations: Determining the roots of

polynomial equation, transcendental equations, and
systems of nonlinear equations (simultaneous nonlinear
equations).

5.2 POLYNOMIAL EQUATIONS

The subroutines shown in Table 5.1 are used for these
types of problems.
 When solving real polynomial equations of fifth degree
or lower, LOWP can be used. When solving only
quadratic equations, RQDR should be used.

General conventions and comments concerning
polynomial equations
The general form for polynomial equations is

0,0... 0
1

10 ≠=+++ − aaxaxa n
nn (5.1)

where ai (i = 0, 1, ... , n) is real or complex.
 If ai is real, (5.1) is called a real polynomial equation. If
ai is complex, (5.1) is called a complex polynomial
equation, and z is used in place of x.

 Unless specified otherwise, subroutines which solve
polynomial equations try to obtain all of the roots.
Methods and their use are covered in this section.
Algebraic and iterative methods are available for solving
polynomial equations. Algebraic methods use the
formulas to obtain the roots of equations whose degree is
four or less. Iterative methods may be used for equations
of any degree. In iterative methods, an approximate
solution has been obtained. For most iterative methods,
roots are determined one at a time; after a particular root
has been obtained, it is eliminated from the equation to
create a lower degree equation, and the next root is
determined.
 Neither algebraic methods nor iterative methods are
“better” since each has merits and demerits.

• Demerits of algebraic methods

Underflow or overflow situations can develop during
the calculations process when there are extremely large
variations in size among the coefficients of (5.1).

• Demerits of iterative methods

Choosing an appropriate initial approximation presents
problems. If initial values are incorrectly chosen,
convergence may not occur no matter how many
iterations are done, so if there is no

Table 5.1 Polynomial equation subroutines

Objective Subroutine
name

Method Notes

Real quadratic equations RQDR
(C21-11-0101) Root formula

Complex quadratic equations CQDR
(C21-15-0101) Root formula

Real low degree equations LOWP
(C21-41-0101)

Algebraic method and iterative
method are used together. Fifth degree or lower

Real high degree polynomial
equations

RJETR
(C22-11-0111) Jenkins-Traub method

Complex high degree
polynomial equations

CJART
(C22-15-0101) Jaratt method

NONLINEAR EQUATIONS

47

convergence, it is assumed that the wrong initial value
was chosen. It is possible that some roots can be
determined while others can not.
Convergence must be checked for with each iteration,
resulting in calculation problem.

 In order to avoid the demerits of algebraic methods,
SSL II uses iterative methods except when solving
quadratic equations. The convergence criterion method
in SSL II is described in this section.
 When iteratively solving an polynomial equation:

0)(
0

=≡ ∑
=

−
n

k

kn
k xaxf

if the calculated value of f (x) is within the range of
rounding error, it is meaningless to make the value any
smaller. Let the upper limit for rounding errors for
solving f (x) be ε (x), then

∑
=

−=
n

k

kn
k xaux

0
)(ε (5.2)

 where u is the round-off unit.
 Thus, when x satisfies

)()(xxf ε≤ (5.3)

 there is no way to determine if x is the exact root.
Therefore, when

∑∑
=

−

=

− ≤
n

k

kn
k

n

k

kn
k xauxa

00

 (5.4)

 is satisfied, convergence is judged to have occurred, and
the solution is used as one of the roots. (For further
information on equation (5.2), see reference [23].).
 As for the precision of roots, with both algebraic and
iterative methods, when calculating with a fixed number
of digits, it is possible for certain roots to be determined
with higher precision than others.
 Generally, multiple roots and neighboring roots tend to
be less precise than the other roots. If neighboring roots
are among the solutions of an algebraic equation, the user
can assume that those roots are not as precise as the rest.

5.3 TRANSCENDENTAL EQUATIONS

Transcendental equation can be represented as

f (x) = 0 (5.5)

 If f (x) is a real function, the equation is called a real
transcendental equation. If f (x) is a complex function,
the equation is called a complex transcendental equation,
and z is used in place of x.
 The objective of subroutines which solve trans-
cendental equations is to obtain only one root of f (x)
within a specified range or near a specified point.
 Table 5.2 lists subroutines used for transcendental
equations.
 Iterative methods are used to solve transcendental
equations. The speed of convergence in these methods
depends mainly on how narrow the specified range is or
how close a root is to the specified point. Since the
method used for determining convergence differs among
the various subroutines, the descriptions of each should
be studied.

5.4 NONLINEAR SIMULTANEOUS
EQUATIONS

Nonlinear simultaneous equations are given as:

f (x) = 0 (5.6)

where f (x) = (f1(x), f2(x),..., fn(x))T and 0 is an n-
dimensional zero vector. Nonlinear simultaneous
equations are solved by iterative methods in which the
user must gives an initial vector x0 and it is improved
repeatedly until the final solution for (3.1) is obtained
within a required accuracy. Table 5.3 lists subroutines
used for nonlinear simultaneous equations. The best
known method among iterative methods is Newton
method, expressed as:

Table 5.2 Transcendental equation subroutines

Objective Subroutine
name

Method Notes

Real transcendental equation

TSD1
(C23-11-0101)

Bisection method, linear
interpolation method and
inverse second order
interpolation method are all
used.

Derivatives are not
needed.

 TSDM
(C23-11-0111)

Muller’s method No derivatives
needed. Initial values
specified.

Zeros of a complex function CTSDM
(C23-15-0101)

Muller’s method No derivatives
needed. Initial values
specified.

GENERAL DESCRIPTION

48

Table 5.3 Nonlinear simultaneous equation subroutines

Objective Subroutine
name

Method Notes

Non-linear simultaneous
equations

NOLBR
(C24-11-0101) Brent’s method Derivatives are not

needed.

xi+1 = xi – Ji
-1f (xi), i = 0, 1, ... (5.7)

where Ji is the Jacobian matrix of f(x) for x = xi, which
means:

ixx

J

=

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

=

n

nnn

n

n

i

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

21

2

2

2

1

2

1

2

1

1

1

:::
 (5.8)

 The Newton method is theoretically ideal, that is, its
order of convergence is quadratic and calculations are
simple. However, this method develops several
calculation problems when it manipulates complex (or
larger) systems of nonlinear equations. The major
reasons are:
• It is often difficult to obtain the coefficients ∂fi / ∂xj in

(5.8), (i.e., partial derivatives cannot be calculated
because of the complexity of equations).

• The number of calculations for all elements in (5.8) are
too large.

• Since a system of linear equations with coefficient
matrix Ji must be solved for each iteration, calculation
time is long.

 If the above problems are solved and the order of
convergence is kept quadratic, this method provides short
processing time as well as ease of handling.
 The following are examples of the above problems and
their solutions. The first problem ∂fi / ∂xj can be
approximated with the difference, i.e., by selecting an
appropriate value for h, we can obtain

h
xxfxhxxf

x
f ninji

j

i),...,(),...,,...,(11 −+
≈

∂
∂ (5.9)

 For the second and third problems, instead of directly
calculating the Jacobian matrix, a pseudo Jacobian matrix
(which need not calculate all the elements) is used to
solve the simultaneous equations. All of the above means
are adopted in SSL II. Several notes on the use of
subroutines for nonlinear simultaneous equations follow.
 The user must provide the function subprograms to
calculate a series of functions which define equations.
These function subprograms should be provided taking
the following points into consideration in order to use
subroutines effectively and to obtain precise solution.
• Loss of digit should be avoided in calculating functions.

This is especially important because values of functions
are used in subroutines to evaluate derivatives.

• The magnitude of elements such as those of variable
vector x or of function vector f (x) should be balanced.
Since, if unbalanced the larger elements often mask the
smaller elements during calculations. SSL II routines
have the function of checking variance in the largest
element to detect convergence. In addition, the
accuracy of a solution vector depends upon the
tolerance given by the user. Generally, the smaller the
tolerance for convergence, the higher the accuracy for
the solution vector.
 However, because of the round-off errors, there is a
limit to the accuracy improvement. The next problem
is how to select initial value x0. It should be selected
by the user depending upon the characteristics of the
problem to be solved with the equations. If such
information is not available, the user may apply the cut-
and-try method by arbitrarily selecting the initial value
and repeating calculations until a final solution is
obtained.
 Finally, due to the characteristics of equations, some
equations can not be solved by single precision
subroutines, but may be solved by double precision
subroutines. Because double precision subroutines are
more versatile, they are recommended for the user’s
needs.

49

CHAPTER 6
EXTREMA

6.1 OUTLINE

The following problems are considered in this chapter:
• Unconstrained minimization of single variable function
• Unconstrained minimization of multivariable function
• Unconstrained minimization of sum of squares of

functions (Nonlinear least squares solution).
• Linear programming
• Nonlinear programming (Constrained minimization of

multivariable function)

6.2 MINIMIZATION OF FUNCTION
WITH A SINGLE VARIABLE

Given a single variable function f (x), the local minimum
point x* and the function value f (x*) are obtained in
interval [a, b].

Subroutines
Table 6.1-A gives subroutines applicable depending on
whether the user can define a derivative g(x) analytically
in addition to function f (x).

Table 6.1-A Subroutines for unconstrained minimization of a function

with single variable

Analytical definition Subroutine
name

Notes

f (x) LMINF
(D11-30-0101)

Quadratic inter-
polation

f (x), g(x) LMING
(D11-40-0101)

Cubic inter-
polation

Comments on use
Interval [a, b]
In the SSL II, only one minimum point of f (x) is obtained
within the error tolerance assuming that the
– f (x) is unimodal in interval [a, b]. If there are several
minimum points in interval [a, b], it is not guaranteed to
which minimum point the resultant value is converged.
 This means that it is desirable to specify values for end
points a and b of an interval including minimum point x*
to be close to x*.

6.3 UNCONSTRAINED MINIMIZATION
OF MULTIVARIABLE FUNCTION

Given a real function f (x) of n variables and an initial
vector x0, the vector (local minimum) x* which minize the
function f (x) is obtained together with its function value
f (x*), where x = (x1, x2, ... , xn)T.
Minimizing a function means to obtain a minimum point
x*, starting with an arbitrary initial vector x0, and
continuing iteration under the following relationship,

f (xk+1) < f (xk), k = 0, 1, ... (6.1)
xk : Iteration vector

 The iteration vector is modified based on the direction
in which the function f (x) decreases in the region of xk by
using not only the value of f (x) but also the gradient
vector g and the Hessian matrix B normally.

jiijij

n

xxfbb

x
f

x
f

x
f

∂∂∂

∂
∂

∂
∂

∂
∂

2

T

21

,)(

,...,,

==

=

B

g
 (6.2)

Formula based on Newton method
If the function f (x) is quadratic and is concave, the global
minimum point x* should be able to be obtained
theoretically within at most n iterations by using iterative
formula of the Newton method.
A function can be expressed approximately as quadratic
in the region of the local minimum point x*. That is,

GENERAL DESCRIPTION

50

)()(
2
1)()(*T** xxBxxxx −−+≈ ff (6.3)

 Therefore, if the Hessian matrix B is positive definite,
the iterative formula based on the Newton method which
is applied to the quadratic function will be a good
iterative formula for any function in general as shown in
Eq. (6.3). Now let gk be a gradient vector at an arbitrary
point xk in the region of the local minimum point x*, then
the basic iterative formula of Newton method is obtained
by Eq. (6.3) as follows:

kkk gBxx 1
1

−
+ −= (6.4)

The SSL II, based on Eq. (6.4), introduces two types of
iterative formulae.

Revised quasi-Newton method
Iterative formula

kkk

kkkk

kkk

EBB
pxx

gpB

+=
+=

−=

+

+

1

1 α (6.5)

, where Bk is an approximate matrix to the Hessian matrix
and is improved by the matrix Ek of rank two during the
iteration process.
 pk is a searching vector which defines the direction in
which the function value decreases locally.α k is a
constant by which f (xk+1) is locally minimized (linear
search).
 These formulae can be used when the user cannot define
the Hessian matrix analytically.

Quasi-Newton method
Iterative formula

kkk

kkkk

kkk

FHH
pxx

gHp

+=
+=

−=

+

+

1

1 α

, where Hk is an approximate matrix to inverse matrix B-1 of
the Hessian matrix and is improved by the matrix Fk of
rank 2 during the iterative process.
 pk is a searching vector which defines the direction in
which the function value decrease locally. α k is a
constant by which f (xk+1) is locally minimized (linear
search).

Subroutines
The subroutines are provided as shown in Table 6.1
depending on whether or not the user can analytically
define a gradient vector g in addition to the function f (x).

Table 6.1 Subroutines for unconstrained minimization of a function
with several variables

Analytical
definition Subroutine name Notes

f (x) MINF1
(D11-10-0101)

Revised quasi-
Newton method

f (x), g(x) MING1
(D11-20-0101)

Quasi-Newton
method

Comments on use
• Giving an initial vector x0

Choose the initial vector x0 as close to the expected
local minimum x* as possible.
When the function f (x) has more than one local
minimum point, if the initial vector is not given
appropriately, the method used may not converge to the
expected minimum point x*. Normally, x0 should be
set according to the physical information of the
function f (x).

• Function calculation program

Efficient coding of the function programs to calculate
the function f (x), the gradient vector g is desirable.
The number of evaluations for each function made by
the SSL II subroutine depends on the method used or
its initial vector. In general, it takes a majority in the
total processing and takes effect on efficiency.
 In case that the subroutine is given only the function
f (x), the gradient vector g is usually approximated by
using difference. Therefore an efficient coding to
reduce the effect of round-off errors should be
considered, also.
 When defining function f (x), it should be scaled well
so as to balance the variable x as much as possible.

• Convergence criterion and accuracy of minimum value

f (x*)
In an algorithm for minimization, the gradient vector
g(x*) of the function f (x) at the local minimum point x*
is assumed to satisfy

g(x*) = 0 (6.6)

 , that is, the iterative formula approximates the function
f (x) as a quadratic function in the region of the local
minimum point x* as follows.

xBxxxx δδδ T*
2
1)()(+≈+ *ff (6.7)

 Eq. (6.7) indicates that when f (x) is scaled appropriately,
if x is changed by ε, function f (x) changes by ε 2.
In SSL II, if

() ε⋅≤− ∞∞+ kkk xxx ,0.1max1 (6.8)

EXTREMA

51

, where ε is a convergence criterion, is satisfied for the
iteration vector xk, then xk+1 is taken as the local
minimum point x*. Therefore, if the minimum value
f (x*) is to be obtained as accurate as the rounding error,
the convergence criterion ε should be given as follows:

u=ε where u is the unit round off.

The SSL II uses u⋅2 for a standard convergence
criterion.

6.4 UNCONSTRAINED MINIMIZATION
OF SUM OF SQUARES OF FUNCTIONS
(NONLINEAR LEAST SQUARES SOLU-
TION)

Given m real functions f1 (x), f2 (x), ... , fm (x) of n
variables and an initial vector x0, the vector (local
minimum) x* which minimize the following functions is
obtained together with its function value F(x*), where, x
is the vector of x = (x1, x2 , ... , xn)T and m ≥ n.

∑
=

=
m

i
ifF

1

2)}({)(xx (6.9)

If all the functions fi (x) are linear, it is a linear least
squares solution problem. For detailed information on its
solution, refer to Section 3.5. (For example subroutine
LAXL). If all the functions fi (x) are nonlinear, the
subroutines explained in this section may be used. When
the approximate vector xk of x* is varied by ∆∆∆∆x, F(xk +
∆∆∆∆x) is approximated as shown in (6.10).

kkkk

kkkkk

kkkkkkF

xJJx

xJxfxfxf

xxfxxfxx

∆∆∆∆∆∆∆∆

∆∆∆∆

∆∆∆∆∆∆∆∆∆∆∆∆

TT

TT

T

)(2)()(

)()()(

+

+≈

++=+

 (6.10)

, where | F(xk) | is assumed to be sufficiently small. And,
f (x) equals to (f1 (x), f2 (x),..., fm (x))T and Jk is a
Jacobian matrix of f (x) at vector xk.
 ∆∆∆∆xk which minimize this F(xk + ∆∆∆∆xk) can be obtained as
the solution of the system of linear equations (6.11)
derived by differentiating the right side of (6.10).

)(TT
kkkkk xfJxJJ −=∆∆∆∆ (6.11)

The equation shown in (6.11) is called a normal equation.
The iterative method based on the ∆∆∆∆xk is called the
Newton-Gauss method. In the Newton-Gauss method
function value F(x) decrease along direction ∆∆∆∆xk,
however, ∆∆∆∆xk itself may diverge.
The gradient vector ∇∇∇∇ F(xk) at xk of F(x) is given by

)(2)(T
kkkF xfJx =∇∇∇∇ (6.12)

 −∇∇∇∇ F(xk) is the steepest descent direction of F(x) at xk.
The following is the method of steepest descent.

)(kk F xx ∇∇∇∇−=∆ (6.13)

 ∆∆∆∆xk guarantees the reduction of F(x). However if
iteration is repeated, it proceeds in a zigzag fashion.

Formula based on the Levenberg-Marquardt method
Levenberg, Marquardt, and Morrison proposed to
determine ∆∆∆∆xk by the following equations combining the
ideas of the methods of Newton-Gauss and steepest
descendent.

)(}{ T2T
kkkkkk v xfJxIJJ −=+ ∆∆∆∆ (6.14)

 where vk is a positive integer (called Marquardt number).
 ∆∆∆∆xk obtained in (6.14) depends on the value of vk that is,
the direction of ∆∆∆∆xk is that of the Newton-gauss method if
vk → 0: if vk → ∞, it is that of steepest descendent.
 SSL II uses iterative formula based on (6.14). It does
not directly solve the equation in (6.14) but it obtains the
solution of the following equation, which is equivalent to
(6.14), by the least squares method (Householder
method) to maintain numerical stability.

⋅⋅⋅⋅⋅⋅⋅⋅−=

⋅⋅⋅⋅⋅⋅

0

xf
x

I

J)(k

k

k

k

v
∆∆∆∆ (6.15)

 The value vk is determined adaptively during iteration.

Subroutines
The subroutines are provided as shown in Table 6.2
depending on whether or not the user can analytically
define a Jacobian matrix J in addition to the function
f1 (x), f2 (x), ... , fm (x).

Table 6.2 Subroutines for unconstrained minimization of sum of
squares of functions

Analytical
definition Subroutine

name
Notes

f1(x), f2(x),...
, fm(x)

NOLF1
(D15-10-0101)

Revised
Marquardt Method

f1(x), f2(x),...
, fm(x), J

NOLG1
(D15-20-0101)

Revised
Marquardt Method

GENERAL DESCRIPTION

52

Comments on use
• Giving an initial vector x0

Choose the initial vector x0 as close to the expected
local minimum point x* as possible. When the function
F(x) has more than one local minimum point, if the
initial vector is not given appropriately, the method
used may not converge to the expected minimum point
x*.
 The user should set x0 after checking the feature of the
problem for which this subroutine is to be used.

• Function calculation program

Efficient coding of the function programs to calculate
the function {fi (x)} value of Jacobian matrix J is
desirable. The number of evaluations for each function
made by the SSL II subroutine depends on the method
used or its initial vector. In general, it takes a majority
of the total processing and has an effect on the
efficiency.
 When that subroutine is given only the function
{fi(x)} Jacobian matrix J is usually approximated by
using differences. Therefore, an efficient coding to
reduce the effect of round-off errors should also be
considered.

• Convergence criterion and accuracy of minimum value

F(x*)
In an algorithm for minimization, F(x) at the local
minimum point x* is assumed to satisfy

0)(2)(T* == *F xfJx∇∇∇∇ (6.16)

that is, the iterative formula approximates the function
F(x) as a quadratic function in the region of the local
minimum point x* as follows:

xJJxxxx δδδ TT**)()(+≈+ FF (6.17)

 Eq. (6.17) indicates that when F(x) is scaled
appropriately, if x is changed by ε, function F(x) changes
by ε 2.
 In SSL II, if

ε⋅≤−
<

+

+

),0.1max(
)()(

221

1

kkk

kk FF
xxx

xx
 (6.18)

, where ε is a convergence criterion,
is satisfied for the iteration vector xk, then xk+1 is taken as
the local minimum point x*. Therefore, if the minimum
value F(x) is to be obtained as accurately as the
rounding-error, the convergence criterion should be given
as follows:

u≈ε

, where u is the unit round-off.
The SSL II uses u⋅2 for a standard convergence
criterion.

6.5 LINEAR PROGRAMMING

Linear programming is defined as the problem where a
linear function with multiple variables is minimized (or
maximized) under those constraints on the variables
which are represented as some linear equations and
inequality relations.
The following is a standard linear programming

problem:
“Minimize the following linear objective function”:

z = cT x + c0

subject to

dAx = (6.19)
0x ≥ (6.20)

, where A is an m × n coefficient matrix and the rank of A
is:

rank(A) = m ≤ n

where, x = (x1, x2, ... , xn)T is a variable vector,
d = (d1, d2, ... , dm)T is a constant vector,
c = (c1, c2, ... , cn)T is a coefficient vector,
and
c0 is a constant term.

Let aj denote the j-th column of A. If m columns of A, ak1
,

ak2
, ... , akm, are linearly independent, a group of the

corresponding variables (xk1, xk2
, ... , xkm) are called the

base. xki is called a (i-th) base variable. If a basic solution
satisfies (6.20) as well , it is called a feasible basic
solution. It is proved that if there exist feasible basic
solutions and there exist the optimal solution to minimize
the objective function, then the optimal solution exist in
the set of feasible basic solutions (principle of Linear
Programming).

• Simplex method

The optimal solution is calculated by starting from a
basic feasible solution, exchanging base variables one
by one and obtaining a next basic feasible solution
consecutively, making z smaller and smaller.

• Revised simplex method
Using iterative calculation of the simplex method,
coefficients and constant terms required for
determining the basic variables to be changed are
calculated from the matrix inversion of the basic matrix,
B = [ak1

, ak2
, ... , akm

], the original coefficient

EXTREMA

53

A, c, and constant term d.
 SSL II provides subroutine LPRS1 using this revised
simplex method. If the constrained condition contains
inequalities, new variables are introduced to change
into equalities.
 For example,

 a11x1 + a12 x2 + ... + a1n x n ≤ d1

 is changed into

 a11x1 + a12 x2 + ... + a1n xn + xn+1 =d1, xn+1 ≥ 0

and,

 a21x1 + a22 x2 + ... + a2n x n ≥d2

 is changed into

a21x1 + a22 x2 + ... + a2n x n – xn+2 =d2, xn+2 ≥ 0

Non-negative variables such as xn+1 or xn+2 which are
added to change an inequality into an equality are
called slack variables.
 Maximization is performed by multiplying the
objective function by -1 instead.
 Subroutine LPRS1 performs these processes and thus
enables the solution of problems containing inequalities
or to maximize the problem.

 The algorithm is divided into two stages as follows.
• At the first stage, obtain the basic feasible solution
• At the second stage, obtain the optimal solution
This is called the two-stage method. At the first stage the
optimal solution is obtained for the following problem.
 “Minimize the following equation”.

∑
=

=
m

i

a
ixz

1

)(
1

subject to

Ax + A(a) x(a) = d ,
 x ≥ 0, x(a) ≥ 0

where x(a) is an m-dimensional vector of x(a) = (x1
(a),

x2
(a), ..., xm

(a))T
A(a) is an m-order diagonal matrix of A(a) = (aij

(a))
where, when di ≥ 0, aii

(a) = 1
 when di < 0, aii

(a) = -1
 xi

(a) is called an artificial variable. When the optimal
solution is obtained, if z1 is larger than zero (z1 > 0), no x
will satisfy the conditions in (6.19) and (6.20).
 If z1 is equivalent to zero (z1 = 0), that is x(a) = 0, the
basic feasible solution of the given problem has been
obtained, and so we proceed to the second stage. But if

rank(A) < m

but when there exists x satisfying (6.19), we can put

r = rank(A)

, then (m-r) equations in (6.19) turn out to be useless.
 The optimal solution obtained at the first stage results in
the basic feasible solution excepting the useless
conditional equations. There remain (m-r) number of
artificial variables in basic variables. The conditional
equations corresponding to these artificial variables (i-th
basic variable corresponds to the i-th conditional
equation) are useless.

Comments on use
• Coefficient relative zero criterion

Subroutine LPRS1 performs the relative zero criterion
in which if the absolute value of the elements during
iterative process becomes small, LPRS1 assumes it as
zero. Parameter EPSZ is used to specify the value of
relative zero criterion.
 Suppose the following extended coefficient matrix
consisting of coefficient matrix A, constant vector d,
coefficient vector c and constant term c0.

0cc
dA

Let the absolute maximum element of this matrix be
amax. Then if the absolute value of a coefficient vector
and constant term obtained by iteration is smaller than
amax･EPSZ, it is assumed to be zero.
 If EPSZ does not give an appropriate value, although
the feasible solution is obtained z1 may be larger than
zero when the optimal solution is obtained at the first
stage. Furthermore, the optimal solution at the first
stage may have to be obtained before iteration.
 To keep accurate precision, you should multiply an
appropriate constant to each row or column to enable
the ratio of the maximum and minimum absolutes of
the extended coefficient matrix elements.

• Number of iterations

LPRS1 exchanges basic variables so that the same
basic feasible solution does not appear twice. It can
check whether the optimal solution can be obtained in a
certain number of iterations or not. It also can
terminate in the middle of processing. Parameter
IMAX is used to specify the number of iterations.
If the iteration terminates as specified by parameter

IMAX, LPRS1 can continue calculation when the
feasible basic solution has been obtained

GENERAL DESCRIPTION

54

(that is, at the second stage).

6.6 NONLINEAR PROGRAMMING
(CONSTRAINED MINIMIZATION OF
MULTIVARIABLE FUNCTION)

Given an n-variable real function f (x) and the initial
vector x0, the local minimum point and the function value
f (x*) are obtained subject to following constraints:

ci(x) = 0, i = 1, 2, ... , m1 (6.21)
ci(x) ≥ 0, i = m1 + 1, ... , m1 + m2 (6.22)

 Where x is vector as (x1, x2, ... , xn)T and m1 and m2 are
the numbers of equality constraints and unequality
constraints respectively.
 The algorithm for this problem is derived from that for
unconstrained minimization explained in section 6.3 by

adding certain procedures for constraints of (6.21), (6.22).
That is, the algorithm minimizes f (x) by using the
quatratic approximation for f (x) at approximate point xk:

Byygyxx TT

2
1)()(++≈ kkff (6.23)

where y = x – xk and B is a Hessian matrix, under the
constraints of (6.21), (6.22) at the same point xk as
follows:

1
T ,...,2,1,0)()(micc kiki ==+ xyx ∇∇∇∇ (6.24)

211

T

,...,1
,0)()(

mmmi
cc kiki

++=
≥+ xyx ∇∇∇∇ (6.25)

 Where ∇∇∇∇ ci is a gradient vector of ci
This is a quadratic programming with respect to y.
 The SSL II supplies the NLPG1 that gives minimum
point by solving quadratic programming successively
during iteration.

55

CHAPTER 7
INTERPOLATION AND APPROXIMATION

7.1 OUTLINE

This chapter is concerned with the following types of
problems.

• Interpolation

Given discrete points x1 < x2 < ...< xn and their
corresponding function values yi = f (xi), i = 1, ... , n (in
some cases y′ i = f ′(xi) is given), an approximation to
f (x) (hereafter called interpolating function) is
determined such that it passes through the given points;
or, that the interpolating function is used to determine
an approximate value (hereafter called interpolated
value) to f (x) at a point x = v other than xi.

• Least-squares approximation

Given discrete points x1 < x2 < ... < xn and their
corresponding observed values yi, i = 1, ... , n the
approximation)(xmy that minimizes

 0)()}({)(,2

1
≥−∑

=
iimi

n

i
i xwxyyxw

is determined; w(x) is a weight function, and)(xmy is
a polynomial of degree m.
In this type of problem yi is observed data. This method
is used when the observation error varies among the
data.

• Smoothing

Given discrete points x1, x2, ... , xn and their
corresponding observed values yi, i = 1, 2, ... , n a new
series of points { iy~ } which approximates the real
function is obtained by smoothing out the observation
errors contained in the observed value {yi}. Hereafter,
this processing is referred to as smoothing. iy~ (or
{ iy~ })is called the smoothed value for yi (or {yi}),
y yi i− ~ shows the extent of smoothing, and the

polynomial used for smoothing is called the smoothing
polynomial.

• Series

When a smooth function f (x) defined on a finite
interval is expensive to evaluate, or its derivatives or
integrals can not be obtained analytically, it is
suggested f (x) be expanded to the Chebyshev series.
 The features of Chebyshev series expansion are
described below.
− Good convergence
− Easy to differentiate and integrate term by term
− Effective evaluation owing to fast Fourier

transformation, leading to numerical stability.
 Obtain the item number of n and the coefficient
number of Chebyshev expansion depending upon the
required precision. Then obtain the derivative and
indefinite integral of f (x) by differentiating and
integrating each item of the obtained series in forms of
series. The derivative value, differential coefficient and
definite integral can be obtained by summing these
series. If the function f (x) is a smooth periodic
function, it can be expanded to triangular series. Here
the even function and odd function is expanded to the
cosine series and the sine series depending upon the
required precision.

 In the field of interpolation or smoothing in this chapter,
and also in that of numerical differentiation or quadrature
of a tabulated function, very powerful functions, what is
called spline functions, are used. So, the definition and
the representations of the functions are described below.

Spline function
(1) Definition

Suppose that discrete points x0 ..., xn divide the range [a,
b] into intervals such that

 a = x0 < x1 < ...< xn = b (7.1)

Then, a function S(x) which satisfies the following
conditions:

a. D kS(x) = 0 for each interval (xi, xi+1)
b. []baCxS k ,)(2−∈ (7.2)

, where D ≡ d / dx

GENERAL DESCRIPTION

56

is defined as the spline function of degree (k -1) and
the discrete points are called knots.
 As shown in (7.2), S(x) is a polynomial of degree (k -
1) which is separately defined for each interval (xi, xi+1)
and whose derivatives of up to degree (k -2) are
continuous over the range [a, b].

(2) Representation-1 of spline functions

Let aj, j = 0, 1, ... , k -1 and bi, i = 1, 2, ... , n -1 be
arbitrary constants, then a spline function is expressed
as

−=

−+=

∑

∑

−

=

−
+

−

=

j
k

j
j

k
i

n

i
i

xxaxp

xxbxpxS

)()(

,where

)()()(

0

1

0

1
1

1

 (7.3)

The function ()x xi
k− +

−1 is defined as

<
≥−

=−
−

−
+

i

i
k

ik
i xx

xxxxxx
,0

,)()(
1

1 (7.4)

 The following illustration proves that (7.3) satisfies
(7.2). Suppose that x is moved from x0 to the right in
(7.3).
For x0 ≤ x < x1, S(x) = p(x), so S(x) is a polynomial of
degree (k-1).
For x1 ≤ x < x2, S(x) = p(x) + b1(x – x1)k-1, so S(x) is a
polynomial of degree (k -1).
In general, for xi ≤ x<xi+1

1)
1

()()(−

=
−+= ∑ k

r

i

r
r xxbxpxS

 So, it is found that S(x) is a polynomial of degree (k-
1) which is separately defined for each interval.
 From equation (7.3) we obtain

∑

∑
−

=

−−
+

−

=

−

−−⋅⋅⋅−−+

−+−⋅⋅⋅−=

=

1

1

1

1

1
0

)(

)()()2)(1(

)()1()1(

)()(

n

j

lk
ii

k

j

lj
j

l
l

l

xxblkkk

xxaljjj

xSxS
dx
d

 The l-th derivatives from the left and the right of S(x)
at xi, are

lj
ij

k

j
i

l

lk
rir

i

r

lj
ij

k

j
i

l

xxaljjjxS

xxblkkk

xxaljjjxS

−
−

=→

−−
−

=

−
−

=→

−+−⋅⋅⋅−=+

−−⋅⋅⋅−−+

−+−⋅⋅⋅−=−

∑

∑

∑

)()1()1()(lim

)()()2)(1(

)()1()1()(lim

0

1

1

)(

0

1
1

1

0

1

1

)(

0

ε

ε

ε

ε

lk
iii

lk
rir

i

r

xxblkkk

xxblkkk

−−

→

−−
−

=

−+−⋅⋅⋅−−+

−−⋅⋅⋅−−+∑
1

0

1
1

1

)()()2)(1(lim

)()()2)(1(

ε
ε

Thus,

lk
i

i
l

i
l

blkkk

xSxS

−−

→

→→

−⋅⋅⋅−−=

−−+

1

0

)(

0

)(

0

)()2)(1(lim

)(lim)(lim

ε

εε

ε

εε

 (7.5)

 For l = 0, 1, ... , k -2, the righthand side is zero, so
that

)(lim)(lim)(

0

)(

0
εε

εε
−=+

→→
i

l
i

l xSxS (7.6)

 (7.5) shows the S(l)(x) is continuous at x = xi .
 When l = k -1 the righthand side becomes
(k - 1) (k - 2) ...1･bi .
 Since generally bi≠0

() ()εε
εε

−≠+ −

→

−

→
i

k
i

k xSxS)1(

0

)1(

0
limlim (7.7)

 (7.7) shows that the (k -1)th derivative of S(x)
becomes discontinuous at x = xi. Even in this case, if bi,
i = 1, 2, ... , n -1 are all zero, the (k -1)th derivative of
S(x) becomes continuous. Then, from (7.3), it can be
found that S(x) = p(x) over the range [a, b]. This
means that S(x) is virtually equal to the power series
expanded at x = x0. Therefore, it can be said that an
arbitrary polynomial of degree (k -1) defined on [a, b]
is a special form of the spline function. Equation (7.3)
is referred to as the expression of spline function by the
truncated power function, it is in general numerically
unstable because (x - xi)k-1 tends to assume a large
absolute value.

(3) Representation-2 of spline functions
(introduction of B-splines)

In contrast with the representation(7.3), the
representation by B-splines, which are defined below,
can avoid numerical difficulties.
Let a series of points {tr} shown in Fig. 7.1 be defined
as

121

1100121

−+++

−+−+−

≤⋅⋅⋅≤≤≤=<
⋅⋅⋅<=<=≤≤⋅⋅⋅≤≤

knnnnn

kk

tttxt
xtxtttt

 (7.8)

 And define gk (t; x) as a function of t with parameter x.

<
≥−=−=

−
−

+ xt
xtxtxtxtg

k
k

k ,0
,)()();(

1
1 (7.9)

See Fig. 7.2.

INTERPOLATION AND APPROXIMATION

57

xn-1 xnx2x1x0

tn+k-1tn tn+1tn-1t2t1t0t-1t-k+1

Fig. 7.1 A series of points

t
x

gk(t ;x)

xixi-1 xi+2xi+1

ti+2ti+1titi-1
Fig. 7.2 gk (t; x)

 Then, the k th order divided difference of gk (t ; x) with
respect to t = tj, tj+1, ... , tj+k multiplied by a constant:

];,,,[)()(1, xtttgttxN kjjjkjkjkj +++ ⋅⋅⋅−= (7.10)

is called the normalized B-spline (or simply B-spline) of
degree (k -1).
 The characteristics of B-spline Nj,k (x) are as follows.
Now, suppose that the position of x is moved with tj,
tj+1, ..., tj+k fixed. When x ≤ tj since Nj,k(x) includes the k
th order divided difference of a polynomial of degree (k-
1) with respect to t, it becomes zero. When tj+k ≤ x, Njk(x)
is zero because it includes the k th order divided
difference of a function which is identically zero. When
tj < x < tj+k, Nj,k(x) ≠ 0. In short,

≤≤=

<<≠

+

+

xttx

txt
xN

kjj

kjj
kj or,0

,0
)(, (7.11)

(actually, when tj < x < tj+k, 0 < Nj,k(x) ≤ 1)
Next, suppose that j is moved with x fixed. Here, let ti =
xi < x < xi+1 = ti+1.
Then, in the same way as above, we can obtain

≤+−≤=
≤≤+−≠

jikij
ijki

xN kj 1or,0
1,0

)(, (7.12)

The characteristics (7.11) and (7.12) are referred to as the
locality of B-spline functions.
From (7.10), B-spline Nj,k(x) can be written as

∑
+

= ++−

−
+

+ −⋅⋅−−⋅⋅−
−−

=
kj

jr kjrrrrrjr

k
r

jkj

kj

tttttttt
xttt

xN

)())(()(
)()(

)(

11

1

,

 (7.13)

Therefore, Nj,k(x) is a polynomial of degree (k-1) defined
separately for each interval (xi, xi+1) and its derivatives of
up to degree k-2 are continuous. Based on this
characteristic of Nj,k(x), it is proved that an arbitrary

spline function S(x) satisfying equation (7.2) can be
represented as

)()(,

1

1
xNcxS kj

n

kj
j∑

−

+−=
= (7.14)

 where cj, j = -k + 1, -k + 2, ... , n -1 are constants

(4) Calculating spline functions

Given a (k – 1)-th degree spline function,

)()(,

1

1
xNcxS kj

n

kj
j∑

−

+−=
= (7.15)

 the method of calculating its function value,
derivatives and integral

∫
x

x
dyyS

0
)(

at the point x ∈ [xi, xi+1) is described hereafter.
− Calculating the function value

The value of S(x) at x ∈ [xi, xi+1) can be obtained by
calculating Nj,k(x). In fact, because of locality (7.12)
of Nj,k(x), only non-zero elements have to be
calculated.
Nj,k(x) is calculated based on the following
recurrence equation

)()()(1,1
1

1,
1

, xN
tt

xtxN
tt

txxN sr
rsr

sr
sr

rsr

r
sr −+

++

+
−

−+ −
−

+
−

−=

 (7.16)

where,

[]

≠
=

=

−−−=

−
−−=

−=

+++

+

+
+

++

ir
ir

xtxt

tt
xtgxtgtt

xttgttxN

rr

rr

rr
rr

rrrrr

,0
,1

)()(

);();()(

;,)()(

00
1

1

111
1

1111,

 (7.17)

By applying s = 2, 3,, k, r = i – s + 1, i – s + 2, ...,
i to Eqs. (7.16) and (7.17), all of the Nr,s(x) given in
Fig. 7.3 can be calculated, and the values in the
rightmost column are used for calculating the S(x).

N

N
N N N

N N N N

i k k

i

i i i k

i i i i k

− +

−

− − −

1

2 3

1 2 1 3 1

1 2 3

0
0

0

0

r

s
0 0

,

,

, , ,

, , , ,

Fig. 7.3 Calculating Nr.s(x) at x∈ [xi,xi+1)

GENERAL DESCRIPTION

58

− Calculating derivatives and integral
From

∑
−

+−=
==

1

1

)(
,

)()()()(
n

kj

l
kjj

l
l

l
xNcxSxS

dx
d (7.18)

S(l)(x) can be obtained by calculating Nj,k
(l)(x).

From Eq. (7.9)

lk
l

kl

l
xt

lk
kxtg

x
−−

+−
−−
−−= 1)(

)!1(
)!1()1();(

∂
∂ (7.19)

so Nj,k
(l)(x) is the divided difference of order k at t = tj,

tj+1, ..., tj+k of Eq. (7.19).
 Now let

xt
xtxtxtxtd

lk
lk

k <
≥

 −=−=

−−
−−

+ ,
,

0
)()();(

1
1

and let Dj,k(x) be the divided difference of order k
at t = tj, tj+1,…, tj+k, i.e.,

];,,,[)(1, xtttdxD kjjjkkj ++ ⋅⋅⋅= (7.20)

 This Dj,k(x) can be calculated by the following
recurrence equations. For x ∈ [xi, xi+1),

ksl
tt

xDxtxDtx
xD

ls
tt

xDxD
xD

ir
irxx

xD

rsr

srsrsrr
sr

ssr

srsr
sr

ii
r

≤≤+
−

−+−
=

+≤≤
−
−

=

≠
=−

=

+

−++−

+

−−+

+

2,

)()()()(
)(

12,
)()(

)(

,
,

0
)/(1

)(

1,11,
,

1,1,1
,

1
1,

 (7.21)
 and if s = 2, 3, ... , k, and r = i - s + 1, i - s + 2, ... , i are
applied, Dj,k for i - k + 1 ≤ j ≤ i, can be obtained. The
objective Nj,k

(l)(x) can be obtained as follows:

)(
)!1(
)!1()1()()(,

)(
, xD

lk
kttxN kj

l

jkjkj −−
−−−= +

ι

 and S(l)(x) can then be obtained by using this equation.
Next, the integral is expressed as

∫ ∫∑
−

+−=
==

x

x

x

x kj

n

kj
j dyyNcdyySI

0 0
)()(,

1

1
 (7.22)

 so it can be obtained by calculating ∫
x

x kj dyyN
0

)(,

Integration of. Nj,k(x) can be carried out by exchanging
the sequence of the integration calculation with the
calculation of divided difference included in Nj,k(x).

First, from Eq. (7.9), the indefinite integral of gk(t ; x) can
be expressed by

k
k xt

k
dxxtg +−−=∫)(1);(

 where an integration constant is omitted. Letting
ek(t; x) = (t – x)k

+ and its divided difference of order k
represent

Ij,k(x) = ek[tj, tj+1, ... , tj+k ; x] (7.23)

 then the Ij,k(x) satisfies the following recurrence
equation.

rsr

srsrsrr
sr

iiir

tt
xIxtxItx

xI

ir
ir
ir

xxxxxI

−
−+−

=

+≥
=

−≤

−−=

+

−++−

++

)()()()(
)(

1,
,

1,

1
)/()(

0
)(

1,11,
,

111,

 (7.24)

 where x ∈ [xi, xi+1).
If equation (7.24) is applied for s = 2, 3, ..., k and r = i – s
+ 1, i – s + 2, ..., i then a series of Ij,k (x) are obtained as
shown in the rightmost column in Fig. 7.4.

0

0
0

0

1 1 1

r

s
1

I

I
I I I

I I I I

i-k+ 1 ,k

i-2 ,3

i-1 ,2 i-1 ,3 i-1 ,k

i,1 i,2 i,3 i,k

Fig. 7.4 Calculation Ir,s(x) at x ∈∈∈∈ [xi, xi+1)

The integration of Nj,k(y) is represented by

[]

[])()(
)(

)()(
)(

)(

,0,

0,,
0

,

xIxI
k

tt

xIxI
k

tt
dyyN

kjkj
jkj

kjkj
jkix

x kj

−
−

=

−
−

−=

+

+∫

Therefore from Eq. (7.22),

()[]

() ()

()

−+

−−−=

−−==

∑

∑∑

∑∫

=
+

+
+−=

+
+−=

+

−

+−=

i

j
jkjj

kjjkj

i

kij
jkjjkj

kj
j

kjkjjkj

n

kj
j

x

x

ttc

xIttcxIttc
k

xIxIttc
k

dyySI

1

,
1

0,

0

1

,0,

1

10

)()(1

)()(1)(

 (7.25)

INTERPOLATION AND APPROXIMATION

59

 The coefficients cj in Equation (7.15) has been so far
assumed to be known in the calculation procedures for
function values, derivatives, and integral values of the
spline function S(x). cj can be determined from the
interpolation condition if S(x) is an interpolation function,
or from least squares approximation if S(x) is a
smoothing function. In the case of interpolation, for
example, since n + k – 1 coefficients cj (– k + 1 ≤ j ≤ n –
1) are involved in equation (7.15), cj will be determined
by assigning n + k – 1 interpolation conditions to
Equation (7.15). If function values are given at n + 1
points (x = x0, x1,, xn) in Fig. 7.1 function values must
be assigned at additional (n + k – 1) – (n + 1) = k – 2
points or k – 2 other conditions (such as those on the
derivatives) of S(x) must be provided in order to
determine n + k – 1 coefficients cj. Further information is
available in 7.2 “Interpolation.”
 The SSL II applies the spline function of Eq. (7.15) to
smoothing, interpolation, numerical differentiation,
quadrature, and least squares approximation.

(5) Definition, representation and calculation

method of bivariate spline function
The bivariate spline function can be defined as an
extension of the one with a single variable described
earlier.
Consider a closed region R = {(x,y) | a ≤ x ≤ b, c ≤ y ≤
d} on the x – y plane and points (xi, yj), where 0 ≤ i ≤ m
and 0 ≤ j ≤ n according to the division(7.26)

a = x0 < x1 < ･･･ < xm = b
c = y0 < y1 < ･･･ < yn = d (7.26)

 Denoting Dx=∂/∂x and Dy=∂/∂y, the function S(x, y)
which satisfies
a. Dx

k S(x,y) = Dy
k S(x,y) = 0 for each of the open

regions

{ }11, ,),(++ <<<<= jjiiji yyyxxxyxR (7.27)

b.][),(2,2 RCyxS kk −−∈

 is called a bivariate spline function of fual degree k – 1.
(7.27) a. shows that S(x,y) is a polynomial in x and y on
each of Rij and is at most (k – 1)-th degree with repeat to
both of x and y. Further, b. shows that on the entire R

),(yxS
yx µλ

µλ

∂∂
∂ +

 exists and is continuous when λ = 0, 1, .., k−2 and µ = 0,
1, ..., k−2.
If a series of points are taken as follows

s-k+1≤s-k+2≤･･･≤s-1≤s0=x0<s1=x1<･･･<
 <sm=xm≤sm+1≤･･･≤sm+k-1

t-k+1≤t-k+2≤･･･≤t-1≤t0=y0<t1=y1<･･･<
 <tn=yn≤tn+1≤･･･≤tn+k-1

 the B-splines of in x and y directions are defined in the
same way as the B-spline with a single variable.

Nα ,k(x) = (sα+k−sα) gk[sα, sα+1, ..., sα+k ; x]
Nβ ,k(y) = (tβ+k−tβ) gk[tβ, tβ+1, ..., tβ+k ; y]

 Then the bivariate spline function of dual degree k – 1
defined above can be represented in the form

)()(),(,,,

1

1

1

1
yNxNcyxS kk

m

k

n

k
βαβα

αβ
∑∑

−

+−=

−

+−=
= (7.28)

 where, cα,β sare an arbitrary constants.
The calculation of function values, partial derivatives and
indefinite integral of S (x,y) can be done by simply
applying to it the calculation for a single variable, if using
the expression (7.28). First of all, for λ ≥ 0 and µ ≥ 0,

),(),(),(yxS
yx

yxS µλ

µλ
µλ

∂∂
∂ +

=

)()()(
,

)(
,,

1

1

1

1
yNxNc kk

m

k

n

k

µ
β

λ
αβα

αβ
∑∑

−

+−=

−

+−=
= (7.29)

 Therefore, the calculation of the function values and
partial derivatives are accomplished by separately
calculating N xkα

λ
,

() () , and N ykβ
µ
,

() () which can be done by
applying the previously described method for a single
variable.
 Next, consider the value which is obtained by
differentiating S(x,y) µ times with respect to y and then
by integrating with respect to x, namely

dx
y

yxSyxS
x

x µ

µ
µ

∂
∂),(),(

0

),1(∫=− (7.30)

 This value is unchanged even when the order of
differentiation and integration is reversed. Rewriting the
right-hand side of Eq. (7.30) by using Eq. (7.28), we
obtain

∫∑

∫∑∑
−

+−=

−

+−=

−

+−=

=

⋅

x

x k

m

k

x

x kk

n

k

m

k

dxxNc

dxxNyNc

0
,

1

1

0
,

)(
,,

1

1

1

1

)(

)()(

α
α

α

α
µ

ββα
βα

 , where)()(
,

1

1
, yNcc k

n

k

µ
β

β
βαα ∑

−

+−=
= (7.31)

 This is similar to Eq. (7.23) given previously.
Therefore, calculation of Eq. (7.31) is performed first by
calculating cα and then by calculating the integral by
using the method for a single variable.
 In addition S(−1,µ)(x,y),

GENERAL DESCRIPTION

60

dy
x

yxSy

y
yxS ∫=−

0

),(
),()1,(

λ

λ
λ

∂
∂

∫∫=−− x

x

y

y
dxyxSdyyxS

00
),(),()1,1(

 can be calculated by applying the method for calculating
derivatives and integrals for a single variable each for x
and y separately.

7.2 INTERPOLATION

The general procedure of interpolation is first to obtain
an approximate function; ex., polynomial, piecewise
polynomial, etc. which fits given sample points (xi,yi),
then to evaluate that function.
 When polynomials are used for approximation, they are
called Lagrange interpolating polynomials or Hermite
interpolating polynomials (using derivatives as well as
function values). The Aitken-Lagrange interpolation and
Aitken-Hermite interpolation methods used in SSL II
belong to this. As a characteristic, they find the most
suitable interpolated values by increasing iteratively the
degree of interpolating polynomials.
 While, piecewise polynomials are used for the
approximate function when a single polynomial are
difficult to apply. SSL II provides quasi-Hermite
interpolation and spline interpolation methods.
 Interpolating splines are defined as functions which
satisfies the interpolating condition; i.e fits the given
points. Interpolating splines are not uniquely determined:
they can vary with some additional conditions. In SSL II,
four types of spline interpolation are available. As for
the representation of splines, we mainly use B-spline
representain because of its numerical stability.

Interpolation by B-spline
Subroutines using B-spline are divided into two types
according to their objectives.
(1) Subroutines by which interpolated values (or

derivatives, integrals) are obtained
(2) Subroutines by which interpolating splines are

obtained.

 Since subroutines in (1) use interpolating splines,
subroutines in (2) must be called first.
 SSL II provides various interpolating splines using B-
spline. Let discrete points be xi, i = 1, 2, ..., n, then four
types of B-spline interpolating function of degree m
(=2l−1, l≥2) are available depending on the
presence/absence or the contents of boundary conditions.

Type I S(j)(x1), S(j)(xn), j = 1, 2, ..., l – 1 are
specified by the user.

Type II S(j)(x1), S(j)(xn), j = l, l+1, ... , 2l -2 are
specified by the user.

Type III No boundary conditions.
Type IV S(j)(x1) = S(j)(xn), j = 0, 1, ... , 2l -2 are

satisfied. This type is suitable to
interpolate periodic functions.

 Selection of the above four types depends upon the
quantity of information on the original function available
to the user.
 Typically, subroutines of type III (No boundary
conditions) can be used.
 Bivariate spline function S(x,y) shown in (7.28) is used
as an interpolation for a two-dimensional interpolation.
In this case, different types could be used independently
for each direction x and y. However, SSL II provides the
interpolation using only type I or III in both directions of
x and y.
 It will be a problem how the degree of spline should be
selected. Usually m is selected as 3 to 5, but when using
double precision subroutines, if the original function does
not change abruptly, m may take a higher value.
 However, m should not exceed 15 because it may cause
another problem.
 Table 7.1 lists interpolation subroutines.

Quasi-Hermite interpolation
This is an interpolation by using piecewise polynomials
similar to the spline interpolation. The only difference
between the two is that quais-Hermite interpolation does
not so strictly require continuity of higher degree
derivatives as the spline interpolation does.
 A characteristic of quasi-Hermite interpolation is that no
wiggle appear between discrete points. Therefore it is
suitable for curve fitting or surface fitting to the accuracy
of a hand-drawn curve by a trained draftsman.
 However, if very accurate interpolated values,
derivatives or integrals are to be obtained, the B-spline
interpolation should be used.

7.3 APPROXIMATION

This includes least-squares approximation polynomials as
listed in Table 7.2. The least squares approximation
using B-spline is treated in “Smoothing”.

7.4 SMOOTHING

Table 7.3 lists subroutines used for smoothing.
 Subroutines SMLE1 and SMLE2 apply local least-
squares approximation for each discrete point instead

INTERPOLATION AND APPROXIMATION

61

Table 7.1 Interpolation subroutines

Objective Subroutine
name

Method Notes

 AKLAG
(E11-11-0101) Aitken-Lagrange

interpolation

Derivatives not
needed.

 AKHER
(E11-11-0201) Aitken-Hermite interpolation Derivatives

needed
 SPLV

(E11-21-0101) Cubic spline interpolation

 BIF1
(E11-31-0101) B-spline interpolation (I) Type I

 BIF2
(E11-31-0201 B-spline interpolation (II) Type II

Interpolated value BIF3
(E11-31-0301 B-spline interpolation (III) Type III

 BIF4
(E11-31-0401 B-spline interpolation (IV) Type IV

 BIFD1
(E11-32-1101)

B-spline two-dimensional
interpolation(I-I) Type I-I

 BIFD3
(E11-32-3301)

B-spline two-dimensional
interpolation (III-III) Type III-III

 AKMID
(E11-42-0101)

Two-dimensional quasi-
Hermite interpolation

INSPL

(E12-21-0101)

Cubic spline interpolation

Two derivatives of
the second order
at both ends are
needed

 AKMIN
(E12-21-0201) Quasi-Hermite interpolation

 BIC1
(E12-31-0102) B-spline interpolation (I) Type I

Interpolating
function

BIC2
(E12-31-0202) B-spline interpolation (II) Type II

 BIC3
(E12-31-0302) B-spline interpolation (III) Type III

 BIC4
(E12-31-0402) B-spline interpolation (IV) Type IV

 BICD1
(E11-32-1102)

B-spline two-dimensional
interpolation (I-I) Type I-I

 BICD3
(E12-32-3302)

B-spline two-dimensional
interpolation (III-III) Type III-III

Table 7.2 Approximation subroutine

Objective Subroutine name Method Notes
Least squares approxi-
mation polynomials

LESQ1
(E21-20-0101)

Discrete point
polynomial

The degree of the polynomial is
determined within the subroutine.

of applying the identical least-squares approximation
over the observed values. However, it is advisable for
the user to use B-spline subroutines for general purpose.
In B-spline smoothing, spline functions shown in (7.14)
and (7.28) are used for the one-dimensional smoothing
and two-dimensional smoothing respectively.
Coefficients cj or cα,β are determined by the least squares
method. The smoothed value is obtained by evaluating
the obtained smoothing function. SSL II provides
subroutines for evaluating the smoothing functions.

 There are two types of subroutines to obtain B-spline
smoothing functions depending upon how to determine
knots.
 They are:
• The user specifies knots (fixed knots)
• Subroutines determine knots adaptively (variable

knots)
 The former requires experience on how to specify knots.
Usually the latter subroutines are recommendable.

GENERAL DESCRIPTION

62

7.5 SERIES

SSL II provides subroutines shown in Table 7.4 for
Chebyshev series expansion, evaluation of it, derivatives
and indefinite integral.

 Table 7.5 lists subroutines used for cosine series
expansion, sine series expansion and their evaluation,
which are for periodic functions.

Table 7.3 Smoothing subroutines

Objective Subroutine name Method Notes
 SMLE1

(E31-11-0101)
Local least-squares
approximation polynomials Equally spaced discrete points

 SMLE2
(E31-21-0101)

Local least-squares
approximation polynomials Unequally spaced discrete

points
 BSF1

(E31-31-0101) B-spline smoothing Unequally spaced discrete
points

 BSFD1
(E31-32-0101)

B-spline two-dimensional
smoothing Unequally spaced lattice points

 BSC1
(E32-31-0102) B-spline smoothing (fixed nodes)

Smoothing
function

BSC2
(E32-31-0202) B-spline smoothing (added

nodes)

 BSCD2
(E32-32-0202)

B-spline two-dimensional
smoothing (added nodes) Unequally spaced lattice points

Table 7.4 Chebyshev series subroutines

Objective Subroutine name Method Notes
Series
expansion

FCHEB
(E51-30-0101) Fast cosine transformation Number of terms is

(Power of 2) + 1.
Evaluation of
series

ECHEB
(E51-30-0201) Backward recurrence equation

Derivatives of
series

GCHEB
(E51-30-0301)

Differention formula for
Chebyshev polynomials

Indefinite
inte-gral of
series

ICHEB
(E51-30-0401)

Integral formula for Chebyshev
polynomials

Table 7.5 Cosine or sine series subroutines

Objective Subroutine name Method Notes
Cosine series
expansion

FCOSF
(E51-10-0101) Fast cosine transformation Even functions

Cosine series
evaluation

ECOSP
(E51-10-0201) Backward recurrence equation Even functions

sine series
expansion

FSINF
(E51-20-0101) Fast sine transformation Odd functions

sine series
evaluation

ESINP
(E51-20-0201) Backward recurrence equation Odd functions

Smoothed
value

 Unequally spaced discrete
points

63

CHAPTER 8
TRANSFORMS

8.1 OUTLINE

This chapter is concerned with discrete Fourier
transforms and Laplace transforms.

For a discrete Fourier transform, subroutines are
provided for each of the characteristics of data types.
• Real or complex data, and
• For real data, even or odd function

8.2 DISCRETE REAL FOURIER
TRANSFORMS

When handling real data, subroutines are provided to
perform the transform (8.1) and the inverse
transform(8.2)

−==

==

∑

∑
−

=

−

=

1
2

,...,2,1,2sin2

2
,...,1,0,2cos2

1

0

1

0

nk
n
kjx

n
b

nk
n
kjx

n
a

n

j
jk

n

j
jk

π

π

 (8.1)

1,...,1,0,cos
2
1

2sin2cos
2
1

2/

12/

1
0

−=+

 ++= ∑

−

=

njja

n
kjb

n
kjaax

n

n

k
kkj

π

ππ

 (8.2)

where ak and bk are called discrete Fourier coefficients.
 If we consider the integrals,

∫
∫

π

π

π

π
2

0

2

0

sin)(1

cos)(1

dtkttx

dtkttx
 (8.3)

which define Fourier coefficients of a real valued
function x(t) with period 2π, the transfomrs (8.1) can be
derived by representing the function x(t) by n points

1,...,1,0,2 −=

= njj

n
xx j

π , in the closed interval

[0,2π] and by applying the trapezoidal rule. Particularly,
if x(t) is the (n/2 – 1)th order trigonometric polynomial,
the transforms (8.1) are the exact numerical integral
formula of the integrals (8.3). In other words, the
discrete Fourier coefficients are identical to the analytical
Fourier coefficients.
 If x(t) is an even or odd function, the discrete cosine and
sine transforms are provided by using their characteristics.

8.3 DISCRETE COSINE
TRANSFORMS

For an even function x(t), subroutines are provided to
perform the two types of transform. One of the
transforms uses the points including end points of the
closed interval[0,π], and the other transform does not
include the end points.

• Discrete cosine transform (Trapezoidal rule)

Representing an even function x(t) by

= j

n
xx j

π ,

j=0, 1, ..., n in the closed interval [0,π] the transform
(8.4) and the inverse transform (8.5) are performed.

 nkkj
n

x"
n

a
n

k
jk ,...,1,0,cos2

0
== ∑

=

π (8.4)

 njkj
n

a"x
n

k
kj ,...,1,0,cos

1

0
== ∑

−

=

π (8.5)

where Σ″ denotes both the first and the last terms of the
sum are taken with factor 1/2. The transform (8.4) can
be derived by representing an even function x(t) by

njj
n

xx j ,...,1,0, =

= π

 in the closed interval

[0,π] and by applying the trapezoidal rule to

 ∫
π

π 0
cos)(2 dtkttx (8.6)

GENERAL DESCRIPTION

64

which defining the Fourier coefficient of x(t).

• Discrete cosine transform (midpoint rule)

Representing an even function x(t) by =+ 2/1jx

1,...,1,0,
2
1 −=

 + njj

n
x π in the open interval (0,π) ,

the transform (8.7) and the inverse transform (8.8) are
performed.

 1,...,1,0,
2
1cos2 1

0 2
1 −=

 += ∑

−

= +
nkjk

n
x

n
a

n

j jk
π

 (8.7)

 1,...,1,0,
2
1cos

1

02
1 −=

 += ∑

−

=+
njjk

n
a'x

n

k
kj

π

 (8.8)

 where Σ′ denotes the sum of terms except for the first
term which is multiplied by 1/2.
The transform (8.7) can be derived by applying a
midpoint rule with n terms to the integral (8.6).

8.4 DISCRETE SINE TRANSFORMS

If the function x(t) is an odd function, subroutines are
provided to perform the two types of transforms. Similar
to the discrete cosine transform, one of the transforms is
performed based on the trapezoidal rule, and the other on
the midpoint rule.

• Discrete sine transform (Trapezoidal rule)

Representing an odd function x(t) by x j = ,

 j

n
x π j=1,

2, ..., n-1, in the closed interval [0,π] the transform
(8.9) and the inverse transform (8.10) are performed.

 1,...,2,1,sin2 1

1
−== ∑

−

=
nkkj

n
x

n
b

n

j
jk

π (8.9)

 1,...,2,1,sin
1

1
−== ∑

−

=
njkj

n
bx

n

k
kj

π (8.10)

 The transform (8.9) can be derived by representing

the odd function x(t) by ,

= j

n
xx j

π j=1, 2, ..., n-1, in

the closed interval [0,π] and by applying the
trapezoidal rule to the integral

()∫
π

π 0
sin2 dtkttx (8.11)

which defining Fourier coefficients of x(t).

• Discrete sine transform (midpoint rule)

Representing an odd function x(t) by x j+ =1 2/

1,...,1,0,
2
1 −=

 + njj

n
x π in the open interval

(0,π) the transform (8.12) and the inverse transform
(8.13) are performed.

 nkjk
n

x
n

b
n

j jk ,...,2,1,
2
1sin2 1

0 2
1 =

 += ∑

−

= +

π (8.12)

1,...,1,0

2
1sin

2
1

2
1sin

1

12
1

−=

 ++

 += ∑

−

=+

nj

jbjk
n

bx n

n

k
kj

ππ

 (8.13)

 The transform (8.12) can be derived by applying the
midpoint rule with n terms to the integral (8.11).

8.5 DISCRETE COMPLEX FOURIER
TRANSFORMS

For complex data, subroutines are provided to perform
the transforms corresponding to the transform (8.14) and
the inverse transform (8.15)

1,...,1,0,2exp1 1

0
−=

 −= ∑

−

=
nk

n
jkix

n

n

j
jk πα (8.14)

∑
−

=
−=

=

1

0
1,...,1,0,2exp

n

k
kj nj

n
jkix πα (8.15)

 Transform (8.14) can be derived by representing the
complex valued function x(t) with period 2π by

,,...,1,0,2 njj
n

xx j =

= π in the closed interval [0,2π]

and by applying the trapezoidal rule to the integral

() ()∫ −
π

π
2

0
exp

2
1 dtikttx (8.16)

 which defines Fourier coefficients of x(t).
 The discrete type Fourier transforms described above
are all performed by using the Fast Fourier Transform
(FFT).
 When transforms are performed by using the FFT, the
internal processings are divided as follows:
(a) Transforms are performed by repeating elementary

transforms of the small dimension in place.
(b) Arranging the data in the normal order.

TRANSFORMS

65

 Subroutines (component routines) are provided for each
of the above processings.
 The Fourier transform can be performed by using both
subroutines for (a) and (b) above. Another subroutine
(standard subroutine) which combines these subroutines
is also provided and should usually be used.
 The amount of data should be expressed by number to
the power of 2 in taking the processing speed into
consideration. However, for the complex Fourier
transform, the following points are also considered:
• The amount of data can be expressed by either power

of 2 or product of the powers of the prime numbers.
• Multi-variate transform can also be accomplished.

 Table 8.1 lists the subroutines for each data charac-
teristic.

Comments on use
• Number of Sample points

The number of sample points, n, of transformed data is
defined differently depending on the (data)
characteristic of the function x(t). That is, n is
− the number of sample points taken in the half period

interval, (0,π), or [0,π], for the cosine and sine
transforms, or

− the number of sample points taken in the full period
interval, [0,2π], for the real and complex trans-forms.

• Real transform against cosine and sine transforms
If the function x(t) is an ordinary real function, the
subroutine for a real transform can be used, but if it is
known in advance that the x(t) is either an even or odd
function, the subroutine for cosine and sine transforms
should be used. (The processing speed is about half as
fast as for a real transform.)

• Fourier coefficients in real and complex transforms
The following relationships exist between the Fourier
coefficients {ak} and {bk} used in a real transform
(including cosine and sine transforms) and the Fourier
coefficient {αk} used in a complex transform.

 ()
()

−=−=
−=+=

==

−

−

12/,...2,1,
12/,...,2,1,

2,2 2/2/00

nkib
nka

aa

knkk

knkk

nn

αα
αα

αα
 (8.17)

 where n denotes equally spaced points in a period [0,2π].
Based on the above relationships, users can use both
subroutines for real and complex transforms when
necessary. In this case, however, attention must be paid
to scaling and data sequence.

• Trigonometric functions

For cosine and sine transforms, the necessary
trigonometric function table for transforms is provided
in the subroutine for better processing efficiency. The
function table is output in the parameter TAB which
can be used again for successive transforms.
For each transform, two subroutines are provided based
on the trapezoidal rule and the midpoint rule. For the
former, the size of the trigonometric function table is
smaller and therefore more efficient.

• Scaling
Scaling of the resultant values is left to the user.

Table 8.1 Subroutines for discrete Fourier transform

 Subroutine name
Type of transform Amount of data Standard routine Component routine

 (a) (b)
Cosine Trapezoidal rule (Power of 2) + 1 FCOST

(F11-11-0101)

 Midpoint rule Power of 2 FCOSM
(F11-11-0201)

Sine Trapezoidal rule FSINT
(F11-21-0101)

 Midpoint rule FSINM
(F11-21-0201)

Real transform RFT
(F11-31-0101)

Complex transform CFT
(F12-15-0101)

CFTN
(F12-15-0202)

PNR
(F12-15-0402)

 CFTR
(F12-15-0302)

 Product of power
of prime numbers

CFTM
(F12-11-0101)

Note:
(a) and (b) given in the table are described in Section 8.5.

GENERAL DESCRIPTION

66

8.6 LAPLACE TRANSFORM

The Laplace transform of f(t) and its inverse are defined
respectively as:

() ()∫
∞ −=
0

dtetfsF st (8.18)

() ()∫
∞+

∞−
=

i

i
st dsesF

i
tf

γ

γπ2
1 (8.19)

 where γ > γ0, γ0 (: abscissa of convergence) and
i = −1 .
 In these transforms, f(t) is called the original function
and F(s) the image function. Assume the following
conditions about F(s).

() ()
() ()

() () ()

>=

>=
∞→

0

0s

0

Refor * 3)

Refor 0lim 2)
>Refor rnonsingula is sF 1)

γ

γ
γ

ssFsF

ssF
s

*

 (8.20)

 where Re [•] denotes the real part of [•] and F*(s) the
conjugate of F(s). Condition 1) is always satisfied,
condition 2) is satisfied unless f(t) is a distribution and
condition 3) is satisfied when f(t) is a real function. The
subroutines prepared perform the numerical
transformation of expression (8.19). The outline of the
method is described below.

Formula for numerical transformation
Assume γ0 ≤ 0 for simplicity, that is F(s) is regular in the
domain of Re(s) > 0, and the integral (8.19) exists for an
arbitrary real value γ greater than 0. Since

()[]sees −=
∞→ 0cosh2lim 0

0

σσ

σ

est in (8.19) is approximated as follows using an
appropriate value for σ0:

() ()[]stestEec −≡ 00 cosh2, 0 σσ σ

 Function Eec(st,σ0) is characterized as follows:
There are an infinite number of poles on the line
expressed by Re(s)=σ0/t. Figure 8.1 shows locations of
the poles. This can be explicitly represented as:

() ()
()[]∑

∞

−∞= −+−
−=

n

n

ec tnis
i

t
estE

πσ
σ

σ

5.0
1

2
,

0
0

0

 Then, f(t,σ0) which denotes an approximation of the
original function f(t) is:

() () ()∫
∞+

∞−
≡

ir

ir ec dsstEsF
i

tf 00 ,
2

1, σ
π

σ (8.21)

where γ0 < γ < σ0/t is assumed.

 It follows that the integral of the right-hand side can be
expanded in terms of integrals around the poles of
Eec(st,σ0).

Real axis

Re(s)=γ

Imaginary axis

Fig. 8.1 Poles of Eec(st,σ0)

 Since F(s) is regular in the domain of Re(s) > 0, the
following is obtained according to Cauchy’s integral
formula:

() () ()

() ()∑

∑
∞

=

−∞=

+

 −+
−=

 −+
−=

1

0

01
0

5.0
Im1

5.0
1

2
,

0

0

n

n

n

n

n

t
ni

F
t

e

t
ni

iF
t

etf

πσ

πσ
σ

σ

σ

 (8.22)

where Im [•] denotes the imaginary part of [•]. If γ0 >
0 the condition γ0 < γ < σ0/t cannot be satisfied for a
certain value of t(0 < t < ∞). This means γ0 ≤ 0 is
necessary for (8.22) to be used for 0 < t < ∞.
 Function f(t,σ0) gives an approximation to function f(t)
and is expressed as follows according to the error
analysis in reference [98]:

() () () () ⋅⋅⋅−⋅+⋅−= −− tfetfetftf 53, 00 42
0

σσσ
 (8.23)

 This means that function f(t,σ0) gives a good
approximation to f(t) when σ0 >> 1. Moreover, (8.23) can
be used for estimating the approximation error.
 For numerical calculation, the approximation can be
obtained principally by truncating (8.22) up to an
appropriate term; however, the direct summation is often
not practical. Euler transformation that can be generally
applied in this case is incorporated in the subroutines.
Define function Fn as follows:

() ()

 −+−≡

t
niFF n

n
πσ 5.0Im1 0 (8.24)

TRANSFORMS

67

 Then, Euler transformation is applicable when the
following condition is satisfied (reference [100]):
1) For an integer k≥1, the sign of Fn alternates when n≥k

 (8.25)
2) 1/2 ≤ | Fn+1/Fn | < 1 when n ≥ k

 When Fn satisfies these conditions, the series
represented by (8.22) can be transformed as:

()kRFDFF p

p

q
k

q
q

k

n
n

n
n 1

0
1

1

11 2
1

+
=

+

−

=

∞

=
∑∑∑ ++= (8.26)

where Rp(k) is defined as:
Rp(k) ≡ 2−P(DpFk+DpFk+1+DpFk+2+…)

DpFk is the pth difference defined as

1
10 , +

+ +== k
p

k
p

k
p

kk FDFDFDFFD (8.27)

 In the subroutines, the following expression is
employed:

()

+== ∑∑∑
=

+

−

==

p

q
q

k
qk

n
n

N

n
nN

FDF
t

eF
t

etf
0

1

1

11
0 2

,
00 σσ

σ (8.28)

where N = k + p,

 +
+==

=

−

=
++

=
+ ∑∑

r
p

AAA

FAFD

rprppp

p

r
rkrpp

p

q
q

k
q

1
,1

2
1

2

,1,,

0
,1

0
1

 (8.29)

 Determination of values for σ0, k, and p is explained in
each subroutine description.
 The following has been proved for the truncation error
of fN(t,σ0). Suppose φ (n) ≡ Fn. If the p th derivative of
φ(x), φ (p) (x), is of constant sign for positive x and
monotonously decreases with increase of x (for example,
if F(s) is a rational function), the following will be
satisfied:

() ()

() () k
p

pNN

pN

FD
t

etftf

kR
t

etftf

1
1001

100

2
1,,

)(,,

0

0

+
++

+

=−≤

=−

σ

σ

σσ

σσ
(8.30)

where fN+1(t,σ0) stands for (8.28) with k + 1 instead of k.
To calculate Dp+1Fk in the above formula, Fk+p+1 is
required, in addition to the set {Fn; n = k, k+1,, k+p}
to be used for calculation of fN(t,σ0); hence, one more
evaluation of the function is needed. To avoid that, the
following expression is substituted for the truncation
error of fN(t,σ0) in the subroutines;

() () 1
1

1010 2
1,,

0

−
+

+− =− k
p

pNN FD
t

etftf
σ

σσ

In the subroutines, the truncation error is output in the
form of the following relation error:

() ()
()

rk

p

r
rpp

k

n
n

k
p

p

N

NN

FAF

FD

tf
tftf

+
=

+

−

=

−
+

+−

∑∑ +
=−

0
,1

1

1

1
1

1

0

010

2
1

2
1

,
,,

σ
σσ

 Dp+1Fk-1 is a linear combination of Fk-1, Fk, ..., Fk+p, and
the coefficients are equal to the binomial coefficients. Ap,
r can be calculated as the cumulative sum, as shown in
(8.29). Thus, these coefficients can easily be calculated
by using Pascal’s triangle. Figure 8.2 shows this
calculation techniques (for p = 4)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

31 26 16 6 1

coefficients of
D5Fk-1

A4,r
Fig. 8.2 Pascal’s triangle (for p=4)

 Next, in the case of γ0>0, since F(s) is not regular in the
domain of Re(s) > 0; the above technique cannot be
directly applied. Note, however, that the integral in
(8.19) can be expressed as:

() () ()

()tge

dsesG
i

e

dsesF
i

tf

t

stir

ir

t

tsir

ir

0

0

0

)(
2

2
1

0

γ

γ

γ

π

γ
π

=

=

+=

∫

∫
∞+

∞−

+∞+

∞−

 where r>0, G(s)=F(s+r0)
 (8.31)

() dsesG
i

tg stir

ir∫
∞+

∞−
=)(

2
1
π

GENERAL DESCRIPTION

68

 Since G(s) is regular in the domain of Re(s) > 0, g(t) can
be calculated as explained above; then f(t) is obtained by
multiplying g(t) by te 0γ

Transformation of rational functions
A rational function F(s) can be expressed as follows
using polynomials Q(s) and P(s) each having real
coefficients:

F(s) = Q(s) / P(s) (8.32)

 To determine whether γ0≤0 or γ0>0 , it is only necessary
to check whether P(s) is a Hurwitz polynomial (that is, all
zeros are on the left-half plane {s | Re(s)<0}. The
procedure used for the check is described below
(reference [94]):
 A polynomial P(s) of degree n with real coefficients is
expressed as follows:

⋅⋅⋅++=
≠⋅⋅⋅++=

+=
++⋅⋅⋅++=

−−

−

+
−

3
4

1
2

1
2

31

1
1

21

)(
0,)(

)()(
)(

where

nn

nn

nn
nn

sasasn
asasasm

snsm
asasasasP

 The ratio of n(s) to m(s) is defined as:

)()()(snsmsW ≡

 Then, W(s) is expanded into continued fraction as:

() ⋅⋅⋅++++=
shshsh

shsW
432

1
111

 (8.33)

 If all of h1, h2, ... , are positive, P(s) is a Hurwitz
polynomial. If F(s) has singularities in the domain of

Re(s) >0, the above procedure can be repeated increasing
α(> 0) so that G(s)=F(s+α) is regular in the domain of
Re(s) > 0. The value of fN(t,σ0) is calculated by
multiplying eαt by gN(t,σ0), the inverse of G(s).
 When F(s) is an irrational function or a distribution,
there is no practical method that tests if F(s) is regular in
the domain of Re(s) > 0, therefore, the abscissa of
convergence of a general function F(s) must be specified
by the user.

Choice of subroutines
Table 8.2 shows subroutines for the inversion of Laplace
transforms. LAPS1 and LAPS2 are used for rational
functions where LAPS1 for γ0 ≤ 0 and LAPS2 otherwise.
HRWIZ judges the condition P(s), that is, examines if γ0
> 0 in (8.32) is a Hurwitz polynomial; and if γ0 > 0 is
detected, the approximated value of γ0 is calculated. The
condition γ0 > 0 means that the original function f(t)
increases exponentially as t→∞ . So, HRWIZ can be
used for examining such a behavior. Figure 8.3 shows a
flowchart for choosing subroutines.

Table 8.2 Laplace transform subroutines

Function
type Subroutine

name
Remarks

 LAPS1
(F20-01-0101)

Rational functions regular
in the right-half plane.

Rational
functions

LAPS2
(F20-02-0101)

General rational functions.

 HAWIZ
(F20-02-0201)

Judgment on Hurwitz
polynomials.

General
functions

LAPS3
(F20-03-0101)

Convergence coordinate γ0
must be input.

TRANSFORMS

69

Rational
function

γ 0 ≤0

γ 0 is required

Condition
γ 0 ≤0 is satisfied

HRWIZ

LAPS2

LAPS3

1

1

END

LAPS1

Inversion
required

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Inversion
required

Fig. 8.3 Flowchart for choosing Laplace transform subroutines.

GENERAL DESCRIPTION

 70

CHAPTER 9
NUMERICAL DIFFERENTIATION AND QUADRATURE

9.1 OUTLINE

This chapter describes the following types of problems.

• Numerical differentiation:
Given function values yi = f(xi), i = 1, ... n at discrete
points x1, x2, ..., xn (x1 < x2 < ... < xn), the l - th order
derivative f (l)(v), at x = v in the interval [x1, xn] is
determined, where l ≥ 1.
In addition two-dimensional differentiation is included.
Also, given function f(x), the following derivative is
expanded to Chebyshev series.

()() () 1, ≥= ldxxfdxf lll

• Numerical quadrature:
Given function values yi = f(xi), i = 1, ..., n at discrete
points x1, x2, ..., xn, the integral of f(x) over the interval
[x1, xn] is determined. Also, given function f(x), the
integral

∫=
b
a

dxxfS)(

is determined within a required accuracy. Multiple
integrals are also included.

9.2 NUMERICAL DIFFERENTIATION

When performing numerical differentiation, SSL II
divides problems into the following two types:

Discrete point input
In numerical differentiation, an appropriate interpolation
function is first obtained to fit the given sample point
(xi,yi) where i = 1, 2, ..., n, then it is differentiated.
 Among several functions available, SSL II exclusively
uses the spline function and we preferably use its B-
spline representations.
 See Chapter 7 as for the spline function and B-spline
representations.

Function input
Given function f(x) and domain [a, b], f(x) is expanded to
Chebyshev series within a required accuracy. That is, it
is approximated by the following functions:

() ()∑
−

=

−
+−≈

1

0

2n

k
kk ab

abxTcxf

 Then by differentiating term by term.

()() ()∑
−−

=

−
+−≈

1

0

2ln

k
k

ll

ab
abxTcxf

k

 the derivatives are expanded to Chebyshev series. The
derivative values are obtained by evaluating f (l)(v) at
point x = v in the interval in which the function is defined,
that is, by summing Chebyshev series.
 Table 9.1 lists subroutines used for numerical
differentiation.

9.3 NUMERICAL QUADRATURE

Numerical Quadrature is divided into the following two
types.

Integration of a tabulated function
Given function values yi = f(xi), i = 1, ..., n at discrete
points x1 < x2< <xn, the definite integral:

∫= nx

x
dxxfS

1
)((9.1)

is approximated using only the given function values yi.
The bounds of error of the approximated value can not be
calculated. Different subroutines are used depending on
whether or not the discrete points are equally spaced.

Integration of a function
Given a function f(x) and the interval of integration

NUMERICAL DIFFERENTIATION AND QUADRATURE

 71

Table 9.1 Subroutine used for numerical differentiation

Objective Subroutine name Method Remarks
Derivative
value

SPLV
(E11-21-0101) Cubic spline interpolation Discrete point input

 BIF1
(E11-31-0101) B-spline interpolation (I)

 BIF2
(E11-31-0201) B-spline interpolation (II)

 BIF3
(E11-31-0301) B-spline interpolation (III)

 BIF4
(E11-31-0401) B-spline interpolation (IV)

 BSF1
(E31-31-0101) B-spline smoothing

 BIFD1
(E11-32-1101)

B-spline 2-dimensional
interpolation (I-I)

Discrete point input 2-
dimensional

 BIFD3
(E11-32-3301)

B-spline 2-dimensional
interpolation (III-III)

 BSFD1
(E31-32-0101)

B-spline 2-dimensional
smoothing

 FCHEB
(E51-30-0101) Fast cosine transformation Function input, Chebyshev

series expansion
 GCHEB

(E51-30-0301)
Backward recurrence
equation Chebyshev series

derivative
 ECHEB

(E51-30-0201)
Backward recurrence
equation Summing Chebyshev

series

[a, b], the definite integral:

S = fa
b

∫ (x) dx (9.2)

is calculated within a required accuracy. Different
subroutines are used according to the form,
characteristics, and the interval of integration of f(x).

Besides (1. 2), the following types of integrals are
calculated.

∫∫
∫
∫

∞

∞−

∞

d

c

b

a
dyyxfdx

dxxf

dxxf

),(

,)(

,)(
0

 Subroutines used for numerical quadrature are shown in
Table 9.2.

General conventions and comments on numerical
quadrature
The subroutines used for numerical quadrature are
classified primarily by the following characteristics.
• Dimensions of the variable of integration: 1 dimension

or 2
• Interval of integration: finite interval, infinite interval,

or semi-infinite interval.

 Titles of the subroutines are based on that classification,
so we say, for example:
• 1-dimensional finite interval integration
• 1-dimensional infinite interval integration

 If a subroutine is characterized by other aspects or by its
method, they are included in parentheses:
• 1-dimensional finite interval integration (unequally

spaced discrete point input, trapezoidal rule)
• 1-dimensional finite interval integration (function input,

adaptive Simpson’s rule)

 Numerical integration methods differ depending on
whether a tabulated function or a continuous function is
given. For a tabulated function, since integration is
performed using just the function values yi = f(xi), i =
1, ...n it is difficult to obtain an approximation with high
accuracy. On the other hand, if a function is given,
function values in general can be calculated anywhere
(except for singular cases), thus the integral can be
obtained to a desired precision by calculating a sufficient
number of function values. Also, the bounds of error can
be estimated.

Integrals of one-dimensional functions over finite
interval
The following notes apply to the subroutines which
compute ()f x dx

a
b

∫

Derivative
function and
derivative
value

GENERAL DESCRIPTION

 72

Table 9.2 Numerical quadrature subroutines

Objective Subroutine
name

Method Remarks

1-dimensional finite
interval
(equally spaced)

SIMP1
(G21-11-0101)

Simpson’s rule

 TRAP
(G21-21-0101) Trapezoidal rule

 BIF1
(E11-31-0101) B-spline interpolation (I)

 BIF2
(E11-31-0201) B-spline interpolation (II)

 BIF3
(E11-31-0301) B-spline interpolation (III)

 BIF4
(E11-31-0401) B-spline interpolation (IV)

 BSF1
(E31-31-0101) B-spline smoothing

 BIFD1
(E11-32-1101)

B-spline 2-dimensional
interpolation (I-I)

2-dimensional finite
interval

BIFD3
(E11-32-3301)

B-spline 2-dimensional
interpolation (III-III)

Discrete point input 2-
dimensional

 BSFD1
(E31-32-0101)

B-spline 2-dimensional
smoothing

 SIMP2
(G23-11-0101) Adaptive Simpson’s rule

 AQN9
(G23-11-0201)

Adaptive Newton-Cotes 9
point rule

 AQC8
(G23-11-0301) Clenshaw-Curtis integration

 AQE
(G23-11-0401) Double exponential formula

1-dimensional semi-
infinite interval

AQEH
(G23-21-0101) Double exponential formula

1-dimensional infinite
interval

AQEI
(G23-31-0101) Double exponential formula

Multi-dimensional
finite region

AQMC8
(G24-13-0101) Clenshaw-Curtis quadrature

Multi-dimensional
region

AQME
(G24-13-0201) Double exponential formula

• Automatic quadrature routines

Four quadrature subroutines, SIMP2, AQN9, AQC8,
and AQE are provided for the integration ()f x dx

a
b

∫ , as

shown in Table 9.2. All these subroutines are
automatic quadrature routines. An automatic
quadrature routine is a routine which calculates the
integral to satisfy the desired accuracy when integrand
f(x), integration interval [a, b], and a desired accuracy
for the integral are given. Automatic quadrature is the
algorithm designed for this purpose.
 Generally in automatic quadrature subroutines, an
integral calculation starts with only several abscissas
(where the integrand is evaluated), and next improves
the integral by increasing the number of abscissas
gradually until the desired accuracy is satisfied. Then
the calculation stops and the integral is output.

 In recent years, many automatic quadrature
subroutines have been developed all over the world.
These subroutines have been tested and compared with
each other many times for reliability (i.e., ability to
satisfy the desired accuracy) and economy (i.e., less
calculation) by many persons. These efforts are well
reflected in the SSL II subroutines.

• Adaptive method

This is most (popularly) used for integral calculation as
a typical method of automatic integration. This is not a
specific integration formula (for example, Simpson’s
rule, Newton-Cotes 9 point rule, or Gauss’ rule, etc.),
but a method which controls the number of abscissas
and their positions automatically in response to the
behavior of integrand. That is, it locates

1-dimensional finite
interval
(unequally spaced)

 Discrete point input

1-dimensional finite
interval

Integration of a function

 Multi-variate function
input

NUMERICAL DIFFERENTIATION AND QUADRATURE

 73

abscissas densely where integrand changes rapidly, or
sparsely where it changes gradually. Subroutines
SIMP2 and AQN9 use this method.

• Subroutine selection

As a preliminary for subroutine selection, Table 9.3
shows several types of integrands from the viewpoint
of actual use.
It is necessary in subroutine selection to know which
subroutine is suitable for the integrand. The types of
routines and functions are described below in
conjunction with Table 9.3.

Table 9.3 Integrand type

Code Meaning Example
Smooth Function with good

convergent power series.
∫

∫
−1

0

0 sin

dxe

,xdx
x

π

Peak Function with some high
peaks and wiggles in the
integration interval.)10(62

1
1

−+

∫

x

/dx-

Oscilla-
tory

Function with severe, short
length wave oscillations. ∫

1
0 100sin xdxπ

Singu-
lar

Function with algebraic
singularity (xα, −1 < α) or
logarithmic singularity (log x). ∫

∫
1
0

1
0

log xdx

x/dx

Discon-
tinuous

Function with discontinuities
in the function value or its
derivatives ∫

∫
π
0

1
0

cos

]2[

x|dx|

,dxx

SIMP2 Uses adaptive method based on Simpson’s

rule. This is the first adaptive method used in
the SSL II, and is the oldest in the history of
adaptive methods. More useful adaptive
methods are now available. That is, SIMP2 is
inferior to the adaptive routine AQN9 in many
respects.

AQN9 Adaptive method based on Newton-Cotes’
9-point rule. This is the most superior adaptive
method in the sense of reliability or economy.
Since this subroutine is good at detecting local
actions of integrand, it can be used for
functions which have singular points such as a
algebraic singularity, logarithmic singularity,
or discontinuities in the integration interval,
and in addition, peaks.

AQC8 ... Since this routine is based on Chebyshev

series expansion of a function, the better
convergence property the integrand has the
more effectively the routine can perform
integration. For example, it can be used for
smooth functions and oscillatory functions but
is not suitable for singular functions and peak
type functions.

AQEMethod which extends the integration
interval [a, b] to (-∞,∞) by variable
transformation and uses the trapezoidal rule.
In this processing, the transformation is
selected so that the integrand after conversion
will decay in a manner of a double exponential
function (exp (-a⋅exp|x|), where a>0) when
x→∞. Due to this operation, the processing is
still effective even if the function change
rapidly near the end points of the original
interval [a, b]. Especially for functions which
have algebraic singularity or logarithmic
singularity only at the end points, processing is
more successful than any other subroutine, but
not so successful for functions with interior
singularities.

 Table 9.4 summarizes these descriptions. The
subroutine marked by ‘ ’ is most suitable for
corresponding type of function, and the subroutine
marked by ‘ ’ should not be used for the type. No mark
indicates that the subroutine is not always suitable but
can be used. All these subroutines can satisfy the desired
accuracy for the integral of smooth type. However,
AQC8 is best in the sense of economy, that is, the amount
of calculation is the least among the three.
 SSL II provides subroutines AQMC8 and AQME for up
to three-dimensional integration. They are automatic
quadrature routines as shown below.
AQMC8 Uses Clenshaw-Curtis quadrature for each

dimension. It can be used for a smooth and
oscillatory functions. However, it is not
applicable to functions having singular points
or peaked functions.

AQME Uses double exponential formula for each
dimension. Since this subroutines has all
formulas used in AQE, AQEH and AQEI, it
can be used for any type of intervals (finite,
semifinite or infinite interval)

Table 9.4 Subroutine selection

Function
type

Smooth

Peak

Oscillatory Singular

Unknown*
Subroutine End point Interior

AQN9 O O O O
AQC8 O ×××× O × × ×
AQE O × ×

* Functions with unknown characteristics

 Discon-
tinuous

GENERAL DESCRIPTION

 74

and those combining these types.
AQME can be used efficiently if the function has

singular points on the boundary of a region. However, it

is not applicable to the function which has singular points
in the region.

 75

CHAPTER 10
DIFFERENTIAL EQUATIONS

10.1 OUTLINE

This chapter describes the following types of problems.

• Ordinary differential equations (initial value problems)

Initial value problems of systems of first order oridnary
differential equations are solved.

() ()
() ()

() ()

==′

==′
==′

001

0220122

0110111

,,...,,
: :

,,...,,
,,...,,

xyyyyxfy

xyyyyxfy
xyyyyxfy

nnnnn

n

n

 (10.1)

 Initial value problems of high order ordinary differential
equations can be reduced to the form shown in (10.1).
Namely, letting

() ()(),,...,,,, 1−′′′= kk yyyyxfy
() () ()()0

1
0020010 ,...,, xyyxyyxyy k

k
−=′==

and

() () ()()xyyxyyxyy k
k

1
21 ,...,, −=′==

 Then, the high order equations can be reduced to and
expressed as:

()

()
()

()
()

=
=

=
=

=′
=′

=′
=′

−−−

00

0110

0220

0110

21

1

32

21

:

,
,
,
,
,

,...,,,

:

xyy
xyy

xyy
xyy

yyyxfy
yy

yy
yy

kk

kk

kk

kk

 (10.2)

10.2 ORDINARY DIFFERENTIAL
EQUATIONS

To solve the initial value problem y′ = f(x, y), y(x0) = y0
on the interval [x0, xe] means to obtain approximate
solutions at discrete points

x0 < x1 < x2 < ... <xe

step by step as shown in Fig. 10.1.

x
xex5x4x3x2x1x00

y0

y

Fig. 10.1 Approximate solutions of y' = f (x, y), y(x0) = y0

Solution output
In Fig. 10.1, solution output points x1, x2, x3, ... are either
specified by the user or selected as a result of step size
control by the subroutine. The purpose of solving the
differential equations is to obtain:
(a) the solution y(xe) only at xe
(b) the solutions at the points selected as a result of step-

size control by the subroutine. In this case, the
purpose is to know the behavior of solutions, and no
restriction is necessary to the solution output points
because the behaviour of the solutions is all that is
needed

(c) the solution at user-specified points {ξj} or at equally
spaced points.

 The SSL II ordinary differential equation subroutines
provide two output methods (timing to return to the user
program from the subroutine) corresponding to the
purposes described above, as follows:

GENERAL DESCRIPTION

 76

• Final value output
When the solution y(xe) is obtained, return to the user
program. For the purpose of (c), set xe to ξi
sequentially, where i = 1, 2, ..., and call the subroutine
repeatedly.

• Step output
Under step-size control, return to the user program
after one step integration. The user program can call
this subroutine repeatedly to accomplish (b) described
above.

 SSL II provides subroutines ODRK1, ODAM and
ODGE which incorporate final value output and step
output. The user can select the manner of output by
specifying a parameter.

Stiff differential equations
This section describes stiff differential equations, which
appear in many applications, and presents definitions and
examples.
 The equations shown in (10.1) are expressed in the from
of vectors as shown below.

() () 00,, yyyfy ==′ xx (10.3)

where

()
() () () ()()
() ()Nii

N

N

yyyxfxf
xfxfxfx

yyy

,...,,,,
,,,...,,,,,

,,...,,

21

T
21

T
21

=
=

=

y
yyyyf

y

Suppose f(x, y) is linear, that is

() ()xx ΦΦΦΦ+= Ayyf , (10.4)

 where, A is a constant coefficient matrix and)(xΦΦΦΦ is an
appropriate function vector. Then, the solution for (10.3)
can be expressed by using eigenvalues of A and the
corresponding eigenvectors as follows:

() ()∑
=

+=
N

i
i

x
i xekx i

1
ΨΨΨΨuy λ (10.5)

 ki : constant

 Let us assume the following conditions for λi and)(xΨΨΨΨ
in (10.5):
(a) Re(λi)<0, for i=1, 2, ..., N
(b))(xΨΨΨΨ is smoother than any xieλ (that is, it has good

convergent power expansion).

 Under these conditions, as x tends to infinity, the
following can be seen.

∑
=

→
N

i
i

x
i

iek
1

0uλ (10.6)

So, solution y(x) tends to)(xΨΨΨΨ . After)(xΨΨΨΨ has
become dominant, the solution can be obtained by the
approximate solution for)(xΨΨΨΨ . The step sizes can be
spaced rather roughly.
 However, attempts to use methods such as Euler and
classical Runge-Kutta encounter a phenomenon that errors
introduced at a certain step increase from step to step.
Therefore, when using these methods, the step sizes are
substantially restricted. The larger the value of
max (|Re(λi)|) is, the smaller the step size must be.
 Although solution y(x) can be approximated numerically by
the smoothing function)(xΨΨΨΨ , the step sizes must be small
for integration. This causes an imbalance between two step
sizes, one of which is enough to approximate the solution
numerically, and the other is required for error protection.
 If)(xΦΦΦΦ = 0, that is,)(xΨΨΨΨ = 0 in (10.3), solution y(x)
becomes smaller. Therefore, it is actually approximated by
the term ki xieλ ui corresponding to the smallest | Re(λi) |.
In this case, if max | Re(λi) | is large, the above mentioned
difficulty occurs.
 The stiff differential equation is defined as follows:

• Definition 1

When the following linear differential equation

 ()xΦΦΦΦ+=′ Ayy (10.7)

satisfies the following (10.8) and (10.9),

Re(λi)<0, i=1, 2, ... , N (10.8)
()()
()()i

i

λ
λ

Remin
Remax

>>1 (10.9)

they are called stiff differential equations. The left side
of the equation in (10.9) is called stiff ratio. If this
value is large, it is strongly stiff: otherwise, it is mildly
stiff. Actually, strong stiffness with stiff ratio of
magnitude 106 is quite common.
 An example of stiff linear differential equations is
shown in (10.10). Its solution is shown in (10.11) (See
Fig. 10.2).

()

=

−−

=′
0
1

0,
1999999
1998998

yyy (10.10)

 −
+

−

= −−

1
1

1
2 1000xx eey (10.11)

 Obviously, the following holds: when x → ∞
 y1 → 2e-x , y2 → −e-x

DIFFERENTIAL EQUATIONS

 77

-1

0

1

2

y1

y2

x

Fig. 10.2 Graph for the solution in (10.11)

Suppose f(x, y) is nonlinear.
The eigenvalue of the following Jacobian matrix
determines stiffness.

()
y

yf
J

∂
∂ ,x

=

where, the eigenvalues vary with x. Then, definition 1
is extended for nonlinear equations as follows.

• Definition 2

When the following nonlinear differential equation

y′ = f(x, y) (10.12)

satisfies the following (10.13) and (10.14) in a certain
interval, it is said to be stiff in that interval.

()() Nixi ...,,2,1,0Re =<λ (10.13)
 x∈ I

Ix
x
x

i

i ∈>> ,1
)))(Re(min(
)))(Re(max(

λ
λ

 (10.14)

where λi(x) are the eigenvalues of J.
 Whether the given equation is stiff or not can be
checked to some extent in the following way:

− When the equation is linear as shown in (10.7), the
− stiffness can be checked directly by calculating the

eigenvalues of A.
− When the equation is nonlinear, subroutine ODAM

can be used to check stiffness. ODAM uses the
Adams method by which non-stiff equations can be
solved. ODAM notifies of stiffness via parameter
ICON if the equation is stiff.
 Subroutine ODGE can be used to solve stiff
equations.

Subroutine selection
Table 10.1 lists subroutines used for differential
equations.
• ODGE for stiff equations
• ODRK1 or ODAM for non-stiff equations

ODRK1 is effective when the following conditions are
satisfied:
− The accuracy required for solution is not high.
− When requesting output of the solution at specific

points of independent variable x, the interval of
points is wide enough.
 The user should use ODAM when any of these
conditions is not satisfied.

• Use ODAM at first when the equation is not recognized
stiff.
If ODAM indicated stiffness, then the user can shift to
ODGE.

Table 10.1 Ordinary differential equation subroutines

Objective Subroutine name Method Comments
 RKG

(H11-20-0111) Runge-Kutta Gill method Fixed step size

 HAMNG
(H11-20-0121) Hamming method Variable step size

Initial value
problem

ODRK1
(H11-20-0131) Rung-Kutta-Verner

method
Variable step size

 ODAM
(H11-20-0141) Adams method Variable step size, variable order

 ODGE
(H11-20-0151) Gear method Variable step size, variable order

(Stiff equations)

 78

CHAPTER 11
SPECIAL FUNCTIONS

11.1 OUTLINE

The special functions of SSL II are functions not included
in FORTRAN basic functions. The special functions are
basically classified depending upon whether the variables
and functions are real or complex.

 Real type (variable and function are both real)
Special functions
 Complex type (variable and function are both complex)

The following properties are common in special function
subroutines.

Accuracy
The balance between accuracy and speed is important
and therefore taken into account when selecting
calculation formulas. In SSL II, calculation formulas
have been selected such that the theoretical accuracies
(accuracies in approximation) are guaranteed to be within
about 8 correct decimal digits for single precision
versions and 18 digits for double precision versions. To
insure the accuracy, in some single precision versions, the
internal calculations are performed in double precision.
However, since the accuracy of function values depends
on the number of working digits available for calculation
in the computer, the theoretical accuracy cannot always
be assured.
 The accuracy of the single precision subroutines has
been sufficiently checked by comparing their results with
those of double precision subroutines, and for double
precision subroutines by comparing their results with
those of extended precision subroutines which have much
higher precision than double precision subroutines.

Speed
Special functions are designed with emphasis on accuracy
first and speed second. Though real type functions may
be calculated with complex type function subroutines,
separate subroutines are available with greater speed for
real type calculations. Separate

subroutines, single precision and double precision
subroutines have been prepared also for interrelated
special functions. For frequently used functions, both
general and exclusive subroutines are available.

ICON
Special functions use FORTRAN basic functions, such as
exponential functions and trigonometric functions. If
errors occur in these basic functions, such as overflow or
underflow, detection of the real cause of problems will be
delayed. Therefore, to notice such troubles as early as
possible, the detection is made before using basic
functions in special function subroutines, and if detected,
informations about them are returned in parameter ICON.

Calling method
Since various difficulties may occur in calculating special
functions, subroutines for these functions have a
parameter ICON to indicate how computations have
finished. Accordingly,special functions are implemented
in SUBROUTINE form which are called by using the
CALL statements, while it is said that these functions
should be implemented in FUNCTION form as basic
functions.

11.2 ELLIPTIC INTEGRALS

Elliptic integrals are classified into the types shown in
Table 11.1.
 A second order iteration method can be used to
calculate complete elliptic integrals, however, it has the
disadvantage that the speed changes according to the
magnitude of variable. In SSL II subroutines, an
approximation formula is used so that a constant speed is
maintained.

SPECIAL FUNCTIONS

 79

Table 11.1 Elliptic integral subroutines

Item

Mathema-
tical

symbol

Subroutine
name

Complete Complete
elliptic integral
of the first
kind

K (k) CELI1
(I11-11-0101)

 Complete
elliptic integral
of the second
kind

E (k) CELI2
(I11-11-0201)

11.3 EXPONENTIAL INTEGRAL

Exponential integral is as shown in Table 11.2.

Table 11.2 Subroutines for exponential integral

Item Mathematical symbol Subroutine name
)(xEi − , x > 0 Exponential

integral)(xEi , x > 0
EXPI

(I11-31-0101)

Since exponential integral is rather difficult to compute,
various formulas are used for various range of variable.

11.4 SINE AND COSINE INTEGRALS

Sine and cosine integrals are listed in Table 11.3.

Table 11.3 Subroutines for sine and cosine integrals

Item Mathematical
symbol

Subroutine name

Sine integral Si (x) SINI
(I11-41-0101)

Cosine integral Ci (x) COSI
(I11-41-0201)

11.5 FRESNEL INTEGRALS

Fresnel integrals are shown in Table 11.4.

11.6 GAMMA FUNCTIONS

Gamma functions are provided as shown in Table 11.5.

Table 11.4 Subroutines for Fresnel integrals

Item Mathematical
symbol

Subroutine
name

Sine Fresnel
integral

S (x) SFRI
(I11-51-0101)

Cosine Fresnel
integral

C (x) CFRI
(I11-51-0201)

Table 11.5 Subroutines for gamma functions

Item Mathematical
symbol

Subroutine
name

Incomplete
gamma
function of first
kind

γ (ν,x) IGAM1
(I11-61-0101)

Incomplete
gamma
function of
second kind

Γ (ν,x) IGAM2
(I11-61-0201)

Between the complete Gamma function Γ(ν) and the first
and the second kind incomplete Gamma functions the
relationship

() () ()Γ Γv v x v x= +γ , ,

holds.
 As for Γ(ν), the corresponding FORTRAN basic
external function should be used.

11.7 ERROR FUNCTIONS

Error functions are provided as shown in Table 11.6.

Table 11.6 Subroutines for error functions

Item Mathematical
symbol

Subroutine
name

Inverse error
function

erf-1 (x) IERF
(I11-71-0301)

Inverse comple-
mentary error
function

erfc-1 (x) IERFC
(I11-71-0401)

 Between inverse error function and inverse
complementary error function, the relationship

erf -1 (x) = erfc-1 (1 – x)

holds. Each is evaluated by using either function which
is appropriate for that range of x.
 As for erf(x) and erfc(x), the corresponding FORTRAN
basic external function used.

GENERAL DESCRIPTION

 80

11.8 BESSEL FUNCTIONS

Bessel functions are classified into various types as
shown in Table 11.7, and they are frequently used by the
user. Since zero-order and first-order Bessel functions
are used quite often, exclusive subroutines used for them
which are quite fast, are provided.

Table 11.7 Subroutines for Bessel functions with real variable

Item Mathematica
l symbol

Subroutine
name

First
kind

Zero-order
Bessel function

J0 (x) BJ0
(I11-81-0201)

 First-order
Bessel function

J1 (x) BJ1
(I11-81-0301)

 Integer order
Bessel function

Jn (x) BJN
(I11-81-1001)

 Real-order
Bessel function

Jv (x)
(v ≥ 0.0)

BJR
(I11-83-0101)

 Zero order
modified
Bessel function

I0 (x) BI0
(I11-81-0601)

 First order
modified
Bessel function

I1 (x) BI1
(I11-81-0701)

 Integer order
modified
Bessel function

In (x) BIN
(I11-81-0701)

 Real order
modified
Bessel function

Iv (x)
(v ≥ 0.0)

BIR
(I11-83-0301)

Secon
d kind

Zero-order
Bessel function

Y0 (x) BY0
(I11-81-0401)

 First-order
Bessel function

Y1 (x) BY1
(I11-81-0501)

 Integer order
Bessel function

Yn (x) BYN
(I11-81-1101)

 Real order
Bessel function

Yv (x)
(ν ≥ 0.0)

BYR
(I11-83-0201)

 Zero order
modified
Bessel function

K0 (x) BK0
(I11-81-0801)

 First order
modified
Bessel function

K1 (x) BK1
(I11-81-0901)

 Integer order
modified
Bessel function

Kn (x) BKN
(I11-81-1301)

 Real order
modified
Bessel function

Kv (x) BKR
(I11-83-0401)

Table 11.8 Bessel function subroutines for complex variables

Item Mathematica
l symbol

Subroutine
name

First
kind

Integer order
Bessel function

Jn(z) CBJN
(I11-82-1301)

 Real order
Bessel function

Jv (z)
(v ≥ 0.0)

CBJR
(I11-84-0101)

 Integer order
modified
Bessel function

In (z) CBIN
(I11-82-1101)

Secon
d kind

Integer order
Bessel function

Yn (z) CBYN
(I11-82-1401)

 Integer order
modified
Bessel function

Kn (z) CBKN
(I11-82-1201)

11.9 NORMAL DISTRIBUTION
FUNCTIONS

Table 11.9 lists subroutines used for normal distribution
functions.

Table 11.9 Normal distribution function subroutines

Item Mathematica
l symbol

Subroutine
name

Normal distribution
function

φ (x) NDF
(I11-91-0101)

Complementary normal
distribution function

ψ (x) NDFC
(I11-91-0201)

Inverse normal distribution
function

φ-1 (x) INDF
(I11-91-0301)

Inverse complementary
normal distribution

ψ-1 (x) INDFC
(I11-91-0401)

 81

CHAPTER 12
PSEUDO RANDOM NUMBERS

12.1 OUTLINE

This chapter deals with generation of pseudo-random
(real or integer) numbers with various probability
distribution functions, and with the test of random
numbers.

12.2 PSEUDO RANDOM GENERATION

Random numbers with any given probability distribution
can be obtained by transformation of the uniform (0, 1)
pseudo-random numbers. That is, in generation of
required pseudo random numbers let g(x) be the
probability density function of the distribution. Then, the
pseudo-random numbers y are obtained by the inverse

function (12.1) of ∫=
y

dxxgyF
0

)()(

y =F -1(u) (12.1)

where:
y is the required pseudo random number, F(y) is the
cumulative distribution function of g(x) and u is uniform
pseudo random number.
 Pseudo-random numbers with discrete distribution are
slightly more complicated by intermediate calculations.
For example subroutine RANP2 first generates a table of
cumulative Poisson distribution and a reference table
which refers efficiently for a generated uniform (0, 1)
number and then produces Poisson pseudo-random
integers.
 Table 12.1 shows a list of subroutines prepared for SSL
II. These subroutines provide a parameter to be used as a
starting value to control random number generation.
(Usually, only one setting of the parameter will suffice to
yield a sequence of random numbers.)

Table 12.1 List of subroutines for pseudo random number generation

Type Subroutine
name

Uniform (0, 1) pseudo random
numbers

RANU2
(J11-10-0101)

Shuffled uniform (0, 1) pseudo
random numbers

RANU3
(J11-10-0201)

Exponential pseudo random numbers RANE2
(J11-30-0101)

Fast normal pseudo random numbers RANN1
(J11-20-0301)

Normal pseudo random numbers RANN2
(J11-20-0101)

Poisson pseudo random integers RANP2
(J12-10-0101)

Binomial pseudo random numbers RANB2
(J12-20-0101)

12.3 PSEUDO RANDOM TESTING

When using pseudo random numbers, the features of the
random numbers must be fully recognized. That is, the
random numbers generated arithmetically by a computer
must be tested whether or not they can be assumed as
“realized values of the sequence of each probability
variable depending upon specific probability
distribution”.
 SSL II generates pseudo random numbers with various
probability distribution by giving appropriate
transformation to the uniform (0, 1) pseudo random
number. SSL II provides parameter IX to give the
starting value for pseudo random number generation.
This enables easier generation of some different random
numbers. Generally to give the starting value, parameter
IX is specified as zero. The results of testing the pseudo
random numbers are described in comment on use for
subroutines RANU2. The features of pseudo random
numbers depend on the value of parameter IX. SSL II
provides subroutines which are used to test the generated
pseudo random numbers as shown in Table 12.2.

GENERAL DESCRIPTION

 82

Table 12.2 Pseudo random number testing subroutines

Item subroutine name Notes
Frequency test RATF1

(J21-10-0101)
Testing of
probability unity

Runs test of
up-and-down

RATR1
(J21-10-0201)

Testing of
randomness

Test of statistical hypothesis
The test of statistical hypothesis is used to determine
whether a certain hypothesis is accepted or rejected by
the realized value of the amount of statistics obtained by
random sampling.
 Whether or not one of the dice is normal can be checked
by throwing it for several times and checking the result.
 Say, for example, that the same face came up five times
in a row. If the die is normal, that is, if the ratio of
obtaining a particular roll is identical for each face, the
probability that the same face will come up five times in a
row is (1/6)5 which is 1/7776. This implies that if such
testing is performed 7776 times repeatedly, the same
combination is expected to come up once as an average.
Therefore, if only 5 throws result in obtaining the same
five numbers, the hypothesis that the die is normal, is
assumed to be doubtful.
 Suppose an event is tested under a certain hypothesis
and occurs at less than the probability of α percent
(generally 5 or 1 percent). In this state, if the event
occurs by one testing, it is rejected because it is doubtful;
otherwise it is received. This hypothesis has been tested
whether or not it is accepted. It is called null hypothesis,
where the region in which the probability is less than α
percent is called critical region. The region is rejected or
accepted according to a significance level.
 When using this testing method, the hypothesis may be
rejected despite the fact that it is true. This is expressed
by α percent which is the level of significance.

Chi-square (2χ) testing
Suppose the significance level at α percent. Also
suppose the population is classified into l number of
exclusive class c1, c2, ... , cl, where when selecting n
number of them, the actually corresponding frequencies
are f1, f2, ... , fl and the expected frequencies are based on
null hypothesis F1, F2, ... , Fl respectively.

Class C1, C2, ..., Cl Total
Actual frequency f1, f2, ..., fl n
Expected frequency F1, F2, ..., Fl n

 Then the ratio of the actual frequency for the expected
frequency is expressed as follows:

()∑
=

−
=

l

i i

ii

F
Ff

1

2
2
0χ (12.2)

 The larger the difference between the actual frequency
and the expected frequency is, the larger the value of χ 0

2
becomes. Whether or not the hypothesis is accepted or
rejected depends upon the ratio. The frequency varying
for each n-size sampling is expressed by ~ , ~ , ... , ~f f f l1 2 –
probability variables.
The statistic is expressed as

()∑
=

−
=

l

i i

ii

F
Ff

1

2
2

~
χ (12.3)

 When expected frequency Fi is large enough, 2χ is
approximately distributed depending upon chi-square
distribution of freedom l-1. Obtain point 2

αχ equivalent
to significance level percent in chi-square distribution of
freedom l-1 for the following testing.
 When 2

αχ < 2
0χ , the hypothesis is rejected.

 When 2
αχ ≥ 2

0χ , the hypothesis is accepted.

 This is called chi-square (2χ) testing. The value of
actual frequency and expected frequency depend upon
the contents (frequency testing, run testing) of testing.

Comments on use
• Sample size

The size of a sample must be large enough. That is, the
statistic in (12.3) is approximated to chi-square
distribution of freedom l-1 for large n. If n is small, the
statistic cannot be sufficiently approximated and the
test results may not be reliable. The expected
frequency should be

 Fi > 10 , i=1, 2, ... , l (12.4)

 If the conditions in (12.4) are not satisfied, freedom
must be lower by combining several classes.

PART II
USAGE OF SSL II SUBROUTINES

AGGM

85

A21-11-0101 AGGM, DAGGM

Addition of two real matrices
CALL AGGM (A, KA, B, KB, C, KC, M, N, ICON)

Function
These subroutines perform addition of two m × n real
general matrices A and B.

C = A + B

where C is an m × n real general matrix. m, n ≥ 1.

Parameters
A Input. Matrix A, two-dimensional array,

A (KA, N).
KA Input. The adjustable dimension of array A, (≥

M).
B Input. Matrix B, two-dimensional array

B (KB, N).
KB Input. The adjustable dimension of array B,

(≥M).
C Output. Matrix C, two-dimensional array

C (KC, N). (Refer to “Comment.”)
KC Input. The adjustable dimension of array C, (≥

M).
M Input. The number of rows m of matrices A, B,

and C
N Input. The number of columns n of matrices A,

B, and C.
ICON. Input. Condition codes. Refer to Table

AGGM-1.

Table AGGM-1 Condition code

Code Meaning Processing
0 No error

30000 M<1, N<1, KA<M, KB<M
or KC<M

Bypassed

Comments on use
• Subprograms used

SSL IIMGSSL
FORTRAN basic function ... None

• Notes

Saving the storage area:
If there is no need to keep the contents on the array A
or B, more storage area can be saved by specifing
parameters C and KC as follows;
When the contents of array A are not needed:

CALL AGGM (A, KA, B, KB, A, KA, M, N, ICON)

When the contents of array B are not needed:

CALL AGGM (A, KA, B, KB, B, KB, M, N, ICON)

In this case, matrix C is stored in array A or B.

• Example
The following shows an example of obtaining the
addition of matrices A and B. Here, m, n ≤ 50.

C **EXAMPLE**
 DIMENSION A(50,50),B(60,60),C(100,100)
 CHARACTER*4 IA,IB,IC
 DATA IA/'A '/,IB/'B '/,IC/'C '/
 DATA KA/50/,KB/60/,KC/100/
 10 READ(5,100) M,N
 IF(M.EQ.0) STOP
 WRITE(6,150)
 READ(5,200) ((A(I,J),I=1,M),J=1,N)
 READ(5,200) ((B(I,J),I=1,M),J=1,N)
 CALL AGGM(A,KA,B,KB,C,KC,M,N,ICON)
 IF(ICON.NE.0) GOTO 10
 CALL PGM(IA,1,A,KA,M,N)
 CALL PGM(IB,1,B,KB,M,N)
 CALL PGM(IC,1,C,KC,M,N)
 GOTO 10
 100 FORMAT(2I5)
 200 FORMAT(4E15.7)
 150 FORMAT('1'///10X,
 *'** MATRIX ADDITION **')
 END

 The subroutine PGM in the example is for printing a
real matrix. this program is shown in the example for
subroutine MGSM.

AKHER

86

E11-11-0201 AKHER, DAKHER

Aitken-Hermite interpolation
CALL AKHER (X, Y, DY, N, V, M, EPS, F, VW, ICON)

Function
Given discrete points x1 < x2 < ... < xn, function values yi
= f(xi), and first derivatives yi = f(xi), i = 1,, n this
subroutine interpolates at a given point x = v using the
Aitken-Hermite interpolation.
n ≥ 1.

Parameters
X Input. Discrete points xi.

X is a one-dimensional array of size n.
Y Input. Function value yi.

Y is a one-dimensional array of size n.
DY Input. First order derivatives y′ i.

DY is a one-dimensional array of size n.
N Input. Number (n) of discrete points.
V Input. The point to be interpolated.
M Input. Number of discrete points to be used in

the interpolation (≤ n).
Output. Number of discrete points actually
used.
(See the comments)

EPS Input. Threshold value.
Output. Absolute error of the interpolated
value.
(See the comments)

F Output. Interpolated value.
VW Work area. One-dimensional array of size 5n
ICON .. Output. Condition code.

Refer to Table AKHER-1.

Table AKHER-1 Condition codes.

Code Meaning Processing
0 No error

10000 υ is equal to one of the
discrete points xi.

F is set to yi.

30000 n < 1, M = 0, or xi ≥xi+1 F is set to 0.0.

Comments
• Subprogram used

SSL II ... AFMAX, MGSSL
FORTRAN basic functions ... ABS, and IABS

• Notes
Stopping criterion:
Let’s consider the effect of the degree of interpolation
on numerical behavior first. Here, Zj denotes the
interpolated value obtained by using j discrete points
near x = v. Discrete points are ordered according to
their closeness to x = v. The difference Dj is

mjZZD jjj ,...,2,1 =−≡ −

 where m is the maximum number of discrete points to
be used. Generally, as the order of an interpolation
polynomial increases, |Dj| behaves as shown in Fig.
AKHER-1.

|Dj|

jml

Fig. AKHER-1

 In Fig. AKHER-1, l indicates that the truncation error
and the calculation error of the approximation polynomial
are both at the same level. Usually, Zl is considered as
numerically the optimum interpolated value.

How to specify EPS:
The following conditions are considered.
Convergence is tested as described in “Stopping
criterion”, but Dj exhibits various types of behavior
depending on the tabulated function. As shown in Fig.
AKHER-2 in some cases vacillation can occur.
|Dj|

js ml
Fig. AKHER-2

 In this case, Zl instead of Zs should be used for the
interpolated value. Based on this philosophy the
interpolated value to be output is determined as shown
below. When calculating D2, D3, ..., Dm,

− If |Dj|>|EPS|, j=2, 3, ... , m
 l is determined such that

 ()jjl DD min= (3.1)

and the parameters F, M, and EPS are set to the

AKHER

87

value of Zl, l, |Dl| and
− if |Dj| ≤ EPS occurs for a certain j, from then on, l is

determined such that

 1+≤ ll DD (3.2)

If (3.2) does not occur, l is set to m, and Zm, m and |Dm|
are output. If the user specifies EPS as 0.0, Zj
corresponding the minimum |Dj| is output as the
interpolated value.

How to specify M:
a) If it is known that in the neighbourhood of x = v the

original function can be well approximated by
polynomials of degree 2k-1 or less, it is natural to use
a polynomial of the degree 2k-1 or less. In this
parameter M should be se specified equal to k.

b) If the condition in a) is unknown, parameter N should
be entered in parameter M.

c) It is possible that the user wants an interpolated value
which is obtained by using exactly m points without
applying the stopping criterion. In this case, the user
can specify M equal to –m.

• Example

The values of the input parameters are read and the
interpolated value F is determined n ≤ 30.

C **EXAMPLE**
 DIMENSION X(30),Y(30),DY(30),VW(150)
 READ(5,500) N,(X(I),Y(I),DY(I),I=1,N)
 WRITE(6,600) (I,X(I),Y(I),DY(I),I=1,N)
 10 READ(5,510) M,EPS,V
 IF(M.GT.30) STOP
 CALL AKHER(X,Y,DY,N,V,M,EPS,F,VW,ICON)
 WRITE(6,610) ICON,M,V,F
 IF(ICON.EQ.30000) STOP
 GO TO 10
 500 FORMAT(I2/(3F10.0))
 510 FORMAT(I2,2F10.0)
 600 FORMAT(15X,I2,5X,3E20.8)
 610 FORMAT(20X,'ICON =',I5,10X,'M =',I2/
 * 20X,'V =',E20.8/
 * 20X,'COMPUTED VALUES =',E20.8)
 END

Method
Let discrete point xi be rearranged as v1, v2,, vn
according to their distance from v with the closest value
being selected first, and correspondingly yi = f(vi) and y′ i
= f(vi)
 The condition yi = f(vi) at point (vi) is symbolized here
as (i, 1). Now, let’s consider how to obtain the
interpolated value which is based on the (2m-1) th degree
interpolating polynomial that satisfies the 2m conditions
(1,0), (1,1), (2,0), (2,1), ... , (m,0), (m,1). (Hereafter, this
value will be referred as the interpolated

value which satisfies the conditions (i, 0), (i, 1), i = 1, ...,
m
 Before discussing general cases, an example in the case
m = 2 is shown that determines an interpolated value
which satisfies the four conditions (1,0), (1,1), (2,0),
(2,1).

• Procedure 1

An interpolated value

() ()111'1,11
vvyyyvPA −′+≡≡

which satisfies (1,0), (1,1) is determined. An
interpolated value

() ()222'2,23
vvyyyvPA −′+≡≡

which satisfies(2,0), (2,1) is determined.

• Procedure 2

An interpolated value

 () ()P v y y
y y
v v v vA2 1,2 1

1 2

1 2
1≡ ≡ +

−
−

−

which satisfies conditions (1,0), (2,0) is determined.

• Procedure 3

An interpolated value

 () ()vPyvP AA 12,1,14 ≡≡ ′

() () ()1

21

21 vv
vv

vPvP AA −
−
−

+

which satisfies conditions (1,0), (1,1), (2.0) is
determined.
An interpolated value

() ()vPyvP AA 22,2,15 ≡≡ ′

() () ()1

21

32 vv
vv

vPvP AA −
−
−

+

Which satisfies conditions (1,0), (2,0), (2,1) is
determined.

• Procedure 4
An interpolated value

 () ()vPyvP AA 42,2,1,16 ≡≡ ′′

() () ()1

21

54 vv
vv

vPvP AA −
−
−

+

which satisfies condition (1,0), (1,1), (2,0), (2,1) is
determined.

Then PA6(v) is the objective interpolated value. For
general cases, based on the following formulas

AKHER

88

()
()mi

vvyyy iiiii

,...,1
',

=

−′+≡
 (4.1)

()

()mi

vv
vv
yyyy i

ii

ii
iii

,...,1
1

1
1,

=

−
−
−

+≡
+

+
+ (4.2)

 the same procedure as with m = 2 is followed. See
Fig. AKHER-3.

y1,1′ y1,1′ ,2 y1,1′ ,2,2′ y1,1′ ,2,2′ ,3 y1,1′ ,2,2′ ,3,3′ ⋅ y1,1′ ,2,2′ ,...,m,m′
y1,2 y1,2,2′ y1,2,2′ ,3 y1,2,2′ ,3,3′ ⋅ ⋅
y2,2′ y2,2′ ,3 y2,2′ ,3,3′ ⋅ ⋅
y2,3 y2,3,3′ ⋅ ⋅
y3,3′ ⋅ ⋅

⋅ ⋅
ym,m′

Fig. AKHER-3 For general cases

For further information, see Reference [47].

AKLAG

89

E11-11-0101 AKLAG, DAKLAG

Aitken-Lagrange interpolation
CALL AKLAG (X,Y, N, V, M, EPS, F, VW, ICON)

Function
Given discrete points x1 < x2 < ... < xn and their
corresponding function values yi = f(xi), i = 1, ..., n, this
subroutine interpolates at a given point x = v using the
Aitken-Lagrange interpolation. n ≥ 1

Parameters
X ... Input. Discrete points xi.

X is a one-dimensional array of size n.
Y Input. Function values yi.

Y is a one-dimensional array of size n.
N Input. Number of discrete points n.
V Input. The point to be interpolated.
M Input. Number of discrete points to be used in

the interpolation (≤ n).
Output. Number of discrete points actually
used.
(See the comments)

EPS ... Input. Threshold value.
Output. Absolute error of the interpolated
value.
(See the comments)

F Output. Interpolated value.
VW Work area. A one-dimensional array of size

4n.
ICON Output. Condition code. Refer to Table

AKLAG-1.

Comments on use
• Subprograms used

SSL II ... AFMAX, MGSSL
FORTRAN basic functions ... ABS, and IABS

Table AKLAG-1 Condition codes

Code Meaning Processing
0 No error

10000 v matched a discrete point
xi.

F is set to yi.

30000 n < 1, M = 0 or xi ≥ xi+1 F is set to 0.0.

• Notes

Stopping criterion:
Let’s consider the effect of the degree of interpolation
on numerical behavior first. Here, Zj denotes the
interpolated value obtained by using j discrete points
near x =v. (Discrete points are selected such that the
points closest to x = v are selected first.)
The difference Dj is defined:

mjZZD jjj ...,,2,1 =−≡ −

 where m is the maximum number of discrete points to
be used. Generally, as the degree of an interpolation
polynomial increases, |Dj| behaves as shown in Fig.
AKLAG-1

|Dj|

jml

Fig. AKLAG-1

 In Fig. AKLAG-1,l indicates that the truncation error
and the calculation error of the approximation
polynomial are both at the same level. Zl is usually
consided as the numerically optimum interpolated
value.

How to specify EPS:
The following conditions are considered.
Convergence is tested as described in “Stopping
criterion”, but Dj exhibits various types of behavior
depending on the tabulated function. As shown in Fig.
AKLAG-2, vacillation can occur in some cases.
|Dj|

js ml
Fig. AKLAG-2

 In this case, Zl instead of Zs should be used for the
interpolated value. Based on this, the interpolated
value to be output is determined as shown below.
When calculating D2, D3,, Dm,
− If |Dj| > |EPS| , j=2, 3, ..., m

l is determined such that

 ()jjl DD min= (3.1)

− if |Dj| ≤ |EPS| occurs for a certain j, from then on l is
determined such that

AKLAG

90

 1+≤ ll DD (3.2)

and Zl, l, Di are output.
If (3.2) does not occur, l is set to m, and Zm, m, and
|Dm| are output.
If the user specifies EPS as 0.0 Zj corresponding the
minimum |Dj| is output as the interpolated value.

How to specify M:
a) If it is known that in the neighbourhood of x = v the

original function can be well approximated by
polynomials of degree k or less, it is natural to use
interpolating polynomials of degree k or less. In
this case parameter M should be specified equal to
k + 1.

b) If the condition in a) is unknown, parameter M
should be the same as parameter N.

c) It is possible that the user wants a interpolated value
which is obtained by using exactly m points without
applying the stopping criterion. In this case, the
user can specify M equal to –m.

• Example

The input parameters are read, and the interpolated
value F is determined. n ≤ 30

C **EXAMPLE**
 DIMENSION X(30),Y(30),VW(120)
 READ(5,500) N,(X(I),Y(I),I=1,N)
 WRITE(6,600) (I,X(I),Y(I),I=1,N)
 10 READ(5,510) M,EPS,V
 IF(M.GT.30) STOP
 CALL AKLAG(X,Y,N,V,M,EPS,F,VW,ICON)
 WRITE(6,610) ICON,M,V,F
 IF(ICON.EQ.30000) STOP
 GO TO 10
 500 FORMAT(I2/(2F10.0))
 510 FORMAT(I2,2F10.0)
 600 FORMAT(23X,'ARGUMENT VALUES',15X,
 *'FUNCTION VALUES'/(15X,I2,5X,
 *E15.7,15X,E15.7))
 610 FORMAT(20X,'ICON =',I5,10X,'M =',I2/
 * 20X,'V =',E15.7/
 * 20X,'COMPUTED VALUES =',E15.7)
 END

Method
Let discrete points xi be rearranged as v1, v2, ..., vn
according to their distance from v with the closest value
being selected first, and corresponding yi = f(vi). Usually,
a subset of the sample points (vi, yi = f(vi); i = 1, ..., m) is
used for interpolation as shown below. The interpolated
values of the Lagrangian interpolation polynomial of
degree i which passes through the discrete points (v1, v1),
(v2, v2), ..., (vi, yi), (vj, yj) are expressed here as y1, 2..., i,j
(where j > i).
The Aitken-Lagrange interpolation method is based on:

()vv
vv

yy
y

vvy
vvy

vv
y

i
ij

jii
i

jji

ii

ij
ji

−
−

−
+=

−
−

−
=

−

−

,1,...,2,1,...,2,1
,...,2,1

,1,...,2,1

,...,2,1
,,...,2,1

1

 As shown in Fig. AKLAG-3, calculation proceeds from
the top to bottom of each column, starting at the first and
ending at the mth column, row to the bottom row and
from the left column to the right, such that y1.2, y1.3, y1.2.3,
y1.4, y1.2.4, ...

y

y

y m

1 2 3

1 2 4

1 2

, ,

, ,

, ,

⋅

y

y

y

y m

1 2

1 3

1 4

1

,

,

,

,

⋅

y

y

y

y

ym

1

2

3

4

⋅

υ υ

υ υ

υ υ

υ υ

υ υ

1

2

3

4

−

−

−

−

⋅

−m

υ

υ

υ

υ

υ

1

2

3

4

⋅

m my ,...,2,1

y1 2 3 4, , ,

Fig. AKLAG-3

 The values y1, 2,, k on the diagonal line are inter-
polated values based on the Lagrangian interpolation
formula which passes through the discrete points (vi, yi, i
= 1, ..., k). Then, y1, 2,, m is the final value.
 For details, see Reference [46] pp.57-59.

AKMID

91

E11-42-0101 AKMID, DAKMID

Two-dimensional quasi-Hermite interpolation
CALL AKMID (X, NX, Y, NY, FXY, K, ISW, VX, IX,
VY, IY, F, VW, ICON)

Function
Given function values fij = f(xi, yj) at the node points (xi,
yj), i = 1, 2, ..., nx, j = 1, 2, ..., ny(xl < x2 < ... < xnx, y1 < y2
< ... < xny, an interpolated value at the point (P(vx, vy), is
obtained by using the piecewise two-dimensional quasi-
Hermite interpolating function of dually degree 3. See
Fig. AKMID-1.

P(vx , vy)

x
xnx3x2x1

y1

y2

y3

y

yny

x

Fig. AKMID-1 Point P in the area R={(x,y) | x1≤xnx, y1 ≤y≤yny}

Parameters
X Input. Discrete points xj’ s in the x-direction.

One-dimensional array of size nx.
NX Input. Number of xj’ s, nx
Y …. Input. Discrete points yj’s in the y-direction.

One-dimensional array of size ny.
NY Input. Number of yj′ s, ny
FXY Input. Function value fij.

Two-dimensional array as FXY (K, NY).
 fij needs to be assigned to the element
FXY(I,J).

K Input. Adjustable dimension for array FXY (K
≥ NX).

ISW Input. ISW = 0 (INTEGER *4) must be
assigned the first time the subroutine is called
with the input data (xi, yj, fij) given. When a
series of interpolated values need to be
obtained by calling the subroutine repeatedly,
the ISW value must not be changed from the
second time on.
Output. Information on (i,j) which satisfies xi
≤ vx < xi+1 and yj ≤ vy < yj+1.
When the user starts interpolation for the
newly given data (xi, yj, fij), he needs to set the

ISW to zero again.
VX Input. x-coordinate at the point P (vx, vy).
IX Input. The i which satisfies xi ≤ vx < xi+1.

When vx = xnx, IX = nx – 1.
 Output. The i which satisfies xi ≤ vx < xi+1.
See Note.

VY Input. y-coordinate at the point P(vx, vy).
IY Input. The j which satisfies yj ≤ vy < yj+1.

When vy = yny, IY = ny – 1.
Output. The j which satisfies yj ≤ vy < yj+1
See Note.

F Output. Interpolated value.
VW Work area. One-dimensional array of size 50.

While the subroutine is called repeatedly with
identical input data (xi, yj, fij), the contents of
VW must not be altered.

ICON ... Output. Condition code. See Table AKMID-1.

Table AKMID-1 Condition codes

Code Meaning Processing
0 No error

10000 Either X(IX)≤VX<X(IX+1) or
Y(IY)≤VY<Y(IY+1) is not
satisfied.

IX or IY
satisfying the
relationship on
the left is
searched for in
the subroutine
and the
processing is
continued.

30000 Either of the followings
occurred:
1 X(I) which satisfies

X(I)≥X(I+1) exists
2 Y(J) which satisfies Y(J)

≥ Y (J+1) exists
3 NX<3 or NY < 3
4 K< NX
5 VX < X(1) or VX > X(NX)
6 VY < Y(1) or VY > Y(NY)
7 ISW specification is

wrong.

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic function ... IABS, ABS, and MOD

• Notes

The interpolating function used in the subroutine and
its first order derivative are continuous in the area
R={(x,y) | xl ≤ x ≤ xnx , yl ≤ y ≤ yny}, but its second order
and the higher order derivative of the function may not
be continuous. On the other hand, this interpolating
function has a characteristic that irregular points or
planes do not appear.
 To obtain an interpolated value, derivative and
integral value for a bivariate function, with accuracy

AKMID

92

subroutines BIFD3 or BIFD1, which use an
interpolation method by the spline function, should be
used. When obtaining more than one interpolated
value with the identical input data (xi, yj, fij), the
subroutine is more effective if it is called with its input
points continuous in the same grid area. (See
“Example”.) In this case parameters ISW and VW
must not be altered.
 The parameters IX and IY should satisfy X(IX) ≤ VX
< X(IX +1) and Y(IY) ≤ VY < Y(IY+1), respectively.
If not, IX and IY which satisfy these relationships are
searched for to continue the processing.
 The parameter error conditions accompanied with
ICON = 30000 are listed in Table AKMID-1. Of the
error conditions, 1 to 4 are checked only when ISW = 0
is specified, i.e., when the subroutine is called the first
time with the input data (xi, yj, fij) given.

• Example
By inputting points (xi, yj) and their function values fij: i
= 1, 2, ..., nx, j = 1, 2, ..., ny, interpolated values at
points (vil, vjk), shown below are obtained. nx ≤ 121 and
ny ≤ 101.

vil = xi + (xi+1 − xi) × (l/4)
 i = 1, 2, ..., nx –1, l = 0, 1, 2, 3
vjk = yj + (yj+1 – yj) × (k/2)
 j = 1, 2, ..., ny – 1, k = 0, 1

C **EXAMPLE**
 DIMENSION X(121),Y(101),FXY(121,101),
 * VW(50),XV(4),YV(2),FV(4,2)
 READ(5,500) NX,NY
 READ(5,510) (X(I),I=1,NX)
 READ(5,510) (Y(J),J=1,NY)
 READ(5,510) ((FXY(I,J),I=1,NX),J=1,NY)
 WRITE(6,600) NX,NY
 WRITE(6,610) (I,X(I),I=1,NX)
 WRITE(6,620) (J,Y(J),J=1,NY)
 WRITE(6,630) ((I,J,FXY(I,J),I=1,NX)
 * ,J=1,NY)
 ISW=0
 NX1=NX-1
 NY1=NY-1
 DO 40 I=1,NX1
 HX=(X(I+1)-X(I))*0.25
 DO 10 IV=1,4
 10 XV(IV)=X(I)+HX*FLOAT(IV-1)
 DO 40 J=1,NY1
 HY=(Y(J+1)-Y(J))*0.5
 DO 20 JV=1,2
 20 YV(JV)=Y(J)+HY*FLOAT(JV-1)
 DO 30 IV=1,4
 DO 30 JV=1,2
 30 CALL AKMID(X,NX,Y,NY,FXY,121,ISW,
 * XV(IV),I,YV(JV),J,
 * FV(IV,JV),VW,ICON)
 40 WRITE(6,640) I,J,((IV,JV,FV(IV,JV),
 * IV=1,4),JV=1,2)
 STOP

 500 FORMAT(2I6)
 510 FORMAT(6F12.0)
 600 FORMAT('1'//10X,'INPUT DATA',3X,
 *'NX=',I3,3X,'NY=',I3/)
 610 FORMAT('0','X'/(6X,6(I6,E15.7)))
 620 FORMAT('0','Y'/(6X,6(I6,E15.7)))
 630 FORMAT('0','FXY'/(6X,5('(',2I4,
 *E15.7,')')))
 640 FORMAT('0','APP.VALUE',2I5/(6X,
 *5('(',2I4,E15.7,')')))
 END

Method
The subroutine obtains interpolated values based on the
dual third degree two-dimensional quasi-Hermite
interpolating function which is a direct extension of the
one-dimensional quasi-Hermite interpolating function
obtained by subroutine AKMIN.
• Dual third degree two-dimensional quasi-Hermite

interpolating function.
The interpolation function S (x, y) described hereafter
is defined in the area R = {(x,y)|xl ≤ x ≤xnx , yl ≤ y ≤ yny}
and satisfies the following condition:
(a) S (x, y) is polynomial at most of dually degree three

within each partial region Ri,j = {(x,y)|xi ≤ x < xi+1, yj
≤ y < yj+1}.

(b) S (x,y) ∈ C1,1[R], that is, the following values exist
and are all continuous on R:

()() ()

1,0,1,0

,,,,

==

=
+

βα
∂∂

∂
βα

βα
βα yxS

yx
yxS

(c) ()() ()(),,, ,,
jiji yxfyxS βαβα =

yx njni ,...,2,1,,...,2,1,1,0,1,0 ==== βα

 It has been proved that the function S(x, y) exists
uniquely and that it can be expressed, in partial region Rij,
as follows:

() ()
() () (){

() () () () () ()
() () ()tqsqf

tqspftpsqf

tqspfba

tsSyxS

ji

jiji

ijji

ji

βα
βα

βα
βα

βα
βα

βα
βαβ

α β

α

,
1,1

,
1,

,
,1

,
1

0

1

0

, ,,

++

++

= =

+

++

=

=

∑∑

 (4.1)

 where

1,0,,

, 11

<≤
−

=
−

=

−=−= ++

ts
b

yy
t

a
xx

s

yybxxa

j

j

i

i

jjjiii

AKMID

93

()
()
() ()
() ()
() ()() ()jijiij yxf

yx
yxff

tttq

tttp

tttq

tttp

,,

1

1

23

231

,,

2
1

2
1

32
0

32
0

βα

βα
βαβα

∂∂
∂==

−=

−=

−=

+−=

+

 Eq. (4.1) requires function values and derivatives at the
four points (xi, yj), (xi+1, yj), (xi, yj+1) and (xi+1, yj+1).
Therefore, if the derivatives can be obtained (or
approximated in some way) an interpolated value in the
area Rij can be obtained by using Eq. (4.1). The S(x, y)
given in Eq. (4.1) which can be obtained by using
approximated derivatives is called the dual thrid degree
piecewise two-dimensional quasi-Hermite interpolating
function.
• Determination of derivatives ()0,1

ijf , ()1,0
ijf and ()1,1

ijf at
a node point
This subroutine uses the Akima’s geometrical method
to obtain these derivatives.
It applies the method used by the one-dimensional
quasi-Hermite interpolating function (in subroutine
AKMIN) to that two-dimensional as follows:
As a preparatory step the following quatities should be
defined.

ai = xi+1 – xi , bj = yj+1 – yj
cij = (fi+1,j – fij) /ai
dij = (fi,j+1 – fij) /bj
eij = (ci,j+1 – cij) /bj
 = (di+1,j – dij) /ai (4.2)

 For simplicity, consider a sequence of five points, x1, x2,
x3, x4 and x5 in the x-direction and y1, y2, y3, y4, and y5 in
the y-direction to obtain partial derivatives at the point
(x3, y3). Fig. AKMID-2 illustrates the needed c ’s, d ’s
and e ’s.

e22

d31

c23c13

x4

x4

c43c33

e32d32

x5x4x3x2x1
y1

y2

y3

y4

y5

e23 e33d33

d34

Fig. AKMID-2 Determination of derivative at the point (x3, y3)

 Assuming that the same method as for the one-
dimensional quasi-Hermite interpolating function is used,

the first order partial derivatives both in x- and y-
directions are as follows:

() () ()
() () ()32333322

1,0
33

32333232
0,1

33

yyyy

xxxx

wwdwdwf

wwcwcwf

++=

++=
 (4.3)

 where

3132333342

1323333432

,

,

ddwddw

ccwccw

yy

xx

−=−=

−=−=

 f33
(1,0) and f33

(0,1) are expressed as weighted means about
c and d, respectively.
Based on the similar assumption, f33

(1,1) is determined as
doubly weighted means of e in the directions of x and y
as follows.

() () (){ }
()(){ }3232

33232232332222
1,1

33

yyxx

yyxyyx

wwww

ewewwewewwf

++

+++=

 (4.4)

• Determination of derivatives on the boundary
Assuming that this is similar to the one-dimensional
quasi-Hermite interpolating function, the partial
derivatives, fij

(0,1), fij
(1,0) and fij

(1.1); i = 1, 2, nx – 1, nx, j
= 1, 2, ny – 1, ny, on the boundary are obtained by
calculating cij, dij and eij outside the area and after that
by applying Eqs. (4.3) and (4.4) Fig. AKMID-3
illustrates the situation for i = j = 1. The points marked
by “o” are those given by assuming the same method as
for the one-dimensional quasi-Hermite interpolating
function.

d11

d12

x3x2x1x0x−1
y−1

y0

y1

y2

y3

d1−1

d10

e11

e10

e01

e00

c21c11c−11 c01

Fig. AKMID-3 Determination of derivatives on the boundary

 The quatities, cij ’s, dij ’s and eij ’s outside the area can
be obtained as follows:

AKMID

94

c–11 = 3c11 – 2c21
c01 = 2c11 – c21
d1–1 = 3d11 – 2d12
d10 = 2d11 – d12 (4.5)
e01 = 2e11 – e21
e00 = 2e01 – e02 (e02 = 2e12 – e22)
e10 = 2e11 – e12

 Thus, the partial derivatives at the point (x1, y1) can be
obtained by applying Eqs. (4.3) and (4.4) after
calculating the necessary c, d and e.

• Calculation of interpolated values
The interpolated value at the point (vx, vy) can be
obtained by evaluating Six,iy(s, t) in Eq. (4.1) which is
constructed by using the coordinate area numbers (ix,
iy) to which the poit (xx, vy) belongs. The subroutine
uses available partial derivatives, if any, obtained when
called previously, and calculates the other needed
derivatives, which are also stored in the work area and
kept for later use.
 For further details, see Reference [54].

AKMIN

95

E12-21-0201 AKMIN, DAKMIN

Quasi-Hermite interpolation coefficient calculation
CALL AKMIN (X, Y, N, C, D, E, ICON)

Function
Given function values yi = f(x), i = 1, ..., n for discrete
points x1, x2, ..., xn (x1 < x2 < ... < xn), this subroutine
obtains the quasi-Hermite interpolating polynomial of
degree 3, represented as (1.1) below. n ≥ 3

() () () ()
1...,,2,1,1

32

−=≤≤
−+−+−+=

+ nixxx
xxexxdxxcyxS

ii

iiiiiii (1.1)

Parameters
X Input. Discrete points xi.

One-dimensional array of size n.
Y Input. Function values yi.

One-dimensional array of size n.
N Input. Number n of discrete points.
C Output. Coefficient ci, in (1.1).

One-dimensional array of size n – 1.
D Output. Coefficient di in (1.1).

One-dimensional array of size n –1.
E Output. Coefficient ei in (1.1).

One-dimensional array of size n – 1.
ICON Output. Condition code. See Table AKMIN-

1.

Table AKMIN-1

Code Meaning Processing
0 No error

30000 n < 3 or xi ≥ xi+1 Bypassed

Comments on use
• Subprograms used

SSL II MGSSL
FORTRAN basic function ... ABS

• Notes
The interpolating function obtained by this subroutine
is characterized by the absence of unnatural deviation,
and thus produces curves close to those manually
drawn. However, the derivatives of this function in
interval (x1, xn) are continuous up to the first degree,
but discontinuous above the second and higher degrees.
 If f (x) is a quadratic polynomial and xi, i = 1, ..., n are
given at equal intervals, then the resultant interpolating
function represents f (x) itself, provided there are no
calculation errors.
 If interpolation should be required outside the interval
(n < x1 or x > xn), the polynomials cor-

responding to i = 1 or i = n – 1 in (1.1) may be
employed, though they does not yield good precision.

• Example
A quasi-Hermite interpolating polynomial is
determined by inputting the number n of discrete
points, discrete points xi and function values yi, i =
1, ..., n, so that the interpolated value at a certain point
x = v in a certain interval [xk, xk+1] is determined. n ≤
10.

C **EXAMPLE**
 DIMENSION X(10),Y(10),C(9),D(9),E(9)
 READ(5,500) N
 READ(5,510) (X(I),Y(I),I=1,N)
 CALL AKMIN(X,Y,N,C,D,E,ICON)
 WRITE(6,600) ICON
 IF(ICON.NE.0) STOP
 READ(5,500) K,V
 XX=V-X(K)
 YY=Y(K)+(C(K)+(D(K)+E(K)*XX)*XX)*XX
 N1=N-1
 WRITE(6,610)
 WRITE(6,620) (I,C(I),I,D(I),I,E(I)
 * ,I=1,N1)
 WRITE(6,630) K,V,YY
 STOP
 500 FORMAT(I5,F10.0)
 510 FORMAT(2F10.0)
 600 FORMAT('0',10X,
 *'RESULTANT CONDITION',' CODE=',I5//)
 610 FORMAT('0',10X,
 *'RESULTANT COEFFICIENTS'//)
 620 FORMAT(' ',15X,'C(',I2,')=',E15.7,
 *5X,'D(',I2,')=',E15.7,
 *5X,'E(',I2,')=',E15.7)
 630 FORMAT('0',10X,2('*'),'RANGE',2('*'),
 5X,2(''),'DESIRED POINT',2('*'),
 5X,2(''),'INTERPOLATED VALUE',
 2('')//13X,I2,2X,2(8X,E15.7))
 END

Method
Given function values yi = f (xi), i = 1, ..., n, for discrete
points x1, x2, ..., xn (x1 < x2 << xn), let’s consider the
determination of the interpolating function represented in
(1.1). (1.1) represents a different cubic polynomial for
each interval [xi, xi+1]. S (x) represented in (1.1) is
piecewisely expressed as (4.1).

() ()
() () ()

⎪
⎪
⎭

⎪⎪
⎬

⎫

−=≤≤
−+−+−+=

=

+ 1,...,1,1

32

nixxx
xxexxdxxcy

xSxS

ii

iiiiiii

i

 (4.1)

 Each Si(x) is determined by the following procedure:
(a) The first order derivatives at two points xi and xi+1 are

approximated. (They are taken as ti and ti+1).

AKMIN

96

(b) Si (x) is determined under the following four
conditions:

()
()
()
()

=
=

=′
=′

++

++

11

11

iii

iii

iii

iii

yxS
yxS

txS
txS

 (4.2)

 The interpolating function thus obtained is called a
quasi-Hermite interpolating polynomial.
 This subroutine features the geometric approximation
method for first order derivatives in (a).
 In that sense, the interpolating function is hereinafter
called a “curve” and the first order derivative “the slope
of the curve”.

• Determination of the slope of a curve at each discrete

point
The slope of a curve at each discrete point is locally
determined using five points; the discrete point itself
and two on each side.
Now let us determine the slope of the curve at point 3
from the five consecutive points 1 through 5. (See Fig.
AKMIN-1)

2

1

C

A B

3
D

4

5

Fig. AKMIN-1

 In Fig. AKMIN-1, the intersection of the extensions of
segments 1 2 and 3 4 are taken as A and that the
intersection of the extensions of segments 2 3 and 4 5 as
B.
 Also, the intersections of the tangent line at point 3 of
the curve and segments 2 A and 4 B are taken as C and D,
respectively.
 The slopes of segments 1 2, 2 3, 3 4 and 4 5 are

respectively designated as m1, m2, m3, and m4. If the
slope of the curve at point 3 is t, t is determined so that it
will approach m2 when m1 approaches m2, or will
approach m3 when m4 approaches m3. One sufficient
condition for satisfying this is given in (4.3.).

2 4C
CA

D
DB

= (4.3)

 (4.4) is derived from the relationship in (4.3)

()()

()()

−−=

−−=

+
+

=

2
1

24123

2
1

34132

32

3322

mmmmw

mmmmw

ww
mwmw

t

 (4.4)

t obtained from (4.4) has the following preferable
characteristics:

==≠≠=
==≠≠=
==≠≠=

32434132

43242143

21324321

,,,When(c)
,,,When(b)
,,,When(a)

mmtmmmmmm
mmtmmmmmm
mmtmmmmmm

 (4.5)

 However, (4.4) has the following drawbacks:

(d) when w2 = w3 = 0, t is undifinite
(e) when 2341342 ,,, mtmmmmmm =≠≠=

or (4.6)
when 3234231 ,,, mtmmmmmm =≠≠=

 This subroutine determines t based on (4.7), not on (4.4),
to avoid these drawbacks.

when m m1 2≠ or m m3 4≠

1234

312234

mmmm
mmmmmm

t
−+−
−+−

= (4.7)

when m1 = m2 and m3 = m4

 (4.7) satisfies the requirements of the characteristics
(4.5)

• Determination of slope at both end points

At points located at both ends (x1, y1), (x2, y2), (xn–1, yn–

1), and (xn, yn), the following virtual discrete points are
adopted to determine their slope.
 Take the left end for example, the five points shown
in Fig. AKMIN-2 are set so that the slope t1 of the
curve at (x1, y1) can be determined.

AKMIN

97

y−1

y0

y1

y2

y3

 x−1 x0 x1 x2 x3
Fig. AKMIN-2

 The two points (x–1, y–1) and (x0, y0) are virtual points.
x–1 and x0 are determined from (4.8).

x3 – x1 = x2 – x0 = x1 − x–1 (4.8)

 y-1 and y0 are assumed to be the values obtained by
evaluating a quadratic polynomial passing (x1, x1), (x2, y2)
and (x3, y3) at x–1 and x0. The five points satisfy the
conditions of (4.9).

−
−

−
−
−

=

−
−

−
−
−

=
−
−

−
−
−

−

−

10

10

01

01

01

01

12

12

12

12

23

23

xx
yy

xx
yy

xx
yy

xx
yy

xx
yy

xx
yy

 (4.9)

 If the slope of segments (x–1, y–1) and (x0,y0) is m1 and
the slopes of the segments extending to the right are m2,
m3, and m4, respectively, the following equations are
obtained from (4.9):

m2 = 2 m3 – m4, m1 = 3 m3 – 2 m4 (4.10)

 The slope t1 at (x1, y1) is determined by applying these
m1, m2, m3 and m4 to the method in a. In the
determination of t2 at point (x2, y2), the five points (x0, y0),
(x1, y1), (x2, y2), (x3, y3) and (x4, x4) are used.
 The slope tn-1, tn at right-end points (xn-1, yn-1) and (xn,
yn) are similarly determined by assuming (xn+1, yn+1) and
(xn+2, yn+2).

• Determination of curves

The coefficient of Si(x) in (4.1), as determined by the
conditions of (4.2), is represented in (4.11).

() (){ }

()
() (){ }

()

−

−−−+=
−

−−−−=
=

+

+++

+

+++

2
1

111

1

111

2

23

ii

iiiiiii

ii

iiiiiii

ii

xx

xxyytte
xx

ttxxyyd
tc

 (4.11)

For further information, see Reference [52].

ALU

98

A22-11-0202 ALU, DALU

LU-decomposition of a real general matrix (Crout’s method)
CALL ALU (A, K, N, EPSZ, IP, IS, VW, ICON)

Function
An n × n nonsingular real matrix A is LU-decomposed
using the Crout’s method.

PA = LU (1.1)

 P is the permutation matrix which performs the row
exchanges required in partial pivoting, L is a lower
triangular matrix, and U is a unit upper triangular matrix.
n ≥ 1.

Parameters
A Input. Matrix A

Output. Matrices L and U.
Refer to Fig. ALU-1,
A is a two-dimensional array, A (K, N).

Diagonal and lower
triangular portions only

Arrary A

Upper triangular portion only

Lower triangular
matrix L

Unit upper triangular
matrix U

u1nu13

K
N

0

0

1

1
1

1 u12

un-1 n

u2n

ln1

l31

l21

l11

u23

ln2 lnn−1 lnn

ln−1n−1

l32

l22 l21 u23 u2n

u1nu13u12l11

l22

ln1 ln2 lnn−1 lnn

ln−1n−1 un−1 n

Fig. ALU-1 Storage of the elements of L and U in array A

K Input. Adjustable dimension of array A (≥N)
N Input. Order n of matrix A
EPSZ .. Input. Tolerance for relative zero test of

pivots in decomposition process of A (≥ 0.0)
When EPSZ is 0.0, a standard value is used.
(Refer to Notes.)

IP Output. The transposition vector which
indicates the history of row exchanging that
occurred in partial pivoting.

IP is a one-dimensional array of size n. (Refer
to Notes.)

IS ... Output. Information for obtaining the
determinant of matrix A. If the n elements of
the calculated diagonal of array A are
multiplied by IS, the determinant is obtained.

VW Work area. VW is one-dimensional array of
size n.

ICON Output. Condition code. Refer to Table ALU-
1.

Table ALU-1 Condition codes

Code Meaning Processing
0 No error

20000 Either all of the elements of
some row were zero or the
pivot became relatively
zero. It is highly probable
that the matrix is singular.

Discontinued

30000 K<N, N<1 or EPSZ<0.0 Bypassed

Comments on use
• Subprograms used

SSL II AMACH, MGSSL
FORTRAN basic functions ... ABS

• Notes

If EPSZ is set to 10-s, this value has the following
meaning. In LU-decomposition, if the loss of over s
significant digits occurred for the pivot, the LU-
decomposition should be discontinued with ICON =
20000 regarding the pivot to be relatively zero. Let u
be the unit round-off, and the standard value of EPSZ
is 16 u. If the processing is to proceed at a low pivot
value, EPSZ will be given the minimum value, but the
result is not always guaranteed.
 The transposition vector corresponds to the
permutation matrix P of LU decomposition in partial
pivoting. In this subroutine, the elements of the array
A are actually exchanged in partial pivoting. In the J th
stage (J = 1, ..., n) of decomposition, if the Ith row (I ≥
J) has been selected as the pivotal row the elements of
the Ith row and the elements of the Jth row are
exchanged. Then, in order to record the history of this
exchange, I is stored in IP (J).
 A system of linear equations can be solved by calling
subroutine LUX following this subroutine. However,
instead of these subroutines, subroutine LAX can be
normally called to solve such equations in one step.

• Example

An n × n matrix is input and LU-decomposition is
computed. n ≤ 100.

ALU

99

C **EXAMPLE**
 DIMENSION A(100,100),VW(100),IP(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((A(I,J),I=1,N),J=1,N)
 WRITE(6,600) N,((I,J,A(I,J),J=1,N),
 * I=1,N)
 CALL ALU(A,100,N,0.0,IP,IS,VW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) GOTO 10
 DET=IS
 DO 20 I=1,N
 DET=DET*A(I,I)
 20 CONTINUE
 WRITE(6,620) (I,IP(I),I=1,N)
 WRITE(6,630) ((I,J,A(I,J),J=1,N),
 * I=1,N)
 WRITE(6,640) DET
 GOTO 10
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT(///10X,'** INPUT MATRIX **'
 * /12X,'ORDER=',I5//(10X,4('(',I3,',',
 * I3,')',E16.8)))
 610 FORMAT('0',10X,'CONDITION CODE =',I5)
 620 FORMAT('0',10X,'TRANSPOSITION VECTOR'
 * /(10X,10('(',I3,')',I5)))
 630 FORMAT('0',10X,'OUTPUT MATRICES'
 * /(10X,4('(',I3,',',I3,')',E16.8)))
 640 FORMAT('0',10X,
 * 'DETERMINANT OF THE MATRIX =',E16.8)
 END

Method
• Crout’s method

Generally, in exchanging rows using partial pivoting,
an n × n regular real matrix A can be decomposed into
the product of a lower triangular matrix L and a unit
upper triangular matrix U.

PA = LU (4.1)

 P is the permutation matrix which performs the row
exchanging required in partial pivoting. The Crout’s
method is one method to obtain the elements of L and U.
This subroutine obtains values in the jth column of L and
jth column of U in the order (j = 1, ..., n) using the
following equations.

1,...,1,
1

1
−=

= ∑

−

=
− jilulu iiijij

i

k
kjika (4.2)

njiulau
j

k
kjikijij ,...,,

1

1

=−= ∑
−

=

 (4.3)

 where, A = (aij), L = (lij) and U =(uij). Actually using
partial pivoting, rows are exchanged.
 The Crount’s method is a variation of the Gaussian
elimination method.
Both perform the same calculation, but the calculation
sequence is different. With the Crout’s method, elements
of L and U are calculated at the same time using
equations (4.2) and (4.3). By increasing the precision of
the inner products in this step, the effects of rounding
errors are minimized.

• Partial pivoting

When matrix A is given as

A =

0 0 10
10 0 0
. .
. .

 Though the matrix is numerically stable, it can not be
LU decomposed. In this state, even if a matrix is
numerically stable large errors would occur if LU
decomposition were directly computed. So in this
subroutine, to avoid such errors partial pivoting with row
equilibration is adopted for decomposition.
 For more information, see References [1],[3], and [4].

AQC8

100

G23-11-0301 AQC8, DAQC8

Integration of a function by a modified Clenshaw-Curtis
rule
CALL AQC8 (A, B, FUN, EPSA, EPSR, NMIN, NMAX,
S, ERR, N, ICON)

Function
Given a function f(x) and constants a, b, εa and εr this
subroutine obtains an approximation S which satisfies

() ()

 ⋅≤ ∫∫−

b
a dxxf

b
a dxxfS ra εε ,max (1.1)

by a modified Clenshaw-Curtis rule which increases a
fixed number of abscissas at a time.

Parameters
A Input. Lower limit a of the interval.
B Input. Upper limit b of the interval.
FUN .. Input. The name of the function subprogram

which evaluates the integrand f(x) (see the
example).

EPSA .. Input. The absolute error tolerance εa (≥ 0.0)
for the integral.

EPSR .. Input. The relative error tolerance εr (≥ 0.0)
for the integral.

NMIN .. Input. Lower limit on the number of function
evaluation (≥ 0). A proper value is 15.

NMAX .. Input. Upper limit on the number of function
evaluations (NMAX ≥ NMIN) A proper value
is 511. (A higher value, if specified, is
interpreted as 511.)
(See “Comments on use”.)

S ... Output. An approximation (see “Comments on
use”).

ERR Output. An estimate of the absolute error in
the approximation.

N Output. The number of function evaluations
actually performed.

ICON Output. Condition code. See Table AQC8-1.

Comments on use
• Subprograms used

SSL II ... MGSSL, AMACH
FORTRAN basic functions ... ABS, AMAX1, FLOAT,
MAX0, MIN0, SQRT

• Notes
The function subprogram associated with parameter FUN
must be defined as a subprogram whose argument is only
the integration variable.
Its function name must be declared as EXTERNAL in the
calling program. If the integrand includes auxiliary
variables, they must be declared in the COMMON
statement for the purpose of communicating

Table AQC8-1 Condition codes

Code Meaning Processing
0 No error

10000 The desired accuracy was
not attained due to
rounding-off errors.

Approximation
obtained so far
is output in S.
The accuracy
is the
maximum
attainable.

20000 The desired accuracy was
not attained though the
number of integrand
evaluations has reached the
upper limit.

Processing
stops. S is the
approximation
obtained so
far, but is not
accurate.

30000 One of the followings
occurred.
1 EPSA < 0.0
2 EPSR < 0.0
3 NMIN < 0
4 NMAX < NMIN

Processing
stops.

with the main program. (See the example.)
 When this subroutine is called many times, 511
constants (Table of abscissas, weights for the integration
formula) are determined only on the first call, and this
computation is bypassed on subsequent calls. Thus, the
computation time is shortened.
 This subroutine works most successfully when the
integrand f(x) is a oscillatory type function. For a smooth
function, it is best in that it requires less evaluations of
f(x) than subroutines AQN9 and AQE.
 For a function which contains singularity points,
subroutine AQE is suitable if the singularity points are
only on the end point of the integration interval and
subroutine AQN9 for a function whose singularity points
are between end points, or for a peak type function.
 Parameters NMIN and NMAX must be specified
considering that this subroutine limits the number of
evaluations of integrand f(x) as NMIN ≤ Number of
evaluation times ≤ NMAX
 This means that f(x) is evaluated at least NMIN times
and not more than NMAX times regardless of the result
of the convergence test. When a value of S that satisfies
the expression (1.1) within NMAX evaluations cannot be
obtained, processing stops with ICON code 20000. If the
value of NMAX is less than 15, a default of 15 is used.

Accuracy of the approximation
S is obtained as follows. This subroutine obtains S to
satisfy the expression (1.1) when constants εa and εr are
given. Thus εr=0 means to obtain the approximation with
its absolute error within εa, Similarly, εa=0 means to
obtain it with its relative error within εr.

AQC8

101

 This purpose is sometimes obstructed by unexpected
characteristics of the function or unexpected value of εa
or εr. For example, when εa or εr is extremely small in
comparison with arithmetic precision in function
evaluation, the effect of round-off error becomes greater,
so it is no use to continue the computation, even though
the number of integrand evaluation has not reached the
upper limit. In this case, processing stops with the code
10000 in ICON. At this time, the accuracy of S becomes
the attainable limit for computer used. The approximation
sometimes does not converge within NMAX evaluations.
In this case, S is an approximation obtained so far, and is
not accurate and indicated by ICON code 20000.
 To determine the accuracy of integration, this
subroutine always puts out an estimate of absolute error
in parameter ERR, as well as the approximation S.

• Example

Increasing the value of auxiliary variable p from 0.1 to
0.9 with increment 0.1, this example computes the
integral

C **EXAMPLE**
 COMMON P
 EXTERNAL FUN
 A=-1.0
 B=1.0
 EPSA=1.0E-5
 EPSR=1.0E-5
 NMIN=15
 NMAX=511
 DO 10 I=1,10
 P=FLOAT(I)
 CALL AQC8(A,B,FUN,EPSA,EPSR,NMIN,
 * NMAX,S,ERR,N,ICON)
 10 WRITE(6,600) P,ICON,S,ERR,N
 STOP
 600 FORMAT(' ',30X,'P=',F6.1,5X,
 *'ICON=',I5,5X,'S=',E15.7,5X,
 *'ERR=',E15.7,5X,'N=',I5)
 END
 FUNCTION FUN(X)
 COMMON P
 FUN=COS(P*X)
 RETURN
 END

Method
This subroutine uses an extended Clenshaw-Curtis
integration method which increases a fixed number of
abscissas (8 points) at a time. The original Clenshaw-
Curtis rule sometimes wastes abscissas because it
increases them doubly even when the desired accuracy
could be attained by adding only a few abscissas.
 For the purpose of avoiding this as much as possible,
this subroutine increases 8 points at a time. Moreover, the
costs of computations is reduced by using the Fast
Fourier Transform algorithm (FFT).

• Clenshaw-Curtis integration which increases a fixed
number of points at a time
The given integral ()f x dxa

b
∫ may be transformed by

linear transformation:

 x b a t a b
=

−
+

+
2 2

to

 b a f b a t a b dt− − + +

−∫2 2 21

1

 For simplicity, let's consider the integration(4.1) over
the interval [-1,1] in what follows.

()dxI xf∫−= 1
1 (4.1)

 The original Clenshaw-Curtis rule is as follows. By an
interpolation polynomial (i.e., Chebyshev interpolation
polynomial), whose interpolating points are the series of
points (Fig. AQC8-1) made by projecting the series of
points equally-sectioned on the unit half circle over the
interval [-1,1], f(x) is approximated, and this is integrated
term by term to obtain the integral approximation. The
number of data points will increase doubly to meet the
required accuracy. This method sometimes wasted data
points.
The method which increases a fixed number of data
points at a time is explained next. First, based on Van der
Corput series uniformly distributed on (0,1), the series of
points {αj}(j=1,2,3,...) are made by the recurrence
relation

()...,3,2,1

21,2,41 21221

=

+=== +

j
jjjj ααααα

 The series of points on a unit circle {exp(2πiαj)} is
symmetric to the origin and unsymmetric to the real axis
(Fig. AQC8-2). Since those points {xj=cos2παj } for
j=1,2,3,... form the Chebyshev Distribution on (-1,1),
they are used as data points (Fig. AQC8-2).
As shown in Fig. AQC8-2, seven points are used first as
abscissas. After that, eight points are added at a time
repeatedly. When the total amount of abscissas reaches
2n-1, their locations match those of points which are
made by projecting biseetional points placed on the unit
half circle to the open interval(-1,1). Thus, they are
regarded as a series of data points as used by the
Clenshaw-Curtis rule on the open interval.
 The descriptions for forming the interpolation

AQC8

102

Fig. AQC8-1 Data points used by the original Clenshaw-Curtis rule

x4x2x7x1x6x3x5

5

3

7

4

2

1
6

Fig. AQC8-2 Series of data points {xj} used by this subroutine

polynomials are given next. From the characteristics of αj,
the sequence {xj}(j=1,2,...,7) matches {cos πj / 8}.
When N-th degree Chebyshev polynomial is expressed as
TN (x) x8k+j(j=0, 1, ..., 7) corresponds to eight roots of
T8(x)−xk=0 (k=1,2,…). Using these characteristics, seven
points at firrst, eight points at each subsequent time, are
added to make the series of interpolation polynomial
Pl(x). In the expressions below, Po(x) is the interpolation
which uses the first 7 points, and Pl(x) is the one which
uses 8l+7 points as the result of adding 8 points l times.
 With a change of variable x=cos θ, the expression

() () θθθ
π

dfdxI xf sincos
0

1
1 ∫== ∫−

 is derived, and f (cosθ) is approximated by Pl (cosθ), i.e.

() ()f Plcos cosθ θ≈

 Where,

∑
=

−=
7

1
,10 sin/sin)(cos

k
k kAP θθθ

() ()

()∑
=

+

+

=
7

0
,

1

cos'8cos
sin

8sin

coscos

k
kll

ll

kA

PP

θθω
θ
θ

θθ

 (l = 0, 1, 2,...) (4.2)

 subject to

()

() ()

()() ()1,2

2cos8cos28cos

18cos

1
8

1

0

≥−=

−=

=

∏

∏

=

=

lxxT
l

k
k

l

l

k
k

l
l παθθω

θω

 The notation Σ' on the right-hand side of (4.2) means to
sum up the subsequent terms with the first term
multiplied by 1/2. Coefficients. A-1,k and Ai,k of
polynomial Pl(x) are determined by the interpolating
conditions. First, using the first seven points of {cosπj /
8}(j=1,2,...,7), A-l,k(k=1,2,...,7) is given as

,
8

sin
8

sin
8

cos
8
2 7

1
,1 kjjjfA

j
k

πππ∑
=

−

=

 (k = 1, 2, ... , 7)

 Next, using Ai,k (-1 ≤ i ≤ l-1) which is known, Al,k (l ≥ 0)
which appears in Pl+1(cosθ) are obtained. At this stage,
added data points are roots of T8(x)-xl+1=0, that is, cos
θj

l+1 ,(θj
l+1 =2π/8⋅(j+αl+1) (j=0,1,2,...,7). So, the

interpolating conditions at this stage,

()

()

()70

cos'2cos2sin

sinsincos

1
7

0
,

0
11

1
7

1
,1

11

≤≤

+

=

+

==
++

+

=
−

++

∑∑

∑

j

kA

kAf

l
j

k
ki

l

i
lil

l
j

k
k

l
j

l
j

θαπωαπ

θθθ

 are used to determine Al,k. To the left-hand side of (4.3)
a cosine transformation including parameter αl+1 is
applied.

() 1
7

0

11 cossincos +

=

++ ∑= l
j

k
k

l
j

l
j kaf θθθ , (0 ≤ j ≤ 7)

AQC8

103

 By regarding this as a system of linear equations with
ak's being unknowns and by solving them we have

()∑
=

+++=
7

0

111 cossincos
8
2

j

l
j

l
j

l
jk kfa θθθ

 In actual computations real FFT algorithm is used. Then,
from (4.3),

()

() ,2cos2sin

2cos
2sin

1

0
,11

,118,1
1

∑
=

++

−+−−
+

+

⋅−=

l

i
kilil

klk
l

k

A

AAa

απωαπ

απ
απ

 (0≤k≤7)

 where, A-1,0=A-1,8=0.
 From ω0(cos2πα1)=1 when l=0, the value A0,k is
obtained easily. For l≥1, letting

l=m+2n (0 ≤ m < 2n)

 and using the relation

sin2παl+1⋅ω2
n
-1(cos2παl+1)=sin(2n+1παl+1)=1

 Al,k can be computed as shown below.
 Letting first:

()

()∑
−

=
++

+−+−−+

−

⋅−−=
22

0
,11

1,118,11

2cos2sin

2sin2cos
n

i
kilil

lklkkm

A

AAaB

παωπα

παπα

 (4.4)

 then computing each Bm-i - 1 sequentially by

Bm-i = (Bm+1-i - A2
n

+i-1) / (cos2παl+1 - cos2πα2
n
+i)

 i=0,1,2,...,m (4.5)

 And Al,k's are computed as

Al,k=B0

 Comparing this to that of Newton difference quotient
formula, calculation in (4.4) and (4.5) are more stable
because the number of divisions are reduced from l+2 to
m+2. Using interpolation polynominal Pl+1(cosθ)
computed so far, the integral approximation Il+1 is
obtained by termwise integration.

∫ ++ =
π

θθθ
0 11 sin)(cos dPI ll

kiki

l

i kk
k WA

k
A ,,

1

7

0

7

1
,1 '2 ∑∑∑

= ==
− +=

 (Only terms with odd value of k are summed.)
 where, the weight coefficient Wi,k is defined as

() θθθθπ
ω dkW iki cos8sin8cos0, ∫= (4.6)

 and computed as follows. The weight coefficient W2
n
-1,k

is obtained by:

23

4

,12 4
2cos0 2sin 3

k
dkW n

n

k
n

n
−

== +

+

− ∫ + θθθπ

 Using this W2
n
-l,k as a starting value, the required

N(=2m×4) members of Wi,k(0 ≤ i ≤ 2m-1,k=1,3,5,7) are
computed by the following recurrence formula:

W2
n
-1+2

n-j+1
⋅s+2

n-j
 ,k=W2

n
-1+2

n-j+1
⋅s, 2

n-j
⋅8+k

 +W2
n
-1+2

n-j+1
⋅s,2

n-j
⋅8-k

 −2cos2πα2
j
+2s⋅W2

n
-1+2

n-j+1
⋅s,k

 , n=1,2,...,m − 1 , 1 ≤ j ≤ n, 0 ≤ s < 2j-1-1,
 0 ≤ k ≤ 2n-j⋅8 − 1(k is an odd number). (4.7)

 To obtain these weight coefficients, N /2(log2N − 2)+4
multiplications and divisions are required.

• Computing procedures
 Procedure 1 ... Initialization
This procedure computes m=(a+b)/2, r =(b − a) /2, which
are required to transform the integration interval [a,b] to
[-1,1]. All the initializations required are performed here.

 Procedure 2 ... Determination of abscissas and weights
In this subroutine the number of abscissas is limited to
511 (=29-1). Since points {xj}={cos2παj (j=1,2,...,511)
are distributed symmetrically to the origin, a table of only
256(=28){cosπαj}(j=1,2,...,256) is needed. The table is
generated by the recurrence formula. Also the weights
{Wi,2k+1}(0 ≤ i ≤ 63, 0 ≤ k ≤ 3) are computed by the
recurrence formula (4.7) and stored in a vector. This
procedure is performed only on the first call to the
subroutine, but bypassed on the subsequent calls.

 Procedure 3 ... Integral approximation based on initial 7
points Integral approximation I0 is obtained Integral
approximation I0 is obtained by multiplying the weights
determined in procedure 2 and A-1,2k+1(0 ≤ k ≤ 3), which
are obtained by using real FFT algorithm to data points
cosπ j/8(j=1,2,...,7).

 Procedure 4 ... Trigonometric function evaluations
Using data point table {cosπαj}, values of trigonometric
functions cos2παl+1, sin2παl+1, sinπαl+1 to be required in
procedure 5 are evaluated.

AQC8

104

 Procedure 5 ... ak and Al,k
After evaluating function values at the added 8 data
points, a2k+1(0 ≤ k ≤ 3) are obtained by using real FFT to
8 terms. And Al,2k+1(0 ≤ k ≤ 3) are obtained based on (4.4)
- (4.6).

 Procedure 6 ... Integration and convergence test
Previous integral approximation Il(l ≥ 0) is added with

∑
=

++

3

0
12,12,

k
klkl WA to obtain the updated integral

approximation Il+1. Next, an estimate el+1 of truncation
error in Il+1 is computed, and the convergence test is done
to el+1 as well as to el.
 After the convergence test for el the computation stops if
both tests are successful, otherwise goes back to
procedure 4 with l increased by 1.

• Error estimation

Letting Rl(x) denote the error when f(x) is
approximated by an interpolation polynomial Pl(x)
mentioned above it can be seen that

() () ()

() () ()()

() () ()()

() []7821
78

87

7

0
,

1

0
871

7

1
,1

,...,,,2

'

+
+−

=

−

=
−

=
−

×

+×

+=

+=

∑

∑∑

l
l

lk
k

ki

l

i
ik

k
k

ll

xxxxf

xTxUxTA

xTxUxUA

xRxPxf

ω

ω

 The coefficient 2-(8l+7) is used in order to match the
conventional error term expression with the divided
difference.
 Uk(x) is the k-th degree Chebyshev polynomial of the
second kind defined as follows:

Uk(x)=sin(k+1)θ / sinθ , x=cosθ

 Truncation error El for the approximation Il is expressed
as

() () ()() ()

[]dxxxxf

xTxdxxE

l

l
li UlR

781

78
8

,...,,

21
1 7

1
1

+

+−∫∫ −− == ω

The divided difference can be expressed by the form of
integration and also expanded to a Chebyshev series as
follows:

() [] ()
() () ()()

()xTC

i
xxxf

k
k

kl

l
l

C zTzUxz

dzzf

l

∑
∞

=

+
+−

=

= ∫ −

0
,

781
78

'

2
1,...,,2

87 ωπ

 Figure AQC8-3 shows the integration path c, which is a
simple closed curve.

C1−1

Fig. AQC8-3

 Coefficient Cl,k is as follows:

∫=
C l

k
kl zTzU

dzzfzU
i

C
))(()(

)()(2
2
1

87

*

, ωππ

 Uk
*(z) is the Chebyshev function of the second kind

defined as follows:

() ()
() 111 222

* 1
1

−

 −+
=

−
= ∫−

− zzzx
zU

k
k

k
xz

dxxT π

Therefore, El will be obtained by

kl
k

kll WCE ,
0

,'∑
∞

=
= (k = odd number)

If f(z) is a rational function having a poles at point zm
where m=1,2,...M), the following is established:

() ()
() ()()∑

=
−=

M

m mlm

mmk
kl zTzU

zfzUC
1 87

*

,
Res2
ωπ

Here, Resf(zm) is a residue at a point zm.
 Under the following conditions,

() 11, 2* >−+=∝ −
mmm

k
mmk zzrrzU

as far as zm is not too close to the interval [− 1,1] on a
real axis,

kll CC ,1, > , (k≥3)

holds.
 The truncation error can be estimated by

()E C W A A W el l l l l l l≈ ⋅ ≤ + ⋅ ≡− −, , , , ,1 1 1 7 1 5 1

 Al−1,7
 and Al−1,5

 are used instead of Cl ,1
, the value of

which cannot be really evaluated.
 If zm is very close to [-1,1] or f (p)(x), derivative of order
p(where p≥1) becomes discontinuous on [− 1,1], the error
estimation above is no longer valid. To cope with this
situation, take the following procedures. If Ai,k decreases
rapidly, the error for l2n-1 can be estimated well by

1212 1−− −− nn II

AQC8

105

 Therefore, if the following holds,

121212 1 −−− −−> nnn IIe

el is used as an error estimation in 2n-1 ≤ l ≤ 2n+1 − 1;
otherwise the following is used instead.

121212 11' −−− −−−≡ nnn eIIee ll

• Convergence criterion
As well as a truncation error, the integral
approximation has a computation error. This subroutine
estimates the upper bound ρ of the computation error
as

 () ∞+= flu 1ρ

 where u is the round-off unit, and f j∞
= max ()f x j .

This assumption is reasonable in actual use because
abscissas form the Chebysev distribution and FFT is used.
 Setting a tolerance for convergence test as

()τ ε ε ρ=
−

∫max a r f x dx, ,1

1

If the following condition is satisfied,

el+1(or e'l+1) < τ

 Il+1 is output in parameter S as an approximation to the
integral.
In parameter ERR, el+1(ICON = 0) is put out if el+1 ≥ ρ, or
ρ(ICON=10000) if el+1 < ρ.

 I l substitutes for ()dxxf∫−
1
1 which is used in τ.

 For the detailed description, see References [65] and
[66].

AQE

106

G23-11-0401 AQE,DAQE

Integration of a function by double exponential formula
CALL AQE (A,B,FUN,EPSA,EPSR,NMIN,NMAX,S,
ERR,N,ICON)

Function
Given a function f(x) and constants a,b,εa,εr this
subroutine obtains an approximation S that satisfies

() ()

 ⋅≤− ∫∫ dx,dxS b
a xf

b
a xf ra εεmax (1.1)

by Takahashi-Mori's double exponential formula.

Parameters
A Input. Lower limit a of the interval.
B Input. Upper limit b of the interval
FUN Input. The name of the function subprogram

which evaluates the integrand f(x) (see the
example).

EPSA .. Input. The absolute error tolerance εa(≥0.0) for
the integral.

EPSR .. Input. The relative error tolerance εr(≥0.0) for
the integral.

NMIN .. Input. Lower limit on the number of function
evaluations. A proper value is 20.

NMAX .. Input. Upper limit on the number of function
evaluations.
(NMAX≥NMIN)
A proper value is 641 (a higher value, if
specified, is interpreted as 641).

S Output. An approximation to the integral. (See
"Comments on use" and "Notes".)

ERR .. An estimate of the absolute error in the
approximation.

N Output. The number of function evaluations
actually performed.

ICON .. Output. Condition code. See Table AQE-1.

Comments on use
• Subprograms used

SSL II... MGSSL, AMACH, AFMIN
FORTRAN basic functions... MAX0, AMAX1,AMIN1,
ABS, FLOAT, EXP, COSH, SINH

• Notes

The function subprogram associated with parameter
FUN must be defined as a subprogram whose argument
is only the integration variable. Its function name must
be declared as EXTERNAL in a calling program. If the
integrand includes auxiliary variables, they must be
declared in the COMMON statement for the purpose of
communicating with the calling program.
 When this subroutine is called many times, 641
constants (table of abscissas and weights for the

Table AQE-1 Condition codes

Code Meaning Processing
0 No error

10000 The desired accuracy is not
attained due to rounding-off
errors.

Approximation
obtained so far
is output in S.
The accuracy
has reached
the attainable
limit.

11000
12000
13000

1,2,3 at the place of 1000
mean that the function
value increases steeply
near the upper, lower, or
both limits of the interval
respectively

Processing
continues with
a relaxed
tolerance.

20000 The desired accuracy is not
attained though the number
of integrand evaluation has
reached the upper limit

Processing
stops. S is the
approximation
obtained so
far, but is not
accurate.

21000
22000
23000

After the occurrence of any
even of code 11000 -
13000, the number of
integrand evaluations has
reached the upper limit.

25000 The table for abscissas(i.e.
work area) has been
exhausted.

Processing
stops. S is an
approximation
by using the
smallest
stepsize
allowed in this
subroutine.

30000 One of the followings
occurred:
1 EPSA < 0.0
2 EPSR < 0.0
3 NMIN < 0
4 NMAX < NMIN

Processing
stops.

integration formula) are determined only on the first call,
and this computation is bypassed on subsequent calls.
Thus, the computation time is shortened.
 This subroutine works most successfully when the
integrand f (x) changes rapidly in the neighborhood of
endpoints of the interval. Therefore, when f(x) has an
algebraic or logarithmic singularity only at endpoint(s),
the subroutine should be used with first priority.
 When f(x) has interior singularities, the user can also use
the subroutine provided that the subroutine is applied to
each of subintervals into which the original interval is
divided at the singularity points, or he can use subroutine
AQN9 directly for the original interval.
 Subroutine AQN9 is suitable also for peak type
functions, and subroutine AQC8 for smooth functions or
oscillatory functions.
 This subroutine does not evaluate the function at both
endpoints. A function value (f(x) → ±∞) of infinity is
allowed at the end points, but not allowed between them.
Parameters NMIN and NMAX must be specified
considering that this subroutine limits the number of
evaluations of integrand f(x) as

AQE

107

NMIN ≤ Number of evaluations ≤ NMAX

 This means that f(x) is evaluated at least NMIN times,
but less than NMAX times, regardless of the result of the
convergence test. When a value S that satisfies
expression (1.1) is not obtained within NMAX
evaluations, processing stops with ICON code 20000 -
23000.
 Accuracy of the integral approximation S. The
subroutine tries to obtain an approximation S which
hopely satisfies (1.1) when εa and εr are given. εa = 0
means to obtain the approximation with its absolute error
within εr. Sumilarly, εa=0 means to obtain it with its
relative error within εr. This purpose is sometimes
obstructed by unexpected characteristics of the function,
or an unexpected value of εa or εr. For example, when εa
or εr is extremely small in comparison with arithmetic
precision in function evaluations, the effect of rounding-
off errors becomes greater, so it is no use to continue the
computation even though the number of integrand
evaluation has not reached the upper limit.
In this case, the accuracy of S becomes the attainable
limit for the computer used. The approximation
sometimes does not converge within NMAX evaluations.
In this case, S is an approximation obtained so far, and is
not accurate. This is indicated by ICON within the code
range 20000 - 23000. In addition, ICON is set to 25000
when the approximation does not converge though the
smallest step-size defined in this subroutine is used.
To determine the accuracy of integration, this subroutine
always puts out an estimate of its absolute error in
parameter ERR, as well as the integral approximation S.
 An alternative definition of function for avoiding
numerical cancellation.
 For example, the integrand in the following integral has
singularities at end points of x = 1,3,

() ()∫
−−

= 3
1 13 4341 xxx

dxI

and the function value diverges at that points. There, the
integrand makes a great contribution to the integral. So,
the function values near the end points must be accurately
computed. Unfortunately, the function values cannot be
accurately computed there since cancellation occurs in
computing (3.0 - X) and (X-1.0).
 This subroutine allows the user to describe the integrand
in another form by variable transformation so that
cancellation can be avoided. Parameters in subprograms
are specified as follows:

FUNCTION FUN(X)
where,

X... Input. One dimensional array of size 2.
X(1) corresponds to integration variable x and
X(2) is defined depending upon the value of
integration variable x as follows:

Letting AA = min(a,b), and BB = max(a,b),
• when AA ≤ x <(AA+BB) / 2, X(2)=AA − x
• when (AA+BB) / 2 ≤ x ≤ BB, X(2)=BB − x

 In other words X(2) denotes the distance from either of
the end points. The user can write his function using X(2)
as follows:

()
()() ()
()() ()f x

f
f

=
− <
− ≥

AA X 2 when X 2
BB X 2 when X 2

0 0
0 0

.
.

The user can select either of X(1) or X(2) (See example).

• Example

Two integrals

() ()∫∫
−−

== 3
1 13

1
0 434121 ,

xxx

dx

x

dx II

are computed. The integrand in I1 is defined in the
function subprogram FUN1 and that in I3 is defined in
FUN2 respectively. FUN2 uses the technique described
in Note.

C **EXAMPLE**
 EXTERNAL FUN1,FUN2
 A=0.0
 B=1.0
 EPSA=1.0E-5
 EPSR=0.0
 NMIN=20
 NMAX=641
 CALL AQE(A,B,FUN1,EPSA,EPSR,NMIN,
 * NMAX,S1,ERR1,N1,ICON1)
 A=1.0
 B=3.0
 CALL AQE(A,B,FUN2,EPSA,EPSR,NMIN,
 * NMAX,S2,ERR2,N2,ICON2)
 WRITE(6,600) ICON1,S1,ERR1,N1,
 * ICON2,S2,ERR2,N2
 STOP
 600 FORMAT(' ',30X,'ICON1=',I5,5X,
 *'S1=',E15.7,5X,'ERR1=',E15.7,
 *5X,'N1=',I5//
 * ' ',30X,'ICON2=',I5,5X,
 *'S2=',E15.7,5X,'ERR2=',E15.7,
 *5X,'N2=',I5)
 END

 FUNCTION FUN1(X)
 FUN1=0.0
 IF(X.GT.0.0) FUN1=1.0/SQRT(X)
 RETURN
 END

 FUNCTION FUN2(X)
 DIMENSION X(2)
 T=X(2)
 IF(T.GE.0.0) GO TO 10
 P=(1.0-T)*(2.0+T)**0.25*(-T)**0.75
 GO TO 20
 10 P=(3.0-T)*T**0.25*(2.0-T)**0.75
 20 FUN2=0.0
 IF(P.GT.0.0) FUN2=1.0/P
 RETURN
 END

AQE

108

Method
This subroutine uses the automatic integration method
based on Takahashi-Mori's double exponential formula.
The principle of this method is given first, and next the
computing procedures in this subroutine.

• Double exponential formula

The given integral ()f xa
b

dx∫ may be transformed by

using the linear transformation

x b a t a b
=

−
+

+
2 2

 into

b a f b a t a b dt− − + +

−∫2 2 21

1

 For simplicity, let's consider the integration (4.1) over
the finite interval [-1,1].

()I f x dx= −∫ 1
1 (4.1)

 On condition that f(x) is analytical in the open interval (-
1,1), it is allowed to have singularities at x=±1 such as

(1 − x)α(1 + x)β , −1 <α, β

 By a variable transformation,

x=φ (t) (4.2)

 the interval [-1,1] is transformed to (− ∞, ∞) and
consequently the integral (4.1) is transformed to

() dtttI f)()(φφ ′= ∫
∞
∞− (4.3)

 Remembering that the trapezoidal rule is best for
integrals over the infinite interval, the following
integration formula is obtained by applying that rule with
step-size h to (4.3).

()() ()∑
∞

−∞=

=
n

h nhnhfhI 'φφ (4.4)

 Based on an analysis on errors which arise in approximating
the infinite sum above by the finite one, Takahashi and Mori
showed the optimal transformation φ (t) with which the
integrand in (4.3) will decay in a manner shown by (4.5)
below as | t | increase (see Fig.AQE-1).

()() () ()f t t a t aφ φ' ,≈ − >exp exp 0 (4.5)

h−2 −1
n= n= n=0 n=1 n=2

f (φ (t)) φ’(t)

Cancelation

t

Fig. AQE-1 Trapezoid rule applied to f

 As the transformation which enable the double
exponential decay such as (4.5) to happen, this subroutine
takes the following one.

() ()

() () ()

x t t

t t t

= =

=

φ

φ

tanh sinh

cosh cosh sinh2

3
2

3
2'

 (4.6)

• Computing procedure

 Procedure 1 ... Initialization
To transform the finite interval [a, b] to [-1,1], determine
the constant.

r=(b − a)/2

 All the initialization required are done in this procedure.

 Procedure 2 ... Determines the upper and lower limits of
the infinite summation used to approximate the infinite
summation (4.4). A very approximate integral S' is
obtained.

 Procedure 3 ... By the summation of the finite number of
products, approximations S(h), S(h/2), S(h/4)... for Ih, Ih/2,
Ih/4,..., are computed by bisectioning the step-size, until it
converges.

 Procedure 4 ... Sets values in S, ERR and ICON.

• Convergence criterion

If a step-size h used in the equally spaced trapezoidal
rule is sufficiently small, it is proved analytically that
the error ∆∆∆∆Ih = I − Ih can be expressed

∆ ∆I Ih h2

2≈

 From this, letting ε denote the desired accuracy,
∆Ih 2 ≤ ε requires ∆Ih ≤ ε 1 2 .

Since | ∆∆∆∆Ih/2 | << || ∆∆∆∆Ih || numerically,

() () hhhhh IIIIIhShS ∆∆∆ ≈−=−≈− 222

AQE

109

 holds takes the form. Thus, if the convergence criterion
takes the form

() () αεη =≤− 2hShS

 α=1/2 is allowed theoretically. From experience, this
subroutine uses the following values of α for security,
where ε' = max(εa / |S'|, εr) (or ε' = εr when S' = 0)

When 10-4 ≤ ε' α=1.0
When 10-5 ≤ ε' <10-4 α=0.9
When 10-10≤ ε' <10-5 α=0.8
 ε' <10-10 α=0.75
 As the desired accuracy ε, max(εa, εr⋅|S(h/2)|,) is used.

• Determination of initial step-size and threshold

The step-size is initialized to 0.5 such an integer n (n=
±1,, ±10) as satisfies the condition.

 ()() ()F f nh nh= ≤φ φ η' '

continuously twice is searched for, where

()()∞
−

∞= FFra
410,maxmin' εεη

 When F > η ' even at n = ±10, the convergence
tolerance ε' is replaced by F and procedure 3 is executed.
• Detection of round-off error effect

Letting eh = |S(h) − S(h/2)|, then if εh ≤ η is satisfied,
S(h/2) is put out in parameter S as an approximation to
the integral and eh

1/α is put out in parameter ERR.
However, when eh ≤ η but also any of the phenomena
below occurs, it is regarded that the round-off error
effect dominates over the truncation error effect, and
processing stops with ICON=10000.
Phenomenon1 eh/2 ≥ eh ≥ e2h
Phenomenon 2 eh ≤ uα |S(h/2)|, where u is round-off
unit.

In this case, eh or u|S(h/2)| put out in parameter ERR
correspondingly to Phenomenon 1 or 2 respectively.

For details, see References [67] and [68].

AQEH

110

G23-21-10101 AQEH, DAQEH

Integration of a function over the semi-infinite interval by
double exponential formula
CALL AQEH(FUN,EPSA,EPSR,NMIN,NMAX,S,ERR,
N,ICON)

Function
Given a function f(x) and constants εa εr this subroutine
obrains an approximation that satisfies (1.1) by using the
Takahashi-Mori's double exponential formula

() ()

 ⋅≤− ∫∫
∞
∞−

∞
∞− dxdxS xfxf ra εε ,max (1.1)

Parameter
FUN ... Input. The name of the function subprogram

which evaluates the integrand f(x). (See the
example.)

EPSA .. Input. The absolute error tolerance εa(≥0.0) for
the integral.

EPSR .. Input. The relative error tolerance εr(≥0.0) for
the integral.

NMIN .. Input. Lower limit on the number of function
evaluations (≥0.0). A proper value is 20.

NMAX .. Input. Upper limit on the number of function
evaluations (≥0). A proper value is 689 (a
higher value, if specified, is interpreted to 689).
(See "Comments on use" and "Notes".)

S Output. An approximation to the integral. (See
"Comments on use" and "Notes".)

ERR ... Output. An estimate of the absolute error in the
approximation.

N Output. The number of function evaluations
actually performed.

ICON .. Output. Condition code. See Table AQEH-1.

Comments on use
• Subprograms used

SSL II ... MGSSL, AMACH, AFMAX
FORTRAN Basic Functions ... AMIN1, ABS, AMAX1,
FLOAT, SINH, COSH, EXP

• Notes

The function subprogram associated with parameter
FUN must be defined as a subprogram whose argument
is only the integration variable. Its function name must
be declared as EXTERNAL in a calling program. If
the integrand in cludes auxiliary variables, they must be
declared in the COMMON statement for the purpose of
communicating with the calling program.
 When this subroutine is called many times, 689
constants (table of abscissas and weights for the
integration formula) are determined only on the first
call and this computation is bypassed on subse-

Table AQEH-1 Condition codes

Code Meaning Processing
0 No error

10000 The desired accuracy is not
attained due to rounding-off
errors.

The
approximation
obtained so far
is output in S.
The accuracy
has reached
the attainable
limit.

11000
12000
13000

1, 2, 3 at the place of 1000
means respectively:
1 Function value increases

steeply near at x=0.
2 Function value converges

too late to 0 when X→∞
3 Both 1 and 2 occur.

Processing
continues with
a relaxed
tolerance.

20000 The desired accuracy is not
attained though the number
of integrand evaluations has
reached the upper limit.

21000
22000
23000

After the occurrence of any
event of code 11000 -
13000, the number of
integrand evaluations
reaches the upper limit.

25000 The table for abscissas(i.e.
work area) has been
exhausted.

Processing
stops. S is an
approximation
by using the
smallest step-
size allowed in
this subroutine.

30000 One of the followings
occurred:
1 EPSA < 0.0
2 EPSR < 0.0
3 NMIN < 0
4 NMAX < NMIN

Bypassed

quent calls. Thus the computation time is shortened.
 This subroutine works most successfully even for the
integrand f(x) which converges relatively slowly to zero
when x→+ ∞ , or f(x) to which Gauss-Laguerre's rule
cannot be applied.
When the integrand f(x) severely oscillates, highly
accurate integral value may not be obtained.
 This subroutine does not evaluate the function at the
lower limit (origin). A function value is allowed to be
infinite (f(x) → +∞) at the lower limit. Since function
values at large values of x will be required, the function
subprogram FUN needs to have a defence against
overflows and underflows if the high accuracy is
desired.
 Parameters NMIN and NMAX must be specified
considering that this subroutine limits the number of
evaluations of integrand f(x) as
 NMIN≤Number of evaluations≤NMAX
This means that f(x) is evaluated at least NMIN times,
but less than NMAX times, regardless of the result of
the convergence test. When a value S that satisfies
expression (1.1) is not obtained within NMAX
evaluations, processing stops with ICON code 20000 -
23000. When an extremely small NMAX is given, for

 Processing
stops. S is the
approximation
obtained so
far, but is not
accurate.

AQEH

111

example NMAX=2, NMAX is automatically increased
to a certain value which depends upon the behavior of
f(x).

Accuracy of the integral approximation S
The subroutine tries to obtain an approximation S which
satisfies (1.1) when εa and εr are given. When εr = 0, the
approximation is obtained with its relative error within εr.
This is sometimes obstructed by unexpected
characteristics of the function or an unexpected value of
εa or εr. For example, when εa or εr is extremely small
compared to the arithmetic precision in function
evaluations, the effect of the rounding-off errors becomes
greater, so there is no use in continuing the computation
even though the number of integrand evaluations has not
reached the upper limit (NMAX). In this case, the
accuracy of S becomes the attainable limit for the
computer used. The approximation sometimes does not
converge within NMAX evaluations. In this case, S is an
approximation obtained up to that time and so is not
accurate. This is indicated by ICON within the code
range 20000 - 23000. In addition, ICON is set to 25000
when the approximation does not converge though the x
smallest step-size defined in this subroutine is used.
 To determine the accuracy of integration, this
subroutine always puts out an estimate of its absolute
error in parameter ERR, as well as the integral
approximation S.

• Example

The integral

 0
∞

∫ e-xsin x dx

is computed in the program below.

C **EXAMPLE**
 EXTERNAL FUN
 EPSA=1.0E-5
 EPSR=0.0
 NMIN=20
 NMAX=689
 CALL AQEH(FUN,EPSA,EPSR,NMIN,NMAX,
 *S,ERR,N,ICON)
 WRITE(6,600) ICON,S,ERR,N
 STOP
 600 FORMAT(' ',30X,'ICON=',I5,5X,
 *'S=',E15.7,5X,'ERR=',E15.7,
 *5X,'N=',I5)
 END
 FUNCTION FUN(X)
 IF(X.GT.176.0)GO TO 10
 FUN=EXP(-X)*SIN(X)
 RETURN
 10 FUN=0.0
 RETURN
 END

Method
This subroutine uses an automatic integration method
based on Takahashi-Mori's double exponential formula.
 For detailed information on this method, refer to the
method of subroutine AQE. Here, the variable
transformation applied to the integration variable is

()x t t= =

φ exp sinh

3
2

thus, to a weight function φ (t).

()φ' t t t= ⋅

3
2

3
2

cosh exp sinh

is used.

AQEI

112

G23-31-0101 AQEI, DAQEI

Integration of a function over the infinite interval by dou-
ble exponential formula
CALL AQEI(FUN, EPSA, EPSR, NMIN, NMAX, S,
ERR, N, ICON)

Function
Given a function f(x) and constants εa, εr this subroutine
obtains an approximation that satisfies

() ()

 ⋅≤− ∫∫
∞
∞−

∞
∞− dx,dxS xfxf ra εεmax (1.1)

by using Takahashi-Mori's double exponential formula.

Parameters
FUN ... Input. The name of the function subprogram

which evaluates the integrand f(x) (see the
example).

EPSA .. Input. The absolute error tolerance εa(≥0.0) for
the integral.

EPSR .. Input. The relative error tolerance εr(≥0.0) for
the integral.

NMIN .. Input. Lower limit on the number of function
evaluations (≥0). A proper value is 20.

NMAX .. Input. Upper limit on the number of function
evaluations (NMAX ≥ NMIN). A proper value
is 645 (a higher value, if specified, is
interpreted as 645). (See "Comments on use"
and Notes.)

S Output. An approximation to the integral. (See
"Comments on use" and "Notes".)

ERR ... Output. An estimate of the absolute error in the
approximation.

N Output. The number of function evaluations
actually performed.

ICON .. Output. Condition code. See Table AQEI-1.

Table AQEI-1 Condition codes

Code Meaning Processing
0 No error

10000 The desired accuracy is not
attained due to rounding-off
errors.

The
approximation
obtained so far
is put out in S.
The accuracy
has reached
the attainable
limit.

11000
12000
13000

1,2,3 at the place of 1000
means that the function
value converges too late to
0 when x→−∞, x→∞,
x→±∞,respectively.

Processing
continues with
a relaxed
tolerance.

20000 The desired accuracy is not
attained though the number
of integrand evaluations has
reached the upper limit.

Processing
stops. S is an
approximation
obtained so
far, but is not
accurate.

21000
22000
23000

After the occurrence of any
event of codes 11000 -
13000, the number of
integrand evaluations
reached the upper limit.

25000 The table for abscissas(i.e.
work area) has been
exhausted.

Processing
stops. S is an
approximation
by the smallest
step-size
allowed in this
subroutine.

30000 One of the followings
occurred.
1 EPSA<0.0
2 EPSR<0.0
3 NMIN<0
4 NMAX<NMIN

Processing
stops.

AQEI

113

Comments on use
• Subprograms used

SSL II ... MGSSL, AMACH
FORTRAN basic functions ... AMIN1, ABS,
AMAX1, FLOAT, SINH, COSH, EXP

• Notes
The function subprogram associated with parameter
FUN must be defined as a subprogram whose argument
is only an integration variable. Its function name must
be declared as EXTERNAL in a calling program. If
this function includes auxiliary variables, they must be
declared in the COMMON statement for the purpose of
communicating with a main program.
 When this subroutine is called many times, 645
constants (tables of abscissas and weights for the
integration formula) are determined only on the

first call. This computation is bypassed on subsequent
calls.
 This subroutine works successfully even for integrand
f(x) which converges relatively slowly to 0 when x→∞,
or f(x) to which Gauss-Hermite's rule cannot be applied.
The accuracy is sometimes reduced when |x| has a high
peak near the origin or is oscillatory.
 Since function values at large values of f(x) are
required, the function subprogram FUN needs to have a
defense against overflows and underflows if the desired
accuracy is high.

Parameters NMIN and NMAX
This subroutine limits the number of evaluations of the
integrand f(x) as follows:

NMIN≤Number of evaluations≤NMAX

 This means that f(x) is evaluated at least NMIN times
but not more than NMAX times regardless of the result of
the convergence test. When a value of S that satisfies
(1.1) is not obtained within NMAX evaluations,
processing stops with ICON code 20000 - 23000. Or
when extremely small NMAX is given, for example
NMAX=2, NMAX is increased automatically to a value

AQEI

114

which is determined by the behavior of f(x).

Accuracy of the integral approximation S
This subroutine obtains a value of S that satisfies the
expression (1.1) when constants εa and εr are given. εr=0
means to obtain the approximation with its absolute error
within εa. Similarly, εr=0 means to obtain it with its
relative error within εr. This purpose is sometimes
obstructed by unexpected characteristics of the function,
or unexpected value of εr. For example, when εa or εr is
extremely small in comparison with arithmetic precision
in function evaluation, the effect of rounding-off errors
becomes greater, so it is no use to continue the
computation even though the number of integrand
evaluations has not reached the upper limit. In this case,
processing stops with ICON code 10000. At this time, the
accuracy of S has reached the attainable limit for the
computer used. The approximation sometimes does not
converge within NMAX evaluations. In this case, S is the
approximation obtained so far, and is not accurate. This
is indicated by ICON within the code range 20000 -
23000. In addition, ICON is set to 25000 when the
approximation does not converge though the smallest
step-size defined in this subroutine is used. To determine
the accuracy of integration, this subroutine always puts
out an estimate of its absolute error in parameter ERR, as
well as the integral approximation S.

• Example

The integral

dx
x∫

∞
∞− +− 2210

1

is obtained in the program below.

C **EXAMPLE**
 EXTERNAL FUN
 EPSA=1.0E-5
 EPSR=0.0
 NMIN=20
 NMAX=645
 CALL AQEI(FUN,EPSA,EPSR,NMIN,NMAX,
 *S,ERR,N,ICON)
 WRITE(6,600) ICON,S,ERR,N
 STOP
 600 FORMAT(' ',30X,'ICON=',I5,5X,
 *'S=',E15.7,5X,'ERR=',E15.7,
 *5X,'N=',I5)
 END
 FUNCTION FUN(X)
 IF(ABS(X).GT.1.0E+35) GO TO 10
 IF(ABS(X).LT.1.0E-35) GO TO 20
 FUN=1.0/(1.0E-2+X*X)
 RETURN
 10 FUN=0.0
 RETURN
 20 FUN=100.0
 RETURN
 END

Method
This subroutine uses the automatic integration method
based on Takahashi-Mori's double exponential formula.
 As for the principles and computing procedures of this
method, refer to the descriptions under the heading
Method of subroutine AQE. To add a description for
subroutine AQEI, the variable transformation applied to
the integration variable x is

()x t t= =

φ sinh sinh

3
2

thus, to a weight function φ '(t);

()φ' t t t= ⋅

3
2

3
2

cosh cosh sinh

is used.

AQMC8

115

G24-13-0101 AQMC8, DAQMC8

Multiple integration of a function by a modified
Clenshaw-Curtis rule
CALL AQMC8(M,LSUB,FUN,EPSA,EPSR,NMIN,
NMAX,S,ERR,N,ICON)

Function
A multiple integral of dimension m(1 ≤ m ≤ 3) is defined
here by

()mm xxxfI m

m
dxdxdx ,,, 21

2

2

1

1
21 ⋅⋅⋅⋅⋅⋅= ∫∫∫

ψ
ϕ

ψ
ϕ

ψ
ϕ

 (1.1)

The upper limits and lower limits are given by

ϕ 1=a (constant) , ψ1=b (constant)
ϕ 2=ϕ 2 (x1) , ψ2=ψ2 (x1)
 : :
ϕ m=ϕ m(x1,x2,...,xm-1) , ψm=ψm(x1,x2,...,xm-1)

Then, this subroutine obtains an approximation S which
satisfies

()I,maxIS ra εε≤− (1.2)

for εa, εr given by a modified Clenshaw-Curtis rule
applied to each dimension.

Parameters
M Input. Dimension m of the integral
LSUB .. Input. The name of the subroutine sub-

program which evaluates the lower limit ϕ k
and upper limit ψk. The form of the subroutine
is as follows:
SUBROUTINE LSUB(K,X,A,B)
where,
K ... Input. Index k of integration variable.

1 ≤ k ≤ m.
X ... Input. One-dimensional array of size (M-

1) which corresponds to X(1)=x1,
X(2)=x2,...,X(M-1)=xm-1

A ... Output. The value of the lower limit
ϕ k(x1, x2, ..., xk-1)

B ... Output. The value of the upper limit
ψk(x1,x2,...,xk-1)

FUN ... Input. The name of the function subprogram
which evaluates the integrated
f(x1,x2,...,xm)
The form of the subroutine is as follows:
FUNCTION FUN(X)
Parameter X is a one-dimensional array of size
M which corresponds to X(1)=x1, X(2)=x2, ...,
X(M)=xm.

EPSA ... Input. The absolute error tolerance εa (≥0.0)
for the integral.

EPSR ... Input. The relative error tolerance εr(≥ 0.0)
for the integral.

NMIN ... Input. Lower limit (≥0) on the number of
evaluations of the integrand function when
integrating in each integral variable. A proper
value is 7.

NMAX ... Input. Upper limit (NMAX ≥ NMIN) on the
number of evaluations of the integrand
function when integrating in each integral
variable. A proper value is 511. (When a
value larger than 511 is specified the value is
assumed to be 511.) (See Note.)

S Output. An approximation (See Note.)
ERR ... Output. An estimate of the absolute error in

the approximation.
N ... Output. Total number of integrand evaluations

actually performed. It must be a 4-byte integer
variable

ICON .. Output. Condition code. See Table AQMC8-
1.

Table AQMC8-1 Condition code

Code Meaning Processing
0 No error

100
1000
1100

10000
10100
11000
11100

When integrating the
function in the
direction of a certain
coordinate axis, the
requested accuracy in
that direction could not
be obtained because
of round-off error. The
third place indicates
that during integration
in the direction of axis
x3, the difficulty
occurred for various
pairs of (x1,x2). The
fourth place indicates
that during integration
in the direction of axis
x2, the difficulty
occurred for various
values of x1. The fifth
place indicates that
the difficulty occurred
in the direction of axis
x1.

The obtained
approximation is
output to S. When
the condition code is
in the range of 100
through 1100, the
accuracy satisfies
the request or
reaches the limit of
arithmetic precition.
When the condition
code is in the range
of 10000 through
11100 the accuracy
reaches the limit. In
either case, the error
is output to ERR.

200
2000
2200

20000
20200
22000
22200

When integrating the
function in the
direction of a certain
coordinate axis, the
number of evaluation
of the integrand
function reached the
upper limit, but the
requested accuracy in
the direction of the
axsis could not be
obtained. The
indication of the
places is the same as
condition codes 100
through 11100.

The obtained
approximation is
output to S. When
the condition code is
in the range of 200
through 2200, the
required accuracy
may be satisfied or
not satisfied. In
either case, the error
is output to ERR. If
a large value of
NMAX is given, the
precision may be
modified (the limit of
NMAX is 511).

AQMC8

116

Table AQMC8-1 - continued

Code Meaning Processing
300

23300

The events indicated in
condition codes 100
through 11100 and those
of 200 through 22200
occurred concurrently.

The obtained
approximation is
output to S. The
required
accuracy may be
satisfied or may
not be satisfied.
In either case,
the error is output
to ERR.

30000 One of the following
detected.
 1 EPSA<0.0
 2 EPSR<0.0
 3 NMIN<0
 4 NMAX<NMIN
 5 M ≤ 0, or M ≥ 4

Bypassed

Comments on use
• Subprogram used

SSL II ... MGSSL, AMACH
FORTRAN basic functions ... ABS, AMAX1, FLOAT,
MAX0, MIN0, SQRT

• Notes

The function subprogram associated with parameter
FUN must be defined as a subprogram whose argument
is only the integration variable vector X. Its function
name must be declared as EXTERNAL in a calling
program. If the integrand includes an auxiliary variable,
this must be declared in the COMMON statement for
the purpose of communicating with the calling program
(see the example). Also, the name of the subprogram
associated with parameter LSUB must be declared as
EXTERNAL in a calling program.
 When this subroutine is called many times, 511
constants (tables of abscissas and weights for the
integration formula) are determined only on the first
call and this computation is bypassed on subsequent
calls, thus the computation time is shortened.
 This subroutine works successfully not only for
smooth integrands f(x1,x2,...,xm) but also for oscillatory
ones.
 This subroutine limits the number of evaluations ni
where i=1,2,...,m in the direction of each coordinate
axis of the integrand function in the range of:
 NMIN≤ni≤NMAX
This means that f (x1,x2,...,xm) is evaluated at least
NMIN times, but not more than NMAX times,
regardless of the result of the convergence test. If the
approximation does not converge within NMAX times
in the direction of a certain coordinate axis, the
processing stops with ICON code 200 − 22200. The
position of numeric character 2 indicates the type of
axis x3, x2 or x1 corresponding to 100, 1000 or 10000

respectively. When NMAX is specified as less than
seven, seven is assumed.

Accuracy of the integral approximation S
This subroutine tries to obtain an approximation S which
satisfies (1.2) when εa and εr are given. When εr=0, an
approximation is obtained with an absolute error within
εa. Similarly, when εa=0, an approximation is obtained
with a relative error within εr. This is sometimes
obstructed by an unexpected characteristic of the function
or an unexpected value of εa or εr. For example, when εa
or εr is extremely small compared to the arithmetic
precision in function evaluations, the effect of the
rounding-off errors becomes greater, so there is no use in
continuing the computation even though the number of
integrand evaluations has not reached the upper
limit(NMAX). In this case, ICON is set to 100 - 11100.
The position of numeric character 1 indicates the type of
axis x3, x2 and x1 corresponding to 100, 1000 or 10000
respectively. Generally speaking, even when ICON is set
to 100 - 1100, that is the effect of round-off errors
becomes greater on axis x3 and x2, this may not effect the
total accuracy of integral S. It may satisfy the required
accuracy. This should be checked depending on the error
estimation ERR.
 As mentioned above, an approximation may not
converge within NMAX times. In this case, ICON is set
to 200 - 22200, the position of the number 2 indicating
the type of axis. When ICON is set to 200 - 22200, the
obtained integral may satisfy the required accuracy.
When the events indicated by condition codes 100 -
11100 and 200 - 22200 occur, ICON is set to 300 -
23300.
 To determine the accuracy of the integration, this
subroutine always outputs an estimate of its absolute
error in parameter ERR, as well as the integral
approximation S.

• Example

Increasing the value of auxiliary variable ρ from 1.0 to
3.0 by 1.0 at a time, this example computes the integral.

() () () 2coscoscos
13

3
2
2

1
1 +

= ∫∫∫ −−− pzpypx
I dzdydx

C **EXAMPLE**
 INTEGER*4 N
 COMMON P
 EXTERNAL FUN,LSUB
 EPSA=1.0E-5
 EPSR=1.0E-5
 NMIN=7
 NMAX=511
 M=3
 DO 10 I=1,3
 P=FLOAT(I)

AQMC8

117

 CALL AQMC8(M,LSUB,FUN,EPSA,EPSR,
 *NMIN,NMAX,S,ERR,N,ICON)
 10 WRITE(6,600) P,ICON,S,ERR,N
 STOP
 600 FORMAT(' ',30X,'P=',F6.1,5X,'ICON=',
 *I5,5X,'S=',E15.7,5X,'ERR=',E15.7,5X,
 *'N=',I5)
 END
 SUBROUTINE LSUB(K,X,A,B)
 DIMENSION X(2)
 GO TO (10,20,30),K
 10 A=-1.0
 B=1.0
 RETURN
 20 A=-2.0
 B=2.0
 RETURN
 30 A=-3.0
 B=3.0
 RETURN
 END

 FUNCTION FUN(X)
 DIMENSION X(3)
 COMMON P
 FUN=1.0/(COS(P*X(1))*COS(P*X(2))
 **COS(P*X(3))+2.0)
 RETURN
 END

Method
This subroutine uses a product formulas in which a
modified Clenshaw-Curtis rule is applied repeatedly to
each of dimension. Since AQC8 works successfully for
smooth functions and oscillatory functions, this
subroutine has the same characteristic with AQC8.
 For detailed information on the Clenshaw-Curtis rule,
see AQC8.

• The product formula

Consider the following triple integral.

()321321 ,,3

3

2

2

1

1
xxxfI dxdxdx ∫∫∫= ψ

ϕ
ψ
ϕ

ψ
ϕ (4.1)

The lower limit and upper limit of the integral are given
by

ϕ1=a , ψ1=b
ϕ 2=ϕ 2(x1) , ψ2=ψ2(x1)
ϕ 3=ϕ 3(x1,x2) , ψ3=ψ3(x1,x2)

The integral I in (4.1) is obtained by computing step by
step as follows:

() ()∫= 3

3
3321212 ,,, ψ

ϕ
dxxxxxxI f (4.2)

() ()∫= 2

2
221211 ,ψ

ϕ
dxxxIxI (4.3)

()∫= 1

1
111

ψ
ϕ

dxxII (4.4)

Therefore, I is obtained when the function I1is integrated
for x1. In this state the function I1(x1) can be obtained by
fixing x1 when the function I2(x1,x2) is integrated fixing x1
and x2 on [ϕ 3(x1,x2),ψ3((x1,x2)] for x3 of f(x1,x2,x3). This
subroutine uses a modified Clenshaw-Curtis rule to
integrate I along coordinate axis x1, x2, or x3.

• Computing procedures

Procedure 1 ... Initialization
Determine the initial value of various variables and
constants used for tests.

Procedure 2 ... Determination of abscissas and weights
Obtain the abscissas and weights to be used for the
Clenshaw-Curtis rule by a recurrence formula. Then put
them into one-dimensional work arrays. Since the upper
limit on the number of abscissas is 511(=29−1), each size
of the one-dimensional array required for the abscissas
and weights is 256(=28), respectively.
 Procedure 2 is performed only on the first call and this
procedure is bypassed on subsequent calls.
 Triple integration is considered in the following
procedure 3, 4, and 5.

Procedure 3 ... Initialization for integration in the
direction of axis x1
Set seven points on the interval [ϕ 1,ψ1] which are
defined as x1

i (i=1,2,3,...7). These are the first seven
abscissas obtained in Procedure 2 and linearly
transformed to the interval [ϕ 1,ψ1].

Procedure 4 ... Initialization for integration in the
direction of axis x2
One of x1

i(i=1,2,...,7) or one of the eight abscissas added
on axis x1 is assumed to be X1. Set the seven points on
interval [ϕ 2(X1),ψ2(X1)] of variable x2 for this X1. They
are dencted by x2

i (i = 1, 2, ..., 7). These are the points as
in Procedure 3 which are obtained and linearly
transformed to the interval [ϕ 1,ψ1].

Procedure 5 ... Initialization for integration in the
direction of axis x3
Assume one of x2

i(i=1,2,...,7) or one of the eight
abscissas added on axis x2 to be X2. Set seven points on
the interval [ϕ 3(X1,X2),ψ3(X1,X2)] of variable x3 for
(X1,X2). They are denoted by x3

i(i=1,2,...,7). These are the
points as in Procedure 3 which are obtained in Procedure
2 and the first seven of them are linearly transformed.

Procedure 6 ... Integration in the direction of axis x3
Compute the values of function f at the points (X1,X2,x3

i)
(i=1,2,...,7) and obtain an approximation SI7(X1,X2). The
obtained approximation is the initial approximation for
(4.2) when fixing (x1,x2).

AQMC8

118

 Furthermore, define x3
i where i=8,9,...,15 from the

points obtained in Procedure 2. Then compute the values
of function f at (X1,X2,x3

i) for i=8,9,...15. The
approximation SI15(X1,X2) for (4.2) is obtained based on
the 15 points. Repeat this computation adding eight
points each time until the approximation converges. If the
approximation does not converge even with NMAX
number of abscissas or the error cannot be improved any
more because of round-off error, set the value of ICON
depending upon the behavior of approximation.

Procedure 7 ... Integration in the direction of axis x2
Execute procedures 5 and 6 for all x2

i (i=1,2,...,7) defined
in Procedure 4 and obtain approximation SI7(X1) of the
integral in the direction of axis x2. This is an
approximation to (4.3) when fixing x1. Furthermore,
define x2

i (i=8,9,...,15) from the points obtained in
Procedure 2 and execute Procedure 5 and 6 to obtain
SI15(X1). Repeat adding eight points each time until the
approximation converges. When the approximation does
not converge, set the value of ICON.

Procedure 8 ... Integration in the direction of axis x1
Execute Procedures 4, 5, 6 and 7 for all x1

i (i=1,2,...,7)
defined in Procedure 3. Then obtain the approximation
SI7 of the integral in the direction of axis x1. This is the
initial approximation for the triple integration (4.4).
Furthermore, define x1

i (i=8,9,...,15) from the points
obtained in Procedure 2 and execute procedure 4, 5, 6
and 7 to obtain SI15. Repeat adding eight points each time
until the approximation converges. When the
approximation does not converge, set the value of ICON
and terminate the processing.

• Error evaluation

In the triple integration (4.1), to transfer the integral
interval [ϕ 1,ψ1] to [-1,1]. the following variable
transformation is performed:

 111
11

1
11

1 '
2

'
2

βαϕψϕψ +≡++−= xxx

The variable transformation for x2 and x3 is performed
at one time to transfer the integral interval
[ϕ2(x1),ψ2(x1)], [ϕ 3(x1,x2),ψ3(x1,x2)] to [-1,1] as
follows:

() () () ()
2

'
2

1212
2

1212
2

xxxxxx ϕψϕψ ++−=

() ()12212 ''' xxx βα +≡
() () () ()

2
,,

'
2

,, 213213
3

213213
3

xxxxxxxxxx ϕψϕψ +
+

−
=

() ()≡ +α β3 1 2 3 3 1 2x x x x x' , ' ' ' , '

The integration (4.1) is obtained as follows:

∫−=
1

1 111)'(' xhdxI α (4.5)

() ()∫−
=

1

1 212121)','(''' xxgdxxxh α (4.6)

() ()∫− +=
1

1 212111321321 ')'(,'('','',' xxxfdxxxxxg αβαα

() () ())213321312 ',''',',' xxxxxx βαβ ++ (4.7)

When the Clenshaw-Curtis rule is used for the
integration on the righthand side in (4.7), and the
discretization error is denoted by p(x1',x2'), the
following holds:

() () () ()212132121 ','','','~',' xxpxxxxgxxg α+= (4.8)

, where

() ()

+= ∑∑∑

= ==
−−

P

i k
kiki

k
kk WAWAxxxxg

0

7

0
,,

7

0
,1,121321 ','','~ α

 (4.9)

This is the approximation based upon (8P+7) points.
And Ai,k is the value depending upon (x'1,x'2) and Wi,k is
a weight. p(x'1,x'2) is estimated by

() () 1,1PP,7P,521 WAA',' +⋅+=xxp (4.10)

Then substitute (4.8) in (4.6) and obtain the following:

() ()∫−=
1

1 221121 ')','(~'' dxxxgxxh α (4.11)

()∫−+
1

1 22121312 ')','()','(' dxxxpxxx αα

When the Clenshaw-Curtis rule is used for the
integration of the first item on the righthand side, and
the discretization error is denoted by q(x'1), then the
first item can be written as follows:

() () () () ()

() ()

+=

′′+′=′

∑∑∑
= ==

−−

∫− ′′′

Q

i k
kiki

k
kk WBWBxxh

xqxxhx xdxxg

0

7

0
,,

7

0
,1,1121

112112

''
~

where,

~1
1 ,~

221

α

αα

 (4.12)

q(x'1) is estimated as (4.10) by

() () 1,17,5,1' +⋅+= QQQ WBBxq (4.13)

Substitute the first equation of (4.12) in (4.11) and
substitute the obtained equation in (4.5) to obtain the
following:

AQMC8

119

∫∫
∫∫

−−

−−

+

+=

1

1 1221213
1

1 121

1

1 11121
1

1 111

'')','()','()'(

')'()'(')'(
~

dxdxxxpxxx

dxxqxdxxhI

ααα

ααα

 (4.14)

Also, when the Clenshaw-Curtis rule is used for the
integration of the first item on the righthand side of
(4.14), and the discretization error is denoted by r, the
following holds:

+=

+=

∑∑∑

∫

= ==
−−

−

R

i k
kiki

k
kk WCWCI

rIdxxh

0

7

0
,,

7

0
,1,11

1
1

1 111

~

where,

~')'(
~

α

αα

 (4.15)

r is estimated by

() 1,1RR,7R,5 WCC +⋅+=r (4.16)

Therefore ~I in (4.15) is the approximation to the triple
integration and the error I I− ~ is obtained by

substituting the first equation in (4.15) in (4.14) as
follows:

∫∫

∫

−−

−

+

+≤−

1

1 1221213
1

1 121

1

1 111211

'')','()','()'(

')'()'(~

dxdxxxpxxx

dxxqxrII

ααα

ααα
(4.17)

This indicates how the discretization errors p(x'1,x'2),
q(x'1) and r effect the entire error. The estimations of
p(x'1,x'2), q(x'1), and r can be obtained by (4.10), (4.13)
and (4.16) respectively. These equations hold when the
approximation converges rapidly. When the
approximation does not converge rapidly, another
estimation is considered. Define the approximation to
the integral when using the Clenshaw-Curtis rule in
which 2n − 1 points are used, as I2n − 1. The error for
the approximation to the integral using the Clenshaw-
Curtis rule in which 2n-1 − 1 points are used can be
evaluated by |I2n-1 − I2n-1-1|. When the error evaluation of
the Clenshaw-Curtis rule is assumed to be E(2n-1 − 1), it
will be an underestimation if the approximation does
not converge rapidly. Here the Clenshaw-Curtis rule
contains 2n-1 − 1 number of branch points using
expansion coefficients and weight coefficients as in
(4.10), (4.13) and (4.16).
 Therefore the following equation holds:

()12II 1
1212 1 −>− −

−− −
nEnn (4.18)

When (4.18) is met, the following is used as the error
evaluation for P in 2n − 1 ≤ 8P+7 < 2n+1 − 1 instead of
E(8P+7).

() ()E P I I E
2n 1 2n 1 1

n 18 7 2 1+ ⋅ − −
− − −

− (4.19)

I2n-1, I2n-1-1 corresponds to ())'(~,','~
121 xhxxg and I when

using 2n-1 or 2n-1 − 1 number of branch points respectively.

• Convergence criterion

In order I I a− ≤~ ε (an absolute error tolerance), it is

sufficient that each term of the righthand side in (4.17)
can be bounded as:

3'')','()','()'(

3')'()'(

3

1

1 1221213
1

1 121

1

1 11121

1

a

a

a

dxdxxxpxxx

dxxqx

r

εααα

εαα

εα

≤

≤

≤

∫∫

∫

−−

−

The following are sufficient for the above.

()

() ()
()

() () ()
()

≡
××

≤

≡
×

≤

≡≤

3

213121
21

2

121
1

1

1

',''223
','

'23
'

3

a
a

a
a

a
a

xxx
xxp

x
xq

r

ε
ααα

ε

ε
αα

ε

ε
α
ε

 (4.20)

 Here the following are assumed:

α1>0, α2(x'1)>0, α3(x'1,x'2)>0

On the other hand, computational error bounds for
() ()~ ' , ' ' , 'g x x x x1 2 3 1 2α , () ()~ ' 'h x x1 2 1α and ~I α 1

denoted by ρ(3)(x'1,x'2),ρ(2)(x1),ρ(1), respectively, are
estimated as follows using the round off unit.

() () ()
() () ()
() ()

ρ

ρ

ρ

3
1 2

2
1

1

8 1

16 1

32 1

x x u P f

x u Q g

u R h

' , '

' ~

~

= +

= +

= +

∞

∞

∞

 (4.21)

where,

()

()

()1'

21
'

333222111'

'
~

max
~

','~max~

',','max

1

2

3

xhh

xxgg

xxxff

x

x

x

=

=

+++=

∞

∞

∞ βαβαβα

Summarizing the above discussions, the convergence
criterion constants for each step are defined as follows:

()() () () () ()()()
()() () () () ()()()

() () ()()1
1

11

1
2

121
2

1
2

21
3

21321
3

21
3

,~,max

',''
~

,max'

',',','','~,max','

ραεετ

ραεετ

ραεετ

I

xxxhx

xxxxxxgxx

ra

ra

ra

=

=

=

AQMC8

120

where, ~g , and ~h , and ~I of the righthand sides are
approximations which have been obtained so far. The
convergence criterion is performed as follows:
When the following equation is satisfied, g(x'1,x'2) is
assumed to have converged.

() ()()21
3

21 ','',' xxxxp τ≤ (4.22)

When the following is satisfied, ()~ 'h x 1 is assumed to
have converged.

() ()()1
2

1 '' xxq τ≤ (4.23)

Then the following is satisfied, the obtained ~I is
output to parameter S as an approximation to the
multiple integral.

()1τ≤r (4.24)

AQME

121

G24-13-0201 AQME, DAQME

Multiple integration of a function by double exponential
formula
CALL AQME(M,INT,LSUB,FUN,EPSA,EPSR,NMIN,
NMAX,S,ERR,N,ISF,ICON)

Function
A multiple integral of dimension m(1 ≤ m ≤ 3) is defined
here by

()mm xxxfdxdxdxI
m

m

,,, 2121
2

2

1

1

⋅⋅⋅⋅⋅⋅= ∫∫∫
ψ

ϕ

ψ

ϕ

ψ

ϕ
 (1.1)

Generally the lower limits and upper limits are given as
follows:

() ()
() ()

() ()121121

122122

11

,...,,,,...,,
: :

,
constant,constant

−− ==

==
==

mmmmmm xxxxxx

xx
ba

ψψϕϕ

ψψϕϕ
ψϕ

This subroutine handles semi-infinite or infinite regions
along with finite regions. In other words, the integral
interval [ϕ k,ψk] for xk can independently be [0,∞) or
(−∞,∞). Under these conditions, this subroutine obtains
an approximation S that satisfies, for εa, εr given,

()II ra εε ,maxS ≤− (1.2)

by using Takahashi-Mori double exponential formula
repeatedly.

Parameters
M Input. Dimension m of the integral
INT Input. Information indicating the type of

intervals for each integration variable. One-
dimensional array of size m. The k-th element
INT(K) indicates the type of the integration
interval for the k-th variable xk, and should be
specified either of 1, 2, or 3 according to the
following rule:
1 ... Finite interval
2 ... Semi-infinite interval
3 ... Infinite interval
 For example, for the triple integration

()321
2

0 30 20 1 ,, xxxfdxdxdxI ∫∫∫
∞

=
ππ

INT(1)=2, INT(2)=1 and INT(3)=1.
LSUB ... Input. The name of the subroutine

Subprogram which evaluates the lower limit ϕk
and upper limit ψk.
 The form of the subroutine is as follows:
SUBROUTINE LSUB(K,X,A,B)
where,
K ... Input. Index k of integration variable.

1 ≤ k ≤ m.
X ... Input. One-dimensional array of size

(M−1) which corresponds to X(1)=x1,
X(2)=x2,.....,X(M−1)=xm−1−1.

A ... Output. The value of the lower limit
ϕ k(x1,x2,...,xk−1−1)

B ... Output. The value of the upper limit
ψk(x1,x2,...,xk−1)

 However if the interval [ϕ k,ψk] is either
[0,∞) or (−∞,∞), it is not necessary to define
values of A and B for corresponding k.

FUN ... Input. The name of the function subprogram
which evaluates the integrand f(x1,x2,...,xm)
 The form of subroutine is as follows:
FUNCTION FUN(X)
where, parameter X is a one-dimensional array
of size M with the correspondence
X(1)=x1,X(2)=x2,...,X(M)=xm.

EPSA ... Input. The absolute error tolerance εa (≥0.0)
for the integral.

ERSR ... Input. The relative error tolerance εr (≥0.0) for
the integral.

NMIN ... Input. Lower limit (≥0) on the number of
evaluations of the integrand function when
integrating in each integration variable. A
proper value is 20.

NMAX ... Input. Upper limit (NMAX≥NMIN) on the
number of the evaluation of the integrand
function when integrating in each integration
variable. A proper value is 705 (if the value
exceeding 705 is specified, 705 is assumed).
(See Notes)

S Output. An approximation (See Notes)
ERR ... Output. An estimate of the absolute error in the

approximation S.
N Output. Total number of integrand evaluations

actually performed. It must be a 4-byte integer
variable.

ISF ... Output. Information on the behavior of the
integrand when the value of ICON is in
25000's. ISF is a 3-digit positive integer in
decimal. Representing ISF by

 ISF=100j1+10j2+j3

j3, j2 or j1 indicates the behavior of the
integrand function in the direction of axis x3, x2
or x1 respectively. Each j1 assumes 1, 2, 3 or 0
which is explained as follows:
1 ... The function value increases rapidly near

the lower limit of integration or if the
interval is infinite, the function values tend
to zero very slowly as x → −∞.

2 ... The function value increases rapidly near
the upper limit of integration or if the
interval is semi-infinite or infinite, the
function values tend to zero very slowly
as x→∞.

3 ... The events indicated in the above 2 and 3
occur concurrently.

0 ... The above mentioned event does not
occur.

ICON ... Output. Condition code (See Table AQME-1).

AQME

122

Comments on use
• Subprograms used

SSL II ... MGSSL,AMACH,AFMAX,AFMIN,
UAQE1,UAQE2,UAQE3,UFN10,UFN20,UFN30,
UFN40

FORTRAN basic function ... ABS,ALOG,SQRT,
EXP,FLOAT,COSH,SINH,MAX0,AMAX1,AMIN1,
MOD

Table AQME-1 Condition code

Code Meaning Processing
0 No error

10001

10077

When integrating in the
direction of axis x3 or x2, the
following events occur.
The first place indicates the
direction of axis x3 and the
second place indicates the
direction of axis x2. Each
assumes the value of 0
through 7 (there is no case
when both of them are zero).
1. The required accuracy in

the direction of the axis
cannot be obtained due
to the round-off error.

2. The required accuracy
cannot be obtained even
if the number of the
evaluations of the
integrand function in the
direction of the axis
reaches the upper
limit(NMAX).

4. The required accuracy in
the direction of the axis
cannot be obtained even
if integrating by the
minimum step size
defined in the subroutine.

3. The events indicated
above in 1 and 2 occur
concurrently.

5. The events indicated
above in 1 and 4 occur
concurrently.

6. The events indicated
above in 2 and 4 occur
concurrently.

0. No events indicated
above occur.

The obtained
approximation is
output to S. The
required
accuracy may be
satisfied.

10100

10177

When integrating in the
direction of axis x1, the
required accuracy cannot be
obtained due to the round-off
error. The lower two digits
mean the same as those in
codes 10001 - 10077.

The obtained
approximation is
output to S. The
accuracy almost
reaches a limit
attainable.

Code Meaning Processing
20200

20277

When integrating in the
direction of axis x1, even if
the number of evaluations of
the integrand function
reaches the upper
limit(NMAX), the required
accuracy cannot be obtained.
The lower two digits mean
the same as those in codes
10001 - 10077.

The obtained
approximation is
output to S. The
required accuracy
is not always
guaranteed. If the
value of NMAX is
taken as a larger
one, the accuracy
may be improved
(up to
NMAX=705).

20400

20477

When integrating in the
direction of axis x1 even by
the minimum step size
defined in the subroutine, the
required accuracy cannot be
obtained. The lower two digits
mean the same as those in
codes 10001 - 10077.

The obtained
approximation is
output to S.

25000

25477

When integrating in the
direction of a certain axis, the
value of the function rapidly
increases near the lower limit
or upper limit of the
integration interval, or when
the integration interval is
semi-infinite or infinite, the
integrand function slowly
converges to 0 as the
integration variable tends to
infinite. The lower three digits
mean the same as those in
codes 10001 - 10077.

Processing is
continued after
relaxing the
required
accuracy. The
obtained
approximation is
output to S. Even
when the integral
does not exist
theoretically, this
range of code
may be returned.
For detailed
information on
the behavior of
the integrand,
refer to
parameter ISF.

30000 One of the following
occurred:
1 EPSA<0.0
2 EPSR<0.0
3 NMIN<0
4 NMAX<NMIN
5 M≤0 or M≥4
6 Some value other than

1, 2, or 3 is input for the
element containing INT.

Processing
terminates.

AQME

123

• Notes
The function subprogram associated with parameter
FUN must be defined as a subprogram whose argument
is only the integration variable vector X. Its function
name must be declared as EXTERNAL in a calling
program. If the integrand includes auxiliary variables,
they must be declared in the COMMON statement for
the purpose of communicating with the calling program.
 When this subroutine is called many times, constants
(table of abscissas and weights for the integration
formula) are determined only on the first call, and this
computation is bypassed on subsequent calls, thus the
computation time is shortened.
 This subroutine works successfully even when the
integrand function changes rapidly in the neighborhood
of the boundary of integration region. This subroutine
is most recommended when algebraic or logorithmic
singularities are located on the boundary. If the integral
domain is finite and the integrand is smooth or
oscillatory, you should use subroutine AQMC8.
 This subroutine works successfully for the integrand
f(x1,x2,...,xm) which converges to zero rather slowly
when x→±∞. However, if the function is extremely
oscillatory in the region, high accuracy may not be
attained.
 This subroutine does not evaluate the function on the
boundary, therefore it is possible for the function value
to be infinity. However, points which tend to infinity
must not be contained in the region.
 When the integration interval in the direction of a
certain axis(say, i-th axis) is infinite, the function
values for large |xi| is required, therefore if the desired
accuracy is high, the function subprogram FUN needs
to have a defence against overflows and underflows.

Parameters NMIN and NMAX
Parameters NMIN and NMAX must be specified
considering that this subroutine limits the number of
evaluations of integrand in the direction of each
coordinate axis as
NMIN ≤ ni ≤ NMAX
 This means that f(x1,x2,...,xm) is evaluated at least NMIN
times in the direction of each coordinate axis, but not
more than NMAX times, regardless of the result of the
convergence test. When the integral does not converge
within NMAX evaluations, this information is output to
the first, second, or third digit of ICON corresponding to
the axis x3, x2 or x1 respectively.
 When extremely small NMAX is given, for example
NMAX=2, NMAX is increased automatically to a value
which is determined by the behavior of f(x1,x2,...,xm).

Accuracy of the integral approximation S
This subroutine tries to obtain an approximation S which
satisfies (1.2) when εa and εr are given. When εr=0, the
approximation is obtained with its absolute error within
εa. Similarly, when εa=0, the approximation is obtained
with its relative error within εr. This is sometimes
obstructed by unexpected characteristics of the function
or an unexpected value of εa or εr. For example, when εa
or εr is extremely small compared to the arithmetic
precision in function evaluation, the effect of rounding-
off errors becomes greater, so there is no use in
continuing the computation even though the number of
integrand evaluations has not reached the upper limit
(NMAX). Depending upon the axis, this information is
output to the third, second or first place of ICON.
Generally speaking, even when the effect of the
rounding-off error on axis x3 or x2 is large, this may not
effect the total accuracy of integral approximation S. It
may satisfy the required accuracy. This must be checked
depending on the estimate ERR.
 As mentioned in "Parameters NMIN and NMAX", the
approximation sometimes does not converge within
NMAX evaluations. In this case, this information is
output to ICON. Therefore, even if this event occurs on
axis x3 or x2, the obtained integral approximation
sometimes will satisfy the required accuracy.
 In addition, the approximation may not converge though
the smallest step-size defined in this subroutine is used.
Although this information is output to ICON, even if this
event occurs on axis x3 or x2, the required accuracy may
be satisfied.
 To determine the accuracy of the integration, this
subroutine always outputs an estimate of its absolute
error in parameter ERR, as well as the integral
approximation S.

• Example

The integral

∫∫∫
− −∞

+
= 2

1
1 1

0 3
321

0 20 1
ex xx

dx
xxx

dxdxI

is computed in the following program.

C **EXAMPLE**
 INTEGER*4 N
 EXTERNAL FUN,LSUB
 DIMENSION INT(3)
 INT(1)=2
 INT(2)=1
 INT(3)=1
 EPSA=1.0E-3
 EPSR=1.0E-3

AQME

124

 NMIN=20
 NMAX=705
 M=3
 CALL AQME(M,INT,LSUB,FUN,EPSA,EPSR,
 * NMIN,NMAX,S,ERR,N,ISF,ICON)
 WRITE(6,600) ICON,S,ERR,N
 IF(ICON.GE.25000) WRITE(6,610) ISF
 STOP
 600 FORMAT(' ',10X,'ICON=',I6,5X,'S=',
 *E15.7,5X,'ERR=',E15.7,5X,'N=',I6)
 610 FORMAT(' ',20X,'ISF=',I3)
 END
 SUBROUTINE LSUB(K,X,A,B)
 DIMENSION X(2)
 A=0.0
 GO TO (10,20,30),K
 10 RETURN
 20 B=X(1)
 RETURN
 30 B=1.0-X(2)
 RETURN
 END
 FUNCTION FUN(X)
 DIMENSION X(3)
 Y=X(2)+X(3)
 IF(Y.LT.1.0E-30) GO TO 20
 IF(X(1).GT.80.0) GO TO 20
 Y=X(1)*SQRT(Y)
 IF(Y.LT.1.0E-30) GO TO 20
 FUN=EXP(-X(1))/Y
 RETURN
 20 FUN=0.0
 RETURN
 END

Method
This subroutine uses the direct product multiple
integration method in which automatic integration
method based upon Takahashi-Mori's double exponential
formula is repeated in the direction of each axis. Since
the methods used in the following subroutines are used
for this, you should refer to each subroutine for details.
The way to apply the double exponential formula to
multiple integration and the way to compute it are
described below.

• Multiple integration using the double exponential

formula
In m-multiple integration defined in (1.1), when m=3,
the variable transformation

()I dx dx dx f x x x= ∫ ∫ ∫1
1
1

2
2
2

3
3
3

1 2 3ϕ
ψ

ϕ
ψ

ϕ
ψ

, , (4.1)

is performed for each integral variable of the
integration

xk=φ k(tk) , k=1,2,3 (4.2)

When the integration (4.1) is transformed and the
interval [ϕ k,ψk] is transformed to (−∞,∞), the
following integration will be obtained.

() () ()()
() () ()

I dt dt dt f t t t
t t t

=
× ′ ′ ′

−∞
∞

−∞
∞

−∞
∞

∫ ∫∫1 2 3 1 1 2 2 3 3

1 1 2 2 3 3

φ φ φ
φ φ φ

, , (4.3)

(4.3) can be expressed step by step as follows:

() ()() () () ()() ()I t t f t t t t dt2 1 1 2 2 1 1 2 2 3 3 3 3φ φ φ φ φ φ, , ,= ′
−∞
∞

∫
 (4.4)

()() () ()() ()I t I t t t dt1 1 1 2 1 1 2 2 2 2 2φ φ φ φ= ′
−∞
∞

∫ , (4.5)

()() ()I I t t dt I0 1 1 1 1 1 1= ′ ≡
−∞
∞

∫ φ φ (4.6)

 Using the trapezoidal rule to obtain infinite
integration Ik-1(k=1,2,3) in (4.4), (4.5) and (4.6), the
following integration formula can be obtained.

() ()() ()

3,2,1,

,...,1111

=

′= ∑
∞

−∞=
−

k

hnhnhnIhI
kn

kkkkkkkkk φφφ
 (4.7)

where, hk is the step size for tk.
 This subroutine uses the following as variable
transformation of (4.2):

1) When ϕ k=A, ψk=B for finite A and B

()φk k kt t=
−

 +

+B A A B
22

3
2

tanh sinh (4.8)

2) When ϕ k=0, ψk → ∞

()φk k kt t=

exp sinh

3
2

 (4.9)

3) when ϕ k → −∞, ψk → ∞

()φk k kt t=

sinh sinh

3
2

 (4.10)

• Multiple integration convergence criterion
For each Ik in (4.4), (4.5) and (4.6), the following
inequalities

()S I Ia r2 2 2− ≤ max ,ε ε (4.11)

()S I Ia r1 1 1− ≤ max ,ε ε (4.12)

()S I Ia r0 0 0− ≤ max ,ε ε (4.13)

are solved for each Sk, and the last S0 is used as S in
(1.2).
 For detailed information on how to set the step size in
the equally spaced step-size trapezoidal rule,
information on convergence criterion, information on
how to get the threshold to approximate the finite sum
(4.7) by using infinite sum, or information on how to
detect the influence of the rounding-off error, refer to
Method of subroutine AQE.

AQME

125

• Computing procedure
Procedure 1 ... Initialization
Define the initial value of several variables and
constants for criterions.

Procedure 2 ... Computation of abscissas and weight
coefficients
Transforms the integral variables and compute
abscissas (φ k(tk)) and values of weight (φ 'k(tk))
according to INT value. The number of abscissas and
weights are calculated as 2×352×3. This computation is
performed only when this subroutine is called for the
first time. It is bypassed on subsequent calls.

Procedure 3 ... Integration in the direction axis
x1-Computing I0

Approximation S0 for I0 in (4.6) is computed.
Convergence is tested in (4.13). I1(φ 1(t1)) value required
for computing I0 is computed in procedure 4. The
obtained S0 and the error estimate are output to parameter
S and ERR.

Procedure 4 ... Integration in the direction of axis x2-
Computing I1(φ 1(t1)).
Approximation S1 for I1 (φ1(t1)) in (4.5) is computed. The
convergence is tested in (4.12). The value of I1(φ 1(t1)) is
computed in Procedure 5.

Procedure 5 ... Integration in the direction of axis x3-
Approximation S2 for I2(φ 1(t1),φ 2(t2)) in (4.4) which is
used to compute I2 (φ1(t1), φ2 (t2)) is computed. The
convergence is tested in (4.11).

AQN9

126

G23-11-0201 AQN9, DAQN9

Integration of a function by adaptive Newton-Cotes 9
point rule
CALL AQN9
(A,B,FUN,EPSA,EPSR,NMIN,NMAX,S,ERR,N, ICON)

Function
Given a function f(x) and constant a, b, εa, εr, this
subroutine obtains an approximation S that satisfies

() ()

 ⋅≤− ∫∫

b

ara
b

a
dxxfdxxfS εε ,max (1.1)

by adaptive Newton-Cotes 9 point rule.

Parameters
A Input. Lower limit a of the interval.
B Input. Upper limit b of the interval.
FUN ... Input. The name of the function subprogram

which evaluates the integrand f(x). (See the
example.)

EPSA .. Input. The absolute error tolerance εa(≥0.0) for
the integral.

EPSR .. Input. The relative error tolerance εr(≥0.0) for
the integral.

NMIN .. Input. Lower limit on the number of function
evaluations. A proper value is 21.
0≤NMIN<150.

NMAX .. Input. Upper limit on the number of function
evaluations.
A proper value is 2000.
(See Notes.)

S Output. An approximation to the integral (see
"Notes".)

ERR ... Output. An estimate of the absolute error in the
approximation.

N Output. The number of function evaluations
actually performed.

ICON .. Output. Condition code.
See Table AQN9-1.

Comments on use
• Subprograms used

SSL II ... MGSSL,AMACH
FORTRAN basic functions ... ABS, MAX0, AMAX1,
AMIN1, ALOG, DLOG, MOD, FLOAT

• Notes
The function subprogram associated with parameter
FUN must be defined as a subprogram whose argument
is only the integration variable. Its function name must
be declared as EXTERNAL in its calling program. If
the integrand includes auxiliary variables, they must be
declared in the COMMON statement for the purpose of
communicating with the calling program (see the
example).

Table AQN9-1 Condition codes

Code Meaning Processing
0 No error

10000
|

13111

Irregular points such as
singular points are found.

1000 means algebraic
singularities 2000,
Cauchy's
singularities, and
3000, both of the
two

 100 means logarithmic
singularities

 10 means discontinuity
points

 1 means other
irregular points

Processing
continues.
For algebraic
singularity, or
discontinuity
points only, S
will usually
satisfy the
desired
accuracy.

20000
|

23111

The desired accuracy is not
attained though the number
of integrand evaluations has
reached the upper limit.
Meanings of last four digits
are the same as those
described above.

Processing
stops.
S is an
approximation
obtained so
far, but not
accurate.

30000 One of the followings
detected.

1 EPSA<0.0
2 EPSR<0.0
3 NMIN<0, NMIN≥150
4 NMAX≤NMIN

Aborted

 This subroutine may be used for a broad class of
function: it can handle successfully even those integrands
which have peaks, or irregular points such as algebraic
singularities, logarithmic singularities, or discontinuities
at places which can be accessed in the manner of
bisection, such as endpoints, the midpoint or quartered
points. Consequently this subroutine should be used with
first priority for such class of integrands as well as ones
whose properties are not clearly understood. However, in
order to improve the accuracy of the solution, it is
desirable to change the integration variable if necessary
so that difficult points may be located only at endpoints.
 It should also be noted, however, that subroutine AQC8
will best handle oscillatory functions as well as smooth
ones in the sense of efficiency, while AQE does for
functions having singularities only at endpoints.
 When the value of the integrand f(x) goes to infinity
(f(x)→±∞) at a certain point within the interval [a,b], it is
necessary to replace the value of f(x) at that point with
some finite value (such as 0), as shown in the example
below.

Parameters NMIN and NMAX
This subroutine limits the number of evaluation of
integrand f(x) as follows:

AQN9

127

NMIN≤Number of evaluations≤NMAX

 This means that f(x) is evaluated at lease NMIN times
and not more than NMAX times, regardless of the result
of the convergence test. When a value of S that satisfies
expression (1.1) is not obtained within NMAX
evaluations, processing stops with ICON value 20000 -
21111. In addition, if the value of NMAX is less than 21,
a default value of 21 is used.

Accuracy of the approximation S
This subroutine obtains a value of S satisfying (1.1) when
constants εa, εr are given. Consequently, εr=0 means to
obtain the approximation with its absolute error within εa,
similarly, εa = 0 means to obtain it with its relative error
within εr. This purpose is sometimes obstructed by
unexpected characteristics of the function or unexpected
values of εa or εr. For example, when εa or εr is extremely
small in comparison with arithmetic precision in function
evaluations, the number of function evaluations is
increased and sometimes the approximation does not
converge within NMAX times. In this case, S is only an
interim approximation and not accurate. This is indicated
by ICON within the code range from 20000 to 21111. As
well as the integral approximation S, this subroutine puts
out an estimate of the absolute error in parameter ERR
for checking the actual accuracy of approximation.

• Example

Increasing the value of the auxiliary variable p from 0.1
to 0.9 by 0.1 at a time, this example computes the
integral

C **EXAMPLE**
 COMMON P
 EXTERNAL FUN
 A=0.0
 B=1.0
 EPSA=1.0E-4
 EPSR=1.0E-4
 NMIN=21
 NMAX=2000
 DO 10 I=1,9
 P=FLOAT(I)/10.0
 CALL AQN9(A,B,FUN,EPSA,EPSR,NMIN,
 * NMAX,S,ERR,N,ICON)
 10 WRITE(6,600) P,ICON,S,ERR,N
 STOP
 600 FORMAT(' ',30X,'P=',F6.3,5X,
 *'ICON=',I5,5X,'S=',E15.7,5X,
 *'ERR=',E15.7,5X,'N=',I5)
 END
 FUNCTION FUN(X)
 COMMON P
 FUN=0.0
 IF(X.GT.0.0) FUN=X**(-P)+SIN(P*X)
 RETURN
 END

Method
This subroutine uses an adaptive automatic integration
based on the Newton-Cotes 9 point rule. Adaptive
automatic integration is a method which automatically
places abscissas densely where the integrand f(x) changes
rapidly, or sparsely where it changes gradually. This is
currently the best method for automatic integration in
terms of reliability and economy.

• Computing procedures
Procedure 1 ... Initialization
Initializes the left end point x, width w, and
approximation S to the integral as x=a, w=w0=(b − a),
and S=0; and initializes various variables and constants to
be used for various judgment. Calculates function values
to f0, f2, f3, f4, f5, f6, f7, f8, and f10, at octasectional points of
the integration interval including both end points, and f1,
and f9 at the hexadecasectional end points. (See Figure
AQN9-1.) The average value f of f(x) in the integration
interval is calculated with these 11 function values by
means of the modified Newton-Cotes 9-point rule
(expression 4.5).

Procedure 2 ... Bisection and information string
Bisects the current subinterval (left end point x, width w).
Stores the function values f6, f7, f8, f9 and f10 relevant to
the right-half portion, value of width w, and estimate e of
the truncation error in the stack. Calculates the function
value at the second right-most octasectional point
(marked with x in Figure AQN9-1) in the left portion and
let it be denoted by f8. Proceeds to procedure 3 to
manipulate function values in the left portion.

109876543210

x w

Points 0, 2 ~ 8, 10 are octasectional points
Points 1 and 9 are hexadecasectional points

Fig. AQN9-1 Point locations

Procedure 3 ... Convergence criterion
Calculates those function values at octasectional points
and at hexadecasectional end points which are not
available yet, namely, four values f1, f4, f6, and f9. Then
estimates the truncation error e by (4.4) of the
approximate integral over the current subinterval, and
makes convergence test to e. If the test is satisfactory
proceeds to procedure 7, otherwise to procedure 4.

AQN9

128

Procedure 4 ... Detection of irregular points
Checks whether there is an irregularity at the end points
of the current subinterval. If there is an irregularity,
control is passed to procedure 6, and when width w
becomes less than the tolerable minimum value
determined by input variables such as a, b, εa, and εr,
control is passed to procedure 5. In other cases, control is
passed back to procedure 2.

Procedure 5 ... Confirmation of the existance of

irregularity
Checks irregularity using the relaxed criterion. If the test
is satisfactory proceeds to procedure 6; otherwise to
procedure 7.

Procedure 6 ... Handling of irregular points
Calculates the approximate integral over the current
subinterval by an analytical formula depending on the
type of detected irregularity.

Procedure 7 ... Accumulation of the approximation

retrieval
Normally, the approximate integral over the current
subinterval is calculated by means of the modified 9-
point rule(4.5) and accumulated to S. In the case of
irregularity, the value obtained in procedure 6 is
accumulated to S. The information stored in the stack is
retrieved and the function value f2 in a new subinterval is
calculated, then control is passed back to procedure 3. If
the stack becomes empty, processing is stopped and the
value of S is assumed to be the integral.

• Newton-Cotes 9-point rule and error estimation

Expressions (4.1) and (4.2) give the approximation
S(x,w) and the truncation error e when the Newton-
Cotes 9-point rule is applied to the interval with width
w (Figure AQN9-1), where I is the true value of the
integral and fi is the function value at point i.

() () (){
() () }

S x w w f f f f

f f f f f

I e

, = + + +

− + + + −

= +

28350
989 5888

928 10496 4540

0 10 2 8

3 7 4 6 5 (4.1)

e w f= 37
62783697715200

11 10()

 (4.2)

where f(10) denotes the 10th derivative of f(x) at some
point in the interval. Conventionally, value e has been
estimated as follows:
The Newton-Cotes 9-point rule is applied to both the
bisected intervals to obtain S(x,w/2) and S(x+w/2,w/2)
then e is estimated as

() () ()(){ }e S x w S x w S x w w≈ − + +1024
1023

2 2 2, , ,

 (4.3)

 In this case, however, eight function values must be
additionally calculated. As is clear from expression (4.2),
it is only necessary to estimate f(10), so only 11 function
values are sufficient to do this; therefore, only two
additional function values need be calculated. This
subroutine estimates value e from the 10th order
differentiation formula (4.4) based on the octasectional
points and two hexadecasectional points 1 and 9 of the
interval (Figure AQN9-1) as follows:

() (){
() ()7382

91100

3822027720

163843003
468242775

2383

ffff

ffffwe

+−++

+−+≈

() }564 6435056056 fff −++ (4.4)

 When the value e satisfies the convergence criterion
(expression (4.7)), e is subtracted from S(x,w) to obtain a
more accurate approximation. In this subroutine, however
this is done directly by means of the modified Newton-
Cotes formula shown below which is derived from the
difference between the righthand sides of (4.1) and (4.4).

() (){
() ()

w f f f f

f f f f
936485550

18447429 77594624

63216384 150355296

0 10 1 9

2 8 3 7

+ + +

+ + + +

() }+ + +81233152 1547917804 6 5f f f (4.5)

 In (4.5) the signs of weights to be multiplied by the
function values are not constant, whereas the signs are
constant in (4.5); thus, (4.5) is an good integration
formula with high stability in numerical sense.

• Convergence criterion

Unlike a global automatic integration method, an
adaptive automatic integration requires convergence
judgment for each subinterval. The following criterion
has been used to make the resultant approximation S
satisfy the requirement (1.1):

 () 0,max wwSe ra ′≤ εε (4.6)

where S' is an approximation to ()f x dx
a
b

∫ and w0 is the

width (b − a) of the whole integration interval. This
formula is based on a natural idea that the tolerable
errors relevant to subintervals in proportion to each
width. However, it is generally true that an
approximation obtained by eliminating the dominant
term in such a way done in the subroutine would be

AQN9

129

much more accurate than required. In this case, it
seems to be too conservative to use (4.6) as it is.
Instead it is advantageous to relax the criterion for
short intervals having little effect on the total accuracy,
to save the number of function evaluations. This
subroutine employs (4.7) for this purpose:

() ()wwwwSe ra 020 log,max ⋅′≤ εε (4.7)

 Although (4.7) is not based on a theoretical
background, it is effective in practical use. The value S'
in (4.7) is calculated using the average f of f(x)
obtained in procedure 1 as follows:

()′ = + −S S f b x (4.8)

• Detection and handling of irregular points
Consider that the integration interval includes
irregularities such as discontinuities, logarithmic
singularities, and algebraic singularities. The Cauchy's
singularities for which the integral diverges in the
normal sense but converges as the Cauchy's principal
integration is also considered. If the function value is
infinite at these irregularities, the value shall be
replaced with an appropriate finite value, for example,
zero.
 Since the value e in (4.4) does not satisfy the
convergence criterion when the subinterval includes a
irregularity, subdivision will be repeated to produce a
sequence of intervals each including the irregularity.
Assume that the irregularity is at one of 2m -sectional
point in the whole integration interval, where m is a
positive integer. In this case, from some stage of
repeated subdivision a sequence of subintervals {Ii,
i=1,2,...} are generated which share the irregularity at a
fixed end point, with the length of each subinterval
being halved. For simplicity, assume the irregularity is
at the origin (x=0) and at the left end point of the
interval. (See Figure AQN9-2)

I4

I3

I2

I1

Fig. AQN9-2 Detection of irregularity

 Consider a normalized error wee =~
 derived from

normalizing the truncation error e by w. Let ~ei denote
the ~e relevant to the interval Ii. Since ~ei is a

homogeneous linear combination of function values at
similar points with respect to the irregular point and
has coefficients independent of interval width,
moreover the sum of the coefficients is zero, the
following can be seen:

Discontinuity point Value ei aproaches

a constant value e.

Logarithmic

singularity Value ei ei 1 ei
approaches a constant

value d.

Algebraic

singularity Value ei ei+1
approachesa constant

value r.

~

~

~ ~ ~

~ ~

∆

∆ ∆

= + −

 When ~ei exhibits one of the above properties over
the subinterval is calculated as follows:

1) Discontinuity point ... Let the jump at the irregular
point be δ, then it is obtained from (4.4) as follows:

 δ =
×

468242775
2383 3003

~e (4.8)

Since a discrepancy equal to δ has been added to the
value of f0, it is only necessary to substitue f0 − δ for f0
and perform calculation of (4.5).

2) Logarithmic singularity ... Assume the function in the
vicinity of the irregular point to be:

 f(x)=αlogx+β (4.9)

Then, the value of α is obtained from (4.4) as follows:

α =
× ×

468242775
2383 3003 2log

d (4.10)

Since

 () ()()
() () β

βα

+==

+−== ∫
2log2

,1log

5

0

wwff

wwdxxfI
w

the value of I is calculated as:

 I=w(f5+α(log2 − 1)) (4.11)

3) Algebraic singularity ... Assume the function in the
vicinity of the irregular point to be:

 () γβα ++= +1pp xxxf (4.12)

AQN9

130

Order p of the irregular point is obtained as:

 p=log2r (4.13)

Calculate α, β and γ using f0, f5=f(w/2), f10=f(w), γ,
~e (last ~ei), and ~ ′e (~e previous to ~ei); then,
calculate the following analytically with these values:

 ()

+

+
+

+
==

+

∫ γ
βα

21

1

0 p
w

p
w

wdxxfI
ppw

 (4.14)

4) Cauchy's singularity ... Assume an algebraic
singularity to be at the right end of an interval and
order p of the singularity is equal to or less than -1. If
the singularity is also an algebraic singularity at the
left end of the interval on the right of the interval and
its order is p, and the combination of the primary
portion there of and that of the left interval results in

zero, this point is assumed to be a Cauchy's
singularity. The integral over this interval is
calculated as the integral of the integrand minus the
primary portion.

• Information storing

In procedure 2, the following 10 items are stored in the
stack: five function values f6, f7, f8, f9 and f10 relevant to
the right-half portion f3, f5, f7, f8 of the interval (to be
used as and f10 later; width w and the value of
log2(w0/w); and three values of ~ei , ∆ ~ei , and ∆ ~ei /∆ ~ei+1 ,
necessary to detect irregularities. In procedure 7, these
items are retrieved in reverse order and processed again.
The stack depth (the number of stack fields) is 60 in
any case, that is, the required storage capacity is 600
elements.
(See also references [96] and [97] for details.)

ASSM

131

A21-12-0101 ASSM, DASSM

Addition of two matrices (real symmetric + real sym-
metric)
CALL ASSM(A,B,C,N,ICON)

Function
These subroutines perform addition of n × n real
symmetric matrices A and B.

C=A+B

where C is an n × n real symmetric matrix. n≥1.

Parameters
A Input. Matrix A, in the compressed mode, one-

dimensional array of size n(n+1)/2.
B Input. Matrix B, in the compressed mode, one-

dimensional array of size n(n+1)/2.
C Output. Matrix C, in the compressed mode,

one-dimensional array of size n(n+1)/2.
(Refer to "Comment on use".)

N Input. The order n of matrices A, B and C.
ICON ... Output. Condition codes. Refer to Table

ASSM-1.

Table ASSM-1 Condition code

Code Meaning Processing
0 No error

30000 n<1 Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic function ... none

• Notes
Saving the storage area:
When the contents of array A or B are not required
save the area as follows;
− When the contents of array A is not needed.

 CALL ASSM(A,B,A,N,ICON)

− When the contents of array B is not needed.

 CALL ASSM(A,B,B,N,ICON)

In these cases, matrix C is stored in array A or B.

• Example

The following shows an example of obtaining the
addition of matrices A and B. Here, n≤100.

C **EXAMPLE**
 DIMENSION A(5050),B(5050),C(5050)
 CHARACTER*4 IA,IB,IC
 DATA IA/'A '/,IB/'B '/,IC/'C '/
 10 READ(5,100) N
 IF(N.EQ.0) STOP
 WRITE(6,150)
 NT=N*(N+1)/2
 READ(5,200) (A(I),I=1,NT)
 READ(5,200) (B(I),I=1,NT)
 CALL ASSM(A,B,C,N,ICON)
 IF(ICON.NE.0) GOTO 10
 CALL PSM(IA,1,A,N)
 CALL PSM(IB,1,B,N)
 CALL PSM(IC,1,C,N)
 GOTO 10
 100 FORMAT(I5)
 200 FORMAT(4E15.7)
 150 FORMAT('1'///10X,
 *'** MATRIX ADDITION **')
 END

 Subroutine PSM in the example is for printing the real
symmetric matrix. This program is shown in the example
for subroutine MGSM.

ASVD1

132

A25-31-0201 ASVD1, DASVD1

Singular value decomposition of a real matrix (House-
holder method, QR method)
CALL ASVD1(A,KA,M,N,ISW,SIG,U,KU,V,KV,VW,
ICON)

Function
Singular value decomposition is performed for m × n real
matrix A using the Householder method and the QR
method.

A=UΣΣΣΣ V T (1.1)

where U and V are matrices of m × l and n × l
respectively, l=min(m,n).
 When l=n(m≥n), U TU=V TV=VV T=In
 When l=m(m<n), U TU=UU T=V TV=Im
ΣΣΣΣ is an l × l diagonal matrix expressed by
ΣΣΣΣ=diag(σi),σi≥0 and σi is a singular value of A. Singular
values σi are the positive square root of the eigenvalues
of matrix ATA and the i-th row of V is the eigenvector
corresponding to the eigenvalue σi.
m≤1, n≤1.
 For dimensions of matrices A, U, ΣΣΣΣ, and V see Fig.
ASVD1-1.

n

VT

VT∑∑∑∑

∑∑∑∑

U

U

A

A

(m < n)

(m ≥ n)

nn n

nmm

n n

n

m

mmmm

m

Fig. ASVD1-1 Relationship between dimension of the matrices in
singular value decomposition

Parameters
A Input. Matrix A. Two-dimensional array

A(KA,N). (See "Comments on use".)
KA Input. Adjustable dimension (≥M) of array A.
M Input. Number of rows in matrices A and U.
N Input. Number of columns in matrices A and U,

and number of rows of V.
ISW ... Input. Control information.

ISW=10d1 + d0 with 0 ≤ d0 , d1 ≤ 1, specified
as follows:
d1=0 ... Matrix U is not obtained.
d1=1 ... Matrix U is obtained.
d0=0 ... Matrix V is not obtained.
d0=1 ... Matrix V is obtained.

SIG Output. Singular values of matrix A. One-
dimensional array of size l+1. (See "Comments
on use".)

U Output. Matrix U. Two-dimensional array
U(KU,N). (See "Comments on use".)

KU Input. Adjustable dimension (≥M) of array U.
V Output. Matrix V. Two-dimensional array

V(KV,K), where K= min(M+1,N). (See
"Comments on use".)

KV Input. Adjustable dimension (≥N) of array V.
VW Work area. One-dimensional array of size n+1.
ICON ... Output. Condition code. See Table ASVD1-1.

Table ASVD1-1 Condition code

Code Meaning Processing
0 No error

15000 Some singular values
cannot be obtained.

Discontinued

30000 M<1,N<1,KA<M,KU<M,KV<
N or ISW≠0,1,10,11.

Bypassed

Comments on use
• Subprograms used

SSL II ... AMACH, MGSSL
FORTRAN basic functions ... MIN0, MOD, SIGN,
SQRT, AMAX1, ABS

• Notes

If you use decomposition factors U, ΣΣΣΣ, and V, from
singular value decomposition, generalized inverse A+
of the original matrix A or least squares minimal norm
solution of linear equations Ax=b can be obtained. (For
details, see Section 3.5.)
 In this case, it is effective to use subroutine GINV or
LAXLM.
 Although the singular value decomposition can be
widely utilized (see Section 3.5), it requires a great
amount of computation, this is a weak point.
 Therefore, U and V should be computed when they
are required. When there is no need to compute them,
since U and V are not referenced, the corresponding
real arguments need not be two-dimensional array.
ISW can control such requests.
 This subroutine allows rewriting of either U or V on A
to reduce storage space. When A does not have to be
saved, a real argument corresponding to U or V is
written as a real argument and to reduce storage space.
 All singular values are non-negative and are stored in
descending order. When ICON is set to 15000, only the
non-negative values are singular values, and the rest are
−1and are arranged randomly.
 The relationship of the number of columns m and the
number of rows n of matrix A is not constrained in this
subroutine. This subroutine can

ASVD1

133

perform singular value decomposition for any types of
m × n matrices A's under any of the following
conditions:

• m > n
• m = n
• m < n

• Example

Singular value decomposition is performed for m × n
matrix A. All singular values and the corresponding
columns of V are output. However, U is not computed
and V is computed on A, where 1 ≤ n ≤ 100 and 1 ≤ m
≤ 100.
 Subroutine SVPRT in this example is used to print
singular values and eigenvectors.

C **EXAMPLE**
 DIMENSION A(100,100),SIG(100),VW(100)
 10 READ(5,500) M,N
 IF(M.EQ.0) STOP
 READ(5,510) ((A(I,J),I=1,M),J=1,N)
 WRITE(6,600) M,N
 DO 20 I=1,M
 20 WRITE(6,610) (I,J,A(I,J),J=1,N)
 CALL ASVD1(A,100,M,N,1,SIG,A,100,
 * A,100,VW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.15000) GO TO 10
 CALL SVPRT(SIG,A,100,N,N)
 GO TO 10
 500 FORMAT(2I5)
 510 FORMAT(5E15.7)
 600 FORMAT('1',20X,'ORIGINAL MATRIX',
 *5X,'M=',I3,5X,'N=',I3/)
 610 FORMAT('0',4(5X,'A(',I3,',',I3,')=',
 *E14.7))
 620 FORMAT('0',20X,'ICON=',I5)
 END

 SUBROUTINE SVPRT(SIG,V,K,N,M)
 DIMENSION SIG(N),V(K,M)
 WRITE(6,600)
 DO 20 INT=1,M,5
 LST=MIN0(INT+4,M)
 WRITE(6,610) (J,J=INT,LST)
 WRITE(6,620) (SIG(J),J=INT,LST)
 DO 10 I=1,N
 10 WRITE(6,630) I,(V(I,J),J=INT,LST)
 20 CONTINUE
 RETURN
 600 FORMAT('1',20X,
 *'SINGULAR VALUE AND EIGENVECTOR')
 610 FORMAT('0',10X,5I20)
 620 FORMAT('0',5X,'SV',3X,5E20.7/)
 630 FORMAT(5X,I3,3X,5E20.7)
 END

Method
The following singular value decomposition is performed
for m × n matrix A by using the Householder and QR
methods.

A=UΣΣΣΣ V T (4.1)

where U and V are m × l and n × l matrices respectively,
l=min(m,n) and ΣΣΣΣ is an l × l diagonal matrix expressed by
ΣΣΣΣ=diag(σi),σi≥0, and

• when l=n(m≥n),U TU=V TV=VV T=In
• when l=m(m<n),U TU=UU T=V TV=Im

The value of σi is called the singular value of A.
 This subroutine does not constrain the size of m or n. It
can decompose any type of matrices. Since m × n matrix
A, where m≥n, is generally used, it is shown below.

• Computation procedures

This subroutine performs singular value decomposition
of (4.1) by the following two stages.
(a) Reduction to the upper bidiagonal matrix (the

Householder method)
Operating two finite sequences P1,...,Pn and
Q1,...,Qn−2 of Householder transformations from the
right and left sides of matrix A alternatively

J0=Pn･･･P1AQ1･･･Qn−2 (4.2)

 The matrix A is reduced to an upper bidiagonal
matrix shown in Fig. ASVD1-2.

(m − n) × n0

0

0 ln

l3

l2

qn

q2

q1J0 ≡

Fig. ASVD1-2 Structure of an upper bidiagonal matrix

 Starting with A1=A, the following are defined:

nkkkk ...,,1,2/1 ==+ APA (4.3)
2...,,1,2/11 −== ++ nkkkk QAA (4.4)

 Let Ak=(aij
 (k)), Pk should be such that

mkja k
ik ...,,1,0)2/1(+==+

 and Qk should be such that

nkja k
kj ...,,2,0)1(+==+

 Therefore, Pk and Qk can be chosen as follows:

ASVD1

134

nkbkkkk ,...,1,T =−= xxIP (4.5)

2...,,1,T −=−= nkckkkk yyIQ (4.6)

 where,

()
() () ()

()
() () ()

+=

 ++=

+=

+=

 ++=

+=

+
+

+
+

++
+

++
+

+
+

+

)/1(
1,

2

)/1(
1,

2/12)/1(
,

2)/1(
1,

T)/1(
,

)/1(
2,

)/1(
1,

)(
,

2

)(
,

2/12)(
,

2)(
,

T)(
,

)(
,1

)(
,

2

222

222

sign...

,...,,,0,...,0

sign...

,...,,,0,...,0

k
kkkkk

k
kk

k
nk

k
kkk

k
nk

k
kkk

k
kkk

k
kkkkk

k
kk

k
kn

k
kkk

k
kn

k
kkk

k
kkk

aeec

aaae

aaea

addb

aaad

aada

y

x

 (4.7)

(b) Reduction to the diagonal matrix (the QR method)
Choosing two orthogonal transformation sequences
Si and Ti, for i=0,1,..., the matrix Ji+1

iiii TJSJ T
1=+ (4.8)

 can converge to the diagonal matrix ΣΣΣΣ.
 Namely, matrix ΣΣΣΣ can be repressed by using (4.9)
for a certain integer q.

qq TTJSS ⋅⋅⋅⋅⋅⋅=Σ 00
T
0

T (4.9)

(a) With these operations, matrix A will be transformed
to a diagonal matrix and transformation matrices U
and V are expressed as follows by using (4.1), (4.2)
and (4.9)

qn SSPPU ⋅⋅⋅⋅⋅⋅= 01 (4.10)

qn TTQQV ⋅⋅⋅⋅⋅⋅= − 021 (4.11)

 These can be generated by multiplying the
transformation matrices from the right and left sides
alternatively.
 In this case, matrix Ti in (4.8) must be defined
such that symmetric tridiagonal matrix M J Ji i

T
i=

converges to a diagonal matrix while matrix Si must
be defined such that all Ji converges to bidiagonal
matrices.

• How to select transformation matrices in QR method

This section describes how to select transformation
matrices Ti and Si in (4.8). For notation, use the
following notation:

JJMJJMTTSSJJJJ TT
1 ,,,,, ≡≡≡≡≡≡ + iiii

 J is transformed to J by alternatively operating the
two-dimensional Givens rotation from left and right
sides. Thus,

nnn RRJRLLLJ ⋅⋅⋅⋅⋅⋅= − 32
T
2

T
1

T (4.12)

where,

1

−sinθk

cosθk

cosθk

sinθk (k)
(k−1)

0

0

0

00

0

1

1

1

(k−1) (k)

Lk=

and Rk is defined in the same way using φ k instead of θk.
Angle θk, k=2,...,n and angle φk, k=3,...,n can be defined

so that J can be an upper bidiagonal matrix for
arbitrary φ2.
 Thus, the following steps should be taken with J=(jij).

− R2 generates non-zero element j21.
− L2

T generates non-zero element j13 by eliminating j21.
− R3 generates non-zero element j32 by eliminating j13.
− Rn generates non-zero element jnn-1 by eliminating jn-2n.
− Ln

T eliminates jnn-1.
 Figure ASVD1-3 shows these steps with n=5.

q5

q4

q3

q2

q1

*

*

*

*

*

*

*

5

4

3

2

1

54321

e5

e4

e3

e2

Fig. ASVD1-3 Behavior of non-zero elements(n=5)

Let

 S=L2L3･･･Ln (4.13)
 T=R2R3･･･Rn (4.14)

 then from (4.12), the following equation holds.

 J=STJT (4.15)

 since J is an upper bidiagonal matrix, the M

MTTJJM TT == (4.16)

will be symmetric tridiagonal matrix such as M.

ASVD1

135

The first rotating angle φ 2, that is, the first transformation
R2 was not defined. φ 2 can be defined such that the
transformation in (4.16) is a QR
transformation, with an origin shift s.
 Therefore, the following QR transformation can hold

sss MTTM T= (4.17)

where

matrixtriangularupper:

T

s

ss

sss

ss

s
s

R
ITT

MITR
RTIM

=

=+

=−

 To hold QR transformation, the first column of R2
should be proportioned to that of M − sI. As the usual
QR method, the origin shift s may be defined as the
eigenvalue at the smallest absolute value, in the two-
dimensional submatrix in lower right of M. Actually Ts
and T are equal.

• Convergence criterion and direct sum in QR method

Convergence is tested as follows:
When

1ε≤ne (4.18)

is satisfied, decrease the order of matrices by 1 after
adopting as a singular value
|qn|.
where,

u∞= 01 Jε (4.19)

and u is a unit round-off.
If the following holds for some k (k≠n),

1ε≤ke (4.20)

the matrix is split into direct sum of two submatrices,
which will be processed independently.
 If the following holds for k (k≠1).

1ε≤kq (4.21)

operates the two-dimensional Givens rotation
associated with the k-th column form the right side of J
as follows:
jk-2,k and jk,k-1 are generated when ek=jk-1,k is eliminated.
jk-3,k and jk,k-2 are generated when jk-2,k is eliminated.
 ..
 Thus

q1

ek−1

qk−10
δk−1 qk ek+1

e2

=

qn

en0

0

0

(k−1) (k)

(k)
J

δ1 δ2

 However, the following will be held by orthogonality
of transformation matrix.

2
1

222
1

2
2

2
1 εδδδ ≤=++⋅⋅⋅++ −

− kkk qq (4.22)

All absolute values of δ1, δ2,..., δk-1 are less than ε1 then
matrix J can be split into two submatrices.
Every singular value is obtained within 30 times
iteration of QR method. Otherwise, the processing is
terminated and unobtained singular values are defined
− 1.
 For details, see Reference [11].

BDLX

136

A52-31-0302 BDLX, DBDLX

A system of linear equations with a positive-definite
symmetric band matrix decomposed into the factors L, D
and LT
CALL BDLX(B,FA,N,NH,ICON)

Function
This subroutine solves a system of linear equations.

LDLTx = b (1.1)

Where L is an n × n unit lower band matrix with band
width h, D is an n × n diagonal matrix, b is an n-
dimensional real constant vector, x is an n-dimensional
solution vector, and n>h≥0.

Parameters
B Input. Constant vector b.

Output. Solution vector x.
One dimensional array with size n.

FA Input. Matrices L and D-1. See Fig. BDLX-1.
FA is a one-dimensional array of size n(h+1) −
h(h+1)/2 to contain L and D-1 in the
compressed mode for symmetric band matrices.

() ()n h
h h

+ −
+

1
1

2

d11

d22

dnn

0

l211

lh+11

1

1

1lnn h−

lh+11

lnn h−

d11
1−

l d21 22
1−

dh h+ +
−

1 1
1

dnn
−1

d11
1−

l21

d22
1−

lh+11

dh h+ +
−

1 1
1

lnn h−

dnn
−1

Diagonal matrix D Matrix D-1+(L-I) Array FA

Diag-
onal
element
s are
inverted

Only
lower
band
portion

Unit lower
band matrix L

0

0

0

0

0

Note:
The diagonal and lower band portions of the matrix D-1+(L-I) are
contained in one-dimensional array FA in the compressed mode for a
symmetric band matrix.

Fig. BDLX-1 How to contain matrices L and D-1

N Input. Order n of matrices L and D.
NH Input. Lower band width h.
ICON .. Output. Condition code. Refer to Table

BDLX-1

Table BDLX-1 Condition code

Code Meaning Processing
0 No error

10000 The coefficient matrix was
not positive-definite.

Continued

30000 NH<0 or NH≥N By passed

Comments on use
• Subprograms used

SSL II MGSSL
FORTRAN basic functions ... None

• Notes

This subroutine omits the operations concerning the
elements out of the band so that the processing speed is
faster than subroutine LDLX provided for a positive-
definite symmetric matrix.
 Note that in this subroutine the decomposed matrices
L and D-1 contained in the compressed mode for
symmetric band matrix are required. A system of linear
equations can be solved by calling this subroutine
following the subroutine SBDL. However, subroutine
LSBX can be usually called to solved such equations in
one step.

• Example

A system of linear equations is solved after first LDLT
decomposition of n × n coefficient matrix with band
width h using subroutine SBDL. n≤100 and h≤50.

C **EXAMPLE**
 DIMENSION A(3825),B(100)
 10 READ(5,500)N,NH
 IF(N.EQ.0)STOP
 NH1=NH+1
 NT=N*NH1-NH*NH1/2
 READ(5,510)(A(I),I=1,NT)
 WRITE(6,640)
 L=0
 LS=1
 DO 20 I=1,N
 L=L+MIN0(I,NH1)
 JS=MAX0(1,I-NH)
 WRITE(6,600)I,JS,(A(J),J=LS,L)
 20 LS=L+1
 CALL SBDL(A,N,NH,1.0E-6,ICON)
 WRITE(6,610)ICON
 IF(ICON.GE.20000)STOP
 READ(5,510)(B(I),I=1,N)
 CALL BDLX(B,A,N,NH,ICON)
 WRITE(6,610)ICON
 DET=A(1)
 L=1
 DO 30 I=2,N
 L=L+MIN0(I,NH1)
 30 DET=DET*A(L)
 DET=1.0/DET
 WRITE(6,620)(B(I),I=1,N)
 WRITE(6,630)DET
 GO TO 10

BDLX

137

 500 FORMAT(2I5)
 510 FORMAT(4E15.7)
 600 FORMAT(' ','(',I3,',',I3,')'
 */(10X,5E17.8))
 610 FORMAT(/10X,'ICON=',I5)
 620 FORMAT(/10X,'SOLUTION VECTOR'
 *//(10X,5E17.8))
 630 FORMAT(/10X,
 *'DETERMINANT OF COEFFICIENT MATRIX=',
 *E17.8)
 640 FORMAT(/10X,'INPUT MATRIX')
 END

Method
Solving a system of linear equations (4.1)

LDLTx = b (4.1)

is equivalent to solving the following equations (4.2) and
(4.3).

Ly = b (4.2)
LTx = D-1y (4.3)

• Solving Ly=b (Forward substitution)
Ly=b can be serially solved using equations (4.4).

() () ()nnij

i

hik
kikii

bbyyl

niylby

,...,,,...,, Where

,...,1,

1
T

1
T

1

),1max(

===

=−= ∑
−

−=

byL

 (4.4)

• Solving LTx=D-1y (Backward substitution)
LTx=D-1y can be serially solved using equations (4.5).

1,...,,
n)h,+min(i

1

1 nixldyx
ik

kkiiii == ∑
+=

− (4.5)

Where D-1 = diag(di
-1), xT = (x1, ..., xn).

For further details, see Reference [7].

BICD1

138

E12-32-1102 BICD1, DBICD1

B-spline two-dimensional interpolation coefficient calcula-
tion (I-I).
CALL BICD1(X,NX,Y,NY,FXY,K,M,C,VW,ICON)

Function
Given function values fij=f(xi,yj) at point (xi,yj),
(x1<x2<...<xnx,y1<y2<...<yny), on the xy plane, as well as
partial derivatives fi,j

(λ,µ), i=1,nx, j=1, ny, λ=1, 2, ..., (m −
1)/2, µ=1,2, ..., (m − 1)/2 at the boundary points, the
interpolation coefficients cα,β’s in the dual m-th (m:odd
integer) degree B-spline two-dimensional interpolating
function

() () ()∑ ∑
−

+−=

−

+−=
++=

1

1

1

1
1,1,,,

y xn

m

n

m
mm yNxNcyxs

β α
βαβα (1.1)

are obtained with restriction m≥3, nx≥2 and ny≥2.
 For later use, we introduce below a notation jif ,

ˆ with

l=(m − 1)/2 for convenience. And a matrix consisting of

jif ,
ˆ as elements is shown in Fig. BICD1-1.

1,...,3,2:
2,...,1,:ˆ

1,...,3,2:
1,...,3,2:ˆ
1,...,3,2:

1,...,2,1:ˆ
1,...,2,1:

2,...,1,:ˆ
1,...,2,1:

1,...,3,2:ˆ
1,...,2,1:
1,...,2,1:ˆ

)0,(
,,

,,

)0,1(
,1,

)1,(
1,,

)1,0(
1,,

)1,1(
11,

−+++=
++++==

−+++=
−+++==
−+++=

+==
+=

++++==
+=

−+++==
+=
+==

−−
−

−−

+−
−

+−−−

+−
−

+−+−

lnllj
lnlnlniff

lnllj
lnlliff
lnllj

liff
lj

lnlnlniff
lj

lnlliff
lj
liff

y

xxx
lni

ljnji

y

xljliji

y

il
ljji

xxx
jllni

nji

x
jl

liji

jlil
ji

x
x

x

x

lnlnlnj
lnlnlniff

lnlnlnj
lnlliff

lnlnlnj
liff

yyy

xxx
lnjlni

nnji

yyy

x
lnj

nliji

yyy

lnjil
nji

yx

yx

y

y

y

y

2,...,1,:
2,...,1,:ˆ
2,...,1,:

1,...,3,2:ˆ
2,...,1,:

1,...,2,1:ˆ

),(
,,

),0(
,,

),1(
,1,

++++=
++++==

++++=
−+++==

++++=
+==

−−−−

−−
−

−−+−

Parameters
X Input Discrete points xj's in the x-direction.
NX Input. Number of the xi's.
Y Input. Discrete points yj's in the y-direction.

One-dimensional array of size ny.
NY Input. Number of the yi's.
FXY ... Input. Function values and partial derivatives,

jif ,
ˆ 's.

Two-dimensional array as FXY (K,NY+M−1).
FXY (I,J) is assigned jif ,

ˆ . See Fig. BICD1−1.
K Input. Adjustable dimension for arrays FXY

and C(K≥NX+M−1).
M Input. Degree of the B-spline.

See Note.
C Output. Interpolation coefficients, cαβ's.

Two-dimensional array as C(K,NY+M−1)
C-m+i,-m+j is put out in C(I,J).

VW Work area. One-dimensional array of size.
{max(nx,ny)+1}(m+2) −3+(m+1) 2/2.

ICON .. Output. Condition code. See Table BICD1-1.

Comments on use
• Subprograms used

SSL II ... MGSSL, UMIO1, UCIO1, UBAS1 and
ULUI1
FORTRAN basic functions ... MOD and FLOAT

Function value and partial
derivatives at (xi−l, yny)

Function value and partial
derivatives at (xnx, yny)

Function value and partial
derivatives at (x1, yny)

Function value and partial
derivatives at (xnx, yj−l)

Function value at
 (xj−l, y j−l) ,where
2≤i−l≤nx−1,
2≤j−l≤ny−1

Function value and partial
derivatives at (x1, yj−l)

Function value and partial
derivatives at (xi−l, y1)

Function value and partial
derivatives at (xnx, y1)

Function value and partial
derivatives at (x1, y1)

i i=nx+l−1
i=nx+l

j=1 j=l+1
i=1

i=l+1
i=l+2

i=nx+2l

j=l+2 j= ny+l-1 j= ny+l j= ny+2l

j

Fig. BICD1-1 Function value and derivatives jif ,

ˆ ’s (l = (m-1)/2)

BICD1

139

Table BICD1-1 Condition codes

Code Meaning Processing
0 No error

30000 Either of the followings
occurred.
(a) M is not an odd

number.
(b) xi which satisfies

xi≥xi+1 exists.
(c) yj which satisfies

yj≥ yj+1 exists.
(d) M<3
(e) NX<2 or NY<2

Bypassed

• Notes

By calling the subroutine BIFD1 after subroutine
BICD1, the interpolated values based on the B-spline
interpolating function (1.1), as well as derivatives
and/or integrals can be obtained. The parameter values
of X, NY, Y, NY, K, M and C are passed from BICD1
to input to BIFD1.
The degree m is preferably 3 or 5. In double precision,
if the original function is smooth and fij's are given with
high accuracy, the degree may be increased above 3 or
5, but not beyond 15.

• Example

See the example given for subroutine BIFD1.

Method

The B-spline two-dimensional interpolating function
S(x,y) to be obtained here is a direct extension of the B-
spline interpolating function (I) obtained by subroutine
BIC1. In other words, S(x,y) is defined in the region

(){ }R x y x x x y y ynx x ny= ≤ < ≤ ≤, ,1 and satisfies the

following conditions:
(a) The S(x,y) is a dual m-th degree, at most,

polynomial in each of the partial region

(){ }R x y x x x y y yi j i i j j, , ,= ≤ < ≤ <+ +1 1

The dual m-th degree means that the function is of degree
m with respect to both x and y.

(b) ()][, 1,1 R−−∈ mmCyxS i.e., for λ=0, 1, ..., C m-1, m-1,
and µ = 0, 1, ... , m−1,

()yxS
yx

,µλ

µλ

∂∂
∂ +

 exists and also is continuous.
(c) () yxjiii njnifyxS ,...,2,1,,...,2,1,, , ===

()
() () 21,...,2,1,21,...,2,1

,1,,1,,),(
,

),(

−=−=

===

mm

njnifyxS yxjiji

µλ

µλµλ

 The S(x,y) which satisfies (a) and (b) above can be
represented as

() () ()∑ ∑
−

+−=

−

+−=
++=

1

1

1

1
1,1,,,

y xn

m

n

m
mm yNxNcyxS

β α
βαβα (4.1)

 with cαβ's being arbitrary constants. The Nαm+1(x),
Nβm+1(y) are both m-th degree B-splines and represented
respectively by

() () []xsssgssxN mmmm ;,...,, 11111, +++++++ −= αααααα

 (4.2)

() () []ytttgttyN mmmm ;,...,, 11111, +++++++ −= ββββββ
 (4.3)

 where sequences of {si} and {tj} are the same as for the
one-dimensional B-spline interpolating function (I).
Let's define iN ,

ˆ
α and iN ,

ˆ
β as follows:

++++=
−+++=

+=
=

−−
+

−+

+−
+

lnlnlnixN
lnllixN

lixN
N

xxxn
lni

m

xlim

il
m

i

x
x 2,...,1,:)(

1,...,3,2:)(
1,...,2,1:)(

ˆ
)(

1,

1,

1
)1(

1,

,

α

α

α

α

++++=

−+++=
+=

=
−−

+

−+

+−
+

lnlnlnjyN

lnlljyN
ljyN

N

yyyn
lnj

m

yljm

jl
m

j

y

y 2,...,1,:)(

1,...,3,2:)(
1,...,2,1:)(

ˆ
)(

1,

1,

1
)1(

1,

,

β

β

β

β

 Then the coefficients in (4.1) can be uniquely
determined by the interpolation condition (c). By using
(4.1), the condition (c) can be stated as

∑ ∑
−

+−=

−

+−=
=

1

1
,,

1

1
,,

ˆˆˆ
y xn

m
jij

n

m
i fNNc

β
β

α
αβα (4.4)

 and this can be further rewritten to a simpler form by
defining several matrices as follows:
• F is an (nx+m − 1) by (ny+m − 1) matrix with the

elements jif ,
ˆ 's

• C is an (nx+m − 1) by (ny+m − 1) matrix with the
elements cα,β's

• ΦΦΦΦ is an (nx+m − 1) by (nx+m − 1) matrix whose i-th row
consists of iN ,

ˆ
α 's, where α = −m+1, − m+2,...,

nx − 1
• ΨΨΨΨ is an (ny+m−1) by (ny+m − 1) matrix whose j-th row

consists of jN ,
ˆ

β 's, where β = −m+1, −m+2,..., ny−1

 By using these matrices, Eq.(4.4) can be rewritten to

FC =TΨΨΨΨΦΦΦΦ (4.5)

 Objective matrix C can be solved as follows. First,
consider

TFX =ΨΨΨΨ (4.6)

BICD1

140

as (nx+m − 1) systems of linear equations of order (ny+m
− 1) and then we can solve them for matrix X. Next,
considering

TXC =ΦΦΦΦ (4.7)

as (ny+m − 1) systems of linear equations of order (nx+m
− 1) then they can be solved for matrix C. Matrices ΦΦΦΦ
and ΨΨΨΨ are of exactly the same form as the coefficient
matrices in the linear equations when obtaining the one-
dimensional B-spline interpolating function (I). See the

explanation for subroutine BIC1.
 This subroutine solves the linear equations, (4.6) and
(4.7), by using Crout method (LU decomposition
method) in the slave subroutines UMIO1, UCIO1 and
ULUI1.

BICD3

141

E12-32-3302 BICD3, DBICD3

B-spline two-dimensional interpolation coefficient calcula-
tion (III-III)
CALL BICD3(X,NX,Y,NY,FXY,K,M,C,XT,VW,ICON)

Function
Given function values fij=f(xi,yj) at points (xi,yj)
(x1<x2<...<xnx, y1<y2<...<yny), on the xy-plain, the
interpolation coefficients cα,β's of dual m-th degree (m
odd integer) B-spline two-dimensional interpolationg
function.

() () ()∑ ∑
−

+−=

−

+−=
++=

mn

m

mn

m
mm

y x

yNxNcyxS
1 1

1,1,,
β α

βαβα , (1.1)

 are obtained. The knots of S(x,y) are as shown in (1,2)
as for x-direction, and as shown in (1.3) as for y-direction.
(See Fig. BICD3-1.)

+−=
−=

=
= −+

1,
,...,3,2,

1,

2/)1(

1

mnix
mnix

ix

xn

xmii

x

ξ (1.2)

+−=
−=

=
= −+

1,
,...,3,2,

1,

2/)1(

1

mnjy
mnjy

jy

yn

ymjjη (1.3)

 Here m≥3, nx≥m+2 and ny≥m+2

Parameters
X Input. Discrete points xi's in the x-direction.

One-dimensional array of size nx.
NX Input. Number of the xi's, nx.
Y Input. Discrete points yj's, in the y-direction.

One-dimensional array of size ny
NY Input. Number of the yj's, ny
FXY ... Input. Function values fij.

Two-dimensional array as FXY(K,NY).
FXY(I,J) is to be assigned fij

K Input. Adjustable dimension for arrays FXY
and C(K≥NX).

M Input. Degree of the B-spline, m.
See Note.

C Output. Interpolation coefficients cα,β.
Two-dimensional array as C(K,NY).
c-m+i,-m+i is put out to C(I,J).

XT ... Output. Knots {ξi} and {ηj}.
One dimensional array of size (nx −m+1) + (ny
− m+1).
{ξi} is put out first followed by {ηj}.

VW Work area. One dimensional array of the
following size:
{max(nx,ny)-2}m + 2(m+1)+2max(nx,ny).

ICON .. Output. Condition code. See Table BICD3-1.

 x

 s2 s3 s4 s5
s6
s7
s8

s1
s0

s−1
s−2

 ξ1 ξ2 ξ3 ξ4 ξ5

 x6 x7 x5 x4 x3 x2 x1

 η1

 η2

 η3

 η4

 y1

 y2

 y3

 y4

 y5

 y6

 y

 y7 η5

 t−2 t−1 t0 t1

 t2

 t3

 t4

 t8 t7 t6 t5

Fig. BICD3-1 Knots {ξi} and {ηj} (for nx=ny=7 and m=3)

BICD3

142

Table BICD3-1 Condition codes

Code Meaning Processing
0 No error

30000 One of the followings
occurred:
(a) M is not an odd integer.
(b) NX<M+2 or NY<M+2
(c) xi which satisfies

xi≥xi+1 exists.
(d) yj which satisfies

yj≥yj+1 exists.
(e) M<3

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL, UMIO3, UCIO3, UBAS1 and
ULUI3
FORTRAN basic functions ... MOD and FLOAT

• Notes

By calling the subroutine BIFD3 after subroutine
BICD3, the interpolated values based on the B-spline
interpolating function (1.1), as well as derivatives
and/or integrals can be obtained. The parameter values
of X, NX, Y, NY, K, M, C and XT are passed from
BICD3 to input to BIFD3.
 The degree m is preferably 3 or 5. In double precision,
if the original function is smooth and fij's are given with
high accuracy, the degree may be increased above 3 or
5, but not beyond 15.

• Example

See the example given for subroutine BIFD3.

Method
The B-spline two-dimensional interpolating function
S(x,y) to be obtained here is a direct extension of the B-
spline interpolating function (III) obtained by subroutine
BIC3. In other words, taking knots {ξi} and {ηj} in the x-
and y-directions as shown in (1.2) and (1.3), S(x,y) is
defined in the region R={(x,y) | x1 ≤ x ≤ xnx, y1 ≤ y ≤
yny}and satisfies the following conditions:
(a) The S(x,y) is a dual m-th degree, at most, polynomial in

each of the partial region Ri,j.= (){ ,, 1+≤≤ ii xyx ξξ
}1+≤≤ jj y ηη . The dual m-th degree means that the

function is of degree m with respect to both x and y.
(b) ()S x y Cm m, ∈ − −1, 1 [R] i.e., for λ = 0, 1, ..., m − 1, and

()yxS
yx

m ,,1,...,1,0 µλ

µλ

∂∂
∂µ

+
−= exists and also is

continuous.
(c) S(xi,yj)=fij, i=1,2,...,nx, j=1,2,...,ny.

 The S(x,y) which satisfies (a) and (b) above, can be
represented as

() () ()∑ ∑
−

+−=

−

+−=
++=

mn

m

mn

m
mm

y x

yNxNcyxS
1 1

1,1,,
β α

βαβα , (4.1)

 with the cα,β's being arbitrary constants. The Nα,m+1(x)
and Nβ,m+1(y) are both the m-th degree B-splines and
represented respectively by

() () []xsssgssxN mmmm ;,...,, 11111, +++++++ −= αααααα

 (4.2)
() () []ytttgttyN mmmm ;,...,, 11111, +++++++ −= ββββββ

 (4.3)

 where knots {si} and {tj} are the same as for the one-
dimensional B-spline interpolating function (III). An
example is shown in Fig. BICD3-1.
 The coefficients in (4.1) can be uniquely determined by
the interpolation condition (c). By using (4.1), condition
(c) canbe stated as

() ()

yx

mn

m
ijjm

mn

m
im

njni

fyNxNc
y x

,...,2,1,...,,2,1,
1

1,
1

1,

==

=

∑ ∑
−

+−=
+

−

+−=
+

β
β

α
αβα , (4.4)

and can be further rewritten to a simpler form by defining
several matrices as follows:
• F is an nx × ny matrix with the elements fij
• C is an nx × ny matrix with the elements cα,β
• ΦΦΦΦ is an nx × nx matrix whose i-th row consists of

Nα,m+1(xi), where α= − m+1,..., nx − m
• ΨΨΨΨ is an ny × ny matrix whose j-th row consists of

Nβ,m+1(yj), where β= − m+1,..., ny − m

 By using these matrices above, Eq.(4.4) can be rewritten
as

FC =TΨΨΨΨΦΦΦΦ (4.5)

 Objective matrix C can be solved as follows. First,
consider

TFX =ΨΨΨΨ (4.6)

 as nx systems of linear equations of order ny and then we
can solve them for the matrix X. Next, considering

TXC =ΦΦΦΦ (4.7)

 as ny systems of linear equations of order nx then they
can be solved for matrix C. The matrices ΦΦΦΦ and ΨΨΨΨ are
exactly of the same form as the coefficient matrix in the
linear equations when obtaining the one-dimensional B-
spline interpolating function (III). (See the explanation
for subroutine BIC3.)
This subroutine solves the linear equations, (4.6) and
(4.7), by using Crout method (LU decomposition
method) in the slave subroutines UMIO3, UCIO3 and
ULUI3.

BIC1

143

E12-31-0102 BIC1, DBIC1

B-spline interpolation coefficient calculation (I)
CALL BIC1(X,Y,DY,N,M,C,VW,ICON)

Function
Given function values yi = f(xi), i=1, 2, ..., n, at the
discrete points x1, x2, ..., xn(x1 < x2 < ... <xn), as well as
derivatives yl

(1) = f(x1) and yn
(1) = f(xn), l=1, 2, ..., (m −

1)/2, at both end points x1 and xn, the interpolation
coefficients, cj's, j= −m+1, −m+2, ..., n − 1, in the
interpolating function represented as a linear combination
of B-splines of degree m(odd integer),

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj xNcxS (1.1)

are obtained.
The obtained S(x) satisfies

() ()

() ()

() ()

() () 0...,,12/1,2/1

1,...,3,2

2/)1(,...,1,0

)(
1

1

)(
1,

)(

1

1
1,

)(
1

1

1
1

)(
1,1

)(

−−−=

==

−=

==

−=

==

∑

∑

∑

−

+−=
+

−

+−=
+

−

+−=
+

mml

yxNcxS

ni

yxNcxS

ml

yxNcxS

l
n

n

mj
n

l
mjjn

l

i

n

mj
imjji

l
n

mj

l
mjj

l

 (1.2)

Here m≥3 and n≥2.

Parameters
X Input. Discreate points, xi's.

One-dimensional array of size n.
Y Input. Function values, yi's.

One-dimensional array of size n.
DY Input. Derivatives at end points x1 and xn.

Two-dimensional array of DY(2,(m − 1)/2).
DY(1,l) and DY(2, l) are assigned y1

(l) and yn
(l),

respectively for l=1,2,...,(m − 1)/2.
N Input. Number of the discrete points, n.
M Input. Degree of the B-spline, m

See Note.
C Output. Interpolating coefficients cj's.

One-dimensional array of size n+m − 1.
VW Work area.

One-dimensional array of size (n −
2)m+(m+1)2/2+(m+1).

ICON .. Output. Condition code. See Table BIC1-1.

Table BIC1-1 Condition codes

Code Meaning Processing
0 No error

30000 Either of the followings
occurred:
1 M is not an odd integer.
2 xi which satisfies

xi≥xi+1 exists.
3 M<3.
4 N<2.

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL, UMIO1, UCIO1, UBAS1 and
ULUI1
FORTRAN basic functions ... MOD and FLOAT

• Notes

By calling the subroutine BIF1 after subroutine BIC1,
the interpolated values based on the B-spline
interpolating function (1.1), as well as derivatives
and/or integrals can be obtained. The parameter values
of X, N, M and C are passed from BIC1 to input to
BIF1.
 The degree m is preferably 3 or 5. In double precision,
if the original function is smooth and yi's are given with
high accuracy, the degree may be increased above 3 or
5, but not beyond 15.

• Example

See the example given for subroutine BIF1.

Method
The m-th degree B-spline interpolating function S(x) to
be obtained here is a function defined in the interval
[x1,xn] and satisfying the following conditions:
(a) S(x) is polynomial at most of degree m in the

subinterval [xi, xi+1) , i=1, 2, ..., n − 1.
(b) S(x) ∈ Cm-1[x1,xn],i.e., S(x) and its derivatives of up to

order (m − 1) are conditnous in the interval [x1,xn].
(c) S(xi)=yn, i=2,3,...,n − 1
(d) S(l)(xl) = yl

(l),
S(l)(xn) = yn

(l), l=0, 1, ..., (m − 1)/2

 A m-th degree spline function defined with knots {tj}, j
= −m+1,−m+2,...,n+m, taken as

++=

−=
+−+−=

=

mnnnjx

njx
mmjx

t

n

jj

,...,1,:

1,...,3,2:
1,...,2,1:1

 (4.1)

can be represented as

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj xNcxS (4.2)

BIC1

144

where, Nj,m+1(x) is the m-th degree B-spline and given by

() ()];,...,,[11111, xtttgttxN mjjjmjmjmj +++++++ −=

(For details, see Chapter 7, 7.1)
 Considering locality of Nj,m+1(x),

()

()

()

−−−−=≠
−−+−+−==

=

−++−++−==
++−+−+−=≠

=

−+=
−−+−+−=

=

−+−−=>
=

+

+

+

1,...,,1:0
2,...,2,1:0

1,...,3,2:0
1,...,2,1:0

1,...,1,
1,...,2,1

:0

1,...,1,:0

)(
1,

1
)(

1,

1,

nlnlnj
lnmmj

xN

nlmlmj
lmmmj

xN

niij
mimmj

imimij
xN

n
l
mj

l
mj

imj

 (4.3)

 and applying the interpolation conditions (c) and (d)
described above to Eq. (4.2), a system of (n+m − 1)
linear equations

() ()

()

() () ()

−

−−==

−==

−==

∑

∑

∑

−

−−=
+

−

−=
+

++−

+−=
+

0...,,12

1,21:

1,...,3,2:

21,...,1,0:

1

1

)()(
1,

1

1,

1

1

)(
11

)(
1,

mmlyxNc

niyxNc

mlyxNc

n

lnj

l
nn

l
mjj

i

mij
iimjj

lm

mj

ll
mjj

(4.4)

are given with cj's; j= − m+1, − m+2,...,n − 1, unknown.
 By solving these equations all of the interpolation
coefficients cj's can be obtained.
 The form of the coefficient matrix in the linear
equations (4.4) is shown in Fig. BIC1-1 as an example
for m=5 and n=8.

*
**

**

*

Fig. BIC1-1 Coefficient matrix (in the case of m=5 and n=8)

 The subroutine solves the linear equations by using the
Crout method (LU decomposition).
Subroutines UMIO1, ULUI1 and UCIO1 are called.

BIC2

145

E12-31-0202 BIC2, DBIC2

B-spline interpolation coefficient calculation II
CALL BIC2(X,Y,DY,N,M,C,VW,ICON)

Function
Given function value yi=f(xi), i=1,2,...,n at the discrete
points x1, x1, ..., xn(x1<x2<...<xn), as well as derivatives
y1

(l) = f(x1) and yn
(l) = f(xn), l=(m+1)/2, (m+1)/2+1, ..., m −

1 at both end points x1 and xn, the interpolating
coefficients cj's, j=− m+1, − m+2, ..., n − 1 in the
interpolating function represented as a linear combination
of B-splines of degree m (odd integer),

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj xNcxS (1.1)

are obtained.
 The S(x) to be obtained satisfies

() ()

() ()

() ()

() 21,...,2,1

,...,2,1

1,...,12/)1(,2/)1(

)(
1

1

)(
1,

)(

1

1
1,

)(
1

1

1
1

)(
1,1

)(

+−−=

==

=

==

−+++=

==

∑

∑

∑

−

+−=
+

−

+−=
+

−

+−=
+

mmml

yxNcxS

ni

yxNcxS

mmml

yxNcxS

l
n

n

mj
n

l
mjjn

l

i

n

mj
imjji

l
n

mj

l
mjj

l

 (1.2)

 Here, m≥3, and n≥(m+1)/2.

Parameters
X Input. Desecrate Points, xi's.

One-dimensional array of size n.
Y Input. Function values yi's.

One dimensional array of size n.
DY Input. Derivatives at end points x1 and xn⋅

Two-dimensional array of DY(2,(m − 1)/2).
DY(1,l-(m − 1)/2) and DY(2,l(m − 1)/2) are
assigned y1

(l) and yn
(l), respectively, for

l=(m+1)/2,(m+1)/2+1,...,m − 1
N Input. Number of the discrete points, n.
M Input. Degree of the B-spline, m.

See Note.
C Input. Interpolation coefficients cj's.

One-dimensional array of size n+m − 1.
VW Work area.

One-dimensional array of size
m(n+m − 3)+2(m+1).

ICON .. Output. Condition code.
See Table BIC2-1.

Table BIC2-1 Condition codes

Code Meaning Processing
0 No error

30000 Either of the followings
happened.
1 M is not an odd integer.
2 xi which satisfies xi≤xi+1

exists.
3 M<3
4 N<(M+1)/2

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL, UMIO2, UCIO2, UBAS1 and
ULUI1
FORTRAN basic functions ... MOD and FLOAT

• Notes

By calling the subroutine BIF2 after subroutine BIF2,
the interpolated values based on the B-spline
interpolating function (1.1), as well as derivatives
and/or integrals can be obtained. The parameter values
of X, N, M and C are passed from BIC2 to input to
BIF2.
 The degree m is preferably 3 or 5. In double precision,
if the original function is smooth and yi's are given with
high accuracy, the degree may be increased above 3 or
5, but not beyond 15.

• Example

See the example given for subroutine BIF2.

Method
The m-th degree B-spline interpolating function S(x) to
be obtained here is a function defined in the interval
[x1,xn] and satisfying the following conditions:
(a) S(x) is a polynomial at most of degree m in the

subinterval [xi,xi+1], i=1, 2, ..., n − 1.
(b) S(x)∈ Cm-1 [x1,xn] i.e., S(x) and its derivatives of up to

order (m − 1) are continuos in the interval [x1,xn].
(c) S(xi)=yi, i=1,2,..,n
(d) S(l)(x1)=y1

(l),
S(l)(xn)=yn

(l) , l = (m+1)/2, (m+1)/2+1, ..., m − 1

 A m-th degree spline function defined with knots {tj}, j
= −m+1, −m+2, ..., n+m, taken as

++
−

+−+−
=

mnnnx
nx

mmx
t

n

jj

,...,1,:
1,...,3,2:

1,...,2,1:1

 (4.1)

can be represented as

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj xNcxS (4.2)

BIC2

146

where, Nj,m+1(x) is the m-th degree B-spline and given by

() ()];,...,,[11111, xtttgttxN mjjjmjmjmj +++++++ −= (4.2)

(For details, see Section 7.1)
 Considering locality of Nj,m+1(x),

()

()

()

−−−−=≠
−−+−+−==

−++−++−==
++−+−+−=≠

−+=
−−+−+−=

=

−+−−=>

+

+

+

1,...,,1:0
2,...,2,1:0

1,...,3,2:0
1,...,2,1:0

1,...,1,
1,...,2,1

:0

1,...1,:0

)(
1,

1
)(

1,

1,

nlnlnj
lnmmj

xN

nlmlmj
lmmmj

xN

niij
mimmj

imimij
xN

n
l
mj

l
mj

imj

(4.3)

 and applying the interpolation conditions (c) and (d)
described above to Eq. (4.2), a system of (n+m − 1)
linear equations

() () ()

()

() ()

+−−==

==

−

+++==

∑

∑

∑

−

−−=
+

−

−=
+

++−

+−=
+

21,...,2,1:

,...,2,1:

1...,

,121,21:

)(
1

1

)(
1,

1

1,

)(
1

1

1
1

)(
1,

mmmlyxNc

niyxNc

m

mmlyxNc

l
n

n

lnj
n

l
mjj

i

i

mij
imjj

l
lm

mj

l
mjj

 (4.4)

are given with cj's; j= −m+1, −m+2,...,n − 1, unknown.
 By solving these equations all of the interpolation
coefficients cj's can be obtained.
 The form of the coefficient matrix in the linear
equations (4.4) is shown in Fig. BIC2-1 as an example
for m=5 and n=8.

*

*

Fig. BIC2-1 Coefficient matrix (n=7 and m=3)

 The subroutine solves the linear equations by using the
Crout method (LU decomposition).
Subroutines UMIO2, ULUI1 and UCIO2 are called.

BIC3

147

E12-31-0302 BIC3, DBIC3

B-spline interpolation coefficient calculation (III)
CALL BIC3(X,Y,N,M,C,XT,VW,ICON)

Function
Given function values yi=f(xi), i=1,2,...,n for discrete
points x1, x2, ..., xn(x1<x2<...<xn) this subroutine obtains
the interpolating spline S(x)of degree m represented as a
linear combination of B-splines:

() ()∑
−

+−=
+=

mn

mj
mjj xNcxS

1
1, (1.1)

The knots of the spline are taken as

()

nmn

mii

x

mnix
x

=

−==
=

+−

−+

1

21

11

,...,3,2,

ξ

ξ
ξ

 where m is odd integer greater than 2 and n≥m+2 must
be satisfied.

Parameters
X Input. Desecrate Points, xi.

One-dimensional array of size n.
Y Input. Function values, yi.

One-dimensional array of size n.
N Input. Number n of the discrete points.
M Input. Degree m of the B-spline.

(See comment)
C Output. Interpolation coefficients cj.

One-dimensional array of size n.
XT Output. The knots ξi.

One-dimensional array of size n − m+1.
VW Work area. One-dimensional array of size

mn+2.
ICON .. Output. Condition code. See Table BIC3-1.

Table BIC3-1 Condition codes

Code Meaning Processing
0 No error

30000 (1) M is not an odd
number,
or

(2) N<M+2, or
(3) xi≤xi+1, or
(4) M<3.

Bypassed

Comments on use
• Subprograms used

SSL II MGSSL, UMIO3, UCIO3, UBAS1 and
ULUI3
FORTRAN basic function MOD

• Notes
The interpolated values or derivative or integrals based
on the interpolating spline (1.1) may be determined by
the subroutine BIF3 following this subroutine. In that
case the values of parameters X, N, M, C, and XT are
input to the subroutine BIF3.
 The preferred degree m is 3 or 5.
 In double precision, however, if the original function
does not change obruptly and yi is given with high
accuracy, the degree may be increased above 3 or 5,
but not beyond 15.

• Example

See the example for the subroutine BIF3.

Method
Given function values yi=f(xi). i=1,2,...,n for discrete
points x1,.x2,...,xn(x1<x2<...<xn) the interpolating spline of
degree m to be obtained here is a function which is
defined on the interval [x1,xn] and satisfies the following
requirements.
(a) S(x) is polynomial of degree m at most on each

subinterval [ξi, ξi+1], i=1, 2, ..., n − m , ξ1=x1,
ξi=xi+(m-1)/2 , i=2, 3, ..., n − m , ξn-m+1=xn

(b) S(x)∈ Cm-1[xl,xn]. That is, S(x) and its derivatives of
up to order m-1 are continuous on the interval [x1,xn].

(c) S(xi)=yi, i=1,2,..,n

 The S(x) satisfying (a), (b) and (c) can be given by

() ()∑
−

+−=
+=

mn

mj
mjj xNcxS

1
1, (4.1)

 where cj's, j= − m+1, − m+2,...,n − m, are constants,
Nj,m+1(x) is a normalized m-th degree B-spline and
defined by

() ()];,...,,[11111, xtttgttxN mjjjmjmjmj +++++++ −= (4.2)

(For details, see Section 7.1)
 In this subroutine, the knots {tr} of the B-spline is given
by

++−+−=
−=

+−+−=
=

+− 1,...,2,1,
,...,3,2,

1,...,2,1,

1

1

nmnmnr
mnr

mmr
t

mn

rr

ξ
ξ
ξ

 (4.3)

A typical behavior of Nj,m+1(x) with the knots {tr} is
shown in Fig. BIC3-1.
 The interpolation coefficients cj's can be determined by
solving the linear equations:

BIC3

148

1.0

N4,4(x)

N3,4(x)
N2,4(x)

N1,4(x)

N0,4(x)
N−1,4(x)

N−2,4(x)

x3

ξ2

t2

x4

ξ3

t3

x5

ξ4

t4

x1

ξ1

t1
t0

 t−1
 t−2

x2
x6 x7

ξ5

t5
t6
t7
t8

Fig.BIC3-1 Example of B-spline Nj,m+1(x) : µ = 3, with seven discrete points at equal intervals

() () niyxNcxS i

mn

mj
imjji ,...,2,1,

1
1, === ∑

−

+−=
+ (4.4)

 which satisfies the interpolation conditions.
 The coefficient matrix of the equations have many null
elements because of locality of the B-spline and therefore,
it has a similar form to a banded matrix. An example of
the coefficient matrix is given in Fig. BIC3-2 for the case,
n=7 and m=3.

∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗

0

0

Fig. BIC3-2 Coefficient matrix (n =7 and m =3)

 The subroutine solves these linear equations by using
Crout method (LU decomposition method).
Subroutine ULUI3 is called.

BIC4

149

E12-31-0402 BIC4, DBIC4

B-spline interpolation coefficient calculation (IV)
CALL BIC4(X,Y,N,M,C,VW,ICON)

Function
Given periodic function values yi=f(xi), i=1, 2, ..., n,
(where y1=yn) at the discrete points x1, x2, ..., xn
(x1<x2<...<xn) with the period (xn−x1), the interpolation
coefficients cj's, j=−m+1, −m+2, ..., n − 1 in the
interpolating function represented as a linear combination
of B-splines of degree m (odd integer),

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj xNcxS (1.1)

are obtained.
 The obtained S(x) is a periodic function with the period
(xn−x1) similarly to f(x) and satisfies the boundary
conditions:

() () 1,...,1,0,)(
1

)(−== mlxSxS n
ll (1.2)

Here m ≥ 3 and n ≥ m+2.

Parameters
X Input. Discrete points, xi's.

One-dimensional array of size n.
Y Input. Function values yi's.

One dimensional array of size n.
Must be y1=yn. If y1≠yn, yn is taken.

N Input. Number of the discrete points, n.
M Input. Degree of the B-spline, m.

See Notes.
C Input. Interpolation coefficients cj.

One-dimensional array of size n+m−1.
VW Work area.

One-dimensional array of size
(n−1)(2m−1)+m+1

ICON .. Output. Condition code. See Table BIC4-1.

Table BIC4-1 Condition codes

Code Meaning Processing
0 No error

30000 Either of the followings
occurred.
(a) M is not an odd integer.
(b) N<M+2
(c) xi satisfying

xi≤xi+1 exists.
(d) M<3

Aborted

Comments on use
• Subprograms used

SSL II ... MGSSL, UMIO4, UCIO4, UBAS4, ULUI4
and UPEP4
FORTRAN basic functions ... MOD and FLOAT

• Notes
By calling the subroutine BIF4 after subroutine BIC4,
the interpolated values based on the B-spline
interpolating function (1.1), as well as derivatives
and/or integrals can be obtained. The parameter values
of X, N, M and C are passed from BIC4 to input to
BIF4.
The degree m is preferably 3 or 5. In double precision,
if the original function is smooth and yi's are given with
high accuracy, the degree may be increased above 3 or
5, but not beyond 15.

• Example
See the example given for subroutine BIF4.

Method
The m-th degree B-spline interpolating function S(x) to
be obtained here is a function defined in the interval
[x1,xn] and satisfying the following conditions:
 Condition (c) is necessary for S(x) to be periodic and is
peculiar to this subroutine.
(a) S(x) is polynomial at most of order m in the interval

[xi,xi+1), i=1, 2, ... n − 1.
(b) S(x)∈ Cm-1 [x1,xn] , i.e., the S(x) and its derivatives of

up to degree m−1 are continuous in the interval [x1,xn].
(c) S(l)(x1) = S(l)(xn), l=0,1,...,m − 1
(d) S(xi)=yi, i=2,3,..,n (y1=yn is assumed)

 First, the spline function satisfying condition (c) will be
explained. We take the knots {tj} of the B-spline as
follows (see Fig. BIC4-1):

()

()

+≤≤+−+
≤≤

≤≤+−−−
=

++−

−−

mnjnxxx
njx

jmxxx
t

njn

j

njn

j

1,
1,

01,

11

11

 (4.1)

 The m-th degree spline function based on this knots can
be expressed with cj's being arbitrary constants:

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj xNcxS (4.2)

where Nj,m+1(x) is the m-th degree B-spline and given by

() ()];,...,,[11111, xtttgttxN mjjjmjmjmj +++++++ −=

(For further details, see Section 7.1)
Adding the condition:

BIC4

150

0,...,1,1 +−== −+ mjcc njj (4.3)

to Eq. (4.2), the periodic condition (c) described above is
satisfied.
Next, the interpolation condition (d) is written as

() niyxNc i

n

mj
imjj ,...,2,

1

1
1, ==∑

−

+−=
+ (4.4)

with m=2l − 1(l ≥ 2), Eq. (4.3) is rewritten to

1,...,1,

1,...,22,

1

1

−+−==

+−+−==

+−

−+

nlnjcc

lljcc

njj

njj (4.5)

Rewriting Eq. (4.4) by using the above relationships,

() (){ } ()

() (){ } i

ln

lnj
iljilnjj

ln

j
iljj

lj
ilnjiljj

yxNxNc

xNcxNxNc

=++

++

∑

∑∑
−

+−=
+−

−

=+−=
−+

12
2,2,1

2

1
2,

0

2
2,12,

 ni ,...,3,2= (4.6)

can be obtained.
 Eq. (4.6) is a system of linear equations with (n − 1)
unknowns cj's (j=−l+2,−l+3,...,n − l).
Solving the equations and using the relationships (4.5),
all of the interpolation coefficients cj's of the spline
function (4.2) can be obtained. The coefficient matrix of
equations (4.6) has a form similar to a banded matrix. An
example is given in Fig. BIC4-2 for the case of m=5(l=3)
and n=9.

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

0

0

Fig. BIC4-2 Coefficient matrix (m=5 and n=9)

 The subroutine solves the linear equations given above
by using Crout method (LU decomposition method).
Subroutines UMIO4, ULUI4 and UCIO4 are called.

x
............... xn−1 xn tn+1 tn+2 tn+m
................ tn−1 tn

xn−m... x1+m
...

x2
t2

x1
t1

t0t−1t−m+1

Fig. BIC4-1 Knots {tj}

BIFD1

151

E11-32-1101 BIFD1, DBIFD1

B-spline two-dimensional interpolation, differentiation
and integration (I-I)
CALL BIFD1(X,NX,Y,NY,M,C,K,ISWX,VX,IX,ISWY,
VY,IY,F,VW,ICON)

Function
When, on the xy-plane, the function values fij= f(xi, yj) are
given at the points (xi, yi), (x1 < x2 < … < xnx, y1 < y2 < …
< yny), and also the following partial derivatives are given
at the boundary points, an interpolated value or a partial
derivative at point P(vx, vy) or a double integral on the
area {(x,y) | x1 ≤ x ≤ vx , y1 ≤ y ≤ vy}are obtained. (See Fig.
BIFD1-1)

() ()
() ()
() ()
() ()

() () 21,...,2,1,21,...,2,1

,...,2,1,,...,2,1

,,,

,,,

,,,

,,,

),(),(
,1

),(),(
,1

1
),(),(

1,11
),(),(

11

),0(),0(
,1

),0(),0(
1,

)0,()0,(
,1

)0,()0,(
,1

−=−=

==

==

==

==

==

mm

njni

yxffyxff

yxffyxff

yxffyxff

yxffyxff

yx

nnnnnn

nn

niniii

jnjnjj

yxyxyy

xx

yy

xx

μλ

μλμλμλμλ

μλμλμλμλ

μμμμ

λλλλ

 • P(vx,vy)

 x
 xnx x3 x2 x1

 y1

 y2

 y3

 y

 yny

Fig. BIFD1-1 Point p in the area R={(x,y) | x1 ≤ x ≤ xnx , y1≤ y≤ yny}

 However, subroutine BICD1 must be called before
using subroutine BIFD1 to calculate the interpolating
coefficients Cα,β in the B-spline two-dimensional
interpolating function,

() () ()∑ ∑
−

+−=

−

+−=
++=

1

1

1

1
1,1,,,

y xn

m

n

m
mm yNxNcyxS

β α
βαβα (1.1)

 where m is an odd integer and denotes the degree of the
B-splines, Nα,m+1(x) and Nβ,m+1(y). Here x1≤ vx≤xnx,
y1≤νy≤yny, m≥3, nx≥2 and ny≥2.

Parameters
X Input. Discrete points, xi's in the x direction.

One-dimensional array of size nx.
NX Input. Number of xi's, nx.
Y Input. Discrete points yi's in the y direction.

One-dimensional array of size ny.
NY Input. Number of yi's, ny.
M Input. Degree of the B-spline. See Notes.
C Input. Interpolating coefficients Cα,β (output

from BICD1). Two-dimensional array as
C(K,NY+M−1).

K Input. Adjustable dimension for array C.
(K≥NX+M−1).

ISWX .. Input. An integer which specifies the type of
calculation in the direction of x.
−1≤ISWX≤m
See the parameter F.

VX Input. x-coordinate at point P(vx,vy).
IX Input. Value i which satisfies xi≤vx<xi+1.

If vx=xnx then IX=nx−1
Output. Value i which satisfies xi≤vx<xi+1.
See Notes.

ISWY .. Input. An integer which specifies the type of
calculation in the direction of y.
−1≤ISWY≤m(See the parameter F)

VY Input. y-coordinate at point P(vx,vy).
IY Input. Value j which satisfies yj≤vy<yj+1.

If vy=yny, then IY=ny−1
Output. Value j which satisfies yj≤vy<yj+1.
See Notes.

F Output. Interpolated value, partial derivative
or integral obtained. Setting ISWX=λ and
ISWY=μ, one of the following values is put
out depending on combination of λ and μ.
When 0≤λ,μ

()yx vvS
yx

,F μλ

μλ

∂∂
∂ +

=

 The interpolated value can be obtained by setting
λ=μ=0.
When λ= −1, 0≤μ

()∫=
xv

x
y dxvxS

y1

,F μ

μ

∂
∂

When λ ≥ 0, μ = −1

()∫=
yv

y
x dyyvS

x1

,F λ

λ

∂
∂

When λ = μ = −1

()∫ ∫=
y xv

y

v

x
dxyxSdy

1 1

,F

BIFD1

152

VW Work area.
One-dimensional array of size 4(m+1) +
max(nx,ny)+m − 1

ICON .. Output. Condition code.
See Table BIFD1-1.

Table BIFD1-1 Condition codes

Code Meaning Processing
0 No error

10000 Either X(lX)≤VX<X(lX+1) or
Y(lY)≤VY<Y(lY+1) is not
satisfied.

lX or lY shown
on the left is
searched for in
the subroutine
and the
processing is
continued.

30000 Either of the followings
occurred:
1 VX<X(1) or VX>X(NX)
2 VY<Y(1) or VY>Y(NY)
3 ISWX<-1 or ISWX>M
4 ISWY<-1 or ISWY>M

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL, UCAD1 and UBAS1
FORTRAN basic function ... FLOAT

• Notes
The subroutine, based on the B-spline two-dimensional
interpolating function (1.1) given by using subroutine
BICD1, obtains an interpolated value, a partial
derivative or a double integral.
 Therefore subroutine BICD1 must be called to obtain
the interpolating function (1.1) before calling this
subroutine to obtain an interpolated value, etc. Also
parameters X, NX, Y, NY, K, M and C must be
directly passed from subroutine BICD1.
 Parameters IX and IY should satisfy the relationships
X(IX)≤VX<X(IX+1) and Y(IY)≤VY<Y(IY+1),
respectively. If not, IX and IY that satisfy those
relationships are searched for to continue the
processing.

• Example
By inputting points (xi,yi), function values fij, i=1,2,...,nx,
j=1, 2, ..., ny, partial derivatives fi,j(λ,µ),i=1,nx,
j=1,ny,λ=1, 2, ..., (m −1)/2, µ=1, 2, ..., (m −1)/2, and
degree m, interpolated values or partial derivatives at
points (vir,ujs); vir =xi+(xi+1 − xi)⋅(r/4), ujs=yj+(yj+1 - yj)
⋅(s/4), i=1, 2, ..., nx−1, j=1, 2, ..., ny−1 , r=0, 1, ..., 4,
s=0,1,...,4, or integrals over the area {(x,y) | x1 ≤ x ≤ vir ,
y1 ≤ y ≤ ujs}) are obtained.
Here nx≤30, ny≤30 and m≤5. Further, the data input to

FXY(I,J) must be given as follows, when m=5, for
example

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

fffffff

fffffff

fffffff

ffffffff

fffffff

fffffff

yxyxyxyyyy

yxyxyxyyyy

yxyxyxyyyy

xxx

xxx

xxx

nnnnnnnnnn

nnnnnnnnnn

nnnnnnnnnn

nnn

nnn

nnn

)2,2(
,

)2,1(
,

)2,0(
,

)2,0(
,2

)2,0(
,1

)2,1(
,1

)2,2(
,1

)1,2(
,

)1,1(
,

)1,0(
,

)1,0(
,2

)1,0(
,1

)1,1(
,1

)1,2(
,1

)0,2(
,

)0,1(
,,,2,1

)0,1(
,1

)0,2(
,1

)0,2(
1,

)0,1(
1,1,312111

)0,1(
11

)0,2(
11

)1,2(
1,

)1,1(
1,

)1,0(
1,

)1,0(
21

)1,0(
11

)1,1(
11

)1,2(
11

)2,2(
1,

)2,1(
1,

)2,0(
1,

)2,0(
21

)2,0(
11

)2,1(
11

)2,2(
11

,

C **EXAMPLE**
 DIMENSION X(30),Y(30),FXY(32,32),
 *C(32,32),VW(232),R(5,5)
 READ(5,500) NX,NY,M
 READ(5,510) (X(I),I=1,NX),
 * (Y(J),J=1,NY)
 NXM=NX+M-1
 NYM=NY+M-1
 READ(5,510) ((FXY(I,J),I=1,NXM),
 *J=1,NYM)
 WRITE(6,600) M,(I,X(I),I=1,NX)
 WRITE(6,610) (J,Y(J),J=1,NY)
 WRITE(6,620) ((I,J,FXY(I,J),I=1,NXM),
 *J=1,NYM)
 K=32
 CALL BICD1(X,NX,Y,NY,FXY,K,M,C,
 *VW,ICON)
 IF(ICON.EQ.0) GO TO 20
 WRITE (6,630)
 STOP
 20 NX1=NX-1
 NY1=NY-1
 M2=M+1
 DO 80 LY2=1,M2
 ISWY=LY2-2
 DO 70 LX2=1,M2
 ISWX=LX2-2
 WRITE(6,640) ISWX,ISWY
 DO 60 IY=1,NY1
 HY=(Y(IY+1)-Y(IY))*0.25
 YJ=Y(IY)
 DO 50 IX=1,NX1
 HX=(X(IX+1)-X(IX))*0.25
 XI=X(IX)
 DO 40 J=1,5
 VY=YJ+HY*FLOAT(J-1)
 DO 30 I=1,5
 VX=XI+HX*FLOAT(I-1)
 IXX=IX
 IYY=IY
 CALL BIFD1(X,NX,Y,NY,M,C,K,ISWX,
 *VX,IXX,ISWY,VY,IYY,F,VW,ICON)
 R(I,J)=F
 30 CONTINUE
 40 CONTINUE

BIFD1

153

 WRITE(6,650) IXX,IYY,((R(I,J),I=1,5),
 *J=1,5)
 50 CONTINUE
 60 CONTINUE
 70 CONTINUE
 80 CONTINUE
 STOP
 500 FORMAT(3I6)
 510 FORMAT(2F12.0)
 600 FORMAT('1'//10X, 'INPUT DATA',3X,'M=',
 *I2//20X,'NO.',10X,'X'/(20X,I3,E18.7))
 610 FORMAT(//20X,'NO.',10X,'Y'/(20X,I3,
 *E18.7))
 620 FORMAT(3(10X,'FXY(',I2,',',I2,')=',
 *E15.7))
 630 FORMAT('0',10X,'ERROR')
 640 FORMAT(//5X,'ISWX=',I2,3X,'ISWY=',
 *I2//)
 650 FORMAT(10X,'IX=',I3,2X,'IY=',I3/
 *(15X,5(5X,E15.7)))
 END

Method
Suppose that the interpolating coefficient cα,β in the dual
m-th degree B-spline two dimensional interpolating
function.

() () ()∑ ∑
−

+−=

−

+−=
++=

1

1

1

1
1,1,,,

y xn

m

n

m
mm yNxNcyxS

β α
βαβα (4.1)

is already obtained by subroutine BICD1.
 Subroutine BIFD1 calculates an interpolated value,
partial derivative and/or an integral based on the
interpolating function (4.1). The method is given in
Section 7.1 "Definition, representation and calculation
method of bivariate spline function".

BIFD3

154

E11-32-3301 BIFD3, DBIFD3

B-spline two-dimensional interpolation, differentiation
and integration (III-III)
CALL BIFD3(X,NX,Y,NY,M,C,K,XT,ISWX,VX,IX,
ISWY,VY,IY,F,VW,ICON)

Function
Given the function values fij=f(xi,yj) at points (xi, yj), (x1
< x2 < ... < xnx, y1 < y2 < ... < yny) on the xy -plane, an
interpolated value or a partial derivative at the point
P(vx,vy) and/or a double integral over the area [x1 ≤ x ≤
vx , y1 ≤ y ≤ vy], is obtained. (See Fig. BIFD3-1)
 Before using subroutine BIFD3, the knots {ξj} in the x-
direction and the knots {ηj} in the y-direction, and also
the interpolating coefficients cα,β in the B-spline two-
dimensional interpolating function

() () ()∑ ∑
−

+−=

−

+−=
++=

mn

m

mn

m
mm

y x

yNxNcyxS
1 1

1,1,,,
β α

βαβα (1.1)

 must be calculated by subroutine BICD3, where m is an
odd integer and denotes the degree of the B-splines
Nα,m+1(x) and Nβ,m+1(y). Here x1≤vx≤xnx, y1≤vy≤yny, m ≥ 3,
nx ≥ m+2, ny ≥ m+2.

P(vx, vy)

x
xnx

………………..x3x2x1

y1

y2

y3

yny

y

Fig. BIFD3-1 Point p in the area R={(x,y) | x1 ≤ x ≤ xnx , y1 ≤ y ≤yny}

Parameters
X Input. Discrete points, xi's in the x-direction.

One-dimensional array of size nx.
NX Output. Number of xi's, nx.
Y Input. Discrete points yj's in the y-direction.

One dimensional array of size ny.
NY Input. Number of yj's, ny.
M Input. The degree of the B-spline, m. See Note.
C Input. Interpolation coefficients cα,β (output

from BICD3).
Two-dimensional array as C(K,NY).

K Input. Adjustable dimension for array C.
XT Input. Knots in the x- and y-direction (output

from BICD3).
One-dimensional array of
size(nx−m+1)+(ny−m+1).

ISWX .. Input. An integer which specifies type of
calculation associated with x-direction.
−1≤ISWX≤m. See parameter F.

VX Input. x-coordinate of the point P(vx,vy).
IX Input. The i which satisfies xi≤vx<xi+1.

If vx=xnx, then IX=nx−1.
Output. The i which satisfies xi≤vx<xi+1.
See Note.

ISWY .. Input. An integer which specifies type of
calcuration associated with y-direction.
−1≤ISWY≤m. See the parameter F.

VY Input. y-coordinate of the point P(vx,vy).
IY Input. The j value which satisfies yj≤vy<yj+1.

If vy=yny then IY=ny−1
Output. The j which satisfies yj≤vy<yj+1.
See Note.

F Output. Interpolated value, partial derivative
or integral value. Setting ISWX=λ and
ISWY=μ, one of the following value is put out
depending on combination of λ and μ:
• When 0 ≤ λ,μ

()yx vvS
yx

F ,μλ

μλ

∂∂
∂ +

=

The interpolated value can be obtained by
setting λ = μ = 0.

• When λ=−1, 0≤μ

∫ ∂
∂

=
xv

x
y dxvxS

y
F

1

),(μ

μ

• When λ ≥ 0, μ = −1

∫ ∂
∂

=
yv

y
x dyyvS

x
F

1

),(λ

λ

• When λ = μ = −1

()∫ ∫=
y xv

y

v

x
dxyxSdyF

1 1

,

VW Work area.

One-dimensional array of size 4(m+1) +
max(nx,ny)

ICON .. Output. Condition code.
See Table BIFD3-1.

• Subprograms used

SSL II ... MGSSL, UCAD1 and UBAS1
FORTRAN basic function ... FLOAT

BIFD3

155

Table BIFD3-1 Condition codes

Code Meaning Processing
0 No error

10000 X(lX)≤VX<X(lX+1) or
Y(lY)≤VY<Y(lY+1) is not
satisfied.

lX or lY shown
on the left is
searched for in
the subroutine
and the
processing is
continued.

30000 Either of the followings
occurred:
1 VX<X(1) or VX>X(NX)
2 VY<Y(1) or VY>Y(NY)
3 ISWX<-1 or ISWX>M
4 ISWY<-1 or ISWY>M

Bypassed

• Notes

The subroutine, based on the B-spline two-dimensional
interpolating function (1.1) given by using subroutine
BICD3, obtains an interpolated value, a partial
derivative or a double integral. Therefore subroutine
BICD3 must be called to obtain the interpolating
function (1.1) before calling this subroutine to obtain
an interpolated value, etc. Also parameters X, NX, Y,
NY, K, M, C and XT must be directly passed from
subroutine BICD3.
 Parameters IX and IY should satisfy the relationships
X(IX)≤VX<X(IX+1) and Y(IY)≤VY<Y(IY+1). If not,
IX and IY that satisfy those relationships are searched
for to continue the processing.

• Example

By inputting points (xi,yj), function values fij, i=1,2,...,nx,
j=1,2,...,ny, and the degree m, interpolated values or
partial derivatives at the point (vir,ujs) ;
vir=xi+(xi+1−xi)(r/4), ujs=yj+(yj+1−yj)(s/4), i=1,2,...,nx−1,
j=1,2,...,ny−1, r=0,1,...,4 and s=0,1,...,4, and/or
integrals over the area[x1 ≤ x ≤ vir, y1 ≤ y ≤ ujs] are
obtained. Here nx≤30, ny≤30 and m≤5.

C **EXAMPLE**
 DIMENSION X(30),Y(30),FXY(30,30),
 *C(30,30),XT(52),VW(182),R(5,5)
 READ(5,500) NX,NY,M
 READ(5,510) (X(I),I=1,NX),
 * (Y(J),J=1,NY)
 READ(5,510) ((FXY(I,J),J=1,NY),I=1,NX)
 WRITE(6,600) M,(I,X(I),I=1,NX)
 WRITE(6,610) (J,Y(J),J=1,NY)
 WRITE(6,620)
 DO 10 I=1,NX
 10 WRITE(6,630) (I,J,FXY(I,J),J=1,NY)
 K=30
 CALL BICD3(X,NX,Y,NY,FXY,K,M,C,
 *XT,VW,ICON)
 IF(ICON.EQ.0) GO TO 20
 WRITE(6,640)
 STOP

 20 NX1=NX-1
 NY1=NY-1
 M2=M+2
 DO 80 LX2=1,M2
 ISWX=LX2-2
 DO 70 LY2=1,M2
 ISWY=LY2-2
 WRITE(6,650) ISWX,ISWY
 DO 60 IX=1,NX1
 HX=(X(IX+1)-X(IX))*0.25
 XI=X(IX)
 DO 50 IY=1,NY1
 HY=(Y(IY+1)-Y(IY))*0.25
 YJ=Y(IY)
 DO 40 I=1,5
 VX=XI+HX*FLOAT(I-1)
 DO 30 J=1,5
 VY=YJ+HY*FLOAT(J-1)
 IXX=IX
 IYY=IY
 CALL BIFD3(X,NX,Y,NY,M,C,K,XT,
 *ISWX,VX,IXX,ISWY,VY,IYY,F,VW,ICON)
 R(I,J)=F
 30 CONTINUE
 40 CONTINUE
 WRITE(6,660)IXX,IYY,((R(I,J),J=1,5),
 *I=1,5)
 50 CONTINUE
 60 CONTINUE
 70 CONTINUE
 80 CONTINUE
 STOP
 500 FORMAT(3I6)
 510 FORMAT(2F12.0)
 600 FORMAT('1'//10X,'INPUT DATA',3X,
 *'M=',I2//20X,'NO.',10X,'X'/
 *(20X,I3,E18.7))
 610 FORMAT(//20X,'NO.',10X,'Y'/
 *(20X,I3,E18.7))
 620 FORMAT(//20X,'FXY'/)
 630 FORMAT(3(10X,'FXY(',I2,',',I2,')=',
 *E15.7))
 640 FORMAT ('0',10X,'ERROR')
 650 FORMAT(//5X,'ISWX=',I2,3X,'ISWY=',
 *I2//)
 660 FORMAT(10X,'IX=',I3,2X,'IY=',I3/
 *(15X,5(5X,E15.7)))
 END

Method
Suppose that the dual m-th degree B-spline two-
dimensional interpolating function.

() () ()∑ ∑
−

+−=

−

+−=
++=

mn

m

mn

m
mm

y x

yNxNcyxS
1 1

1,1,,,
β α

βαβα (4.1)

 is already obtained by subroutine BICD3. Subroutine
BIFD3 calculates interpolated values, partial derivative
and/or an integrals based on the interpolating function
(4.1). The method is described in Section 7.1 "Definition,
representation and calculation method of spline function".

BIF1

156

E11-31-0101 BIF1, DBIF1

B-spline interpolation, differentiation and integration (I)
CALL BIF1(X,N,M,C,ISW,V,I,F,VW,ICON)

Function
Given function values yi=f(xi), i=1,2,...,n at discrete
points x1,x2...,xn(x1<x2<...<xn) and derivatives y1

(l) = f
(l)(x1) and yn

(l) = f (l)(xn), l=1,2,...,(m − 1)/2 at each end
point x1 and xn, then an interpolated value, a derivative at
the point x=v∈[x1, xn], or an integral from x1 to v are
obtained. However, subroutine BIC1 must be called
before using subroutine BIF1 to calculate the
interpolating coefficients cj, j=−m+1, −m+2, ..., n − 1 in
the B-spline interpolating function,

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj xNcxS (1.1)

, where m is an odd integer and is the degree of the B-
spline Nj,m+1(x) and x1≤v≤xn, m ≥ 3 and n ≥ 2.

Parameters
X Input. Discrete points xi.

One-dimensional array of size n.
N Input. Number of the discrete points, n.
M Input. Degree of the B-spline, m.

See Note.
C Input. Interpolating coefficients cj(output from

BIC1) One-dimensional array of size n+m−1.
ISW ... Input. An integer which specifies the type of

calculation.
If ISW=0, interpolated value F=S(v).
If ISW=l (1 ≤ l ≤ m), l-th order derivative
F=S(l)(v).

If ISW=−1, integral ∫=
v

x
dxxSF

1

)(are

calculated, respectively.
V Input. The point v at which the interpolated

value etc. is to be obtained.
I Input. Value of i which satisfies xi≤v<xi+1.

If v=xn the parameter should be given n−1.
Output. Value of i which satisfies xi≤v<xi+1.
See Note.

F Output. Interpolated value, l-th order
derivative or integral. See parameter ISW.

VW Work area. One-dimensional array of size
m+1.

ICON .. Output. Condition code.
See Table BIF1-1.

Table BIF1-1 Condition codes

Code Meaning Processing
0 No error

10000 X(l)≤V<X(I+1) is not
satisfied.

The I given on
the left is
searched for in
the subroutine
and the
processing is
continued.

30000 Either of the followings
occurred:
(a) V<X(1) or V>X(N)
(b) ISW<-1 or ISW>M

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL, UCAR1 and UBAS1
FORTRAN basic function ... FLOAT

• Notes

The subroutine obtains an interpolated value,
derivative or integral based on the B-spline
interpolating function (1.1) which is obtained by using
subroutine BIC1. Therefore, BIC1 must be called
before calling this subroutine. Parameters, X, N, M and
C must be directly passed from BIC1 to subroutine
BIF1.
 Parameter I should satisfy the relationships
X(I)≤V<X(I+1). If not, the value of I which satisfies
the relationship is searched for to continue the
processing.

• Example

By inputting discrete points xi, function values yi,
i=1,2,...; n derivatives y1

(l), l=1,2,...(m − 1)/2, and yn
(l),

l=1,2,...,(m − 1)/2 at each end point, and the degree m,
the following values are obtained; an integral value
from x1 to vij=xi+(xi+1-xi)(j/5), i =1,2,...,n − 1,
j=0,1,...,5, an interpolated value or derivatives of order
one through m. Here n≤101, and m≤5.

C **EXAMPLE**
 DIMENSION X(101),Y(101),C(105),
 *DY(2,2),VW(519),R(6)
 READ(5,500) N,M
 LM1=(M-1)/2
 READ(5,510) (X(I),Y(I),I=1,N)
 *,((DY(I,L),I=1,2),L=1,LM1)
 WRITE(6,600) N,M,(I,X(I),Y(I),I=1,N)
 CALL BIC1(X,Y,DY,N,M,C,VW,ICON)
 IF(ICON.EQ.0) GO TO 10
 WRITE(6,610)
 STOP
 10 N1=N-1
 M2=M+2

BIF1

157

 DO 40 L2=1,M2
 ISW=L2-2
 WRITE(6,620) ISW
 DO 30 I=1,N1
 H=(X(I+1)-X(I))/5.0
 XI=X(I)
 DO 20 J=1,6
 V=XI+H*FLOAT(J-I)
 II=I
 CALL BIF1(X,N,M,C,ISW,V,II,F,VW,ICON)
 R(J)=F
 20 CONTINUE
 WRITE(6,630) II,(R(J),J=1,6)
 30 CONTINUE
 40 CONTINUE
 STOP
 500 FORMAT(2I6)
 510 FORMAT(2F12.0)
 600 FORMAT('1'//10X,'INPUT DATA',3X,
 *'N=',I3,3X,'N=',I2//20X,'NO.',10X,
 *'X',17X,'Y'//(20X,I3,2E18.7))
 610 FORMAT('0',10X,'ERROR')
 620 FORMAT('1'//10X,'L=',I2/)
 630 FORMAT(6X,I3,6E18.7)
 END

Method
Suppose that the m-th degree B-spline interpolating
function is already obtained by the subroutine BIC1 as
follows:

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj xNcxS (4.1)

The subroutine, based on Eq. (4.1), obtains an
interpolated value, l-th order derivative and/or integral
from Eqs. (4.2), (4.3) and (4.4), respectively

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj vNcvS (4.2)

()() () ()vNcvS l
mjj

n

mj

l
1,

1

1
+

−

+−=
∑= (4.3)

()∫=
v

x
dxxSI

1

 (4.4)

 The method of calculating these three values is
explained in section 7.1 "Calculating spline function".
The subroutine described here performs calculation of
Nj,m+1(x) and its derivative and integral by using the
subroutine UBAS1.

BIF2

158

E11-31-0201 BIF2, DBIF2

B-spline interpolation, differentiation and integration (II)
CALL BIF2(X,N,M,C,ISW,V,I,F,VW,ICON)

Function
Given function values yi=f(xi), i=1,2,...,n at discrete
points x1,x2...,xn(x1<x2<...<xn), and derivatives y1

(l)=f (l)(x1)
and yn

(l)=f (l)(xn), l=(m+1)/2,(m+1)/2+1,...,m − 1 at each
end point x1 and xn then an interpolated value, a
derivative at the point x=v∈ [x1, xn], or an integral from x1
to v are obtained. However, subroutine BIC2 should be
called before using subroutine BIF2 to calculate the
interpolating coefficients cj, j=−m+1, −m+2, ..., n − 1 in
the B-spline interpolating function,

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj xNcxS (1.1)

 where m is an odd integer and is the degree of the B-
spline Nj+1(x) and x1≤v≤xn, m≥3 and n≥(m+1)/2.

Parameters
X Input. Discrete points xi.

One-dimensional array of size n.
N Input. Number of the discrete points, n.
M Input. Degree of the B-spline, m.

See Note.
C Input. Interpolating coefficients cj(output from

BIC2)
One-dimensional array of size n+m−1.

ISW ... Input. An integer which specifies the type of
calculation.
If ISW=0, interpolated value F=S(v).
If ISW=l (1 ≤ l ≤ m), l-th order derivative
F=S(l)(v).

If ISW= −1, integral ()∫=
v

x
dxxSF

1
 are

calculated, respectively.
V Input. The point v at which the interpolated

value etc. is to be obtained.
I Input. Value of i which satisfies xi≤v<xi+1.

If v=xn the parameter should be given n−1.
Output. Value of i which satisfies xi≤v<xi+1.
See Note.

F Output. Interpolated value, l-th order
derivative or integral. See parameter ISW.

VW Work area. One-dimensional array of size m+1.
ICON .. Output. Condition code.

See Table BIF2-1.

Table BIF2-1 Condition codes

Code Meaning Processing
0 No error

10000 X(l)≤V<X(I+1) is not
satisfied.

The I given on
the left is
searched for in
the subroutine
and the
processing is
continued.

30000 Either of the followings
occurred:
(a) V<X(1) or V>X(N)
(b) ISW<-1 or ISW>M

Aborted

Comments on use
• Subprograms used

SSL II ... MGSSL, UCAR1 and UBAS1
FORTRAN basic function ... FLOAT

• Notes
The subroutine obtains an interpolated value, derivative
or integral based on the B-spline interpolating function
(1.1) which is obtained by using subroutine BIC2.
Therefore, BIC2 must be called before calling this
subroutine. Parameters, X, N, M and C must be directly
passed from BIC2 to subroutine BIF2.
Parameters I should satisfy the relationships
X(I)≤V<X(I +1). If not, the value I which satisfies the
relationship is searched for to continue the processing.

• Example
By inputting discrete points xi, function values yi,
i=1,2,...,n, derivatives y1

(l) and yn(l), l =
(m+1)/2,(m+1)/2+1,...,m − 1, at each end point, and the
degree m, the following values are obtained; an integral
value from x1 to vij=xi+(xi+1−xi)(j/5), i=1,2,...,n − 1,
j=0,1,...,5, an interpolated value or derivatives of order
one through m. Here n≤101, and m≤5.

C **EXAMPLE**
 DIMENSION X(101),Y(101),C(105),
 *DY(2,2),VW(527),R(6)
 READ(5,500) N,M
 LM1=(M-1)/2
 READ(5,510) (X(I),Y(I),I=1,N)
 * ,((DY(I,L),I=1,2),L=1,LM1)
 WRITE(6,600) N,M,(I,X(I),Y(I),I=1,N)
 CALL BIC2(X,Y,DY,N,M,C,VW,ICON)
 IF(ICON.EQ.0) GO TO 10
 WRITE(6,610)
 STOP
 10 N1=N-1
 M2=M+2
 DO 40 L2=1,M2
 ISW=L2-2
 WRITE(6,620) ISW

BIF2

159

 DO 30 I=1,N1
 H=(X(I+1)-X(I))/5.0
 XI=X(I)
 DO 20 J=1,6
 V=XI+H*FLOAT(J-I)
 II=I
 CALL BIF2(X,N,M,C,ISW,V,II,F,VW,ICON)
 R(J)=F
 20 CONTINUE
 WRITE(6,630) II,(R(J),J=1,6)
 30 CONTINUE
 40 CONTINUE
 STOP
 500 FORMAT(2I6)
 510 FORMAT(2F12.0)
 600 FORMAT('1'//10X,'INPUT DATA',3X,
 *'N=',I3,3X,'N=',I2//20X,'NO.',10X,
 *'X',17X,'Y'//(20X,I3,2E18.7))
 610 FORMAT('0',10X,'ERROR')
 620 FORMAT('1'//10X,'L=',I2/)
 630 FORMAT(6X,I3,6E18.7)
 END

Method
Suppose that the m-th degree B-spline interpolating
function is already obtained by the subroutine BIC2 as
follows:

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj xNcxS (4.1)

 The subroutine, based on Eq. (4.1), obtains an
interpolated value, l-th order derivative and/or integral
from Eqs. (4.2), (4.3) and (4.4), respectively

() ()∑
−

+−=
+=

1

1
1,

n

mj
mjj vNcvS (4.2)

()() () ()vNcvS l
mjj

n

mj

l
1,

1

1
+

−

+−=
∑= (4.3)

()∫=
v

x
dxxSI

1

 (4.4)

 The method of calculating these three values is
explained in section 7.1 "Calculating spline function".
The subroutine described here performs calculation of
Nj,m+1(x) and its derivative and integral by using the
subroutine UBAS1.

BIF3

160

E11-31-0301 BIF3, DBIF3

B-spline interpolation, differentiation and integration (III)
CALL BIF3(X,N,M,C,XT,ISW,V,I,F,VW,ICON)

Function
Given function values yi=f(xi), i=1,2,...,n at discrete
points x1,x2,...,xn(x1<x2<...<xn), this subroutine obtains
interpolated value or derivative at x=v or integral over
the interval [x1, v].
Before using this subroutines, it is necessary a sequence
of knots ξi, i=1,2,...,n−m+1, and interpolating
coefficients cj, j=−m+1,−m+2,...,n − m of the B-spline
interpolation:

() ()xNcxS mjj

mn

mj
1,

1
+

−

+−=
∑=

 have been given by the subroutine BIC3. Where m is
an odd number which denotes the degree of B-spline
Nj,m+1(x).

x1≤v≤xn, m≥3 and n≥m+2

Parameters
X Input. Discrete points xi.

X is a one-dimensional array of size n.
N Input. Number of the discrete points n.
M Input. The degree of the B-spline: m. (See

Note)
C Input. Interpolating coefficients cj (output

from BIC3)
C is a one-dimensional array of size n.

XT Input. The knots ξi, (output from BIC3).
XT is a one-dimensional array of size n−m+1.

ISW ... Input. An integer which specifies the type of
calculation.
When ISW=0, interpolated value F=S(v).
When ISW=l (l=1,2,...,m), the derivative of
order l: F=S(l)(v), and

When ISW=−1, integral ()∫=
v

x
dxxSF

1

 are

calculated, respectively.
V Input. The points v at which the interpolated

value etc. is to be obtained.
I Input. An integer i which satisfies xi≤v<xi+1.

When v=xn the parameter should be given n−1.
Output. An interger i which satisfies xi≤v<xi+1.
(See Note.)

F Output. Interpolated value or derivative of
order l or integral. (See ISW)

VW Work area. VW is a one-dimensional array of
size 2m+2.

ICON .. Output. Condition code. Refer to Table BIF3-1.

Table BIF3-1 Condition codes

Code Meaning Processing
0 No error

10000 X(l)≤V<X(I+1) is not
satisfied.

I is searched
for in the
subroutine and
the processing
is continued.

30000 1 V<X(1) or V>X(N), or
2 ISW<-1 or ISW>M

Aborted

Comments on use
• Subprograms used

SSL II ... MGSSL, UCAR1 and UBAS1
FORTRAN basic function ... FLOAT

• Notes
The subroutine determines interpolated values or
derivative or integral based on the B-spline
interpolating functions determined by the subroutine
BIC3.
Therefore, the subroutine BIC3 must be called to
determine the interpolating function (1.1) before
calling this subroutine to determine interpolated values,
etc. Parameters, X, N, Y, C and XT must be identical
with those of the BIC3.
Parameters I should preferably satisfy X(I)≤V<(I+1).
If the parameter does not satisfy the condition, I that
satisfies X(I)≤V<X(I+1) is searched for to continue
processing.

• Example
Discrete point xi, function value yi, i=1,2,...,n and
degree m are input, and integrals from x1, interpolated
values and differentials of the first through the m-th
degree in vij=xi+(xi+1−xi)×(j/5), i=1,2,...,n − 1,
j=0,1,...,5 are determined. n≤101, n≤5.

C **EXAMPLE**
 DIMENSION X(101),Y(101),C(101),XT(99),
 *VW(507),R(6)
 READ(5,500) N,M
 READ(5,510) (X(I),Y(I),I=1,N)
 WRITE(6,600) N,M,(I,X(I),Y(I),I=1,N)
 CALL BIC3(X,Y,N,M,C,XT,VW,ICON)
 IF(ICON.EQ.0) GO TO 10
 WRITE(6,610)
 STOP
 10 N1=N-1
 M2=M+2
 DO 40 L2=1,M2
 ISW=L2-2
 WRITE(6,620) ISW
 DO 30 I=1,N1
 H=(X(I+1)-X(I))/5.0
 XI=X(I)

BIF3

161

 DO 20 J=1,6
 V=XI+H*FLOAT(J-1)
 II=I
 CALL BIF3(X,N,M,C,XT,ISW,V,II,F,
 * VW,ICON)
 R(J)=F
 20 CONTINUE
 WRITE(6,630) II,(R(J),J=1,6)
 30 CONTINUE
 40 CONTINUE
 STOP
 500 FORMAT(2I6)
 510 FORMAT(2F12.0)
 600 FORMAT('1'//10X,'INPUT DATA',3X,
 *'N=',I3,3X,'N=', I2//20X, 'NO.',10X,
 *'X',17X,'Y'//(20X,I3,2E18.7))
 610 FORMAT('0',10X,'ERROR')
 620 FORMAT('1'//10X,'L=',I2/)
 630 FORMAT(6X,I3,6E18.7)
 END

Method
Suppose that the m-th degree B-spline interpolating
function is already obtained by the subroutine BIC3 as
follows:

() ()xNcxS mj

mn

mj
j 1,

1
+

−

+−=
∑= (4.1)

 The subroutine, based on Eq. (4.1), obtains an
interpolated value, l-th order derivative and/or integral by
Eqs. (4.2), (4.3) and (4.4), respectively.

() ()vNcvS mj

mn

mj
j 1,

1
+

−

+−=
∑= (4.2)

()() () ()vNcvS l
mn

mj
j

l
mj 1,

1
+∑

−

+−=
= (4.3)

()dxxSI
v

x∫=
1

 (4.4)

 The method of calculating these three values is
explained in section 7.1 "Calculating spline function".
 The subroutine described here performs calculation of
Nj,m+1(x) and its derivative and integral by using the
subroutine UBAS1.

BIF4

162

E11-31-0401 BIF4, DBIF4

B-spline interpolation, differentiation and integration (IV)
CALL BIF4(X,N,M,C,ISW,V,I,F,VW,ICON)

Function
Given a periodic function values yi=f(xi), i=1,2,...,n
(where y1=yn), of period (xn−xl) at the discrete points
x1,x2...,xn(x1<x2<...<xn), then an interpolated value, a
derivative or an integral from x1 to v are obtained.
 However, subroutine BIC4 must be called before using
this subroutine BIF4 to calculate the interpolating
coefficients cj, j= −m+1,−m+2,...,n−1 in the B-spline
interpolation function,

() ()xNcxS mj

n

mj
j 1,

1

1
+

−

+−=
∑= (1.1)

 which satisfies the periodic condition, where m is an
odd integer and denotes the degree of the B-spline
Nj,m+1(x). Here x1≤v≤xn, m≥3 and n≥m+2

Parameters
X Input. Discrete points xi.

One-dimensional array of size n.
N Input. Number of the discrete points n.
M Input. Degree of the B-spline, m.

(See Note.)
C Input. Interpolating coefficients cj (output

from BIC4)
One-dimensional array of size n+m-1.

ISW ... Input. An integer which specifies the type of
calculation.
If ISW=0, the interpolated value F=S(v).
If ISW=l (1 ≤ l ≤ m), l-th order derivative
F=S(l)(v).

If ISW=−1, integral () dxxS
v

x∫= 1

F are

calculated, respectively.
V Input. The point v at which the interpolated

value etc. is to be obtained.
I Input. Value of i which satisfies xi≤v<xi+1.

If v=xn the parameter should be given n−1.
Output. Value of i which satisfies xi≤v≤xi+1.
See Note.

F Output. Interpolated value, l-th order
derivative or integral. See parameter ISW.

VW Work area.
One-dimensional array of size m+1.

ICON .. Output. Condition code.
See Table BIF4-1.

Table BIF4-1 Condition codes

Code Meaning Processing
0 No error

10000 X(l)≤V<X(I+1) is not
satisfied.

The l given on
the left is
searched for in
the subroutine
and the
processing is
continued.

30000 Either of the followings
occurred:
(a) V<X(1) or V>X(N)
(b) ISW<-1 or ISW>M

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL, UCAR4, UBAS4 and UPEP4
FORTRAN basic function ... FLOAT

• Notes
The subroutine obtains an interpolated values,
derivatives or integral based on the B-spline
interpolating function (1.1) which is obtained by using
subroutine BIC4. Therefore, BIC4 must be called
before calling this subroutine. Parameters X, N, M and
C must be directly passed from BIC4 to subroutine
BIF4.
Parameters I should satisfy the relationship
X(I)≤V<X(I+1). If not, the value of I which satisfies
the relationship is searched for to continue the
processing.

• Example
By inputting discrete points xi, function values yi,
i=1,2,...,n (with period (xn-xl)), and degree m, the
following values are obtained; integrals form x1 to
vij=xi+(xi+1−xi)･(j/5), i=1,2,...,n -1, and j=0,1,2,...,5
interpolated values, and derivatives of order one
through m.
Here n≤101, and m≤5.

C **EXAMPLE**
 DIMENSION X(101),Y(101),C(105),
 *VW(906),R(6)
 READ(5,500) N,M
 READ(5,510) (X(I),Y(I),I=1,N)
 WRITE(6,600) N,M,(I,X(I),Y(I),I=1,N)
 CALL BIC4(X,Y,N,M,C,VW,ICON)
 IF(ICON.EQ.0) GO TO 10
 WRITE(6,610)
 STOP
 10 N1=N-1
 M2=M+2
 DO 40 L2=1,M2
 ISW=L2-2
 WRITE(6,620) ISW

BIF4

163

 DO 30 I=1,N1
 H=(X(I+1)-X(I))/5.0
 XI=X(I)
 DO 20 J=1,6
 V=XI+H*FLOAT(J-1)
 II=I
 CALL BIF4(X,N,M,C,ISW,V,II,F,
 *VW,ICON)
 R(J)=F
 20 CONTINUE
 WRITE(6,630) II,(R(J),J=1,6)
 30 CONTINUE
 40 CONTINUE
 STOP
 500 FORMAT(2I6)
 510 FORMAT(2F12.0)
 600 FORMAT('1'//10X,'INPUT DATA',3X,
 *'N=',I3,3X,'N=',I2//20X,'NO.',10X,
 *'X',17X,'Y'//(20X,I3,2E18.7))
 610 FORMAT('0',10X,'ERROR')
 620 FORMAT('1'//10X,'L=',I2/)
 630 FORMAT(6X,I3,6E18.7)
 END

Method
Suppose that the m-th degree B-spline interpolating
function has been already obtained by subroutine BIC4 as
follows:

() ()xNcxS mj

n

mj
j 1,

1

1
+

−

+−=
∑= (4.1)

 where the S(x) is a periodic function with period (xn−xl)
which satisfies

()() ()() 1,...,1,0,1 −== mlxSxS n
ll (4.2)

 The subroutine, based on Eq. (4.1), obtaines an
interpolated value, l-th order derivative or integral by
using Eqs. (4.3), (4.4) and (4.5), respectively

() ()vNcvS mj

n

mj
j 1,

1

1
+

−

+−=
∑= (4.3)

()() () ()vNcvS l
n

mj
j

l
mj 1,

1

1
+∑

−

+−=
= (4.4)

()dxxS
v

x∫=
1

I (4.5)

 The method of calculating these three values is
explained in Section 7.1 "Calculating spline function".
Subroutine BIF4 perfoms calculation of Nj,m+1(x) and its
derivatives and integral by using the subroutine UBAS4.

BIN

164

I11-81-1201 BIN, DBIN

Integer order modified Bessel function of the first kind
In(x)
CALL BIN(X,N,BI,ICON)

Function
This subroutine computes integer order modified Bessel
function of the first kind

() ()
()∑

∞

=

+

+
=

0

2

!!
2

k

nk

n knk
xxI

by the Taylor expansion and recurrence formula.

Parameters
X Input. Independent variable x.
N Input. Order n of In(x).
BI Output. Function value In(x).
ICON .. Output. Condition code. See Table BIN−1.
 When N=0 or N=1, ICON is handled the same as in
ICON of BI0 andBI1.

Table BIN-1 Condition codes

Code Meaning Processing
0 No error

20000 One of the following was
true with respect to the
values of X and N:
⋅ |X| > 100
⋅ 1/8 ≤ |X| < 1 and
 |N| ≥ 19 |X|+29
⋅ 1 ≤ |X| < 10 and
 |N| ≥ 4.7 |X| + 43
⋅ 10 ≤ |X| ≤ 100 and
 |X| ≤ 1.83 |X| + 71

BI is set to 0.0.

Comments on use
• Subprograms used

SSL II ... AFMAX, AFMIN, AMACH, BI0, BI1,
MGSSL, ULMAX
FORTRAN basic functions ... ABS, IABS, FLOAT,
EXP, MAX0 and SQRT.

• Notes
The ranges of |X| and |N| are indicated by the null area
in Fig. BIN-1. These limits are provided to avoid
overflow and underflow in the calculations. (See
"Method".)

 When calculating I0(x) and I1(x), subroutines BI0 and
BI1 should be used instead.

| X | 100 10 1 1/8
 20

 31

 48

 90

259

| N |

Fig. BIN-1 Calculation range of the arguments

• Example

The following example generates a table of In(x) for
range of from 0 to 10 with increment 1and for the range
of N from 20 to 30 with increment 1.

C **EXAMPLE**
 WRITE(6,600)
 DO 20 N=20,30
 DO 10 K=1,11
 X=K-1
 CALL BIN(X,N,BI,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,N,BI
 IF(ICON.NE.0) WRITE(6,620) X,N,BI,ICON
 10 CONTINUE
 20 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',5X,'N',8X,
 *'IN(X)'/)
 610 FORMAT(' ',F8.2,I5,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'N=',I5,5X,'BI=',E17.7,5X,
 *'CONDITION=',I10)
 END

Method
With |x|=1/8 as the boundary, the formula used to
calculate Bessel function In(x) changes.
Since I-n(x)=In(x), In(−x)=(−1)nIn(x), n and x will be used
instead of |n| and |x| in the following.

• For 0≤x<1/8

The computation is based on the Taylor expansion:

() ()

()()

⋅⋅⋅+

++
+

+
+=

42224.2

222
1

!2
4

2

nn
x

n
x

n
xxI n

n
n

 (4.1)

BIN

165

 The value of In(x) is computed as a partial sum of the
first N terms with N being taken large enough so that the
last term no longer affects the value of the partial sum
significantly.

• For 1/8 ≤ x ≤ 100

Letting M be a certain integer sufficiently greater than
n and x the recurrence formula:

() () ()xFxF
x
kxF kkk 11

2
+− += (4.2)

is evaluated for k=M, M − 1,...,1 where
FM+1(x) =0, FM(x) =flmin

Then, In(x) is computed as

() () () ()

+= ∑
=

M

i
in

x
n xFxFxFexI

1
0 2/ (4.3)

[Determination of M]

(){ }[]M m n n= + + −2 1 0 20 0max , / (4.4)

 where [] denotes the Gaussian notation, and m0 is taken
as follows:
(a) For 1/8≤x<1

Single precision: m0=4.8x+6.1, n0=3.6x+2.1 (4.5)
Double precision: m0=9.4x+9.5
n0=5.0x+4.5 (4.6)

(b) For 1≤x<10
Single precision: m0=1.4x+9.6, n0=0.9x+5.1 (4.7)
Double precision: m0=2.5x+15.5
n0=1.4x+8.6 (4.8)

(c) For 10 ≤ x ≤ 100
Single precision: m0=0.75x+17.5
n0=0.28x+11.2 (4.9)
Double precision: m0=0.77x+32.3
n0=0.45x+17.5 (4.10)

 For more information, see References [81] and [82].

BIR

166

I11-83-0301 BIR, DBIR

Real order modified Bessel function of the first kind Iv(x)
CALL BIR(X,V,BI,ICON)

Function
This subroutine computes the value of real order
modified Bessel function of the first kind

() ()∑
∞

= ++

=

0

2

1!
4
1

2
1

k

k

v

v kvk

x
xxI

Γ

by using the power series expansion (above expression)
and the recurrence formula.

Parameters
X Input. Independent variable x(x≥0).
V Input. Order v of Iv(x) (v≥0).
BI Output. Value of function Iv(x).
ICON .. Output. Condition code. See Table BIR-1.

Table BIR-1 Condition codes

Code Meaning Processing
0 No error

20000 X>log(flmax) BI is set to 0.0.
30000 X<0 or V<0. BI is set to 0.0.

Comments on use
• Subprograms used

SSL II ... AFMAX, AMACH, AFMIN, MGSSL,
ULMAX
FORTRAN basic function ... FLOAT, ABS, GAMMA,
AMAX1, EXP

• Notes
0 ≤ X ≤ log(flmax) and V ≥0.
When computing I0(x) and I1(x), subroutines BI0 and
BI1 are used instead.
 When a set of function values Iv(x), Iv+1(x), Iv+2(x), ...,
Iv+M(x) is needed at the same time, Iv+M(x) and Iv+M-1(x)
are computed with this subroutine, and next, Iv+M-2(x),
Iv+M-3(x), ..., Iv(x) should be computed in sequence from
high order to low order, by using the recurrence
formula continuously. Conversely, it should be avoided
in computing Iv+2(x) and Iv+3(x), ..., Iv+M(x) by the
recurrence formula, after computing Iv(x) and Iv+1(x)
with this subroutine, in sequence from low order to
high order.

• Example
The following example generates a table of Iv(x) for the
range of x from 0 to 10 with increment 1 and for the
range of v from 0.4 to 0.6 with increment 0.01.

C **EXAMPLE**
 DO 20 K=1,11
 X=K-1
 DO 10 NV=40,60
 V=FLOAT(NV)/100.0
 CALL BIR(X,V,BI,ICON)
 IF(ICON.EQ.0) WRITE(6,600) X,V,BI
 10 CONTINUE
 20 CONTINUE
 STOP
 600 FORMAT(' ',F8.2,F8.3,E17.7)
 END

Method
When it is known that the value of Iv(x) will be the
underflowed value, the following computations are
skipped and the result 0.0 is output.
 The computation of Iv(x) depends on the range of x.

• 0 ≤ x ≤ 1

With the power series expansion

() ()∑
∞

= ++

=

0

2

1!
4
1

2
1

k

k

v

v kvk

x
xxI

Γ
 (4.1)

 , it is computed until the k-th term is less than the unit
round-off in relative to the first term.

• 1<x≤log(flmax)

Recurrence formula is used.
Let's suppose that m is a sufficiently large integer
(determined by x, v, and the desired precision), and that
δ is a sufficiently small constant (positive smallest
number allowed for the computer used) and moreover
that n and α are determined by

v=n+α(n;integer,0 ≤ α < 1)

Initial values

Gα+m+1(x)=0, Gα+m(x)=δ

are set, and recurrence formula

() () () ()xGxG
x

kxG kkk 11
2

+++−+ ++= ααα
α (4.2)

 is repeatedly applied to k=m,m − 1,...,1. Then the value
of function Iv(x) is obtained as

() ()
() ()

() () ()

 ++

+
+

≈

∑
=

+

+

m

k
k

n
x

v

xG
k

kk

xGexxI

0 !
2

1
12

22
1

α

α

α

αΓα

αΓ
αΓ

 (4.3)

 For the method of determining of m and other details,
see Reference [81].

BI0

167

I11-81-0601 BI0,DBI0

Zero order modified Bessel function of the first kind I0(x)
CALL BI0(X,BI,ICON)

Function
This subroutine computes the zero order modified Bessel
function of the first kind I0(x)

() ()
()∑

∞

=
=

0
2

2

0
!
2

k

k

k
xxI

by polynomial approximations and the asymptotic
expansion.

Parameters
X Input. Independent variable x.
BI Output. Function value I0(x).
ICON .. Output. Condition code. See Table BI0-1.

Table BI0-1 Condition codes

Code Meaning Processing
0 No error

20000 |X| > log (flmax) BI is set to
flmax.

Comments on use
• Subprograms used

SSL II ... AFMAX, MGSSL, ULMAX
FORTRAN basic function ... ABS, EXP, and SQRT

• Notes
[The range of argument X]
|X| ≤ log (flmax)
If |X| exceeds the limits, an overflow will occur during
the calculation of ex. This limit is provided for that
reason. (See "Method".)

• Example

The following example generates a table of I0(x) from 0
to 100 with increment 1.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,101
 X=K-1
 CALL BI0(X,BI,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,BI
 IF(ICON.NE.0) WRITE(6,620) X,BI,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',9X,'I0(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'BI=',E17.7,5X,'CONDITION=',
 *I10)
 END

Method
With |X| = 8 as the boundary, the approximation formula
used to calculate modified Bessel function I0(x) changes.
Since I0(−x)=I0(x), x is used instead of |x| in the following.

• For 0≤x<8

The power series expansion of I0(x)

() ()
()∑

∞

=
=

0
2

2

0
!
2

k

k

k
xxI (4.1)

 is calculated using the approximation formulas in (4.2)
and (4.3).
Single precision:

() ∑
=

=
11

0

2
0

k

k
k xaxI (4.2)

Double precision:

() ∑
=

=
16

0

2
0

k

k
k xaxI (4.3)

• For 8 ≤ x ≤ log(flmax)
The asymptotic expansion of I0(x)

()
()

()

⋅⋅⋅+⋅⋅⋅+

⋅⋅++=

3

222

2

22

0

8
1

!3
531

8
1

!2
31

8
11

2

x

xxx
exI

x

π
 (4.4)

 is calculated using the approximation formulas in (4.5)
and (4.6)
Single precision:

() xzza
x

exI
k

k
k

x
/8

,

5

0
0 =

= ∑

=
 (4.5)

Double precision:

()

() xxz

zbza
x

exI
k

k
k

k

k
k

x

/8
,

/
11

0

11

0
0

−=

= ∑∑

== (4.6)

BI1

168

I11-81-0701 BI1,DBI1

First order modified Bessel function of the first kind I1(x)
CALL BI1(X,BI,ICON)

Function
This subroutine computes the first order modified Bessel
function of the first kind

() ()
()()∑

∞

=

+

+
=

0

12

1 !1!
2

k

k

kk
xxI

by polynomial approximations and the asymptotic
expansion.

Parameters
X Input. Independent variable x.
BI Output. Function value I1(x).
ICON .. Output. Condition code. See Table BI1-1.

Table BI1-1 Condition codes

Code Meaning Processing
0 No error

20000 X>log(flmax) or X<-log(flmax) BI is set to flmax
or BI is set to
-flmax.

Comments on use
• Subprograms used

SSL II ... AFMAX, MGSSL, ULMAX
FORTRAN basic function ... ABS, EXP, and SQRT

• Notes

[Range of argument X]
|X| ≤ log(flmax)
If |X| exceeds the above limits, an overflow will occur
in the calculation of x. This limit is provided for that
reason. (See "Method".)

• Example

The following example generates a table of I1(x) from
0 to 100 with increment 1.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,101
 X=K-1
 CALL BI1(X,BI,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,BI
 IF(ICON.NE.0) WRITE(6,620) X,BI,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',9X,'I1(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'BI=',E17.7,5X,'CONDITION=',
 *I10)
 END

Method
With |x| as the boundary, the approximation formula used
to calculate the modified Bessel function I1(x) changes.
Since I1(−x)= −I1(x), x is used instead of |x| in the
following.
• For 0≤x<8

The power series expansion of I1(x)

() ()
()()∑

∞

=

+

+
=

0

12

1 !1!
2

k

k

kk
xxI (4.1)

 is calculated using the approximation formulas in (4.2)
and (4.3).
Single precision:

() ∑
=

+=
10

0

12
1

k

k
k xaxI (4.2)

Double precision:

() ∑
=

+=
16

0

12
1

k

k
k xaxI (4.3)

• For 8 ≤ x ≤ log(flmax)
The asymptotic expansion of I1(x)

() ()
()

() ()
() ⎪⎭

⎪
⎬
⎫
⋅⋅⋅+⋅

−⋅−⋅
−

⎪⎩

⎪
⎨
⎧

⋅
−⋅

+−=

3

21

8
1

!3
2153

8
1

!2
53

8
31

2

x

xxx
exI

x

π
 (4.4)

 is calculated using the approximation formulas in (4.5)
and (4.6)
Single precision:

() xzza
x

exI
k

k
k

x
/8,

5

0
1 =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

 (4.5)

Double precision:

() () xxzzbza
x

exI
k

k
k

k

k
k

x
/8,/

11

0

11

0
1 −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∑

==

 (4.6)

BJN

169

I11-81-1001 BJN, DBJN

Integer order Bessel function of the first kind Jn(x)
CALL BJN(X,N,BJ,ICON)

Function
This subroutine computes integer order Bessel function
of the first kind

() () ()
()()∑

∞

=

+

+
−=

0

2

!!
2/1

k

nkk

n knk
xxJ

by Taylor expansion and the asymptotic expansion.

Parameters
X Input. Independent variable x.
N Input. Order n of Jn(x).
BJ Output. Function value Jn(x).
ICON .. Output. Condition code. See Table BJN-1.

When N=0, or N=1, the same handling as for
the ICON of BJ0 and BJ1 applies.

Table BJN-1 Condition codes

Code Meaning Processing
0 No error

20000 One of the following
conditions was true with
respect to the value of X
and N.
⋅ |X| > 100
⋅ 1/8 ≤ |X| < 1 and
 |N| ≥ 19 |X| + 29
⋅ 1 ≤ |X| < 10 and
 |N| ≥ 4.7 |X| + 43
⋅ 10 ≤ |X| ≤ 100 and
 |N| ≥ 1.83 |X| + 71

BJ is set to
0.0.

Comments on use
• Subprograms used

SSL II ... AFMIN, AMACH, BJ0, BJ1, MGSSL and
UTLIM
FORTRAN basic function ... ABS, IABS, FLOAT,
MAX0, DSIN, DCOS, and DSQRT

• Notes
The range of |X| and |N| are indicated by the null area
in Fig. BJN-1. These limits are provided to avoid
overflow and underflow during calculations (refer to
"Method").

 When calculating J0(x) and J1(x), subroutines BJ0 and
BJ1 should be used instead.

| X | 100 10 1 1/8
 20

 31

 90

 48

 259

| N |

Fig. BJN-1 Calculation range of the arguments

• Example
The following example generates a table of Jn(x) for
the range of x from 0.0 to 10.0 with increment 1.0 and
for the range of N from 20 to 30 with increment 1.

C **EXAMPLE**
 WRITE(6,600)
 DO 20 N=20,30
 DO 10 K=1,11
 X=K-1
 CALL BJN(X,N,BJ,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,N,BJ
 IF(ICON.NE.0) WRITE(6,620) X,N,BJ,ICON
 10 CONTINUE
 20 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',5X,'N',8X,
 *'JN(X)'/)
 610 FORMAT(' ',F8.2,I5,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'N=',I5,5X,'BJ=',E17.7,5X,
 *'CONDITION=',I10)
 END

Method
With |x| = 1/8 as the boundary, the calculation formula of
Bessel function Jn(x) changes.
Since J-n (x)=Jn(−x)=(−1)nJn(x), n and x will be used
instead of |n| and |x| in the following.

• For 0≤x<1/8

The computation is based on the Taylor expansion:

() ()

()()

⋅⋅⋅−

++⋅
+

+
−=

422242

222
1

!2
4

2

nn
x

n
x

n
xxJ n

n

n
 (4.1)

BJN

170

 The value of Jn(x) is computed as a partial sum of the
first N terms with N being taken large enough so that the
last term no longer affects the value of the partial sum
significantly.

• For 1/8 ≤ x ≤ 100

Letting M be a certain integer sufficiently greater than
n and x the recurrence formula:

() () ()xFxF
x
kxF kkk 11

2
+− −= (4.2)

is evaluated for k=M,M − 1,...,1, where FM+1(x)=0,
FM(x)=flmin.
Then, Jn(x) is computed as

() () () ()
[]

+= ∑
=

2

1
20 2/

M

i
inn xFxFxFxJ (4.3)

[Determination of M]

 +

−++= 2/0,
2

max12 0
0

xm
nmM (4.4)

 where [] denotes the Gaussian notation, and m0 is taken
as follows:
(a) For 1/8≤x<1

Single precision: m0=5.5x+5 (4.5)
Double precision: m0=8x+10 (4.6)

(b) For 1≤x<10
Single precision: m0=1.8x+9 (4.7)
Double precision: m0=2x+19 (4.8)

(c) For 10 ≤ x ≤ 100
Single precision: m0=1.25x+18 (4.9)
Double precision: m0=1.3x+34 (4.10)

 For more information, see References [81] and [82].

BJR

171

I11-83-0101 BJR, DBJR

Real order Bessel function of the first kind Jv(x)
CALL BJR(X,V,BJ,ICON)

Function
This subroutine evaluates real order Bessel function of
the first kind

()
()∑

∞

= ++

⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛=

0

2

1!
4
1

2
1

k

k

v

v kvk

x
xxJ

Γ

by using power series expansion (above expression),
recurrence formula, and asymptotic expansion.

Parameters
X Input. Independent variable x (x≥0).
V Input. Order v of Jv(x) (v≥0).
BJ Output. Value of function Jv(x).
ICON .. Output. Condition code. See Table BJR-1.

Table BJR-1 Condition codes

Code Meaning Processing
0 No error

20000 Any of these errors.
⋅ X>100 and V>15
⋅ X≥tmax

BJ is set to 0.0.

30000 X<0 or V<0 BJ is set to 0.0.

Comments on use
• Subprograms used

SSL II ... AMACH, AFMIN, MGSSL, UTLIM
FORTRAN basic function ... FLOAT, ABS, GAMMA,
AMAX1, MOD, SQRT, COS, SIN

• Notes
X≥0, V≥0.
X, V, must be within in the range shown as the white part
in Fig. BJR-1. And, X<tmax are required since values of
sin(X−(1/2⋅V+1/4)π) and cos(X−(1/2⋅V+1/4)π) in the
asymptotic expansion are not computed accurately when
X is great. See Method (4.4) expression.

X
tmax

1000100101
0

15

V

Fig. BJR-1 Argument range

 To evaluate J0(x) or J1(x), it is better to use BJ0 or
BJ1 respectively rather than this subroutine.
 When a set of function values Jv(x), Jv+1(x),
Jv+2(x), ..., Jv+M(x) is needed at the same time, Jv+M(x)
and Jv+M−1(n) are computed with this subroutine first,
and next, Jv+M-2(x), Jv+M-3(x), ..., Jv(x) should be
computed in sequence from high order to low order, by
using the recurrence formula continuously. Conversely,
it should be avoided in computing Jv+2(x), Jv+3(x), ...,
Jv+M(x) by recurrence formula after computing Jv(x)
and Jv+1(x) with this subroutine, in sequence from low
order to high order.

• Example
The following example generates a table of Jv(x) for
the range of x from 0 to 10 with increment 1 and for
the range of v from 0.4 to 0.6 with increment 0.01.

C **EXAMPLE**
 DO 20 K=1,11
 X=K-1
 DO 10 NV=40,60
 V=FLOAT(NV)/100.0
 CALL BJR(X,V,BJ,ICON)
 IF(ICON.EQ.0) WRITE(6,600) X,V,BJ
 10 CONTINUE
 20 CONTINUE
 STOP
 600 FORMAT(' ',F8.2,F8.3,E17.7)
 END

Method
When it is known that the value of Jv(x) will underflow
(has a value less than about 10−75), the following
computations are skipped and the result 0.0 is output.
 Different computations of Jv(x) are used corresponding
to ranges of x and v.

BJR

172

• 0≤x<1
With the power series expansion

() ()∑
∞

= ++

 −

=

0

2

1!
4
1

2
1

k

k

v

v kvk

x
xxJ

Γ
 (4.1)

 , it is computed until the k-th term becomes less than
unit round-off, in relative to the first term.

• Single precision: 1 ≤ x ≤ 16, or 16< x ≤100

and v>0.115x+4
Double precision: 1≤ x <30, or 30 ≤ x ≤ 100
and v>0.115x+4
The recurrence formula is used for the computation.
 Let's suppose that m is a sufficiently large integer
(determined by x, v, and the desired precision), and that
δ is a sufficiently small constant (positive smallest
number allowed for the computer used), and moreover
that n and α are determined by

 v=n+α(n: integer,0 ≤ α <1)

 Initial values

 () () δαα == +++ xFxF mm ,01

 are set, and recurrence formula

() () () ()xFxF
x

kxF kkk 11
2

+++−+ −+= ααα
α (4.2)

 is repeatedly applied to k=m,m − 1,...,1. Then the value
of function Jv(x) is obtained as

() () () ()[]

())

(

2

2/

0 !
2

2

xF

k
kkxFxxJ

k

m

k
nv

+

=
+

×

++

≈ ∑

α

α

α αΓα
 (4.3)

 For the method of determining of m and other details,
see Reference [81].
• Single precision: 100<x<tmax and v≤15, or

16<x≤100 and v≤0.115x+4
Double precision: 100<x<tmax and v≤15, or
30 ≤ x ≤ 100 and v≤0.115x+4
The asymptotic expansion

() ()

()

 +−−

 +−=

π

π
π

4
1

2
1sin,

4
1

2
1cos,2

vxvxQ

vxvxP
x

xJ v

 (4.4)

is used for the computation. Where

() () ()
()∑

∞

=
−=

0
22

2,1,
k

k
k

x
kvvxP (4.5)

() () ()
()∑

∞

=

+−=
0

22
12,1,

k
k

k

x
kvvxQ (4.6)

()

)0(
!

2
12

2
3

2
1

,

2
2

2
2

2
2

≠

 −−⋅⋅⋅⋅⋅⋅

−

−

=

k
k

kvvv

kv

() 10, =v
P(x,v) and Q(x,v) is computed until each k-th term
relative to the first term is less than Single precision: max
(unit round-off, 10-10) Double precision: max (unit round-
off, 10-20)

BJ0

173

I11-81-0201 BJ0,DBJ0

Zero order Bessel function of the first kind J0(x)
CALL BJ0(X,BJ,ICON)

Function
This subroutine computes zero order Bessel function of
the first kind

() () ()
()∑

∞

=

−=
0

2

2

0
!

21

k

kk

k
xxJ

by rational approximations and the asymptotic expansion.

Parameters
X Input. Independent variable x.
BJ Output. Function value J0(x).
ICON .. Output. Condition code. See Table BJ0-1

Table BJ0-1 Condition codes

Code Meaning Processing
0 No error

20000 |X| ≥ tmax BJ is set to
0.0.

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic function ... ABS, DSIN, DCOS, and
DSQRT

• Notes
[Range of argument]
|X| ≤ tmax
The limits are set since sin(x − π / 4) and cos(x − π / 4)
lose accuracy if |X| becomes large.
(See (4.4) in the Method section.)

• Example

The following example generates a table of J0(x) from
0.0 to 100.0 with increment 1.0.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,101
 X=K-1
 CALL BJ0(X,BJ,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,BJ
 IF(ICON.NE.0) WRITE(6,620) X,BJ,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',9X,'J0(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'BJ=',E17.7,5X,'CONDITION=',
 *I10)
 END

Method
With |x|=8 as the boundary, the form of the
approximation formula used for calculating Bessel
function J0(x) changes. Since J0(−x)=J0(x), x is used
instead of |x| in the following.

• For 0 ≤ x ≤ 8

The expansion of J0(x) into power series

() () ()
()∑

∞

=

−=
0

2

2

0
!

21

k

kk

k
xxJ (4.1)

 is calculated using the following rational
approximations.
Single precision:

() ∑∑
==

=
5

0

2
5

0

2
0

k

k
k

k

k
k xbxaxJ (4.2)

 Theoretical precision = 8.54 digits

Double precision:

() ∑∑
==

=
8

0

2
8

0

2
0

k

k
k

k

k
k xbxaxJ (4.3)

 Theoretical precision = 19.22 digits

• For x>8

The asymptotic expansion of J0(x)

() () (){
() ()}

J x
x

P x x

Q x x

0 0

0

2 4

4

= −

− −

π
π

π

cos

sin
 (4.4)

is evaluated through use of the following approximate
expressions of P0(x) and Q0(x):
Single precision:

() ∑∑
==

==
2

0

2
2

0

2
0 8,

k

k
k

k

k
k xzzbzaxP (4.5)

 Theoretical precision = 10.66 digits

() ∑∑
==

+ ==
2

0

2
1

0

12
0 8,

k

k
k

k

k
k xzzdzcxQ (4.6)

Theoretical precision = 9.58 digits

BJ0

174

Double precision:

() ∑∑
==

==
5

0

2
5

0

2
0 8,

k

k
k

k

k
k xzzbzaxP (4.7)

Theoretical precision = 18.16 digits

() ∑∑
==

+ ==
5

0

2
5

0

12
0 8,

k

k
k

k

k
k xzzdzcxQ (4.8)

Theoretical precision = 18.33 digits

 For more information, see Reference [78]pp.141~149.

BJ1

175

I11-81-0301 BJ1, DBJ1

First order Bessel function of the first kind J1(x)
CALL BJ1(X,BJ,ICON)

Function
This subroutine computes first order Bessel function of
the first kind

() () ()
()∑

∞

=

+

+
−=

0

12

1 !1!
21

k

kk

kk
xxJ

by rational approximations and the asymptotic expansion.

Parameters
X Input. Independent variable x.
BJ Output. Function value J1(x).
ICON .. Output. Condition code. See Table BJ1-1

Table BJ1-1 Condition codes

Code Meaning Processing
0 No error

20000 |X| ≥ tmax BJ is set to
0.0.

Comments on use
• Subprograms used

SSL II ... MGSSL, UTLIM
FORTRAN basic function ... ABS, DSIN, DCOS, and
DSQRT

• Notes
[Range of argument]
|X| ≤ tmax
The range limits are set since sin(x−3π/4) and
cos(x−3π/4) lose accuracy if |X| becomes too large.
(See "Method".)

• Example
The following example generates a table of J1(x) from
0.0 to 100.0 with increment 1.0.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,101
 X=K-1
 CALL BJ1(X,BJ,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,BJ
 IF(ICON.NE.0) WRITE(6,620) X,BJ,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',9X,'J1(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'BJ=',E17.7,5X,'CONDITION=',
 *I10)
 END

Method
With |x|=8 as the boundary, the form of the
approximation used to calculate Bessel function J1(x)
changes. Since J1(−x)= −J1(x), x is used instead of |x| in
the following.

• For 0 ≤ x ≤ 8

The expansion of J1(x) into power series

() () ()
()∑

∞

=

+

+
−=

0

12

1 !1!
21

k

kk

kk
xxJ (4.1)

 is calculated using the following rational approx-
imations.
Single precision:

() ∑∑
==

+=
5

0

2
4

0

12
1

k

k
k

k

k
k xbxaxJ (4.2)

 Theoretical precision = 8.19 digits
Double precision:

() ∑∑
==

+=
8

0

2
7

0

12
1

k

k
k

k

k
k xbxaxJ (4.3)

Theoretical precision = 18.68 digits

• For x>8

The asymptotic expansion of J1(x)

() () (){
() ()}

J x
x

P x x

Q x x

1 1

1

2 3 4

3 4

= −

− −

π
π

π

cos

sin

 (4.4)

is evaluated through use of the following approximate
expressions of P0(x) and Q0(x):
Single precision:

() ∑∑
==

==
2

0

2
2

0

2
1 8,

k

k
k

k

k
k xzzbzaxP (4.5)

 Theoretical precision = 10.58 digits

() ∑∑
==

+ ==
2

0

2
1

0

12
1 8,

k

k
k

k

k
k xzzdzcxQ (4.6)

 Theoretical precision = 9.48 digits

BJ1

176

Double precision:

() ∑∑
==

==
5

0

2
5

0

2
1 8,

k

k
k

k

k
k xzzbzaxP (4.7)

 Theoretical precision = 18.11 digits

() ∑∑
==

+ ==
5

0

2
5

0

12
1 8,

k

k
k

k

k
k xzzdzcxQ (4.8)

 Theoretical precision = 18.28 digits
For more information, see Reference [78]pp.141~149.

BKN

177

I11-81-1301 BKN, DBKN

Integer order modified Bessel function of the second kind
Kn(x)
CALL BKN(X,N,BK,ICON)

Function
This subroutine computes integer order modified Bessel
function of the second kind

() () () (){ }
() () ()

() ()
()∑ ∑∑

∑
∞

=

+

==

+

−

=

−

+

+

+
−+

−−−+

+−=

0 11

2

1

0

2

1

11
!!

2
2
1

2
!

!11
2
1

2log1

k

nk

m

k

m

knn

n

k

nk
k

n
n

n

mm
knk

x

x
k

kn

xxIxK γ

for x>0 by the recurrence formula, where, In(x) is integer
order modified Bessel function of the first kind, and γ
denotes the Euler's constant, and also the assumption

01
0

1
=∑

=m
m is made.

Parameters
X Input. Independent variable x.
N Input. Order n of Kn(x).
BK Output. Function value Kn(x).
ICON .. Output. Condition code. See Table BKN-1.

 When N=0 or N=1, ICON is handled the same as the
ICON of BK0 and BK1.

Table BKN-1 Condition codes

Code Meaning Processing
0 No error

20000 N>log(flmax) BK is set to
0.0.

30000 X≤0 BK is set to
0.0.

Comments on use
• Subprograms used

SSL II ... BK0, BK1, MGSSL, and ULMAX
FORTRAN basic function ... IABS, FLOAT, ALOG,
EXP, and SQRT

• Notes
[Range of the argument X]
0<X≤log(flmax)
 If X is outside of the above range, overflow and
underflow will occur in the calculation of e-x. The limit
is provided for that reason. (See (4.4) and (4.5) in the
Method sections of BK0 and BK1.)
When calculating K0(x) and K1(x), BK0 and BK1
should be used.

• Example
The following example generates a table of Kn(x) for
the range of x from 1 to 10 with increment 1 and for the
range of N from 20 to 29 with increment 1.

C **EXAMPLE**
 WRITE(6,600)
 DO 20 N=20,29
 DO 10 K=1,10
 X=K
 CALL BKN(X,N,BK,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,N,BK
 IF(ICON.NE.0) WRITE(6,620) X,N,BK,ICON
 10 CONTINUE
 20 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',5X,'N',8X,
 *'KN(X)'/)
 610 FORMAT(' ',F8.2,I5,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'N=',I5,5X,'BK=',E17.7,5X,
 *'CONDITION=',I10)
 END

Method
Bessel function Kn(x) is calculated using the following
recurrence formula

() () () 1,...,2,1,2
11 −=+= −+ nkxKxK

x
kxK kkk (4.1)

where, both K0(x) and K1(x) are calculated by using BK0
and BK1.

BKR

178

I11-83-0401 BKR, DBKR

Real order modified Bessel function of the second kind
Kv(x)
CALL BKR(X,V,BK,ICON)

Function
This subroutine computes real order modified Bessel
function of the second kind:

() () ()
()π

π
v

xIxI
xK vv

v sin2
−

= −

by the method by Yoshida and Ninomiya.
Iv(x) is modified Bessel function of the first kind.
Where x>0.

Parameters
X Input. Independent variable x.
V Input. Order v of Kv(x).
BK Output. Value of function Kv(x).
ICON .. Output. Condition code.
See Table BKR-1.

Table BKR-1 Condition codes

Code Meaning Processing
0 No error

20000 X=0.0. Or BK was large
enough to overflow.

The maximum
value of the
floating point is
output to BK.

30000 X<0.0 BK=0.0.

Comments on use
• Subprograms used

SSL II ... AMACH, AFMAX, MGSSL, ULMAX
FORTRAN basic functions ... FLOAT, ALOG,
AMAX1, ALGAMA, GAMMA, ABS, SQRT, EXP

• Notes
X>0.0 must be satisfied.
 When computing K0(x) or K1(x), BK0 or BK1 should
be used for efficiency instead of this subroutine.
 When the values of Kv(x), Kv+1(x), Kv+2(x),..., Kv+M(x)
are required at one time, first obtain Kv(x) and Kv+1(x)
by this subroutine and obtain others in sequence from
low order to high order as Kv+2(x), Kv+3(x), ..., Kv+M(x).
 When the subroutine is called repeatedly with a fixed
value of v but with various, large values of x in
magnitude, the subroutine computes Kv(x) efficiently
by bypassing a common part of computation.

• Example

The following example generates a tale of Kv(x) for the
range of x from 1 to 10 with increment 1 and for the
range of v from 0.4 to 0.6 with increment 0.01.

C **EXAMPLE**
 DO 20 NV=40,60
 V=FLOAT(NV)/100.0
 DO 10 K=1,10
 X=FLOAT(K)

 CALL BKR(X,V,BK,ICON)
 WRITE(6,600) V,X,BK,ICON
 10 CONTINUE
 20 CONTINUE
 STOP
 600 FORMAT(' ',F8.3,F8.2,E17.7,I7)
 END

Method
The vth-order modified Bessel function of the second
kind Kv(x) is defined as

() () ()
()π

π
v

xIxI
xK vv

v sin2
−

= − (4.1)

using modified Bessel function of the first kind Iv(x) and
I-v(x). When the order v is an integer n, the function is
defined as the limit as v→n.
Since

K-v(x)=Kv(x) (4.2)

 holds, computation is required only for v≥0.
 This subroutine directly computes the value of Kv(x)
when 0≤µ≤2.5.
When v≥2.5, let µ denote the fractional part of v.
When µ≥0.5, this subroutine directly obtains Kµ+1(x) and
Kµ+2(x) and when µ>0.5, it directly obtains Kµ(x) and
Kµ+1(x). And then it computes the value of Kv(x) by

() () ()xKxK
x
vxK vvv 11

2
−+ += (4.3)

The Yoshida-Ninomiya method for the computation of

Kv(x) when 0≤v≤2.5 is explained below.
 The method for computing Kv(x) depends on x and v. In
Fig. BKR-1, one method is used in the domain A and
another in the domain B.

• Method in the domain A

The method here uses the series expansions of I-v(x)
and Iv(x).

() () () ()

⋅⋅⋅+
−Γ

+
−Γ

+
−Γ

=

−

− v

x

v

x

v
xxI

v

v 3!2
2

2!1
2

1
1

2

42

 (4.4)

 0

A

B

V 0.5 1.0 1.5 2.0 2.5
 0

0.5

1.0

1.5

2.0

X

Fig. BKR-1 Domain A and B

BKR

179

() () () ()

⋅⋅⋅+
+Γ

+
+Γ

+
+Γ

=

v

x

v

x

v
xxI

v

v 3!2
2

2!1
2

1
1

2

42

 (4.5)

φ 1(v,x) and φ 2(v,x) are defined, for later use, as

()

()

−

=

−

=

−

v

x

xv

v

x

xv

v

v

2
1

,

1
2,

2

1

φ

φ
 (4.6)

 The approximation formula depends on whether
0≤v≤0.5, 0.5<v≤1.5 or 1.5<v≤2.5.
 Here, an example with 0≤v≤0.5 is explained.
 From (4.4), (4.5) and (4.6), the following equation can
be obtained:

() () () (){ }∑
∞

=
− +=−

0
,,

k
kkvv xvBxvAvxIxI (4.7)

where,

() () ()

() ()
()

()
()

++Γ

+
−+Γ

=

++Γ

−
−+Γ

=

vk
xv

vk
xv

k
xxvB

vkvkvk
xxvA

k

k

k

k

1
,

1
,

!
1

2
,

1
1

1
1

!
1

2
,

21
2

2

φφ

 (4.8)

 When these values are computed, cancellation of digits
may occur when v ≈ 0 . To avoid this, take the following
procedures.
 First, in the computation of Bk(v,x), since φ 1(v,x) and
φ2(v,x) are of the same sign, no cancellation occurs in the
addition.
 However, φ 1(v,x) and φ 2(v,x) can be computed
according to their definitions only when (x/2)v<1/2 or
when (x/2) v >2.
 When 1/2≤(x/2) v ≤2, that is −log2≤vlog(x/2)≤log 2,
cancellation may occurs (where, in the addition of a+b,
when max (|a|, |b|)/|a+b| ≥ 2, a round-off error occurs.
This is equivalent to having a binary round-off error of
one digit or more).
 To compute φ 1(v,x) and φ 2(v,x) without any
cancellation, it is sufficient to find the best approximation
in relative sense to the function in the range of −log 2 ≤ t
≤ log 2.

() ⋅⋅⋅+++=−=
!3!2!1

11 2tt
t

etf
t

 (4.9)

 By the approximation, we can compute

()

()

φ

φ

1

2

2 2

2 2

v x f v x x

v x f v x x

, log log

, log log

= − −

= −

 (4.10)

 This subroutine uses the following approximation to f(t):

()
∑∑

∑

==

=

−
≈

M

k

k
k

N

k

k
k

M

k

k
k

tpttq

tp
tf

0

2

0

2

0

22
 (4.11)

 (For detailed information on concrete values of M, N, pk
and qk, refer to [88])
 Also, as for Ak(v,x) in (4.8), to avoid cancellations in
computing the value of (1/Γ (k+1−v)−1/Γ (k+1+v))/(k!v), the
best approximation in relative sense should be provided. If
we denote the expression in { } by ()~A vk we can find,

() ()() () ()
~

!
A v

k v k v k k v k vk =
+ − −

+
+

1 1 1 1
Γ Γ

()] ()+ ≥−

~A v kk 1 1 (4.12)

This means that only an approximation to ()~A v0 should
be provided. However, for k=1, (4.12) causes
cancellation. Therefore it can be used for k≥2. As a result,
the best approximation to ()~A v0 and ()~A v1 in the range
of 0 ≤v≤0.5 is required.
 This subroutine uses the best approximation
polynomials of the form

()

()

≈

≈

∑

∑

=

=
N

k

k
k

M

k

k
k

vqvA

vpvA

0

2
1

0

2
0

~

~

 (4.13)

 (For detailed information on M, pk, N, qk, refer to [88].)
 Thus Ak(v,x) and Bk(v,x) can be obtained without
cancellations. If 0≤v≤0.5, then A0(v,x)≤0 and Ak(v,x)≥0
(k=1,2,...) if x≤2, then Bk(v,x)≥0 and if x>2, then
Bk(v,x)<0 (k=0,1,2,...). Therefore, in the addition in (4.7),
cancellations may occur. Testing results imply that no
cancellation occurs in the domain A when 0≤v≤0.5 in
Fig.BKR-1. The items used in the sum in (4.7) becomes
small enough as k becomes large. Therefore, the items
used for convergence to the required accuracy is less.
 Consequently, if we use the best approximation (for
detailed information on M and pk, refer to [88]),

() ()g v
v

v= 2
π

πsin (4.15)

 to

() ∑
=

≈
M

k

k
k vpvg

0

2 (4.14)

BKR

180

the value of Kv(x) can be computed as

()
() ()

()
K x

I x I x

v
v

v v=
−−

2
π πsin

() (){ }

()vg

xvBxvA
k

kk∑
∞

=

+
≈ 0

,,
 (4.16)

 When v=0, K0(x) can be computed more efficiently from
the expression,

()
()∑

∞

=

+

+−

=
0

2

2

0 2
log

!
2

k
k

k

x
k

x

xK Φγ (4.17)

which is the limit of (4.1) as v→0,. instead of using
(4.16). In (4.17), γ denotes the Euler's constant,

()∑
=

≥==
k

m
k k

m0

11,0 ΦΦ0

 If the required relative accuracy is assumed to be ε,
when

v x<1723
1
2. ε (4.18)

Kv(x) and K0(x) are the same in the sense of relative
accuracy. Then Kv(x) is computed by using (4.17).
 For the calculation when 0.5<v≤1.5 and 1.5<v≤2.5, the
methods are almost the same as that above.

• Method in the domain B

The method below is a generalization of the τ-method
for computing Kn(x) of integer order.
 The method is based on the expression for Kv(x) of the
form

()K x
x

e f
xv

x
v=

−π
2

1
 (4.19)

and uses the approximation to fv(1/x). Letting t=1/x, and
fv(x) satisfies

() () () ()t f t t f t v f tv v v
2 22 1 1

4
0′′ + + ′ − −

= (4.20)

 When adding the shifted Ultraspherical polynomial
orthogonal on the interval [0,η] multiplied by τ on the
right of (4.20),

() () () () ()

=

 −−′++′′

η
τ α tCtfvtfttft mvvv

*22

4
112

 (4.21)
 where,

()() ()∑
=

=
m

i

i
mim tCtC

0

** αα (4.22)

is the shifted Ultraspherical polynomial. Equation (4.21)
has the following mth degree polynomial solution.

()
()

()∑
∑

= +

=

+
=

m

k
k

k

k

i

i

i

*

mk

vm ak

taC
tf

0 1

0

1 η
τ

α

 (4.23)

 where,

()() ()()
()

≥

−−⋅⋅⋅−−=

=

1
8!

1243414

1
222222

0

k
k

kvvva

a

kk (4.24)

 Here fvm(t) is considered as the approximation polynomial
to f(t). From the initial condition fvm(0)=1 (as t→0, fv(t)→1) τ
can be determined. Then

()

()

()
()

()∑

∑
∑

= +

= +

=

+

+
= m

k
k

k

mk

m

k
k

k

k

i

i
imk

vm

ak
C

ak

taC

tf

0 1

*
0 1

0

*

1

1

η

η
α

α

 (4.25)

can be obtained. Although (4.25) contains α and η as
unknown, when α=0.5 (()tC m

)*(αααα is a shifted Legendre
polynomial) and η=t, the accuracy reaches the best.
In this case,

() ()

()∑

∑
∑

= +

= +

=

+

+
= m

k
k

k

mk

m

k
k

k

k

i

i
imk

vm

tak
P

tak

taP

tf

0 1

*
0 1

0

*

1

1
 (4.26)

holds. Where, Pmk
* is a coefficient of a shifted Legendre

polynomial,

() ∑
=

=
m

i

i
mim tPtP

0

** (4.27)

By multiplying both the numerator and the denominator
by tm, we obtain

()
()

()∑

∑

=

== m

i

i
i

m

i

i
i

vm

tvmH

tvmG
tf

0

0

,

,
 (4.28)

 where,

() ()G m v
P a

m i k ai
m m i k k

m i k
k

i
, ,

*

=
+ − +

∑ − +

+ − +
= 1 1

0
 (4.29)

() ()H m v
P

m i ai
m m i

m i

, ,
*

=
− +

−

− +1 1

 (4.30)

BKR

181

 Equation (4.29) can be expressed using the power of v2
as follows:

() ()∑
=+

=
i

j

j
ij

m
i vb

a
vmG

0

2

1

1, (4.31)

 where,

()
∑ ∑

∏=

−

−=

=

−−−−

+−−

=
j

l

li

ljk
k

n

ljklkikmmij
ij

nmki

qpP
b

0

0

,,
*

,32

)1(!

2 (4.32)

With initial values

p p p0 0 1,0 1,11 1 1, , ,= = − = (4.33)

()q q m q0 0 1,0

2

1,11 2 1 1, , ,= = − + = (4.34)

 pk,l and qk,l can be computed using the following
recurrence formulas.

()
() ()

=
−≤≤−−=

−−=

−−

−−−

−

1,1,

,1
2

1,1,

0,1
2

0,

1112

12

kkkk

lklklk

kk

pp
klpkpp

pkp

 (4.35)

()
() ()

q m k q

q q m k q l k
q q

k k

k l k l k l

k k k k

,

,

,

0

2

1,0

1, 1

2

1,

1, 1

2 2 3

2 2 3 1 1

= − − +

= − − + ≤ ≤ −
=

−

− − −

− −

 (4.36)

 Equation (4.30) may be expressed as

() ii
m

i c
a

vmH ψ
1

1,
+

= (4.37)

where,

()
() ()

c
m i P
mi

m m i
i=

−
+ −

−!
!

,
*

1 2
 (4.38)

()

≥

−

 +−=

=

∏
−

=

1
2
1

1
1

0

2
2

0

ivlm
i

l
iψ

ψ

 (4.39)

 Using (4.19), (4.28), (4.31) and (4.37), we obtain as
approximation to Kv(x)

()
()

∑

∑ ∑

=

= =−

≈Κ
m

i
ii

i

m

i

ji

j
ij

i

x
v

e
x

vd
x

e
x

x

0

0 0

2

1

1

1

ψ
 (4.40)

 where,

d b b

e c b

ij ij

i i

=

=

1,1

1,1

2
π

 (4.41)

 In (4.40), when m is fixed, the relationship is such that
the larger the x, the higher the accuracy. Also when x is
fixed, the relationship is such that the larger the m, the
higher the accuracy. Equation (4.40) is used for the
domain B in Fig. BKR-1. This subroutine sets m as
follows in consideration of efficiency.

Single precision: when
when
when

x m
x m
x m

< =
≤ < =
≤ =

2 9
2 10 6
10 4

,
,

,
 (4.42)

Double precision: when
when
when

x m
x m

x m

< =
≤ < =
≤ =

2 28
2 10 16
10 11

,
,

,
 (4.43)

 This subroutine contains a table in which constants dij
and ei are stored in the data statement.

BK0

182

I11-81-0801 BK0, DBK0

Zero order modified Bessel function of the second kind
K0(x)
CALL BK0(X,BK,ICON)

Function
This subroutine computes the values of zero order
modified Bessel function of the second kind

() ()
()

() (){ }2log1
!
2

0
1 1

2

2

0 xxIm
k

xxK
k

k

m

k
+−

= ∑ ∑

∞

= =

γ

(where I0(x): zero order modified Bessel function of the
first kind and γ : Euler's constant) by polynomial
approximations and the asymptotic expansion.
Where, x>0.

Parameters
X Input. Independent variable x.
BK Output. Function value K0(x).
ICON .. Output. Condition code. See Table BK0-1.

Table BK0-1 Condition codes

Code Meaning Processing
0 No error

20000 X>log(flmax) BK is set to
0.0.

30000 X≤0 BJ is set to
0.0.

Comments on use
• Subprograms used

SSL II ... MGSSL, ULMAX
FORTRAN basic function ... ALOG, EXP, and SQRT

• Notes
[Range of argument X].
0<X≤log(flmax)
If X exceeds the limits, and underflow will occur
during the calculation of e-x. This limit is provided for
that reason. (See (4.5) and (4.6) in "Method".)

• Example
The following example generates a table of K(x) from 1
to 100 with increment 1.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,100
 X=K
 CALL BK0(X,BK,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,BK
 IF(ICON.NE.0) WRITE(6,620) X,BK,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',9X,'K0(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'BK=',E17.7,5X,'CONDITION=',
 *I10)
 END

Method
With x=2 as the boundary, the approximation formula
used to calculate modified Bessel function K0(x) changes.

• For 0<x<2

The power series expansion of K0(x)

() ()
()

() (){ }2log

1
!
2

0

1 1
2

2

0

xxI

m
k

xxK
k

k

m

k

+−

= ∑ ∑

∞

= =

γ

 (4.1)

 (where I0(x): zero order modified Bessel function of the
first kind, γ: Euler's constant) is calculated using the
approximation formulas (4.2) and (4.3).
Single precision:

() k

k
k

k

k
k xbxaxxK 2

5

0

2
5

0
0 2

log ∑∑
==

+

= (4.2)

Double precision:

() k

k
k

k

k
k xbxaxxK 2

9

0

2
9

0
0 2

log ∑∑
==

+

= (4.3)

• For 2 ≤ x ≤ log(flmax)
The asymptotic expansion of K0(x)

() () ()()

()
()()()

()

⋅⋅⋅+⋅−−−+

 −−+−+= −

32

0

8
1

!3
2591

8
1

!2
91

8
11

2

xx

x
e

x
xK xπ

 (4.4)

 is calculated using the approximation formulas (4.5) and
(4.6)
Single precision:

() xzza
x

exK
k

k
k

x
2

,

8

0
0 =

= ∑

=

−
 (4.5)

Double precision:

()

= ∑∑

==

− 8

0

8

0
0

k

k
k

k

k
k

x
xbxa

x
exK (4.6)

BK1

183

I11-81-0901 BK1, DBK1

First order modified Bessel function of the second kind
K1(x)
CALL BK1(X,BK,ICON)

Function
This subroutine computes first order modified Bessel
function of the second kind K1(x)

() () (){ }

()∑ ∑∑
∞

=

+

==

+

+

+
⋅−

++=

0

1

11

12

11

11
)!1(!

221

12log

k

k

m

k

m

k
mm

kk
x

x
xxIxK γ

(where I1(x): first order modified Bessel function of the
first kind, γ : Euler's constant) by polynomial
approximations and the asymptotic expansion.
Where, x>0.

Parameters
X Input. Independent variable x.
BK Output. Function value K1(x).
ICON .. Output. Condition code. See Table BK1-1.

Table BK1-1 Condition codes

Code Meaning Processing
0 No error

20000 X>log(flmax) BK is set to
0.0.

30000 X≤0 BK is set to
0.0.

Comments on use
• Subprograms used

SSL II ... MGSSL, ULMAX
FORTRAN basic function ... ALOG, EXP, and SQRT

• Notes
[Range of argument X].
0< X≤log(flmax)
If X exceeds the limits, and underflow will occur in the
calculation of e-x. This limit is provided for that reason.
(See (4.5) and (4.6) in "Methods".)

• Example
The following example generates a table of K1(x) from
1 to 100 with increment 1.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,100
 X=K
 CALL BK1(X,BK,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,BK
 IF(ICON.NE.0) WRITE(6,620) X,BK,ICON
 10 CONTINUE
 STOP

 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',9X,'K1(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'BK=',E17.7,5X,'CONDITION=',
 *I10)
 END

Method
With x=2 as the boundary, the approximation formula
used to calculate modified Bessel function K1(x) changes.
• For 0<x<2

() () (){ }
()∑ ∑∑

∞

=

+

==

+

+

+
⋅−

++=

0

1

11

12

11

11
)!1(!

221

12log

k

k

m

k

m

k
mm

kk
x

xxxIxK γ

 (4.1)

 (where I1(x): first order modified Bessel function of the
first kind, γ: Euler's constant) is calculated using the
approximation formulas (4.2) and (4.3).
Single precision:

()
x

xxbxaxxK
k

k
k

k

k
k

1
2

log
5

0

2
5

0

2
1 +

+

= ∑∑

==

 (4.2)

Double precision:

()
x

xxbxaxxK
k

k
k

k

k
k

1
2

log
9

0

2
9

0

2
1 +

+

= ∑∑

==

 (4.3)

• For 2 ≤ x ≤ log(flmax)
The asymptotic expansion of K1(x)

() ()
()

() ()
()

⋅⋅⋅+⋅−⋅−⋅+

⋅−⋅++= −

3

21

8
1

!3
2153

8
1

!2
53

8
31

2

x

xx
e

x
xK xπ

 (4.4)

 is calculated using the approximation formulas (4.5) and
(4.6)
Single precision:

() xzza
x

exK
k

k
k

x
2

,

8

0
1 =

= ∑

=

−
 (4.5)

Double precision:

()

= ∑∑

==

− 8

0

8

0
1

k

k
k

k

k
k

x
xbxa

x
exK (4.6)

BLNC

184

B21-11-0202 BLNC, DBLNC

Balancing of a real matrix
CALL BLNC(A,K,N,DV,ICON)

Function
The diagonal similarity transformation shown in (1.1) is
applied to an n-order matrix A. By this transformation,
sums of the norms of elements in the corresponding i-th
row and i-th column (i=1,...,n) are almost equalized for
the transformed real matrix ~A .

~A D AD= −1 (1.1)

D is a diagonal matrix. n≥1.

Parameters
A Input. Real matrix A.

Output. Balanced real matrix ~A .
A(K,N) is a two-dimensional array.

K Input. Adjustable dimension of array A.
N Input. Order n on A and ~A .
DV Output. Scaling factor (diagonal elements of

D).
DV is a one-dimensional array of size n.

ICON .. Output. Condition code.
See Table BLNC-1.

Table BLNC-1 Condition codes

Code Meaning Processing
0 No error

10000 N=1 Balancing was
not performed.

30000 N<1 or K<N Bypassed

Comments on use
• Subprograms used

SSL II ... IRADIX and MGSSL
FORTRAN basic function ... ABS

• Notes
If there are large differences in magnitude of elements
in a matrix, the precision of the computed eigenvalues
and eigenvectors on that matrix can be adversely
affected. This routine is used to avoid the adverse
effects.
 If each element of a matrix is nearly the same
magnitude, this routine should be omitted.
 If all elements of a row or column (except the
diagonal element) are zero, balancing of the row and
corresponding column is bypassed.
 In order to obtain the eigenvectors x of real matrix A,
the back transformation of (3.1) must be applied to
eigenvectors ~x of matrix ~A which has been balanced
by this routine.

xDx ~= (3.1)

 The back transformation of (3.1) can be performed
using subroutine HBK1. (See the section on HBK1.)

• Example

After balancing an n-order real matrix A, it is reduced
to a real Hessenburge matrix H using subroutine HES1,
then the eigenvalues are determined using subroutine
HSQR. n≤100.

C **EXAMPLE**
 DIMENSION A(100,100),DV(100),PV(100)
 *,ER(100),EI(100)
 10 CONTINUE
 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((A(I,J),I=1,N),J=1,N)
 WRITE(6,600) N
 DO 20 I=1,N
 20 WRITE(6,610) (I,J,A(I,J),J=1,N)
 CALL BLNC(A,100,N,DV,ICON)
 WRITE(6,620) ICON
 IF(ICON.NE.0) GO TO 10
 CALL HES1(A,100,N,PV,ICON)
 CALL HSQR(A,100,N,ER,EI,L,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 WRITE(6,630) (ER(I),EI(I),I=1,L)
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(5E15.7)
 600 FORMAT('1',5X,'ORIGINAL MATRIX',5X,
 *'N=',I3/)
 610 FORMAT(/4(5X,'A(',I3,',',I3,')=',
 *E14.7))
 620 FORMAT('0',20X,'ICON=',I5)
 630 FORMAT('0',5X,'EIGENVALUE'/'0',20X,
 *'REAL',16X,'IMAG'/('0',15X,2(E15.7,
 *5X)))
 END

Method
An n-order real matrix A is balanced through iterations of
the diagonal similarity transformation.

As=Ds
-1As-1Ds s = 1,2,... (4.1)

 Where A0=A, Ds is the diagonal matrix shown in (4.2),
and s is the number of iterations.

()
()

()

⋅
⋅

⋅=

s
n

s

s

s

d

d
d

0

02

1

D
 (4.2)

 In the balancing of (4.1), excluding the diagonal
elements, the sum of the magnitude of elements in the i-th
row of As is made almost equal to that of the magnitude
of elements in the i-th column. Letting As

BLNC

185

=(aij
(s)), balancing is performed such that

() ()∑∑
≠
=

≠
=

≈
n

ik
k

s
ki

n

ik
k

s
ik aa

11

 (4.3)

is saturated. If Dsi is defined as shown in (4.4), Ds of (4.2)
can be expressed as (4.5).

() id

i

s
isi

=

1
0

1

1
0

1

D
 (4.4)

Ds=Ds1Ds2･･･Dsn (4.5)

The equation (4.5) shows that the transformation of (4.1)
can be performed by executing the transformation of
(4.6) for i=1,2,...,n.

siissi si
DADA 1

1
−

−= (4.6)
where andA A A As s s sn0 1= =−

Dsi that is di
(s) is defined such that the transformed i-th

row and corresponding column satisfy the equation (4.3).
If they already satisfy the equation (4.3) at the time of
transformation, di

(s)=1. Iterations of (4.1) continue until
(4.3) is satisfied for all rows and corresponding columns.
A brief description of this procedure follows:
• Excluding the diagonal element, the sums of

magnitudes of elements in i-th row and corresponding
column are computed.

∑
≠
=

=
n

ik
k

kiaC
1

 (4.7)

and

∑
≠
=

=
n

ik
k

ikaR
1

 (4.8)

• di
(s) is defined

di
(s)=ρ k (4.9)

where
2 for binary digits
16 for hexadecimal digits

ρ =

k is defined to satisfy the condition

ρρρ RR k ≥⋅>⋅ 2C (4.10)

From (4.10), when C< R/ρ, k >0, and when C ≥ R/ρ, k≤0.

• Whether or not transformation is necessary is

determined by

() ()C R C Rk⋅ + < +ρ ρ2 0 95. (4.11)

 If (4.11) is satisfied, transformation is performed where
()di
s k= ρ . If (4.11) is not satisfied, transformation is

bypassed.

• Balancing ends when transformation can no longer be

performed on any row or column. Then, the diagonal
elements of D shown in (4.12) are stored as the scaling
factor in the array DV.

D=D1D2･･･Ds (4.12)

 For further information see Reference [13] pp.315-326.

BLUX1

186

A52-11-0302 BLUX1, DBLUX1

A system of linear equations with a real general band
matrix decomposed into the factors L and U
CALL BLUX1(B,FA,N,NH1,NH2,FL,IP,ICON)

Function
This subroutine solves a system of linear equations

LUx=b (1.1)

where L is a unit lower band matrix with band width h1,
U is an upper band matrix with band width
h(=min(h1+h2+1,n) and b is an n-dimensional real
constant vector. Further, the order, the lower and upper
band widths of the original matrix which has been LU-
decomposed are n, h1 and h2 respectively, where n>h1≥0
and n>h2≥0.

Parameters
B Input. Constant vector b.

Output. Solution vector x.
One-dimensional array of size n.

FA Input. Matrix U.
See Figure BLUX1-1.
One-dimensional array of size n⋅h.

N Input. Order n of matrices L and U.
NH1 ... Input. Lower band width h1 of the LU-

decomposed original matrix.
NH2 ... Input. Upper band width h2 of the LU-

decomposed original matrix.
FL Input. Matrix L.

One-dimensional array of size (n − 1)⋅h1.
See Fig. BLUX1-2.

IP Input. Transposition vector which indicates the
history of the row exchange in partial pivoting.
One-dimensional array of size n.

ICON .. Output. Condition code. See Table BLUX1-1.

Table BLUX1-1 Condition codes

Code Meaning Processing
0 No error

20000 The coefficient matrix was
singular.

Discontinued

30000 N≤NH1, N≤NH2, NH1<0,
NH2<0 or there was error in
IP.

Bypassed

 Upper band matrix U Array FA
u11 u h1

u2 2
u h2 1+

un h n h− − un h n−

un n−1un n− −1 1

un n

0

0

u11

u h1

u2 2

u h2 1+

un h n h− −

un h n−

un n−1

un n− −1 1

un n

*
*

*

*

h

h

h

h

h

n h⋅

Note: The elements marked by *⋅⋅⋅* are arbitrary values.

Fig. BLUX1-1 Storage of elements of U in array FA

 Unit lower band matrix L Array FL

m21 0

0

*
*

*

*

()n h− ⋅1 1

h1

h1

h1

h1

1

1

1

1

1

mh1+1 1

mn n-h1
mn n−2 mnn−1

mn n− −1 2

m21

mh1+1 1

mn n-h1

mn n− −1 2

mn n−2

mn n−1

Note: The diagonal elements are not stored.

The elements marked by *⋅⋅⋅* are arbitrary values.

Fig. BLUX1-2 Storage of elements of L in array FL

Comments on use
• Subprograms used

SSL II MGSSL
FORTRAN basic function ... MIN0

• Notes
A system of linear equations can be solved by calling
this subroutine following subroutine BLU1. At this
case, this subroutine requires the output parameters
from subroutine BLU1 as the input parameters (except

BLUX1

187

for the constant vector). However, such equations can
be solved by calling subroutine LBX1 in one step.
 This subroutine, by making use of band matrix
characteristics, saves a data storage area. In some cases,
however, depending on the size of the band width, a
larger data storage area may be required than used by
subroutine LUX provided for real general matrices.
 If that is the case, subroutine LUX may be used to
more save data storage area.
 This subroutine is especially useful for the case where
the upper and lower band widths of the coefficient
matrix of order n are approximately less than n/3,
provided both the band widths are equal.

• Example
This example shows that the subroutine BLU1 is once
called to decompose the n × n matrix with lower band
width h1 and upper band width h2 and then l systems of
linear equations with the decomposed coefficient
matrix are solved. n≤100, h1≤20 and h2≤20.

C **EXAMPLE**
 DIMENSION A(4100),B(100),FL(1980),
 *IP(100),VW(100)
 CHARACTER*4 NT1(6),NT2(6),NT3(6)
 DATA NT1/'CO ','EF ','FI ','CI ',
 *'EN ','T '/,
 *NT2/'CO ','NS ','TA ','NT ',
 2' '/,
 *NT3/'SO ','LU ','TI ','ON ',
 2' '/
 READ(5,500) N,NH1,NH2,L
 NT=N*MIN0(NH1+NH2+1,N)
 READ(5,510) (A(I),I=1,NT)
 M=1
 WRITE(6,600) N,NH1,NH2
 CALL PBM(NT1,6,A,N,NH1,NH2)
 CALL BLU1(A,N,NH1,NH2,1.0E-6,
 *IS,FL,IP,VW,ICON)
 WRITE(6,610) ICON
 IF(ICON.EQ.0) GO TO 10
 WRITE(6,620)
 STOP
 10 READ(5,510) (B(I),I=1,N)
 CALL PGM(NT2,6,B,N,N,1)
 CALL BLUX1(B,A,N,NH1,NH2,
 *FL,IP,ICON)
 CALL PGM(NT3,6,B,N,N,1)
 M=M+1
 IF(L.GT.M) GO TO 10
 WRITE(6,630)
 STOP
 500 FORMAT(4I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1'///5X,
 *'LINEAR EQUATIONS AX=B'
 */5X,'ORDER=',I4
 */5X,'SUB-DIAGONAL LINES=',I4
 */5X,'SUPER-DIAGONAL LINES=',I4)
 610 FORMAT(' ',4X,'ICON=',I5)
 620 FORMAT(' '/5X,'** ABNORMAL END **')
 630 FORMAT(' '/5X,'** NORMAL END **')
 END

 Subroutines PBM and PGM in these example are used
to print out a band matrix and a real matrix, respectively.
Those programs are described in the examples for
subroutines LBX1 and MGSM.

Method
A system of linear equations

LUx=b (4.1)

can be solved by solving two following equations

Ly=b (4.2)
Ux=y (4.3)

 where L is an n × n unit lower band matrix with band
width h1 and U is an n × n upper band matrix with band
width h (=min(h1+h2+1,n)).
 This subroutine assumes that the triangular matrices L
and U have been formed using the Gaussian elimination
method.
 Particularly, L is represented by

L=(Mn-1Pn-1...M1P1)-1 (4.4)

 where Mk is the matrix to eliminate the elements below
the diagonal element in the k-th column at the k-th step of
the Gaussian elimination method, and Pk is the
permutation matrix which performs the row exchanging
required in partial pivoting. (For further details, refer to
method for subroutine BLU1).

• Solving Ly=b (Forward substitution)

The equation (4.5) can be derived from the equation
(4.4) by the equation (4.2).

y=Mn-1Pn-1...M1P1b (4.5)

 The equation (4.5) is successively computed using the
following equations.

()

() ()

() ()

() ()

()n

n
nn

n

by

bPMb

bPMb

bPMb

bb

=

=

=

=

=

−
−−

1
11

2
22

3

1
11

2

1

:

BLUX1

188

 where Mk is the following matrix.

−

−
−

=

+

+

1
0:
10

1

01
1

2

1

nk

kk

kk
k

m

m
m

M

 In this subroutine, b(k+1) (k=0,1,...,n − 1) are successively
obtained by the following sequence:
 Corresponding to the row exchange at the k-th step of
the Gaussian elimination process, the elements of
constant vector b(k) are exchanged such that

() ()~b P bk
k

k=

 Then

() () () ()
() () () ()() ()

()T
21

T
,21

1
1

1

,...,,

,
~

,...,
~

,
~~

,min,...,1,
~~

n

ij
k

n
kkk

k
kik

k
i

k

yyyy

mLbbbb

nhkkibmbb

=

==

++=−=+

• Solving Ux=y (Backward substitution)
Ux=y can be serially solved using equation (4.6).

()
1,...,1,,

,min

1

−=−= ∑
+

+=

nnkxuyx
hkn

ki
ikikk

 By increasing the precision of the inner products in the
equation (4.6), the effects of rounding errors is
minimized.

BLU1

189

A52-11-0202 BLU1, DBLU1

LU-decomposition of a real general band matrix
(Gaussian elimination method)
CALL BLU1(A,N,NH1,NH2,EPSZ,IS,FL,IP,VW,ICON)

Function
An n × n real general band matrix with lower band width
h1 and upper band width h2 is LU decomposed using the
Gaussian elimination method.

A=LU (1.1)

 Where L is an unit lower band matrix and U is an upper
band matrix. n>h1≥0 and n>h2≥0.

Parameters
A Input. Matrix A.

Output. Matrix U.
See Fig. BLU1-1.
Matrix A is stored in a one-dimensional array
of size n･min (h1+h2+1,n) in the compressed
mode for band matrices.

N Input. Order n of matrix A.
NH1 Input. Lower band width h1 of matrix A.
NH2 Input. Upper band width h2 of matrix A.
EPSZ .. Input. Tolerance for relative zero test of pivots

in decomposition process of matrix A (≥0.0).
When EPSZ is 0.0, the standard value is used.
(See Notes.)

IS Output. Information for obtaining the
determinant of matrix A. (See Notes.)

FL Output. The matrix L.
See Fig. BLU1-2.
One-dimensional array of size (n − 1)h1.

IP Output. The transposition vector which
indicates the history of row exchanging that
occurred in partial pivoting.
One dimensional array of size n.
(See Notes.)

VW Work area.
One-dimensional array of size n.

ICON .. Output. Condition code.
See Table BLU1-1.

Table BLU1-1 Condition codes

Code Meaning Processing
0 No error

20000 The relatively zero pivot
occurred. It is highly
probable that the matrix is
singular.

Discontinued

30000 N≤NH1, N≤NH2, NH1<0,
NH2<0 or EPSZ<0.0

Bypassed

 Upper band matrix U Array A

u11 u h1

u2 2
u h2 1+

un h n h− − un h n−

un n−1un n− −1 1

un n

0

0

u11

u h1

u2 2

u h2 1+

un h n h− −

un h n−

un n−1

un n− −1 1

unn

*
*

*

*

h

h

h

h

h

n h⋅

Note: The elements marked by *…* may have invalid data.

h=min(h1+h2+1,n)

Fig. BLU1-1 Storage of the elements of U in array A.

 Unit lower band matrix L Array FL

m21 0

0

*
*

*

*

()n h− ⋅1 1

h1

h1

h1

h1

1

1

1

1

1

m
h1+1 1

mn n-h1
mn n−2 mnn−1

mn n− −1 2

m21

m
h1+1 1

mn n-h1

mn n− −1 2

mn n−2

mn n−1

Note: The diagonal elements are not stored. The elements

marked by *…* may have invalid data.

Fig. BLU1-2 Storage of the elements of L in array FL

Comments on use
• Subprograms used

SSL II AMACH, MGSSL
FORTRAN basic functions ABS, MIN0

• Notes
This subroutine assumes that the relatively zero pivot
occurs when the absolute value of the pivot is smaller
than the largest absolute value of the elements, in the

BLU1

190

coefficient matrix, multiplied by EPSZ in the LU-
decomposition using the Gaussian elimination method.
In such a case, the processing is discontinued with
ICON=20000. The standard value of EPSZ is 16 u, u
being the unit round off. If the processing is to proceed
at a low pivot value, EPSZ will be given the minimum
value, but the result is not always be guaranteed.
 The elements of matrix U are stored in array A as
shown in Fig. BLU1-1. Therefore, the determinant of
matrix A can be obtained by multiplying the product of
the n diagonal elements, i.e., n array elements A(i×h+1),
i=0,1,...,n − 1, by the IS value, where
h=min(h1+h2+1,n).
 In this subroutine, the elements of array A are actually
exchanged in partial pivoting. That is, if the I-th row (I
≥ J) has been selected as the pivotal row in the J-th
stage (J=1,2,...,n − 1) of decomposition, the elements
of the I-th and J-th rows of matrix A are exchanged.
Then, I is stored into IP(J) in order to record the history
of this exchange.
 It is possible to solve a system of linear equations by
calling subroutine BLUX1 following this subroutine.
However, instead of these subroutines, subroutine
LBX1 can be called to solve such an equations in one
step.
 This subroutine, by making use of band matrix
characteristics, saves data storage area. In some cases,
however, depending on the size of the band width, a
larger data storage area may be required (including
work area) than used by subroutine ALU provided for
real general matrices. If that is the case, subroutine
ALU may be used to save more data storage area.
 This subroutine is especially useful for the case where
the upper and lower band widths of the matrix of order
n are approximately less than n/3, provided both the
band widths are equal.

• Example

For an n × n matrix with lower band width h1 and upper
band width h2, the LU-decomposition is computed.
n≤100, h1≤20 and h2≤20.

C **EXAMPLE**
 DIMENSION A(4100),FL(1980),IP(100),
 * VW(100)
 CHARACTER*4 NT1(6),NT2(15),NT3(10)
 DATA NT1/'MA ','TR ','IX ',
 * 3*' '/,
 *NT2/'LU ','-D ','EC ','OM ',
 * 'PO ','SE ','D ','MA ',
 * 'TR ','IX ',5*' '/,
 *NT3/'TR ','AN ','SP ','OS ',
 * 'IT ','IO ','N ','VE ',
 * 'CT ','OR '/
 READ(5,500) N,NH1,NH2
 NT0=MIN0(NH1+NH2+1,N)
 NT=N*NT0
 READ(5,510) (A(I),I=1,NT)
 WRITE(6,600) N,NH1,NH2

 CALL PBM(NT1,6,A,N,NH1,NH2)
 CALL BLU1(A,N,NH1,NH2,1.0E-6,
 * IS,FL,IP,VW,ICON)
 WRITE(6,610) ICON
 IF(ICON.EQ.0) GO TO 10
 WRITE(6,620)
 STOP
 10 CALL PBM(NT2,15,A,N,NH1,NH2)
 CALL PGM(NT3,10,IP,N,N,1)
 DET=IS
 DO 20 I=1,NT,NT0
 DET=DET*A(I)
 20 CONTINUE
 WRITE(6,630) DET
 WRITE(6,640)
 STOP
 500 FORMAT(3I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1'
 *///5X,'DETERMINANT COMPUTATION'
 */5X,'ORDER=',I4
 */5X,'SUB-DIAGONAL LINES=',I4
 */5X,'SUPER-DIAGONAL LINES=',I4)
 610 FORMAT(' ',4X,'ICON=',I5)
 620 FORMAT(' '/5X,'** ABNORMAL END **')
 630 FORMAT(' ',4X,'DET=',E16.8)
 640 FORMAT(' '/5X,'** NORMAL END **')
 END

 Subroutines PBM and PGM are used to print out a
general band matrix and a real general matrix,
respectively. Those programs are described in the
examples for subroutines LBX1 and MGSM, respectively.

Method
• Gaussian elimination method

Generally, n × n non-singular matrix A can be
decomposed, with partial pivoting, into a unit lower
triangular matrix L and an upper triangular matrix U as
equation (4.1).

A=LU (4.1)

 Now, let A(k) represent the matrix at the k-th step of
Gaussian elimination method, where A(1)=A.
 The first step of the elimination is to obtain A(2) by
eliminating the elements below the diagonal element in
the first column. This process can be described as the
form (4.2) in a matrix expression,

A(2)=M1P1A(1) (4.2)

 where P1 is a permutation matrix which performs the
row exchanging required for partial pivoting and M1 is a
matrix to eliminate the elements below the diagonal
element in the first column of the permuted matrix.
Similarly, the k-th step of the elimination process can be
described as the form (4.3).

A(k+1)=MkPkA(k) (4.3)

BLU1

191

where

−

−
−

=

+

+

10
:

0
1

1

01
1

2

1

nk

kk

kk
k

m

m
m

M (4.4)

() () () ()()mik ik
k

kk
k k

ij
ka a , a= =A

 At the final n-th step, it can be described as follows:

A(n)=Mn-1Pn-1A(n - 1)
 =Mn-1Pn-1...M1P1A(1) (4.5)

 and then matrix A (=A(1)) has been transformed into the
upper triangular matrix A(n).
 Let matrices U and L represent the forms (4.6) and (4.7).

U=A(n) (4.6)
L=(Mn−1Pn−1...M1P1)−1 (4.7)

 Then, the equation (4.5) can be represented by the
equation (4.8).

A=LU (4.8)

Since

=

+

+

−

1
0:

0
1

1

01
1

2

1

1

nk

kk

kk
k

m

m
m

M (4.9)

 matrix L shown in the equation (4.7) is a lower
triangular matrix.
Thus matrix A is decomposed into unit lower triangular
matrix L and upper triangular matrix U.

• Procedure performed in the subroutine
In the k-th step (k=1,...,n − 1) of the elimination
process, this subroutine obtains each element of the k-
th column of matrix L and the k-th row of matrix U
using equations (4.10) and (4.11).

()

() ,..,2,1, ++== kki
a
a

m k
kk

k
ik

ik

 ()n,hk 1min + (4.10)

() ,..,1,, +== kkiau k
kjkj

 ()n,hhk 21min ++ (4.11)

 The principal minor A(k+1) which is eliminated in the
(k+1)-th step is obtained using equation (4.12),

() ()a a m ukl
k

kl
k

kj jl
+ = −1

 ()nhjjjk ,min,...,2,1 1+++=
 ()nhhjjjl ,min,...,2,1 21 ++++= (4.12)

 where A(k)=(aij
(k)), L=(mij), U=(uij)

Prior to each step of the elimination process, the pivotal
element akk

(k) in equation (4.10) is selected to minimize
the effect of rounding errors as follows:
 That is, the first step is to select the largest value in the
equation (4.13),

() ()nhkkklaV k
lkl ,min,...,1,, 1++= (4.13)

 and the next step is to regard the element alk
(k) as the

pivotal element, when Vl is the inverse of the largest
absolute element in the l-th row of the matrix A, and then
the elements of the l-th and k-th rows are exchanged. If
the selected pivotal element akk

(k) satisfies

()a a ukk
k

ij≤ ⋅max 16

 where A=(aij) and u is a unit round off, matrix A(1) is
regarded as numerically singular and the processing is
discontinued with ICON=20000. For more information,
see References [1], [3], [4] and [8].

BMDMX

192

A52-21-0302 BMDMX, DBMDMX

A system of linear equations with a real indefinite symmetric
band matrix decomposed into factors M, D, and MT.
CALL BMDMX(B,FA,N,NH,MH,IP,IVW,ICON)

Function
This subroutine solves a system of linear equations with a
MDMT-decomposed real symmetric band matrix.

P-1MDMTP-Tx=b (1.1)

where M is an n × n, unit lower band matrix having band
width ~h , D is a symmetric block diagonal matrix
comprising symmetric blocks each at most of order 2, P
is a permutation matrix to be used to interchange rows in
the pivoting procedure when the coefficient matrix is
MDMT-decomposed, b is an n-dimensional real constant
vector, and x is an n-dimensional solution vector. Further,
mk+1,k=0 if dk+1,k≠0, where M=(mij) and D=(dij) for
n> ~h ≥0.

Parameters
B Input. Constant Vector b.

Output. Solution vector x.
One-dimensional array of size n.

FA Input. Matrices M and D given in the
compressed mode for symmetric band matrix
assuming M to have band width hm. (See
Figure BMDMX-1)
One-dimensional array of size
n(hm+1)−hm(hm+1)/2.

N Input. Order n of the matrices M and D,
constant vector b, and solution vector x.

NH Input. Band width ~h of matrix M. (See
"Comments on Use".)

MH Input. Maximum tolerable band width hm
(N>MH≥NH) of matrix M. (See "Comments
on Use".)

IP Input. Transposition vector indicating the
history of row interchange in the pivoting
procedure.
One dimensional array of size n. (See
"Comments on Use".)

IVW ... Work area. One-dimensional array of size n.
ICON .. Output. Condition code. (See Table BMDMX-

1.)

d d11 21
0 Excluding

the upper
triangular
portion

Block diagonal matrix D Array FA

0

d d21 2 2

d33
d

4 4

0

0
m32

1

1

1

1

0

0

m4 3

The diagonal
portion and
the band por-
tion corre-
sponding to
the maximum
tolerable band
width

Only the
lower traian-
gular portion

0

0
m d32 33

d11

d d21 22

m d43 4 4

d11

d21

d2 2

0

m32

d33

0

m4 3

d4 4

Note: In this example, orders of blocks in D are 2, 1, and 1;

band width of M is 1, and the maximum tolerable band
width is 2.

Fig. BMDMX-1 Storing method of matrices M and D

Table BMDMX-1 Condition codes

Code Meaning Processing
0 No error

20000 The coefficient matrix is
singular.

Bypassed.

30000 NH<0, NH>MH, N≥MH, or
IP error.

Bypassed.

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic function ... MIN0

• Notes
Simultaneous linear equations can be solved by calling
this subroutine after decomposing the coefficient
matrix into factors M, D, and MT using subroutine
SBMDM; however, the solution is obtained by calling
subroutine LSBIX in an ordinary case.
 Input parameters FA, NH, IP, and MH of this
subroutine are the same as output parameters A, NH, IP,
and input parameter MH of subroutine SBMDM.

BMDMX

193

• Example
Simultaneous linear equations are solved after
decomposing an n × n real symmetric band matrix
having band width h with subroutine SBMDM. Where
n≥100 and ~h ≤hm≤50.

C **EXAMPLE**
 DIMENSION A(3825),B(100),IP(100),
 * IVW(100)
 READ(5,500) N,NH,MH
 WRITE(6,600) N,NH,MH
 NT=(N+N-MH)*(MH+1)/2
 READ(5,510) (A(J),J=1,NT)
 EPSZ=0.0
 CALL SBMDM(A,N,NH,MH,EPSZ,IP,IVW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 READ(5,510) (B(I),I=1,N)
 CALL BMDMX(B,A,N,NH,MH,IP,IVW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,630) (B(I),I=1,N)
 STOP
 500 FORMAT(3I4)
 510 FORMAT(4E15.7)
 600 FORMAT('1'/10X,'N=',I3,5X,'NH=',I3,5X,
 *'MH=',I3)
 610 FORMAT(' ',5X,'ICON OF SBMDM=',I6)
 620 FORMAT(' ',5X,'ICON OF BMDMX=',I6)
 630 FORMAT(11X,'SOLUTION VECTOR'
 */(15X,5E15.6))
 END

Method
To solve simultaneous linear equations

P-1MDMT(PT)-1x=b (4.1)

having coefficient expressed in MDMT-decomposed real
symmetric band matrix is reduced to solve

Mx(1)=Pb (4.2)
Dx(2)=x(1) (4.3)
MTx(3)=x(2) (4.4)
(PT)-1x=x(3) (4.5)

where M is an n × n unit lower band matrix, D is a
symmetric block diagonal matrix comprising symmetric
blocks each at most of order 2, b is a constant vector, and
x is a solution vector. In this subroutine, it is assumed
that M and D are matrices decomposed by the block
diagonal pivoting method, where P is a permutation
matrix. (See "Method" for subroutine SBMDM.)

 Solving Mx(1)=Pb by backward substitution.
For the 1 × 1 pivot (the order of blocks in matrix D is
1), the solution is obtained serially from (4.6).

() ()1
1

1

1
k

i

k
ikii xmbx ∑

−

=

−′= ni ,...,1, = (4.6)

 If 2 × 2 pivot (the order of blocks in matrix D is 2) is
used in iteration i, ()xi+1

1 is obtained after ()xi
1 from (4.7),

then iteration i+2 is processed.

() ()1
1

1
1

1
1 k

i

k
ikii xmbx ∑

−

=
++ −′=

 () () () ()(),,...,, 11
1

1 T

nij xxxmM == (4.7)

 (Pb)T=(b1',...,bn')

 Solving Dx(2)=x(1)
For 1 × 1 pivot, the solution is obtained serially from

() () nidxx iiii ,...,1,12 == (4.8)

 If 2 × 2 pivot is used in itenation i, ()xi+1
2 is obtained after

()xi
2 from (4.9), then iteration i+2 is processed.

() () ()() dxddxx iiiiiii
1

1,11,1
12

++++ −⋅=
() () ()() dxddxx iiiiiii

1
,1

1
1

2
1 −⋅= +++ (4.9)

() iiiiiiii ddddd ,1,11,1 ++++ −⋅=

where () ())2()2(
1

)2(...,,,
T

nijd xxxD ==

 Solving MTx(3)=x(2) by forward substitution
For 1 × 1 pivot, the solution is obtained serially from

() () ()3

1

23
k

n

ik
kiii xmxx ∑

+=

−= , 1,...,ni = (4.10)

 If 2 × 2 pivot is used in iteration i, ()xi−1
3 is obtained after

()xi
3 from (4.11), then iteration i+2 is processed.

() () ()3

1
1,

2
1

3
1 k

n

ik
ikii xmxx ∑

+=
−−− −= (4.11)

where. ())3()3(
1

)3(...,, nxxx
T

=
 Solving (PT)-1x=x(3)
Elements xi of solution vector x are obtained by
multiplying the permutation matrix by vector x(3).
Actually, however, these elements are obtained by
exchanging elements of vector x(3) using values in
transposition vector IP. The band structure of the
coefficient matrix has been ignored for simplifying
explanations above, however, the band structure is
effectively used to efficiently process calculations in the
actual program.

BSCD2

194

E32-32-0202 BSCD2, DBSCD2

B-spline two-dimensional smoothing coefficient calcula-
tion (variable knots)
CALL BSCD2(X,NX,Y,NY,FXY,KF,SX,SY,M,XT,
 NXT,YT,NYT,NXL,NYL,RNOT, C,
 KC,RNOR,VW, IVW,ICON)

Function
Given observed value fij=f(xi,yj), observation error
σi,j=σxi⋅σyj, at lattice points (xi,yj); i=1,2,...,nx, j=1,2,...,ny,
a tolerance for the square sum of residuals δt

2 and initial
sequence of knots ξ1,ξ2,...,ξns; η1,η2,...,ηls in the x- and y-
directions, this subroutine obtains a bivariate B-spline
smoothing function of degree m to the data in the sense of
least squares in which the square sum of residuals is
within the tolerance, by adding knots appropriately on the
x- and y-axis.
 Namely, letting the numbers of knots in the x- and y-
directions be nt and lt, the subroutine obtains the
coefficients Cα, β in the B-spline smoothing function (1.2),
subject to (1.1).

() (){ } 2

1 1

2

2

2 1
t

n

j

n

i
jij,i

ji
ln

y x

tt
y,xSf

yx
δ

σσ
δ ∑∑

= =
+ ≤−

⋅
= (1.1)

() () ()S x y C N x N ym m
m

nt

m

lt
, , , ,= ∑∑ + +

=− +

−

=− +

−

α β α β
αβ

1 1
1

1

1

1
 (1.2)

 This subroutine outputs knots ξ1,ξ2,...,ξnt, in the x-
direction, η1,η2,...,ηlt, in the y-direction, square sum of
residuals (1.3) at each step of adding knots and statistics
(1.4) and (1.5), along with coefficient Cα,β.

() (){ }δ
σ σ

nr lr

i j

i j i j
i

nx

j

ny

x y
f S x y+

==
=

⋅
−∑∑2

2

2

11

1
, , (1.3)

(where, ()S x y, denotes m-th degree B-spline smoothing
function with knots ξ1,ξ2,...,ξnr and η1,η2,...,ηlr)

()(){ },1122 −+−+−⋅= ++ mlmnnn rryxlnln rrrr
δσ (1.4)

()(),112log 2 −+−++⋅= + mlmnnnAIC rrlnyxr rr
δ (1.5)

Here, σxi>0, σyj>0, m≥1, ns≥2, ls≥2 and the initial knots ξi,
i=1,2,...,ns; ηj, j=1,2,...,ls should be satisfied.

Parameters
X Input. Discrete points xi in the x-direction.

One-dimensional array of size nx.
NX Input. Number of xi, namely nx.

Y Input. Discrete points yj in the y-direction.
NY Input. Number of yj, namely ny.
FXY ... Input. Observed values fij.

Two-dimensional array of FXY(KF,NY).
KF Input. Adjustable dimension (≥NX) of array

FXY.
SX Input. Observation errors σxi in the x-direction.

One-dimensional array of size nx.
SY Input. Observation errors σyj in y-direction.

One-dimensional array of size ny.
M Input. Degree m of B-spline (See Notes).
XT Input. Initial knots ξi, i=1,2,...,ns in the x-

direction (See Notes).
Output. Final knots ξi, i=1,2,...,nt in the x-
direction. The results are output in the order
ξ1<ξ2<...<ξnt.
One dimensional array of size NXL.

NXT ... Input. The number of initial knots ns in the x-
direction.
Output. The number of knots nt finally used in
the x-direction.

YT Input. Initial knots ηj, j=1,2,...,ls in the y-
direction (See Notes).
Output. ηj, j=1,2,...,lt in the y-direction.
The results are output in the order
η1<η2<...<ηlt.
One-dimensional array of size NYL.

NYT ... Input. The number of initial knots ls in the y-
direction.
Output. The number of knots lt finally used in
the y-direction.

NXL ... Input. Upper limit (≥ns) on the number of
knots in the x-direction (See Notes).

NYL ... Input. Upper limit (≥ls) on the number of knots
in the y-direction (See Notes).

RNOT .. Input. The tolerance δt
2 for square sum of

residuals. A proper value is δt
2=nx⋅ny.

C Output. Smoothing coefficients Cα, β,
α=−m+1,−m+2,...,lt−1; β=−m+1,−m+2,...,nt−1.
These are stored in C(α+m, β+m).
Two-dimensional array of C(KC,NYL+M−1).

KC Input. Ajustable dimension (≥ NXL+M-1) of
Array C.

RNOR .. Output. Values of (1.3), (1.4) and (1.5) at each
step of adding knots.
Two-dimensional array of RNOR(3,KR),
where KR=(NXL−ns)+(NYL−nl)+1
Letting nr+lr=ns+ls, ns+ls+1, ... nt+lt, δ2

nr+lr is
stored in RNOR (1,Pr), σ nr lr+

2 is stored in
RNOR (2,Pr), and AICr is stored in RNOR
(3,Pr), where Pr=(nr−ns)+(lr−ls)+1. (See Notes).

VW Work area.
One-dimensional array of size max (s1, s2),

BSCD2

195

where
()()s n n m mx y1 2 1= + + +

 (){+ + +max max , ,n m n mx y

 ()()}2 1+ + + +min ,n m n m mx y

(){ } ()s n n m n nx y x y2 3 1= + + + +min ,

 + + +NXL NYL 2
IVW ... Work area.

One-dimensional array of size
nx+ny+max(NXL,NYL)⋅m

ICON .. Output. Condition code.
See table BSCD2-1.

Table BSCD2-1 Condition code

Code Meaning Processing
0 No error

10000 Although the number of
knots in the x-direction
reached the upper limit, the
convergence criterion (1.1)
was not satisfied.

Outputs the
most recently
obtained
smoothing
function.

11000 Although the number of
knots in the y-direction
reached the upper limit, the
convergence criterion (1.1)
was not satisfied.

30000 One of the following
occurred:
1 σxi≤0
2 σyj≤0
3 M<1
4 XT(I)=XT(K), where I≠K

or YT(I)=YT(K), where
I≠K

5 ns<2 or ls<2
6 NXL<ns or NYL<ls
7 () ()i

i
i

i
xminmin >ξ or

() ()i
i

i
i

xmaxmax <ξ

8 () ()j
j

j
j

yminmin >η or

() ()j
j

j
j

ymaxmax <η

Bypassed

Comments on use
• Subprogram used

SSL II ... MGSSL, UPOB2, UPCA2, UREO1, UBAS0,
UCDB2
FORTRAN basic function ... FLOAT, IFIX, ALOG,
ABS

• Notes
By calling BSFD1 after the subroutine BSCD2,
smoothed values, partial derivatives and double
integrals can be obtained based on the B-spline
smoothing function (1.2).
 At that time, the parameter values of M, XT, NT and
C must be the input into BSFD1.

 An appropriate value for degree m (either even or
odd) is 3, but the value should not exceed 5. This is
because the normal equation with respect to Cα, β
becomes ill-conditioned as degree m is increased.
 Initial knots ξi, ηj, (i=1,2,...,ns; j=1,2,...,ls) can be
typically given by

n ls s= = 2

()ξ 1= min ,
i ix ()ξ ns i ix= max

()η 1= min ,
j jy ()η ls j jy= max ,

 The upper limit NXL and NYL on the number of
knots in the x- and y-directions should preferably be
given by nx/2 and ny/2 respectively. (If the number of
knots increases, the normal equation becomes ill-
conditioned.) This subroutine terminates when the
number of knots reaches the upper limit regardless of
satisfying equation (1.1), setting ICON=10000 (for the
x-direction) or ICON=11000 (for the y-direction).
 The information output to RNOR is the history of
various criteria in the process of adding knots at each
step. The history can be used for checking the obtained
smoothing function. These criteria generally decrease
according to the addition of knots, the change
becoming slow as step goes. Particularly when σ2

nr+lr
and AICr are virtually unvarying the smoothing
function exhibits good one. The user can check the
obtained smoothing functions by printing out the
contents of RNOR.

• Example
The bivariate third degree B-spline smoothing function
is obtained by inputting lattice points (xi,yj): i=1,2,...,80,
j=1,2,...,60, observed values fij, and observation errors
σxi and σyj in x- and y-directions. Initial knots are given
as (3.1) and (3.2) in x- and y-directions respectively.
The upper limit on the number of knots are 20 for the
x-direction and 15 for the y-direction.

() ()i
i

maxiimin xxxx max,min 21 ==== ξξ (3.1)

() ()j
j

maxjjmin yyyy max,min 21 ==== ηη (3.2)

Then, letting VXr and VYs denote (3.3) and (3.4),
subroutine BSFD1 computes the smoothing value at each
point and the first-order partial derivatives in the x- and
y-directions.

()
10...,,1,0

10
=

−+=
r

rxxxVXr minmaxmin (3.3)

()
10...,,1,0

10
=

−+=
s

syyyVYs minmaxmin (3.4)

BSCD2

196

C **EXAMPLE**
 DIMENSION X(80),Y(60),FXY(80,60),
 * SX(80),SY(60),XT(20),YT(15),
 * C(22,17),RNOR(3,32),
 * VW(670),IVW(200),RR(3)
 NX=80
 NY=60
 READ(5,500) (X(I),SX(I),I=1,NX),
 *(Y(J),SY(J),J=1,NY)
 DO 10 I=1,NX
 DO 10 J=1,NY
 READ(5,510) FXY(I,J)
 10 CONTINUE
 M=3
 NXT=2
 NYT=2
 XMAX=X(1)
 XMIN=X(1)
 YMAX=Y(1)
 YMIN=Y(1)
 DO 20 I=2,NX
 IF(X(I).GT.XMAX) XMAX=X(I)
 IF(X(I).LT.XMIN) XMIN=X(I)
 20 CONTINUE
 DO 30 J=2,NY
 IF(Y(J).GT.YMAX) YMAX=Y(J)
 IF(Y(J).LT.YMIN) YMIN=Y(J)
 30 CONTINUE
 XT(1)=XMIN
 XT(2)=XMAX
 YT(1)=YMIN
 YT(2)=YMAX
 NXL=20
 NYL=15
 RNOT=FLOAT(NX*NY)
C
 CALL BSCD2(X,NX,Y,NY,FXY,80,SX,SY,
 *M,XT,NXT,YT,NYT,NXL,NYL,RNOT,C,22,
 *RNOR,VW,IVW,ICON)
 WRITE(6,600) ICON
 IF(ICON.EQ.30000) STOP
 WRITE(6,610)
 NT=NXT+NYT
 DO 40 I=4,NT
 IADD=I-3
 WRITE(6,620) I,(RNOR(J,IADD),J=1,3)
 40 CONTINUE
C
 HX=(XMAX-XMIN)/10.0
 HY=(YMAX-YMIN)/10.0
 DO 70 I=1,11
 VX=XMIN+HX*FLOAT(I-1)
 WRITE(6,630) VX
 WRITE(6,640)
 DO 60 J=1,11
 VY=YMIN+HY*FLOAT(J-1)
 DO 50 K=1,3
 KM1=K-1
 ISWX=MOD(KM1,2)
 ISWY=KM1/2
 CALL BSFD1(M,XT,NXT,YT,NYT,C,22,
 *ISWX,VX,IX,ISWY,VY,IY,RR(K),VW,ICON)
 50 CONTINUE
 WRITE(6,650) VY,(RR(K),K=1,3)
 60 CONTINUE
 70 CONTINUE
 STOP
 500 FORMAT(2F10.0)
 510 FORMAT(F10.0)
 600 FORMAT(10X,'ICON=',I5//)
 610 FORMAT(8X,'NO. OF KNOTS',9X,
 'RNOR(1,)',11X,'RNOR(2,*)',11X,
 'RNOR(3,)'/)

 620 FORMAT(10X,I2,8X,3(5X,E15.8))
 630 FORMAT(//5X,'VX=',E15.8)
 640 FORMAT(16X,'VY',13X,'SMOOTHED VALUE',
 *8X,'DS(X,Y)/DX',10X,'DS(X,Y)/DY')
 650 FORMAT(5X,4(5X,E15.8))
 END

Method
This subroutine obtains bivariate m-th degree B-spline
smoothing function by adding knots so that square sum of
residuals may become less than the given tolerance δt

2.
 Now, let us assume ξ1, ξ2, ..., ξnr and η1, η2, ..., ηlr are
given in the x- and y-direction respectively which satisfy
the following:

ξ1<ξ2<.....<ξnr
η1<η2<.....<ηlr

 At the initial step, nr=ns and lr=ls. The coefficient Cα, β
of the bivariate m-th degree spline function

() () ()∑ ∑
− −

+−= +−=
++=

1 1

1 1
1,1,,,

r rl

m

n

m
mm yNxNCyxS

β α
βαβα (4.1)

in which the above knots are used, is determined so that
the square sum of residuals

(){ } 2
,

1 1
22 ,1

jiji

n

j

n

i ji
yxSf

yx

y x

−
⋅∑∑

= = σσ
 (4.2)

assumes the minimum. Such Cα,β can be obtained by
solving the system of linear equations (normal equations)
resulting from partially differentiating (4.2) with respect
to Cα,β and equating it to zero. The value of (4.2)
corresponding to the obtained Cα,β is assumed to be δ2

nr+lr.
 If δ2

nr+lr ≤ δ2
t, (4.1) can be taken as the bivariate m-th

degree B-spline smoothing function. If δ2
nr+lr >δ2

t,
determine the new knots to be added under the following
procedures.
Compute residuals εij=fij − ()S x yi j, , i=1,2,...nx,
j=1,2,...,ny at each point.
 Using these values, compute

{ }

{ }
∑ ∑

∑ ∑

+

+

<≤ =

<≤ =

⋅
=

⋅
=

1

1

2

1
2

2

1
2

1

1

jsj

x

iri

y

ys

n

r r

s,r

xs
j

xr

n

s s

s,r

yr
i

xny
v

ynx
u

ηη

ξξ

σ
ε

σ

σ
ε

σ

 (4.4)

 The maximum values of { ui|1 ≤ i ≤ nr−1}, { vj|1 ≤ j ≤
lr−1} are assumed to be ui and vj. When ui is greater than
vj, nr is increased by 1 assuming ξ=(ξi+ξi+1)/2 to be added.
On the other hand, when vj greater than ui, lr is increased
by 1 assuming η=(ηj+ηj+1)/2 to be added.

BSCD2

197

Replacing the updated knots in the x- or y-direction in the
ascending order, repeat the above mentioned procedures.
 This is repeated until the square sum of square becomes
less than the given value δt

2, updating knots and
increasing the number of knots subsequently.

BSCT1

198

B21-21-0502 BSCT1, DBSCT1

Selected eigenvalues of a real symmetric tridiagonal
matrix (Bisection method)
CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON)

Function
Using the bisection method, the m largest or m smallest
eigenvalues of an n-order real symmetric tridiagonal
matrix T are determined. 1 ≤ m ≤ n .

Parameters
D Input. Diagonal elements of tridiagonal matrix

T.
D is a one-dimensional array of size n.

SD Input. Subdiagonal elements of tridiagonal
matrix T.
SD is a one-dimensional array of size n.
The elements are stored in SD(2) to SD(N).

N Input. Order n of the tridiagonal matrix.
M Input.

M=m ... The number of largest eigenvalues
desired.
M=−m ... The number of smallest eigenvalues
desired.

EPST .. Input. The absolute error tolerance used to
determine accuracy of eigenvalues (refer to
equation (4.9) in the Method section). when a
negative value is given, an appropriate default
value is used.

E Output. m eigenvalues. Order in descending
order if M is positive and in ascending order if
M is negative.
E is a one-dimensional array of size m.

VW Work area. VW is a one-dimensional array of
size n+2m.

ICON .. Output. Condition code. Refer to Table
BSCT1-1.

Table BSCT1-1 Condition codes

Code Meaning Processing
0 No error

10000 N=1 E(1)=D(1)
30000 N<|M| or M=0 Bypassed

Comments on use
• Subprogram used

SSL II ... AMACH and MGSSL
FORTRAN basic function ... IABS,ABS and AMAX1

• Notes
Normally, when determining the eigenvalues of a real
symmetric matrix, the subroutine TRID1 is used first to
reduce that matrix to a tridiagonal matrix, then this

routine or TRQL can be used to determine the
eigenvalues.
 If n/4 or more eigenvalues are being determined,
computation time is generally better using TRQL
instead of this routine.
 If the possibility of an eigenvalue being zero exists,
refer to "Convergence criterion and EPST parameter"
in the Method section, then specify EPST accordingly.

• Example
After an n-order real symmetric matrix is first reduced
to a triagonal matrix using TRID1, m eigenvalues are
calculated. n≤100.

C **EXAMPLE**
 DIMENSION A(5050),D(100),SD(100),
 *E(100),VW(300)
 10 READ(5,500) N,M,EPST
 IF(N.EQ.0) STOP
 NN=N*(N+1)/2
 READ(5,510) (A(I),I=1,NN)
 WRITE(6,600) N,M
 NE=0
 DO 20 I=1,N
 NI=NE+1
 NE=NE+1
 20 WRITE(6,610) I,(A(J),J=NI,NE)
 CALL TRID1(A,N,D,SD,ICON)
 WRITE(6,620) ICON
 IF(ICON.EQ.30000) GO TO 10
 CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON)
 WRITE(6,630)
 WRITE(6,620) ICON
 IF(ICON.EQ.30000) GO TO 10
 MM=IABS(M)
 WRITE(6,640) (I,E(I),I=1,MM)
 GO TO 10
 500 FORMAT(2I5,E15.7)
 510 FORMAT(5E15.7)
 600 FORMAT('1',10X,'** ORIGINAL MATRIX'/
 *11X,'** ORDER =',I5,10X,'** M =',I3/)
 610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7))
 620 FORMAT(/11X,'** CONDITION CODE =',I5/)
 630 FORMAT('0'/11X,'** EIGENVALUES')
 640 FORMAT(5X,'E(',I3,')=',E15.7)
 END

Method
Using the bisection method, the m largest or m smallest
eigenvalues are determined from n-order real symmetric
tridiagonal matrix T.
 If a subdiagonal element of real symmetric tridiagonal
matrix T shown in Fig. BSCT1-1 is zero, that matrix can
be split, into submatrices at that point. If T can be split
the eigenvalues of T can be obtained by determining the
eigenvalues of each submatrix. Since the bisection
method is applied to each submatrix, in the explanation
below, T is assumed not to be split, i.e., bi≠0.

BSCT1

199

 For the matrix (T−λ I) shown in Fig. BSCT1-2, the
value λ that satisfy

det(T−λ I) = 0 (4.1)

 are the eigenvalues of T. Let the leading principle minor
of the matrix (T−λ I) be Pi(λ), then the recurrence
formula in (4.2) can be developed.

() ()
() () () ()

ni
PbPcP

cPP

iiiii

...,,3,2
,

,1

2
2

1

110

=
−−=

−==

−− λλλλ

λλλ

 (4.2)

 The polynomials P0(λ), P1(λ), ..., Pn(λ) of (4.2) is a
Sturm sequence. Let L(λ) be the number of agreements in
sign of consecutive members of this sequence, then L(λ)
is equal to the number of eigenvalues which are smaller
than λ.
 However, if Pi(λ)=0, the sign of Pi-1(λ) is used. In the
actual calculations, (4.2) is replaced by the sequence:

() () () niPPq iii ,...,2,1,1 == − λλλ (4.3)

 Using (4.3), L(λ) is easily determined. L(λ) is the
number of cases that the sequence qi(λ) yields a positive
or zero value. From (4.2) and (4.3) qi(λ) is

()
() () ()

=−−=

−=

− niqbcq

cq

iiii ,...,3,2,1
2

11

λλλ

λλ
 (4.4)

c1

c2

c3

cn

b2

b2 b3

b3

bn

bn

b4

Fig. BSCT1-1 Real symmetric tridiagonal matrix T

c1 − λ

c2 − λ

c3 − λ

cn − λ

b2

b2 b3

b3

bn

bn

b4

Fig. BSCT1-2 Matrix [T-λI]

 If qi-1(λ) = 0, then

() ()q c b ui i iλ λ= − − (4.5)

 where, u is the unit round-off.
 Using this method overflow and underflow can be
avoided, and L(λ) can still be calculated even if bi = 0.
Now consider determining the largest k-th eigenvalue.
Suppose the eigenvalues have the relationship

λ1≥λ2≥.....≥λk≥.....≥λn (4.6)

1) Using Gershgorin's Method, interval [l0,r0] which
includes all n eigenvalues is determined.

(){ }
(){ }110

1
1

0

min

max

+≤≤

+
≤≤

+−=

++=

iiini

iii
ni

bbcl

bbcr
 (4.7)

where b1=0, bn+1=0.

2) Iterations of (4.8) are continued until λk is
approximately in the midpoint of interval [lj,rj]

()

()
()

==≥

==<

+=
⋅⋅⋅⋅⋅⋅=

++

++

jjjjj

jjjjj

jjj

rrhlkhL

hrllkhL

rlh
j

11

11

andtakethenIf

andtakethenIf

2
,2,1,0

 (4.8)

 Interval [lj,rj] in which λk lies is bisected with each
interation of (4.8).
 Using 1) and 2), this routine determines the interval in
which the m largest eigenvalues lie. Then in that interval,
eigenvalues are determined for each submatrix. When m
eigenvalues have been obtained, processing is terminated.

Convergence criterion and EPST Parameters
In this routine, convergence is determined by

() EPST2 ++≤− jjjj rlulr (4.9)

 EPST is specified as the allowable absolute error
tolerance in determining the eigenvalues. When (4.9) is
satisfied, (lj+rj)/2 is considered an eigenvalue. If
EPST=0.0, (4.9) becomes

()jjjj rlulr +≤− 2 (4.10)

BSCT1

200

 In this case, bisection of the interval is continued until
the least significant digits of lj and rj become
approximately equal, such that it takes a long time to
compute the eigenvalue. EPST is used to indicate the
precision at which this computation is terminated. EPST
is also a safeguard, since (4.10) would never be satisfied
for eigenvalues which are zero.
 When a negative EPST is specified, for each submatrix,
the following default value is used.

()00 ,max=EPST rlu ⋅ (4.11)

 Where l0 and r0 are the upper and lower limits of the
range obtained by the Gerschgorin method which
includes eigenvalues of each submatrix. For further
information see References [12] pp.299-302, [13]
pp.249-256, and [15].

BSC1

201

E32-31-0102 BSC1, DBSC1

B-spline smoothing coefficient calculation (with
fixed knots)
CALL BSC1(X, Y, W, N, M, XT, NT, C, R, RNOR,
VW, IVW, ICON)

Function
Given observed values y1, y2, ..., yn at points x1, x2, ..., xn,
weighted function values wi=w(xi), i=1,2,...,n, and knots
of the spline function ξ1, ξ2, ..., ξni, the B-spline
smoothing function in the sense of least squares is
obtained. In other words, 1et

() ()xNcxS mjj

n

mj

t

1,

1

1
+

−

+−=
∑= (1.1)

be the m-th (m: either an odd or even integer) degree B-
spline smoothing function to be obtained, and then the
smoothing coefficients cj's which minimize the sum of
squares of the weighted residual:

(){ }∑
=

−=
n

i
iiim xSyw

1

22δ (1.2)

are obtained.
 The interval Iξ=[min(ξj),max(ξj)] spanned by the knots
{ξi} does not always have to contain all of the n discrete
points. For example, as shown in Fig. BSC1-1, the Iξ can
be specified as a part of the interval Ix=[min(xi),max(xi)]
which is spanned by all of the discrete points. If so, ()S x
given by (1.1) such discrete points, (whose number is, say,
ne) as contained in the interval so, when taking the
summation in (1.2), only the discrete points contained in
the interval Iξ have to be taken into consideration.
 Here, wi≥0, m≥1, nt≥3, ξj≠ξk (j≠k) and ne≥nt+m-1.

Interval Iξ

Interval Ix

Fig. BSC1-1 Section Iξ for smoothing function

Parameters
X.......... Input. Discrete points xi's.

One-dimensional array of size n.
Y.......... Input. Observed values yi.

One-dimensional array of size n.
W......... Input. Weighted function values.

One-dimensional array of size n.
N.......... Input. Number of the discrete points.
M Input. Degree of the B-spline. See Notes.
XT Input. Knots ξj's. See Notes.

One-dimensional array of size nt.
Output. If on input
XT(1)<XT(2)<...<XT(nt)
was not satisfied, XT's are aligned to satisfy it
on output.

NT Input. Number of the knots, nt.
C Output. Smoothing coefficients cj's.

One-dimensional array of size nt+m-1,
R Output. Residuals ()y S xi i− , i=1,2,...,n. One-

dimensional array of size n.
RNOR. Output. Square sum of the weighted residual, δm

2.
VW Work area. One-dimensional array of size

(nt+m)(m+1).
IVW..... Work area. One-dimensional integer type array

of size n.
ICON ... Output. Condition code.

See Table BSC1-1.

Table BSC1-1 Condition codes

Code Meaning Processing
0 No error

30000 Either of the followings
occurred:
(a) At least one w i is

negative.
(b) M<1
(c) XT(I)=XT(K) (I≠K)
(d) NT<3
(e) ne<NT+M-1

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL, UREO1, UNCA1, UCDB1,
UCAO1 and UBAR1
FORTRAN basic function ... DSQRT

• Notes
By calling subroutine BSF1 after subroutine BSC1, the
interpolated values as well as derivatives or integrals
can be obtained based on the B-spline smoothing
function (1.1). The parameter values of M, XT, NT and
C are passed from BSC1 to input to BSF1.
 The degree m is preferably 3 but no greater than 5,
because the normal equation (see "Method") used when
obtaining the smoothing coefficients cj's become

BSC1

202

 ill-conditioned as m becomes large.
 It is important for the knots ξi to be located according
to the behavior of observed values. In general, a knot
should be assigned to the point at which the observed
values have a peak or change rapidly. Any knot should
not be assigned in an interval where the observed
values change slowly. (See Fig. BSC1-2.)

x
ξ6ξ5ξ4ξ3ξ2ξ1

Fig.BSC1-2 Knots ξξξξ i

• Example
See the example given for subroutine BSF1.

Method
By setting the m-th degree B-spline smoothing function
as

() ()xNcxS mjj

n

mj

t

1,

1

1
+

−

+−=
∑= (4.1)

the subroutine obtains the smoothing coefficients cj's
which minimize the sum of squares of the weighted
residuals.

(){ }∑
=

−=
n

i
iiim xSyw

1

22δ (4.2)

The interval in which ()S x is defined is Iξ = [min(ξj),
max(ξj)] spanned by the user specified knots {ξj}. For
simplicity let's assume the knots {ξj} satisfy the
relationship ξj<ξj+1 (j=1,2,...,nt-1), and all of the n
discrete points xi's are contained in the interval [ξl,ξnt].
 First, the knots {tj} of the B-spline Nj,m+1(x) are taken by
using {ξj} as follows (see Fig. BSC1-3):

+≤≤+

≤≤

≤≤+−

mnjn,

nj,

jm,

t

ttn

tjj

t
1

1

011

ξ

ξ

ξ
 (4.3)

tnt+m

tnt+1

t−m+1

t0

tntt3t2t1

x
ξntξ3ξ2ξ1

Fig. BSC1-3 Knots {tj}

 Among all the spline functions represented as (4.1), the
one which minimizes (4.2) can be obtained by solving so-
called a normal equation with respect to cj's. That is,
taking partial derivatives of δm

2 in (4.2) with respect to
cj's and setting them to zero, the normal equation with
respect to cj's can be obtained as follows.

() () ()∑ ∑∑
−

+−=
+

==
++ =

1

1
1,

11
1,1,

tn

mj
imk

n

i
iij

n

i
imjimki xNywcxNxNw

k=-m+1, -m+2,, nt-1 (4.4)

 The above is a system of linear equations of order
(nt+m-1) and the coefficient matrix is of the form of a
symmetric band matrix. Fig. BSC1-4 shows an example
of the matrix for m=3 an nt=5.

* * * *
* * * * *
* * * * * *
* * * * * * *

* * * * * *
* * * * *

* * * *

0

0

Fig. BSC1-4 Coefficient matrix (for m=3 and nt=5)

 Therefore, solving Eq. (4.4) gives cj's. This subroutine
solves the linear equations above by using Cholesky
method (LTL decomposition method) with the slave
subroutines UNCA1 and UCDB1.

BSC2

203

E32-31-0202 BSC2, DBSC2

B-spline smoothing coefficient calculation (variable
knots)
CALL BSC2(X,Y,S,N,M,XT,NT,NL,RNOT,C,
RNOR,VW,IVW,ICON)

Function
Given observed values y1, y2, ..., yn at discrete points x1,
x2, ..., xn, observation errors σ1, σ2, ..., σn, a tolerance δt

2
for the square sum of residuals, and initial knots ξ1,
ξ2, ...,ξns, then this subroutine obtains a B-spline
smoothing function of degree m to the data in the sense of
least squares, by adding knots so that the square sum of
residuals becomes within the tolerance.
Namely, letting nt denote the number of knots finally
used, and δnt

2 the corresponding square sum of residuals,
the subroutine obtain the coefficients cj in the B-spline
smoothing function (1.1), subject to (1.2).

(){ } 22

1
2

2 1
tii

n

i i
n xSy

t
δ

σ
δ ≤−= ∑

=

 (1.1)

() ()xNcxS mjj

n

mj

t

1,

1

1
+

−

+−=
∑= (1.2)

 This subroutine outputs final knots ξ1, ξ2, ..., ξnt, square
sum of residuals (1.3) at each step in which knots are
added and the statistics (1.4) and (1.5).

(){ } 2

1
2

2 1
ii

n

i i
n xSy

r
−= ∑

= σ
δ (1.3)

 (where ()S x is an m-th degree B-spline smoothing
function in which ξ1, ξ2, ..., ξnr are knots.)

(){ }122
−+−= mnn rnn

rr δσ (1.4)

()
tssr

rn

nnnn

mnnr
r

,...,1,

12logAIC 2

+=

−++= δ
 (1.5)

 Here, σi>0, m≥1, ns≥2 and initial knots ξj must satisfy
() () () ()iijjiijj

x,x maxmaxminmin ≥≤ ξξ

Parameters
X.......... Input. Discrete points xi.

One-dimensional array of size n.
Y.......... Input. Observed values yi.

One-dimensional array of size n.
S Input. Observation errors σi. (See Notes.)

One-dimensional array of size n.

N.......... Input. Number n of the discrete points.
M Input. Degree m of the B-spline. (See Notes.)
XT Input. Initial knots ξj, j=1,2,...,ns. (See Notes.)

Output. Knots ξj, j=1,2,...,nt finally used. The
results are output in the order of ξ1<ξ2<...<ξnt.
One-dimensional array of size NL.

NT Input. Number ns of initial knots.
Output. Number nt of knots finally used.

NL Input. The upper limit on the number of knots.
(See Notes.)

RNOT.. Input. The tolerance δt
2 for the square sum of

residuals. A proper value is δt
2 =n.

C Output. Smoothing coefficients Cj, j=-m+1, -
m+2, ..., nt-1.
Cj is stored in C(j+m).
One-dimensional array of size (NL+M-1)

RNOR.. Output. Values of (1.3), (1.4) and (1.5) at each
step in which knots are added.
Two-dimensional array RNOR(3,NL-ns+1).
Letting nr=ns,ns+1,...,nt,
δnr

2 is stored in RNOR(1,nr-ns+1),

σ nr
2 is stored in RNOR(2,nr-ns+1),

AICr is stored in RNOR(3,nr-ns+1).
(See Notes.)

VW Work area.
One-dimensional array of size (M+1) + (M+2)
(NL+M).

IVW..... Work area.
One-dimension/array of size (N+NL+M).

ICON ... Output. Condition code.
See Table BSC2-1.

Table BSC2-1 Condition codes

Code Meaning Processing
0 No error

10000 Although the number of knots
reached the upper limit, the
convergence criterion (1.1)

was not satisfied.

Outputs the most
recently obtained

smoothing
function.

30000 One of the followings
occurred:
1 σi≤0
2 M<1
3 XT(I)=XT(K) where I≠K
4 ns<2
5 NL<ns
6 () ()

() ()
min min

max max
j j i i

j j i i

x

x

ξ

ξ

>

<

or

Bypassed

Comments on use
• Subprograms used

SSL II ... AFMAX, MGSSL, UPOB1, UPCA1,
UREO1, UBAS0, UCDB2
FORTRAN basic function ... SQRT, IFIX, ABS,
FLOAT, ALOG

BSC2

204

• Notes
By calling subroutine BSF1 after this subroutine,
smoothed values, derivatives, or integrals can be
obtained based on (1.2). At that time, the parameter
values of M, XT, NT and C must be the same as those
used in BSF1.
 An appropriate value for degree m (either even or
odd) is 3, but the value should not exceed 5. This is
because the normal equation with respect to smoothing
coefficient Cj becomes ill-conditioned as degree m
increases.
 Initial knots ξj, j=1,2,...,ns can be generally given by

() ()i
i

ni
i

s

xx
n

s max,min

2

1 ==
=

ξξ

 Observation error σi is an estimate for the error
contained in the observed value yi. For example, if yi
has di significant decimal digits, the value i

d yi−10 can

be used as σi. σi is used to indicate how closely ()S x
should be fit to yi. The larger σi is, the less closely

()S x is fit to yi.
 Upper limit NL on the number of knots should be
given a value near n/2 (if the number of knots increases,
the normal equation becomes ill-conditioned). This
subroutine terminates processing by setting
ICON=10000 when the number of knots reaches the
upper limit regardless of (1.1).
 The information output to RNOR is the history of
various criteria in the process of adding knots at each
step. The history can be used for checking the obtained
smoothing function.

• Example

By inputting 100 discrete points xi, observed values yi
and observation errors σi, a third degree B-spline
smoothing function is obtained.
 Here, the initial knots are taken as

() ()i
i

i
i

xxxx max,min max2min1 ==== ξξ

 and the upper limit on the number of knots to be 20.
 Subsequently smoothed values and 1st through 3rd
order derivatives are computed at each point of

()
50,...,1,0

50/minmax1

=

⋅−+=

j

jxxv j ξ

 by using subroutine BSF1.

C **EXAMPLE**
 DIMENSION X(100),Y(100),S(100),XT(20),
 * C(25),RNOR(3,20),VW(120),
 * IVW(125),RR(4)
 N=100
 READ(5,500) (X(I),Y(I),S(I),I=1,N)

 M=3
 NT=2
 XMAX=X(1)
 XMIN=X(1)
 DO 10 I=2,N
 IF(X(I).GT.XMAX) XMAX=X(I)
 IF(X(I).LT.XMIN) XMIN=X(I)
 10 CONTINUE
 XT(1)=XMIN
 XT(2)=XMAX
 NL=20
 RNOT=FLOAT(N)
C
 CALL BSC2(X,Y,S,N,M,XT,NT,NL,RNOT,
 *C,RNOR,VW,IVW,ICON)
 WRITE(6,600) ICON
 IF(ICON.EQ.30000) STOP
 WRITE(6,610)
 DO 20 I=2,NT
 IADD=I-1
 WRITE(6,620) I,(RNOR(J,IADD),J=1,3)
 20 CONTINUE
C
 H=(XMAX-XMIN)/50.0
 WRITE(6,630)
 DO 40 J=1,51
 V=XT(1)+H*FLOAT(J-1)
 DO 30 L=1,4
 ISW=L-1
 CALL BSF1(M,XT,NT,C,ISW,V,I,
 * RR(L),VW,ICON)
 30 CONTINUE
 WRITE(6,640) V,(RR(L),L=1,4)
 40 CONTINUE
 STOP
C
 500 FORMAT(3F10.0)
 600 FORMAT(10X,'ICON=',I5//)
 610 FORMAT(8X,'NO. OF KNOTS',9X,
 'RNOR(1,)',11X,'RNOR(2,*)',11X,
 'RNOR(3,)'/)
 620 FORMAT(10X,I2,8X,3(5X,E15.8))
 630 FORMAT(//14X,'ARGUMENT',9X,
 *'SMOOTHED VALUE',8X,'1ST DERIV.',
 *10X,'2ND DERIV.',10X,
 *'3RD DERIV.'/)
 640 FORMAT(10X,E15.8,4(5X,E15.8))
 END

Method
This subroutine obtain the m-th degree B-spline
smoothing function such that the square sum of residuals
is less than a given tolerance δt

2 , by adding knots
adaptively.
 Suppose that knots ξ1, ξ2, ..., ξnr have already been
determined and arranged in the order

ξ1<ξ2<.....<ξnr
where, initially nr=ns. The coefficients Cj in m-th degree
spline with the knots above

() ()∑
−

+−=
+=

1

1
1,

rn

mj
mjj xNcxS (4.1)

are determined so that the square sum of residuals

(){ } 2

1
2

1
ii

n

i i
xSy −∑

= σ
 (4.2)

BSC2

205

may assume the minimum. (For details, refer toBSC1).
Denoting the value of (4.2) with the obtained Cj by δnr

2 , if
δ δnr t

2 2≤ , (4.1) can be taken as the m-th degree B-spline
smoothing function.
 Ifδ δnr t

2 2> , the square sum of residuals

() (){ } 2

2
2 1,

1

ii
ix

r xSynj
jij

−= ∑
+<≤ σ

δ
ξξ

 (4.3)

for each subinterval [ξj,ξj+1] is computed. Then we add,
to the current set of knots, the midpoint ξ=(ξi+ξi+1)/2 of
the interval in which δ2(j,nr) takes the maximum.
 The updated knots are arranged in ascending order, and
letting this be ξ1, ξ2, ..., ξnr+1, then the above process is
repeated. This processing is repeated until the square sum
of squares becomes less than the tolerance δt

2 .

BSEG

206

B51-21-0201 BSEG, DBSEG

Eigenvalues and eigenvectors of a real symmetric
band matrix (Rutishauser-Schwarz method, bisection
method and inverse iteration method)
CALL BSEG (A, N, NH, M, NV, EPST, E, EV, K,
VW, ICON)

Function
This subroutine obtains the largest or smallest m
eigenvalues of a real symmetric band matrix A of order n
and band width h by using the Rutishauser-Schewarz
method and the bisection method and also obtains the
corresponding nν eigenvectors by using the inverse
iteration method. The eigenvectors are normalized so as
to satisfy x

2
1= . Here, 1≤m≤n, 0≤nν≤m and 0≤h<<n.

Parameters
A.......... Input. Real symmetric band matrix A.

Compressed mode for a symmetric band matrix.
One-dimensional array of size n(h+1)-h(h+1)/2
When nν≠0, the contents are not destroyed after
computation
When nν=0, the contents are altered on output.

N.......... Input. Order n of the matrix A.
NH Input. Bandwidth h.
M Input. The m number of eigenvalues to be

obtained.
M=+m ... The largest eigenvalues are obtained.
M=-m ... The smallest eigenvalues are obtained.

NV Input. The nν number of eigenvectors are
obtained
When NV=-nν, replaced as NV=+nν in the
subroutine.
When nν=0, no eigenvectors are calculated.

EPST ... Input. Upper limit of absolute error used for
convergence cirterion to eigenvalues obtained.
See "Method" for the subroutine BSCT1.
If EPST<0, a standard upper limit is set.

E Output. Eigenvalues. One-dimensional array of
size m.

EV Output. Eigenvectors.
The eigenvectors are stored in the column-wise
direction.
Two dimensional arrays as represented by
EV(K,NV).

K.......... Input. Adjustable dimension of the array EV.
When nν=0, this is an arbitrary number.

VW Work area. One-dimensional array of size
max(3n+2m,2n(h+1)).
When nν=0, the size is as large as 3n+2m.

ICON ... Output. Condition code.
See Table BSEG-1.

Table BSEG-1 Condition codes

Code Meaning Processing
0 No error

10000 NH=0 Executed
normally.

15000 All of the eigenvectors could
not be obtained.

Unobtained
eigenvectors are
set to 0 vectors.

20000 None of the eigenvectors
could be obtained.

All of the
eigenvectors

become 0
vectors.

30000 NH<0, NH≥N, N>K, M=0,
M NV orM N< >

Bypassed

Comments on use
• Subprograms used

SSL II ... BTRID, BSCT1, BSVEC, AMACH and
MGSSL
FORTRAN basic function ... IABS

• Notes

This subroutine is provided for a real symmetric band
matrix, and is suitable for obtaining eigenvalues, from
either the largest or smallest eigenvalues, to a matrix
whose ratio of its bandwidth h to order n, (i.e., h/n), is
no larger than 1/6. Although the eigenvectors
corresponding to the obtained eigenvalues can be
calculated at the same time, since the inverse iteration
method used in this subroutine is applied not for a real
symmetric tridiagonal matrix, but for directly
processing the input band matrix, the method is
relatively ineffective. Consequently, unnecessary
eigenvectors should not be calculated. If NV=0 is set,
no eigenvectors have to be obtained. If a very small
number of eigenvalues of a real symmetric band matrix
of high order needs to be obtained, from either the
largest or smallest eigenvalues in absolute value, and at
the same time the corresponding eigenvectors are to be
calculated as well, either this method or simultaneous
iteration method by Jennings, whichever is better,
should be adopted.

• Example

The largest or smallest m eigenvalues of a real
symmetric band matrix
A of order n and bandwidth h and also the
corresponding nv eigenvectors are obtained in this
example below for n≤100, h≤10, and m≤10.

BSEG

207

C **EXAMPLE**
 DIMENSION A(1100),E(10),EV(100,10)
 * ,VW(2100)
 10 READ(5,500) N,NH,M,NV,EPST
 IF(N.EQ.0) STOP
 NN=(NH+1)*(N+N-NH)/2
 READ(5,510) (A(I),I=1,NN)
 WRITE(6,600) N,NH,M,NV
 NE=0
 DO 20 I=1,N
 NI=NE+1
 NE=MIN0(NH+1,I)+NE
 20 WRITE(6,610) I,(A(J),J=NI,NE)
 CALL BSEG(A,N,NH,M,NV,EPST,E,EV,100,
 * VW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 MM=IABS(M)
 NNV=IABS(NV)
 IF(NNV.EQ.MM) GO TO 40
 NNV1=NNV+1
 DO 30 J=NNV1,MM
 DO 30 I=1,N
 30 EV(I,J)=0.0
 40 CALL SEPRT(E,EV,100,N,MM)
 GO TO 10
 500 FORMAT(4I5,E15.7)
 510 FORMAT(5E15.7)
 600 FORMAT('1',10X,'** ORIGINAL MATRIX'/
 * 11X,'** ORDER =',I5,10X,'NH=',
 * I3,10X,'M=',I3,10X,'NV=',I3/)
 610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7))
 620 FORMAT(/11X,'** CONDITION CODE =',I5/)
 END

 For subroutine SEPRT, see the example of the
subroutine SEIG1.

Method
The largest or smallest m eigenvalues of a real symmetric
band matrix A of order n and bandwidth h as well as the
corresponding nν eigenvectors are obtained.
 First, the matrix A is reduced to a tridiagonal matrix T
by the Rutishauser-Schwarz method. Its operation is

given by

SS AQQT T= (4.1)

 where Qs is an orthogonal matrix and can be produced
as a product of an orthogonal matrix shown in the Fig.
BSEG-1. Its operation is carried out by using the
subroutine BTRID.
 Secondly, m egenvalues of T are obtained by using the
bisection method in the subroutine BSCT1.
 Thirdly, the corresponding eigenvectors x of A are
obtained by using the inverse iteration method. The
inverse iteration is a method to obtain eigenvectors by
iteratively solving

() ,...2,1,1 ==− − rrr xxIA µ (4.2)

 when an approximate eigenvalue solution µ is given.
where µ is obtained by the bisection method and x0 is an
appropriate initial vector. This operation is performed by
using the subroutine BSVEC. The eigenvectors are to be
normalized so that 1

2
=x .

 For further details, see "Method" for the subroutines
BTRID, BSCT1 and BSVEC, and References [12] and
[13].

−+

+

1
0

1
cossin
sincos

1
0

1

1

1

θθ
θθ

i
i

ii

Fig. BSEG-1 General form of orthogonal similarity
transformation matrix used in the Rutishauser-Schwarz method

BSEGJ

208

B51-21-1001 BSEGJ, DBSEGJ

Eigenvalues and eigenvectors of a real symmetric
band matrix (Jennings method)
CALL BSEGJ (A, N, NH, M, EPST, LM, E, EV, K,
IT, VW, ICON)

Function
The m eigenvalues of a real symmetric band matrix of
order n and bandwidth h are obtained starting with the
eigenvalue of the largest (or smallest) absolute value first,
and also the corresponding eigenvectors are obtained for
the given m initial vectors by using the Jennings'
simultaneous iteration method with the Jennings'
acceleration. When starting with the smallest absolute
value, matrix A must be positive definite. The
eigenvectors should be normalized such that x

2
1= .

Here 1≤m<<n and 0≤h<<n.

Parameters
A.......... Input. Real symmetric band matrix A.

When obtaining the eigenvalues of the smallest
absolute value first, the contents are altered on
output.
Compressed mode for symmetric band matrix.
One-dimensional array of size n(h+1)-h(h+1)/2.

N.......... Input. Order n of matrix A.
NH Input. Bandwidth h of matrix A.
M Input. The number of eigenvalues and

eigenvectors obtained, m.
M=m ... the m largest absolute value of
eigenvalues are desired.
M=-m ... the smallest absolute value of
eigenvalues are desired.

EPST ... Input. Constant ε used for convergence criterion
for the eigenvectors.
If this value is zero or negative, a standard value
is set.
See "Comments on use".

LM....... Input. Upper limit for the number of iterations.
If the number of iterations exceeds this number,
the processing is terminated. See "Comments on
use".

E Output. Eigenvalues. Stored in the sequence as
specified by parameter M.
One-dimensional array of size m.

EV Input. The m initial vectors stored in
columnwise direction. See "Comments on use".
Output. Eigenvectors. Two-dimensional array of
EV(K,m+2) with the elements stored in column
wise direction.

K.......... Input. Adjustable dimension of EV.
IT Output. The number of iterations performed

until eigenvalues and eigenvectors are obtained.

VW Work area. One-dimensional array of a size no
less than max(n,2m)+m(3m+1)/2.

ICON ... Output. Condition code. See Table BSEGJ-1.

Table BSEGJ-1 Condition codes

Code Meaning Processing
0 No error

20000 The number of iterations
exceeded upper limit LM.

Terminated. E
and EV contain

the
approximations

of the so far
obtained

eigenvalues and
eigenvectors,
respectively.

28000 Orthogonalization of
eigenvectors at each iteration

cannot be attained.

Discontinued

29000 Matrix A is not positive
definite, or possibly singular.

Discontinued

30000 NH<0, NH≥N, N>K, M=0 or
|M|>N

Bypassed

Comments on use
• Subprograms used

SSL II ... AMACH, MSBV, SBDL, BDLX, TRID1,
TEIG1, TRBK, UCHLS, USERT, MGSSL
FORTRAN basic functions ... MAX0, AMAX1, ABS,
IABS, FLOAT and SQRT

• Notes

It is desirable for the initial eigenvectors to be a good
approximation to the eigenvectors corresponding to the
obtained eigenvalues. If approximate vectors are not
available, the standard way to choose initial vectors is
to use the first m column vectors of the unit matrix I.
The number of eigenvalues and eigenvectors, m had
better be smaller than n such that m/n<1/10. The
numbering of the eigenvalues is from the largest (or
smallest) absolute value of eigenvalue such as λ1, λ2, ...,
λn. It is desirable, if possible, to choose m in such a
way that mm λλ 1+ <<1 (or λm+1/λm >>1) to achieve
convergence faster.
 The parameters EPST is used to examine the
convergence of elements of the eigenvector normalized
so that 1

2
=x . Whenever an eigenvector

converges for the convergence criterion constant ε ,
the corresponding eigenvalue converges at least with
accuracy A ⋅ ε and in most cases is higher. It is
therefore better to choose somewhat a larger EPST
value. When defining unit round off as u, the standard
value is set ε=16u. When the eigenvalues are very close
to each other, however, convergence may not be

BSEGJ

209

attained. If so, it is safe to choose such that ε≥100u.
 The upper limit LM for the number of iterations is
used to forcefully terminate the iteration when
convergence is not attained. It should be set taking into
consideration the required accuracy and how close the
eigenvalues are to each other. The standard value is
500 to 1000.
 SSL II is provided with eigenvectors of a real
symmetric band matrix by using a direct method. If the
same problem is to be solved, a direct method is
generally faster except that it needs more storage space
in computation of the eigenvectors. Choose an
appropriate subroutine after considering the size of the
problem, required accuracy, amount of storage and the
execution time.

• Example

This example obtains eigenvalues and eigenvectors of a
real symmetric band matrix A of order n and bandwidth
h, when n≤100, h≤10 and m≤10.

C **EXAMPLE**
 DIMENSION A(1100),E(10),EV(100,12)
 * ,VW(300)
 10 READ(5,500) N,NH,M,EPST
 IF(N.EQ.0) STOP
 MM=IABS(M)
 NN=(NH+1)*(N+N-NH)/2
 READ(5,510) (A(I),I=1,NN),
 * ((EV(I,J),I=1,N),J=1,MM)
 WRITE(6,600) N,NH,M
 NE=0
 DO 20 I=1,N
 NI=NE+1
 NE=MIN0(NH+1,I)+NE
 20 WRITE(6,610) I,(A(J),J=NI,NE)
 CALL BSEGJ(A,N,NH,M,EPST,500,E,EV,
 * 100,IT,VW,ICON)
 WRITE(6,620) ICON,IT
 IF(ICON.GE.20000) GO TO 10
 CALL SEPRT(E,EV,100,N,MM)
 GO TO 10
 500 FORMAT(3I5,E15.7)
 510 FORMAT(5E15.7)
 600 FORMAT('1',20X,'ORIGINAL MATRIX',
 * 5X,'N=',I3,5X,'NH=',I3,5X,
 * 'M=',I3/)
 610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7))
 620 FORMAT('0',20X,'ICON=',I5,5X,'IT=',I5)
 END

 The subroutine SEPRT is used in this example to print
eigenvalues and eigenvectors of a real symmetric matrix.
For details, refer to the example of the subroutine SEIG1.

Method
• Jennings simultaneous iteration method

Letting the eigenvalues of a real symmetric band matrix
of order n, and of the largest absolute value first be as

nλλλ ,...,, 21

and the corresponding orthogonally normalized
eigenvectors be as

nvvv ,...,, 21

where diagonal matrix ΛΛΛΛ and orthogonal matrix V are
defined by

()
()n

ndiag
vvvV ,...,,

,...,,

21

21

=
= λλλΛ

then

AV V= ΛΛΛΛ (4.1)

 The simultaneous iteration method is the extension of
the power method. Starting from an appropriate n × m
matrix X1

,...2,11 ==+ iii AXX (4.2)

is iterated and Xi is to be converged towards the m
eigenvectors, that is the first m rows of V, corresponding
to the largest absolute value first. However, if iteration is
performed only for (4.2), each row of Xi converges
towards the vector corresponding to the first row νννν1 of V,
thus the purpose is not achieved. In the simultaneous
iteration method, iteration matrix Xi is always
orthonormalized based upon the properties of the
eigenvalues and eigenvectors.
 Assume that eigenvectors v1,...,vk-1 corresponding to
eigenvalues λ1,...,λk-1 have been obtained.

 The largest value for Avv T is obtained when νννν=ννννk,

and then the following condition is satisfied

1,...,1,0T −== kiivv

Now

kkk AvvT=λ

is the eigenvalue containing the k-th largest absolute
value and vk is the corresponding eigenvector.

 Jennings simultaneous iteration method proceeds as
follows:
(indexes used for iteration matrices are omitted)
1) Y is obtained by multiplying A by X from the right.

Y=AX (4.3)

2) m-order symmetric matrix B is obtained by
multiplying XT by Y form the right.

B=X TY (4.4)

3) The eigenvalues µi, i=1,2,...,m of B and the

BSEGJ

210

corresponding eigenvectors pi, i=1,2,...,m are obtained.

B=PMP T (4.5)

where M is a diagonal matrix and P is an orthogonal
matrix.

()
()m

mm

pppP
M

,...,,
...,,...,,diag

21

121

=

≥≥= µµµµµ

4) Z is obtained by multiplying Y by P from the right.

Z=YP (4.6)

5) Z is multiplied by ZT from the left to obtain an m-
order symmetric positive-definite matrix and this
matrix is LLT decomposed (this is called LLT
decomposition).

ZTZ=LLT (4.7)

6) X* is obtained by solving the equation X*LT=Z

X*=ZL-T (4.8)

X* is a normal orthogonal matrix.

X TX *=Im (4.9)

where, Im is an m-order unit matrix.
7) Convergence is tested for X*. Return to procedure 1)

setting X* as a new X, administering to the speed up
as required basis.

 The coefficient matrix when expanding iteration matrix
X by eigenvector V is shown below. When expanding
each column of matrix X by eigenvectors, the following is
assumed:

∑
=

==
n

i
iijj mjcx

1

,...,1,v (4.10)

 Equation (4.10) can be expressed by coefficient matrix
C=(cij) of n × m matrix as

X=VC (4.11)

 Since X is orthogonal,
XTX=Im

 and V is orthogonal, C can be orthogonal.

CTC=Im (4.12)

 C is divided into two parts; the first m rows and the
remaining n-m rows,

=

2

1

C

C
C (4.13)

 Corresponding to this, Λ is divided into the following
blocks.

=

2

1

Λ
Λ

Λ
O

O
 (4.14)

 Based on the preparation of procedures 1) through 7)
above, C is tested as follows.

1)' Substituting (4.11) in (4.3), equation (4.1) becomes,

Y= AX = AVC = VΛC (4.15)

The i-th column of the coefficient matrix is multiplied
by λi. This means that the elements of the eigenvector
corresponding to the eigenvalue in which the absolute
value is large in (4.15) are focused and compressed.

2)' Substituting (4.11) and (4.15) in (4.4), considering V
to be orthogonal,

B=X TY=C TΛC (4.16)

From (4.13) and (4.14), B may be expressed as,

22
T
111

T
1 CCCCB ΛΛ += (4.17)

3)' In this procedure, no solution can be obtained if no
assumptions are made regarding C.
 Assume that in (4.13), C2=0 is given. This means
that X represents all the first m vectors of V. Where
(4.17) is expressed as,

11
T
1 CCB Λ= (4.18)

 From (4.12) C is an m-order orthogonal matrix.
Since (4.5) and (4.18) are performed by orthogonal
similar transformation for the same m-order matrix B,
they are expressed by selecting an appropriate V (for
example, by changing the sign of eigenvector vi or
selecting the corresponding eigenvector for multiple
eigenvalues) as:

C P I1 = m (4.19)

1Λ=M (4.20)

4)' From (4.6) and (4.15), Z can be expressed as,

CPVYPZ Λ== (4.21)

When C2=0,

=

O
VZ

1Λ
 (4.22)

5)' From (4.12) and orthogonality of V,

BSEGJ

211

Z TZ=P T C TΛΛΛΛ2CP=LLT

When C2=0,

Z TZ=ΛΛΛΛ1
2=LLT

from

L= |ΛΛΛΛ1| = diag(|λ1|, … , |λm|) (4.23)

6)' From (4.8) and (4.21),

X*=VΛΛΛΛCPL-T (4.24)

When C2=0, then

X*=V (4.25)

 Therefore, when C2=0, an eigenvalue and
eigenvector can be obtained by one iteration.
When

 +
=

2

1

E

EI
C

m

 (4.26)

and the elements of E1 and E2 are the first order least
value, (4.19) and (4.20) hold if the second-order least
value is omitted. And therefore,

⋅= −1

122 ΛΛ C

I
VX

m*
 (4.27)

 This indicates that the element of eigenvector vj
(j>m) contained in xi (i≤m) of X is reduced in each
iteration by the ratio
λλλλ j/λλλλ i

 This means that C2 of C is approaching the least
value.

 In procedure 1), the elements of an eigenvector
corresponding to the eigenvalue of the largest absolute
value is compressed. In procedures 2), 3), and 4), the
eigenvectors are refined along with obtaining eigenvalues.
In procedures 5) and 6), the eigenvectors are made
orthonormal.

• Computation procedures

This subroutine obtains the m eigenvalues of the largest
(or the smallest) absolute values of a real symmetric
band matrix of order n and bandwidth h and also the
corresponding eigenvectors based upon m given initial
vectors, using the Jennings simultaneous iteration
method.

(a) When obtaining the eigenvalues starting with the

smallest absolute value and the corresponding
eigenvector, the following is used instead of
equation (4.3) in procedure 1).

Y = A-1X (4.28)

 A is decomposed into LDLT using subroutine SBDL.
If A is not a positive definite matrix or it is singular,
the processing is terminated with ICON=29000.

(b) When obtaining B in 2), it is processed along with
1) to reduce storage space as follows, where row
vector yi of Y is computed in (4.29).

v = xi

yi = Av or yi = A-1v (4.29)
 i = 1, …, m

 Equation (4.29) is computed by subroutine MSBV
or BDLX. Since B is an m-order real symmetric
matrix, its diagonal and lower triangular elements
can be computed as

bii = vT yi

bji = xj
T yi , j = i+1, …, m

Thus, Y is produced directly in the area for X by
taking xi for each column of X and obtaining yi and
bji.

(c) 3) is performed sequentially by subroutine TRID1,
TEIG1 and TRBK. Arrange the eigenvectors
corresponding to the eigenvalues in the order of the
largest absolute value to the smallest using
subroutine UESRT.

(d) 5) is performed by subroutine UCHLS. If LLT
decomposition is impossible, processing is
terminated with ICON=28000.

(e) In 7), the m-th columns xm and *
mx of X and X* are

examined to see if

EPST* ≤−=
∞mmd xx (4.30)

is satisfied.
 If satisfied, the diagonal elements of M obtained in
3) become eigenvalues (when obtaining the smallest
absolute values first, the inverse numbers of the
diagonal elements become the eigenvalues) and
each column of X* becomes the corresponding
eigenvector.

• Jennings' acceleration

This subroutine uses the original Jennings' method
explained above, incorporating the Jennings'
acceleration for vector series.

Principle of acceleration
A vector series x(k) where k=1,2,... that converges to
vector x is expressed as a linear combination of
vectors vj where j=1,2,...,n that are orthogonal to
each other and constant ρρρρj such as | ρρρρj | < 1 where
j=1,2,...,n as follows:

BSEGJ

212

() ∑
=

+=
n

j
j

k
j

k p
1

vxx (4.31)

 A new vector is generated from three subsequent vectors
x(k), x(k+1), and x(k+2) as follows:

() () ()()122 +++ −+= kkk s xxxx (4.32)

where

() ()() () ()()
() ()() () () ()()211

211

2 +++

+++

+−−

−−=
kkkTkk

kkTkk
s

xxxxx

xxxx (4.33)

 Substituting (4.31) to (4.33) and using the orthogonal
relation of vj, s is expressed as:

()∑

∑

=

=

−
= n

j
jj

n

j
jj

zp

zp

s

1

1

1

 (4.34)

where

() njppz jj
k

jj ,...,2,1,1
2

2
22 =−= v (4.35)

 Substituting (4.31) and (4.34) to (4.32), and the
following for s,

∑

∑

=

==
+

= n

j
j

n

j
jj

z

zp

s
sp

1

1

1
 (4.36)

then x is obtained as:

j
k
j

n

j

j p
p
pp

vxx 1

1 1
+

=

⋅
−
−

+= ∑ (4.37)

 It is known from (4.36) that p is the average of pj with
respect to the positive weight zj. Assuming

,21 ⋅⋅⋅>> pp then following is satisfied for a
sufficiently large value k:

11 >>> j,zz j

Thus, p p≈ 1 is obtained, and this proves

xx ≈
 This is a brief explanation of the Jennings' acceleration
principle.
 Assuming, ()k

ix to be vector of column i of the iteration
matrix xk in Jennings' method, the vector is expressed as
follows for a sufficiently large value k:

() () jji

kn

mj
iji

k
i c vvx ∑

+=

+=
1

/ λλ (4.38)

where | λj / λi | < 1
This means that Jennings' acceleration is applicable.

Computation procedure
1) Assume the initial value of the constant as the

criterion for adopting the acceleration to be:

δ = 1
2 n

 (4.39)

2) Assume another criterion constant for adopting the
acceleration to be:

()εδη ,51max ⋅= (4.40)

Then, vector number ja of the vector to be processed is
set in m and the following acceleration cycle starts:

3) Stores every other vector obtained from the latest
values of

aj
x in columns (m+1) and (m+2) of the EV.

4) Performs simultaneous iteration of Jennings' method.
5) Judges convergence of (4.30) only for ja=m
6) If (4.41) is satisfied, proceeds to step 10) :

η≤−
aa j

*
j xx (4.41)

7) If (4.42) is satisfied, proceeds to step 3) :

δ≤−
aa j

*
j xx (4.42)

8) Calculates
aj

x by performing Jennings' acceleration

with every other iterated vector of
aj

x

9) Orthogonalizes the
ajx to satisfy the following:

1

,0

2

T

=

≠=⋅

a

a

j

aij jj

x

xx
 (4.43)

10) Decrements ja by one, then proceeds to step 3) if ja≥1
11) If the convergence condition is satisfied in step 5),

iteration is stopped; otherwise, changes δ to:

()εηδδ 10,,1000max= (4.44)

then proceeds to step 2).

• Notes on the algorithm
In Jennings' acceleration, every other vectors are used for
the following reasons:
 It is clear from (4.37) that Jennings' acceleration is
effective when weighted average p (the weight is
positive) of pj is close to p1. If all values of pj have the
same sign, this condition is to be satisfied ordinarily;
however, if there is a value having a sign opposite that of
p1 and the absolute value close to that of pj, considerable
effect of Jennings' acceleration cannot be expected. If
every other vectors are used in place of successive
vectors, that is, pj is substituted for pj

2 , the difficulty
explained above caused by different signs of pj is
eliminated.

BSEGJ

213

 Jennings' acceleration is effective for the eigenvalue
problem having almost same eigenvalues in magnitude.
 (See references [18] and [19] for simultaneous iteration
of Jennings' method, and reference [18] for acceleration.)

BSFD1

214

E-31-32-0101 BSFD1, DBSFD1

B-spline two-dimensional smoothing
CALL BSFD1 (M, XT, NXT, YT, NYT, C, KC,
ISWX, VX, IX, ISWY, VY, IY, F, VW, ICON)

Function
Given observed value fi,j=f(xi,yj), observation error
σi,j=σxi⋅σyj at lattice points (xi,yj); i=1,2,...,nx, j=1,2,...,ny,
this subroutine obtains a smoothed value or a partial
derivative at the point P(vx,vy), or a double integral over
the range [ξ1≤x≤vx, η1≤y≤vy] based on the bivariate m-th
degree B-spline smoothing function.
 However, subroutine BSCD2 must be called before
using subroutine BSFD1 to determine the knots ξ1, ξ2,...,
ξnt in the x-direction, the knots η1, η2,..., ηlt in the y-
direction, and the smoothing coefficients Cα,β in the m-th
degree B-spline smoothing function.

() () ()yNxNcyxS mm

n

m

l

m

tt

1,1,,

1

1

1

1
, +−

−

+−=

−

+−=
∑∑= βαβα

αβ
 (1.1)

m≥1, ξ1≤vx<ξnt, η1≤vy≤ηlt

Parameters
M Input. Degree of the B-spline.
XT Input. Knots ξi in the x-direction.

One-dimensional array of size nt.
NXT........ Input. Number nt of knots ξi in the x-direction.
YT Input. Knots ηi in the y-direction.

One-dimensional array of size lt.
NYT........ Input. Number lt of knots ηi in the y-direction.
C Input. Smoothing coefficient Cα,β.

Two-dimensional array of C(KC,lt+m-1)
KC Input. Adjustable dimension (≥nt+m-1) for

array C.
ISWX...... Input. Type of computations in the x-direction.

-1≤ISWX≤M (See parameter F.)
VX Input. Coordinate x at points P(vx,vy)
IX............ Input. i satisfying ξi≤vx<ξi+1.

When vx=ξnt, IX=nt-1.
Output. i satisfying ξj≤vx<ξi+1.
(See Notes.)

ISWY...... Input. Type of computations in the y-direction.
-1≤ISWY≤M (See parameter F.)

VY Input. Coordinate y at points P(vx,vy).
IY............ Input. j satisfying ηj≤vy<ηj+1.

When vy=ηlt, IY=lt-1.
Output. j satisfying ηj≤vy<ηj+1
(See Notes.)

F.............. Output. Smoothed value, partial devivative or
integral. Suppose ISWX=λ and ISWY=µ, one
of the following values is output depending
upon the combination of λ and µ.

• When 0≤λ,µ

()yx v,vS
yx µλ

µλ

∂∂
∂ +

=F

A smoothed value can be obtained by setting
λ=µ=0.
• When λ=-1, and 0≤µ,

() dxv,xS
y

xv
y∫

=
1

F
ξ µ

µ

∂
∂

• When λ≥0 and µ=-1,

() dyy,vS
x

yv

x∫

=
1

F
η λ

λ

∂
∂

• When λ=µ=-1,

()∫∫= xy vv
dxy,xSdy

11

F
ξη

VW Work area.
One-dimensional array of size
5(m+1)+max(nt,lt)

ICON Output. Condition code.
See Table BSFD1-1.

Table BSFD1-1 Condition codes

Code Meaning Processing
0 No error

10000 XT(IX)≤VX<XT(IX+1) or
YT(IY)≤VY<YT(IY+1) is not
satisfied.

The IX or IY
shown on the
left is searched
for in the
subroutine and
processing
continues.

30000 One of the following
occurred:
1)VX<XT(1) or VX>XT(NXT)
2)VY<YT(1) or VY>YT(NYT)
3)ISWX<-1 or ISWX>M
4)ISWY<-1 or ISWY>M

Bypassed

Comments on use
• Subprogram used

SSL II ... MGSSL, UCAR2, UBAS1
FORTRAN basic function ... FLOAT

• Notes
This subroutine obtains the smoothed value, partial
derivative or double integral based upon B-spline two
dimensional smoothing function (1.1)

BSFD1

215

obtained by subroutine BSCD2.
 Therefore, subroutine BSCD2 must be called to obtain
the smoothing function (1.1) before calling this
subroutine. The values of parameters M, XT, NXT, YT,
NYT, C, and KC must be directly passed from BSCD2.
 Parameters IX and IY should satisfy
XT(IX)≤VX<XT(IX+1) and YT(IY)≤VY<YT(IY+1)
respectively. If not, IX and IY which satisfy the
relationship is found and the processing is continued.

• Example
Refer to Example of subroutine BSCD2.

Method
Suppose that by subroutine BSCD2, the bivariate m-th
degree B-spline smoothing function

() () ()yNxNcyxS mm

n

m

l

m

tt

1,1,,

1

1

1

1
, ++

−

= +−

−

= +−
∑∑= βαβα
αβ

 (4.1)

is obtained.
This subroutine computes smoothed values, partial
derivatives or integrals based upon the smoothing
function of (4.1).
For detailed information, see Section 7.1 in Part I.

BSF1

216

E31-31-0101 BSF1, DBSF1

B-spline smoothing, differentiation and integration
(with fixed knots)
CALL BSF1(M,XT,NT,C,ISW,V,I,F,VW,ICON)

Function
Given observed values y1, y2, ..., yn at points x1, x2, ..., xn,
weighted function values wi=w(xi), i=1,2,...,n and knots
of the spline function, ξ1, ξ2, ...,ξnt (ξ1<ξ2<...<ξnt) then a
smoothed value, or derivative at x=v∈[ξ1,ξnt] or integral
from ξ1 to v is obtained based on the B-spline smoothing
function.
 One condition is that the smoothing coefficients cj's, j=-
m+1, -m+2, ..., nt-1 in the B-spline smoothing function

() ()xNcxS mjj

n

j m

t

1,

1

1
+

−

= +−
∑= (1.1)

must be calculated in subroutine BSC1 or BSC2 before
using subroutine BSF1, where m is the degree of the B-
spline Nj,m+1(x).
Also ξ1≤v≤ξm, m≥1, nt≥3, must be satisfied.

Parameters
M Input. Degree of the B-spline m. See Notes.
XT Input. Knots ξj's.

One-dimensional array of size nt.
NT ... Input. Number of the knots ξi's, nt.
C Input. Smoothing coefficient cj's (output from

BSC1 or BSC2)
One-dimensional array of size nt+m-1.

ISW ... Input. An integer which specifies the type of
calculation.
If ISW=0, the smoothing value,

()F = S v

If ISW= ()l l m1 ≤ ≤ ,the l-th order derivative,

F ()= S vl ().

If ISW=-1, the integral value, ()dxx
v

∫=
1

SF
ξ

are obtained, respectively.
V Input. The point ν at which the smoothing

value, etc.are obtained.
I ….. Input. The i which satisfies ξi≤v<ξi+1.

If ν = ξnt,I=nt-1.
Output. The i which satisfies ξi ≤ ν < ξi+1.
See Notes.

F Output. Smoothed value, the l-th order
derivative or integral value depending on ISW.
See parameter ISW.

VW ... Work area. One-dimensional array of size
m+1.

ICON .. Output. Condition code. See Table BSF1-1.

Table BSF1-1 Condition codes

Code Meaning Processing
0 No error

10000 XT(I) ≤V<XT(I+1) is not
satisfied.

I satisfying the
left relationship
is searched for
and the
processing is
continued.

30000 One of the following
occurred:
(a)V<XT(1) or V>XT(NT)
(b)ISW<-1 or ISW>M

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL, UCAR1and UBAS1
FORTRAN basic function ... FLOAT

• Notes
This subroutine obtains a smoothed value, derivative
or integral based on the B-spline smoothing function
(1.1) obtained by subroutine BSC1 or BSC2.
 Therefore, subroutine BSC1 or BSC2 must be called
to obtain the smoothing function (1.1) before calling
subroutine BSF1. The parameter values of M, XT, NT,
and C must be the same as those used in BSC1 or
BSC2.
 Parameter I should satisfy the relationship
XT(I)≤V<XT(I+1). If not, the I which satisfies the
relationship is searched for to continue the processing.

• Example
By inputting discrete points xi's, observed values yi's,
i=1,2,...,n, knots ξj's j=1,2,...,nt and the degree m,
smoothed values, the 1st to m-th order derivatives at
and integrals from ξ1 to the point.

() ()
5,...,1,0

,1...,,2,1,51

=

−=×−+= +

j

nijv tiiiij ξξξ

are obtained.
Here, the weighted function values wi, i=1,2,...,n to each
of the observed values are all set to 1.0, and also
min(ξj)≤xi≤max(ξj), i=1,2,...,n, n≤101, nt≤10 and m≤5.

C **EXAMPLE**
 DIMENSION X(101),Y(101),W(101),
 *XT(10),C(14),R(101),VW(66),IVW(101),
 *RR(6)
 READ(5,500) N,M
 READ(5,510) (X(I),Y(I),I=1,N)
 READ(5,500) NT
 READ(5,520) (XT(I),I=1,NT)
 WRITE(6,600) N,M,(I,X(I),Y(I),I=1,N)
 WRITE(6,610) NT,(I,XT(I),I=1,NT)

BSF1

217

 DO 10 I=1,N
 10 W(I)=1.0
 CALL BSC1 (X,Y,W,N,M,XT,NT,C,R,
 *RNOR,VW,IVW,ICON)
 IF(ICON.EQ.0) GO TO 20
 WRITE(6,620)
 STOP
 20 WRITE(6,630) RNOR
 N1=NT-1
 M2=M+2
 DO 50 L2=1,M2
 ISW=L2-2
 WRITE(6,640) ISW
 DO 40 I=1,N1
 H=(XT(I-1)-XT(I))/5.0
 XI=X(I)
 DO 30 J=1,6
 V=XI+H*FLOAT(J-1)
 II=I
 CALL BSF1(M,XT,NT,C,ISW,V,
 *II,F,VW,ICON)
 RR(J)=F
 30 CONTINUE
 WRITE(6,650) II,(RR(J),J=1,6)
 40 CONTINUE
 50 CONTINUE
 STOP
 500 FORMAT(2I6)
 510 FORMAT(2F12.0)
 520 FORMAT(F12.0)
 600 FORMAT('1'//10X,'INPUT DATA',3X,
 *'N=',I3,3X,'M=',I2//20X,'NO.',10X,
 *'X',17X,'Y'//(20X,I3,2E18.7))
 610 FORMAT(/10X,'INPUT KNOTS',3X,
 *'NT=',I3/20X,'NO.',10X,'XT'//
 *(20X,I3,E18.7))
 620 FORMAT('0',10X,'ERROR')
 630 FORMAT(10X,'SQUARE SUM OF',1X,
 *'RESIDUALS=',E18.7)
 640 FORMAT('1'//10X,'L=',I2/)
 650 FORMAT(6X,I3,6E18.7)
 END

Method
Suppose that the m-th degree B-spline smoothing
function

() ()∑
−

+−=
+=

1

1
1,

tn

mj
mjj xNcxS (4.1)

has been obtained by subroutine BSC1 or BSC2.
Subroutines BSF1, based on the smoothing function

(4.1), obtains a smoothed value, l-th order derivative or
integral by using the (4.2), (4.3) and (4.4), respectively.

() ()∑
−

+−=
+=

1

1
1,

tn

mj
mjj vNcvS (4.2)

()() () ()∑
−

+−=
+

=
1

1
1,

t

mj

n

mj

l
j

l vNcvS (4.3)

()dxxI
v

∫=
1

S
ξ

 (4.4)

The calculation method for the above is described in
Section "Calculating spline function."

This subroutine calculates Nj,m+1(x), its derivative and
integral by calling subroutine UBAS1.

BSVEC

218

B51-21-0402 BSVEC, DBSVEC

Eigenvectors of a real symmetric band matrix (Inverse
iteration method)
CALL BSVEC(A,N,NH,NV,E,EV,K,VW,ICON)

Function
When nv number of eigenvalues are given for a real
symmetric band matrix A of order n and bandwidth h the
corresponding eigenvectors are obtained by using the
inverse iteration method.

Parameters
A Input. Real symmetric band matrix A.

Compressed mode for symmetric band matrix.
One-dimensional array of size n(h+1)-
h(h+1)/2.

N Input. Order n of matrix A.
NH Input. Bandwidth h
NV Input. Number of eigenvectors to be obtained.

For NV=-nv set as NV=+nv.
E Input. Eigenvalues.

One-dimensional array of size at least nv.
EV Output. Eigenvectors.

The eigenvectors are stored in column wise
direction.
Two-dimensional array of EV(K, nv)

K Input. Adjustable dimension of the array EV.
VW Work area. One-dimensional array of size

2n(h+1).
ICON .. Output. Condition code.

See Table BSVEC-1.

Table BSVEC-1 Condition codes

Code Meaning Processing
 0 No error
10000 NH=0 Executed

normally.
15000 All of the eigenvectors could

not be obtained.
The
eigenvector is
set to zero-
vector.

20000 None of the eigenvectors
could be obtained.

All of the
eigenvectors
become zero-
vectors.

30000 NH<0, NH≥N, N>K,NV=0 or
NV N>

Bypassed

Comments on use
• Subprograms used

SSL II ... AMACH, MGSSL
FORTRAN basic function ... MAX0, MIN0, ABS,
SIGN and SQRT

• Notes
This subroutine is for a real symmetric band matrix.
For obtaining eigenvalues and eigenvectors of a real
symmetric matrix, use subroutine SEIG1 or SEIG2.
Further, for a real symmetric tridiagonal matrix, use
subroutine TEIG1 or TEIG2. If the eigenvalues are
close to each other in a small range, the inverse
iteration method used to obtain the corresponding
eigenvectors may not converge. If this happens, ICON
is set to 15000 or 20000 and unobtained eigenvectors
become zero-vectors.

• Example

When a real symmetric band matrix A of order n and
bandwidth h and also its nv number of eigenvalues are
given, the corresponding eigenvectors are obtained in
this example by using the inverse iteration method for
the case n≤100, h≤10 and nv≤10.

C **EXAMPLE**
 DIMENSION A(1100),E(10),EV(100,10),
 * VW(2100)
 10 READ(5,500) N,NH,NV
 IF(N.EQ.0) STOP
 NN=(NH+1)*(N+N-NH)/2
 READ(5,510) (A(I),I=1,NN)
 WRITE(6,600) N,NH,NV
 NE=0
 DO 20 I=1,N
 NI=NE+1
 NE=MIN0(NH+1,I)+NE
 20 WRITE(6,610) I,(A(J),J=NI,NE)
 NNV=IABS(NV)
 READ(5,510) (E(I),I=1,NNV)
 CALL BSVEC(A,N,NH,NV,E,EV,100,VW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 CALL SEPRT(E,EV,100,N,NNV)
 GO TO 10
 500 FORMAT(3I5)
 510 FORMAT(5E15.7)
 600 FORMAT('1',10X,'** ORIGINAL MATRIX'/
 * 11X,'** ORDER =',I5,'NH=',I3,
 * 10X,'NV=',I3/)
 610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7))
 620 FORMAT(/11X,'** CONDITION CODE =',I5/)
 END

 For subroutine SEPRT, see the example of the
subroutine SEIG1.

Method
When a real symmetric band matrix A of order n and
bandwidth h and also its nv number of eigenvalues are
given, the corresponding eigenvector are obtained by
using the inverse iteration method.
Suppose the true eigenvalues have the relation.

λ1>λ2>...>λn (4.1)

BSVEC

219

 Given µj as an approximation of λj the inverse iteration
method iteratively solves

() ,...2,1,1 ==− − rrrj xxIA µ (4.2)

 with an appropriate initial vector x0, and chooses xr as
eigenvector when it has satisfied convergence criteria.

First, A-µjI is decomposed to a unit lower triangular
matrix L and upper triangular matrix U

() LUIAP =− jµ (4.3)

and the resulting equation

1−= rr PxLUx (4.4)

 is solved, where P is a permutation matrix which
performs row interchange for a partial pivoting. To solve
Eq. (4.4), the following two equations

11 −− = rr PxLy (forward substitution) (4.5)

1−= rr yUx (backward substitution) (4.6)

are to be solved.
 The method described above is the general inverse
iteration, but if it is applied to a real symmetric band
matrix, the handwidth becomes large because of the row
interchange in the Eq. (4.3), and the storage space for an
LU-decomposed matrix increases substantially compared
to the space for the original matrix A. This subroutine, in
order to minimize this increase, discards the L component
leaving only the U component.

1−= rr xUx (4.7)

Since an appropriate initial eigenvector x0 can be
represented as

()
i

n

i
i ux ∑

=
=

1

0
0 α (4.8)

 by the true eigenvectors u1,u2,...,un which correspond to
the true eigenvalues, from Eq. (4.7), let

x U x1
1

0= − (4.9)

 and substituting Eqs. (4.3) and (4.8) into (4.9), we
obtain

() ()

() ()

then,If
1

T

1

01

1

01
1

∑

∑

∑

=

=

−

=

−

=

−=

−=

n

k
kiki

n

i
i

T
ij

n

i
ii

T
j

uLuP

LuPIA

uLPIAx

β

αµ

αµ

() ()

() ()∑ ∑

∑ ∑

= =

−

= =

−

−=

−=

n

k
kik

n

i
ij

n

i

n

k
kikij

1 1

01

1 1

01
1

uIA

uIAx

βαµ

βαµ

Rewriting ()
ik

n

i
i βα∑

=1

0 to ()α k
1 ,

() ()∑
=

−−=
n

i
iij

1

11
1 uIAx αµ

Similarly, rewriting ()
ik

n

i

r
i βα∑

=

−

1

1 to ()α k
r , and from

() () ,...2,1,
1

=−= ∑
=

− r
n

i
i

r
i

r
jr uIAx αµ (4.10)

xr is given by

()

() () () ()

−−+

×
−

=

∑
≠
=

n

ji
i

r
ji

r
jji

r
ij

r
j

r
jj

r

1

1

µλµλαα

µλ

uu

x

 (4.11)

 The constant 1/(λj-µj)r can be eliminated by normalizing
xr at each iteration step. Therefore

() () () ()∑
≠
=

−−+=
n

ji
i

r
ji

r
jji

r
ij

r
jr

1

µλµλαα uux (4.12)

 In general, |(λj-µj)/(λi-µj)|<<1, so Eq. (4.12) indicates
that if 0)(≠r

jα , the larger r becomes, the closer xr

approaches eigenvector ()α j
r

ju .

• Initial vector and convergence criteria

This subroutine normalize xr-1 at each step such that

Ax unr
23

11 =− (4.13)

and if xr satisfies

11 ≥rx (4.14)

then xr is accepted as an eigenvector, where u is the
unit round off, and A is represented by

∑
≥

=
ji

ija
n
2A (4.15)

 which is close to A
1
 and is easy to calculate. The

reason that Eq. (4.15) can be used is as follows: from
Eqs. (4.3) and (4.7).

() 11
T

1 rrrrj xLxPxxIA −=− µ (4.16)

BSVEC

220

 The right hand side of Eq. (4.16) is the residual vector
when considering x xr r 1

 as an eigenvector.
 Since L is a lower triangular matrix whose diagonal
elements are 1 and absolute values of other off-diagonal
elements are less than 1, and P is a permutation matrix,
the norm of the vector is assumed not to be increased by
the linear transformation P T L. Therefore, if xr 1

1≥ , the
norm in the right hand side of Eq.(4.16) is very small, so
there is no objection to accept xn as an eigenvector. For
the initial vector x0, a vector which consists of the
continuous n elements

[] ,...2,1=−= iiiRi φφ (4.17)

 is used, where Ri's are not pseudo random numbers in a
statistical sense but are increasingly uniformly distributed
random numbers in the interval [0,1], and

()φ = −5 1 2 (4.18)

 By doing this, there is no need to alter the way of
choosing an initial vector for multiple eigenvalues, and/or
to give any perturbation to the eigenvalues, so that the
computation becomes simpler. This subroutine initializes
the first random number to be R1=φ every time it is called
in order to guarantee consistency with its computed
results.

If five iterations of Eq, xr is still not enough to satisfy
the convergence criterion (4.14), this subroutine tries
another five more iterations after relaxing the criterion by
setting the coefficient of A in Eq. (4.13) to 10n3/2u.

 If convergence is still not accomplished, the iteration is
assumed to be non-convergent and the corresponding
column of EV are all set to zero and ICON is given
15000.

• Orthogonalizing the eigenvectors

All eigenvectors of a real symmetric matrix should be
orthogonal to each other, but once the eigenvalues
become close to each other, the orthogonal nature of
the eigenvectors tend to collapse. Therefore, this
subroutine, to insure the eigenvectors orthogonal,
performs the following:
first it examines to see if the eigenvalue µi to which the
corresponding eigenvector is obtained and the
eigenvalue at one step before, µi-1, satisfies the
relationship

A3
1 10−

− ≤− ii µµ (4.19)

If the relationship is satisfied, the eigenvector xi
corresponding to the eigenvalue µi is modified to the
eigenvector xi-1 corresponding to µi-1 in such a way that

() 0, 1 =−ii xx (4.20)

 In a similar way, for a group of eigenvalues which
successively satisfy the relationship (4.19), their
corresponding eigenvectors are reorthogonalized.

BTRID

221

B51-21-0302 BTRID, DBTRID

Reduction of a real symmetric band matrix to a real
symmetric tridiagonal matrix (Rutishauser-Schwarz
method)
CALL BTRID(A,N,NH,D,SD,ICON)

Function
A real symmetric band matrix A of order n and
bandwidth h is reduced to a real symmetric tridiagonal
matrix T by using the Rutishauser-Schwarz's orthogonal
similarity transformation, such as SS AQQT T= , where Qs
is an orthogonal matrix, and also 0≤h<<n.

Parameters
A Input. Real symmetric band matrix A. Its

contents are destroyed an output. Compressed
mode for a symmetric band matrix. One-
dimensional array of size n(h+1)-h(h+1)/2

N Input. Order n of the matrix A.
NH Input. Bandwidth h.
D Output. Diagonal elements of the tridiagonal

matrix.
One-dimensional array of size n.

SD Output. Subdiagonal elements of the
tridiagonal matrix T. One-dimensional array of
size n. In the subroutine, only SD(2) to SD(N)
are used and SD(1) is set to zero.

ICON .. Output. Condition code. See Table BTRID-1.

Table BTRID-1 Condition codes

Code Meaning Processing
0 No error

10000 NH=0 or NH=1 No reduction
performed.

30000 NH<0 or NH≥N Bypassed

Comments on use
• Subprograms used

SSL II ... AMACH and MGSSL
FORTRAN basic functions ... MIN0, ABS and SQRT

• When compared to the Householder method which
reduces the matrix to a real symmetric tridiagonal
matrix, the Rutishauser method used in this subroutine
is better both in terms of the amount of storage and
computations if the ratio of the bandwidth to the order
number, r=h/n, is small. If the ratio r exceeds 1/6, the
Householder method is better.

• Example
This example computes eigenvalues by using
subroutine BSCT1 after reduction of a real symmetric
band matrix of order n and bandwidth h to a tridiagonal
matrix under conditions n≤100 and h≤10.

C **EXAMPLE**
 DIMENSION A(1100),D(100),SD(100),
 * E(100),VW(300)
 10 READ(5,500) N,NH,M,EPST
 IF(N.EQ.0) STOP
 NN=(NH+1)*(N+N-NH)/2
 READ(5,510) (A(I),I=1,NN)
 WRITE(6,600) N,NH,IABS(M)
 NE=0
 DO 20 I=1,N
 NI=NE+1
 NE=MIN0(NH+1,I)+NE
 20 WRITE(6,610) I,(A(J),J=NI,NE)
 CALL BTRID(A,N,NH,D,SD,ICON)
 WRITE(6,620)
 WRITE(6,630) ICON
 IF(ICON.EQ.30000) GO TO 10
 WRITE(6,640) (I,D(I),SD(I),I=1,N)
 CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON)
 WRITE(6,650)
 WRITE(6,630) ICON
 IF(ICON.EQ.30000) GO TO 10
 MM=IABS(M)
 WRITE(6,660) (I,E(I),I=1,MM)
 GO TO 10
 500 FORMAT(3I5,E15.7)
 510 FORMAT(5E15.7)
 600 FORMAT('1',10X,'** ORIGINAL MATRIX'/
 * 11X,'** ORDER =',I5,10X,'NH=',
 * I3,'M=',I3/)
 610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7))
 620 FORMAT('0'/11X,'** TRIDIAGONAL ',
 * 'MATRIX')
 630 FORMAT(/11X,'** CONDITION CODE =',I5/)
 640 FORMAT(5X,I5,2E16.7)
 650 FORMAT('0'/11X,'** EIGENVALUES')
 660 FORMAT(5X,'E(',I3,')=',E15.7)
 END

Method
Although the Householer method is often used for
reduction of a real symmetric matrix to a tridiagonal
matrix (see"Method" for the subroutine TRID1), if this
method is applied to a band matrix, however, its non-zero
elements spread over the matrix during the reduction, and
therefore it cannot be used only in the range of band area.
On the other hand, in the Rutishauser-Schwarz method,
subdiagonal lines can be eliminated one by one from
outside first by processing the band part of the band
matrix A (of order n, band width h, and each element aij).
 Consider lower part of matrix A including its diagonal
elements since the matrix is symmetric.
 First, in order to eliminate ah+11, , transform matrix A

into T
111 ARRA = , where R1 is an orthogonal matrix

BTRID

222

associated with the h-th and (h+1)-th rows of A, and
tan 1,1,11 hh aa +=θ .

1

1
0

1
cossin
sincos

1
0

1
1

11

11
1 +

−
=

+

h
h

R

hh

θθ
θθ

The element ah+1.1 becomes zero by this operation, but
another new non-zero element a2h+1,h is generated. In
order to eliminate it, perform A1=R2A1R2

T by using the
orthogonal matrix,

12
2

1
0

1
cossin
sincos

1
0

1
122

22

22
2 +

−
=

+

h
h

R

hh

θθ
θθ

associated with the 2h-th and (2h+1)-th rows of the
matrix, where tan hhhh aa ,2,122 +=θ . By this operation,
a2h+1,h becomes zero, but again another new non-zero
element a3h+1,2h is generated. By using this similarity
transformation (orthogonal similarity transformation)
repeatedly by an appropriate orthogonal matrix, element
ah+1,1 can be eliminated entirely. To eliminate ah+2,2 an
appropriate orthogonal transformation is repeatedly
performed to eliminate non-zero elements generated
during the transformation. Then element ah+2,2 can be
entirely eliminated. By repeatedly performing this
operation, all the most outward subdiagonal elements can
be eliminated and the bandwidth is reduced to h-1.

 The bandwidth can be reduced further by one by
applying the same procedure as done to the original
matrix to this newly produced matrix.
 Fig. BTRID-1 shows the non-zero elements (indicated
by × in the diagram) that are generated successively when
eliminating the element ah+1,1, i.e., a31 (indicated by * in
the diagram) for n=10 and h=2 and the lines of influence
of the orthogonal similarity transformation to eliminate
the non-zero elements.
 The number of multiplications necessary for eliminating
the most outward subdiagonal elements of a matrix of
bandwidth h is approximately 4n2, so that the number of
necessary multiplications for a tridiagonalization is about
4hn2 (See Reference [12]). On the other hand, in
Householder method the number of necessary
multiplications for tridiagonalization of a real symmetric
matrix of order n is 2n3/3. Therefore, for r=h/n<1/6, the
Rutishauser method is better in respect to the number of
multiplications carried out.
 The orthogonal matrix Qs used to reduce the original
matrix A to a tridiagonal matrix (T=QsAQs

T) can get
denoted as a product of orthogonal matrices R1,R2,... such
as Qs=Rs...R2R1.
 However, since it is not a good idea to have the Qs as an
n × n matrix as far as amount of storage and
computations are concerned, this subroutine does not
carry out such an computation.

A =

× × ×

× − × × ×

− × − × × ×

× − × − × × ×
↓ ↓
× − × − × − × × ×

× − × − × × ×
↓ ↓
× − × − × − × × ×

× − × − × × ×
↓ ↓
× − × − × − × ×

↓ ↓
× × ×

0

0

|
*

| |

|

| |

|

| |

|

Fig. BTRID-1 Elimintation of elements by Rutishauser-Schwarz
method

BYN

223

I11-81-1101 BYN, DBYN

Integer order Bessel function of the second kind Yn(x)
CALL BYN(X,N,BY,ICON)

Function
This subroutine computes the integer order Bessel
function of the second kind

() () (){ }[]

() () ()
()

()

+⋅

+
−−

−−
−

+=

∑∑

∑∑
+

==

+

∞

=

−

=

−

kn

m

k

m

nk

k

kn

k

nk

nn

mmx

knk
x

k
kn

xxJxY

11

2

0

1

0

2

112

!!
112

!
!11

2log2

ππ

γ
π

for x>0, by the recurrence formula. Where, Jn(x) is the
integer order Bessel function of the first kind, and γ
denotes the Euler's constant and also the assumption

01
0

1
=∑

=m
m is made.

Parameters
X Input. Independent variable x.
N Input. Order n of Yn(x).
BY Output. Function value Yn(x).
ICON .. Output. Condition code. See Table BYN-1.

 When N=0 or N=1, ICON is handled the same as in
ICON for BY0 and BY1.

Table BYN-1 Condition codes

Code Meaning Processing
0 No error

20000 X≥tmax BY is set to 0.0.
30000 X≤0 BY is set to 0.0.

Comments on use
• Subprograms used

SSL II ... BY0, BY1, UBJ0, UBJ1, MGSSL, and
UTLIM
FORTRAN basic function ... IABS, FLOAT, DSIN,
DCOS, DLOG, and DSQRT

• Notes
[Range of argument X]
0<X<tmax
If X becomes large enough, sin(x-π/4) and cos(x-π/4) ,
which are used in calculating Y0(x) and Y1(x), will lose
accuracy. The limit is provided for that reason. (See
(4.4) in the Method section of BY0 and BY1)
When calculating ()Y x Y xo and , (), use subroutines1
BY0 and BY1 instead.

• Example

The following example generates a table of Yn(x) for
range of x from 1 to 10 with increment 1 and for the
range of N from 20 to 29 with increment 1.

C **EXAMPLE**
 WRITE(6,600)
 DO 20 N=20,29
 DO 10 K=1,10
 X=K
 CALL BYN(X,N,BY,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,N,BY
 IF(ICON.NE.0) WRITE(6,620) X,N,BY,ICON
 10 CONTINUE
 20 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',5X,'N',8X,
 *'YN(X)'/)
 610 FORMAT(' ',F8.2,I5,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'N=',I5,5X,'BY=',E17.7,5X,
 *'CONDITION=',I10)
 END

Method
Bessel function Yn(x) is calculated using the following
recurrence formula.

() () () 1,...,2,1,2
11 −=−= −+ nkxYxY

x
kxY kkk (4.1)

where, both Y0(x) and Y1(x) are calculated by using BY0
and BY1.

BYR

224

I11-83-0201 BYR, DBYR

Real order Bessel function of the second kind Yν(x)
CALL BYR(X,V,BY,ICON)

Function
This subroutine evaluates a real order Bessel function of
the second kind

() () () ()
()Y x

J x J x
ν

ν ννπ
νπ

=
− −cos

sin

by using a modified series expansion and the τ method.
In the above expression, Jν(x) is the Bessel function of
the first kind.

Parameters
X Input. Independent variable x.
V Input. Order ν of Yν(x).
BY Output. Value of function Yν(x).
ICON .. Output. Condition code. (See Table BYR-1.)

Table BYR-1 Condition codes

Code Meaning Processing
0 No error

20000 • X=0.0 or the value of BY
was large almost to
overflow.

• X≥tmax

The negative
infinite value of
the floating
point
expression is
output to BY.
BY is set as
0.0.

30000 X<0.0 or V<0.0 BY is set as
0.0.

Comments on use
• Subprograms used

SSL II ... AMACH, AFMAX, MGSSL, ULMAX, and
UTLIM
FORTRAN basic function ... FLOAT, ALOG, AMAX1,
ALGAMA, ABS, GAMMA, SQRT, SIN, and COS

• Notes

X>0.0 and ν≥0.0 must be satisfied.
To evaluate Y0(x) or Y1(x), it is better to use BY0 or
BY1 respectively rather than this subroutine.
If values Yν(x), Yν+1(x), Yν+2(x), ... Yν+M(x) are necessary
at the same time, calculate Yν(x) and Yν+1(x) and with
this subroutine , then use recurrence formula((4.2) in
"Method") repeatedly to obtain the values of higher
order as Yν+2(x), Yν+3(x), ..., Yν+M(x).
If this subroutine is called repeatedly with the same
value of ν for large values of x, the common procedure
is bypassed to calculate the value of Yν(x) effectively.

• Example
The following example calculates the value of Yν(x) for
ν from 0.5 to 0.8 with increment 0.01 and for x from 1
to 10 with increment 1.

C **EXAMPLE**
 DO 20 NV=50,80
 V=FLOAT(NV)/100.0
 DO 10 K=1,10
 X=FLOAT(K)
 CALL BYR(X,V,BY,ICON)
 WRITE(6,600) V,X,BY,ICON
 10 CONTINUE
 20 CONTINUE
 STOP
 600 FORMAT(' ',F8.3,F8.2,E17.7,I7)
 END

Method
A ν-order Bessel function of the second kind is defined
using Bessel functions of the first kind Jν(x) and J-ν(x) as
follows:

() () () ()
()νπ
νπ νν

ν sin
cos xJxJxY −−

= (4.1)

 If the value of order ν is expressed as integer n, this is
defined as the limit value for ν → n .
 In this subroutine, the value of Yν(x) is calculated
directly for 0≤ν≤2.5. For ν>2.5, if fraction part µ of ν is
equal to or less than 0.5, values of Yµ+1(x) and Yµ+2(x) are
calculated directly; and if µ is greater than 0.5, values of
Yµ(x) and Yµ+1(x) are calculated directly. These values are
used to calculate Yν(x) form the recurrence formula:

() () ()xYxY
x

xY 11
2

−+ −= ννν
ν (4.2)

 For 0≤ν≤2.5, calculation method of Yν(x) is explained
below. The method varies depending on the value of x.
For

x≤3.66 (4.3)

the calculation method for a small value of x is used;
whereas, for

x>3.66 (4.4)

the calculation method for a large value of x is used.
 The method for a small value of x
 Series expansion of the following functions Jν(x) and J-

ν(x) is used:

() () ()J x x x
ν

ν

ν ν
=

 +

+
−

+

2

1
1

1
4

1 2

2

Γ Γ!

BYR

225

()

⋅⋅⋅+
+

 −

+
νΓ 3!2

4
1 2

2x
 (4.5)

() () ()

−

−
+

−

=

−

− νΓνΓ

ν

ν 2!1
4
1

1
1

2

2xxxJ

()

⋅⋅⋅+
−

 −

+
νΓ 3!2

4
1 2

2x
 (4.6)

 φ1(ν,x) and φ2(ν,x) are defined as follows:

()

()

−

=

−

=

−

ν
νφ

ν
νφ

ν

ν

2
1

,

1
2,

2

1

x

x

x

x
 (4.7)

The calculation method varies depending on the
interval of ν: 0≤ν≤0.5, 0.5<ν≤1.5, and 1.5<ν≤2.5.
Explanations of the calculation method for 0≤ν≤0.5
follow.

The following is obtained from expressions (4.5), (4.6),
and (4.7):

() () () { () ()}x,vBx,vAvxJvxJ k
k

kvv +=− ∑
∞

=
−

0
cos π (4.8)

 where

()

()
()

()

()

()
()

() ()
()

A x x

k k k

B x x

k
x

k
x

k

k

k

k

k

ν

ν ν
νπ

ν

ν

φ ν
ν

φ ν νπ
ν

,

,

, ,

= − −

⋅
+ −

−
+ −

= − −

⋅
+ −

+
+ +

1
4

1 1
1 1

1
4

1
1 1

2

2

1

!
cos

!
cos2

Γ Γ

Γ Γ

 (4.9)

 If Ak(ν,x) and Bk(ν,x) are calculated as they are,
cancellation occurs for ν ≈ 0. This is prevented as
follows:
 Since φ1(ν,x) and φ2(ν,x) have the same sign in
Bk(ν,x),cancellation does not occur even when they are
added; however, if φ1(ν,x) and φ2(ν,x) defined in
expression (4.7) are calculated as they expressed in the
right sides, cancellation occurs if (x/2)ν is close to 1. To

calculate φ1(ν,x) and φ2(ν,x) as accurate as binary
rounding error, it is only necessary to obtain the best
approximation of the following function f(t) having the
required accuracy for -log2≤t≤log2:

() ⋅⋅⋅+++=−=
!3!2!1

11 2tt
t

etf
t

 (4.10)

This is because φ1(ν,x) and φ2(ν,x) can be calculated
with a high accuracy using the best approximation as
follows:

()

()

=

−−=

2
log

2
log

2
log

2
log

2

1

xxvfx,v

xxvfx,v

φ

φ

 (4.11)

The following best approximation of function f(t) is
incorporated in this subroutine:

()
∑ ∑

∑

= =

=

−
≈ N

k

M

k

k
k

k
k

M

k

k
k

tpttq

tp
tf

0 0

22

0

22
 (4.12)

To calculate (1/Γ(k+1-ν)-cos(νπ)/Γ(k+1+ν))/(k!ν) for
Ak(ν,x) in expression (4.9) without cancellation, it is only
necessary to obtain the best approximation having the
required accuracy.

In this case, since the following is satisfied for the part
enclosed in braces in Ak(ν,x) of expression (4.9).

() ()() () ()
()

()
()

~ ~A
k k

A
k k k

k

k kν
ν ν

ν
ν

νπ
ν

=
+ −

+
−

+
+

≥

−

1 1 1

1

1 !
cos

Γ Γ

 (4.13)

it is only necessary to obtain an approximation of ()~A0 ν
for 0≤ν≤0.5. In this subroutine,

() ()∑
=

−≈
M

k

k
kpA

0
00

~ νννν (4.14)

is used as the best approximation.
 Values of Ak(ν,x) and Bk(ν,x) can be obtained without
cancellation in this way, buy all values do not have the same
sign; consequently, cancellation may occur in the addition to
be processed in expression (4.8). Since function Yν(x) is an
oscillating function with respect to x for constant ν and has a
zero point, it is impossible to obtain the value of such a
function with a relative accuracy. This means that the
absolute accuracy must be used. (except for the case if the
value of x is small and the value of Yν(x) takes a great
negative value.) Examining the range for x in which the value
of Yν(x) can be calculated with an absolute accuracy
applicable in principle,

BYR

226

x≤3.66 (4.15)

is found to be valid in this method. Since values of the
terms comprising the sum in expression (4.8) become
sufficiently small as the value of k becomes greater, it is
only necessary to calculate a relatively small number of
terms until the resultant value converges according to the
required accuracy.

Therefore, the value of Yν(x) is obtained from

() () () ()
()

() (){ }

()ν

νν

νπ
νπ νν

ν

g

xBxA

xJxJ
xY

k
kk∑

∞

=

−

+
=

−
=

0

,,

sin
cos

 (4.16)

using the best approximation

() k
k

M

k

Pg 2

0

νν ∑
=

≈ (4.17)

of

() ()
ν
νπν sin=g (4.18)

For ν = 0, the value of Y0(x) is calculated with the limit
value obtained from expression (4.1) for ν → 0 as follows.

()
()

−

+

 −

= ∑
∞

=
k

k

k

x
k

x
xY Φγ

π 2
log

!
4
1

2

0
2

2

0 (4.19)

 This is more efficient than the calculation of (4.16).
 Where γγγγ is the Euler's constant, Φ0=1, and

 ()∑
=

≥=
k

m
k k

m0

11Φ .

 The calculation method for 0≤ν≤0.5 has been explained.
 Calculation methods for 0.5<ν≤1.5 and 1.5<ν≤2.5 are
omitted because the same concept applies to these ranges.
The method for a large value of x

Bessel function of the second kind Yν(x) is given as the
imaginary part of the Hankel function of the first kind

()() () ()xiYxJxH ννν +=1 (4.20)

Where i is the imaginary unit ()i = −1 , ()J xν is the

Bessel function of the first kind. And f
xν

1

 is defined

as follows:

()()xHex
x

f
xi

14
1

2
1

2
1

2
1

ν

πνπ

ν
π

 −−−

=

 (4.21)

where,

x

fv
1

 is an imaginary function, and assume

whose real part is

x
vP 1

 and whose imaginary part is

Q
x

ν , 1

. In this case, f
xν

1

 is expressed as:

+

=

x
iQ

x
P

x
f 1,1,1 ννν (4.22)

Using expressions (4.20), (4.21), and (4.22), Yν(x) is
represented as :

()

 −−

+

 −−

=

ππ

ππ
π

4
1

2
1cos1,

4
1

2
1sin1,2 2

1

vx
x

vQ

vx
x

vP
x

xYv
 (4.23)

 Let us obtain the approximation of

x
f 1
ν of (4.21) in

the following paragraph. If the approximation is known,
the real and imaginary parts of expression (4.22) are

obtained as P
x

ν , 1

 and Q
x

ν , 1

. With these values,

Yν(x) is obtained.
 The Hankel function of the first kind () ()H xν

1 satisfies
the following differential equation:

()x d w
dx

x dw
dx

x w2
2

2
2 2 0+ + − =ν (4.24)

Assuming t
x

=
1

 and substituting () ()H xν
1 of (4.21) to

(4.24), f
xν

1

 or ()f tν satisfies the following

differential equation.

() () () ()t f t t i f t f t2 22
1
4

0′′ + − + −

=ν νν (4.25)

 Applying the τ method to this differential equation, the
approximation of fν(t) is obtained for a small value of t.
For this purpose, let us consider the following differential
equation derived from (4.25) by adding the shifted
ultraspherical polynomial on the orthogonal interval [0,η]
to the right side by multiplying τ.

() () () ()

()

=

 −+′−+′′

η
τ

ν

α

ννν

tC

tftfittft

m

mmm

*

22

4
12

 (4.26)

 This equation has the following polynomial of degree m
as a particular solution:

()
()

()∑
∑

= +

=

+
−=

m

k
k

k

k

l

l
lmk

vm ak

taC
tf

0 1

0

*

12 η
τ

α

 (4.27)

where

BYR

227

()() ()()

−−⋅⋅⋅−−=

=

l
l

l l
lia

a

8!
1243414

1
222222

0

ννν (4.28)

)*(α
mkC is the k-th order coefficient of)()*(tCm

α . If the value
of τ in the right side of (4.26) is sufficiently small, fνm(t) can
be regarded as the approximation polynomial of fν(t).

Determining the value of τ (the value of τ decreases
as the value of m increases) by the initial condition
fνm(0)=1(fν(t) → 1 for t →0), we obtain the following
approximation polynomial fνm(t) of fν(t) for 0≤t≤η:

()

()

()
()

()∑

∑
∑

= +

= +

=

+

+
=

m

k
k

k

mk

m

k
k

k

k

l

l
lmk

m

ak
C

ak

taC

tf

0 1

*
0 1

0

*

1

1

η

η
α

α

ν (4.29)

 The value of α is assumed to be 1 based on the results
of experiments conducted for the accuracy of fνm(t) with
various values.

 Since P
x

ν , 1

 and Q
x

ν , 1

 are the real and imaginary

parts of f
xν

1

, they can be expressed as

()

()
()

()

()

()
()

()

+

+

=

+

+

≈

∑

∑∑

∑

∑
∑

= +

= +=

= +

= +

=

m

k
k

k

mk

m

lk
k

k

mk
m

l

l

l

m

k
k

k

mk

m

k
k

k

k

l

l

lmk

ak
C

ak
C

x
a

ak
C

ak

x
aC

x
vQ

x
vP

0 1

1*
1

1*

0

0 1

1*
0 1

0

1*

1

1
1

Im
Re

1

1

1

Im
Re

1,

1,

η

η

η

η

 (4.30)

For efficient calculation formulas of P
x

ν , 1

 and

Q
x

ν , 1

, these expressions are transformed to

()

−

≈

∑

∑ ∑

=
+

= =
+

m

k
k

k

m

l

m

lk
k

k

l

ll
l

Wi

Wi
W
d

i
x

x
Q

x
P

0
1

0
1

1
2

Im
Re

1,

1,
π

ν

ν

 (4.31)

where

()

≥

−

 +

=

=

∏
−

=

1

0 2
2

0

1

2
1

1
k

n

n
k k

n

eW

W

ν

 (4.32)

dl and en are given as

()
()

≥=

=

−
− 12

2

1

1*
1,

0

l
l

C
d

d

l
lm

l ηπ

π
 (4.33)

()

()
() ()

≥=

=

−

12

2

1*
1,

1*

1*
00

n
C

Cne

Ce

nm

mn
n

m

η

 (4.34)

 As explained at the beginning of explanations, this method
is applied to the range of x>3.66; thus the calculation formula
can be determined with a minimum value for the required
accuracy assuming η=1/3.66. Since the value of m decreases
in proportion to that of η, it is best to change the values of η
and m depending on intervals of x to improve calculation
efficiency for a large value of x. It is known that the values

of P
x

ν , 1

 and Q
x

ν , 1

 can be efficiently calculated from

the following:
For single precision:

==≥

==<<

5,
10
1,10for

8,
66.3
1,1066.3for

mx

mx

η

η
 (4.35)

For double precision:

==≥

==<<

15,
10
1,10for

24,
66.3
1,1066.3for

mx

mx

η

η
 (4.36)

In this subroutine, the constants dl and en are tabulated
in advance.

BY0

228

I11-81-0401 BY0, DBY0

Zero order Bessel function of the second kind Y0(x).
CALL BY0(X,BY,ICON)

Function
This subroutine computes the zero order Bessel function
of the second kind Y0(x)

() () (){ }[

() ()
()

⋅−−

+=

∑∑
=

∞

=

k

mk

kk
m

k
x

xxJxY

11
2

2

00

1
!

21

2log2 γ
π

(where J0(x): zero order Bessel function of the first kind
and γ : Euler's constant)
by rational approximations and the asymptotic expansion.
 Where, x>0.

Parameters
X Input. Independent variable x.
BY Output. Function value Y0(x).
ICON .. Output. Condition code. See Table BY0-1.

Table BY0-1 Condition codes

Code Meaning Processing
0 No error

20000 X≥tmax BY is set to 0.0.
30000 X≤0 BY is set to 0.0.

Comments on use
• Subprograms used

SSL II ... UBJ0,MGSSL, and UTLIM
FORTRAN basic functions ... DSIN, DCOS, DLOG
and DSQRT

• Notes

[Range of argument X]
0<X<tmax
These limits are used because sin(x-π/4) and cos(x-π/4)
lose accuracy if X becomes large. (See "Method".)

• Example

The following example generates a table of Y0(x) from
1 to 100 with increment 1.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,100
 X=K
 CALL BY0(X,BY,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,BY
 IF(ICON.NE.0) WRITE(6,620) X,BY,ICON
 10 CONTINUE
 STOP

 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',9X,'Y0(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'BY=',E17.7,5X,'CONDITION=',
 *I10)
 END

Method
With x=8 as the boundary, the approximation formula
used to calculate Bessel function Y0(x) changes.

• For 0<x≤8

The expansion of Y0(x) into power series

() () (){ }[

() ()
()

−−

+=

∑∑
=

∞

=

k

mk

kk
m

k
x

xxJxY

11
2

2

00

1
!

21

2log2 γ
π

 (4.1)

 (where J0(x): Zero-order Bessel function of the first kind
and γ: Euler's constant) is calculated using the following
rational approximations.
Single precision:

() () ()xxJxbxaxY
k

k
k

k

k
k log2

0

5

0

2
5

0

2
0 π

+= ∑∑
==

 (4.2)

 Theoretical precision = 8.14 digits

Double precision:

() () ()xxJxbxaxY
k

k
k

k

k
k log2

0

8

0

2
8

0

2
0 π

+= ∑∑
==

 (4.3)

 Theoretical precision = 18.78 digits

• For x>8

The asymptotic expansion of Y0(x)

() () (){
() ()}4cos

4sin2

0

00

π

π
π

−+

−=

xxQ

xxP
x

xY (4.4)

is evaluated through use of the following approximate
expressions of P1(x) and Q1(x)
Single precision:

() xzzbzaxP
k

k
k

k

k
k 8,

2

0

2
2

0

2
0 == ∑∑

==

 (4.5)

BY0

229

Theoretical precision = 10.66 digits

() xzzdzcxQ
k

k
k

k

k
k 8,

2

0

2
1

0

12
0 == ∑∑

==

+ (4.6)

Theoretical precision = 9.58 digits

Double precision:

() xzzbzaxP
k

k
k

k

k
k 8,

5

0

2
5

0

2
0 == ∑∑

==

 (4.7)

Theoretical precision = 18.16 digits

() xzzdzcxQ
k

k
k

k

k
k 8,

5

0

2
5

0

12
0 == ∑∑

==

+ (4.8)

Theoretical precision = 18.33 digits
For more information, see Reference [78] pp.141 - 149.

BY1

230

I11-81-0501 BY1, DBY1

First order Bessel function of the second kind Y1(x).
CALL BY1(X,BY,ICON)

Function
This subroutine computes the first order Bessel function
of the second kind

() () ()(){ }
() ()

()

+

+
−−

−+=

∑ ∑∑
∞

=

+

==

+

0

1

11

12

11

/1/1
!1!

2/1/1

/12/log/2

k

k

m

k

m

kk
mm

kk
x

xxxJxY

π

γπ

(where J1(x): first order Bessel function of the first kind
and γ : Euler's constant) by rational approximations and
the asymptotic expansion. Where, x>0.

Parameters
X Input. Independent variable x.
BY Output. Function value Y1(x).
ICON .. Output. Condition code. See Table BY1-1.

Table BY1-1 Condition codes

Code Meaning Processing
0 No error

20000 X≥tmax BY=0.0
30000 X≤0 BY=0.0

Comments on use
• Subprograms used

SSL II ... UBJ1, MGSSL and UTLIM
FORTRAN basic function ... DSIN, DCOS, DLOG and
DSQRT

• Notes

The range of argument X
0<X<tmax
These limits are set because sin(x-3π/4) and cos(x-
3π/4) can not be calculated accuracy if X becomes
large. (See "Method".)

• Example

The following example generates a table of Y1(x) from
1 to 100 with increment 1.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,100
 X=K
 CALL BY1(X,BY,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,BY
 IF(ICON.NE.0) WRITE(6,620) X,BY,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF BESSEL ',
 *'FUNCTION'///6X,'X',9X,'Y1(X)'/)
 610 FORMAT(' ',F8.2, E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'BY=',E17.7,5X,'CONDITION=',
 *I10)
 END

Method
With x=8 as the boundary, the approximation formula
used to calculate Bessel function Y1(x) changed.

• For 0<x≤8

The power series expansion of Y1(x).

() () ()(){ }
() ()

()

+

+
−−

−+=

∑ ∑∑
∞

=

+

==

+

0

1

11

12

11

/1/1
!1!

2/1/1

/12/log/2

k

k

m

k

m

kk
mm

kk
x

xxxJxY

π

γπ

 (4.1)

 (where J1(x): first order Bessel function of the first kind
and γ: Euler's constant) is calculated using the following
rational approximations.
Single precision:

()

() (){ }xxxJ

xbxaxY
k

k
k

k

k
k

/1log2

/

1

2

0

2
7

0

12
1

−+

= ∑∑
==

+

π

 (4.2)

Theoretical precision = 8.96 digits

Double precision:

()

() (){ }xxxJ

xbxaxY
k

k
k

k

k
k

/1log2

/

1

8

0

2
7

0

12
1

−+

= ∑∑
==

+

π

 (4.3)

Theoretical precision = 18.24 digits

• For x>8

The asymptotic expansion of Y1(x)

() () (){
() ()}4/3cos

4/3sin2

1

11

π

π
π

−+

−=

xxQ

xxP
x

xY (4.4)

is calculated through use of the following approximate
expression P1(x) and Q1(x):
Single precision:

() xzzbzaxP
k

k
k

k

k
k /8,/

2

0

2
2

0

2
1 == ∑∑

==

 (4.5)

Theoretical precision = 10.58 digits

BY1

231

() xzzdzcxQ
k

k
k

k

k
k 8,

2

0

2
1

0

12
1 == ∑∑

==

+ (4.6)

Theoretical precision = 9.48 digits

Double precision:

() xzzbzaxP
k

k
k

k

k
k 8,

5

0

2
5

0

2
1 == ∑∑

==

 (4.7)

Theoretical precision = 18.11 digits

() xzzdzcxQ
k

k
k

k

k
k 8,

5

0

2
5

0

12
1 == ∑∑

==

+ (4.8)

Theoretical precision = 18.28 digits

For more information, see Reference [78] pp.141 - 149.

CBIN

232

I11-82-1101 CBIN, DCBIN

Integer order modified Bessel function of the first kind
In(z) with complex variable
CALL CBIN(Z,N,ZBI,ICON)

Function
This subroutine computes integer order modified Bessel
function of the first kind In(z) with complex variable

() ()∑
∞

= +

=

0

2

!!
4
1

2
1

k

k

n

n knk

z
zzI

by the power series expansion of the above form and
recurrence formula.

Parameters
Z Input. Independent variable z. Complex variable.
N Input. Order n of In(z).
ZBI Output. Function value In(z). Complex variable.
ICON .. Output. Condition code.

See Table CBIN-1.

Table CBIN-1 Condition codes

Code Meaning Processing
0 No error

20000 |Re(z)| ≥ log(flmax) or
|Im(z)| ≥ log(flmax)

ZB1=(0.0,0.0)

Comments on use
• Subprograms used

SSL II ... AMACH, MGSSL, ULMAX
FORTRAN basic functions ... REAL, AIMAG, ABS,
IABS, FLOAT, CEXP, MAX0

• Notes
The range of argument should, be () ()maxflzRe log≥

and () ()maxflzIm log≥ .
 When a set of function values In(z), In+1(z), In+2(z), ...,
In+M(z), is required at the same time, first, obtain In+M(z)
and In+M-1(z) with this subroutine. Then the others can
be obtained in sequence from high order to low order,
that is, In+M-2(z), In+M-3(z), ..., In(z), by using repeatedly
the recurrence formula. Obtaining of the values in the
reverse order, that is In+2(z), In+3(z), ..., In+M(z), by the
recurrence formula after obtaining In(z) and In+1(z) by
this subroutine, must be avoided because of its
unstableness.

• Example
The value of In(z) is computed for n=1,2, where
z=10+5i.

C **EXAMPLE**
 COMPLEX Z,ZBI
 Z=(10.0,5.0)
 DO 10 N=1,2
 CALL CBIN(Z,N,ZBI,ICON)
 WRITE(6,600) Z,N,ZBI,ICON
 10 CONTINUE
 STOP
 600 FORMAT(' ',2F8.2,I6,5X,2E17.7,I7)
 END

Method
If it is known beforehand that the absolute value of In(z)
will underflow, the following computation is not
performed with setting the result as (0.0,0.0).
 In(z) is computed in different ways depending upon the
value of z.
1) When () ()Re Imz z+ ≤ 1,

The power series expansion,

() ()∑
∞

= +

=

0

2

!!
4
1

2
1

k

k

n

n knk

z
zzI (4.1)

is evaluated until the k-th item becomes less than the
round-off level of the first term.
2) When () ()Re Imz z+ >1, () ()maxflz logRe ≤ and

() ()maxflz logIm ≤ .
The recurrence formula is used. Suppose m to be an
appropriately large integer (which depends upon the
required precision, z and n) and δ to be an appropriately
small constant (10-38 in this subroutine).
 With the initial values.
 Gm+1(z)=0, Gm(z)=δ

 repeat the recurrence equation,

() () ()zGzG
z
kzG kkk 11

2
+− += (4.2)

 for k=m, m-1,...,1.
 In(z) can then be obtained from

() () ()

≈ ∑

=

m

k
kkn

z
n zGzGezI

0

ε (4.3)

 where

()
()

≥
=

=
12
01

k
k

kε

 Equation (4.3) can be used when Re(z)≥ 0.
 When Re(z)<0, cancellation will take place in the

above computations. Therefore, using the relation In(-
z)=(-1)n In(z), the problem can be reduced to the
computation above.

 For detailed information, for example, on how to
determine m, see Reference [81] and [83].

CBJN

233

I11-82-1301 CBJN, DCBJN

Integer order Bessel function of the first kind Jn(z) with
complex variable
CALL CBJN(Z,N,ZBJ,ICON)

Function
This subroutine computes the integer order Bessel
function of the first kind with complex variable

() ()∑
∞

= +

 −

=

0

2

!!
4
1

2
1

k

k

n

n knk

z
zzJ

by evaluating the power series expansion of the form
above and recurrence formula.

Parameters
Z Input. Independent variable z. Complex

variable.
N Input. Order n of Jn(z).
ZBJ Output. Value of function Jn(z). Complex

variable.
ICON .. Output. Condition code.

See Table CBJN-1.

Table CBJN-1 Condition codes

Code Meaning Processing
0 No error

20000 () ()Re z log> flmax or

() ()Im z log> flmax

ZBJ=(0.0,0.0)

Comments on use
• Subprograms used

SSL II ... AMACH, MGSSL, ULMAX
FORTRAN basic functions ... REAL, AIMAG, ABS,
IABS, MOD, FLOAT, CEXP, CONJG, MAX0,
CMPLX

• Notes

The range of argument z should be () ()maxflz logRe ≤

and () ()maxflz logIm ≤ .
When all the values of Jn(z), Jn+1(z), Jn+2(z), ...,

Jn+M(z) are required at the same time, first obtain
Jn+M(z) and Jn+M-1(z), by this routine. Then the others
can be obtained in sequence from high order to low
order, that is, Jn+M-2(z), Jn+M-3(z), ..., Jn(z), by repeating
the recurrence formula. Obtaining of values in the
reverse order, that is, Jn+2(z), Jn+3(z), ..., Jn+M(z), by the
recurrence formula after obtaining Jn(z) and Jn+1(z) by
this subroutine, is not recommended because of its
unstableness.

• Example

The value of Jn(z) is computed for n=1 and n=2, where
z=10+5i.

C **EXAMPLE**
 COMPLEX Z,ZBJ
 Z=(10.0,5.0)
 DO 10 N=1,2
 CALL CBJN(Z,N,ZBJ,ICON)
 WRITE(6,600) Z,N,ZBJ,ICON
 10 CONTINUE
 STOP
 600 FORMAT(' ',2F8.2,I6,5X,2E17.7,I7)
 END

Method
If it is known beforehand that the absolute value of Jn(z)
will underflow the following computation is bypassed
with the result as (0.0,0.0).
 The method for computing Jn(z) depends upon the value
of z.
• When () ()Re Imz z+ ≤ 1,

The power series expansion

() ()∑
∞

= +

 −

=

0

2

!!
4
1

2
1

k

k

n

n knk

z
zzJ (4.1)

is evaluated until the k-th term becomes less than the
round-off level of the first term.

• When () ()Re Imz z+ >1, () ()maxflz logRe ≤ and

() ()maxflz logIm ≤
The recurrence formula is used for the computation.
Suppose m to be an appropriately large integer (which
depends upon the required accuracy, z and n) and δ to be
an appropriately small constant (10-38 in this subroutine).
 With the initial values,

Fm+1(z)=0, Fm(z)=δ

and repeating the recurrence equation,

() () ()zFzF
z
kzF kkk 11

2
+− −= (4.2)

for k=m, m-1,...,1
Jn(z) can be obtained from

() () ()

≈ ∑

=

−
m

k
k

k
kn

iz
n zFizFezJ

0

ε (4.3)

where

()
()

≥
=

=
12
01

k
k

kε

Equation (4.3) can be used only when 0≤arg z≤π.
When -π<arg z<0 cancellation will take place.
Therefore, using the relation () ()zJzJ nn = it is,
reduced to be within the condition 0≤arg z≤π.

For detailed information, for example, on how to
determine m, see References [81] and [83].

CBJR

234

I11-84-0101 CBJR, DCBJR

Real order Bessel function of the first kind Jν(z) with
complex variable
CALL CBJR(Z,V,ZBJ,ICON)

Function
This subroutine computes the value of real order Bessel
function of the first kind with complex variable z

() ()∑
∞

= ++

⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛=

0

2

1!
4
1

2
1

k

k

v

v kvk

z
zzJ

Γ

using the power series expansion (above expression) and
the recurrence formula.

In the above expression, the value of (1/2⋅z)v adopt the
principal value. Though the principal value of
() ()2log21 zvv ez ≡⋅ depends on how the principal value
of log(z/2) is selected, it is determined by FORTRAN
basic function CLOG. Usually, the principal value of
log(z/2)=log |z/2|+ i arg z, -π<arg z ≤π

Parameters
Z Input. Independent variable z. (complex

variable).
V Input. Order v of Jν(z) (ν≥0).
ZBJ Output. Value of function Jν(z). (complex

variable).
ICON .. Output. Condition code. See Table CBJR-1.

Table CBJR-1 Condition codes

Code Meaning Processing
0 No error

20000 () ()maxfllogzRe > or

() ()maxfllogzIm >

Set ZBJ=(0.0,0.0)

30000 V<0 Set ZBJ=(0.0,0.0)

Comments on use
• Subprograms used

SSL II ... MGSSL, AMACH, ULMAX
FORTRAN basic functions ... REAL, AIMAG, ABS,
FLOAT, CEXP, CLOG, GAMMA, CONJG, AMAX1,
CMPLX

• Notes

() ()maxflz logRe ≤ , () ()maxflz logIm ≤ , and V≥0.
When a set of function values Jν(z), Jν+1(z), Jν+2(z), ...,
Jν+M(z), is needed at the same time, Jν+1(z) and
Jv+M-1(z) are computed with this subroutine, and next
Jν+M-2(z), Jν+M-3(z), ..., Jν(z) are computed by using the
recurrence formula repeatedly, it should be avoided in
computing Jν+2(z), Jν+3(z), ..., Jν+M(z) by the recurrence
formula, after computing Jν(z) and Jν+1(z) with this
subroutine, in sequence from low order to high order.

• Example
The following example generates a table of Jν(z) at
z=10+5i for the range of v from 0.1 to 10 with
increment 0.1.

C **EXAMPLE**
 COMPLEX Z,ZBJ
 Z=(10.0,5.0)
 DO 10 NV=1,100
 V=FLOAT(NV)/10.0
 CALL CBJR(Z,V,ZBJ,ICON)
 IF(ICON.EQ.0) WRITE (6,600) Z,V,ZBJ
 10 CONTINUE
 STOP
 600 FORMAT(' ',2F8.2,F10.3,5X,2E17.7)
 END

Method
When it is known the value of Jν(z) will underflow, the
following computations are bypassed and the result 0.0 is
output.
 The computation of Jv(z) depends on z

• () ()Re Imz z+ ≤ 1
With the power series expansion

() ()∑
∞

= ++

⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛=

0

2

1!
4
1

2
1

k

k

v

v kvk

z
zzJ

Γ
 (4.1)

 it is computed until the k-th term is less than the unit
round-off in relative to the first term.

• () () 1ImRe >+ zz and () ()maxflz logRe ≤ and

() ()maxflz logIm ≤
Recurrence formula is used.
 Let's suppose that m is a certain large integer
(determined by z, ν, and the desired precision), and
that δ is set to a certain small constant (10-38) and
moreover that n and α are determined by

()1<0integer,: αα ≤+= nnv

Initial values

() () δαα == +++ zFzF mm ,01

are set, and recurrence formula

() () () ()zFzF
z

kzF kkk 11
2

+++−+ −
+

= ααα
α (4.2)

CBJR

235

 is repeatedly applied to k=m,m-1,...,1. Then the value of
function Jν(z) is obtained as

() ()
() ()

() () ()

 ++

+
+

≈

∑
=

+

+
−

m

k
k

k

n
iz

v

zF
k

ikk

zFezzJ

0 !
2

1
12

22
1

α

α

α

αΓα

αΓ
αΓ

 (4.3)

 The above expression is suitable in the range of 0 ≤ arg
z ≤ π. Since cancellation occurs in the above expression
when -π≤arg z<0, the problem is returned to that of
0≤arg z≤π using the relation of () ()zJzJ vv = .
 For the method of determining of m and other details,
see References [81] and [83].

CBKN

236

I11-82-1201 CBKN, DCBKN

Integer order modified Bessel function of the second kind
Kn(z) with complex variable.
CALL CBKN(Z,N,ZBK,ICON)

Function
This subroutine computes the value of integer order
modified Bessel function of the second kind with
complex variable z

() ()

() ()

()
() ()

()∑

∑
−

=

−

∞

=
+

+

−

−−−

+

+
+

−+

+−=

=

1

0

2

0

2

1

4!
!1

22
1

!!
4

22
1

2
log1

n

k

kn

k
nkk

k

nn

n
n

nn

z
k
knz

knk

z
z

zIz

zKzK

ΦΦ

γ

by using the recurrence formula and the τ-method. Here,
when n=0, the last term is zero, γ is the Euler's constant.
 In(z) is the modified Bessel function of the first kind,
and

()11

0

1

0

≥=

=

∑
=

k
m

k

m
kΦ

Φ

Parameters
Z Input. Independent variable z. Complex

variable.
N Input. Order n of Kn(z).
ZBK Output. Value of function Kn(z). Complex

variable.
ICON .. Output. Condition code.

See Table CBKN-1.

Table CBKN-1 Condition codes

Code Meaning Processing
0 No error

20000 One of the following occurred
• |Re(z)| > log(flmax)
• |Re(z)| < 0 and

|Im(z)| > log(flmax)
• |Re(z)| ≥ 0 and

|Im(z)| ≥ tmax

ZBK=(0.0,0.0)

30000 z 0.0= ZBK=(0.0,0.0)

Comments on use
• Subprograms used

SSL II AMACH, CBIN, MGSSL, ULMAX,
UTLIM
FORTRAN basic functions ... REAL, AIMAG, ABS,
IABS, MOD, CSQRT, CEXP, CLOG, FLOAT,
CMPLX

• Notes

- 0≠z

- () ()maxflz logRe ≤
- When Re(z)>0,

() maxtz <Im
 Otherwise the value of exp(-z) used in the
computations cannot be correctly computed.

- When Re(z)<0, () ()maxflz logIm ≤ is required.
When Re(z)≥0 and all the values of Kn(z), Kn+1(z),
Kn+2(z), ..., Kn+M(z) are required at the same time, first
obtain Kn(z) and Kn+1(z) by this routine. Then the
others can be obtained in the order of
Kn+2(z), Kn+3(z), ..., Kn+M(z), by repeating the
recurrence formula (See (4.1) in Method). When
Re(z)<0, since this is not stable, this subroutine must
be called for each required order.

• Example

The value ov K1(1+2i) is computed.

C **EXAMPLE**
 COMPLEX Z,ZBK
 Z=(1.0,2.0)
 N=1
 CALL CBKN(Z,N,ZBK,ICON)
 WRITE(6,600) Z,N,ZBK,ICON
 STOP
 600 FORMAT(' ',2F8.2,I6,5X,2E17.7,I7)
 END

Method
Since

K-n(z) =Kn(z)

when n<0, it is reduced to the case n≥0.
The method for computing Kn(z) depends on whether
Re(z)≥0 or Re(z)<0.
• When ()Re z ≥ 0

Kn(z) can be computed by the recurrence formula,

() () ()
1...,,2,1

2
11

−=

+= −+

nk

zKzK
z
kzK kkn (4.1)

 with the starting values K0(z) and K1(z)
 Computational procedures for K0(z) and K1(z) depend
on the value of z.

CBKN

237

• For:
Single precision: |Im(z)| < -2.25 Re(z) + 4.5 and
Double precision: |Im(z)| < -4 Re(z) + 8
K0(z) and K1(z) are computed as follows

() () ()∑
∞

=

+

+−=

1

2
00 2

2
log

k

k

k
zIzIzzK γ (4.2)

() () () ()zIzKzI
z

zK 0011
1

 −= (4.3)

where, Ik(z) is obtained by the recurrence formula.

• For:

Single precision: |Im(z)| ≥ -2.5 Re(z) + 4.5 and
Double precision: |Im(z)| ≥ -4 Re(z) + 8
The τ-method is used. (See Reference [84]). In this
method, Kn(z) is obtained from

()

= −

z
fe

z
zK n

z
n

1
2
π (4.4)

 and fn(1/z) is approximated.
Assume t=1/z, then fn(t) satisfies

() () () () 0
4
112" 22 =

 −−′++ tfntfttft nnn (4.5)

Adding on the righthand side of (4.5) τ times a
shifted Ultraspherical polynomial orthogonal over the
interval [0,η], then

() () () () ()

=

 −−′++′′

η
τ α tCtfntfttft *

mnnn 4
112 22

 (4.6)

where

()() ()∑
=

=
m

i

i
mim tCtC

0

** αα (4.7)

 denotes the shifted Ultraspherical polynomial (when
α=0, it is equivalent to the shifted Chebyshev
polynomial and when α=0.5, it is equivalent to the
shifted Legendre polynomial).
Equation (4.6) contains the solution of the following m-
th degree polynomial

()
()

()∑
∑

= +

=

+
=

m

k
k

k

k

i

i
imk

nm ak

taC
tf

0 1

0

*

1 η
τ

α

 (4.8)

where,

()() ()()()

≥−−⋅⋅⋅−−=

=

1
8!

1243414

1
222222

0

k
k

knnna

a

kk

 (4.9)

If τ is determined from the initial condition fnm(0)=1 (as
t → 0,fn(t) → 1) we can obtain

()

()

()
()

()∑

∑
∑

= +

= +

=

+

+
= m

k
k

k

mk

m

k
k

k

k

i

i
imk

nm

ak
C

ak

taC

tf

0 1

*
0 1

0

*

1

1

η

η
α

α

 (4.10)

This equation contains α and η as unknowns. It has
been seen when α=0.5 (the shifted Ultraspherical
polynomial) and η=t, the highest accuracy can be
obtained. (See Reference [84]).
 In this case,

() ()

()∑

∑
∑

= +

= +

=

+

+
= m

k
k

k

mk

m

k
k

k

k

i

i
imk

nm

tak
P

tak

taP

tf

0 1

*
0 1

0

*

1

1
 (4.11)

where *
mkP are the coefficients of the shifted

Ultraspherical polynomial

() ∑
=

=
m

i

i
mim tPtP

0

* (4.12)

By multiplying the denominator and numerator by tm
and expressing as powers of t.

()
()

()∑

∑

=

== m

i

i
i

m

i

i
i

nm

tnmH

tnmG
tf

0

0

,

,
 (4.13)

where,

() ()∑
= +−+

+−

+−+
=

i

k kim

kkimm
i akim

aP
nmG

0 1

*
,

1
, (4.14)

() () 1

,

1
,

+−

−

+−
=

im

imm
i aim

P
nmH (4.15)

Then

()
()

()∑

∑

=

=−

=
m

i

i

i

m

i

i

i
z

n

z
nmH

z
nmG

e
z

zK

0

0

1,~

1,~
1 (4.16)

 can be obtained as a computational expression for
Kn(z) from (4.4) and (4.13).
 Where

() () ()~ , , ,G m n G m n G m ni i m= (4.17)

CBKN

238

() () ()nmGnmHnmH mii ,,2,~
π

= (4.18)

 This subroutine sets m in case n equal 0 or 1 as
follows in consideration of efficiency.

Single precision:
when z ≥ 17 , m=3
otherwise , m=7

Double precision:
when (Re(z))2+0.425(Im(z))2≥152 , m=10
otherwise , m=19

 This subroutine contains a table in which constants
()G m ni , and ()H m ni , are stored in the data statement.

• When Re(z)<0
The cut of Kn(z) is selected on the negative real axis.
Therefore, when Im(z)≥0, the relation

Kn(z)=(-1)nKn(-z)-πiIn(-z) (4.19)
when Im(z)<0, the relation

Kn(z)=(-1)nKn(-z)-πiIn(-z) (4.20)

 are used, where the value of Kn(-z) can be obtained by
using the calculation for Re(z)≥0 mentioned previously,
and the value of In(-z) can be obtained by subroutine
CBIN. Thus the additional computations for In(-z) are
required when Re(z)<0, as is not the case when Re(z)>0.

CBLNC

 239

B21-15-0202 CBLNC, DCBLNC

Balancing of a complex matrix
CALL CBLNC (ZA, K, N, DV, ICON)

Function
An n-order complex matrix A is balanced by the diagonal
similar transformation shown in (1.1).

~
A = D AD-1 (1.1)

 Balancing means to almost completely equalize the sum
of norm of the i-th column (i = 1, ..., n) and that of the i-
th row for the transfo rmed complex matrix. The
norm of the elements is ||z||1=|x|+|y| for complex number z
= x + i⋅y. D is a real diagonal matrix, and n ≥ 1.

Parameters
ZA... lnput. Complex matrix A.

Output. Balanced complex matrix
~
A . ZA is

a two-dimensional array, ZA (K,N)
K... Input. Adjustable dimension of array ZA.
N... Input. Order n of complex matrix A and

~
A .

DV... Output. Scaling factor (Diagonal elements of
D)
One-dimensional array of size n.

ICON... Output. Condition code.
See Table CBLNC- 1 .

Table CBLNC-1 Condition codes

Code Meaning Processing
0 No error

10000 N = 1 No balancing.
30000 N < 1 or K < N. Bypassed

Comments on use
• Subprograms used

SSL II ... IRADIX, MGSSL
FORTRAN basic functions ... REAL, AIMAG, ABS

• Notes
If there are large difference in magnitude of elements
in a matrix, the precision of the computed eigen-values
and eigenvectors on this matrix may not be computed
accurately. This subroutine is used to avoid the adverse
effects.
 When each elements of a matrix is nearly the same
magnitude, this subroutine performs no transformation.
Therefore this subroutine should not be executed .
 This subroutine omits balancing of the column (or
row) and the corresponding row (or column) in which
all the elements of a column or row except the

diagonal elements are zero.
 When obtaining eigenvector x of matrix A , the back
transformation of (3.1) must be applied to the
eigenvector ~x of matrix

~
A balanced by this

subroutine.

x x= D~ (3.1)

 The back transformation of (3.1) can be performed
by subroutine CHBK2 (See the selection on CHBK2).

• Example

After balancing the n-order complex matrix A, it is
transformed to the complex Hessemberg matrix by
subroutine CHES2 and the eigenvalue is obtained by
the subroutine CHSQR.
When n ≤ 100.

C **EXAMPLE**
 COMPLEX ZA(100,100),ZE(100)
 DIMENSION DV(100),IP(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((ZA(I,J),I=1,N),J=1,N)
 WRITE (6,600) N
 DO 20 I=1,N
 20 WRITE(6,610)(I,J,ZA(I,J),J=1,N)
 CALL CBLNC(ZA,100,N,DV,ICON)
 WRITE(6,620) ICON
 IF(ICON.NE.0) GO TO 10
 CALL CHES2(ZA,100,N,IP,ICON)
 CALL CHSQR(ZA,100,N,ZE,M,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 WRITE(6,630) (ZE(I),I=1,M)
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1',5X,'ORIGINAL MATRIX',
 * 5X,'N=',I3/)
 610 FORMAT(/2(5X,'A(',I3,',',I3,')=',
 * 2E15.7))
 620 FORMAT('0',20X,'ICON=',I5)
 630 FORMAT('0',5X,'EIGENVALUE'/'0',20X,
 * 'REAL',16X,'IMAG'/('0',15X,
 * 2(E15.7, 5X)))
 END

Method
An n-order complex matrix A is balanced by performing
iterative diagonal similar transformation in (4.1).

...,2,1,1
1 =−
− ssss s DAD=A (4.1)

 Where A0 = A and Ds is a real diagonal matrix
expressed in (4.2) and s is the number of iterations.

CBLNC

240

=

)(

)(
2

)(
1

0

0

s
n

s

s

s

d

d
d

D (4.2)

 In the balancing of (4.1), excluding the diagonal
element, the sum of the magnitude of elements in the i-th
row of As is made almost equal to that of the magnitude
of elements in the i-th column.
 Assuming ()()s

ijs a=A , balancing is performed such that

() ()∑∑
≠
=

≠
=

≈
n

ik
k

s
ki

n

ik
k

s
ik aa

1
1

1
1

 (4.3)

 should be satisfied.
 If Dsi is defined as shown in (4.4), Ds of (4.2) can be
expressed as (4.5).

() id

i

s
isi

=

1
0

1

1
0

1

D
 (4.4)

snsss DDDD ⋅⋅⋅= 21 (4.5)

 From (4.5), (4.1) can be transformed by sequentially
performing transformation of (4.6) for i = l, 2, ..., n.

sisisi si= DADA 1
1

−
− (4.6)

 where,
 Diagonal element ()ai

s of Dsi is defined so that the
transformed i-th column and corresponding row satisfy
(4.3). If they satisfy (4.3) before transformation, ()di

s =1,
that is Dsi = I.

 Iteration of (4.1) terminates when (4.3) is satisfied for
all column and rows.
 This subroutine executes this operation in the following
steps:
1) The sum of norms of each element in the i-th column

and row is computed excluding the diagonal element.

∑
≠
=

=
n

ik
k

kiaC
1

1 (4.7)

∑
≠
=

=
n

ik
k

ikaR
1

1 (4.8)

2) ()s
id is defined as,

 () ks
id ρ= (4.9)

where

=
digitslhexadecimafor16

digitsbinaryfor2
ρ

 k is defined to satisfy the following condition.

 ρρρ RCR k ≥⋅>⋅ 2 (4.10)

 From (4.10), k > 0 when C < R/ρ and k ≤ 0 when C
≥ R/ρ.

3) By the condition shown in (4.11), whether or not
transformation is required is determined.

 () ()RCRC kk +<+⋅ 95.02 ρρ (4.11)

 When (4.11) is satisfied, transformation is
performed where () ks

id ρ= and if not satisfied,
transformation is bypassed.

4) When transformation has been performed for all
columns and rows, the balancing process terminates.
 Then, the diagonal elements of D shown in (4.12)
are stored as the scaling factor in array DV.

 sDDDD ⋅⋅⋅= 21 (4.12)

 For details, see Reference [13] pp.315 - 326.

CBYN

 241

I11-82-1401 CBYN, DCBYN

Integer order Bessel function of the second kind Yn(z)
with complex variable
CALL CBYN (Z, N, ZBY, ICON)

Function
This subroutine computes the value of integer order
Bessel function of the second kind with complex variable.

() () ()

()

() ()

()∑

∑
−

=

−

∞

=
+

−

−−

−

+
+

−

−

+=

−=

1

0

2

0

2

4!
!1

2
1

!!
4

2
1

2
log2

1

n

k

kn

k
nkk

k

n

n

n
n

n

z
k
knz

knk

z
z

zJz

zYzY

π

ΦΦ
π

γ
π

 by using the recurrence formula and the τ-method. In
the definition when n = 0, the last item is zero, γ denotes
the Euler’s constant Jn(z) is Bessel function of the second
kind and

()11

0

1

0

≥=

=

∑
=

k
m

k

m
kΦ

Φ

Parameters
Z ... Input. Independent variable z. Complex

variable.
N ... Input. Order n of Yn(z).
ZBY ... Output. Value of function Yn(z). Complex

variable.
ICON ... Output. Condition code.

See Table CBYN-1.

Table CBYN-1 Condition codes

Code Meaning Proceccisng
0 No error

20000 () ()Re z log> flmax or

() ()Im z log> flmax

ZBY = (0.0, 0.0)

30000 |z| = 0.0 ZBY = (0.0, 0.0)

Comments on use
• Subprograms used

SSL II ... AMACH, CBIN, CBKN, MGSSL, ULMAX,
UTLIM
FORTRAN basic functions ... REAL, AIMAG, IABS,
CONJG, CMPLX, MOD

• Notes
− |z|≠0
− () ()maxflz logRe ≤ and () ()maxflz logIm ≤
− When all the values of Yn(z), Yn+1(z), Yn+2(z), ...,

Yn+M(z) are required at a time, the procedure to be
mentioned below under Method is most
recommendable.

• Example

The value of Y1(1+2i) is computed.

C **EXAMPLE**
 COMPLEX Z,ZBY
 Z=(1.0,2.0)
 N=1
 CALL CBYN(Z,N,ZBY,ICON)
 WRITE(6,600)Z,N,ZBY,ICON
 STOP
 600 FORMAT(' ',2F8.2,I6,5X,2E17.7,I7)
 END

Method
Because we know

() () ()zYzY n
n

n 1−=− (4.1)

 the computation for n < 0 can be reduced to that
for n > 0
 Also, because

() ()zYzY nn = (4.2)

when Im (z) < 0, this is reduced to that wen Im (z) ≥ 0.
Yn(z) is computed using the relation.

() () () ()izKiizIizY n
nn

n
n

n −−−−= + 121

π
 (4.3)

 , i = −1

 where, the value of In(−iz) is computed by subroutine
CBIN which uses the recurrence formula, and the value
of Kn (− iz) is computed by subroutine CBKN which uses
the recurrence formula and τ-method.
 When all the values of Yn(z), Yn+1(z), Yn+2(z), ..., Yn+M(z)
are required at a time, they are obtained efficiently in the
way indicated below. First the value of In+M (− iz) and
In+M-1 (− iz) are obtained by CBIN, and then repeating the
recurrence formula, the values are obtained sequentially
in the order of the highest value first until In (− iz), is
obtained. Kn (− iz) and Kn+1 (− iz) are obtained by CBKN
and then repeating the recurrence formula the values are
obtained sequentially in the order of the lowest value first
until Kn+M(z) is obtained.
 Then, by the relation in (4.3), the required computation
is done.

CEIG2

242

B21-15-0101 CEIG2, DCEIG2

Eigenvalues and corresponding engenvectors
of a complex matrix (QR method)
CALL CEIG2 (ZA, K, N, MODE, ZE, ZEV, VW, IVW,
ICON)

Function
This subroutine computes the eigenvalues and the
corresponding eigenvectors of an n-order complex matrix
A. The eigenvectors are normalized so that ||x||2=1. n ≥ 1.

Parameters
ZA ... Input. Complex matrix A.

ZA is a complex two-dimensional array, ZA
(K, N)
The contents of ZA are altered on output.

K ... Input. Adjustable dimension (≥ n) of arrays
ZA and ZEV.

N ... Input. Order n of complex matrix A
MODE ... Input. Specifies whether or not balancing is

required.
When MODE = 1, balancing is omitted.
When MODE ≠ 1, balancing is included.

ZE ... Output. Eingenvalues.
Complex two-dimensional array of size n.

ZEV ... Output. Eigenvectors.
The eigenvectors are stored in the rows
corresponding to the eigenvalues.
ZEV is a complex two-dimensional array, ZEV
(K, N)

VW ... Work area. One-dimensional array of size n.
IVW ... Work area. One-dimensional array of size n.
ICON ... Output. Condition code.

See Table CEIG2-1.

Table CEIG2-1 Condition codes

Code Meaning Processing
0 No error

10000 N = 1 ZE (1) = ZA (1,1)
ZEV (1) = (1.0,
0.0)

20000 The eigenvalues and
eigenvectors could not be
determined since reduction
to trangular matrix was not
possible.

Discontinued

30000 N < 1 or K < N. Bypassed

Comments on use
• Subprograms used

SSL II ... AMACH, CBLNC, CHES2, CSUM,
CNRML, IRADIX, MGSSL
FORTRAN basic functions ... ABS, REAL, AIMAG,
AMAX1, CSQRT, SIGN, SQRT, CONJG

• Notes
When the magnitude in each element of a complex
matrix varies greatly, the precision of the results can be
improved by valancing the matrix with subroutine
CBLNC. When the magnitude in each element of a
matrix is about the same, balancing will produce
minimal improvement. In this state, by specifying
MODE = 1, the balancing procedure should be skipped.
 This subroutine obtains all eigenvalues and
eigenvectors of a complex matrix.
 When only eigenvalues are required, they must be
obtained by subroutines CBLNC, CHES2 and CHSQR.
 When a subset of eigenvectors is required, they must
be obtained by subroutines CBLNC, CHES2, CHSQR,
CHVEC, CHBK2, CNRML.

• Example
All eigenvalues and eigenvectors of an n-order
complex matrix A are determined. n ≤ 100.

C **EXAMPLE**
 COMPLEX ZA(100,100),ZE(100),
 * ZEV(100,100)
 DIMENSION IND(100),VW(100),IVW(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((ZA(I,J),I=1,N),J=1,N)
 WRITE(6,600) N
 DO 20 I=1,N
 20 WRITE(6,610) (I,J,ZA(I,J),J=1,N)
 CALL CEIG2(ZA,100,N,0,ZE,ZEV,VW,
 * IVW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 DO 30 I=1,N
 30 IND(I)=1
 CALL CEPRT(ZE,ZEV,100,N,IND,N)
 GO TO 10
 500 FORMAT(I3)
 510 FORMAT(4E15.7)
 600 FORMAT('0',5X,'ORIGINAL MATRIX',
 *5X,'N=',I3)
 610 FORMAT(/2(5X,'A(',I3,',',I3,')=',
 *2E15.7))
 620 FORMAT('0',5X,'ICON=',I5)
 END

 In the above example, subroutine CEPRT prints all
the eigenvalues and eigenvectors of a complex matrix.
The contents are:

 SUBROUTINE CEPRT(ZE,ZEV,K,N,IND,M)
 COMPLEX ZE(M),ZEV(K,M)
 DIMENSION IND(M)
 WRITE(6,600)
 MM=0
 DO 20 J=1,M
 IF(IND(J).EQ.0) GO TO 20
 MM=MM+1
 ZE(MM)=ZE(J)
 DO 10 I=1,N
 ZEV(I,MM)=ZEV(I,J)
 10 CONTINUE
 20 CONTINUE

CEIG2

 243

 IF(MM.EQ.0) GO TO 50
 DO 40 INT=1,MM,3
 LST=MIN0(INT+2,MM)
 WRITE(6,610) (J,J=INT,LST)
 WRITE(6,620) (ZE(J),J=INT,LST)
 DO 30 I=1,N
 WRITE(6,630) (ZEV(I,J),J=INT,LST)
 30 CONTINUE
 40 CONTINUE
 50 RETURN
 600 FORMAT('1',30X,'**EIGENVECTORS**')
 610 FORMAT('0',26X,I3,29X,I3,29X,I3)
 620 FORMAT('0',' EIGENVALUES',
 *3(2X,2E15.7))
 630 FORMAT(12X,3(2X,2E15.7))
 END

Method
This subroutine determines the eigenvalues and the
correspondng eigenvectors of an n-order complex
matrix A.
 The eigenvalues of an n-order complex matrix are
determined as diagonal elements of upper triangle matrix
R by processing the following three steps:
• An complex matrix A is balanced by the diagonal

similar transformation,

ABB=A 1~ − (4.1)

where B is the diagonal matrix whose element is a
scaling factor. For details, refer to subroutine CBLNC.

• The complex matrix
~
A is reduced by the stabilized

elementary transformation into the complex
Hessemberg matrix H.

SAS=H ~1− (4.2)

where S is obtained by the product of transformation
matrices S1, S2, ..., Sn−2,

221 −⋅⋅⋅= nSSSS (4.3)

and each Si can be obtained by permutation matrix Pi
and elimination matrix Ni as

2,...,2,1,1 −=− niiii NP=S (4.4)

For details, refer to subroutine CHES2.
• The complex Hessemberg matrix H is reduced by the

complex QR method into the complex upper triangle
matrix R.

R
*
R HQQ=R (4.5)

Where QR is an unitary matrix given by,

LR QQQQ ⋅⋅⋅= 21 (4.6)

which is the product of transformation matrix Q1, Q2, ...,
QL used in the complex QR method.
 For details, refer to subroutine CHSQR.

 The eigenvectors can be obtained as column vectors in
matrix X obtained by (4.8) if matrix F which transforms
upper triangle matrix R into a diagonal matrix D by a
similarity transformation (4.7) is available.

RFF=D 1− (4.7)
FBSQ=X R (4.8)

 To verify that column vectors of matrix X given by (4.8)
are the eigenvectors of matrix A, substitute (4.1), (4.2)
and (4.5) to obtain (4.7).

AXXFABSQBSQF=D 1111 −−−− =R
*
R (4.9)

 If BSQR are represented as Q, from (4.3) and (4.6)

Ln QQQSSBS=Q ⋅⋅⋅⋅⋅⋅ − 21221 (4.10)

 As shown in (4.10), Q can be computed by sequentially
taking the product of the transformation matrices.
 F can be determined as a unit upper triangular matrix.
 From (4.7),

FD = RF (4.11)

 Let the elements of D, R, and F be represented as
D=diag(λi), R=(γij) and F=(fij) respectively, then elements
fij can be obtained from (4.11) for j=n, n-1, ..., 2 as
follows

() 1...,,2,1
1

−−=−= ∑
+=

jjiff
j

ik
ijkjikij λλγ (4.12)

where,

()
() 1,0

,0

=>=

=>=

iiij

iiiij

fjif

ji λγγ

If λi=λj , fij is obtained as follows.

()∑
+=

∞=
j

ik
kjikij uff

1

Aγ (4.13)

where u is a unit round-ff and ||A||∞ is a norm defined by

∑
=

∞ =
n

i
ij

j
a

1
1

maxA (4.14)

where A=(aij).
Therefore, norm ||z||1 for complex number z = x + iy is
defined by

z x y
1

= +

 For details, see References [12] and [13] pp.372 - 395.

CELI1

244

I11-11-0101 CELI1, DCELI1

Complete elliptic integral of the first kind K(x)
CALL CELIl (X, CELI, ICON)

Function
This subroutine computes the complete elliptic integral of
the first kind

() ∫ −
= 2

0 2sin1

π

θ

θ

x

dxK

using an approximation formula for 0 ≤ x < 1 .

Parameter
X Input. Independent variable x
CELI ... Output. Function value K(x).
ICON ... Output. Condition code.

See Table CELI1-1.

Table CELI1-1 Condition codes

Code Meaning Processing
0 No error

30000 X < 0 or X ≥ 1 CELI is set to
0.0.

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic function ... DLOG

• Example
The following example generates a table of the
function values from 0.00 to 1.00 with increment 0.01.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,100
 A=K-1
 X=A/100.0
 CALL CELI1(X,CELI,ICON)
 IF(ICON.EQ.0)WRITE(6,610)X,CELI
 IF(ICON.NE.0)WRITE(6,620)X,CELI,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF COMPLETE ',
 *'ELLIPTIC INTEGRAL OF THE FIRST ',
 *'KIND'///6X,'X',9X,'K(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'CELI=',E17.7,5X,
 *'CONDITION=',I10)
 END

Method
For 0 ≤ x < l, the complete elliptic integral of the first
kind K (x) is calculated using the following
approximations.
• Single precision:

() ()∑∑
==

−=
4

0

4

0

log
k

k
k

k

k
k tbttaxK (4.1)

where t = 1 − x

Theoretical precision = 7.87 digits

• Double precision:

() ()∑∑
==

−=
10

0

10

0

log
k

k
k

k

k
k tbttaxK (4.2)

where t = 1 − x

Theoretical precision = 17.45 digits

 For further information, see Reference [78] pp.150 ~
154.

CELI2

 245

I11-11-0201 CELI2, DCELI2

Complete elliptic integral of the second kind E(x)
CALL CELI2 (X, CELI, ICON)

Function
This subroutine computes the complete elliptic integral of
the second kind

() ∫ −= 2
0

2sin1
π

θθ dxxE

using an approximation formula for 0 ≤ x ≤ 1.

Parameters
X Input. Independent variable x.
CELI Output. Function value E(x).
ICON ... Output. Condition code. See Table CELI2-1.

Table CELI2-1 Condition codes

Code Meaning Processing
0 No error

30000 X < 0 or X > 1 CELI is set to 0.0.

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic function ... DLOG

• Example
The following example generates a table of the
function values from 0.00 to 1.00 with increment 0.01.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,101
 A=K-1
 X=A/100.0
 CALL CELI2(X,CELI,ICON)
 IF(ICON.EQ.0)WRITE(6,610)X,CELI
 IF(ICON.NE.0)WRITE(6,620)X,CELI,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF COMPLETE ',
 *'ELLIPTIC INTEGRAL OF THE SECOND ',
 *'KIND'///6X,'X',9X,'E(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'CELI=',E17.7,5X,
 *'CONDITION=',I10)
 END

Method
For 0 ≤ x ≤ 1, the value of complete elliptic integral of
the second kind E(x) is calculated using the following
approximations.
• Single precision:

() ()∑∑
==

−=
4

1

4

0

log
k

k
k

k

k
k tbttaxE (4.1)

where t = 1 − x

Theoretical precision = 7.80 digits

• Double precision:

() ()∑∑
==

−=
10

1

10

0

log
k

k
k

k

k
k tbttaxE (4.2)

where t = 1 − x

Theoretical precision = 17.42 digits

However, when x =1, E(x) is set to 1.
For more information, see Reference [78] pp.150 ~ 154.

CFRI

246

I11-51-0201 CFRI, DCFRI

Cosine Fresnel integral C(x)
CALL CFRI (X, CF, ICON)

Function
This subroutine computes Cosine Fresnel integral,

() () ∫∫

==

xx
dttdt

t
txC π π

π

2

0

2

0 2
coscos

2
1

by series and asymptotic expansion, where x ≥ 0.

Parameters
X Input. Independent variable x .
CF Output. Value of C(x).
ICON.. Output. condition codes. See Table CFRI-1.

Table CFRI-1 Condition codes

Code Meaning Processing
0 No error

20000 X ≥ tmax CF = 0.5
30000 X<0 CF = 0.0

Comments on use
• Subprograms used

SSL II ... MGSSL, UTLIM
FORTRAN basic functions ... SIN, COS, and SQRT.

• Notes
Teh valid range of parameter X are:
0 ≤ X < tmax
 This is provided because sin(x) and cos(x) lose their
accuracy if X exceeds the above ranges.

• Example
The following example generates a table of C(x) from
0.0 to 100.0 with increment 1.0.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,101
 X=K-1
 CALL CFRI(X,CF,ICON)
 IF(ICON.EQ.0)WRITE(6,610)X,CF
 IF(ICON.NE.0)WRITE(6,620)X,CF,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF FRESNEL ',
 *'INTEGRAL'///6X,'X',9X,'C(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 *E17.7,5X,'C=',E17.7,5X,'CONDITION=',
 *I10)
 END

Method
Two different approximation formulas are used
depending on the ranges of xdivided at x = 4.

• For 0 ≤ x < 4

The power series expansion of C(x)

() ()
() ()∑

∞

= +
−=

0

2

14!2
12

n

n
n

x
nn

xxC
π

 (4.1)

 is calculated with the following approximation
formulas:
Single precision:

() 4,
7

0

2 xzzaxxC
k

k
k == ∑

=

 (4.2)

Double precision:

() ∑
=

=
12

0

2

k

k
k xaxxC (4.3)

• For x ≥ 4
The asymptotic expansion of C(x)

() () () () ()C x x P x x Q x= + +
1
2

sin cos (4.4)

is calculated through use of the following approximate
expression for P(x) and Q(x):
Single precision:

() xzza
x

xP
k

k
k 4,2 11

0

== ∑
=

 (4.5)

() xzzb
x

xQ
k

k
k 4,2 10

0

1 == ∑
=

+ (4.6)

Double precision:

() xzzbza
x

xP
k

k
k

k

k
k 4,1 10

0

10

0

=−= ∑∑
==

 (4.7)

() xzzdzc
x

xQ
k

k
k

k

k
k 4,1 11

0

10

0

1 == ∑∑
==

+ (4.8)

CFT

 247

F12-15-0101 CFT, DCFT

Multi-variate discrete complex Fourier transform (radix 8
and 2 FFT)
CALL CFT (A, B, N, M, ISN, ICON)

Function
When M -variate (where the dimension of each variable is
Nl , N2 , ..., NM) complex time series data {xJ1 ,..., JM} is given,
this subroutine performs a discrete complex Fourier
transform or its inverse transform using the Fast Fourier
Transform (FFT) method. Nl , N2 , ..., NM must be equal to
2l each (where l = 0 or positive integer), and M ≥ 1 .

• Fourier transform

When {xJ1,..., JM} is input, this subroutine determines
{N1…NMαK1,..., KM} by performing the transform
defined in (1.1).

()

()NMi

Ni
NMKM

NK

xNMN

M

KMJM
M

NM

JM

KJ
JMJ

N

J
KMK

πω

πω

ω

ωα

2exp,
:

12exp,
1,...,1,0,

:
11...,,1,01,

1

1

.

1

0

1.1
1,...,1

11

01
...,,1

=

=
−=

−=
⋅⋅⋅

⋅⋅⋅=⋅⋅⋅

−

−

=

−
−

=
∑∑

 (1.1)

• Inverse Fourier transform
When {αK1,..., KM} is input, this subroutine determines
{xJ1,..., JM} by performing the inverse transform defined
in (1 .2) .

()

()NMi

Ni
NMJM

NJ

x

M

NM

KM

KMJM
M

KJ
KMK

N

K
JMJ

πω

πω

ωωα

2exp,
:

12exp,
1...,,1,0,

:
11...,,1,01,

1

1

0

1.1
1,...,1

11

01
...,,1

=

=
−=

−=

⋅⋅⋅⋅⋅⋅⋅= ∑∑
−

=

⋅
−

=

 (1.2)

Parameters
A Input. Real parts of {xJ1,..., JM} or {αK1,..., KM} .

Output. Real parts of {N1…NMαK1,..., KM} or
{xJ1,..., JM}.
M-dimensional array. (See “Notes”.)

B Input. Imaginary parts of {xJ1,..., JM} or
{αK1,..., KM}.
Output. Imaginay parts of
{N1…NMαK1,..., KM} or {xJ1,..., JM}.

M-dimensional array.
(See “Notes”.)

N Input. The dimensions of the M-variate
transform are specified as N (1) = N1, N (2) =
N2, ..., N(M) = NM.
N is a one-dimensional array of size M.

M ... Input. Number (M) of variables.
ISN ... Input. Specifies normal or inverse transform

(≠ 0).
Transform: ISN = +1
Inverse transform: ISN = −1
(See “Notes”.)

ICON .. Output. Condition code.
See Table CFT-1.

Table CFT-1 Condition codes

Code Meaning Processing
0 No error

30000 M < 1, ISN = 0 or either of
N1, N2, ..., or NM is not 2l (l
= 0 or positive integer)

Aborted

Comments on use
• Subprograms used

SSL II ... CFTN, PNR, and MGSSL
FORTRAN basic functions ... ATAN, ALOG, SQRT,
SIN, and IABS

• Notes
General definition of discrete complex Fourier
transform:
Multi-variate discrete complex Fourier transform and
inverse Fourier transform are generally defined as:

∑

∑
−

=

⋅−⋅−

−

=

⋅⋅⋅

⋅⋅⋅
⋅⋅⋅

=

1

0

11
1,...,1

11

01
,...,1 1

1

NM

JM

KMJM
M

KJ
JMJ

N

J
KMK

x

NMN

ωω

α
 (3.1)

∑ ∑
−

=

−

=

⋅⋅ ⋅⋅⋅⋅⋅⋅=
11

01

1

0

11
1,...,1,...,1

N

K

NM

KM

KMJM
M

KJ
KMKJMJx ωωα (3.2)

 K1,..., KM,J1,..., JM,ω1,...,ωM are defined in (1.1) and
(1.2). This subroutine determines
{N1…NMαK1,..., KM} or {xJ1,..., JM} in place of {αK1,..., JM}
of (3.1) or {xJ1,..., JM} of (3.2). Scaling of the resultant
values is left to the user. Notice that a normal transform
followed by an iverse transform returns the original data
multipled by the value N1…NM.
Data storage:
User must store the real parts of input {xj1,..., JM} in M-
dimensional array A as shown in Fig. CFT-1, and store
the imaginary parts in M-dimensional array B in the same
way. On output, this subroutine stores {N1…NMαK1,...,

KM} or {xJ1,..., JM} in this manner.

CFT

248

The two-dimensional array A(N1, N2)
which contains {xJ1,J2}.

xN1-1,0

x1,0

x0,0

N2

N1

xN1-1,1

x1,1

x0,1

xN1-1, N2-1

x1 N2-1

x0 N2-1

Example of a two-varitate transform (M=2)

Fig. CFT-1 Storage of {xJ1,...,JM}

 In general, when performing M-variate -variate
transform, if the data sequence is the same as given in
FORTRAN for an M-dimensional array, parameters A
and B can each be a one-dimensional array.
Specifying ISN:
ISN is used to specify normal or inverse transform. It is
also used as follows: If the real and imaginary parts of
{xJ1,..., JM} or {αK1,..., KM} are each stored with an interval I,
the ISN parameter is speified as follows:

Transform : ISN = +I
Inverse transform: ISN = −I

In this case, the results of transform are also stored in
intervals of I.

• Examples

(a) 1-variable transform
Complex time series data {xJ1} of dimensional N1
is put, and the result {N1αK1} is determined using
this routine. In case of Nl ≤ 1024 (= 210)

C **EXAMPLE**
 DIMENSION A(1024),B(1024)
 READ(5,500) N,(A(I),B(I),I=1,N)
 WRITE(6,600) N,(I,A(I),B(I),I=1,N)
 CALL CFT(A,B,N,1,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 WRITE(6,620) (I,A(I),B(I),I=1,N)
 STOP
 500 FORMAT(I5/(2E20.7))
 600 FORMAT('0',10X,'INPUT DATA N=',I5/
 *(15X,I5,2E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5)
 620 FORMAT(15X,I5,2E20.7)
 END

(b) 2-variate transform
Complex time series data {xJ1,J2,J3} of dimension Nl,
N2 and N3 is put, a Fourier transform is performed,
and then by performing an inverse

transform on the results, {xJ1,J2,J3} is determined.
Here Nl = 2, N2 = 4 and N3 = 4.

C **EXAMPLE**
 DIMENSION A(2,4,4),B(2,4,4),N(3)
 DATA N/2,4,4/
 READ(5,500)(((A(I,J,K),B(I,J,K),
 * I=1,2),J=1,4),K=1,4)
 WRITE(6,600)N,(((I,J,K,
 * A(I,J,K),B(I,J,K),
 * I=1,2),J=1,4),K=1,4)
C NORMAL TRANSFORM
 CALL CFT(A,B,N,3,1,ICON)
 IF(ICON.NE.0)STOP
C INVERSE TRANSFORM
 CALL CFT(A,B,N,3,-1,ICON)
 IF(ICON.NE.0)STOP
 NT=N(1)*N(2)*N(3)
 DO 10 I=1,2
 DO 10 J=1,4
 DO 10 K=1,4
 A(I,J,K)=A(I,J,K)/FLOAT(NT)
 B(I,J,K)=B(I,J,K)/FLOAT(NT)
 10 CONTINUE
 WRITE(6,610)(((I,J,K,
 * A(I,J,K),B(I,J,K),
 * I=1,2),J=1,4),K=1,4)
 STOP
 500 FORMAT(8E5.0)
 600 FORMAT('0',10X,'INPUT DATA',5X,
 *'(',I3,',',I3,',',I3,')'/
 *(15X,'(',I3,',',I3,',',I3,')',2E20.7))
 610 FORMAT('0',10X,'OUTPUT DATA'/
 *(15X,'(',I3,',',I3,',',I3,')',2E20.7))
 END

Method
This subroutine performs a multi-variate discrete
complex Fourier transform using the radix 8 and 2 Fast
Fourier Transform (FFT) method.

• Multi-variate transform

The multi-variate transform defined in (3.1) can be
reduced to simpler form by rearranging common terms.
 For example, the two-variate transform can be
reduced to as shown in (4.1).

 ∑∑
−

=

−
−

=

−=
12

02

2,2
22,1

11

01

1,1
12,1

N

J

KJ
JJ

N

J

KJ
KK x ωωα (4.1)

In (4.1), the scaling factor 1/Nl⋅N2 is omitted. ∑
2J

of

(4.1) is performed on Nl groups 1-variable transforms
of dimension N2 with respect to J1. Then based on the

results, ∑
1J

is performed on N2 groups l-variable

transforms of dimension N1 with respect to J2.
 In the same way, a mult-variate discrete complex
Fourier transform is achieved by performing 1 -variable
transforms on complex number groups in each variable.

CFT

 249

 In this routine, the 8 and 2 radix Fast Fourier
Transform is used to perform 1 -variable transforms on
each variable.

• Principles of the Fast-Fourier Transform (FFT) method

1-variable discrete complex Fourier transform is
defined as

()ni

nkx
n

j

jk
jk

πω

ωα

2exp,

1...,,1,0,
1

0

=

−==∑
−

=

−
 (4.2)

 In (4.2), the scaling factor 1/ n is omitted.
 If (4.2) is calculated directly, n2k complex
multiplications will be required. While, when (4.2) is
calculated by the FFT method, if n can be factored into
r⋅r, the number of multiplications is reduced to the order
of 2 nr by taking account of the characteristics of the
exponential function ω−jk. This is illustrated below.
Since k and j of (4.2) can be expressed as

j j r j j r j r
k k r k k r k r

= + ⋅ ≤ ≤ − ≤ ≤ −
= + ⋅ ≤ ≤ − ≤ ≤ −

0 1 0 1

0 1 0 1

0 1 0 1
0 1 0 1

, ,
, ,

 (4.3)

 when (4.3) is substituted in (4.2), it results

() ()

 ⋅+⋅+
−⋅

= ∑∑
−

=

−

=
⋅+⋅+

2
1010

1

0

1

0

2exp

0 1

1010

r
krkjrj

i

x
r

j

r

j
jrjkrk

π

α
 (4.4)

 If the right side of (4.4) is re-organized according to j0
and j1 and common terms are rearranged, we obtain

∑

∑
−

⋅+

−

=
⋅+

=

 ⋅−

 ⋅−⋅

 ⋅−=

1
01

2
10

1

0

10

01

10

0

10

2exp2exp

2exp

r

j
jrj

r

j
krk

r
kjix

r
kji

r
kji

ππ

πα
 (4.5)

 In calculating (4.5) , each of ∑
0J

and ∑
1J

performs r

sets of elementary Fourier transforms of dimension r and

exp −
⋅

2 0 0
2πi

j k
r

 is the rotation factor for the results of
j1
∑ .

Therefore, the number of multiplications involved in the
calculation of (4.5) is as shown in (4.6); when n is large,
the calculation load decreases.

() () ()()
()2

22

12

11

−+=

−−+⋅+⋅=

rnr

rrrrrrCn (4.6)

 If r is factored into smaller numbers, the calculation
efficiency can be further increased.

 See the specific example given in the section CFTN.
For further information, refer to References [55], [56],
and [57].

CFTM

250

F12-11-0101 CFTM, DCFTM

Multi-variate discrete complex Fourier transform (mixed
radix FFT)
CALL CFTM (A, B, N, M, ISN, ICON)

Function
When M-variate (where the dimenstion of each variable
is N1, N2, ..., NM) complex time series data {xJ1,...,JM} is
given. This subroutine performs a discrete complex
Fourier transforms or its inverse transform by using the
Fast Fourier Transform (FFT). The dimension of each
variable must be 1 or satisfy the following conditions:
• It must be expressed by a product of prime factors p (p

= {4, 3, 5, 7,11,13,17,19,23,2}). (The same prime
factor can be duplicated.)

• The maximum number of prime factors used must be
eleven.

• The product of the square free factors (i.e., the
remainder obtained when divided by the square factor)
must be less than or equal to 210.
Also M ≥ 1.

• Fourier transform
By inputting {xJ1,...,JM} and performing the transform
defined by (1.2), {N1…NMαK1,...,KM} is obtained.

() ()NMiNi
NMKM

NK

x

NMN

M

KMJM
M

N

J

NM

JM

KJ
JMJ

KMK

πωπω

ωω

α

2exp,,12exp,
1,...,1,0,

:
11,...,1,01,

1

1

11

01

1

0

11
1,...,1

,...,1

=⋅⋅⋅=
−=

−=

⋅⋅⋅⋅⋅⋅=

⋅⋅⋅

⋅−
−

=

−

=

⋅−∑ ∑
 (1.2)

• Fourier inverse transform
By inputting {αK1,...,KM} and performing the transform
defined by (1.3), {xJ1,...,JM} is obtained.

∑ ∑
−

=

−

=

⋅⋅ ⋅⋅⋅⋅⋅⋅⋅=
11

01

1

0

11
1,...,1,...,1

N

K

NM

KM

KMJM
M

KJ
KMKJMJx ωωα

() ()NMiNi
NMJM

NJ

M πωπω 2exp,,12exp,
1,,1,0,

:
11,,1,01,

1 =⋅⋅⋅=
−⋅⋅⋅=

−⋅⋅⋅=

 (1.3)

Parameters
A Input. Real part of {xJ1,...,JM} or {αK1,...,KM}

Output. Real part of {N1…NMαK1,...,KM} or
{xJ1,...,JM}
M-dimensional array.

See “Notes”.
B Input. Imaginary part of {xJ1,...,JM} or

{αK1,...,KM}
Output. Imaginary part of {N1…NMαK1 ,..., KM}
or {xJ1,..., JM}
M-dimensional array.
See “Notes”.

N Input. Dimensions for the M-variate transform
are given such as N(1) = N1, N(2) = N2 , …,
N(M) = NM.
One-dimensional array of size M.

M Input. Number of variate: M
ISN ... Input. Either transform or inverse transform is

specified (≠ 0) as follows:
for transform: ISN = +1
for inverse transform: ISN = −1
See “Notes”.

ICON .. Output. Condition code
See Table CFTM-1.

Table CFTM-1 Condition codes

Code Meaning Processing
0 No error

29100 the dimension
N satisfies
N (mod γ2) =0

Bypassed

29200 The dimension
N satisfies
N (mod γ) = 0

29300 Number of prime factors
exceeds 11

29400 Product of square free factors
exceeds 210

30000 M ≤ 0, ISN = 0 or one of the
dimension ≤ 0

Comments on use

• Subprograms used

SSL II UCFTM and MGSSL
FORTRAN basic functions ... ATAN, COS, SIN,
SQRT, MOD and FLOAT

• Notes

General definition of Fourier transform:
The multi-variate discrete complex Fourier transform
and its inverse transform are generally defined by (3.1)
and (3.2).

ωωα KMJM
M

KJ
N

J

NM

JM
JMJKMK x

NMN
⋅−⋅−

−

=

−

=

⋅⋅⋅⋅⋅⋅
⋅⋅⋅

= ∑ ∑ 11
1

11

01

1

0
,...,1,...,1 1

1

 (3.1)

ωωα KMJM
M

KJ
NM

KM
KMK

N

K
JMJx ⋅⋅

−

=

−

=

⋅⋅⋅⋅⋅⋅= ∑∑ 11
1

1

0
,...,1

11

01
,...,1 (3.2)

 Either of the
dimensions,
N1, ..., NM,
has a prime
factor γ that
is no less
than 23, and

CFTM

 251

 where definitions of K1, ..., KM, J1, ..., JM, and
ω1,...,ωM are given in (1.2) and (1.3).

 The subroutine obtaines {N1…NMαK1,...,KM} or
{xJ1,...,JM} corresponding to the left-hand side of (3.1) and
(3.2), respectively, and the user must scale the results, if
necessary. If the transform and/ or inverse transform are
executed without being scaled by calling the subroutine
successively, each element of the input data is output and
multiplied by N1…NM.
Determination of dimension and processing speed:
When determining the dimension in each variable, the
conditions given in paragraph "Function" need to be
satisfied, but if possible, it is desirable that the prime
factors chosen are no larger than 5 (i.e., p ≤ 5). In this
way, the processing speed is generally faster than the case
where the prime factors are greater than 5 (i.e., p > 5).
Table CFTM-2 lists all numbers up to 10000 which can
be expressed only by using prime factors less than or
equal to 5. Further, if the dimension is expressed to the
power of 2 (2l, l ≥ 0 and also integer), the processing
speed is faster if subroutine CFT is used.

Table CFTM-2 all numbers up to 10000

2 90 405 1215 2916 6075
3 96 432 1250 3000 6144
4 100 450 1280 3072 6250
5 108 480 1296 3125 6400
6 120 486 1350 3200 6480
8 125 500 1440 3240 6561
9 128 512 1458 3375 6750

10 135 540 1500 3456 6912
12 144 576 1536 3600 7200
15 150 600 1600 3645 7290
16 160 625 1620 3750 7500
18 162 640 1728 3840 7680
20 180 648 1800 3888 7776
24 192 675 1875 4000 8000
25 200 720 1920 4050 8100
27 216 729 1944 4096 8192
30 225 750 2000 4320 8640
32 240 768 2025 4374 8748
36 243 800 2048 4500 9000
40 250 810 2160 4608 9216
45 256 864 2187 4800 9375
48 270 900 2250 4860 9600
50 288 960 2304 5000 9720
54 300 972 2400 5120 10000
60 320 1000 2430 5184
64 324 1024 2500 5400
72 360 1080 2560 5625
75 375 1125 2592 5760
80 384 1152 2700 5832
81 400 1200 2880 6000

 Data storing method:
All the real parts of the input {xJ1,...,JM} are stored into the
M-dimensional array A as shown in Fig. CFTM-1. The
imaginary parts are stored likewise into the M-
dimensional array B, as are the input {αK1,...,KM} and the
output {N1…NMαK1,...,KM} and {xJ1,...,JM}

Example of two-variate transform (M=2)

The two-dimensional array A(N1, N2) storing {xJ1,J2}

N2

N1

xN1-1, N2-1xN1-1,0

x1, N2-1

x0,N2-1

x1,0

x0,0

xN1-1,1

x1,1

x0,1

Fig. CFTM-1 Storing method of {xJ1 ,..., JM}

 In general, when performing M-variate transform, if its
data sequence is the same as given in FORTRAN for an
M-dimensional array, parameters A and B can be each a
one-dimensional array.
Giving the parameter ISN:
The parameter ISN specifies whether transform or
inverse transform is performd, and it can also specify the
interval I with which the real and imaginary parts of
{xJ1,...,JM} or {αK1,...,KM} are stored in array A and B.

Transform: ISN = −I
Inverse transform: ISN = −I

 The transformed results are also stored with the interval
I.

• Example

(a) For a one-variable transform
By inputting complex time series data {xJ1} of
dimension N1 and performing Fourier transform,
{N1αK1} is obtained.
Here N1 ≤ 1000.

C **EXAMPLE**
 DIMENSION A(1000),B(1000)
 READ(5,500) N,(A(I),B(I),I=1,N)
 WRITE(6,600) N,(I,A(I),B(I),I=1,N)
 CALL CFTM(A,B,N,1,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 WRITE(6,620) (I,A(I),B(I),I=1,N)
 STOP
 500 FORMAT(I5/(2E20.7))
 600 FORMAT('0',10X,'INPUT DATA N=',I5/
 * (15X,I5,2E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5)
 620 FORMAT('0',10X,'OUTPUT DATA'/
 * (15X,I5,2E20.7))
 END

CFTM

252

(b) For three-variate transform
By inputting complex time series data {xJ1,J2,J3} of
dimensions Nl , N2 and N3 , performing Fourier
transform, and by using the results performing
Fourier inverse transform, {xJ1,J2,J3} is obtained.
Here Nl = 5, N2 = 12 and N3 = 7.

C **EXAMPLE**
 DIMENSION A(5,12,7),B(5,12,7),N(3)
 DATA N/5,12,7/
 READ(5,500) (((A(I,J,K),B(I,J,K),
 * I=1,N(1)),J=1,N(2)),
 * K=1,N(3))
 WRITE(6,600) N,(((I,J,K,A(I,J,K),
 * B(I,J,K),I=1,N(1)),
 * J=1,N(2)),K=1,N(3))
C NORMAL TRANSFORM
 CALL CFTM(A,B,N,3,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0)STOP
C INVERSE TRANSFORM
 CALL CFTM(A,B,N,3,-1,ICON)
 NT=N(1)*N(2)*N(3)
 DO 10 K=1,N(3)
 DO 10 J=1,N(2)
 DO 10 I=1,N(1)
 A(I,J,K)=A(I,J,K)/FLOAT(NT)
 B(I,J,K)=B(I,J,K)/FLOAT(NT)
 10 CONTINUE
 WRITE(6,620) (((I,J,K,A(I,J,K),
 * B(I,J,K),I=1,N(1)),
 * J=1,N(2)),K=1,N(3))
 STOP
 500 FORMAT(2E20.7)
 600 FORMAT('0',10X,'INPUT DATA',5X,
 * '(',I3,',',I3,',',I3,')'/
 * (15X,'(',I3,',',I3,',',I3,')',
 * 2E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5)
 620 FORMAT('0',10X,'OUTPUT DATA'/
 * (15X,'(',I3,',',I3,',',I3,')',
 * 2E20.7))
 END

Method
The multi-variate discrete complex Fourier transform is
performed by using the mixed radix Fast Fourier
Transform (FFT) with the prime factor p (2 ≤ p ≤ 23).

• Multi-variate transform

The multi-variate transform defined in (1.2) can be
reduced by rearranging common terms. For example,
the two-variate transform can be reduced to as shown
in (4.1)

ωωα 22
2

12

02
21

11

01

11
12,121 KJ

N

J
JJ

N

J

KJ
KK xNN ⋅−

−

=
⋅

−

=

⋅− ∑∑=⋅ (4.1)

 In (4.1) ∑
2J

takes N1 sets of one-variable transforms of

dimension N2 with respect to J1 , and for that result, ∑
1J

takes N2 sets of one-variable transforms of dimension

N1 with respect to J2.
Similary, the multi-variable discrete complex Fourier
transform is achieved by performing a multi-set of one-
variable transforms in each variable. The subroutine
applies the mixed radix Fast Fourier Transform with the
prime factor p to perform one-variable transforms in each
variable.

• Principle of mixed radix Fast Fourier Transform

A one-variable discrete complex Fourier transform is
defined as

()ni

nkx
n

j

jk
jk

πω

ωα

2exp,

1,,1,0,
1

0

=

−⋅⋅⋅==∑
−

=

−
 (4.2)

 In (4.2), an ordinary scaling factor 1/ n is omitted.
When calculating (4.2) directly, the multiplications of
complex numbers are required as many as n2.
If n is expressed by n = r⋅q with arbitrary factors r and q,
and the characteristics of the exponential function ω-jk are
considered, then the number of multiplication is reduced
to about n (r + q) . Let k and j in (4.2) be as follows:

10,10,
10,10,

1010

1010

−≤≤−≤≤⋅+=
−≤≤−≤≤⋅+=

qjrjrjjj
rkqkqkkk

 (4.3)

 Substituting (4.3) into (4.2),

()()

⋅
⋅+⋅+

−⋅

= ∑∑
−

=

−

=
⋅+⋅+

qr
rjjqkk

j

x
r

j

q

j
rjjqkk

1010

1

0

1

0

2exp

0 1

1010

π

α
 (4.4)

 Rearranging the right side of (4.4) with respect to j0 and
j1 and putting the common terms together, (4.5) is
obtained

rjj

q

j

r

j
qkk

x
q
jki

r
jki

r
jki

⋅+

−

=

−

=
⋅+

−⋅

 −

 −=

∑

∑

10

1

0

10

10
1

0

0001
1

0

2exp

2exp2exp

π

ππα
 (4.5)

In (4.5), ∑
1j

takes r sets of transforms of dimension q

with respect to j0 , and ∑
0

j
takes q sets of transforms of

dimension r with respect to j1. The exp{−2πi⋅k0j0/r} is
a rotation factor for the result of ∑

1j
. Therefore, the

number of multiplications, Cn, done in (4.5) can be
given in (4.6), and for a large n , it is smaller than n2
which is the computation amount needed when (4.2) is
calculated directly.

CFTM

 253

() ()
() () 11

1122

++−++=
−−+⋅+⋅=

qrqrn
rqrqqrCn (4.6)

 This type of transform is called a radix r and q Fast
Fourier Transform. If r and q can be factored further to

prime factors, the computation efficiency will be
increased. The subroutine uses the mixed radix Fast
Fourier Transform with prime factors of up to 23.
For further details, refer to Reference [57].

CFTN

254

F12-15-0202 CFTN, DCFTN

Discrete complex Fourier transforms (radix 8 and 2 FFT.
reverse binary order output)
CALL CFTN (A, B, NT, N, NS, ISN, ICON)

Function
When one-variable complex time series data {xj} of
dimension n is given. this subroutine performs discrete
complex Fourier transforms or inverse transforms using
the Fast Fourier Transform (FFT) method. The value n
must be equal to 21(l = 0 or positive integer) .

• Fourier transform

When {xj} is input, this subroutine determines { }n k
~α

by performing the transform defined in (1.1).

()ni

nkxn
n

j

jk
jk

πω

ωα

2exp

,1,...,1,0,~
1

0

=

−== ∑
−

=

−

 (1.1)

• Inverse Fourier transform
When {αk} is input, this subroutine determines { }jx~
by performing the inverse transform defined in (1.2).

()ni

njx
n

k

jk
kj

πω

ωα

2exp

,1,...,1,0,~
1

0

=

−== ∑
−

=
 (1.2)

 { }~α k and { }~x j indicate that the transformed data is not
in ascending order, since transform is performed in the
area that the data was input. Let the results {αk} and {xj}
of the Fourier transform or inverse Fourier transform
defined in (3.1) and (3.2) be ordered in ascending order,
{ }~α k , { }~x j are in reverse binary order.

Parameters
A Input. Real parts of {xj} or {αk}.

Output. Real parts of { }n k
~α or { }~x j .

One-dimensional array of size NT.
B...... Input. Imaginary part of {xj} or {αk}.

Output. Imaginary parts of { }n k
~α or { }~x j .

One-dimensional array of size NT.
NT.... Input. The total number of data, including {xj}

or {αk}, to be transformed (≥ N, NS) .
Normally, NT = N is specified. (See "Notes".)

N Input. Dimension n.
NS Input. The interval of the consecutive data

{xj} or {αk} to be transformed of dimension n
in the NT data (≥ 1 and ≤ NT) . Normally, NS
= 1 is specified. (See "Notes".)

ISN ... Input. Specifies normal or inverse transform
(≠ 0).
Transform : ISN = +1
Inverse transform: ISN = −1 (Refer to
"Notes".)

ICON .. Output. Condition code. See Table CFTN-1.

Table CFTN-1 Condition codes

Code Meaning Processing
0 No error

30000 ISN = 0, NS < 1, NT < N,
NT < NS, or N ≠ 2l
(l = 0 or positive integer)

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic functions ... ATAN, ALOG, SQRT
and SIN

• Notes
General definition of discrete complex Fourier
transform:
Discrete complex Fourier transform and inverse
Fourier transform are generally defined as:

1,...,1,0,1 1

0

−== ∑
−

=

− nkx
n

n

j

jk
jk ωα (3.1)

and

1,...,1,0,
1

0

−== ∑
−

=

njx
n

k

jk
kj ωα (3.2)

where

()ω π= exp 2 i n

 This subroutine determines { }n k
~α or { }~x j in place of

{αk} of (3.1) or {xj} of (3.2). { }~α k and { }~x j indicate
that the transformed data is not in normal ascending order,
since transform is performed in the area that data was
input. That is, { }n k

~α is in reverse binary order and its
elements are multiplied by the value n compared to{αk}.
{ }~xk is also in reverse binary order compared to {xk}.
Scaling and permutation of the result data are left to the
user. Data can be permuted using subroutine PNR.
 Refer to Example (a).
Use of this subroutine:
Usually, when performing a Fourier transform or an
inverse Fourier transform, the subroutine CFT may be
used. When normal and inverse transforms are performed
successively, using this subroutine and subroutine CFTR
together will increase efficiency. That is, at first { }n k

~α is
obtained by this routine. After a certain process is carried
out, then processed { }n k

~α can be performed inverse
transform by subroutine CFTR

CFTN

 255

without permutation. So, by the deletion of permutation,
the processing speed can be reduced.
 In subroutine CFTR, the Fourier transform and inverse
Fourier transform defined in (3.3) or (3.4) are performed.

1,...,1,0,~
1

0

−==∑
−

=

− nkxn
n

j

jk
jk ωα (3.3)

1,...,1,0,~
1

0

−== ∑
−

=

njx
n

k

jk
kj ωα (3.4)

 Refer to Example (b).
Multi-variate transform:
With this subroutine, multi-variable transforms are
possible. For the 2-variate transform, the Fourier
transform and inverse Fourier transform are defined as:

12,...,02,11,...,01,

21
1

22
2

11
1

12

0=2
2,1

11

01
2,1

−=−=

⋅

⋅
=

⋅−⋅−
−

−

=

∑

∑

NKNK

x

NN

KJKJ
N

J
JJ

N

J
KK

ωω

α

 (3.5)

 and

12,...,02,11,...,01,

22
2

11
1

12

0=2
2,1

11

01
2,1

−=−=

⋅

=

⋅⋅
−

−

=

∑

∑

NJNJ

x

KJKJ
N

K
KK

N

K
JJ

ωωα (3,6)

 where () ()ω π ω π1 2= =exp , exp2 1 2 2i N i N
 (3.5) can be reduced to simpler form by rearranging
common terms as

∑∑
−

=

⋅−
−

=

⋅−

⋅
=

12

02

22
22,1

11

01

11
12,1 21

1 N

J

KJ
JJ

N

J

KJ
KK x

NN
ωωα

 (3.7)

The multi-variate transform of (3.7) is achieved by first

performing ∑
2J
 on Nl group 1-variable transforms of

dimension N2 with respect to Jl , and then ∑
1J

 is

performed with the results on N2 groups l-variable
transforms of dimension Nl with respect to J2. With

calling this subroutine once,∑
2J
 on N1 groups 1-variable

transforms of dimension N2 is performed. And with

another calling, ∑
1J

 on N2 groups l-variable transforms of

dimension Nl is performed. This subroutine should be
called as shown below concretely.

a) User must store {xJ1,J2} in the two-dimensional array
A and B as shown in Fig. CFTN-1.

The two-dimensional array A(N1, N2)
which contains {xJ1 ,J2}

xN1-1,0

x1,0

x0,0

N2

N1

xN1-1,1

x1,1

x0,1

xN1-1, N2-1

x1, N2-1

x0,N2-1

Fig. CFTN-1 Storage of {xJ1,J2}

b) This subroutine is called twice
 :
NT=N1*N2
NS=1
CALL CFTN(A,B,NT,N1,NS,1,ICON)
NS=N1
CALL CFTN(A,B,NT,N2,NS,1,ICON)
 :

 Since the resultis is { }2,1

~21 KKNN α⋅ , as with one-
variable transforms, scaling and permutation of the data
should be performed yhen necessary.
 Data permutation can be done with subroutine PNR.
The inverse transform defined in (3.6) can be processed
similarly. Processing is possible for more than two
variates. Refer to example (c) for threevariate
applications.
Specifying ISN:
ISN is used to specify normal or inverse transform.
It is also used as follows:
If the real parts and imaginary parts of NT data are each
stored in areas of size NT⋅I in intervals of I, the following
specification is made.

Transform : ISN = +I
Inverse transform : ISN = −I

In this case, the results of transform are also stored in
intervals of I.

• Examples
(a) 1-variable transform

Complex time series data {xj} of dimension n is put,
and a Fourier transform is performed. The results are
permuted using subroutine PNR and {nαk} obtained.
In case of n≤1024 (=210).

CFTN

256

C **EXAMPLE**
 DIMENSION A(1024),B(1024)
 READ(5,500) N,(A(I),B(I),I=1,N)
 WRITE(6,600) N,(I,A(I),B(I),I=1,N)
 CALL CFTN(A,B,N,N,1,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 CALL PNR(A,B,N,N,1,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 WRITE(6,620) (I,A(I),B(I),I=1,N)
 STOP
 500 FORMAT(I5 /(2E20.7))
 600 FORMAT('0',10X,'INPUT DATA N=',I5/
 * /(15X,I5,2E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5)
 620 FORMAT(15X,I5,2E20.7)
 END

(b) Successive transform/inverse transform

Complex time series data {xj} of dimension n is put,
and this routine performs a Fourier transform to
obtain { }n k

~α . Processing is done without
permutation of the data, then the subroutine CFTR
performs an inverse Fourier transform on the results.
In case of n ≤ l024 (= 210) .

C **EXAMPLE**
 DIMENSION A(1024),B(1024)
 READ(5,500) N,(A(I),B(I),I=1,N)
 WRITE(6,600) N,(I,A(I),B(I),I=1,N)
C NORMAL TRANSFORM
 CALL CFTN(A,B,N,N,1,1,ICON)
 IF(ICON.NE.0)STOP
 :
C INVERSE TRANSFORM
 CALL CFTR(A,B,N,N,1,-1,ICON)
 IF(ICON .NE. 0)STOP
 DO 10 I=1,N
 A(I)=A(I)/FLOAT(N)
 B(I)=B(I)/FLOAT(N)
 10 CONTINUE
 WRITE(6,610) (I,A(I),B(I),I=1,N)
 STOP
 500 FORMAT(I5/(2E20.7))
 600 FORMAT('0',10X,'INPUT DATA N=',I5/
 * /(15X,I5,2E20.7))
 610 FORMAT('0',10X,'OUTPUT DATA'/
 * /(15X,I5 ,2E20.7))
 END

(c) 3-variate transform

Complex time series data {xJ1,J2,J3} of dimension Nl ,
N2 and N3 is put, and this subroutine performs a
Fourier transform to obtain { }3,2,1

~321 KKKNNN α⋅⋅ .
Processing is done without permulation of the data,
then subroutine CFTR performs a Fourier inverse
transform on the results.

 In case of Nl⋅N2⋅N3 ≤ 1024 (= 210).
 The data can be stored in a one-dimensional array as
shown in Fig. CFTN-2.

*

*

One-dimensional array A (NT)
which contains {xJ1,J2,J3}

()= × ×N N N1 2 3
NT

x0,0,0

x1,0,0

x2,0,0

xN1-1,0,0

x0,1,0

x1,1,0

x2,1,0

xN1-1,1,0

x0,2,0

xN1-1,N2-1,0

x0,0,1

x1,0,1

x2,0,1

xN1-1,N2-1,N3-1

Note:
When stored in this way, NS can be specified in the order of the three
ca1ls --- 1, N1, N1*N2.

Fig. CFTN-2 Storage of {xJ1,J2,J3}

C **EXAMPLE**
 DIMENSION A(1024),B(1024),N(3)
 READ(5,500) N
 NT=N(1)*N(2)*N(3)
 READ(5,510) (A(I),B(I),I=1,NT)
 WRITE(6,600) N,(I,A(I),B(I),I=1,NT)
C NORMAL TRANSFORM
 NS=1
 DO 10 I=1,3
 CALL CFTN(A,B,NT,N(I),NS,l,ICON)
 IF(ICON.NE.0) STOP
 NS=NS *N(I)
 10 CONTINUE
 :
C INVERSE TRANSFORM
 NS=1
 DO 20 I=1,3
 CALL CFTR(A,B,NT,N(I),NS,-1,ICON)
 IF(ICON.NE.0) STOP
 NS=NS*N(I)
 20 CONTINUE
C NORMALIZATION
 DO 30 I=1,NT
 A(I)=A(I)/FLOAT(NT)
 B(I)=B(I)/FLOAT(NT)
 30 CONTINUE
 WRITE(6,610) (I,A(I),B(I),I=1,NT)
 STOP
 500 FORMAT(3I5)
 510 FORMAT(2E20.7)
 600 FORMAT('0',10X,'INPUT DATA N=',3I5/
 * /(15X,I5,2E20.7))
 610 FORMAT('0,10X,'OUTPUT DATA'/
 * /(15X,I5,2E20.7))
 END

CFTN

 257

Method
This subroutine performs discrete complex Fourier
transforms using the radix 8 and 2 Fast Fourier
Transform (FFT) method, or performs the inverse
transforms. Refer to the section on subroutine CFT for
the principles of FFT. In this section, a specific example
in which n = 16 will be discussed. In this case, the
Fourier transform is defined as

()162exp

,15,...,1,0,
15

0

i

kx jk

j
jk

πω

ωα

=

== −

=
∑ (4.1)

 The scaling factor l/16 is omitted in (4.1). In this
routine, n is factored into factors 8 and 2 (n =8 × 2). k
and j can be expressed as

70,10,2
10,70,8

1010

1010

≤≤≤≤⋅+=
≤≤≤≤⋅+=

jjjjj
kkkkk

 (4.2)

 If (4.2) is substituted in (4.1) and common terms are
rearranged, (4.3) results. Where, () 810 10

8 ⋅+≡⋅+ kkakkα

()

()2

8
2exp

16
2exp

2
2exp8

10

01
7

0

00

1

0

10
10

1

0

⋅+⋅

 −

 ⋅
−⋅

 −=⋅+

∑

∑

=

=

jjx

kj
i

kj
i

kj
ikk

j

j

ππ

πα

 (4.3)

 In this routine, (4.3) is successively calculated.
The results are stored in the same area that data was input.
The procedure follows, see Fig. CFTN-3.

• Process l: () ⇐⋅+ 200 kjx

)2(

8
2exp

16
2exp

10

7

0

0100

1

⋅+

 −

 − ∑

=

jjx

kjikji
j

ππ
 (4.4)

 (4.4) is executed. The elementary Fourier transform of

dimension 8 corresponding to ∑
1j

 are performed initially

with respect to j0=0 , that is, the data x0, x2, x4, x6, x8, x10,
xl2 and xl4 are transformed.
 Then the transform of dimension 8 is performed with
respect to j0=1, that is the data xl, x3, x5, x7, x9, x11, xl3 and
xl5 are transformed.
The results are multiplied by the rotation factor

exp −

2

16
0 0

πi
j k

This multiplication is not necessary for j0=0 because the
rotation factor is 1 when j0=0. When j0=1 , with the
exception of k0=0, the following rotation factors are
multiplied together in order − ξ1,ξ2,ξ3,ξ4,ξ5,ξ6 and ξ7,
ξ=exp(−2πi/16). The above results are stored in
x(j0+k0⋅2) .

• Process 2: ()x k k1 0 2+ ⋅ ⇐

()2
2

2exp 00

1

0

10

0

⋅+

 −∑

=

kjx
kj

i
j

π (4.5)

 is executed. With the results of process 1 , the Fourier

transform of dimension 2 corresponding to ∑
0j

 is

performed with respect to k0=0, that is data x0 and xl are
transformed. Similarly, with respect to k0=1,...,7 , the
Fourier transform of dimension 2 is performed for each.
It is not necessary to multiply these results by the rotation
factor.The above results are stored in x(k1+k0⋅2).
Since the x(k1+k0⋅2) obtained in this way is in reverse
digit order compared to the α(k0+k1⋅8) to be obtained as
the discrete complex Fourier transform of dimension 16,
it is expressed as ()~α k k1 0 2+ ⋅ . In this routine, since the
results of elementary Fourier transform of dimension 8
are in reverse binary order, the final result ()~α k k1 0 2+ ⋅

is also in reverse binary order compared to ()α k k0 1 8+ ⋅ .

 For further information, see References [55], [56], and
[57].

CFTN

258

() ()

 −⋅+

 −

 −=⋅+ ∑∑

== 8
2exp2

16
2exp

2
2exp8 01

7

0
10

00
1

0

10
10

10

kj
ijjx

kj
i

kj
ikk

jj

πππα

 ()x j j0 1 2+ ⋅ Process 1 ()x j k0 0 2+ ⋅ Process 2 ()~α k k1 0 2+ ⋅

15

7

11

3

10

2

12

4

8

0

13

5

9

1

6

14

15

7

11

3

10

2

12

4

8

0

13

5

9

1

6

14

15

14

13

12

5

4

3

2

1

0

11

10

9

8

6

7

Fourier
transform
of dimen-
sion 8
j

j
0

1

0= ∑,

Fourier
transform
of dimen-
sion 8
j

j
0

1

1= ∑,

ξ 4

ξ 2

ξ 6

ξ 1

ξ 5

ξ 3

ξ 7

j
j

1
0

0= ∑,
*1

j
j

1
0

1= ∑,
*1

j
j

1
0

2= ∑,
*1

j
j

1
0

3= ∑,
*1

j
j

1
0

4= ∑,
*1

j
j

1
0

5= ∑,
*1

j
j

1
0

6= ∑,
*1

j
j

1
0

7= ∑,
*1

Note:
The circled numbers represent the order of the data.
ξ=exp(−2πi/16). Since the results of Fourier transforms of dimension 8 are in
reverse binary order, ()~α k k1 0 2+ ⋅ is in reverse binary order

against ()α k k0 1 8+ ⋅ .
*1 Complex Fourier transform of dimension 2.

Fig. CFTN-3 Flow chart of a complex Fourier transform of dimension 16
(reverse binary order output)

CFTR

 259

F12-15-0302 CFTR, DCFTR

Discrete complex Fourier transform (radix 8 and 2 FFT.
reverse binary order input)
CALL CFTR (A, B, NT, N, NS, ISN, ICON)

Function
When the one-variable complex time series data {xj} of
dimension n is given in reverse binary order as { }~x j , the
discrete complex Fourier transform or its inverse
transform is performed by using the Fast Fourier
Transform (FFT). Here n = 2l (l = 0 or positive integer).

• Fourier transform

{ }~x j is input and the transform defined by (1.1) is
carried out to obtain {nαk} .

()ni

nkxn
n

j

jk
jk

πω

ωα

2exp,

1,...,1,0,~
1

0

=

−==∑
−

=

−

 (1.1)

• Fourier inverse transform
{ }~α k is input and the transform defined by (1.2) is
carried out to obtain {xj}.

()ni

njx
n

k

jk
kj

πω

ωα

2exp,

1,...,1,0,~
1

0

=

−==∑
−

=
 (1.2)

 The sequence of the transformed {nαk} and {xj} are
given in the normal sequence.

Parameters
A Input. Real part of { }~x j or { }~α k .

Output. Real part of {nαk} or {xj}.
One-dimensional array of size NT.

B Input. Imaginary part of { }~x j or { }~α k .
Output. Imaginary part of {nαk} or {xj} .
One-dimensional array of size NT.

NT ... Input. Total number of data in which { }~x j or

{ }~α k
 to be transformed are contained. (NT ≥

N and NS) Normally, NT = N.
See "Notes".

N .. Input. Dimension: n
NS .. Input. Interval of the consecutive data { }~x j

or {nαk} to be transformed of dimension n in
the NT data. (NS ≥ 1 and ≤ NT) Normally, NS
= 1. See "Notes".

ISN .. Input. Either transform or inverse transform is
specified (≠ 0) as follows:
for transform: ISN = +l
for inverse transform: ISN = −l
See "Notes".

ICON .. Output. Condition code
See Table CFTR-1 .

Table CFTR-1 Conditions codes

Code Meaning Processing
0 No error

30000 ISN = 0. NS < 1, NT < N, NT
< NS, or N≠2l
(l = 0 or positive integer)

By pessed

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic functions ... ATAN, ALOG, SQRT
and SIN

• Notes

General definition of Fourier transform:
The discrete complex Fourier transform and its inverse
transform are generally defined as given in (3.1) and
(3.2).

∑
−

=

− −==
1

0

1,...,1,0,1 n

j

jk
jk nkx

n
ωα (3.1)

()ni

njx
n

k

jk
kj

πω

ωα

2exp,

1,...,1,0,
1

0

=

−== ∑
−

=
 (3.2)

 The subroutine performs transform for }~{ jx or }~{ kα

whose sequence is reverse binary order. The }~{ jx and

{nαk} correspond to {xj} and {nαk} in the right-hand
side of (3.1) and (3.2), respectively. The transformed
results, {nαk} or {xj}, are obtained each corresponding to
{nαk} and {xj} in the left-hand side of (3.1) and (3.2),
respectively. That is, the obtained result sequence is
normal order and the elements of {nαk} are given
multiplied by n .
 The normalization of the results must be carried out by
the user, if necessary.
Use of the subroutine:
For Fourier transform or inverse Fourier transform, the
subroutine CFT is normally used, but if the transform
and inverse transform are to be executed one after
another, the subroutine CFTN and CFTR described in
this section should be used for better efficiency.
 Refer to "Comments on use" of subroutine CFTN.
Application of multi-variate transform:
This subroutine, CFTR, can be applied to a multi-variate
transform. For exarnple, a two-variate Fourier transform
and its inverse transform are defined as follows:

12,...,1,02,11,...,1,01,

21
1 22

2
11

1

11

01

12

02
2,12,1

−=−=

⋅
= ⋅−⋅−

−

=

−

=
∑∑

NKNK

x
NN

KJKJ
N

J

N

J
JJKK ωωα (3.5)

CFTR

260

12,...,1,02,11,...,1,01,

22
2

11
1

11

01

12

02
2,12,1

−=−=

= ⋅⋅
−

=

−

=
∑ ∑

NJNJ

x KJKJ
N

K

N

K
KKJJ ωωα (3.6)

where () ()ω π ω π1 22 1 2 2= =exp , expi N i N
Eq. (3.5) can be rewritten to

ωωα 22
2

11

01

12

02
2,1

11
12,1 21

1 KJ
N

J

N

J
JJ

KJ
KK x

NN
⋅−

−

=

−

=

⋅−∑ ∑⋅
= (3.7)

 The two-variate transform (3.7) above is achieved such
that Nl sets of one-variable transforms of dimension N2
are performed with respect to J1, and for that result. N2
sets of one-variable transforms of dimension N1
performed with respect to J2 .
The subroutine is capable of performing N1 sets of one-
variable transforms of dimesnsion N2 simultaneously
once it is called. In this way computational load is
reduced compared to the case where the one-variable
transforms of dimension N2 are calculated one by one, so
that a multi-variate transform can be accomplished
efficiently. In practice, specify as shown below and then
call the subroutine.
a) { }~xJ J1, 2 are stored in the two-dimensional array A and

B as illustrated in Fig. CFTR-1.
b) the subroutine is called twice as follows:

 :
NT=N1*N2
NS=1
CALL CFTR(A,B,NT,N1,NS,1,ICON)
NS=N1
CALL CFTR(A,B,NT,N2,NS,1,ICON)
 :

 The obtained result is { }2,121 KKNN α⋅ , so
normalization must be done by the user, if necessary, in
the same way as for a one-variable transform.
The inverse transform defined in (3.6) can be similarly
performed. Transforms with more than two variate are
also possible and example (b) shows a case of three
variates.
Giving ISN:
The parameter ISN specifies whether transform or
inverse transform is performed. and can be also used for
the following case. That is, when the real and imaginay
parts of NT number of { }~x j or { }~α k are stored in the
area of size NT⋅I with an interval I between each other,
the ISN is specified as follows:
for transform: ISN = +I
for inverse transform: ISN = −I
The transformed results are stored also with an interval I.

Two dimensional array, A (N1. N2), which stores { }~xJ J1, 2

N2

N1

~
,xN1 1 1−

~
,x1 0

~
,x0 0

~
,xN1 1 1−

~
,x1 1

~
,x0 1

~
,xN N1 1 2 1− −

~
,x N1 2 1−

~
,x N0 2 1−

Note:
Array A contains the real parts of { }~x . The imaginary parts are stored
likewise in the two-dimensional array B (N1, N2).

Fig. CFTR-1 Storing method

• Example
(a) One-variable transform

The complex time series data {xj} of dimension n
are input, and permuted by subroutine PNR in
reverse binary order.
The result { }~x j is subjected to Fourier transform
by the subroutine to obtain {nαk} .
Here n ≤ 1024 (= 210).

C **EXAMPLE**
 DIMENSION A(1024),B(1024)
 READ(5,500) N,(A(I),B(I),I=1,N)
 WRITE(6,600) N,(I,A(I),B(I),I=1,N)
 CALL PNR(A,B,N,N,1,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 CALL CFTR(A,B,N,N,1,1,ICON)
 WRITE(6,620) (I,A(I),B(I),I=1 ,N)
 STOP
 500 FORMAT(I5/(2E20.7))
 600 FORMAT('0',10X,'INPUT DATA N=',I5/
 * /(15X,I5 ,2E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5)
 620 FORMAT('0',10X,'OUTPUT DATA'//
 * (15X,I5 ,2E20.7))
 END

(b) Three-variate transform
The three-variate complex time series data {xJ1,J2,J3}
of dimension N1, N2 and N3 are input and
permuted by subroutine PNR in reverse binary
order.
The results { }~

,xJ J J1, 2 3 are subjected to Fourier
transform by the subroutine to obtain
{N1⋅N2αK1,K2}.
The data {xJ1,J2,J3} may be stored in a one-
dimensional array as illustrated in Fig.CFTR-2.

CFTR

 261

*

*

One-dimensional array, A (NT),
which stores

()= × ×N N N1 2 3

{ }~
, ,xJ J J1 2 3

NT

~
, ,x0 0 0

~
, ,x1 0 0

~
, ,x2 0 0

~
, ,xN1 1 0 0−

~
, ,x1 1 0

~
, ,x0 1 0

~
, ,x2 1 0

~
, ,xN1 1 1 0−

~
, ,x0 2 0

~
, ,xN N1 1 2 1 0− −

~
, ,x0 0 1

~
, ,x1 0 1

~
, ,x2 0 1

~
, ,xN N N1 1 2 1 3 1− − −

Note
Array A contains the real part of { }~x . The imaginary parts are
contained likewise in the one-dimensional array B (NT). Parameter NS,
when contained in this way, is given 1, N1 and N1⋅N2 for each of the
three times the subroutine is called.

Fig. CFTR-2 Storage of { }~ ,x J J J1, 2 3

C **EXAMPLE**
 DIMENSION A(1024),B(1024),N(3)
 READ(5,500) N
 NT=N(1)*N(2)*N(3)
 READ(5,510) (A(I),B(I),I=1,NT)
 WRITE(6,600) N,(I,A(I),B(I),I=1,NT)
 NS=1
 DO 10 I=1,3
 CALL PNR(A,B,NT,N(I),NS,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 CALL CFTR(A,B,NT,N(I),NS,1,ICON)
 NS=NS*N(I)
 10 CONTINUE
 WRITE(6,620) (I,A(I),B(I),I=1,NT)
 STOP
 500 FORMAT(3I5)
 510 FORMAT(2E20.7)
 600 FORMAT('0',10X,'INPUT DATA N=',3I5/
 * /(15X,I5 ,2E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5)
 620 FORMAT('0',10X,'OUTPUT DATA'//
 * (15X,I5 ,2E20.7))
 END

Method
The discrete complex Fourier transform is performed by
using the radix 8 and 2 Fast Fourier Transform (FFT) .
The input data is to be given in reverse binary order. For
the principle of the Fast Fourier Transform, refer to the
section of subroutine CFT.
 In this section, the transform is explaind for n = 16.

()162exp

,15,...,1,0,
15

0

i

kx
j

jk
jk

πω

ωα

=

== ∑
=

−

 (4.1)

 where the scaling factor 1/16 is omitted. The subroutine
factors n by using 2 and 8 (n = 2 × 8).
 k and j are expressed as follows:

k k k k k
j j j j j

= ⋅ + ≤ ≤ ≤ ≤
= ⋅ + ≤ ≤ ≤ ≤

0 1 0 1

0 1 0 1

2 0 7 0 1
8 0 1 0 7

, ,
, ,

 (4.2)

 Substituting (4.2) into (4.1) and rearranging the
common terms, (4.3) is obtained.

() ∑
=

 −=+⋅

7

0

01
10

1
8

2exp2
j

kjjkk πα

 ⋅ −

exp 2
16
1 1πi j k

 (4.3)

 ()∑
=

+⋅

 −⋅

1

0
10

10

0

8
2

2exp
j

jjxkjiπ

 where ()
10 210 2 kkkk +⋅≡+⋅ αα

 The subroutine is given its input data in reverse binary
order, i.e., ()~x j j0 1 2+ ⋅ is given instead of x(j0⋅8+j1),
then Eq. (4.3) is calculated successively. The results are
stored in the same area.
 The procedure is explained below, in conjunction with
Fig. CFTR-3.

• Step l: ()~x k j1 1 2+ ⋅ ⇐

 ()∑
=

⋅+

 −

1

0
10

10

0

2~
2

2exp
j

jjx
kj

iπ (4.4)

 First of all, Fourier transforms of dimension 2 are

performed by ∑
0j

 with respect to j0=0, that is, transform

is done for ~x0 and ~x1 . Similarly, the Fourier transforms
of dimension 2 are performed with respect to j0=1 to 7
and the results are stored in ()~x k j1 1 2+ ⋅ .

• Step 2: ()~x k k1 0 2+ ⋅ ⇐

()2~
16

2exp
8

2exp

11

7

0

1101

1

⋅+⋅

 −

 −∑

=

jkx

kjikji
j

ππ
 (4.5)

 The results obtained at step 1 are multiplied by the

rotation factors, exp −

2
16
1 1πi

j k and Fourier transforms

of dimension 8 are performed by ∑
1j

 with respect to k0=0

and k0=1.
When k0=0, the all rotation factors are 1, so no

CFTR

262

multiplication is necessary, and the transform is done for
121086420 x~,x~,x~,x~,x~,x~,x~ and ~x14 when k1=1 the transform

is done after ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~x x x x x x x x1 3 5 7 9 11 13 15 are multiplied by
the rotation factor. The rotation factors are ξ0, ξ1, ξ2, ξ3,
ξ4, ξ5, ξ6 and ξ7, where
ξ = exp(-2πi/16). Since each of the input data sequence
for these two sets of Fourier transforms of dimension 8 is
in reverse binary order, each of the

transformed results is permuted in the normal order and
stored in ()~x k k1 0 2+ ⋅ .

The obtained ()~x k k1 0 2+ ⋅ agrees with ()~α k k1 0 2+ ⋅
which is the result of the "discrete complex Fourier
transform of dimension 16".

 For further information, see References [55], [56], and
[57].

() ()2~
2

2exp
16

2exp
8

2exp2 10

7

0

1

0

101101
10

1 0

⋅+

 −

 −

 −=+⋅ ∑ ∑

= =

jjxkjikjikjikk
j j

πππα

 ()~x j j0 1 2+ ⋅ Step 1 ()~x k j1 1 2+ ⋅ Step 2 ()α k k0 12⋅ +

1

9

5

13

3

11

7

15

0

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

0

8

4

12

2

10

6

14

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

*1
j

j
1

0
0= ∑,

*1
j

j
1

0
1= ∑,

*1
j

j
1

0
2= ∑,

*1
j

j
1

0
3= ∑,

*1
j

j
1

0
4= ∑,

*1
j

j
1

0
5= ∑,

*1
j

j
1

0
6= ∑,

*1
j

j
1

0
7= ∑,

ξ 4

ξ 2

ξ 6

ξ 1

ξ 5

ξ 3

ξ 7

Fourier
transform
of dimen-
sion 8

k
j

1
1

0= ∑,

Fourier
transform
of dimen-
sion 8

k
j

1
1

1= ∑,

Note:
Numbers inside O marks indicate the data sequence, and ξ = exp(-2πi/16).
*1: Complex Fourier transform of dimension 2

Fig. CFTR-3 Flow chart of a complex Fourier transform of dimension 16
(reverse binary order input)

CGSBM

 263

A11-40-0101 CGSBM, DCGSBM

Storage mode conversion of matrices (real general to real
symmetric band)
CALL CGSBM (AG, K, N, ASB, NH, ICON)

Functions
This subroutine converts an n × n real symmetric band
matrix with band width h stored in the general mode into
one stored in the compressed mode for symmetric band
matrix, where n > h ≥ 0.

Parameters
AG Input. The symmetric band matrix stored in

the general mode. Two-dimensional array, AG
(K, N).
(See "Comments on Use.")

K Input. The adjustable dimension (≥ N) of
array AG.

N Input. The order (n) of the matrix.
ASB ... Output. The Symmetric band matrix stored in

the compressed mode.
One-dimensional array of size
n(h+1)−h(h+1)/2.

NH Input. Band width h of the matrix.
ICON .. Output. Condition code. (See Table CGSBM-1.)

Table CGSBM-1 Condition codes

Code Meaning Processing
0 No error.

30000 NH < 0, N ≤ NH, or K<N By passed

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic function ... MAX0

• Notes

Storing method of the symmetric band matrix in the
general mode:
Only the elements of the lower band and the diagonal
portions can be stored in array AG. The elements of the
lower band portion are copied into those of the upper
band portion in this subroutine.

• Saving the storage area:

If the contents of array AG need not be retained, the
storage area can be saved using an EQUIVALENCE
statement as follows:
EQUIVALENCE (AG (1,1), ASB (1)) (See "Example"
for details.)

• Example

Given an n × n positive-definite symmetric band matrix
with band width h in the general mode, this example
converts it into one stored in the compressed mode for
symmetric band matrix, then performs decomposition.
Subroutine SBDL is used for the decomposition,
whereas this subroutine and subroutine CSBGM are
used to convert the mode, where n ≤ 100 and h ≤ 20.

C **EXAMPLE**
 DIMENSION AG(100,100),ASB(1890)
 EQUIVALENCE(AG(1,1),ASB(1))
 10 READ(5,500) N,NH
 IF(N.EQ.0)STOP
 K=100
 READ(5,510) ((AG(I,J),I=1,N),J=1,N)
 WRITE(6,600) N,NH,((I,J,AG(I,J),
 * I=1,N),J=1,N)
 CALL CGSBM(AG,K,N,ASB,NH,ICON)
 WRITE(6,610) ICON
 IF(ICON.EQ.30000) GO TO 10
 EPSZ=0.0
 CALL SBDL(ASB,N,NH,EPSZ,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 CALL CSBGM(ASB,N,NH,AG,K,ICON)
 WRITE(6,630) N,NH,((I,J,AG(I,J),
 * J=1,N),I=1,N)
 GO TO 10
 500 FORMAT(2I5)
 510 FORMAT(4E15.7)
 600 FORMAT(//10X,'** INPUT MATRIX **'/
 *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/
 *(2X,4('(',I3,',',I3,')',E17.8)))
 610 FORMAT('1'/10X,'CGSBM ICON=',I5)
 620 FORMAT(/10X,'SBDL ICON=',I5)
 630 FORMAT('1'//10X,'DECOMPOSED MATRIX'/
 *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/
 *(2X,4('(',I3,',',I3,')',E17.8)))
 END

Method
A real symmetric band matrix stored in a two-
dimensional array AG in the general mode is processed
as follows to be a symmetric band matrix in a one-
dimensional array in the compressed mode.
 The elements of the lower band portion are moved to
the upper band portion using the diagonal as the axis of
symmetry.

AG(I,J)→AG(J,I), I − h ≤ J ≤ I − 1

 The elements of the diagonal and upper band AG (I,J)
are moved to the ASB, beginning from column 1 of AG,
as follows:

Elements in the Matrix Elements in the
general mode Elements compressed mode

AG (I, J) −−→ aij −−→ ASB (J (J−1)/2+I)
 , I = 1, 2, ⋅⋅⋅, J , J = l, 2, ⋅⋅⋅, h+1
AG (I, J) −−→ aij −−→ ASB (hJ − h (h+1)/2+I)
 , I = J−h, J−h+1, ⋅⋅⋅, J , J = h+2, h+3, ⋅⋅⋅,N

CGSM

264

A11-10-0101 CGSM, DCGSM

Storage mode conversion of matrices
(real general to real symmetric)
CALL CGSM (AG, K, N, AS, ICON)

Functions
This subroutine converts an n × n real symmetric matrix
stored in the general mode into a symmetric matrix stored
in the compressed mode. n ≥ 1.

Parameters
AG .. Input. The symmetric matrix stored in the

general mode. AG is a two-dimensional array,
AG (K, N). (See "Comments on use".)

K .. Input. The adjustable dimension (≥ N) of
array AG.

N ... Input. The order n of the matrix.
AS ... Output. The symmetric matrix stored in the

compressed mode. AS is a one-dimensional
array of size n (n +1)/2.

ICON ... Output. Condition codes. Refer to Table
CGSM-1.

Table CGSM-1 Condition code

Code Meaning Processing
0 No error

30000 N < 1 or K < N By passed

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic function ... None

• Notes

Storage method of the symmetric matrix in the general
mode:
Only the elements of the diagonal and lower triangular
portions need be given to array AG. The subroutine
copies the lower triangular portion to the upper
triangular portion.
If there is no need to keep the contents on the array AG,
more atorage can be saved by using the
EQUIVALENCE statement as follow;

 EQUIVALENCE (AG(1,1), AS(1))

Refer to the example shown below.

• Example

Given an n × n positive-definite symmetric matrix in
the general mode, the inverse matrix is obtained by
subroutines SLDL and LDIV as shown in the example.
 In this case, the required mode conversion is

performed by subroutines CGSM and CSGM.
Here n ≤ 100.

C **EXAMPLE**
 DIMENSION A(100,100),B(5050)
 EQUIVALENCE(A(1,1),B(1))
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 K=100
 READ(5,510) ((A(I,J),I=1,N),J=1,N)
 WRITE(6,600) N,((I,J,A(I,J),J=1,N),
 * I=1,N)
 CALL CGSM(A,K,N,B,ICON)
 WRITE(6,610) ICON
 IF(ICON.EQ.30000) GOTO 10
 EPSZ=0.0
 CALL SLDL(B,N,EPSZ,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GOTO 10
 CALL LDIV(B,N,ICON)
 WRITE(6,630) ICON
 CALL CSGM(B,N,A,K,ICON)
 WRITE(6,640) ICON
 WRITE(6,650)N,((I,J,A(I,J),J=1,N),
 * I=1,N)
 GOTO 10
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1'//10X,'** INPUT MATRIX **'/
 *10X,'ORDER=',I5/(2X,
 *4('(',I3,',',I3,')',E17.8)))
 610 FORMAT(10X,'CGSM ICON=',I5)
 620 FORMAT(10X,'SLDL ICON=',I5)
 630 FORMAT(10X,'LDIV ICON=',I5)
 640 FORMAT(10X,'CSGM ICON=',I5)
 650 FORMAT('1'//10X,'** INVERSE ',
 *'MATRIX **'/10X,'ORDER=',I5/(2X,
 *4('(',I3,',',I3,')',E17.8)))
 END

Methods
This subroutine converts an n × n real symmetric matrix
stored in a two-dimensional array AG in the general
mode to in a one-dimensional array in the compressed
mode through the following procedures.
• With the diagonal as the axis of symmetry, the

elements of the lower triangular portion are transferred
to the upper triangular portion.

 AG(I,J) → AG(J,I), J<I

• The diagonal and upper triangular elements AG (I,J) is
transferred to the J (J-1)/2 + I position in AS.
 Here, J ≥ I. Transfer begins with the first column of
AG and continues column by column.
 The correspondence between locations is shown
below, where NT = n (n + 1)/2 .

CGSM

 265

Elements in the
general mode

Elements of
the matrix

Elements in the
compressed mode

AG (1, 1) → a11 → AS (1)
AG (1, 2) → a21 → AS (2)
AG (2, 2) → a22 → AS (3)
 : : :
AG (I, J) → aji → AS (J (J − 1)/2+I)
 : : :
AG (N-1, N) → ann−1 → AS (NT − 1)
AG (N, N) → ann → AS (NT)

CHBK2

266

B21-15-0602 CHBK2, DCHBK2

Back transformation of the eigenvectors of a complex
Hessenberg matrix to the eigenvectors of a complex
matrix
CALL CHBK2 (ZEV, K, N, IND, M, ZP, IP, DV, ICON)

Function
This subroutine back-transforms m eigenvectors of an n -
order Hessenberg matrix H to eigenvectors of a complex
matrix A. H is assumed to be obtained from A using the
stabilized elementary similarity transformation method.
No eigenvectors of complex A are normalized. n ≥ 1.

Parameters
ZEV ... Input. m eigenvectors of complex Hessenberg

matrix H.
Output. ml eigenvectors of complex matrix A.
The ml indicates the number of IND elements
whose value is 1.
ZEV is a two-dimensional array, ZEV (K,M)

K .. Input. Adjustable dimension of arrays ZEV
and ZP. (≥ n).

N .. Input. Order n of complex matrices A and H.
IND ... Input. IND(J)=1 implies that the eigenvector

corresponding to the j-th eigenvalue of ZEV is
to be back-transformed.
IND(J)=0 implies that the eigenvector
corresponding to the j-th eigenvalue of ZEV is
not to be back-transformed. IND is one-
dimensional array of size M .
See "Comments on use"

M ... Input. Total number of eigenvalues corres-
ponding to eigenvectors of complex
Hessenberg matrix H.

ZP ... Input. Information necessary for a transfor-
mation matrix (A to H). ZP (K,N) is a two-
dimensional complex array.
See "Comments on use".

IP ... Input. Information necessary for a
transformation matrix (A to H) . IP is a one-
dimensional array of size n.
See "Comments on use".

DV ... Input. Scaling factor applied to balance
complex matrix A. DV is a one-dimensional
array of size n.
If balancing of complex matrix A was not
performed, DV=0.0 can be specified.
Therefore, DV does not necessarily have to be
a one-dimensional array.
See "Comments on use".

ICON ... Output. Condition code.
See Table CHBK2-l

Table CHBK2-1 Condition Codes

Code Meaning Processing
0 No error

10000 N=1 ZEV(1,1)=(1.0,0.0)
30000 N <M,M < 1 or K < N By passed

Comments on use
• Subroutines used

SSL II ... MGSSL
FORTRAN basic function ... None

• Notes

After subroutine CHVEC is executed, parameters ZEV,
IND and M can be used as input parameters for this
subroutine.
 Parameters ZA and IP for subroutine CHES2
correspond to parameters ZP and IP for this subroutine
and can be used as input parameters for this subroutine.
For information about the contents of parameters ZP
and IP, refer to the section on CHES2.
 For information about the contents of scaling factor
DV, refer to the section on CBLNC.

• Example
Eigenvectors and eigenvalues of an n -order complex
matrix are calculated by using the following
subroutines:
CBLNC Balancing of a complex matrix
CHES2 Reduction to a complex Hessenberg

matrix
CHSQR Determination of eigenvalues of a

complex Hessenberg matrix
CHVEC Determination of eigenvectors of a

complex Hessenberg matrix.
CHBK2 Back-transformation of eigenvectors of a

complex Hessenberg matrix to
eigenvectors of a complex matrix

CNRML Nomalization of eigenvectors of a
complex matrix.

However eigenvectors are calculated in the order in
which eigenvalues are determined. When n ≤ 100:

C **EXAMPLE**
 COMPLEX ZA(100,100),ZE(100),
 *ZAW(100,101),ZEV(100,100)
 DIMENSION IND(100),DV(100),IP(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((ZA(I,J),I=1,N),J=1,N)
 WRITE(6,600) N
 DO 20 I=1,N
 20 WRITE(6,610) (I,J,ZA(I,J),J=1,N)
 CALL CBLNC(ZA,100,N,DV,ICON)
 WRITE(6,620) ICON
 IF(ICON.NE.0) GO TO 10
 CALL CHES2(ZA,100,N,IP,ICON)

CHBK2

 267

 DO 30 J=1,N
 IM=MIN0(J+1,N)
 DO 30 I=1,IM
 30 ZAW(I,J)=ZA(I,J)
 CALL CHSQR(ZAW,100,N,ZE,M,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 DO 40 I=1,M
 40 IND(I)=1
 CALL CHVEC(ZA,100,N,ZE,IND,M,
 * ZEV,ZAW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 CALL CHBK2(ZEV,100,N,IND,M,ZA,IP,
 * DV,ICON)
 CALL CNRML(ZEV,100,N,M,2,ICON)
 CALL CEPRT(ZE,ZEV,100,N,IND,M)
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1',10X,'ORIGINAL MATRIX'
 *//11X,'ORDER=',I5)
 610 FORMAT(/2(5X,'A(',I3,',',I3,')=',
 *2E15.7))
 620 FORMAT(/11X,'CONDITION CODE=',I5/)
 END

 In this example, subroutine CEPRT is used to print
the eigenvalues and corresponding eigenvectors of a
complex matrix. For further information see the
example of CEIG2.

Method
This subroutine back-transforms the eigenvectors of an n-
order complex Hessenberg matrix H to the eigenvectors
of balanced complex matrix A and then back-transforms
the resultant eigenvectors to eigenvectors of an original
complex matrix A.
 An complex matrix A is balanced by using the diagonal
similarity transformation method shown in (4.1). The
balanced complex matrix is reduced to a complex
Hessenberg matrix H by using the (n − 2) stabilized
elementary similarity transformations as shown in (4.2).

~A D AD= −1 (4.1)

221
1

1
1

2
1
2

~
−

−−−
− ⋅⋅⋅⋅⋅⋅= nn SSSASSSH (4.2)

 Where D is a diagonal matrix and Si is represented by
permutation matrix Pi and elimination matrix Ni as shown
in (4.3).

1−= iii NPS 2,...,2,1 −= ni (4.3)

 Let eigenvalues and eigenvectors of H by λ and y
respectively and then obtain

Hy y= λ (4.4)

 From (4.1) and (4.2), (4.4) becomes:

yySSADSDSSS 1 λ=⋅⋅⋅⋅⋅⋅ −
−−−−

− 221
1

1
1

2
1
2 nn (4.5)

 If both sides of (4.5) are premultiplied by DS1S2…Sn-2.

ySSDSySSADS 221221 −− ⋅⋅⋅=⋅⋅⋅ nn λ (4.6)

results and eigenvector x of A becomes:

ySSDSx 221 −⋅⋅⋅= n (4.7)

x is calculated as shown in (4.8) and (4.9)
starting with y=xn-1.

1,2,...,2,1
1

1 −=== +
−

+ niiiiiii xNPxSx (4.8)
x Dx= 1 (4.9)

 For further information about stabilized elementary
similarity transformation and balancing, see the section
on CBLNC and CHES2.

 For details see Reference [13] pp.339 - 358.

CHES2

268

B21-15-0302 CHES2, DCHES2

Reduction of a complex matrix to a complex Hessenberg
matrix (stabilized elementary similarity transformation)
CALL CHES2 (ZA, K, N, IP, ICON)

Function
This subroutine reduces an n-order complex matrix A to a
complex Hessenberg matrix H using the stabilized
elementary similarity transformation method (Gaussian
elimination method with partial pivoting) .

H S AS= −1

where S is a transformation matrix.
n ≥ l.

Parameters
ZA ... Input. Complex matrix A.

Output. Complex Hessenberg matrix H and
transformation matrix.
See Figure CHES2-1.
ZA is a complex two-dimentional array, ZA (K,
N).

K .. Input. Adjustable dimension of array ZA.
(≥ n)

N ... Input. Order n of complex matrix A.
IP ... Output. Information required by permutation

matrix S. (See Fig. CHES2-1.)
IP is a one-dimensional array of size n.

ICON... Output.
See Table CHES2-1.

×
×

∗∗

∗∗∗
∗∗

−

−
−

+ 2

2

1

)2(
2

)()1(
1

)(
2

)1(
41

)1(
31

IPZA

n

n
nn

k
knn

k
kk m

m
m

aaa

a

a
a

Note:
The section indicated with ∗ is the Hessenberg matrix. The rest
contains some information for the transformation matrix. × indicates a
work area.

Fig. CHES2-1 Array ZA and IP after transformation

Table CHES2-1 Condition codes

Code Meaning Processing
0 No error

10000 N =1 or N = 2 No transformation
30000 K < N or N < 1 Bypassed

Comments on use
• Subroutines used

SSL II ... CSUM, AMACH, MGSSL
FQRTRAN basic functions ... REAL, AIMAG, ABS,
AMAX1

• Notes

Output arrays ZA and IP are required to determine the
eigenvectors of matrix A.
 The precision of eigenvalues is determined in the
complex Hessenberg transformation process. For that
reason this subroutine has been implemented so that
complex Hessenberg matrices can be determined as
accurately as possible. However, if a complex matrix
contains very large and very small eigenvalues, the
precision of smaller eigenvalues is liable to be more
affected by the reduction process − some smaller
eigenvalues are difficult to determine precisely.

• Example
This example transforms an n -order complex matrix to
a complex Hessenberg matrix and determines its
eigenvalues through use of the subroutine CHSQR.
n ≤ 100

C **EXAMPLE**
 COMPLEX ZA(100,100),ZE(100)
 DIMENSION IP(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((ZA(I,J),I=1,N),J=1,N)
 WRITE(6,600) N
 DO 20 I=1,N
 20 WRITE(6,610) (I,J,ZA(1,J),J=1,N)
 CALL CHES2(ZA,100,N,IP,ICON)
 WRITE(6,620)
 WRITE(6,630) ICON
 IF(ICON.EQ.30000) GO TO 10
 WRITE(6,610) ((I,J,ZA(I,J),
 * J=1,N),I=1,N)
 CALL CHSQR(ZA,100,N,ZE,M,ICON)
 WRITE(6,640)
 WRITE(6,630) ICON
 IF(ICON.GE.20000) GO TO 10
 WRITE(6,650) (I,ZE(I),I=1,M)
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1',10X,'ORIGINAL MATRIX'
 * //11X,'ORDER=',I5/)
 610 FORMAT(/2(5X,'A(',I3,',',I3,
 * ')=',2E15.7))
 620 FORMAT('0'//11X,
 * 'HESSENBERG MATRIX')
 630 FORMAT(/11X,'CONDITION CODE=',I5/)
 640 FORMAT('0'/11X,'EIGENVALUES')
 650 FORMAT(5X,'E(',I3,')=',2E15.7)
 END

CHES2

 269

Method
An n-order complex matrix A is reduced to a complex
Hessenberg matrix H through n-2 iterations of the
stabilized elementary similarity transformation method.

2,...,2,1,1
1 −== −

− nkkkkk SASA (4.1)

where A0=A.
 When transformation is completed An-2 is in the
complex Hessenberg matrix.
 The k-th transformation is performed according to the
following procedure:
Let ())1(

1
−

− = k
ijk aA

1) The elements)1(−k
ika , i=k+1,..., n in the k-th column

are searched for the element of the maximum norm.
The following is assumed as the norm of complex
number z = x + iy :
z x y

1
= +

 If a ()1−k
kmk

a is the element of the maximum norm,

number mk is stored as the k-th element of IP.
2) If mk = k+1 is satisfied the next step is executed

immediately.
If mk > k+1 is satisfied the k-th and subsequent
columns elements in the mk-th row are exchanged by
the elements in the (k + 1)-th row of Ak-1

3) Using)1(
,1

−
+
k

kka as a pivot, all elements of the (k+2)-th
and subsequent rows in the k-th column are eliminated
through use of:

 () () () nkiaaa k
kk

k
ik

k
ik ,...,2,1

,1
1 +=−= −

+
− (4.2)

and

 () () () ()
nkj
nki

aaaa k
jk

k
ik

k
ij

k
ij ,...,1

,...,2
,~ 1

,1
1

+=
+=

+= −
+

− (4.3)

4) If mk=k+1 is satisfied the next step is executed.
If mk > k+1 is satisfied, all elements in the (k +1)-th
column are exchanged by the mk-th column.

5) At this step, each element in the (k +1)-th and
subsequent columns is assumed as ~ ()aij

k .
 All elements in the (k +1)-th column are modified as
follows:

 () () () () niaaaa
n

kj

k
jk

k
ij

k
ik

k
ik ,...,2,1,~~

2
11 =−= ∑

+=
++ (4.4)

 The row exchanging at the second step is performed by
premultiplying Ak-1 by permutation matrix Pk shown in
Fig. CHES2-2. The elimination of elements at the third
step performed by premultiplying Pk by elimination
matrix Nk shown in Fig. CHES2-3. Therefore,

11 , −− == kkkkkk NPSPNS (4.5)

result.
 Where, Pk

-1 is equal to Pk, and Nk
-1 is obtained by

reversing all signs of non-diagonal elements of Nk.

+

+

1

1
01

1

1
10

1

1

1

1

0

0

k

k

k

m

k

mk
P

Fig. CHES2-2 Permutation matrix Pk

k

k

+

+

1

1

1
0

1

0

1

0
1

−
−

+
−

a
a

nk
k

k k
k

()

,
()

1

1
1

− +
−

+
−

a
a

k k
k

k k
k

2
1

1
1
,

()

,
()

Note:

)1(−k
ija is an element obtained after Pk is multiplied by Nk.

Fig. CHES2-3 Elimination matrix Nk

 Information mk necessary for Pk is stored as the k-th
element of IP and all elements of the (k +2)-th and
subsequent rows in the (k +1)-th columun of Nk are stored
as aij

k() of the (k +2)-th and subsequent rows in the k-th
column of A.
 If n = 2 or n = 1 is satisfied, no transformantion is
performed.

 For further information see Reference [13] pp.339 -
358.

CHSQR

270

B21-15-0402 CHSQR, DCHSQR

Eigenvalues of a complex Hessenberg matrix (QR
method)
CALL CHSQR (ZA, K, N, ZE, M, ICON)

Function
This subroutine determines all eigenvalues of an n -order
complex Hessenberg matrix A by using the QR method.
n ≥ l.

Parameters
ZA ... Input. Complex Hessenberg matrix A.

The contents of A are altered on output.
ZA is a two-dimensional complex array, ZA
(K,N)

K .. Input. Adjustable dimension of array ZA.(≥ n)
N ... Input. Order n of the complex Hessenberg

matrix A.
ZE ... Output. Eigenvalues.

The J-th eigenvalue is ZE (J) (J = 1 ,2,...M) .
ZE is a one-dimensional complex array of size n.

M ... Output. Number of determined eigenvalues.
ICON ... Output. Condition code.

See Table CHSQR-1.

Table CHSQR-1 Condition codes

Code Meaning Processing
0 No error

10000 N = 1 ZE (1) = ZA (1, 1)
15000 Any of the eigenvalues could

not be determined.
The number of
eigenvalues
that were
obtained is set
to M.

20000 No eigenvalues could be
determined.

M is set to zero.

30000 K < N or N < 1 Bypassed

Comments on use
• Subroutines used

SSL II ... AMACH, MGSSL
FORTRAN basic functions ... REAL, AIMAG,
CONJG, ABS, SIGN, AMAXl, SQRT, CSQRT

• Notes
Normally, this subroutine is used to determine all
eigenvalues after CHES2 has been executed.
 If eigenvectors are also needed array ZA should be
copied onto another area before this subroutine is
called.

• Example
This example reduces an n -order complex matrix to a
complex Hessenberg matrix through use of CHES2 and
then determines its eigenvalues. n ≤ 100.

C **EXAMPLE**
 COMPLEX ZA(100,100),ZE(100)
 DIMENSION IP(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((ZA(I,J),I=1,N),J=1,N)
 WRITE(6,600) N
 DO 20 I=1,N
 20 WRITE(6,610) (I,J,ZA(I,J),J=1,N)
 CALL CHES2(ZA,100,N,IP,ICON)
 WRITE(6,620) ICON
 IF(ICON.EQ.30000) GO TO 10
 CALL CHSQR(ZA,100,N,ZE,M,ICON)
 WRITE(6,630)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 WRITE(6,640) (I,ZE(I),I=1,M)
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1',10X,
 * '** ORIGINAL MATRIX'//11X,
 * '** ORDER=',I5/)
 610 FORMAT(/2(5X,'A(',I3,',',I3,
 * ')=',2E15.7))
 620 FORMAT(/11X,'** CONDITION CODE=',
 * I5/)
 630 FORMAT('0'/11X,'** EIGENVALUES')
 640 FORMAT(5X,'E(',I3,')=',2E15.7)
 END

Method
In the QR method, the diagonal elements become
eigenvalues by making the lower subdiagonal elements of
complex Hessenberg matrix A converge to zero. To
accomplish this the unitary similarity transformation
shown in (4.1) is applied repeatedly.

,...2,1,*
1 ==+ sssss QAQA (4.1)

where A1=A.
Qs is a unitary matrix which is uniquely determined in the
QR decomposition shown in (4.2).

sss RQA = (4.2)

where Rs is an upper triangular matrix whose diagonal
elements are positive real numbers.
 To improve the rate of convergence, QR decomposition
is normally applid to origin-shifted matrix (As - ksI)
instead of As. ks is the origin shift.
Qs and Rs are obtained from (4.3) instead of (4.2).

ssss k RQIA =− (4.3)

CHSQR

 271

 The process for the complex QR methods is described
below.
Let () ()ij

s
ijs aa == AA ,)(.

1) (4.4) determines whether there are elements which
can be regarded as relative zero among lower
subdiagonal elements)(

21
)(

1,,, ss
nn aa − of As.

 () 2,...,1,,
11, −=<− nnlua s

ll A (4.4)

u is the unit round-off. || ||1 is a norm defined for
complex number z= x + iy as:

 z x y
1
= + (4.5)

||A|| is a norm defined as:

11

max∑
=

=
n

i
ijj

aA (4.6)

al l
s
,

()
−1 is relative zero if it satisfies (4.4). If it does not

satisfy (4.4), step 2) is performed.
(a) If l = n ,)(s

nna is adopted as an eigenvalue, order n

of the matrix is reduced to n −−−− 1 , and the process
returns to step 1).
If n = 0, the process is terminated.

(b) When 2 ≤ l ≤ n − 1, the matrix is split as shown in
Fig. CHSQR-1, and the process proceeds to step
2) assuming submatrix D as As .

→

D0

CB

**

l ε

Note: Element ε is regarded as zero.

Fig. CHSQR-1 A direct sum of submatrices for a Hessenberg matrix

2) Origin shift ks corresponds to the eigenvalue of lowest
norm || ||1 in the lowest 2 × 2 principle submatrix of
As . As − ksI is obtained by subtracting ks from
diagonal elements of As.

3) By applying two-dimensional Givens unitary
transformation Pl

* (for l =1, 2, . .., n −1) to As − ksI is
transformed to upper triangular matrix Rs:

() sssnn k RIAPPPP =−⋅⋅⋅−−
*

1
*
2

*
2

*
1 (4.7)

Therefore ,

121 −⋅⋅⋅= ns PPPQ (4.8).

 Unitary matrix Pl is determined by using the l -th
diagonal element x of matrix As - ksI and its
subdiagonal element y as shown below:

1

1
0

1

1
0

1

1

+

−
=

+

l
l

cs
sc

ll

lP

 where :

c x r= (4.9)
c y r= (4.10)

r x y= +2 2 (4.11)

4) After two-dimensional unitary transformation Pl is
applied to Rs , As+1 is obtained by adding origin shift
ks to diagonal elements.

IPPPRA snss k+⋅⋅⋅= −+ 1211 (4.12)

 This subroutine executes step 3) in combination with
step 4) to increasse computational speed and reduce
storage requirements.
 For further information see References [12] and [13]
pp.372-395.

CHVEC

272

B21-15-0502 CHVEC,DCHVEC

Eigenvectors of a complex Hessenberg matrix (Inverse
iteration method)
CALL CHVEC (ZA, K, N, ZE, IND, M, ZEV, ZAW,
ICON)

Function
This subroutine determines eigenvector x which
corresponds to selected eigenvalue µ of an n -order
complex Hessenberg matrix by using the inverse iteration
method. However no eigenvectors are normalized. n ≥ l.

Parameters
ZA ... Input. Complex Hessenberg matrix A.

ZA is a two-dimensional complex array, ZA
(K, N).

K ... Input. Adjustable dimension of arrays ZA, EV
and ZAW.

N ... Input. Order n of the complex Hessenberg
matrix A.

ZE ... Input. Eigenvalue µ.
The j-th eigenvalue µj is stored in ZE (j).
ZE is a one-dimensional complex array of size M.

IND ... Input. Indicates whether or not eigenvectors
are to be determined. If the eigenvector
corresponding to the j-th eigenvalue µj is to be
determined, IND (j) = 1 must be specified. If
it is not to be determined IND (j) = 0 must be
specified. IND is a one-dimensional array of
size M.

M .. Input. Total number of eigenvalues stored in
array ZE (≤ n)

ZEV ... Output. Eigenvectors are stored in columns of
ZEV.
ZEV is a two-dimensional complex array, ZEV
(K, MK). MK indicates the number of
eigenvectors to be determined. See
"Comments on use".

ZAW ... Work area. ZAW is a two-dimensional
complex array, ZAW (K, N + 1) .

ICON ... Output. condition code.
See Table CHVEC- 1 .

Table CHVEC-1 Condition codes

Code Meaning Processing
0 No error

10000 N = 1 ZEV (1, 1) =
(1.0, 0.0)

15000 An eigenvector
corresponding to a specified
eigenvalue could not be
determined.

IND information
about the
eigenvector that
could not be
determined is
set to zero.

20000 No eigenvectors could be
determined.

All IND
information are
set to zero.

30000 M < 1, N < M or K < N Bypassed

Comments on use
• Subroutines used

SSL II ... AMACH, CSUM, MGSSL
FORTRAN basic functions ... REAL, AIMAG, ABS,
MIN0, AMAXl, FLOAT, SQRT

• Notes

The number of eigenvectors (MK) indicates the
number of IND elements whose value is 1.
 Since IND elements are set to zero if any eigenvector
cannot be determined, MK indicates the number of
eigenvectors which does not exceed the number of
eigenvectors specified before computation.
 The eigenvalues used by this subroutine can be
obtained by the CHSQR subroutine.
 When they are determined by CHSQR, the
parameters ZE and M can be used as input parameters
for this subroutine.
 This subroutine can be used to determine
eigenvectors of complex Hessenberg matrices only.
 When selected eigenvectors of a complex Hessenberg
matrix are to be determined:
(a) The complex matrix is first reduced into a complex

Hessenberg matrix by the subroutine CHES2.
(b) The eigenvalues of the complex matrix are

determined by the subroutine CHSQR.
(c) The eigenvectors of the complex Hessenberg matrix

are determined by this subroutine.
(d) The above eigenvectors are back-transformed to

eigenvectors of the complex matrix by the
subroutne CHBK2.
 However the subroutne CEIG2 should be utilized
to determine all eigenvalues and corresponding
eigenvectors of a complex matrix for convenience.

This subroutine can be used to determine some of the
eigenvectors of a complex matrix according to the
procedure described above. Therefore, the eigenvectors
are not normalized. If necessary, they must be
normalized by the subroutine CNRML subsequently.
 When the subroutines CHBK2 and CNRML are used,
the parameters IND, M and ZEV can be used as input
parameters for the subroutines CHBK2 and CNRML.

• Example
This example determines eigenvalues of an n-order
complex matrix through use of the subroutines CHES2
and CHSQR and obtains eigenvectors through use of
the subroutines CHVEC and CHBK2.
 The obtained eigenvectors are normalized by the
subroutine CNRML (||x||2=1). n ≤ 100.

CHVEC

 273

C **EXAMPLE**
 COMPLEX ZA(100,100),ZAW(100,101),
 * ZE(100),ZEV(100,100)
 DIMENSION IND(100),IP(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((ZA(I,J),I=1,N),J=1,N)
 WRITE(6,600) N
 DO 20 I=1,N
 20 WRITE(6,610) (I,J,ZA(I,J),J=1,N)
 CALL CHES2(ZA,100,N,IP,ICON)
 WRITE(6,620) ICON
 IF(ICON.EQ.30000) GO TO 10
 DO 30 J=1,N
 IM=MIN0(J+1,N)
 DO 30 I=1,IM
 30 ZAW(I,J)=ZA(I,J)
 CALL CHSQR(ZAW,100,N,ZE,M,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 DO 40 I=1,M
 40 IND(I)=1
 CALL CHVEC(ZA,100,N,ZE,IND,M,ZEV,
 * ZAW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 CALL CHBK2(ZEV,100,N,IND,M,ZA,
 * IP,0.0,ICON)
 CALL CNRML(ZEV,100,N,IND,M,2,ICON)
 CALL CEPRT(ZE,ZEV,100,N,IND,M)
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1',5X,'ORIGINAL MATRIX',
 * 5X,'N=',I3)
 610 FORMAT(/2(5X,'A(',I3,',',I3,')=',
 * 2E15.7))
 620 FORMAT('0',20X,'ICON=',I5)
 END

 The subroutine CEPRT used in this example prints
the eigenvalues and eigenvectors of the complex matrix.
For further information see an example of subroutine
CEIG2.

Method
The inverse iteration method is used to determine
eigenvector x corresponding to eigenvalue λ of an n -
order complex Hessenberg matrix.
 In the inverse iteration method, if matrix A and
approximation µj for eigenvalue λj of ΑΑΑΑ are given, an
appropriate initial vector x0 is used to solve equation
(4.1) iteratively.
 When convergence conditions have been satisfied, xr is
determined as the resultant eigenvector.

() ,...2,1,1 ==− − rrrj xxIA µ (4.1)

 Now let the eigenvalue of n-order matrix A be λi
(i=1,2,...,n), and the eigenvector corresponding to λi be ui.
 Since the appropriate initial vector x0 can be expressed
by the linear combination of eigenvector ui of matrix A as
shown in (4.2), xr can be written as shown in (4.3) if all
eigenvalues λi are different.

∑
=

=
n

i
ii

1
0 ux α (4.2)

()

() ()

−−+⋅

−=

∑
≠
=

n

ji
i

r
ii

r
jjiijj

r
jjr

1

1

µλµλαµα

µλ

u

x

 (4.3)

Since

() ()λ µ λ µj j i i− − 〈〈10.

is established if i is not equal to j, (4.3) indicates that if αj
≠ 0, xr tends rapidly to approach a multiple of uj as r
grows greater.
 The system of linear equations shown in (4.1) is solved
by using (4.4) after decomposition of (A − µj I) to a lower
triangular matrix L and an upper triangular matrix U.

LUx Pxr r= −1 (4.4)

where P is the permutation matrix used for pivoting (4.4)
can be solved as follows:

Ly Pxr r− −=1 1 (Forward substitution) (4.5)
Ux yr r= −1 (Backward substitution) (4.6)

 Since any vector may be used for initial vector x0 , x0
may be given such that y0 of (4.7) has a form such as
y0=(1,1,...,1)T

y L Px0
1

0= − (4.7)

 Therefore, for the first iteration, the forward
substitution in (4.5) can be omitted. In general, the
eigenvectors can be obtained by repeating forward
substitution and backeard substitution for the second and
following iterations.
 This subroutine uses the inverse iteration method as
described below:

• Selection of the initial vector

y0 in (4.8) is used for the initial vector.

 y r0 = ⋅EPS1 (4.8)

where vector r is defined as shown in (4.9) and Φ is a
golden section ratio shown in (4.10).

[] ,...2,1, =−= kkkrk ΦΦ (4.9)

() 215 +=Φ (4.10)

EPS1 can be expressed as shown in (4.11).

EPS1 = ⋅u A (4.11)

CHVEC

274

where u is the unit round-off.
Norm ||A|| can be expressed as shown in (4.12).

∑
=

⋅=
n

i
ij

j
a

1
1

maxA (4. 12)

For complex number z = x + iy , norm ||z|| is assumed as
shown in (4.13).

z x y
1
= + (4. 13)

• Normalization of the iterated vector
Let

()T
21 ,...,, rnrrr xxx=x

then the iterated vector is normalized as shown in
(4.14) for r ≥ l.

EPS1
1

11 == ∑
=

n

i
rir xx (4.14)

• Method for convergence criterion
After backward substitution, xr (before normalization)
is tested by (4.15) to determine whether the
eigenvectors have been accepted.

xr n
1

01≥ . (4.15)

If (4.15) is satisfied, xr is accepted as the eigenvectors.
 If it is not satisfied, normalization described in second
step is repeated up to five times. When convergence is
not successful, the eigenvector is ignored and the next
eigenvector is processed.

• Measures to be taken when eigenvalues have multiple

roots or close roots
Since this subroutine produces initial vector y0 using
random numbers, you need not take special measures
when an eigenvalue has multiple roots or close roots.
To make a reproduction of numerical solutions, the
random numbers are initialized each time this
subroutine is called.

 For further information see Reference [13] pp.418-439.

CJART

 275

C22-15-0101 CJART, DCJART

Zeros of a polynomial with complex coefficients (Jarratt
method)
CALL CJART (ZA, N, Z, ICON)

Function
This subroutine finds zeros of a polynomial with complex
coefficients

01
10 =+⋅⋅⋅++ −

n
nn azaza (1.1)

(ai : complex number, |a0| ≠ 0)

by the Jarratt method.

Parameters
ZA Input. Coefficients of the equation.

ZA is a complex one-dimensional array of size
n + 1 , Where ZA (1) = a0, ZA (2) = a1, ... ,
ZA(N+1)=an , The contents of ZA are altered
on output.

N Input. Order n of the equation.
Output. Number of roots that were obtained.
(See "Comments on use").

Z ... Output. n roots.
Z is a complex one-dimensional array of size n.
The roots are output in Z (1), Z (2), ... in the
order that they were obtained.
Thus. if N roots are obtained, they are stored
in Z (1) to Z (N).

ICON ... Output. Condition code. See Table CJART-1.

Table CJART-l Condition codes

Code Meaning Processing
0 No error

10000 All n roots could not be
obtained.

The number of roots
which were obtained
is output to the
parameter N and the
roots are output to
Z(1) through Z(N).

30000 n < 1 or | a0 |=0. Bypassed

Comments on use

Subprogram used
SSL II ... AMACH, CQDR, UCJAR, and MGSSL
FORTRAN basic functions ... CMPLX, SQRT, CABS,
CONJG, AIMAG, REAL and ABS.

• Notes
For arrays ZA and Z, COMPLX must be declared in a
program which calls this subroutine.
 When n is 1 or 2, instead of Jarratt’s method, the root
formula is used.
 An n-th degree polynomial equation has n roots,
however it is possible, though rare, that all of these
roots can not be found. The user must check the

parameters ICON and N on output to confirm that all of
roots were found.

• Example

The degree n and complex coefficients ai are input, and
the roots are calculated. 1 ≤ n ≤ 50.

C **EXAMPLE**
 DIMENSION ZA(51),Z(50)
 COMPLEX ZA,Z
 READ(5,500) N
 N1=N+1
 READ(5,510) (ZA(I),I=1,N1)
 DO 10 I=1,N1
 K=I-1
 10 WRITE(6,600) K,ZA(I)
 CALL CJART(ZA,N,Z,ICON)
 WRITE(6,610) N,ICON
 IF(ICON.EQ.30000) STOP
 WRITE(6,620) (I,Z(I),I=1,N)
 STOP
 500 FORMAT(I2)
 510 FORMAT(2F10.0)
 600 FORMAT(10X,'A(',I2,')=',2E20.8)
 610 FORMAT(10X,'N=',I2,5X,'ICON=',I5)
 620 FORMAT(10X,'Z(',I2,')=',2E20.8)
 END

Method
This subroutine uses a slightly modified version of
Garside-Jarratt-Mack method (an iterative method). Let
the polynomial equation be

() 01
10 =+⋅⋅⋅++≡ −

n
nn azazazf (4.1)

then its roots match those of

() () () 01 =′≡ zfzfzF (4.2)

 This subroutine makes use of the faster convergence
property of (4.2) since it has only simple roots.

• The iterative formula

Suppose that z1, z2, and z3 are three initial values to a
root and they satisfy | f(a3)| ≤ | f(a2)| ≤ | f(a1)|. Then the
following three methods are used as iterative formulas.
In the following, let Fi ≡)(izF for i = l, 2, and 3.

Method 1:
Near a root of a n-th degree polynomial f(z) , we can
write

() () ()1 F z z a b cz≈ − + (4.3)

 where a, b, and c are constants
 Thus, a new root can be obtained by choosing a such
that (4.3) is true for z1, z2, and z3. Namely, a is obtained
as

CJART

276

))(())((
))()((

23211223

121332
3 FFzzFFzz

FFzzzzza
−−+−−

−−−
+= (4.4)

Method 2 (Newton’s method):
The following a’ can be used as a new root.

33 1 Fza −=′ (4.5)

Method 3 (modified Newton’s method):
Suppose that .

() nauzf 13 < (4.6)

is satisfied, where u1= u and u is the round-off unit.
Let m be the rough multiplicity of current root, then we
can write ()m z a F≈ −3 3 and the following

′′ = −a z m F3 3 (4.7)

 Usually, Method 1 and Method 2 are both used, and the
result with the smallest adjustment is used as the new
approximate root a4. The Method 3 is used to increase
the speed of convergence.

• Choosing initial values

 waa n
n 51

0 = (4.8)

With (4.8), initial values z1, z2, z3 are setected according
to

 iw w iw iw, ,− + 2 (4.9)

 They are ordered such that | f(z3)| ≤ | f(z2)| ≤ | f(z1)|
 If convergence does not occur after 50 iterations, new
initial values are selected as follows:

iwwiwwiww 33,22,23 +−+−+−

 When a root α is obtained, the degree of the equation is
reduced by setting.

() () ()α−= zzfzg

 Using g(z) as the new f(z), w is recalculated and

α,2, iwwiww ±−±− (4.10)

are used as initial values for solving f(z)=0. The sign is
selected to match the sign of the imaginary part of α .

• Preventing overflows

To prevent overflow when evaluating f(z) and f ’(z),
the coefficients of f(z) are normalized by dividing them
with the arithmetic mean of their absolute values.

• Convergence criterion

If

() ∑
=

−≤
n

i

in
i zanuzf

0
33 10 (4.11)

is satisfied, z3 is then taken as a root of f(z).

 For further information, see References [26] and [27].

CLU

 277

A22-15-0202 CLU, DCLU

LU-decomposition of a complex general matrix (Crout’s
method)
CALL CLU (ZA, K, N, EPSZ, IP, IS, ZVW, ICON)

Function
An n × n complex general matrix A is LU-decomposed
using the Crout’s method

PA = LU (1.1)

Where P is a permutation matrix which performs the row
exchanged required in partial pivoting, L is a lower
triangular matrix, and U is a unit upper triangular matrix.
n ≥ l.

Parameter
ZA Input. Matrix A

Output. Matrices L and U.
See Fig. CLU-1.
ZA is a complex two-dimensional array, ZA(K,
N).

K Input. Adjustables dimension of array ZA (≥
N).

N Input. Order n of matrix A.
EPSZ .. Input. Tolerance for relative zero test of

pivots in decomposition process of A (≥0.0).
When EPSZ is 0.0, a standard value is used.
(See Notes.)

IP.... Output. The transposition vector which
indicates the history of row exchanging that
occurred in partial pivoting.
IP is a one-dimensional array of size n.
(See to Notes.) .

IS.... Output. Information for obtaining the
determinant of matrix A. If the n calculated
diagonal elements of array ZA are multiplied
by IS, the determinant is obtained.

ZVW ... Work area. ZVW is a complex one-
dimensional array of size n.

ICON .. Output. Condition code.
See Table CLU-1.

Table CLU-l Condition codes

Code Meaning Processing
0 No error

20000 Either all of the elements of
some row in matrix A were
zero or the pivot became
relatively zero. It is highly
probable that the matrix is
singular.

Discontinued

30000 K < N, N < 1 or EPSZ < 0.0 By passed

1
1

1
1

12 13 1

23 2

10

u u u
u u

u

n

n

n n−

l u u u
l l u u

l u
l l l l

n

n

n n n n

n n nn nn

11 12 13 1

21 22 23 2

1 1 1

1 2 1

− − −

−

l
l l
l l

l
l l l l

n n

n n nn nn

11

21 22

31 32

1 1

1 2 1

0

− −

−

N
K

Upper triangular portion only

Lower triangular
matrixL

Unit upper triangular
matrixU

Diagonal and lower
triangular portions only

Array ZA

Fig. CLU-1 Storage of factors L and U in array ZA

Comments on use
• Subprograms used

SSL II AMACH, CSUM, MGSSL
FORTRAN basic functions REAL, AIMAG, ABS

• Notes

If EPSZ is set to 10-s, this value has the following
meaning: while performing the LU-decomposition by
Crout’s method, if the loss over s significant digits
occured for both real and imaginaty parts of the pivot,
the LU-decomposition should be discontinued with
ICON = 20000 regarding the pivot to be relatively zero.
Let u be the unit round-off, then the standard value of
EPSZ is l6u. If the processing is to proceed at a lower
pivot value, EPSZ will be given the minimum value but
the result is not always guaranteed.
 The transposition vector corresponds to the
permutation matrix P of LU decomposition in partial
pivoting. In this subroutine, with partial pivoting, the
elements of array ZA are actually exchanged. In other
words, if the I-th row has been selected as the pivotal
row in the J-th stage (J = 1 , ..., n) of decomposition,
the elements has the I-th and J-th rows of array ZA are
exchanged. The history of this exchange is recorded in
IP by storing I in IP(J). A system of linear equations
can be solved by calling subroutine CLUX following
this subroutine. However, instead of calling these two
subroutines, subroutine LCX is usually called to solve
such equations in one step.

• Example

An n × n complex matrix is LU decomposed. n ≤ 100.

CLU

278

C **EXAMPLE**
 DIMENSION ZA(100,100),ZVW(100),IP(100)
 COMPLEX ZA,ZVW,ZDET
 READ(5,500) N
 IF(N.LE.0) STOP
 READ(5,510) ((ZA(I,J),I=1,N),J=1,N)
 WRITE(6,600) N,((I,J,ZA(I,J),J=1,N),
 * I=1,N)
 CALL CLU(ZA,100,N,0.0,IP,IS,ZVW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 ZDET=CMPLX(FLOAT(IS),0.0)
 DO 10 I=1,N
 ZDET=ZDET*ZA(I,I)
 10 CONTINUE
 WRITE(6,620) (I,IP(I),I=1,N)
 WRITE(6,630) ((I,J,ZA(I,J),J=1,N),
 *I=1,N)
 WRITE(6,640) ZDET
 STOP
 500 FORMAT(I5)
 510 FORMAT(5(2F8.3))
 600 FORMAT('1'//10X,'**INPUT MATRIX **',
 * /12X,'ORDER=',I5/(5X,
 * 2('(',I3,',',I3,')',2E15.8,2X)))
 610 FORMAT('0',10X,'CONDITION CODE =',I5)
 620 FORMAT('0',10X,'TRANSPOSITION VECTOR',
 * /(10X,7('(',I3,')',I5,5X)))
 630 FORMAT('0',10X,'OUTPUT MATRIX',
 * /(5X,2('(',I3,',',I3,')',2E15.8,2X)))
 640 FORMAT('0',10X, 'DETERMINANT OF ',
 * 'MATRIX',2E20.8)
 END

Method
• Crout’s method

Generally, in exchanging rows using partial pivoting,
an n × n non-singular complex general matrix A can be
decomposed into a lower triangular matrix L and a unit
upper triangular matrix U.

PA = LU (4.1)

P is the permutation matirx which performs the row-
exchanging required in partial pivoting. The Crout’s
method is one method to obtain the elements of L and U.
This subroutine obtains values in the j-th column of L and
j-th column of U in the order (j = l, ... , n) using the
following equations.

1,...,1,
1

1

−=

−= ∑

−

=

jilulau ij

i

k
kjikijij (4.2)

njiulal
j

k
kjikijij ,...,,

1

1

=−= ∑
−

=

 (4.3)

 where, A = (aij) , L = (lij) and U = (uij) Actually,
using partial pivoting, rows are exchanged. The Crout’s
method is a variation of the Gaussian elimination method.
The same caluculations are involved, but the seqnece is
differenct. In the Crout’s method, the elements of L and
U are calculated at the same time using equations (4.2)
and (4.3). By increasing the precision of the inner
products in this step, the effects of rounding errors are
minimized.

• Partial pivoting

When the matrix A is given as

⋅+⋅+
⋅+⋅+

=
0.00.00.00.1
0.00.10.00.0

ii
ii

A

 Though this matrix is numerically stable, LU
decomposition can not be performed. In this state, even
if a matrix is numerically stable, large errors would occur
if LU decomposition were directly computed. To avoid
these errors, partial pivoting with row equalibration is
used. For more details, see References [1], [3], and [4].

CLUIV

279

A22-15-0602 CLUIV, DCLUIV

The inverse of a complex general matrix decomposed into
the factors L and U
CALL CLUIV (ZFA, K, N, IP, ICON)

Function
The inverse A-1 of an n × n complex general matrix A
given in decomposed form PA = LU is computed.

PLUA 111 −−− =

Where L and U are respectively an n × n lower triangular
and a unit upper triangular matrices and P is a
permutation matrix which performs the row exchanges in
partial pivoting for LU decomposition. n ≥ l.

Parameters
ZFA Input. Matrices L and U

Output. Inverse A-1.
ZFA is a two-dimensional array, FA (K, N).
See Fig. CLUIV-1.

K Input. Adjustable dimension of array ZFA
(≥N).

N Input. Order n of the matrices L and U.
IP Input. Transposition vector which indicates

the history of row exchanges in partial
pivoting. One-dimensional array of size n

ICON .. Output. Condition code. See Table CLUIV-1.

1
1

1
1

12 13 1

23 2

10

u u u
u u

u

n

n

n n−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

l u u u
l l u u

l u
l l l l

n

n

n n n n

n n nn nn

11 12 13 1

21 22 23 2

1 1 1

1 2 1

− − −

−

l
l l
l l

l
l l l l

n n

n n nn nn

11

21 22

31 32

1 1

1 2 1

0

− −

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

N
K

Upper triangular portion only

Lower triangular
matrixL

Unit upper triangular
matrixU

Diagonal and lower
triangular portions only

Array ZFA

Fig. CLUIV-1 Storage of the elements of L and U is array ZFA

Table CLUIV-1 Condition codes

Code Meaning Processing
0 No error

20000 Matrix was singular. Discontinued
30000 K < N or N < 1 or there was

an error in IP.
Bypassed

Comments on use
• Subprogram used

SSL II CSUM, MGSSL
FORTRAN basic function None.

• Notes

Prior to calling this subroutine, LU-decomposed matrix
must be obtained by subroutine CLU and must be
input as the parameters ZFA and IP to be used for this
subroutine.

The subrotine LCX should be used for solving a
system of linear equatons. Obtaining the solution by
first computing the inverse requires more steps of
calculation, so subroutine CLUIV should be used only
when the inverse is inevitable.

The transposition vector corresponds to the
permutation matrix P of

PA LU=

 when performing LU decomposition with partial
pivoting, refer to Notes of the subroutine CLU.

• Example

The inverse of an n × n complex general matrix
iscomputed. n ≤ 100.

C **EXAMPLE**
 DIMENSION ZA(100,100),ZVW(100),IP(100)
 COMPLEX ZA,ZVW
 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((ZA(I,J),I=1,N),J=1,N)
 WRITE(6,600) N,((I,J,ZA(I,J),J=1,N),
 * I=1,N)
 CALL CLU(ZA,100,N,0.0,IP,IS,ZVW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 CALL CLUIV(ZA,100,N,IP,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,630) ((I,J,ZA(I,J),I=1,N),
 * J=1,N)
 STOP
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT(//11X,'**INPUT MATRIX**'/12X,
 *'ORDER=',I5/(2X,4('(',I3,',',I3,')',
 *2E16.8)))
 610 FORMAT('0',10X,'CONDITION CODE(CLU)=',
 *I5)
 620 FORMAT('0',10X,'CONDITION ',
 *'CODE(CLUIV)=',I5)
 630 FORMAT('0',10X,'**INVERSE MATRIX**',
 */(2X,4('(',I3,',',I3,')',2E16.8)))
 END

CLUIV

280

Method
The subroutine computes the inverse of an n × n complex
general matrix A, giving the LU-decomposed matrices L,
U and the permutation matrix P which indicates row
exchanges in partial pivoting.
Since

PA = LU (4.1)

then, the inverse A-1 can be represented using (4.1) as
follows: the inverse of L and U are computed and then
the inverse A-1 is computed as (4.2).

PLUA 111 −−− = (4.2)

L and U are as shown in Eq. (4.3) for the following
explanation.

() ()ijij uU,lL == (4.3)

• Calculating L-1
Since the inverse L-1 of a lower triangular matrix L is
also a lower triangular matrix, if we represent L-1 by

()L− =1 ~lij (4.4)

then Eq. (4.5) is obtained based on the relation LL-1=I.

∑
=

=
n

k
ijkjik ll

1

,
~

δ

≠=
==

ji
ji

ij ,0
,1

δ (4.5)

(4.5) is rewritten as

ij

i

jk
ijiikjik llll δ=+∑

−

=

1 ~~

and the elements ijl
~ of the j-th column (j=1,...,) of the

matrix L-1 are obtained as follows:

jjjj

iikj

i

jk
ikij

ll

njillll

1
~

,...,1,
~~ 1

=

+=

−= ∑

−

= (4.6)

where, ()njilii ,...,0 =≠

• Calculating U-1
Since the inverse U-1 of a unit upper triangular matrix U
is also a unit upper triangular matrix, if we represent U-1
by

()iju~1 =−U (4.7)

then Eq. (4.8) is obtained based on the relation U U -1=I.

ij

n

k
kjik uu δ=∑

=1

~

≠=
==

ji
ji

ij ,0
,1

δ (4.8)

Since uij = 1,(4.8) can be rewritten

ij

j

ik
kjikij uuu δ=+ ∑

+= 1

~~

Considering ~ujj =1, the elements ~ujj of the j-th column
(j=n,..., 2) of U-1 are obtained as follows:

1,...,1,~~
1

1

−=−−= ∑
−

+=

jiuuuu
j

ik
kjikijij (4.9)

• Calculating U-1L-1P
Let the product of matrices U-1 and L-1 be B, then its
elements are obtained by

1,...,1,
~~ −== ∑

=

jilub
n

jk
kjikij

njilub
n

ik
kjikij ,...,,

~~ == ∑
=

Considering ~uii =1, the element bij of the j-th column
(j=1, ...,n) of B are obtained by

njilulb

jilub

n

ik
kjikijij

n

jk
kjikij

,...,,
~~~

1,...,1,
~~

1

=+=

−==

∑

∑

+=

=  (4.10) 

Next, matrix B is multiplied by the permutation matrix to 
obtain the inverse A-1.  Actually however, based on the 
values of the transposition vector IP, the elements of A-1 
are obtained simply by exchanging the column in the 
matrix B.  The precison of the inner products in (4.6), 
(4.9) and (4.10) has been raised to minimize the effect of 
rounding errors.  For more invormation, see Reference 
[1]. 



CLUX 

281 

A22-15-0302  CLUX, DCLUX  

A system of linear equations with a complex general 
matrix decomposed into the factors L and U  
CALL CLUX (ZB, ZFA, K, N, ISW, IP, ICON) 

 
Function  
This subroutine solves a system of linear equations. 

LUx = Pb (1.1)  

L and U are, respectively, the n × n lower triangular 
and unit upper triangular matrices, P is a permutation 
matrix which performs row exchange with partial 
pivoting for LU decomposition of the coefficient matrix, 
b is an n-dimensional complex constant vector, and x is 
the n-dimensional solution vector.  Also, one of the 
following equations can be solved instead of (1.1). 

Ly = Pb (1.2) 
Uz= b  (1.3) 

Parameters 
ZB .... Input.  Constant vector b. 
 Output.  One of the solution vectors x, y, or z. 
 ZB is a complex one-dimensional array of size 

n. 
ZFA .... Input.  Matrix L and matrix U. 
 Refer to Fig. CLUX-1. 
 ZFA is a complex two-dimensional array, ZFA 

(K, N).  
K .... Input.  Adjustable dimension of the array ZFA 

( ≥N).  
N .... Input.  The order n of the matrices L and U. 
ISW .... Input.  Control information  
 ISW = 1 ... x is obtained. 
 ISW = 2 ... y is obtained.  
 ISW = 3 ... z is obtained.  
IP .... Input.  The transposition vector which 

indicates the history of row exchange in partial 
pivoting.  IP is a one-dimensional array of size 
n. (See Notes of subroutine CLU.)  

ICON .. Output.  Condition code  
 See Table CLUX-1 
 
Table CLUX- 1  Condition codes  

Code Meaning Processing 
0 No error  

20000  The coefficient matrix was 
singular. 

Aborted  

30000 K<N, N<1, ISW = 1, 2, 3, or 
there was an error in IP. 

Aborted 

1
1

1
1

12 13 1

23 2

10

u u u
u u

u

n

n

n n−





















l u u u
l l u u

l u
l l l l

n

n

n n n n

n n nn nn

11 12 13 1

21 22 23 2

1 1 1

1 2 1

− − −

−

l
l l
l l

l
l l l l

n n

n n nn nn

11

21 22

31 32

1 1

1 2 1

0

− −

−





















N
K

Upper triangular portion only

Lower triangular
matrixL

Unit upper triangular
matrixU

Diagonal and lower
triangular portions only

Array ZFA

 
Fig. CLUX-1  Storage of the elements of L and U in the array ZFA 

Comments on use 
• Subprograms used 

SSL II ..... CSUM, MGSSL  
FORTRAN basic function ..... None 
 

• Notes 
A system of linear equations can be solved by first 
calling the subroutine CLU to decompose the 
coefficient into L and Uand then by calling this routine.  
However, instead of calling these two routines, 
subroutine LCX is usually called to solve such 
equations in one step.  
 

• Example 
A system of linear equations is solved by first using 
subroutine CLU to decompose the n × n coefficient 
matrix into L and U. n ≤ 100.  
 

C     **EXAMPLE** 
      DIMENSION ZA(100,100),ZB(100), 
     *    ZVW(100),IP(100) 
      COMPLEX ZA,ZB,ZVW 
      READ(5,500) N 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      READ(5,510) (ZB(I),I=1,N) 
      WRITE(6,600) N,((I,J,ZA(I,J),J=1,N), 
     *             I=1,N) 
      WRITE(6,610) (I,ZB(I),I=1,N) 
      CALL CLU(ZA,100,N,0.0,IP,IS,ZVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      CALL CLUX(ZB,ZA,100,N,1,IP,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (I,ZB(I),I=1,N) 
      STOP 
 



CLUX 

282 

  500 FORMAT(I5) 
  510 FORMAT(5(2F8.3)) 
  600 FORMAT(///10X,'**COMPLEX MATRIX **', 
     */12X,'ORDER=',I5/(5X,2('(',I3,',',I3, 
     *')',2E15.8,2X))) 
  610 FORMAT('0',10X,'CONSTANT VECTOR', 
     */(5X,3('(',I3,')',2E15.8,2X))) 
  620 FORMAT('0',10X,'CONDITION ', 
     *'CODE(CLU)=',I5) 
  630 FORMAT('0',10X,'CONDITION ', 
     *'CODE(CLUX)=',I5) 
  640 FORMAT('0',10X,'SOLUTION VECTOR', 
     */(5X,3('(',I3,')',2E15.8,2X))) 
      END 
 
Method 
A system of linear equations  

LUx = Pb (4.1)  

can be solved by solving the two equations:  

Ly = Pb (4.2) 
Ux= y  (4.3)  

• Solving Ly = Pb (forward substition) 
Ly = Pb can be serially solved using equation 
(4.4). 

nilylby ii

i

k
kikii ,...,1,

1

1

=









−′= ∑

−

=

 (4.4) 

where, L=(lij),yT=(y1, ..., yn),(Pb)T=(b’1, ..., b’n). 
 
• Solving Ux = y (backward substitution)  

Ux = y can be serially solved using equations 

1,...,,
1

nixuyx
n

ik
kikii =−= ∑

+=

 (4.5)  

where, U=(uij),xT = (x1, ..., xn) 
 

The precision of the inner products in (4.4) and (4.5) 
has heen raised to minimize the effect of rounding errors.  
For more information, see References [1], [3], and [4]. 

 



CNRML 

283 

B21-15-0702  CNRML, DCNRML  

Normalization of eigenvectors of a complex matrix  
CALL CNRML (ZEV, K, N, IND, M, MODE, 
ICON)  

 
Function 
This subroutine normalizes m eigenvectors xi of an n-
order complex matrix using either (1.1) or (1.2). 

∞= iii xxy  (1.1) 

2iii xxy =  (1.2) 

n ≥ 1. 
 
Parameters 
ZEV ... Input.  m eigenvectors xi (i= l, 2, ..., m).  

Eigenvectors xi are stored in columns of ZEV.  
See “Comments on use”. 
Output.  m normalized eigenvectors yi . 
Normalized eigenvectors yi are stored into the 
corresponding eigenvector xi . 
ZEV is a complex two-dimensional array. 
ZEV(K, M). 

K ... Input.  Adjustable dimension of array ZEV (≥ 
n). 

N ... Input. Order n of the complex matrix. 
IND ... Input.  Specifies eigenvectors to be normalized.  

If IND (j) = 1 is specified the eigenvector 
corresponding to the j-th eigenvalue is 
normalized.  If IND (j)=0 is specified the 
eigenvector corresponding to the j-th 
eigenvalue is not normalized. 

 IND is a one-dimensional array of size M. 
 See “Comments on use”. 
M ... Input.  Size of array IND.  See Notes. 
MODE ...Input.  Indicates the method of normalization. 
 When MODE=1 ... (1.1) is used. 
 When MODE=2 ... (1.2) is used. 
ICON ... Output.  Condition code. 
 See Table CNRML-1. 
 
Table CNRML-1  Condition codes  

Code  Meaning  Processing 
0 No error   

10000 N=1 ZEV(1, 1) = (1.0. 0.0) 
30000 N<M, M<1, K<N, MODE 

was neither 1 or 2, or 
IND specification was 
invalid. 

Bypassed 

Comments on use 
• Subroutines used 

SSL 11 ... MGSSL 
FORTRAN basic functions ... REAL, AIMAG, 
AMAXl, SQRT  

 
• Notes 

When the CHVEC or CHBK2 subroutine is called 
before this subroutine, parameters ZEV, IND and M 
can be used as input parameters for this subroutine.  

 
• Example 

This example normalizes the eigenvectors of an n-order 
complex matrix obtained by the subroutine CEIG2 so 
that the resultant eigenvectors ean be ∞x =1. 

 n ≤ 100.  
 
C     **EXAMPLE** 
      COMPLEX ZA(100,100),ZE(100), 
     *        ZEV(100,100) 
      DIMENSION IND(100),VW(100),IVW(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,ZA(I,J),J=1,N) 
      CALL CEIG2(ZA,100,N,1,ZE,ZEV, 
     *           VW,IVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GT.10000) GO TO 10 
      DO 30 I=1,N 
   30 IND(I)=1 
      CALL CNRML(ZE,ZEV,100,N,IND,N,1,ICON) 
      CALL CEPRT(ZE,ZEV,100,N,IND,N) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX', 
     *       5X,'N=',I3/) 
  610 FORMAT(/2(5X,'A(',I3,',',I3,')=', 
     *       2E15.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 

The subroutine CEPRT used in this example, prints 
the eigenvalues and corresponding eigenvectors of a 
complex matrix. 

For further information see an example of using the 
subroutine CEIG2. 

 
Method 
Given m eigenvectors xi (i =1, ..., m) ofan n-order 
complex vector, normalized eigenvectors yi are computed.  
Where xi = (x1i , ... , xni)T 
  When MODE=1 is specified. each vector xi is 
normalized such that the maximum absolute value among 
the elements of each vector becomes 1 . 



CNRML 

284 

kiiiii xx,xxy
k

max== ∞∞  (4.1) 

  When MODE=2 is specified, each vector xi is 
normalized such that the sum of the square of absolute 
values corresponding to its elements is 1. 

∑
=

==
n

k 1

2
2 kii2iii xx,xxy  (4.2) 



COSI 

285 

I11-41-0201  COSI, DCOSI  

Cosine integral Ci(x) 
CALL COSI (X, CI, ICON)  

 
Function 
This subroutine computes cosine integral 

( ) ∫
∞

−=
x

i dt
t

txC )(cos  

by series and asymptotic expansions, where x ≠0. 
If x < 0, cosine integral Ci (x) is assumed to take a 
principal value. 
 
Parameters 
X ..... Input.  Independent variable x. 
CI ..... Output. Value of Ci (x). 
ICON ... Output.  Condition codes.  See Table COSI-1 
 
Table COSI-1  Condition codes 

Code Meaning  Processing 
0 No error   

20000 |X| ≥ tmax CI = 0.0 
30000 X=0 CI = 0.0 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UTLIM 
FORTRAN basic functions . .. ABS, SIN, COS, and 
ALOG  

 
• Notes 

The valid ranges of parameter X are: 
|X|< tmax 
This is provided because sin (x) and cos (x) lose their 
acduracy, if |X| exceeds the above ranges.  

 
• Example 

The following example generates a table of Ci(x) from 
0.1 to l0.0 with increment 0.1. 

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      X=FLOAT(K)/10.0 
      CALL COSI(X,CI,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,CI 
      IF(ICON.NE.0) WRITE(6,620) X,CI,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF COSINE ', 
     *'INTEGRAL FUNCTION'///6X,'X',9X, 
     *'CI(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'CI=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 
 

Methods 
Two different approximation formulas are used 
depending on the ranges of x divided at x= ±4. 
  Since Ci(x)=Ci(-x), the following discussion is limited to 
the case in which x > 0. 
 
• For 0 < x< 4 

The power series expansion of Ci(x), 

( ) ( ) ( )
( )∑

∞

=

−++=
1

2

2!2
1log

n

nn

i nn
xxxC γ  (4.1)  

is calculated, with the following approximation formulas: 
Single precision: 

( ) ( ) 4,log
7

0

2 xzzaxxC
k

k
ki =+= ∑

=

 (4.2)  

Double precision: 

( ) ( ) ∑
=

+=
12

0

2log
k

k
ki xaxxC  (4.3)  

• For x ≥ 4 
The asymptotic expansion of  

( ) ( ) ( ) ( ) ( ){ } xxxQxxPxCi cossin +−=  (4.4) 

is calculated through use of the following approximate 
expression for P(x) and Q(x): 
Single precision:  

( ) xzzaxP
k

k
k 4,

11

0

== ∑
=

 (4.5) 

( ) xzzbxQ
k

k
k 4,

11

0

== ∑
=

 (4.6) 

Double precision: 

( ) xzzbzaxP
k

k
k

k

k
k 4,

11

0

11

0

== ∑∑
==

 (4.7) 

( ) xzzdzcxQ
k

k
k

k

k
k 4,

11

0

10

0

1 =−= ∑∑
==

+  (4.8) 

 



CQDR 

286 

C21-15-0101  CQDR, DCQDR  

Zeros of a quadratic equation with complex coefficients  
CALL CQDR (Z0, Z1, Z2, Z,ICON)  

 
Function 
This subroutine finds zeros of a quadratic equation with 
complex coefficients: 

( )00 021
2

0 ≠=++ aazaza  

Parameters 
Z0, Zl, Z2 ..Input.  Coefficients of the quadratic equation. 
 Complex variables 
 where Z0 = a0, Zl = a1 and Z2 = a2 
Z ..... Output.  Roots of the quadratic equation.  Z is 

a complex one-dimensional array of size 2. 
ICON .. Output.  Condition code.  
 
Table CQDR-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 |a0| = 0.0 -a2/a1 is stored in 
Z (1).  Z(2) may 

be invalid. 
30000 |a0| = 0.0 and |a1| = 0.0 Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ...MGSSL 
FORTRAN basic functions ... CSQRT, REAL, 
AIMAG, and ABS 

 
• Example. 

Complex coefficients are entered and the roots z are 
determined. 

 
C     **EXAMPLE** 
      DIMENSION Z(2) 
      COMPLEX Z0,Z1,Z2,Z 
      READ(5,500) Z0,Z1,Z2 
      CALL CQDR(Z0,Z1,Z2,Z,ICON) 
      WRITE(6,600) ICON,Z0,Z1,Z2 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,610) (Z(I),I=1,2) 
      STOP 
  500 FORMAT(6F10.0) 
  600 FORMAT(10X,'ICON=',I5/10X,'A=',2E15.6/ 
     *      (12X,2E15.6)) 
  610 FORMAT(10X,'Z=',2E15.6/12X,2E15.6) 
      END 

Method 
The roots of complex quadratic equation a0z2 + a1z + a2 = 
0 can be obtained from 

2
2

112
2

11 4,4 PPPPPP −−−−+−  

where 011 aaP =  and 022 aaP =   

If 2
2

1 4PP >> , there will be potentially large loss  of 

accuracy in either 2
2

11 4PPP −+−  or 

2
2

11 4PPP −−− .  In order to avoid this situation, root 
formulas with rationalized numerators, as shown below, 
are used in calculations. 

Let 2
2

1 4PPD −=  
When D  = 0 

z1=−P1/2 
z2=−P1/2 

When D ≠0 
let the real part of P1 be x and the imaginary part be y. 

for x > 0  

( ) 211 DPz −−=  

( )DPPz +−= 122 2  (4.1) 

for x < 0  

( )DPPz +−= 121 2  

( ) 212 DPz +−=  (4.2) 

for x= 0  

( )
( ) 0

2

2

122

11 ≥






+−=

−−=
y

DPPz

DPz
 

( )
( ) 0

2

2

12

121 <






+−=

+−=
y

DPz

DPPz
 (4.3)  

In the calculation of discriminant D=P1
2−4P2 if |P1| is 

very large, P1
2 may cause an overflow.  In order to avoid 

this situation, the real and imaginary parts of Pl are tested 
to see if they are greater than 1035.  The above methods 
are used when those conditions are not satisfied, 
otherwise the following used.  

1121 41 PPPPD −=  

 



CSBGM 

287 

A11-40-0201  CSBGM, DCSBGM 

Storage mode conversion of matrices 
(real symmetric band to real general)  
CALL CSBGM (ASB, N, NH, AG, K, ICON)  

 
Function 
This subroutine converts an n × n real symmetric band 
matrix with band width h stored in the compressed mode 
into that stored in the general mode, where n > h ≥ 0. 
 
Parameters 
ASB .... Input.  The symmetric band matrix stored in 

the compressed mode 
 One-dimensional array of size 

n(h+1)−h(h+1)/2. 
N....... Input.  The order n of the matrix. 
NH..... Input.  The band width h of the matrix. 
AG..... Output.  The symmetric band matrix stored in 

the general mode 
Two-dimensional array, AG (K, N). 
(See “Comments on Use.”) 

K ........ Input.  The adjustable dimension (≥ N) of 
array AG. 

ICON . Output.  Condition code. (See Table CSBGM-
1.) 

 
Table CSBGM-1 Condition codes 

Code Meaning Processing 
0 No error.  

30000 NH < 0, N ≤ NH, or  
K < N. 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSLII ... MGSSL 
FORTRAN basic function ... None  

 
• Notes 

Storing method of the symmetric band matrix in the 
general mode: 
  The symmetric band matrix in the general mode 
transformed by this subroutine contains not only the 
lower band and diagonal portions but also the upper 
band portion and other elements (zero elements).  
 
Saving the storage area: 

If there is no need to keep the contents on the array 
ASB, more storage area can be saved by using the 
EQUIVALENCE statement as follows.; 
EQUIVALENCE (ASB (1), AG (1, 1)) 
(See “Example” for details.) 

• Example 
Given an n × n real symmetric band matrix with band 
width h , the inverse matrix is obtained using 
subroutines ALU and LUIV, where mode conversion is 
performed by this subroutine, where n ≤ 100 and h ≤ 
20. 

 
C     **EXAMPLE** 
      DIMENSION ASB(1890),AG(100,100), 
     *          VW(100),IP(100) 
      EQUIVALENCE(ASB(1),AG(1,1)) 
   10 READ(5,500) N,NH 
      IF(N.EQ.0) STOP 
      NT=(NH+1)*(N+N-NH)/2 
      READ(5,510) (ASB(I),I=1,NT) 
      K=100 
      CALL CSBGM(ASB,N,NH,AG,K,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,610) N,NH,((I,J,AG(I,J), 
     *             J=1,N),I=1,N) 
      EPSZ=0.0 
      CALL ALU(AG,K,N,EPSZ,IP,IS,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LUIV(AG,K,N,IP,ICON) 
      WRITE(6,630) ICON 
      WRITE(6,640) N,NH,((I,J,AG(I,J), 
     *             J=1,N),I=1,N) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'CSBGM ICON=',I5) 
  610 FORMAT(//10X,'** INPUT MATRIX **'/ 
     *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     *(2X,4('(',I3,',',I3,')',E17.8))) 
  620 FORMAT(/10X,'ALU ICON=',I5) 
  630 FORMAT(/10X,'LUIV ICON=',I5) 
  640 FORMAT('1'//10X,'** INVERSE ', 
     *'MATRIX **'/10X,'ORDER=',I5,5X, 
     *'BANDWIDTH=',I5/(2X,4('(',I3,',',I3, 
     *')',E17.8))) 
      END 
 
Method 
A real symmetric band matrix stored in a one-
dimensional array ASB in the compressed mode is 
converted as follows to be a symmetric band matrix in a 
two-dimensional array in the general mode : 
  The elements of the ASB are moved to the diagonal and 
upper triangular portions of the AG in descending 
element number order, beginning from the last element 
(of column n). 
  The correspondence between locations is shown below.  
 
Elements in the  Matrix elements Elements in the 
compressed mode  general mode 

( )( )
2,...,1NN,J,J,...,1JJ,I

J)AG(I,I21JASB

+−=−−=

→→++−

hh

ahhh ij  

 
( )( )

1,...,,1J,1,...,1JJ,I

J)AG(I,I21JJASB

hh

aij

+=−=

→→+−
 



CSBGM 

288 

The lower triangular portion is copied by the upper 
triangular portion using the diagonal as the axis of 
symmetry so as to be AG (I, J) = AG(J, I), where I>J. 



CSBSM 

289 

A11-50-0201 CSBSM, DCSBSM  

Storage mode conversion of matrices  
(real symmetric band to real symmetric)  
CALL CSBSM (ASB, N, NH, AS, ICON)  

 
Function 
This subroutine converts an n × n symetric band matrix 
with band width h stored in the compressed mode for 
symmetric band matrix into that stored in the compressed 
mode for symmetric matrix, where n>h≥0.  
 
Parameters 
ASB .... Input.  The symmetric band matrix stored in 

the compressed mode for symmetric band 
matrix. 
One-dimensional array of size 
n(h+1)−h(h+1)/2. 

N ...... Input.The order n of the matrix. 
NH ..... Input. Band width h of the symmetric band 

matrix. 
AS ..... Output.  The symmetric band matrix stored in 

the compressed mode for symmetric matrix. 
One-dimensional array of size n(n +1)/2 . 
(See “Comments on Use.”) 

ICON Output. Condition code. (See Table CSBSM- 
I.) 

 
Table CSBSM-1  Condition codes 

Code Meaning Processing 
0 No error.  

30000 NH < 0 or NH ≥ N. Bypassed. 
 
Comments on use 
• Subprograms used 

SSL II ...MGSSL 
FORTRAN basic function ... None  

 
• Notes 

Saving the storage area: 
If there is no need to keep the contents on the array 
ASB, more storage can be saved by using the 
EQUIVALENCE statement as follows ;  
 
EQUIVALANCE (ASB (1), AS (1)) 
(See “Example” for details.) 

 
• Example 

Given an n × n positive-definite symmetric band 

matrix with band width h stored in the compressed 
mode, for symmetric band matrix the inverse matrix is 
obtained using subroutines SLDL and LDIV, where the 
mode conversion is performed by this subroutihe. 
Where n ≤ 100 and h≤ 20. 

 
C     **EXAMPLE** 
      DIMENSION AS(5050),ASB(1890) 
      EQUIVALENCE(AS(1),ASB(1)) 
   10 READ(5,500) N,NH 
      IF(N.EQ.0) STOP 
      NS=(N+1)*N/2 
      NT=(NH+1)*(N+N-NH)/2 
      READ(5,510) (ASB(I),I=1,NT) 
      CALL CSBSM(ASB,N,NH,AS,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,610) N,NH,(I,AS(I),I=1,NS) 
      EPSZ=0.0 
      CALL SLDL(AS,N,EPSZ,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LDIV(AS,N,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,640) N,NH,(I,AS(I),I=1,NS) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'CSBSM ICON=',I5) 
  610 FORMAT(//10X,'** INPUT MATRIX **'/ 
     *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     *(2X,5('(',I4,')',E17.8))) 
  620 FORMAT(/10X,'SLDL ICON=',I5) 
  630 FORMAT(/10X,'LDIV ICON=',I5) 
  640 FORMAT('1'//10X,'** INVERSE ', 
     * 'MATRIX **'/ 
     * 10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     * (2X,5('(',I4,')',E17.8))) 
      END 
 
Method 
A real symmetric band matrix stored in a one-
dimensional array ASB in the compressed mode for 
symmetric band matrix is converted as follows to be 
stored in one-dimensional array AS in the symmetric 
matrix compressed mode for symmetric matrix.  The 
elements are moved in column wise, where zero elements 
are stored outside the band portion.  The correspondence 
between locations other than these zero elements are 
shown below.  
 

Elements in the 
compressed mode for 
symmetric band 
matrix 

Matrix 
elements  

Elements in the 
compressed mode for 
symmetric matrix  

( )
1,...,2,1I,I,...,2,1J,

J)+1)/2AS(I(IJ21)I(IASB

+==

−→→+−

h
aij  

 
( )

2,...,1NN,I,I,...,1I,I=J,

J))+1)/2AS(I(I/2)1(JIASB

+−=−−

−→→+−+⋅

hh

ahhh ij  



CSGM 

290 

A11-10-0201  CSGM, DCSGM  

Storage mode conversion of matrices  
(real symmetric to real general) 
CALL CSGM (AS, N, AG, K, ICON) 

 
Function 
This subroutine converts an n × n real symmetric matrix 
stored in the compressed mode into a symmetric matrix 
stored in the general mode. n ≥ l.  
 
Parameters 
AS ... Input.  The symmetric matrix stored in the 

compressed mode. 
AS is a one-dimensional array of size n (n+1) / 
2. 

N ... Input.  The order n of the matrix. 
AG ... Output.  The symmetric matrix stored in the 

general mode. 
AG is a two dimensional array, AG (K,N). 

K ... Input.  The adjustable dimension (≥ N) of 
array AG 

ICON.. Output.  Condition code.  See Table CSGM-1. 
 
Table CSGM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N < 1 or K < N Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL  
FORTRAN basic function ... none 

 
• Note 

The symmetric matrix in the general mode:  
The symmetric matrix in the general mode transformed 
by the subroutine contains not only the lower trianguler 
portion and the diagnoal portion but also the upper 
triangular portion. 
Saving the storage area: 
If there is no need to keep the contents on the array AS, 
more storage area can be saved by using the 
EQUIVALENCE statement as follows;  

 
EQUIVALENCE (AS(1), AG(1,1)) 

 
Refer to the example shown below.  

 
• Example 

Given an n × n real symmetric matrix in the 
compressed mode, the inverse matrix is obtained by 
subroutines ALU and LUIV as shown in the example.  
In this case, the required mode conversion is performed 
by this subroutine. Here, n ≤ l00. 

C     **EXAMPLE** 
      DIMENSION A(5050),B(100,100), 
     *          VW(100),IP(100) 
      EQUIVALENCE (A(1),B(1,1)) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      K=100 
      CALL CSGM(A,N,B,K,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.EQ.30000) GOTO 10 
      WRITE(6,610) N,((I,J,B(I,J), 
     *             J=1,N),I=1,N) 
      EPSZ=0.0 
      CALL ALU(B,K,N,EPSZ,IP,IS,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GOTO 10 
      CALL LUIV(B,K,N,IP,ICON) 
      WRITE(6,630) ICON 
      WRITE(6,640) N,((I,J,B(I,J), 
     *             J=1,N),I=1,N) 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'CSGM ICON=',I5) 
  610 FORMAT(//10X,'** INPUT MATRIX **'/ 
     *10X,'ORDER=',I5/ 
     *(2X,4('(',I3,',',I3,')',E17.8))) 
  620 FORMAT(/10X,'ALU ICON=',I5) 
  630 FORMAT(/10X,'LUIV ICON=',I5) 
  640 FORMAT('1'//10X,'** INVERSE ', 
     *'MATRIX **'/10X,'ORDER=',I5/ 
     *(2X,4('(',I3,',',I3,')',E17.8))) 
      END 
 
Method 
This subroutine converts an n × n real symmetric matrix 
stored in a one-dimensional array AS in the compressed 
mode to in a two-dimensional array in the general mode 
acccording to the following procedures. 
• The elements stored in AS are transferred to the 

diagonal and upper triangular portions serially from the 
largest address, i.e. the n-th column. 
The correspondence between locations is shown below, 
where NT = n (n + 1 ) / 2. 

 
Elements in 

compressed mode 
Elements of 

matrix 
Elements in 

general mode 
AS(NT) → ann → AG(N,N) 
AS(NT-1) → ann-1 → AG(N-1,N) 

. . . 

. . . 

. . . 
AS(I(I-1)/2+J) → aij → AG(J,I) 

. . . 

. . . 

. . . 
AS(2) → a21 → AG(1,2) 
AS(1) → a11 → AG(1,1) 

 
• With the diagonal as the axis of symmetry, the 

elements of the upper triangular portion are transferred 
to the lower triangular portion so that AG(I,J) = 
AG(J,I).  Here, I>J. 



CSSBM 

291 

A11-50-0101  CSSBM, DCSSBM 

Storage conversion of matrices 
(real symmetric to real symmetric band) 
CALL CSSBM (AS, N, ASB, NH, ICON) 

 
Function 
This subroutine converts an n × n real symmetric band 
matrix with band width h stored in compressed mode for 
symmetric matrix into one stored in compressed mode for 
symmetric band matrix, where n × h≥ 1. 
 
Parameters 
AS ..... Input.  The symmetric band matrix stored in 

compressed mode for symmetric matrix. 
One-dimensional array of size n (n + 1)/2.  

N ...... Input.  The order n of the matrix. 
ASB ... Output.  The symmetric band matrix stored in 

compressed mode for symmetric band matrix 
One-dimensional array of size  
n (h + 1 ) - h (h + 1)/2. 

NH ... Input.  Band width h of the symmetric band 
matrix. 

ICON .. Output.  Condition code.  (See Table CSSBM-
1). 

 
Table CSSBM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 NH < 0 or NH ≤ N. Bypassed. 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... None. 

 
• Notes 

Saving the storage area: 
If there is no need to keep the contents on the array AS, 
more storage area can be saved by using the 
EQUIVALENCE statement as follows;  
 
EQUIVALENCE (AS (1), ASB (1)) 
(See “Example” for details.) 

 
• Example 

Given an n × n positive-definite symmetric band matrix 
with band width h stored in compressed mode for 
symmetric band matrix, the LDLT decomposition is 

performed using subroutine SBDL in the compressed 
mode for symmetric band matrix, where the mode 
conversion is performed by this subroutine. 
Where n ≤ 100 and h ≤ 20. 

 
C     **EXAMPLE** 
      DIMENSION AS(5050),ASB(1890) 
      EQUIVALENCE(AS(1),ASB(1)) 
   10 READ(5,500) N,NH 
      IF(N.EQ.0) STOP 
      NT=(N+1)*N/2 
      READ(5,510) (AS(I),I=1,NT) 
      WRITE(6,600) N,NH,(I,AS(I),I=1,NT) 
      CALL CSSBM(AS,N,ASB,NH,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      EPSZ=0.0 
      CALL SBDL(ASB,N,NH,EPSZ,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL CSBSM(ASB,N,NH,AS,ICON) 
      WRITE(6,630) N,NH,(I,AS(I),I=1,NT) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(//10X,'** INPUT MATRIX **'/ 
     *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     *(2X,5('(',I4,')',E17.8))) 
  610 FORMAT('1'//10X,'CSSBM ICON=',I5) 
  620 FORMAT(10X,'SBDL ICON=',I5) 
  630 FORMAT('1'/10X,'DECOMPOSED MATRIX'/ 
     *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     *(2X,5('(',I4,')',E17.8))) 
      END 
 
Method 
A real symmetric band matrix stored in one-dimensional, 
array AS in the compressed mode for symmetric matrix is 
converted as follows to be stored in one-dimensional 
array ASB in the compressed mode for symmetric band 
matrix.  The elements are moved in column wise as 
follows: 
 

Elements in the 
compressed mode for 
symmetric matrix 

Matrix 
elements 

Elements in the 
compressed mode for 
symmetric band 
matrix 

( )( ) ( )( )
1,...,21,I,I,...,2,1J,

J21IIASBJ21IIAS

+==

+−→→+−

h

aij  

 
( )( )

( )( )

N3,...,+2,+=I,
I,...,1I,IJ,

21JIASB

J21IIAS

hh
hh

hhh

aij

+−−=
+−+⋅

→→+−

 

 



CTSDM 

292 

C23-15-0101  CTSDM, DCTSDM 

Zero of a complex function (Muller’s method) 
CALL CTSDM (Z, ZFUN, ISW, EPS, ETA, M, 
ICON) 

 
Function 
This subroutine finds a zero of a complex function  

f (z) = 0 

by Muller’s method. 
An initial approximation to the zero must be given. 

 
Parameters 
Z ..... Input.  An initial value to the zero to be 

obtained. 
Output.  Approximate root. 

ZFUN .. Input.  The name of the complex function 
subprogram which evaluates the function f(z). 

ISW ... Input.  Control information.  The user assigns 
one value from ISW= 1,2 and 3 to define the 
convergence criterion.  
 When ISW=1, zi becomes the root if it 
satisfies the condition  

( )f zi ≤ EPS: Criterion I 

When ISW=2, zi becomes the root if it 
satisfies  
z zi i− −1  ≤ ETA ⋅ zi : Criterion II  

When ISW=3, zi becomes the root if either of 
the criteria described above are satisfied.  

EPS ... Input.  The tolerance used in Criteria I. 
(See parameter ISW.) 
EPS ≥ 0.0. 

ETA .... Inpuf.  The tolerance used in Criteria II. 
(See parameter ISW.) 
ETA ≥ 0.0. 

M ..... Input. The upper limit of iterations ( > 0) 
(See Notes.) 
Output.  The number of iterations executed. 

ICON ... Output.  Condition code.  See Table CTSDM-
1. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, AMACH, AFMAX and AFMIN 
FORTRAN basic functions ... CABS, CMPLX, EXP, 
ALOG, CSQRT, SQRT, REAL and AIMAG 
 

• Notes 
The complex function subprogram associated with 
argument ZFUN must be declared by the EXTERNAL 
statement in the calling program. 

Iterations are repeated m times unconditionally, 
when M is set equal to M = -m (m > 0).  However, the 
iteration will stop during iterations  

Table CTSDM-1  Condition codes 

Code Meaning Processing 
1 Zj satisfied Criteria I. (See 

parameter ISW.) 
Normal return 

2 Zj satisfied Criteria II. (See 
aprameter ISW.) 

Normal return 

10 The iteration was repeated m 
times (M=-m) 

Normal return 

11 Although M=-m on input the 
iteration stopped because  
|f (zj)|=0 was satisfied during 
iterations and z j was taken as 
a root. 

Normal return 

12 Although M=-m on input the 
iteration stopped because  
|zj-zj-1|≤u⋅|zj|was satisfied 
during iteration and z j was 
taken as a root. 

Normal return 

10000 Specified criterion was not 
met during the specified 
number of iteration. 

The last zj was 
returned in 
parameter Z. 

20000 A certain difficulty occurred, 
so iteration could not be 
continued. (See notes.) 

Bypassed 

30000 Error(s) in parameter setting. 
When M>0, 
1 ISW=1 and EPS<0, or 
2 ISW=2 and ETA<0, or 
3 ISW=3 and EPS<0 and/or 
ETA<0. 
or when M = 0, or 
ISW≠1, 2 or 3. 

Bypassed 

 
when the lefthand side of the Criteria I is equal to 0.0, or 
the lefthand side of the Criteria II is smaller than or equal 
to the round-off level. 
 
• Example 

One root of f(z) = ez-i is obtained with initial value z0 = 
0.  

 
C     **EXAMPLE** 
      COMPLEX Z,ZFEXP 
      EXTERNAL ZFEXP 
      Z=CMPLX(0.0,0.0) 
      ISW=3 
      EPS=0.0 
      ETA=1.0E-6 
      M=100 
      CALL CTSDM(Z,ZFEXP,ISW,EPS,ETA,M, 
     *ICON) 
      WRITE(6,600) ICON,M,Z 
      STOP 
  600 FORMAT(10X,'ICON=',I5/13X,'M=',I5/ 
     *       13X,'Z=',2E15.7) 
      END 
      FUNCTION ZFEXP(Z) 
      COMPLEX Z,ZFEXP 
      ZFEXP=CEXP(Z)-CMPLX(0.0,1.0) 
      RETURN 
      END 



CTSDM 

293 

Method 
The subroutine uses Muller’s method.  The method uses a 
interpolating polynomial P(z) of degree two which 
approximates f(z) near a root.  This algorithm has the 
following features. 
• Derivatives of f(z) are not required. 
• The function is evaluated only once at each iteration. 
• The order of convergence is 1.84 (for a single root). 
 
Muller method 
Let α be a root of f(z) and let three values zi-2,zi-1 and zi be 
approximations to the root (See later for initial values z1, 
z2,and z3).  According to Newton’s interpolation formula 
of degree two, f(z) is approximated around the three 
values as follows:  

( ) [ ]( )
[ ] ))((,,

,

121

1

−−−

−

−−+
−+=

iiiii

iiii

zzzzzzzf
zzzzffzP

 (4.1) 

where fi=f(zi) and f[zi,zi-1],f[zi, zi-1,zi-2] 
are the first and the second order divided differences 

of .f(z) respectively and defined as follows. 

[ ]

[ ] [ ] [ ]
2

211
21

1

1
1

,,
,,

,

−

−−−
−−

−

−
−

−
−

=

−
−

=

ii

iiii
iii

ii

ii
ii

zz
zzfzzf

zzzf

zz
ff

zzf
 (4.2) 

P(z) = 0 is then solved and the two roots are  

[ ]{ }
[ ] ( ) [ ]2111

21
21

2

,,,
,,4

2

−−−−

−−

−+=
−±

−=

iiiiiii

iiii

i
i

zzzfzzzzf
zzzff

f
zz

ω
ωω  (4.3)  

Of these two roots of P(z)= 0, the root closer to zi is 
taken as the next approximation zi+1.  In (4.1) when the 
term of z2 is zero, that is when f[zi,zi-1,zi-2] = 0, in stead of 
(4.3) the following formula is used. 

[ ]

i
ii

ii
i

ii

i
i

f
ff
zzz

zzf
fzz

1

1

1,

−

−

−

−
−−=

−=
 (4.4) 

  In (4.1), wheh the both terms of z and z2 are null, P(z) 
reduces to a constant and defeats the Muller’s algrorithm 
(See later Considerations of Algorithm.) 
• Initial values. zl, z2and z3 

Let the initial value set by the user in input parameter Z 
be z when |z| ≠ 0. 









=
=
=

zz
zz
zz

3

2

1

1.1
9.0

 

when |z|≠0 









=
=

−=

0.0
0.1

0.1

3

2

1

z
z
z

 

• When f(zi-2) = f(zi-1) = f(zi) 
In this case, Muller’s method will fail to continue 
iterations because both terms of z2 and z in (4.1) vanish.  
The subroutine perturbs zi-2, zi-1 and zi so that the 
subroutine may get out of the situation  
f(zi-2) =.f(zi-1 ) = f (zi)  

( )
( )
( ) i

n
i

i
n

i

i
n

i

zpz
zpz
zpz

+=′
+=′
+=′

−−

−−

1
1
1

11

22

 

where p = -u-1/10, and u is the round-off unit, and n is 
the number of times of perturbation. 

If the perturbation continues more than five times, this 
subroutine will terminate unsuccessfully with ICON 
=20000.  
 
Convergence criterion 
Two condition are considered. 
Condition I 
When zi satisfies ( )izf  ≤ EPS. it is taken as a root. 
Condition II 
When zi satisfies 1−− ii zz  ≤ ETA･ iz , it is taken as a 
root.  When the root is a multiple root or very close to 
another root, ETA must be set sufficiently large. When 
ETA < u (u is the round-off unit), the subroutine will 
increase ETA as equal to u. 
 

For further details, see Reference [32]  
 



ECHEB 

294 

B51-30-0201  ECHEB, DECHEB  

Evaluation of a Chebyshev series  
CALL ECHEB (A, B, C, N, V, F, ICON)  

 
Function 
Given an n-terms Chebyshev series  f(x) defined on 
interval [a, b] 

( ) ( )∑
−

=







−
+−=

1

0

2n

k
kk ab

abxTc'xf  (1.1)  

this subroutine obtains value f(v) at arbitrary point v in 
the interval. 
 Symbol Σ’ denotes the initial term only is taken with 
factor 1/2. 
 a≠b, v ∈  [a,b] and n ≥ l.  
 
Parameters 
A.......... Input.  Lower limit a of the interval for the 

Chebyshev series. 
B.......... Input.  Upper limit b of the interval for the 

Chebyshev series. 
C........... Input.  Coefficients {ck}. 

C is a one dimensional array of size n.  
Coefficients are stored as shown below: 

 C(1) = c0, C(2)=c1, ..., C(N)= cn-1 
N.......... Input.  Number of terms n of the Chebyshev 

series. 
V.......... Input.  Point v which lies in the interal [a, b]. 
F........... Output.  Value f(v) of the Chebyshev series. 
ICON... Output.  Condition code.  See Table ECHEB-1. 
 
Table ECHEB-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 One of the following 
occurred: 
1 N<1 
2 A = B 
3 v∉  [a, b] 

Bypassed 

 
Comments on use 
• Subroutine used 

SSL II ... MGSSL 
FORTRAN basic function ... None 

 
• Notes  

This subroutine obtains value f(v) of a Chebyshev 
series.  The subroutine FCHEB can be utilized for 
Chebyshev series expansion of arbitrary smooth 
function f(x). 

• Example 
This example uses the subroutine FCHEB for series 
expansion of the sine function  

( ) ( ) ( ) 










+
−== ∑

∞

=

+

0

12

!12
1sin

n

n
n

n
xxxf  

in the interval [0, π]. 
 Precision requirements ... Absolute error 5･10-5. 
 By using the resultant expanded coefficients this 
subroutine evaluate Chebyshev series at 32 Chebyshev 
points as follows:  

31,...,1,0,
64

cos
32

cos
22

2

=






 =+=

j

jjx j πππππ
 

This example also evaluates and prints its error. 
 
C     **EXAMPLE** 
      DIMENSION C(257),TAB(255) 
      EXTERNAL FUN 
      EPSA=5.0E-5 
      EPSR=0.0 
      NMIN=9 
      NMAX=257 
      A=0.0 
      B=ATAN(1.0)*4.0 
      CALL FCHEB(A,B,FUN,EPSA,EPSR,NMIN, 
     *           NMAX,C,N,ERR,TAB,ICON) 
      IF(ICON.NE.0) GOTO 20 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,601) (C(K),K=1,N) 
      WRITE(6,602) 
      X=A 
      NS=32 
      H=ATAN(1.0)*2.0/FLOAT(NS) 
      DO 10 J=1,NS 
      X=B*COS(H*FLOAT(J-1))**2 
      CALL ECHEB(A,B,C,N,X,Y,ICON) 
      IF(ICON.NE.0) GOTO 20 
      ERROR=FUN(X)-Y 
      WRITE(6,603) X,Y,ERROR 
   10 CONTINUE 
      STOP 
   20 WRITE(6,604) ICON 
      STOP 
  600 FORMAT('0',3X,'EXPANSION OF', 
     1' FUNCTION FUN(X)',3X,'N=',I4,3X, 
     2'ERROR=',E13.3,3X,'ICON=',I6) 
  601 FORMAT (/(5E15.5)) 
  602 FORMAT ('0',10X,'X',7X,'EVALUATION', 
     18X,'ERROR'/) 
  603 FORMAT(1X,3E15.5) 
  604 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
 



ECHEB 

295 

      FUNCTION FUN(X) 
      REAL*8 SUM,XP,TERM 
      EPS=AMACH(EPS) 
      SUM=X 
      P=X*X 
      XP=X*P 
      XN=-6.0 
      N=3 
   10 TERM=XP/XN 
      SUM=SUM+TERM 
      IF(DABS(TERM).LE.EPS) GO TO 20 
      N=N+2 
      XP=XP*P 
      XN=-XN*FLOAT(N)*FLOAT(N-1) 
      GOTO 10 
   20 FUN=SUM 
      RETURN 
      END 
 
Method 
The value of an n -terms Chebyshev series (1.1) is 
obtained by the backward recurrence formula. 
• Backward recurrence formula 

To obtain the value f(v) of Chebyshev series  

( ) ( )∑
−

=

=
1

0

n

k
kk xTc'xf  

at the interval [-1,1], the following adjoint sequence 
{bk} is effective. 
   If {bk} is defined as:  

012 == ++ nn bb  
,...1,,2 21 −=+−= ++ nnkcbvbb kkkk  (4.1) 

the value f(v) of the Chebyshev series can be obtained by 
the following expression: 

( ) ( ) 220 bbvf −=  (4.2) 

  This subroutine first transforms variable v∈  [a, b] to 
variable s∈  [-1,1].  

( )
s

v b a
b a

=
− +

−
2

 (4.3) 

 Then it obtains Chebyshev series value f(v) by using 
(4.1) and (4.2). 
 The number of multiplications required to evaluate the 
value of an n-terms Chebyshev series is approximately n. 
 



ECOSP 

296 

E51-10-0201  ECOSP, DECOSP  

Evaluation of a cosine series  
CALL ECOSP (TH, A, N, V, F, ICON)  

 
Function 
Given an n-terms cosine series with period 2T  

( ) ∑
−

=

+=
1

1
0 cos

2
1 n

k
k kt

T
aatf π  (1.1) 

this subroutine obtains the value f(v) for arbitrary point v. 
T> 0 and n ≥ l. 
 
Parameters 
TH..... Input. Half period T of the cosine series. 
A....... Input.  Coefficients {ak}. 

A is a one-dimensional array of size N. 
Each coefficient is stored as shown below: 
A(1) = a0, A(2) = al, ..., A(N) = an-1 

N....... Input.  Number of terms n of the cosine series. 
V....... Input.  Point v. 
F........ Output.  Value f (v) of the cosine series. 
ICON... Output.  Condition code. 

See Table ECOSP-1. 
 
Table ECOSP-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either the two occurred. 
1 N<1 
2 TH ≤ 0 

Bypassed 

 
Comments on use 
• Subroutine used 

SSL II ... MGSSL 
FORTRAN basic functions ... COS and ATAN 

 
• Notes 

This subroutine obtains value f(v) of a cosine series. 
  The FCOSF subroutine can be utilized when smooth 
even function f(t) with period 2 T is subject to cosine 
series expansion.  

 
• Example 

This example integrates an odd function with parameter 
ω 

( )

πππππω

ω

ω

4,2,,
2

,
4

,

sin1

sin
0 2

=

+
= ∫

x
dt

t

txF
 (3.1) 

when x= h , 2h , ..., 10h .  However h = π/(10ω). 
  Since this integrand is an odd function with period 2π/ω 
it is expanded at first in a sine series by the subroutine 
FSINF according to the required precision of εa = εr = 5･
10-5 : 

( ) ∑
−

=

≈
1

0

sin
n

k
k tkbtf ω  (3.2)  

By integrating (3.2) termwise it can be obtained that  

( )

1,...,2,1,

,cos
1

0

−=−=

= ∑
−

=

nk
k
ba

xka'xF

k
k

n

k
k

ω

ω
 (3.3)  

However the initial term a0 is determined to satisfy F(0) 
= 0. 
  At this stage the subroutine ECOSP can be called to 
obtain an approximate value for indefinite integral (3.1) 
when x = h , 2h , ..., 10h . 
  Since this analytical solution is  

( ) ( )




 −= − 2cossin

4
1 1 xxF ωπ
ω

 

it is compared with the result obtained by this subroutine. 
 
C     **EXAMPLE** 
      DIMENSION A(257),TAB(127) 
      EXTERNAL FUN 
      COMMON W,PI 
      PI=ATAN(1.0)*4.0 
      EPSA=0.5E-04 
      EPSR=EPSA 
      NMIN=0 
      NMAX=257 
      W=PI*0.25 
      DO 1 I=1,5 
      TH=PI/W 
C     EXPANSION OF INTEGRAND 
      CALL FSINF(TH,FUN,EPSA,EPSR,NMIN, 
     *           NMAX,A,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      WRITE(6,600) N,ERR,ICON,W 
      WRITE(6,601) (A(K),K=1,N) 
C     TERMWISE INTEGRATION 
      DO 2 K=2,N 
      A(K)=-A(K)/(FLOAT(K-1)*W) 
    2 CONTINUE 
C     EVALUATION OF COSINE SERIES 
      CALL ECOSP(TH,A,N,0.0,P,ICON) 
      IF(ICON.NE.0) GO TO 10 
      A(1)=-P*2.0 
      WRITE(6,610) 
      H=TH*0.1 
      DO 3 K=1,10 
      X=H*FLOAT(K) 
      CALL ECOSP(TH,A,N,X,P,ICON) 
      IF(ICON.NE.0) GO TO 10 
      Q=TRFN(X) 
 



ECOSP 

297 

      WRITE(6,611) X,P,Q 
    3 CONTINUE 
      W=W+W 
    1 CONTINUE 
      STOP 
   10 WRITE(6,620) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' INTEGRAND',3X,'N=',I4,5X,'ERR=', 
     *E15.5,5X,'ICON=',I5,5X,'W=',E15.5) 
  601 FORMAT(/(5E15.5)) 
  610 FORMAT('0',5X,'EVALUATION OF', 
     *' COSINE SERIES'/'0',6X, 
     *'AUGUMENT',7X,'COMPUTED',11X,'TRUE') 
  611 FORMAT(3E15.5) 
  620 FORMAT('0',5X,'CONDITION CODE',I6) 
      END 
      FUNCTION FUN(T) 
      COMMON W 
      X=W*T 
      P=SIN(X) 
      FUN=P/SQRT(P*P+1.0) 
      RETURN 
      END 
      FUNCTION TRFN(T) 
      COMMON W,PI 
      TRFN=(PI*.25-ASIN(COS(W*T)* 
     *     SQRT(0.5)))/W 
      RETURN 
      END 

Method 
This subroutine obtains a value of an n-terms cosine 
series (1.1) by using a backward recurrence formula. 
  Upon choosing 

θ π=
T

t  

f(t) = g (θ) leads to a cosine series with peritd 2π. 
  Therefore the value of g(θ) can be obtained when 

θ π=
T

v  

is satisfied.  It can be calculated efficiently throuhg use of 
the backward recurrence formula (4.1). 

0,1,...,1,
cos2

0

21

12

−=
+−⋅=

==

++

++

nnk
abbb

bb

kkkk

nn

θ  (4.1) 

  The value of an n-terms cosine series can be obtained by 
(4.2). 

( ) ( ) ( )f v g b b= = −θ 0 1 2  (4.2) 

  The number of multiplications required to evaluate the 
value of an n-terms cosine series is approximately n. 
  The cosine function is evaluated only once.  
 



EIG1 

298 

B21-11-0101  EIG1, DEIG1  

Eigenvalues and corresponding eigenvectors of a real 
matrix (double QR method)  
CALL EIG1 (A, K, N, MODE, ER, EI, EV, VW, 
ICON)  

 
Function 
All eigenvalues and corresponding eigenvectors of an n-
order real matrix A are determined.  The eigenvectors are 
normalized such that x

2
= 1.  n ≥ 1. 

 
Parameters 
A ....... Input.  Real matrix A. 

A is a two-dimensional array, A (K, N).  The 
contents of A are altered on output. 

K ....... Input.  The adjustable dimension of arrays A 
and EV. 

N ....... Input.  Order n of A. 
MODE ... Input.  Specifies balancing. 

MODE=1... Balancing is omitted. 
MODE≠1... Balancing is included. 

ER,EI ..... Output.  Eigenvalues 
Eigenvalues are divided into their real and 
imaginary parts.  The real part is stored in ER, 
and the imaginary part is stored in EI. 
If the jth eigenvalues is complex, the (j+1)th 
eigenvalues is its complex conjugate (refer to 
Fig. EIG1-1).  ER and EI are one-dimensional 
arrays of size n. 

EV ....... Output.  Eigenvectors. 
Eigenvectors are stored in the columns which 
correspond to their eigenvalues.  If an 
eigenvalue is complex, its eigenvector is also 
complex; such eigenvectors are stored as 
shown in Fig. EIG1-1.  For details see 
“Comments on use”. 
EV is a two-dimensional array, EV (K,N). 

VW ....... Work area.  Used during balancing and 
reducing matrix A to a real Hessenberg matrix. 
VW is a one-dimensional array of size n. 

ICON ..... Output.  Condition code.  Refer to Table 
EIG1-1.  

 
Table EIG1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 ER (1) = A (1, 1), 
EV (1,1) = 1.0 

20000 Eigenvalues and 
eigenvectors could not be 
determined since 
reduction to a triangular 
matrix was not possible. 

Discontinued 

30000 N < 1 or K < N Bypassed 

Comments on use 
• Subprograms used 

SSL II ... AMACH, BLNC, IRADIX, HES1, and 
MGSSL 
FORTRAN basic functions ... ABS, SQRT, SIGN, and 
DSQRT. 

65432

The real
eigenvector for λ3.

The imaginary part of
the complex
eigenvector for λ4.( v4)

The real part of the
complex eigenvector
for λ4. (u4)

The real
eigenvector for λ2.

The real eigenvector for λ6.

The real
eigenvector for λ1.

Array EV

Array EI

Array ER

1
(λ2)

n

where   λ5=λ4

λj=αj+iβj

−β4

α6

β4 0.00.00.00.0

α5α4α3α2α1

(λ1) (λ6)(λ5)(λ4)(λ3)

Note:
If the eigenvector x4
corresponding to λ4 is
x4 = u4 + iv4 , the
eigenvector x5
corresponding to
λ5 is x5 = x4 = u4−iv4

*

*

 
Fig. EIG1-1 Corresponding between eigenvalues and eigenvectors  

• Notes 
Complex eigenvalues and corresponding eigenvectors 
In general, real matrices have real eigenvalues and 
complex eigenvalues.  Complex eigenvalues become 
pairs of conjugate complex eigenvalucs.  In this 
routine, if the jth eigenvalue (λj ) is a complex 
eigenvalue, λ and λ*

j are stored in ER and EI in the 
following way. 

λj  = ER(J) + i⋅EI(J) (i: imaginary unit) 
λj

*  = ER(J+1) + i⋅EI(J+1) 
 = ER(J) − i⋅EI(J)  

  If eigenvector xj which corresponds to λj becomes a 
complex vector. 

jjj ivux +=  

  Then. eigenvector *
jx  which corresponds to *

jλ  becomes  

jjj ivux +=*  



EIG1 

299 

Therefore if real part uj and imaginary part vj of x are 
obtained, x can easily be determined.  Consequently, in 
this subroutine, only eigenvector xj which corresponds to 
λj is calculated.  Real part uj of xj is stored in the Jth 
column of EV, and imaginary part vj is stored in the 
(J+1)th column.  Refer to Fig. EIG1-1.  If the magnitude 
of each element in a real matrix varies greatly, the 
precision of the result can be improved by balancing the 
matrix with subroutine BLNC.  Balancing will produce 
minimal improvement if the magnitude of each element 
in a matrix is about the same and should be skipped by 
setting MODE=1.  This subrotine is used to obtaine all 
eigenvalues and corresponding eigenvectors of a real 
matrix.  If all the eigenvalues of a real matrix are desired, 
BLNC, HES1 and HSQR should be used.  If a subset of 
the eigenvectors of a real matrix is desired, BLNC, HES1, 
HSQR, HVEC, and HBK1 should be used.  

 
• Example 

All eigenvalues and corresponding eigenvectors of a 
real matrix A of order n are determined.  n≤ l00. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),ER(100),EI(100), 
     * EV(100,100),VW(100),IND(100) 
   10 CONTINUE 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610)(I,J,A(I,J),J=1,N) 
      CALL EIG1(A,100,N,0,ER,EI,EV,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      IND(1)=0 
      CALL EPRT(ER,EI,EV,IND,100,N,N) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('0',5X,'ORIGINAL MATRIX', 5X, 
     * 'N=',I3) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     * E15.7)) 
  620 FORMAT('0',5X,'ICON=',I5) 
      END 
 
   In the above example, the subroutine EPRT prints all 
eigenvalues and corresponding eigenvectors of a real 
matrix.  The contents of EPRT are:  
 
      SUBROUTINE EPRT(ER,EI,EV,IND,K,N,M) 
      DIMENSION ER(M),EI(M),EV(K,M),IND(M) 
      WRITE(6,600) 
      IF(IABS(IND(1)).EQ.1) GO TO 40 
      J=0 
      DO 30 I=1,M 
      IF(J.EQ.0) GO TO 10 
      IND(I)=0 
      J=0 
      GO TO 30 
 

   10 IF(EI(I).NE.0.0) GO TO 20 
      IND(I)=1 
      GO TO 30 
   20 IND(I)=-1 
      J=1 
   30 CONTINUE 
   40 MM=0 
      DO 50 I=1,M 
      IF(IND(I).EQ.0) GO TO 50 
      MM=MM+1 
      ER(MM)=ER(I) 
      IND(MM)=IND(I) 
      IF(EI(I).EQ.0.0) GO TO 50 
      MM=MM+1 
      ER(MM)=EI(I) 
      IND(MM)=IND(I+1) 
   50 CONTINUE 
      KAI=(MM-1)/5+1 
      LST=0 
      DO 70 L=1, KAI 
      INT=LST+1 
      LST=LST+5 
      IF(LST.GT.MM) LST=MM 
      WRITE(6,610) (J,J=INT,LST) 
      WRITE(6,620) (ER(J),J=INT,LST) 
      WRITE(6,630) (IND(J),J=INT,LST) 
      DO 60 I=1,N 
      WRITE(6,640) I,(EV(I,J),J=INT,LST) 
   60 CONTINUE 
   70 CONTINUE 
      RETURN 
  600 FORMAT('1',10X,'**EIGENVECTORS**') 
  610 FORMAT('0',5I20) 
  620 FORMAT('0',1X,'EIGENVALUE',5E20.8) 
  630 FORMAT(2X,'IND',6X,I10,4I20) 
  640 FORMAT(6X,I5,5E20.8) 
      END 
 
Method 
All eigenvalues and corresponding eigenvectors of an n-
order real matrix A are determined as follows: Using the 
following two-stage transformation process, the 
eigenvalues of an n-order real matrix are determined by 
obtaining the diagonal elements of upper triangular 
matrix R. 
• Reduction of real matrix A to real Hessenberg matrix H 

using the Householder method.  

HH AQQH T=  (4.1) 

QH is an orthogonal matrix which is the product of the 
transformation matrices P1, P2, ....., Pn−2 used in the 
Householder method.  

221 ... −⋅⋅⋅= nH PPPQ  (4.2) 

   For a description of the Householder method, refer to 
HESl. 



EIG1 

300 

• Reduction of a real Hessenberg matrix H to an upper 
triangular matrix R using the double QR method. 

RR HQQR T=  (4.3) 

   QR is an orthogonal matrix which is the product of the 
transformation matrices Q1, Q2, ..., Qs used in the double 
QR method. 

sR QQQQ ⋅⋅⋅= ...21  (4.4) 

   For further information on the double QR method, refer 
to HSQR.  If matrix F, which transforms upper triangular 
matrix R to diagonal matrix D, in the similarity 
transformation of (4.5) is available, eigenvectors can be 
obtained as the column vectors of matrix X in (4.6). 

RFFD 1−=  (4.5) 
FQQX RH=  (4.6) 

   To verify that the column vectors of amtrix X in (4.6) 
are the eigenvectors of real matrix A, substitute (4.1) and 
(4.3) in (4.5) to obtain (4.7). 

FQAQQQFAXXD RHHR
TT11 −− ==  (4.7) 

   If QHQR are represented as Q, from (4.2) and (4.4), then 

sn QQQPPPQ ⋅⋅⋅⋅⋅⋅⋅= − ...... 21221  (4.8) 

   As shown in (4.8), Q can be computed by repeatedly 
taking the product of the transformation matrices.  X can 
be obtained by taking the product of Q from (4.8) and 
matrix F.  Transformation matrix F can be determined as 
an upper triangular matrix as follows: From (4.5), 

FD = RF (4.9) 

   Let the elements of D, R, and F be represented as D = 
diag(λi), R = (rij), F = (fij), then elements fij are obtained 
from (4.9) as in (4.10) for j = n, n- 1, ..., 2. 

( )( )1...,,2,1
1

−−=−= ∑
+=

jjifrf
j

ik
ijkjikij λλ  (4.10) 

where, rij = 0 (i>j),  ri i= λi 
fij = 0 (i>j),  fii = 1 

 
If λ i = λj, fij is obtained as 

∑
+=

∞=
j

ik
kjikij ufrf

1

R  (4.11) 

   where u is the unit round-off 
The above computations are performed only when all the 
eigenvalues are real.  However, if real matrix A has 
complex eigenvalues, R cannot become a complete 
triangular matrix.  The elements of matrix R which has 
complex eigenvalues λl−1 and λl( = *

1−lλ ) are shown in 
Fig. EIG1-2. 
 





































−

−−−−

−

nn

lnllll

nlllll

nll

r

rrr
rrr

r
rrrrr

1

1111

22

11111212

 
Fig. EIG1-2  Quasi triangular matrix R with a complex eigenvalue (λl−1, 
λl) 

   In this case, the procedure to obtain fij becomes 
complicated.  When, in the course of computation fij in 
(4.10), if a complex eigenvalue λi (i = l) is encountered, flj 
and fl-1j are obtained by solving a system of linear 
equations (4.12). 

( )

( ) 











−=−+

−=+−

∑

∑

+=
−−

+=
−−−−−

j

lk
kjlkljjlljlll

j

lk
kjklljlljljll

frfrfr

frfrfr

1
11

1
11111

λ

λ

 (4.12) 

   In addition, the lth and (l−1)th column elements of F 
becomes complex vectors.  However, since λl and λl-1 are 
conjugates, their complex vectors are also conjugates of 
each other.  Since, if one of them is determined the other 
need not be computed, only fil−1 (i=l,l−1,...,1) is obtained 
corresponding to λl−1 in this routine.  fil−1 is determined as 
follows: 
   That is, for i=l and l−1, fil−1 is determined from (4.13) 
and for i=l−2, l−3, ...1, fil−1 is determined from (4.10). 

11 =−llf  

( ) ( )
( ) ( )




>−−
≤−−

=
−−−−

−−−−−−
−−

lllllllll

lllllllll
ll rrrr

rrrr
f

1111

111111
11 λ

λ
 

 (4.13) 

   On computation of fij−1 in (4.10), if λi and λi−1 are 
furthermore a pair of complex conjugate eigenvalues, 
corresponding fil−1 and fi−1l−1 are obtained from (4.12). 
   The real part of fil−1 is stored in the (l−1)th column of F 
and the imaginary part of fil−1 is stored in the lth column. 



EIG1 

301 

   From matrix F thus obtained and transformation matrix 
Q, eigenvectors x of brief description of this procedure 
follows: 

X = QF (4.14) 

   Where, X is normalized such that x 2 = 1. 
   Also, in this routine, a real matrix is balanced using 
BLNC before it is reduced to a Hessenberg matrix unless 
MODE=1. 
   For further information, see References [12] and [13] 
pp 372-395. 
 



ESINP 

302 

E51-20-0201 ESINP, DESINP 

Evaluation of a sine series 
CALL ESINP (TH, B, N, V, F, ICON) 

 
Function 
Given an n-terms sine series with period 2T 

( ) ∑
−

=

==
1

0
0 0,sin

n

k
k bkt

T
btf π  (1.1) 

this subroutine obtains value f (v) for arbitrary point v. 
T > 0 and n≥ 1. 
 
Parameters 
TH..... Input.  Half period T for the sine series. 
B..... Input.  Coefficients {bk}. 
 B is a one-dimensional array of size N. 
 Each coefficient is stored as shown below: 
 B(1)=0.0,  B(2)=b1, ..., B(N)=bn-1 
N..... Input.  Number of terms n of the sine series. 
V..... Input.  Arbitrary point v. 
F..... Output.  Value f (v) of the sine series. 
ICON... Output.  Condition code. 
 See Table ESINP-1. 
 
Table ESINP-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either the tow occurred: 
1 N < 1 
2 TH ≤ 0 

Bypassed 

 
Comments on use 
• Subroutine used 

SSL II ... MGSSL 
FORTRAN basic functions ... COS, ATAN and SIN 

 
• Notes 

This subroutine obtains value f (v) of a sine series.  The 
subroutine FSINF should be utilized when smooth odd 
function f (t) with period 2T is subject to sine series 
expansion. 

 
• Example 

This example integrates an even function having 
parameter ω. 

( )

πππππω

ω

ω

4,2,,
2

,
4

,

cos1

cos
0 2

=

+
= ∫

x
dt

t

txF
 (3.1) 

when x = h, 2h, ..., 10h.  However h = π/(10ω).  Since 
this integrand is an even function with period 2π/ω it is 
expanded at first in a cosine series shown in (3.2) by 

the subroutine FCOSF according to the required 
precision of εa = εr = 10-5. 

( ) ∑
−

=

+≈
1

1
0 cos

2
1 n

k
k tkaatf ω  (3.2) 

Upon integrating (3.2) termwise it can be obtained that 

( )

1,...,2,1 , ,0

,sin

0

1

0

−===

= ∑
−

=

nk
k
abb

xkbxF

k
k

n

k
k

ω

ω
 (3.3) 

At this time the subroutine ESINP is called to obtain 
the approximate value of indefinite integration (3.3) 
upon choosing x = h, 2h, ..., 10h. 
Since this analytical solution is 

( ) 





= −

2
sinsin1 1 txF ω

ω
 (3.4) 

it is compared with the result obtained by this 
subroutine. 
 

C     **EXAMPLE** 
      DIMENSION A(257),TAB(127) 
      EXTERNAL FUN 
      COMMON W 
      PI=ATAN(1.0)*4.0 
      EPSA=0.5E-04 
      EPSR=EPSA 
      NMIN=0 
      NMAX=257 
      W=PI*0.25 
      DO 1 I=1,5 
      TH=PI/W 
C     EXPANSION OF INTEGRAND 
      CALL FCOSF(TH,FUN,EPSA,EPSR,NMIN, 
     *           NMAX,A,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      WRITE(6,600) N,ERR,ICON,W 
      WRITE(6,601) (A(K),K=1,N) 
C     TERMWISE INTEGRATION 
      DO 2 K=2,N 
      A(K)=A(K)/(FLOAT(K-1)*W) 
    2 CONTINUE 
C     EVALUATION OF SINE SERIES 
      WRITE(6,610) 
      H=TH*0.1 
      DO 3 K=1,10 
      X=H*FLOAT(K) 
      CALL ESINP(TH,A,N,X,P,ICON) 
      IF(ICON.NE.0) GO TO 10 
      Q=TRFN(X) 
      WRITE(6,611) X,P,Q 
    3 CONTINUE 
      W=W+W 
    1 CONTINUE 
      STOP 
   10 WRITE(6,620) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' INTEGRAND',3X,'N=',I4,5X,'ERR=', 
     *E15.5,5X,'ICON=',I5,5X,'W=',E15.5) 
 



ESINP 

303 

  601 FORMAT(/(5E15.5)) 
  610 FORMAT('0',5X,'EVALUATION OF', 
     *' SINE SERIES'/'0',6X, 
     *'AUGUMENT',7X,'COMPUTED',11X,'TRUE') 
  611 FORMAT(3E15.5) 
  620 FORMAT('0',5X,'CONDITION CODE',I6) 
      END 
      FUNCTION FUN(T) 
      COMMON W 
      X=W*T 
      P=COS(X) 
      FUN=P/SQRT(P*P+1.0) 
      RETURN 
      END 
      FUNCTION TRFN(T) 
      COMMON W 
      TRFN=ASIN(SIN(W*T)*SQRT(0.5))/W 
      RETURN 
      END 
 
Method 
This subroutine obtains a value of an n-terms sine series 
shown in (1.1) by using the backward recurrence formula. 

  Upon choosing θ π=
T

t , f(t)=g(θ) leads to a sine series 

with period 2π. 
  Therefore g(θ) can be obtained when v

T
πθ =  is 

satisfied − it can be calculated efficiently by the 
following backward recurrence formula: 

1,...,1,
cos2

0

21

12

−=
+−⋅=

==

++

++

nnk
bccc

cc

kkkk

nn

θ  (4.1) 

  Therefore the value of an arbitrary point in the sine 
series can be obtained by (4.2). 

( ) ( ) θθ sin1cgvf ==  (4.2) 

 The number of multiplications required for evaluation of 
an n-terms sine series is approximately n.  The cosine and 
sine functions are evaluated only once respectively. 
 



EXPI 

304 

I11-31-0101 EXPI, DEXPI 

Exponential integrals Ei(x), Ei (x) 

CALL EXPI (X, EI, ICON) 
 
Function 
This subroutine computes the exponential integrals Ei(x) 
and iE (x) defined as follows using an approximation 
formula. 
For x < 0: 

( ) ∫∫ ∞−

∞

−

−

=−=
x t

x

t

i dt
t

edt
t

exE  

For x > 0: 

( ) ∫∫ ∞−

−

∞

−

==
x tx t

i dt
t

e.dt
t

exE P.VP.V.  

P.V. means that the principal value is taken at t=0. 
Where, x≠0. 
 
Parameters 
X..... Input.  Independent variable x. 
EI..... Output.  Function value Ei(x) or Ei (x). 
ICON..... Output.  Condition code.  See Table EXPI-1. 
 
Table EXPI-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 X > log(flmax) or 
X < -log(flmax) 

EI is set to flmax 
or  
EI is set to 0.0.

30000 X=0 EI is set to 0.0.
 
Comments on use 
• Subprograms used 

SSL II ... AFMAX, MGSSL and ULMAX 
FORTRAN basic functions ... EXP, ALOG, and ABS 
 

• Notes 
[Range of argument] 

( )maxlog flX ≤  

   If X  exceeds the above limit, Ei(x) and Ei (x) 
respectively cause underflow or overflow in 
calculating ex.  The limitation is made so that these 
difficulties can be avoided beforehand in the 
subroutine. 

X≠0 
Ei(x) and Ei (x) are undefined for x=0. 

 
• Example 

The following example generates a table of the 
function values from 0.01 to 0.50 with increment 0.01. 

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,50 
      X=FLOAT(K)/100.0 
      CALL EXPI(X,EI,ICON) 
      IF(ICON.EQ.0) WRITE(6,610)X,EI 
      IF(ICON.NE.0) WRITE(6,620)X,EI,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF EXPONENTIAL ', 
     * 'INTEGRAL FUNCTION'/// 
     * 6X,'X',9X,'EI(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     * E17.7,5X,'EI=',E17.7,5X,'CONDITION=', 
     * I10) 
      END 
 

 
Method 
The approximation formulas to compute Ei(x) and Ei (x), 
differs depending on the following ranges of x.   
[-174.673, -4), [-4, -1), [-1, 0), (0, 6], (6, 12], (12, 24], 
(24, 174.673].  In the following, s= x , t=1/ x . 
 
• For log(flmax) ≤ x < −4 

Single precision: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= ∑ ∑

= =

+
3

0

3

0

11
k k

k
k

k
k

x
i tbtatexE  (4.1) 

Theoretical precision = 9.09 digits 
 
Double precision: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= ∑ ∑

= =

+
8

0

8

0

11
k k

k
k

k
k

x
i tbtatexE  (4.2) 

Theoretical precision = 18.88 digits 
 
• For −4 ≤ x < −1 

Single precision: 

( ) ∑∑
==

−=
4

0

4

0 k

k
k

k

k
k

x
i tbtaexE  (4.3) 



EXPI 

305 

Theoretical precision = 10.04 digits 
Double precision: 

( ) ∑∑
==

−=
8

0

8

0 k

k
k

k

k
k

x
i tbtaexE  (4.4) 

Theoretical precision = 19.20 digits 
 

• For -1 ≤ x < 0 
Single precision: 

( ) ( ) ∑∑
==

−=
3

0

3

0

log
k

k
k

k

k
ki sbsasxE  (4.5) 

Theoretical precision = 10.86 digits 
 
Double precision: 

( ) ( ) ∑∑
==

−=
5

0

5

0

log
k

k
k

k

k
ki sbsasxE  (4.6) 

Theoretical precision = 18.54 digits 
 

• For 0 < x ≤ 6 
Single precision: 

( ) ( ) ( ) ∑∑
==

−+=
5

0

5

0
00log

k

k
k

k

k
ki zbzaxxxxxE  (4.7) 

Theoretical precision = 9.94 digits 
Where z = x/6, x0=0.37250 7410 
Double precision: 

( ) ( ) ( ) ∑∑
==

−+=
9

0

9

0
00log

k

k
k

k

k
ki zbzaxxxxxE  (4.8) 

Theoretical precision = 20.76 digits 
 
Where z = x/6, x0=0.37250 7410 81366 63446 

• For 6 < x ≤ 12 
 
Single precision: 







+
+

+
+







+
+

+
+=

xa
b

xa
b

xa
b

xa
b

a
x

exE
x

i

4

3

3

2

2

1

1

0
0)(

 (4.9) 

Theoretical precision = 8.77 digits 
Double precision: 







+
++







+
+

+
+=

xa
b

xa
b

xa
b

a
x

exE
x

i

9

8

2

1

1

0
0

...

)(

 (4.10) 

Theoretical precision = 19.21 digits 
 

• For 12 < x ≤ 24 
Single precision: 







+
+

+
+







+
+

+
+=

xa
b

xa
b

xa
b

xa
b

a
x

exE
x

i

4

3

3

2

2

1

1

0
0)(

 (4.11) 

Theoretical precision = 9.45 digits 
Double precision: 







+
++







+
+

+
+=

xa
b

xa
b

xa
b

a
x

exE
x

i

9

8

2

1

1

0
0

...

)(

 (4.12) 

Theoretical precision = 19.22 digits 
 

• For 24 < x ≤ log(flmax) 
Single precision: 























+

+
+

++=
xa

b
xa

b
a

xx
exE

x

i
2

1

1

0
0

11)(  (4.13) 

Theoretical precision = 8.96 digits 
Double precision: 












+

++












+

++=

xa
b

xa
b

a
xx

exE
x

i

9

8

1

0
0

...

11)(

 (4.13) 

Theoretical precision = 18.11 digits 
 
For more information, see Reference [79] and [80]. 



FCHEB 

306 

E51-30-0101 FCHEB, DFCHEB 

Chebyshev series expansion of a real function (Fast cosine 
transform, function input) 
CALL FCHEB (A, B, FUN, EPSA, EPSR, NMIN, 
NMAX, C, N, ERR, TAB, ICON) 

 
Function 
Given a smooth function f(x) on the interval [a, b] and 
required accuracy εa and εr, this subroutine performs 
Chebyshev series expansion of the function and 
determines n coeffieients {ck} which satisfy (1.1). 

( ) ( ) ( ){ }xf
ab

abxTc'xf ra

n

k
kk ⋅≤







−
+−−∑

−

=

εε ,max21

0

 (1.1) 

Symbol Σ’ denotes to make sum but the initial term only 
is multipled by factor 1/2. f can be defined as (1.3) by 
using function values taken at sample points xj (shown in 
(1.2)) on the interval [a, b]. 

1,...,1,0,
1

cos
22

−=
−

−++= njj
n

abbax j
π  (1.2) 

( )j
nj

xff
10

max
−≤≤

=  (1.3) 

    Where a ≠ b and εa ≥ 0 and εr ≥ 0. 
 
Parameters 
A............. Input.  Lower limit a of the interval. 
B............. Input.  Upper limit b of the interval. 
FUN........ Input.  Name of the function subprogram 

which calculates the function f(x) to be 
expanded.  See Notes. 

EPSA...... Input.  The absolute error tolerance εa. 
EPSR...... Input.  The relative error tolerance εr.  Lower 

limit. 
NMIN..... Input.  Lower limit of terms of Chebyshev 

series (≥0). 
The value of NMIN should be specified as 
(power of 2) + 1. 
The default value is 9.  See Notes. 

NMAX... Input.  Upper limit of terms of Chebyshev 
series (≥NMIN). 
The value of NMAX should be specified as 
(power of 2) + 1. 
The default value is 257. 
See Notes. 

C............. Output.  Coefficients {ck}. 
Each coefficient is stored as shows below: 
C(1) = c0, C(2) = c1, ..., C(N) = cn-1 
One-dimensional array of size NMAX. 

N............. Output.  Number of terms n of the Chebyshev 
series (≥5) 
The value of N takes as (power of 2) + 1. 

ERR........ Output.  Estimate of the absolute error of the 
Chebyshev series. 

TAB........ Output.  The trigonometric function table used 
for series expansion is stored. 
One-dimensional array whose size is greater 
than 3 and equal to the following: 
• If a ≠ 0 ..... (NMAX-3)/2. 
• If a = 0 ..... NMAX-2. 
See Notes. 

ICON...... Output.  Condition code. 
See Table FCHEB-1. 

 
Table FCHEB-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The required accuracy was 
not satisfied due to 
rounding-off errors.  The 
required accuracy was far 
too high. 

C contains 
resultant 
coefficients.  The 
accuracy of the 
series is the 
maximum 
attainable. 

20000 The required accuracy was 
not satisfied through the 
number of terms of the 
series has reached the 
upper limit. 

Bypassed. 
C contains 
coefficients 
obtained at that 
time.  ERR 
contains an 
estimate of 
absolute error 
obtained at that 
time. 

30000 One of the following 
conditions occurred: 
1 A = B 
2 EPSA < 0.0 
3 EPSR < 0.0 
4 NMIN < 0 
5 NMAX < NMIN 

Bypassed 

 
Comments on use 
 
• Subprograms used 

SSL II ... MGSSL, AMACH, UTABT and UCOSM 
FORTRAN basic functions ... ABS, AMAX1, AMIN1 
and FLOAT 

 
• Notes 

− The function subprogram specified by the FUN 
parameter must be defined as a subprogram having 
independent variable x only as the argument.  The 
program calling this subroutine must include an 
EXTERNAL statement specifying the corresponding 
function name.  If a given function contains auxiliary 
variable, they must be declared by a COMMON 
statement, which is used to establish an interface with 
the calling program. 

 
− Use of the trigonometric function talbe 

The trigonometric function table is produced only 
once even when this subroutine is called repeatedly.  
If it does not contain the  



FCHEB 

307 

 trigonometric function values necessary for series 
expansion, only the necessary values are calculated 
and added.  Therefore, this subroutine should be 
called without making a change in the trigonometric 
function table − without changing the contents of 
TAB. 

  
− This subroutine normally changes the interval of 

variable from [a, b] to [-1, 1] and expands function 
f(x) base on the chebyshev polynomials.  When the 
end point a of the interval is zero, this subroutine 
expands function f(x) base on the shifted Chebyshev 
polynomials to avoid making an error in calculation 
(loss of significant digits) while making a change of 
the variable. 
   However, the coefficients {ck} used the shifted 
Chebyshev polynomials are the same as those used 
the Chebyshev polynomials. 
   On such reason, the size of trigonometric function 
table used internally is (NMAX-3)/2 in case of using 
the Chebyshev polynomials, on the other hand, 
(NMAX-2) in case of using the shifted Chebyshev 
polynomials. 

 
− If the value of NMIN or NMAX is not equal to 

power of 2 plus one, the following value is assumed: 
(maximum power of 2 not exceeding that value) + 1 
However, NMAX = 5 is assumed if NMAX is less 
than 5. 

 
− The degree of error decrement depends on the 

smoothness of f(x) and the width of interval [a, b] as 
the number of terms n increases.  When f(x) is an 
analytical function, the error decreases depending on 
the exponential function order O (r n), 0 < r < 1.  
When f(x) has up to k-th continuous derivatives, the 
error decreases depending on the the rational 

function order O (
k

n
ba − ).  When k = 0 or k = 1, the 

error cannot be estimated accurately because the 
number of terms to be expanded in a series increases.  
Therefore the function to be processed by this 
subroutine should have, at least, up to 2nd 
continuous derivatives. 

 
− Accuracy of the series 

This subroutine tries to obtain a Chebyshev series 
which satisfies (1.1) when εa and εr are given, εr = 0 
means that f(x) is expanded in a Chebyshev series 
with its absolute error within εa.  Similarly εa = 0 
means that f(x) is expanded in a Chebyshev series 
with its relative error within εr.  This purpose is 
sometimes obstructed by unexpected characteristics 
of f(x) or an unexpected value of  εa or εr.  For 
example, when εa or εr is extremely small in 
comparison with computational error in function 

evaluations, the effect of rounding-off errors 
becomes grater, so it is no use to continue the 
computation even though the number of terms 
subject to series expansion has not reached the upper 
limit.  In this case, the processing is bypassed after a 
condition code of 10000 is set to ICON.  At this time, 
the accuracy of the Chebyshev series becomes the 
attainable limit for the computer used.  The 
Chebyshev series sometimes does not converge 
within NMAX evaluations.  In this case, the 
coefficient value is an approximation obtained so far 
and is not always accurate.  The processing is 
bypassed after a condition code of 20000 is set to 
ICON. 

   To determine the accuracy of Chebyshev series, this 
subroutine always sets an estimate of absolute error 
in ERR. 

 
− When inverse transform is required for Chebyshev 

series expansion, the subroutine FCOST should be 
utilized for cosine transform.  The inverse transform 
mean to obtain the  function value. 

( ) ( )
1,...,1,0,

21

0

−=





−

+
= ∑

−

=

nj
ab

abx
Tc"xf j

kk

n

k
j  

 for a sample point xj, which lies in the interval [a, b] 
indicated by (1.2).  Where symbol Σ” denotes the 
initial and last terms are multiplied by factor 1/2.  
Therefore only the coefficient cn-1 of the last term 
must be doubled before the FCOST subroutine is 
called. 

   During inverse transform, the contents of TAB must 
be kept intact because the trigonometric function 
table produced by this subroutine is used by the 
subroutine FCOST.  See Example 2. 

 
• Examples 

Example 1 expands exponential function 

( ) 









== ∑

∞

=0 !n

n
x

n
xexf  

on the interval [-2, 2] in Chebyshev polynomials 
{Tk(x/2)} according to the required accuracy of εa = 0 
and εr = 5⋅10-5. 
NMIN = 9 and NMAX = 257 is assumed. 

 
C     EXAMPLE 1 
      DIMENSION C (257), TAB (127) 
      EXTERNAL FUN 
      EPSA=0.0 
      EPSR=5.0E-5 
      NMIN=9 
      NMAX=257 
      A=-2.0 
      B=2.0 
      CALL FCHEB(A,B,FUN,EPSA,EPSR, 
     *           NMIN,NMAX,C,N,ERR,TAB,ICON) 
 



FCHEB 

308 

      IF(ICON.GT.10000) GOTO 10 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,601) (C(I),I=1,N) 
      STOP 
   10 WRITE(6, 602) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' FUNCTION FUN(X)',3X,'N=',I4, 
     *5X,'ERR=',E15.5,5X,'ICON=',I5) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(X) 
      REAL*8 SUM,XP,TERM 
      EPS=AMACH(EPS) 
      SUM=1.0 
      XP=X 
      XN=1.0 
      N=1 
   10 TERM=XP/XN 
      SUM=SUM+TERM 
      IF(DABS(TERM).LE. 
     1   DABS(SUM)*EPS) GOTO 20 
      N=N+1 
      XP=XP*X 
      XN=XN*FLOAT(N) 
      GOTO 10 
   20 FUN=SUM 
      RETURN 
      END 
 

Example 2 Inverse transform for Chebyshev series 
expansion 
Example 2 expands since function 

( ) ( ) ( ) 










+
−== ∑

∞

=

+

0

12

!12
1sin

n

n
n

n
xxxf  

on the interval [0, π] in Chebyshev polynomials 
{Tk(x/2)} according to the required accuracy of εa = 
5⋅10-5 and εr = 0. 
NMIN = 9 and NMAX = 513 is assumed. 
Example 2 then checks the values taken by the 
Chebyshev series at n sample points. 

1,...,1,0,
1

cos22 −=
−

+= njj
n

x j
πππ  

through use of the subroutine FCOST. 
 
C     EXAMPLE 2 
      DIMENSION C(513),TAB(511) 
      EXTERNAL FUN 
      EPSA=5.0E-5 
      EPSR=0.0 
      NMIN=9 
      NMAX=513 
      A=0.0 
      B=ATAN(1.0)*4.0 
      CALL FCHEB(A,B,FUN,EPSA,EPSR, 
     *           NMIN,NMAX,C,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GOTO 10 
      WRITE(6,600) N,ERR,ICON 
      C(N)=C(N)*2.0 
      NM1=N-1 
 

      WRITE(6,601) (C(I),I=1,N) 
      CALL FCOST(C,NM1,TAB,ICON) 
      WRITE(6,602) 
      WRITE(6,601) (C(I),I=1,N) 
      STOP 
   10 WRITE(6,603) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' FUNCTION FUN(X)',3X,'N=',I4, 
     *5X,'ERR=',E15.5,5X,'ICON=',I5) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'INVERSE TRANS', 
     *'FORM BY ''FCOST''') 
  603 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(X) 
      REAL*8 SUM,XP,TERM 
      EPS=AMACH(EPS) 
      SUM=X 
      P=X*X 
      XP=X*P 
      XN=-6.0 
      N=3 
   10 TERM=XP/XN 
      SUM=SUM+TERM 
      IF(DABS(TERM).LE.EPS) GOTO 20 
      N=N+2 
      XP=XP*P 
      XN=-XN*FLOAT(N)*FLOAT(N-1) 
      GOTO 10 
   20 FUN=SUM 
      RETURN 
      END 
 
Method 
This subroutine uses an extended Clenshaw-Curtis 
method for Chebyshev series expansion enhanced the 
speed by using fast cosine transform. 
• Chebyshev series expansion method 

For simplicity, the domain of f(x) subject to Chebyshev 
series expansion is assumed to be [-1, 1]. 
The Chebyshev series expansion of f(x) can be 
expressed as: 

( ) ( )∑
∞

=

=
0k

kk xTc'xf  (4.1) 

( ) ( )dx
x

xTxfc k
k ∫− −

=
1

1 21

2
π

 (4.2) 

Upon choosing x = cosθ, (4.2) consequently gives 

( ) θθθ
π

π
dkfck coscos2

0∫=  (4.3) 

Therefore, ck is regarded as coefficients for the cosine 
series of the continuous even function f(cosθ) with period 
2π. 
  To obtain coefficients (4.2) for Chebyshev series 
expansion through use of the Gauss-Chebyshev numerical 
integration formula means to determine fourier 
coefficients (4.3) for even functions based on the 
midpoint rule. The Gaussian integral formula is the best 



FCHEB 

309 

 in the sense that it can be utilized to integrate correctly a 
polynomial of degree up to 2n-3 based on n-1 sample 
points.  The trapezoidal rule for (4.3) can be utilized to 
integrate correctly a polynomial of degree up to 2n-3 
based on n sample points.  That is, the trapezoidal rule is 
almost the best. 
  Since input to this subroutine is a function, this 
subroutine obtains a Chebyshev series consisting of terms 
whose number is specified by doubling the number of 
sample points according to the required accuracy.  
Therefore this subroutine uses the best trapezoidal rule 
for this purpose.  The resultant n-terms Chebyshev series 
satisfies interpolatory condition 

( ) ( )∑
−

=

=
1

0

n

k
jkkj xTc"xf  (4.4) 

at n sample points shown below: 

1,...,1,0,
1

cos −=
−

= njj
n

x j
π  

  In order to keep unity of the Chebyshev series notations, 
the last coefficient of (4.4) is multiplied by factor 1/2, 
and express the series as (4.1). 
  Based on the error evaluation of series expansion 
described below, this subroutine determines the number 
of terms n which satisfies 

( ) ( ) { }fxTc'xf ra

n

k
kk εε ,max

1

0

<− ∑
−

=

 (4.5) 

on the interval [-1, 1] as well as series coefficients {ck} 
by using the Fast Fourier Transform (FFT) method. 
   Coefficients { p

kc } for terms n (=np+1, np=2p) are 
determined by the trapezoidal rule for as shown in (4.6): 

p

n

j pp

p
k nkkj

n
j

n
f"c

p

...,,1,0,coscos
0

∑
=

=









= ππ  (4.6) 

However the ordinary scaling factor 2/np is omitted. 
  Coefficients { 1+p

kc } for terms n = np+1+1 whose number 
is doubled can efficiently be obtained by making a good 
use of complementary relation between the midpoint rule 
and the trapezoidal rule.  That is, function f(x) be 
sampled at each midpoint of sample points at which { ck

p } 
are determined as shown in (4.7): 

1,...,1,0,
2
1cos −=















 + p

p
njj

n
f π  (4.7) 

The discreate cosine transform (using the midpoint 
rule) can be defined as shown in (4.8): 

1,....,1,0,

2
1cos

2
1cos~

1

0

−=






 +















 += ∑

−

=

p

p

n

j p

p
k

nk

jk
n

j
n

fc
p ππ

 (4.8) 

Then coefficients { 1+p
kc } can be determined by the 

recurrence formula as show in (4.9): 

1,...,1,0,~
~

1

1

1

1
−=










=

−=
+=

+

+
−

+

+ p
p
n

p
n

p
k

p
k

p
kn

p
k

p
k

p
k

nk

cc

ccc
ccc

pp

p
 (4.9) 

As described above the coefficients { p
kc } of discrete 

Chebyshev series. 

( ) ( )∑
=

≈
pn

k
k

p
k xTc"xf

0

 (4.10) 

by which f(x) is expanded can be determined by increasing a 
value of p gradually based on (4.6), (4.8) and (4.9).  When 
the convergence criterion is satisfied each coefficient { p

kc } 
is normalized by multipling by factor 2/np. 
 
• Error evaluation for Chebyshev series 

The following relationship exists between the 
coefficients {ck} associated with Chebyshev series 
expansion shown in (4.1) and the coefficients { p

kc } 
associated with discreate Chebyshev series expansion 
at the p-th stage shown in (4.10): 

( )
1

1
22

,...,1,0,              
−

∞

=
+−

=

++= ∑
p

m
kmnkmnk

p
k

nk

cccc
pp  (4.11) 

From (4.11), the error evalution formula for the p-stage 
Chebyshev series is introduced as 

( ) ( ) ∑∑
∞

+==

≤−
10

2
p

p

nk
k

n

k
k

p
k cxTc"xf  (4.12) 

   If f(x) is analytical function on the interval, its series 
coefficients {ck} decreases according to exponential 
function order O (rk), 0 < r < 1 as subscript k increases.  
As a result r can be estimated based on the p-th stage 
discrete Chebyshev series coefficients p

kc . 

Let p
kc  to be Ark  (A: Constant).  Since k is at most 

np, 4/pnr can be obtained based on the ratio of the coefficient 
corresponding to the last np to that corresponding to 3/4np.  
This subroutine estimates r by using not only the 

pnc -th and 

3/4np-th but also the (np -1)-th and (3/4np -1)-th coefficients 
in order to avoid a state that 

pnc  or 
pnc 43  becomes zero by 

accident as shown below: 



FCHEB 

310 



















































+

+
=

−

−
99.0,2

1

min

4

4
31

4
3

1

p

pp

pp

n

p

n

p

n

p
n

p
n

cc

cc
r  

The upper limit of r is defined as 0.99 because the 
convergence rate of the series become slow and 
Chebyshev series expansion of f(x) is virtually impossible 
when r is greater than 0.99. 
 By using the resultant r, the error ep at the p-th stage can 
be estimated by (4.12) and (4.13). 






 +

−
= −

p
n

p
np pp

cc
r

re
2
1

1 1  (4.13) 

The last coefficient p
np

c  only is multipled by factor 1/2 

because (4.13) is a discreate Chebyshev series using a 
trapezoidal rule. 
 
• Computational process 

Step 1: Initialization 
1) Initialization of the trigonometric function table  

Three cosine function values are determined in 
reverse binary order corresponding to equispaced 
three sample points in the interval [0, π/2].  Each 
entry of the trigonometric function table can be used 
as a sample point during sampling of f(x). 

2) Initial Chebyshev series expansion 
This subroutine determines 2

0c , 2
1c , 2

2c , 2
3c , and 

2
4c , as a result of 5-terms Chebyshev series 

expansion (upon choosing np=4 in (4.6)).  It also 
determines the norm f  of f(x) based on (1.3). 

 
Step 2: Convergence criterion 
If np+1 ≤ NMIN is satisfied this subroutine bypasses a 
convergence test and unconditionally executes step 3.  
If np+1 > NMIN is satisfied this subroutine performs a 
convergence test as described below: 
− This subroutine estimates a computational error limit 

ρ 

( )ufnp 2=ρ  (4.14) 

 where u is the unit round off, and a tolerance ε for 
convergence test as 

{ }fra εεε ,max=  (4.15) 

− If the coefficients p
np

c
1−
 and p

np
c  of the last two terms 

at the p-th stage have been lost significant digits, that 
is, if the coefficients satisfy (4.16). 

ρ<+−
p
n

p
n pp

cc
2
1

1  (4.16) 

this subroutine assumes that the series has  
 This is because the accuracy of computation can not 

increase any longer. 
 If ρ < ε is satisfied this subroutine terminates 

normally after a condition code of 0 is set to ICON. 
 If ρ ≥ ε is satisfied this subroutine terminates 

abnormally after a condition code of 10000 is set to 
ICON, assuming that the required accuracy of εa or εr 
is too small. 

− If coefficients of the last two terms consist of 
significant digits, this subroutine estimates absolute 
error ep based on (4.13). 

 When ep < ε is satisfied this subroutine terminates 
normally after a condition code of 0 is set to ICON. 

 When ep < ε is not satisfied but 2np+1 ≤ NMAX is 
satisfied, this subroutine unconditionally executes 
Step 3. 

 When ep < ε is not satisfied but 2np+1 > NMAX is 
satisfied, this subroutine terminates abnormally after 
a condition code of 20000 is set to ICON, assuming 
that the required accuracy is not satisfied when the 
number of terms to be expanded in a Chebyshev 
series reaches the upper limit. 
 
ep  < ε  (4.17) 

  
Note that resultant coefficients are normalized 
whether this subroutine terminates normally or 
abnormally. 

 
Step 3: Sampling of f(x) and calculating the norm of f(x) 
At each midpoint of np+1 sample points which have 
previously determined, this subroutine samples f(x) in 
reverse binary order as shown in (4.18): 

1,...,1,0,                          

2
1cos

22

−=
















 +−++

p

p

nj

j
n

abbaf π
 (4.18) 

However, in case of a = 0, this subroutine samples f(x) to 
avoid loss of significant digits while changing its 
variables as shown in (4.19): 

1,...,1,0,                            

2
1

2
cos2

−=
















 +

p

p

nj

j
n

bf π
 (4.19) 

At this time, this subroutine adds a new trigonometric 
function table entry and determines the norm of f(x) by 
using (1.3). 
 



FCHEB 

311 

Step 4: Discrete cosine transform (using the midpoint 
rule) 
This subroutine performs discrete cosine transform using 
the Fast Fourier Transform (FFT) method to determine 
{ p

kc~ } for sample points obtained by Step 3. 
 
Step 5: Computing { 1+p

kc } 

By using { p
kc } obtained previously and { p

kc~ } obtained 
by Step 4, this subroutine determines of 2np+1 terms 
based on the recurrence formula shown in (4.9). 
Then, this subroutine executes Step 2 after it increases a 
value of p by one. 

Step 3 and 4 consumes most of the time required to 
execute this subroutine.  The number of multiplications 
required to determine coefficients for an n-terms 
Chebyshev series is approximately nlog2 n except for that 
required for sampling of f(x). 
 
  For further information, see Reference [59].  For 
detailed information about discrete cosine transform, see 
an explanation of the subroutines FCOST and FCOSM. 



FCOSF 

312 

E51-10-0101 FCOSF, DFCOSF 

Cosine series expansion of an even function (Fast cosine 
transform) 
CALL FCOSF (TH, FUN, EPSA, EPSR, NMIN, 
NMAX, A, N, ERR, TAB, ICON) 

 
Function 
This subroutine performs cosine series expansion of a 
smooth even function f(t) with period 2T according to the 
required accuracy of εa and εr.   It determines n 
coefficients {ak} which satisfy 

( ) { }fkt
T

a'tf ra

n

k
k εεπ ,maxcos

1

0

≤− ∑
−

=

 (1.1) 

where symbol Σ’ denotes to make sum but the initial term 
only is multiplied by factor 1/2.  The norm f  of f(t) is 
defined as shown in (1.3) by using function values taken 
at sample points shown in (1.2) within the half period  
[0, T]. 

1,...,1,0,
1

−=
−

= njj
n

Tt j  (1.2) 

( )j
nj

tff max
10 −≤≤

≤  (1.3) 

Where T > 0, εa ≥ 0, εr ≥ 0. 
 
Parameters 
TH..... Input.  Half period T of the function f(t). 
FUN.... Input.  Name of the function subprogram with 

calculates f(t) to be expanded in a cosine series. 
See an example of using this subroutine. 

EPSA... Input.  The absolute error tolerance εa. 
EPSR... Input.  The relative error tolerance εr. 
NMIN... Input.  Lower limit of terms of cosine series 

(≥0). 
NMIN should be taken a value such as (power 
of 2) + 1. 
The default value is 9. 
See Notes. 

NMAX... Input.  Upper limit of terms of cosine series.  
(NMAX ≥ NMIN). 
NMAX should be taken a value such as 
(power of 2) + 1. 
The default value is 257. 
See Notes. 

A..... Output.  Coefficient {ak}. 
One-dimensional array of size NMAX. 
Each coefficient is stored as shown below: 
A(1) = a0, A(2) = a1, ..., A(N) = an-1 

N..... Output.  Number of terms n of the cosine 
series (≥5). 
N takes a value such as (power of 2) + 1. 

ERR.... Output.  Estimate of the absolute error of the 
series. 

TAB.... Output.  TAB contains a trigonometric 
function table used for series expansion.  One-
dimensional array whose size is greater than 3 
and equal to (NMAX-3)/2. 

ICON... Output.  Condition code. 
See Table FCOSF-1. 

 
Table FCOSF-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The required accuracy was 
not satisfied due to 
rounding-off errors. 
The required accuracy is too 
high. 

A contains 
resultant 
coefficients.  The 
accuracy of the 
series is the 
maximum 
attainable. 

20000 The required accuracy was 
not satisfied though the 
number of terms of the 
series has reached the 
upper limit. 

Bypassed. 
A contains 
resultant 
coefficients and 
ERR contains an 
estimate of 
absolute error. 

30000 One of the following cases 
occurred: 
1  TH ≤ 0 
2  EPSA < 0.0 
3  EPSR < 0.0 
4  NMIN < 0 
5  NMAX < NMIN 

Bypassed 

 
Comments on use 
• Subroutines used 

SSL II ... MGSSL, AMACH, UTABT, UCOSM and 
UNIFC 
FORTRAN basic functions ... ABS, AMAX1, AMIN1 
and FLOAT 
 

• Notes 
− The function subprogram specified by the FUN 

parameter must be a subprogram defined at the 
interval [0, T] having independent variable t only as 
the argument. 
The name must be declared by the EXTERNAL 
statement in the program which calls this subroutine. 
If the function contains auxiliary variable, they must  
be declared by a COMMON statement to establish an 
interface with the calling program.  See Example of 
using this subroutine. 
 

− Use of the trigonometric function table 
  When this subroutine is repeatedly called, the 
trigonometric function table is produced only once. 
A new trigonometric function table entry is made on 
an as-required basis.  Therefore the contents of TAB 
must be kept intact when this subroutine is called 
subsequently. 

 
− If NMIN or NMAX does not take a value such as 

(power of 2) + 1, this subroutine assumes  



FCOSF 

313 

the maximum value of (power of 2) + 1 which does not 
exceed that value.  Howeger NMAX = 5 is assumed if 
NMAN < 5 is satisfied. 
 

− The degree of error decrement greatly depends on the 
smoothness of f(t) in the open interval (-∞,∞) as the 
number of terms n increases.  If f(t) is an analytical 
periodic function, the error decreases according to 
exponential function order O (rn), 0 < r < 1.  If it has 
up to k-th continuous derivatives, the error decreases 
according to rational function order O (n-k). 
When k=0 or k=1, an estimate of absolute error is not 
always accurate because the number of terms to be 
expanded increases greatly. 
Therefore, the function used by this subroutine 
should have, at least, up to 2nd continuous 
derivatives. 

  
− Accuracy of the series 

This subroutine determines a cosine series which 
satisfies (1.1) according to the required accuracy of 
εa and εr.  If  εr = 0 is specified, this subroutine 
expands f(t) in a cosine series within the required 
accuracy of absolute error  εa. 
Similarly  εa = 0 is specified, this subroutine expands 
f(t) in a cosine series within the required accuracy of 
relative error  εr.  However cosine series expansion is 
not always successful depending on the specification 
of εa and εr.  For example, when εa or εr     is too small 
in comparison with computational error of f(t), the 
effect of rounding-off errors becomes greater on the 
computational result even if the number of terms to 
be expanded does not reach the upper limit. 
   In such a case, this subroutine abnormally 
terminates after a condition code of 10000 is set to 
ICON.  At this time, the accuracy of the cosine series 
becomes the attainable limit for the computer used.  
The number of terms to be expanded in a cosine 
series sometimes does not converge within NMAX 
evaluations depending on the characteristics of f(t).  
In such a case, this subroutine abnormally terminates 
after a condition code of 20000 is set to ICON.  Each 
coefficient is an approximation obtained so far, and 
is not accurate. 
   To determine the accuracy of cosine series this 
subroutine always set an estimate of absolute error in 
ERR. 

  
− When inverse transform is attempted by the 

subroutine FCOST, the coefficient an-1 of the last 
term must be doubled in advance. 
Note that the content of TAB must be kept intact 
whether normal or inverse transform is attempted. 
See Example 2. 

− When f(t) is only a periodical function, this 
subroutine can be used to perform cosine series 
expansion for even function as (f(t) +f(-t))/2. 

 
− If f(t) has no period and is absolutely integrable, its 

theoretical cosine transform can be defined as shown 
in (3.1): 

( ) ( ) tdttfF ∫
∞

=
0

cosωω  (3.1) 

If f(t) is dampted according to order of O (e-at) (a < 0), an 
approximation of the Fourier integral can be obtained as 
described below: 
  Assume that ( )f t  can be ignored on the interval [T,∞) 
when T is sufficiently large.  By defining T which 
satisfies (3.2) 

( ) Ttutf ≥< ,  (3.2) 

where u is the unit round off. 
This subroutine can be used to determine cosine series 
coefficients {ak} for f(t), assuming that f(t) is a function 
with period 2T. 
Since {ak} can be expressed as 

( ) tdtk
T

tf
T

a
T

k ∫=
0

cos2 π  (3.3) 

(3.4) can be established based on (3.1) and (3.2). 

1,...,1,0,
2

−=≈




 nkaTk

T
F k

π  (3.4) 

Based on this relationship this subroutine can calculate an 
approximation of cosine transform shown in (3.1) by 
using discrete cosine transform. 
   When inverse transform 

( ) ( ) ωωω
π

dtFtf ∫
∞

=
0

cos2  (3.5) 

is to be calculated, the subroutine FCOST can be called 
for n pieces of data as follows: 

( )




 −

−=






14

2,...,1,0,2

n
T

F
T

nkk
T

F
T

π

π

 

The subroutine FCOST can obtain an approximation of: 

1,...,1,0,
1

−=






−
njj

n
Tf  



FCOSF 

314 

   See Example 2. 
 
• Examples 

Example 1 
This example expands the following even function with 
period 2π having auxiliary variable p 

( )f t p
p t p

=
−

− +
1

1 2

2

2cos
 

in a cosine series according to the required accuracy of 
εa = 5⋅10-5 and εr = 5⋅10-5. 
Where NMIN = 9 and NMAX = 257 are assumed. 
The theoretical cosine series expansion of f(t) is as 
follows: 

( ) ∑
∞

=

+=
1

cos21
k

k ktptf  

This example prints cosine series coefficients when p = 
1/4, 1/2 and 3/4. 

 
C     **EXAMPLE** 
      DIMENSION A(257),TAB(127) 
      EXTERNAL FUN 
      COMMON P 
      TH=ATAN(1.0)*4.0 
      EPSA=0.5E-4 
      EPSR=EPSA 
      NMIN=9 
      NMAX=257 
      P=0.25 
    1 CALL FCOSF(TH,FUN,EPSA,EPSR, 
     *NMIN,NMAX,A,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      WRITE(6,600) N,ERR,ICON,P 
      WRITE(6,601) (A(I),I=1,N) 
      P=P+0.25 
      IF(P.LT.1.0) GO TO 1 
      STOP 
   10 WRITE(6,602) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' FUNCTION FUN(T)',3X,'N=',I4, 
     *5X,'ERR=',E15.5,5X,'ICON=',I16,5X, 
     *'P=',E15.5) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(T) 
      COMMON P 
      FUN=(1.0-P*P)/(1.0-2.0*P*COS(T)+P*P) 
      RETURN 
      END 
 
Example 2 
Cosine transform and inverse transform 
This example transforms even function 

( ) dxxxF  cos
2

sech
0∫
∞

= ωπω  

in a cosine series according to the required accuracy of 
εa = 5⋅10-5 and εr = 5⋅10-5 and compares the results with 
analytical solution F(ω) = sech ω. 
   Then, this example performs inverse transform of the 
function by using the subroutine FCOST and check the 
accuracy of the results. 

 
C     **EXAMPLE** 
      DIMENSION A(257),TAB(127), 
     *          ARG(257),T(257) 
      EXTERNAL FUN 
      COMMON HP 
      HP=ATAN(1.0)*2.0 
      TH=ALOG(1.0/AMACH(TH))/HP 
      EPSA=0.5E-04 
      EPSR=EPSA 
      NMIN=9 
      NMAX=257 
C     COSINE TRANSFORM 
      CALL FCOSF(TH,FUN,EPSA,EPSR, 
     *NMIN,NMAX,A,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      TQ=TH*0.5 
      H=(HP+HP)/TH 
      DO 1 K=1,N 
      ARG(K)=H*FLOAT(K-1) 
      A(K)=A(K)*TQ 
      T(K)=TRFN(ARG(K)) 
    1 CONTINUE 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,610) 
      WRITE(6,601) (ARG(K),A(K),T(K),K=1,N) 
C     INVERSE TRANSFORM 
      Q=1.0/TQ 
      DO 2 K=1,N 
      A(K)=A(K)*Q 
    2 CONTINUE 
      A(N)=A(N)*2.0 
      NM1=N-1 
      CALL FCOST(A,NM1,TAB,ICON) 
      IF(ICON.NE.0) GO TO 10 
      H=TH/FLOAT(NM1) 
      DO 3 K=1,N 
      ARG(K)=H*FLOAT(K-1) 
      T(K)=FUN(ARG(K)) 
    3 CONTINUE 
      WRITE(6,620) 
      WRITE(6,610) 
      WRITE(6,601) (ARG(K),A(K),T(K),K=1,N) 
      STOP 
   10 WRITE(6,602) ICON 
      STOP 
  600 FORMAT('0',5X,'CHECK THE COSINE', 
     *' TRANSFORM OF FUNCTION FUN(T)', 
     *3X,'N=',I4,5X,'ERR=',E15.5,5X, 
     *'ICON=',I5) 
  610 FORMAT('0',6X,'ARGUMENT',7X, 
     *'COMPUTED',11X,'TURE') 
  620 FORMAT('0',5X,'CHECK THE INVERSE' 
     *,' TRANSFORM') 
  601 FORMAT(/(3E15.5)) 
  602 FORMAT('0',5X,'CONDITION CODE',I6) 
      END 
      FUNCTION FUN(T) 
      COMMON HP 
      FUN=1.0/COSH(T*HP) 
      RETURN 
      END 
      FUNCTION TRFN(W) 
      TRFN=1.0/COSH(W) 
      RETURN 
      END 
 



FCOSF 

315 

Method 
This subroutine applies discrete fast cosine transform 
(based on the trapezoidal rule) to cosine transform for 
entry of functions. 
 
• Cosine series expansion 

For simplicity, an even function f(t) with a period of 2π. 
The function can be expanded in a cosine series as 
shown below: 

( ) ∑
∞

=

+=
1

0 cos
2
1

k
k ktaatf  (4.1) 

( ) dtktxfak ∫=
π

π 0
cos2  (4.2) 

This subroutine uses the trapezoidal rule to compute 
(4.2) by dividing the closed interval [0, π] equally. 
By using resultant coefficients {ak}, this subroutine 
approximates (4.1) by finite number of terms. 
  If this integrand is smooth, the number of terms is 
doubled as far as the required accuracy of εa and εr is 
satisfied.  If sampling is sufficient, (4.3) will be 
satisfied. 

( ) { }fkta"tf ra

n

k
k εε ,maxcos

1

0

<− ∑
−

=

 (4.3) 

where n indicates the number of samples (power of 
2+1). 
Where symbol Σ " denotes to make sum but the initial 
and last terms only are multipled by factor 1/2. 
 The resultant trigonometric polynomial is a 
trigonometric interpolation polynominal in which each 
breakpoint used by the trapezpidal rule is an 
interpolation point as shown below: 

1,...,1,0,                     

1
cos

1

1

0

−=

−
=







− ∑
−

=

nj

kj
n

a"j
n

f
n

k
k

ππ
 (4.4) 

   The cosine series expansion is explained in detail 
below. 
Assume that coefficients obtained by the trapezoidal 
rule using n sample points (n = np+1, np = 2p) are 

p
p

n

j p

p
k nkkj

n
j

n
f"a

p

,...,1,0,cos
0

=









= ∑

=

ππ  (4.5) 

Where the ordinary scaling factor 2/np is omitted from 
(4.5). 
   When the number of terms is doubled as np+1 = 2np 
each coefficient can efficiently be determined by 
making a good use of complementary relation between 
the trapezoidal rule and the midpoint rule. 

At each midpoint between sample points used by the 
trapezoidal rule (4.5), f(t) can be sampled as shown 
below: 

1,...,1,0,
2
1 −=















 + p

p
njj

n
f π  (4.6) 

Discrete cosine transform (using the midpoint rule) for 
(4.6) can be defined as shown below: 

1,...,1,0,                 

2
1cos

2
1~

1

0

−=






 +















 += ∑

−

=

p

p

n

j p

p
k

nk

jk
n

j
n

fa
p ππ

 (4.7) 

Since (4.8) is satisfied at this stage { ak
p+1 } can be 

determined. 

1,...,1,0,~
~

1

1

1

1
−=










=

−=
+=

+

+
−

+

+ p
p
n

p
n

p
k

p
k

p
kn

p
k

p
k

p
k

nk

aa

aaa
aaa

pp

p
 (4.8) 

  By using this recurrence formula for { p
ka }, f(t) can be 

expanded in a cosine series of higher degree while the 
number of terms is doubled as far as the required 
accuracy is satisfied.  Then { p

ka } is normalized by 
multipling by factor 2/np.  Note that the coefficient of 
the last term is multipled by factor 1/np so that all 
cosine series can be expressed in the same manner as 
shown in (4.1). 

 
• Error evaluation for cosine series 

The following relationship exists between the 
theoretical cosine coefficients ak of f(t) and discrete 
cosine coefficient { ak

p } taken at the p-th stage: 

( )
p

m
kmnkmnk

p
k

nk

aaaa
pp

,...,1,0,               
1

22

=

++= ∑
∞

=
+−  (4.9) 

This results from (4.2) and (4.5) as well as 
orthogonality of trigonometric functions.  The error 
evaluation for a cosine series at the p-th stage 

( ) ∑∑
∞

+==

≤−
10

2cos
p

p

nk
k

n

k

p
k akta"tf  (4.10) 

can be deduced from (4.9).  If f(t) is an analytical 



FCOSF 

316 

periodic function its series coefficients {ak} decrease 
according to exponential function order O (rk) (0 < r < 1) 
as k increases.  The r can be estimated from a discreate 
cosine coefficient at the p-th stage.  Let p

ka  = Ark (A: 
constant).  Since k is at most np, 4/pnr can be estimated 
from the ratio of the coefficient of the last term np to the 
coefficient of term 3/4np.  This subroutine does not allow 
the two coefficients to be zero by accident.  Therefore it 
uses the (np-1)-th and (3/4np-1)-th coefficients together 
with those coefficients to estimate a value of r as shown 
below. 



















































+

+
=

−

−
99.0,2

1

min

4

4
31

4
3

1

p

pp

pp

n

p

n

p

n

p
n

p
n

aa

aa
r  

If r is greater than 0.99, this subroutine cannot actually 
expand f(t) in a cosine series because the convergence 
rate of the series becomes weak. 
   By using the resultant r, the p-th stage error 






 +

−
= −

p
n

p
np pp

aa
r

re
2
1

1 1  (4.11) 

can be estimated from (4.10). 
The last coefficient p

np
a  only is multipled by factor 1/2 

since this coefficient is a discrete cosine coefficient using 
the trapezoidal rule. 
 
• Computational process 

Step 1: Initialization 
− Initialization of Trigonometric function table 

At three points which divides in interval [0, π/2] 
equally, three values for the cosine function is 
obtained in reverse binary order.  The trigonometric 
function table is not initialized if this subroutine is 
called in advance.  The trigonometric function table 
is used for discrete cosine transform. 
 

− Initial cosine series expansion 
This subroutine performs 5-terms cosine series 
expansion whose np is 4(p=2) in (4.5) and 
calculates 2

0a , 2
1a , 2

2a , 2
3a , 2

4a .  At this time it also 
obtains f  based on the norm definition shown in 
(1.3). 

 
Step 2: Convergence criterion 
If np + 1 ≤ NMIN is satisfied this subroutine does not 
perform a convergence test and executes step 3. 
If np + 1 > NMIN is satisfied this subroutine performs a 
convergence test as described below: 
   This subroutine estimates computational error limit 

( )ufnp 2=ρ  (4.12) 

where u is the unit round off, and a tolerance for 
convergence test as 

{ }fra εεε ,max=  (4.13) 

   If the last two terms at the p-th stage have been lost 
significant digits, that is, if the coefficients satisfy (4.14). 

ρ<+−
p
n

p
n pp

aa
2
1

1  (4.14) 

the computational accuracy cannot be increased even if 
this computation continues.  Therefore this subroutine 
replaces the absolute error ep of the cosine series by the 
computational error ρ, assuming that the cosine series is 
converged.  If ρ < ε is satisfied this subroutine sets a 
condition code of 0 to ICON.  If ρ ≥ ε is satisfied this 
subroutine sets a condition code of 10000 to ICON 
assuming that εa or εr is relatively smaller than unit round 
off u 
  If (4.14) is not satisfied, this subroutine estimates error 
ep based on (4.11). 
 
If ep < ε is satisfied this subroutine sets a condition code 
of 0 to ICON and terminates normally.  If ep < ε is not 
satisfied but 2np + 1 ≤ NMAX is satisfied, this subroutine 
immediately executes Step 3.  Otherwise this subroutine 
sets a condition code of 20000 to ICON and terminates 
abnormally assuming that the required accuracy is not 
satisfied even when the number of terms to be expanded 
is reached the upper limit. 
Note that each coefficient is normalized whether this 
subroutine terminates normally or abnormally. 
 
Step 3: Calculation of sample points 
Sample points to be used for sampling of f(t) at the p-th 
stage can be expressed as follows: 

1,...,1,0,
2
1 −=





 += p

p
j njj

n
t π  

They can be obtained in reverse binary order through use 
of the recurrence formula shown below: 

( )

1,...,1,0,12,...,1,0

2
2

2212

10

1

−=−=

+=

=

+−
+

+

−−−

plj

tt

t

l

lp
jj

p

lplp π

π

 (4.16) 

where np = 2p. 
 
Step 4: Sampling of f(t) and calculation of the norm 
This subroutine obtains values of f(t) for n sample points 
based on (4.16). and overwrites them on the sample 
points. 



FCOSF 

317 

It also calculates norm f  based on the norm definition 
shown in (1.3). 
 
Step 5: Trigonometric function table creation 
This subroutine produces the trigonometric function table 
required by step 6.  The trigonometric function table is 
not recalculated each time this subroutine is called. 
 
Step 6: Discrete cosine transform (using the midpoint 
rule) 
For sample points obtained by Step 4, this subroutine 
performs discrete cosine transform using the Fast Fourier 
Transform (FFT) method to determine }~{ p

ka . 
 
Step 7: Calculation of }{ 1+p

ka  

This subroutine combines }{ p
ka  obtained previously with  

by using (4.8) to obtain the coefficients }{ 1+p
ka  of the 

discrete cosine series consisting of 2np + 1 terms. 
   Then, this subroutine executes Step 2 after it increases 
a value of p by one. 
 
   Step 4 and 6 consume most of the time required to 
execute this subroutine. 
Then number of multiplications required to determine the 
coefficients of a cosine series consisting of n terms is 
about nlog2n. 
 
   To save storage this subroutine overwrites sample 
points, samples and expansion coefficients onto a one-
dimensional array A. 
 
   For further information, see Reference [59]. 
For detailed information about discrete cosine transfom, 
see an explanation of the subroutines FCOST and 
FCOSM. 



FCOSM 

318 

F11-11-0201 FCOSM, DFCOSM 

Discrete cosine transform (midpoint rule, radix 2 FFT) 
CALL FCOSM (A, N, ISN, TAB, ICON) 

 
Function 
Given n same point {xj+1/2}, 

1,...,1,0,
2
1

21 −=










 +=+ njj

n
xx j

π  (1.1) 

  by equally dividing the half period of the even function 
with period 2π, a discrete cosine transform or its inverse 
transform based on the midpoint rule is performed by 
using the Fast Fourier Transform (FFT). 
  Here n = 2l (l = 0 or positive integer). 
 
• Cosine transform 

By inputting {xj+1/2} and performing the transform 
defined in (1.2), the Fourier coefficients {n/2⋅ak} are 
obtained 

1,...,1,0,
2
1cos

2

1

0
21 −=





 += ∑

=

=
+ nkjk

n
xan n

j
jk

π

 (1.2) 

• Cosine inverse transform 
By inputting {ak} and performing the transform defined 
in (1.3), the values of the Fourier series {xj+1/2} are 
obtained. 

1,...,1,0,
2
1cos

1

0
21 −=





 += ∑

−

=
+ njjk

n
a'x

n

k
kj

π  (1.3) 

   where Σ’ denotes the first term only is taken with factor 
1/2. 
 
Parameters 
A..... Input.  {xj+1/2} or {ak}. 

Output.  {n/2⋅ak} or {xj+1/2}. 
One-dimensional array of size n. 
See Fig. FCOSM-1. 

N..... Input.  Sample point number n. 
 

One-dimensional array A(N)

N

xn−1/2xn−3/2x2+1/2x1+1/2x1/2

an−1an−2a2a1a0{ak}

{xj+1/2}

 
Note: { ka

n

2
} is handled the same way as for {ak}. 

Fig. FCOSM-1  Data storing method 

ISN... Input.  Transform or inverse transform is 
indicated. 
For transform: ISN = +1 
For inverse transform: ISN = -1 

TAB..... Output.  Trigonometric function table used in 
the transform is stored. 
One-dimensional array of size n-1. 
See “Notes”. 

ICON.. Output.  Condition code. 
See Table FCOSM-1. 

 
Table FCOSM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 ISN ≠ 1, ISN ≠ -1 or N ≠ 2l 
(l = 0 or positive integer) 

Aborted. 

 
Comments on use 
• Subprograms used 

SSL II ... UPNR2, UTABT, UCOSM and MGSSL 
FORTRAN basic functions ... SQRT and MAX0 

 
• Notes 

General definition of Fourier transform: 
The discrete cosine transform and its inverse transform 
based on the midpoint rule are generally defined by 
(3.1) and (3.2). 

1,...,1,0

,
2
1cos2 1

0
21

−=






 += ∑

−

=
+

nk

jk
n

x
n

a
n

j
jk

π
 (3.1) 

1,...,1,0

,
2
1cos

1

0
21

−=






 += ∑

−

=
+

nj

jk
n

a'x
n

k
kj

π
 (3.2) 

  The subroutine obtains {n/2⋅ak} and {xj+1/2} which 
correspond to the left-hand side of (3.1) and (3.2), 
respectively, and the user has to scale the results, if 
necessary. 
Use of the trigonometric function table: 
When the subroutine is called successively for transforms 
of a fixed dimension, the trigonometric function table is 
calculated and created only once.  Therefore, when 
calling the subroutine subsequently, the contents of the 
parameter TAB must be kept intact. 
  Even when the dimension differs, the trigonometric 
function table need not be changed.  A new trigonometic 
function table entry can be made on an as-required basis. 



FCOSM 

319 

• Example 
By inputting n sample points {xj+1/2}, performing the 
transform by the subroutine and scaling the results, the 
discrete Fourier coefficients {ak} are obtained.  By 
performing the inverse transform after that, {xj+1/2} are 
obtained. 
Here n ≤ 512. 

 
C     **EXAMPLE** 
      DIMENSION X(512),TAB(511) 
C     COSINE TRANSFORM 
      ISN=1 
      READ(5,500) N,(X(I),I=1,N) 
      WRITE(6,600) N 
      WRITE(6,601) (X(I),I=1,N) 
      CALL FCOSM(X,N,ISN,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
C     NORMALIZE 
      CN=2.0/FLOAT(N) 
      DO 10 K=1,N 
      X(K)=X(K)*CN 
   10 CONTINUE 
      WRITE(6,602) ISN 
      WRITE(6,601) (X(I),I=1,N) 
C     COSINE INVERSE TRANSFORM 
      ISN=-1 
      CALL FCOSM(X,N,ISN,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) ISN 
      WRITE(6,601) (X(I),I=1,N) 
   20 WRITE(6,603) ICON 
      STOP 
  500 FORMAT(I5/(6F12.0)) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA',5X, 
     *       'ISN=',I2) 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 
Method 
The discrete cosine transform based on the midpoint rule 
of dimension n (=2l, l = 0, 1, ...) is performed by using 
the radix 2 Fast Fourier Transform (FFT). 
  The transform based on the midpoint rule can be 
accomplished by considering the even function x(t) to be 
a complex valued function and performing the discrete 
complex Fourier transform for the even function based on 
the midpoint rule of dimension 2n.  In this case, however, 
it is known that the use of the characteristics of the 
complex transform permits efficient transform. 
For the complex value function x(t) with period 2π, the 
discrete Fourier transform based on the midpoint rule of 
dimension 2n (= 2l+1, l = 0, 1, 2, ...) is defined as 

12,...,1,0

,
2
1exp

2
12

12

0

−=












 +−










 += ∑

−

=

nk

jk
n
ij

n
xn

n

j
k

ππα

 (4.1)

 

  The basic idea of the FFT is to accomplish the objective 
transform by repeating the elementary discrete Fourier 
transform by repeating the elementary discrete Fourier 
transform of small dimension (i.e., if the radix is 2, the 
dimension is 2).  In other words, considering sample data 
which consist of (j+1) th element and subsequent ones 
with the interval pn~ , (= 2l+1-p, p = 1, 2, ...) and defining 
the transform 

( )

1,...,1,0,1~,...,1,0

,~
2
12exp

2
1~,

1

0

−=−=






















 ++−⋅












 ++= ∑

−

=

pp

p
p

n

r
p

p

nknj

knjr
n

i

jnr
n

xkjx
p

π

π

 (4.2) 

of dimension np = 2p, then the transform (4.2) can be 
satisfied with the FFT algorithm (4.3) of radix 2. 
  Initial value  

( )

( ) ( ) ( )
( ) ( ) ( ){ }

1,...,2,1

1,...,1,0,1~,...,1,0

2
1

~exp

,~,,

,~,,

12,...,1,0,
2
10,

1

11
1

11

0

+=

−=−=
















 +−⋅

+−=+

++=

−=










 +=

−

−−
−

−−

lp

nknj

j
n

i

knjxkjxnkjx

knjxkjxkjx

njj
n

xjx

pp

p

p
pp

p
p

p
ppp

π

π

 (4.3) 

  The values obtained in the final step of these recurrence 
equations are the discrete Fourier coefficients (4.4). 

( ) 12,...,1,0,,02 1 −== + nkkxn l
kα  (4.4) 

  If x(t) is an even function, the fact that x(t) is real, i.e., 

x(t) = x (t) ( x (t) is a complex conjugate of x(t)), 

and symmetric, i.e., 

( ) ( )x t x t2π − =  

affects the intermediate results {xp(j,k)} of the FFT as 
follows: 
Real property: xp(j, 0) is real 

( ) ( )
1,...,1,0,1~,...,1,0

,,,1~

−=−=

=−−

pp

p
p

p

nknj

kjxkjnx
 



FCOSM 

320 

Symmetric property: 

( ) ( )

1,...,2,1,1~,...,1,0

,
2
1

~
2exp,,

−=−=
















 +−=−

pp

p

p
p

p

nknj

j
n

ikjxknjx π
 (4.5) 

On the other hand, the relationship 

ak=2αk , k=0,1,...,n-1 

can be satisfied between the complex Fourier coefficients 
{αk} for the even function x(t) and the Fourier 
coefficients defined by the following discrete cosine 
transform 

1,...,1,0

2
1cos

2
12 1

0

−=






 +










 += ∑

−

=

nk

jk
n

j
n

x
n

a
n

j
k

ππ
 

  Therefore by using the characteristic (4.5) in the FFT 
algorithm (4.3) as well as the relationship above, the 
number of computations and the memory using them.  
That is, the range of j and k used in (4.3) are halved, so 
the FFT algorithm of radix 2 for the discrete cosine 
transform (4.6) can be represented by 

( ) ( ) ( )
( ) ( ) ( ){ }

lp

n
k

n
j

j
n

i

kjnxkjxknjx

kjnxkjxkjx

pp

p

p
pp

p
p

p
ppp

,...,2,1

1
2

,...,1,0,1
2

~
,...,1,0

2
1

~exp

,1~,,

,1~,,

1

11
1

11

=

−=−=
















 +−⋅

−−−=−

−−+=

−

−−
−

−−

π  (4.7) 

  Normally, the area to store the intermediate results {xp(j, 
k)} needs one-dimensional array of size n, but if the input 
data is permuted in advance by reverse binary 
transformation, the above computation can be carried out 
by using the same area in which the data was input.  The 
number of real number multiplications necessary for the 
cosine transform of dimension n is about nlog2n. 
 
• Transform procedure in the subroutine 

(a) The necessary trigonometric function table (size n-
1) for the transform is created in reverse binary 
order. 

(b) The sample points {x(π/n(j+1/2))} (size n) are 
permuted in reverse binary order. 

(c) The FFT algorithm (4.7), which takes into 
consideration the symmetric property of the input 
data is performed in the same area to obtain the 
Foruier coefficients {ak} in normal order. 

 
• Inverse transform procedure 

(a) The necessary trigonometric function table for the 
inverse transform procedure. 
This table is the same one as used in the transform 
procedure. 

(b) By inputting the n Fourier coefficients {ak} for the 
even function {x(π/n(j+1/2))}, and tracing 
backwards the recurrence equations (4.7) with 
respect to p, the function values {x(π/n(j+1/2))} are 
obtained in reverse binary order. 

(c) By permuting the obtained n data by reverse binary 
transformation, the function values {x(π/n(j+1/2))} 
are obtained in normal order. 
For further details, refer to Reference [58]. 



FCOST 

321 

F11-11-0101 FCOST, DFCOST 

Discrete cosine transform (Trapezoidal rule, radix 2 FFT) 
CALL FCOST (A, N, TAB, ICON) 

 
Function 
Given n+1 sample points {xj}, by equally dividing the 
half period of the even function with period 2π into n, 

njj
n

xx j ,...,1,0, =⎟
⎠
⎞

⎜
⎝
⎛=
π  (1.1) 

  a discrete cosine transform or its inverse transform 
based on the trapezoidal rule is performed by using the 
Fast Fourier Transform (FFT).  Here, n = 2l (l = 0 or 
positive integer). 
 
• Cosine transform 

By inputting {xj} and performing the transform defined 
in (1.2), the Fourier coefficients {n/2⋅ak} are obtained. 

nkkj
n

x"an n

j
jk ,...,1,0,cos

2 0

==∑
=

π  (1.2) 

  where Σ” denotes both the first and last terms of the 
sum are taken with factor 1/2. 
 
• Cosine inverse transform 

By inputting {ak} and performing the transform 
defined in (1.3), the values of the Fourier series {xj} 
are obtained 

njkj
n

a"x
n

k
kj ,...,1,0,cos

0

==∑
=

π  (1.3) 

Parameters 
A..... Input.  {xj} or {ak} 

Output.  {n/2･ak} or {xj} 
One-dimensional array. 
See Fig. FCOST-1. 

N..... Input.  Sample point number-1 
TAB... Output.  Trigonometric function table used by 

the transform is stored. 
One-dimensional array of size n/2-1. 
See “Notes”. 

ICON.. Output.  Condition code. 
See Table FCOST-1. 

 
Table FCOST-1  Condition codes 

Code Meaning Processing 
      0 No error  

30000 N ≠ 2l (l: 0 or positive 
integer) 

Bypassed 

One-dimensional array A(N+1)

N+1

xnxn−1x2x1x0

anan−1a2a1a0{ak}

{xj}

 
Note: { ka

n

2
} is handled in the same way as for {ak}. 

Fig. FCOST-1  Data storing method 

Comments on use 
• Subprograms used 

SSL II ... UPNR2, UTABT, UCOSM and MGSSL 
FORTRAN basic functions ... SQRT and MAX0 

 
• Notes 

General definition of Fourier transform: 
The discrete cosine transform and its inverse transform 
based on the trapezoidal rule are generally defined by 
(3.1) and (3.2). 

nkkj
n

x"
n

a
n

j
jk ,...,1,0,cos2

0

== ∑
=

π  (3.1) 

njkj
n

a"x
n

k
kj ,...,1,0,cos

0

==∑
=

π  (3.2) 

  The subroutine obtains {n/2･ak} and {xj} which 
correspond to the left-hand side of (3.1) and (3.2), 
respectively and the user has to scale the results, if 
necessary. 
Calculating trigonometric polynomial: 
When obtaining values of the n-th order trigonometric 
polynomial 

( ) ntataatx n cos...cos
2
1

10 +++=  (3.3) 

at ,,...,1,0, njj
n

x =⎟
⎠
⎞

⎜
⎝
⎛π by using the inverse  

transform, the highest order coefficient an must be 
doubled in advance.  Refer to example (b). 
Use of the trigonometric function table: 
When the subroutine is called successively for 
transforms of a fixed dimension, the trigonometric 
function table is calculated and created only once.  
Therefore, when calling the subroutine subsequently, the 
contents of parameter TAB must be kept intact. 
  Even when the dimension differs, the trigonometric 
function table need not be changed.  A new 
trigonometric function table entry can be made on an as-
required basis. 



FCOST 

322 

• Example 
(a) By inputting n+1 sample points {xj}, performing the 

transform by the subroutine and scaling the results, 
the discrete Fourier coefficients {ak} are obtained.  
By performing its inverse transform after that, {xj} 
are obtained. 
  Here n ≤ 512. 

 
C     **EXAMPLE** 
      DIMENSION X(513),TAB(255) 
      READ(5,500) N 
      NP1=N+1 
      READ(5,501) (X(I),I=1,NP1) 
C     COSINE TRANSFORM 
      WRITE(6,600) N 
      WRITE(6,601) (X(I),I=1,NP1) 
      CALL FCOST(X,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
C     NORMALIZE 
      CN=2.0/FLOAT (N) 
      DO 10 K=1,NP1 
      X(K)=X(K)*CN 
   10 CONTINUE 
      WRITE(6,602) 
      WRITE(6,601) (X(I),I=1,NP1) 
C     COSINE INVERSE TRANSFORM 
      CALL FCOST(X,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) 
      WRITE(6,601) (X(I),I=1,NP1) 
   20 WRITE(6,603) ICON 
      STOP 
  500 FORMAT(I5) 
  501 FORMAT(6F12.0) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA') 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 

(b) By inputting cosine coefficients {ak}, the values 
{x(πj/n)} of the n-th order trigonometric 
polynomial 

( ) ( )
nta

tnataatx

n

n

cos

1cos...cos
2
1

110

+

−+++= −  

 at the sample points {πj/n} are obtained.  The 
coefficient of the last term must be doubled before 
it is input. 

   Here n ≤ 512. 

C     **EXAMPLE** 
      DIMENSION A(513),TAB(255) 
      READ(5,500) N 
      NP1=N+1 
      READ(5,501) (A(K),K=1,NP1) 
      WRITE(6,600) N 
      WRITE(6,601) (A(K),K=1,NP1) 
      A(NP1)=A(NP1)*2.0 
      CALL FCOST(A,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) 
      WRITE(6,601) (A(K),K=1,NP1) 
   20 WRITE (6,603) ICON 
      STOP 
  500 FORMAT(I5) 
  501 FORMAT(6F12.0) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA') 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 
Method 
The discrete cosine transform based on the trapezoidal 
rule of dimension n+1 (=2l+1, l = 0, 1, ...) is performed 
by using the radix 2 Fast Fourier Transform (FFT). 
  The transform based on the trapezoidal rule can be 
accomplished efficiently by using the transform based on 
the midpoint rule.  The subroutine uses this method. 
  Dividing equally into np (=2p, p = 0,1, ...)  the half 
period [0, π] of an even function x(t) with period 2π, the 
discrete cosine transform based on the trapezoidal rule is 
defined as 

p

n

j pp

p
k nkkj

n
j

n
x"a

p

,...,1,0,cos
0

=









= ∑

=

ππ  (4.1) 

  Also the discrete cosine transform based on the 
midpoint rule of dimension np is defined as 

1,...,1,0

,
2
1cos

2
1ˆ

1

0

−=






 +















 += ∑

−

=

p

n

j pp

p
k

nk

jk
n

j
n

xa
p ππ

 (4.2) 

  In Eqs. (4.1) and (4.2), however, the ordinary scaling 
factor 2/np is omitted. 
  Doubling the division number to np+1, the {ak

p+1} can be 
expressed as follows by using { p

ka } and { p
kâ } both of 

which have half as many dimension as { 1ˆ +p
ka }. 

p
np

p
np

pp
k

p
k

p
kn

p
k

p
k

p
k

aa

nk
aaa

aaa

p

=

−=






−=

+=

+

+
−

+

+

1

1

1

1,...,1,0
ˆ

ˆ

1
 (4.3) 



FCOST 

323 

  The equations shown in (4.3) can be considered as 
recurrence equations with respect to p to obtain { 1+p

ka } 

from { p
ka }.  Therefore, when performing transform with 

division number 2l, if the initial condition { 1
ka ; k = 0, 1, 

2} is given and the discrete cosine transform based on the 
midpoint rule of dimension 2p is performed each at the p-
th stage (p = 1, 2, ..., l -1), then the discrete cosine 
transform series { p

ka , k = 0, 1, ..., np} ( p = 1, 2, ..., l ) 
based on the trapezoidal rule can be obtained by using 
equations (4.3). 
  The number of multiplications of real numbers executed 
is about nlog2n, which means the calculation method 
described above to obtain { l

ka } is fast. 
 
Procedural steps taken in the subroutine 
Taking the first n points out of the sequenced n+1 sample 
points x0, x1, ..., xn and permuting them in reverse binary 
order representing x(0), x(1), ..., x(n).  In this way, all the 
necessary data for the recurrence equations (4.3) can be 
gained successively. 
  Next, the trigonometric function table (size n/2-1) 
necessary for the transform is made in reverse binary 
order corresponding to the sample point numbers.  
Finishing with the preparatory processing, the cosine 
transform is performed as follows: 

(a) Initialization 
{ 1

ka , k = 0, 1, 2} with p=1 are obtained by using x(0), 
x(1), x(n) and stored in x(.), respectively. 

(b) Cosine transform based on the midpoint rule of 
dimension 2p. 
By inputting np sample points, x(np), x(np+1), ..., 
x(np+1-1), and performing the cosine transform based 
on the midpoint rule, { p

ka ) are obtained in the same 
area.  For the cosine transform based on the midpoint 
rule, see method for subroutine FCOSM. 

(c) Calculation of recurrence equations with respect to 
{ p

ka } 
All of the intermediate results are overwritten, so no 
supplementary work area is needed.  That is, the four 
elements, p

ka , p
knp

a − , p
kâ  and p

knp
a −ˆ , at the (p+1) th 

step are calculated according to the recurrence 
equations by using the four elements, 1+p

ka , 1+
−

p
knp

a , 

1+
+

p
knp

a  and 1
1

+
−+

p
knp

a  at the p-th stage, and are stored in 

the same positions corresponding to the ones at the p-
th stage. 
Repeating stages (b) and (c) with p = 1, 2, ..., l-1, {ak} 
can be obtained. 
 
For further details, see Reference [58]. 



FSINF 

324 

E51-20-0101 FSINF, DFSINF 

Sine series expansion of an odd function (Fast sine 
transform) 
CALL FSINF (TH, FUN, EPSA, EPSR, NMIN, 
NMAX, B, N, ERR, TAB, ICON) 

 
Function 
This subroutine performs sine series expansion of a 
smooth odd function f(t) with period 2T according to the 
required accuracy of εa and ε r .  It determines n 
coefficients {bk} which satisfy 

( ) { }fkt
T

btf ra

n

k
k εεπ ,maxsin

1

0

≤−∑
−

=

 (1.1) 

Since {bk} contains trivial coefficient b0 = 0, the number 
of coefficients to be expanded actually is n-1.  The norm 

f  of f(t) is defined as shown in (1.3) by using function 
values taken at sample points shown in (1.2) within the 
half period [0, T]. 

1,...,1,0,
1

−=
−

= njj
n

Tt j  (1.2) 

( )j
nj

tff max
10 −≤≤

=  (1.3) 

Where T > 0, εa ≥ 0, εr  ≥ 0. 
 
Parameters 
TH..... Input.  Half period T of the function f(t). 
FUN.... Input.  Name of the function subprogram 

which calculates f(t) to be expanded in a sine 
series. 
See Example of using this subroutine. 

EPSA... Input.  The absolute error tolerance εa. 
EPSR... Input.  The relative error tolerance εr. 
NMIN... Input.  Lower limit of terms of sine series (>0). 

NMIN should be taken a value such as power 
of 2.  The default value is 8. 
See Notes. 

NMAX... Input.  Upper limit of terms of sine series.  
(NMAX > NMIN).  NMAX should be taken a 
value such as power of 2.  The default value is 
256. 
See Notes. 

B..... Output.  Coefficients {bk}. 
One-dimensional array of size NMAX.  Each 
coefficient is stored as shown below: 
B(1)=b0, B(2)=b1, ..., B(N)=bn-1, 

N..... Output.  Number of terms n of the sine series 
(≥4). 
N takes a value such as power of 2. 

ERR.... Output.  Estimate of the absolute error of the 
series. 

TAB.... Output.  TAB contains a trigonometric 
function table used for series expansion. 

One-dimensional array whose size is greater 
than 3 and equal to NMAX/2-1. 

ICON... Output.  Condition code. 
See Table FSINF-1. 

 
Table FSINF-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The required accuracy was 
not satisfied due to 
rounding-off errors.  The 
required accuracy is too 
high. 

B contains 
resultant 
coefficients.  
The accuracy of 
the series is the 
maximum 
attainable. 

20000 The required accuracy was 
not satisfied though the 
number of terms of the 
series has reached the 
upper limit. 

Bypassed. B 
contains 
resultant 
coefficients and 
ERR contains 
an estimate of 
absolute error. 

30000 One of the following cases 
occurred: 
1 TH ≤ 0 
2 EPSA < 0.0 
3 EPSR < 0.0 
4 NMIN < 0 
5 NMAX < NMIN 

Bypassed 

 
Comments on use 
• Subroutines used 

SSL II ... MGSSL, AMACH, UTABT, USINM and 
UNIFC 
FORTRAN basic functions ... ABS, AMAX1, AMIN1 
and FLOAT 

 
• Notes 

The function subprogram specified by the FUN 
parameter must be a subprogram defined at the interval 
[0, T] having independent variable t only as the 
argument. 
The name must be declared by the EXTERNAL 
statement in the program which calls this subroutine. 
If the function contains auxiliary variable, they must be 
declared by a COMMON statement to establish an 
interface with the calling program. 
See Example of using this subroutine. 

 
Use of the trigonometric function table 
When this subroutine is repeatedly called, the 
trigonometric function table is produced only once.  A 
new trigonometric function table entry is made on an 
as-required basis.  Therefore the contents of TAB must 
be kept intact when this subroutine is called 
subsequently. 
 
If NMIN of NMAX does not take a value such as 
power of 2, this subroutine assumes the maximum 
value of power of 2 which does not exceed that value.  
However NMAX = 4 is assumed if NMAX < 4 is 
satisfied.



FSINF 

325 

  The degree of error decerement greatly depends on 
the smoothness of f(t) in the open interval (-∞, ∞) as 
the number of terms n increases.  If f(t) is an analytical 
periodic function, the error decreases according to 
exponential function order O (rn) (0 < r < 1). 

If it has up to k-th continuous derivatives, the error 
decreases according to rational function order O(n-k).  
When k = 0 or k = 1, an estimate of absolute error is not 
always accurate because the number of terms to be 
expanded increases greatly.  Therefore, the function used 
by this subroutine should have, at least, up to 2-nd 
continuous derivatives. 
 
Accuracy of the series 
This subroutine determines a sine series which satisfies 
(1.1) according to the required accuracy of εa and εr. 
If εr = 0 is specified, this subroutine expands f(t) in a sine 
series within the required accuracy of absolute error εa. 
  Similarly εa = 0 is specified, this subroutine expands f(t) 
in a sine series within the required accuracy of relative 
error εr. 
  However sine series expansion is not always successful 
depending on the specification of εa and εr.  For example, 
when εa or εr is too small in comparison with 
computational error of f(t), the effect of rounding-off 
errors becomes greater on the computational result even 
if the number of terms to be expanded does not reach the 
upper limit. 
  In such a case, this subroutine abnormally terminates 
after a condition code of 10000 is set to ICON.  At this 
time, the accuracy of the sine series becomes the 
attainable limit for the computer used.  The number of 
terms to be expanded in a sine series sometimes does not 
converge within NMAX evaluations depending on the 
characteristics of f(t).  In such a case, this subroutine 
abnormally terminates after a condition code of 20000 is 
set to ICON.  Each coefficient is an approximation 
obtained so far, and is not accurate.  To determine the 
accuracy of sine series, this subroutine always set an 
estimate of absolute error in ERR. 
 
  Any inverse transform can be attempted by the 
subroutine FSINT.  Note that the contents of TAB must 
be kept intact whether normal or inverse transform is 
attempted.  See Example 2. 
  When f(t) is only a periodical function, this subroutine 
can be used to perform sine series expansion for odd 
function as (f(t) - f(-t))/2. 
  If f(t) has no period and is absolutely integrable, its 
theoretical sine transform can be defined as shown in 
(3.1): 

( ) ( ) tdttfF ωω sin
0∫
∞

=  (3.1) 

If f(t) is damped according to order of O (e-at) (a > 0), 
an approximation of the Fourier integral can be 
obtained as described below: 
  Assume that ( )f t  can be ignored on the interval [T, 

∞) when T is sufficiently large. 
By defining T which satisfies (3.2). 

( ) Ttutf ≥< ,  (3.2) 

Where u is the unit round off. 
This subroutine can be used to determine sine series 
coefficients {bk} for f(t), assuming that f(t) is a function 
with period 2T. 
Since {bk} can be expressed as  

( ) dtkt
T

tf
T

b
T

k
πsin2

0∫=  (3.3) 

(3.4) can be established based on (3.1) and (3.2). 

1,...,1,0,
2

−=≈




 nkaTk

T
F k

π  (3.4) 

Based on this relationship this subroutine can calculate 
an approximation of sine transform shown in (3.1) by 
using discrete sine transform. 
  When inverse transform 

( ) ( ) ωωω
π

tdFtf sin2
0∫
∞

=  (3.5) 

is to be calculated, the subroutine FSINT can be called 
for n pieces of data as follows: 

1,...,1,0,2 −=




 nkk

T
F

T
π  

The subroutine FSINT can obtain an approximation of: 

1,...,1,0, −=




 njj

n
Tf  

See Example 2. 
 
• Examples 

Example 1: 
This example expands the following odd function with 
period 2π having auxiliary variable p 

( )f t t
p t p

=
− +

sin
cos1 2 2  

in a sine series according to the required accuracy of εa 
= 5⋅10-5 and εr = 5⋅10-5.  Where NMIN = 8 and NMAX 
= 256 are assumed. 



FSINF 

326 

  The theoretical sine series expansion of f(t) is as 
follows: 

( ) ∑
∞

=

−=
1

1 sin
k

k ktptf  

This example prints sine series coefficients when p = 1/4, 
1/2 and 3/4. 
 
C     **EXAMPLE** 
      DIMENSION B(256),TAB(127) 
      EXTERNAL FUN 
      COMMON P 
      TH=ATAN(1.0)*4.0 
      EPSA=0.5E-04 
      EPSR=EPSA 
      NMIN=8 
      NMAX=256 
      P=0.25 
    1 CALL FSINF(TH,FUN,EPSA,EPSR, 
     *NMIN,NMAX,B,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      WRITE(6,600) N,ERR,ICON,P 
      WRITE(6,601) (B(I),I=1,N) 
      P=P+0.25 
      IF(P.LT.1.0) GO TO 1 
      STOP 
   10 WRITE(6,602) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' FUNCTION FUN(T)',3X,'N=',I4, 
     *5X,'ERR=',E15.5,5X,'ICON=',I6,5X, 
     *'P=', E15.5) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(T) 
      COMMON P 
      FUN=SIN(T)/(1.0-2.0*P*COS(T)+P*P) 
      RETURN 
      END 
 
Example 2: 
Sine transform and inverse transform 
This example transform odd function 

( ) tdtteF x ωω sin
0

2

∫
∞ −=  

in a sine series according to the required accuracy of εa = 
5･10-5 and εr = 5 ⋅10-5 and compares the results with 
analytical solution 

( ) 4
2

4

ω
ωπω

−
⋅= eF  

Then, this example performs inverse transform of the 
function by using the subroutine FSINT and checks the 
accuracy of the results. 

C     **EXAMPLE** 
      DIMENSION B(256),TAB(127), 
     *          ARG(256),T(256) 
      EXTERNAL FUN 
      COMMON PI,SQPI 
      PI=ATAN(1.0)*4.0 
      SQPI=SQRT(PI) 
      TH=SQRT(ALOG(4.0/AMACH(TH))) 
      EPSA=0.5E-04 
      EPSR=0.0 
      NMIN=8 
      NMAX=256 
C     SINE TRANSFORM 
      CALL FSINF(TH,FUN,EPSA,EPSR,NMIN, 
     *NMAX,B,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      TQ=TH*0.5 
      H=PI/TH 
      DO 1 K=1,N 
      ARG(K)=H*FLOAT(K-1) 
      B(K)=B(K)*TQ 
      T(K)=TRFN(ARG(K)) 
    1 CONTINUE 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,610) 
      WRITE(6,601) (ARG(K),B(K),T(K), K=1,N) 
C     INVERSE TRANSFORM 
      Q=1.0/TQ 
      DO 2 K=1,N 
      B(K)=B(K)*Q 
    2 CONTINUE 
      CALL FSINT(B,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 10 
      H=TH/FLOAT(N) 
      DO 3 K=1, N 
      ARG(K)=H*FLOAT(K-1) 
      T(K)=FUN(ARG(K)) 
    3 CONTINUE 
      WRITE(6,620) 
      WRITE(6,610) 
      WRITE(6,601) (ARG(K),B(K),T(K),K=1,N) 
      STOP 
   10 WRITE(6,602)ICON 
      STOP 
  600 FORMAT('0',5X,' CHECK THE SINE', 
     *' TRANSFORM OF FUNCTION FUN(T)', 
     *3X,'N=',I4,5X,'ERR=',E15.5,5X, 
     *'ICON=',I5) 
  610 FORMAT('0',6X,'ARGUMENT',7X, 
     *'COMPUTED',11X,'TRUE') 
  620 FORMAT('0',5X,'CHECK THE INVERSE' 
     *,' TRANSFORM') 
  601 FORMAT(/(3E15.5)) 
  602 FORMAT('0',5X,'CONDITION CODE',I6) 
      END 
      FUNCTION FUN(T) 
      FUN=T*EXP(-T*T) 
      RETURN 
      END 
      FUNCTION TRFN(W) 
      COMMON PI,SQPI 
      TRFN=W*EXP(-W*W*0.25)*SQPI*0.25 
      RETURN 
      END 
 



FSINF 

327 

Method 
This subroutine applies discrete fast sine transform 
(based on the trapezoidal rule) to sine transform for entry 
of functions. 
 
• Sine series expansion 

For simplicity, an odd function f(t) with a period of 2π.  
The function can be expanded in a sine series as shown 
below: 

( ) ∑
∞

=

=
1

sin
k

k ktbtf  (4.1) 

( ) dttktfbk ∫=
π

π 0
sin2  (4.2) 

This subroutine uses the trapezoidal rule to compute 
(4.2) by dividing the closed interval [0, π] equally.  By 
using resultant coefficients {bk} this subroutine 
approximates (4.1) by finite number of terms. 
If this integrand is smooth, the number of terms is 
doubled as far as the required accuracy of εa and εr is 
satisfied.  If sampling is sufficient, (4.3) will be 
satisfied. 

( ) { }fktbtf ra

n

k
k εε ,maxsin

1

0

<−∑
−

=

 (4.3) 

where n indicates the number of samples (power of 
2+1) and b0=0.  The resultant trigonometric polynomial 
is a trigonometric interpolation polynomial in which 
each breakpoint used by the trapezoidal rule is an 
interpolation point as shown below: 

1,...,1,0

,sin
1

0

−=

=




 ∑

−

=

nj

kj
n

bj
n

f
n

k
k

ππ
 (4.4) 

  The sine series expansion is explained in detail below. 
Assume that coefficients obtained by the trapezoidal 
rule using n sample points (n=np, np=2p) are 

1,...,2,1

,sin
1

0

−=











= ∑

−

=

p

n

j pp

p
k

nk

kj
n

j
n

fb
p ππ

 (4.5) 

Where the ordinary scaling factor 2/np is omitted from 
(4.5). 
  When the number of terms is doubled as np+1 = 2np 
each coefficient can efficiently be determined by 
making a good use of complementary relation between 
the trapezoidal rule and the midpoint rule.  At each 
midpoint between sample points used by the 
trapezoidal rule (4.5), f(t) can be sampled as shown 
below: 

1,...,1,0,
2
1 −=















 + p

p
njj

n
f π  (4.6) 

Discrete sine transform (using the midpoint rule) for (4.6) 
can be defined as shown below: 

p

pp

n

j

p
k

nk

jk
n

j
n

fb
p

,...,2,1

,
2
1sin

2
1~

1

0

=






 +















 += ∑

−

=

ππ
 (4.7) 

  Since (4.8) is satisfied at this stage }{ 1+p
kb  can be 

determined. 

1,...,2,1,
~

~
~

11

1

1

1
−=










=

−=
+=

++

+
−

+

+ p
p

n
p
n

p
k

p
k

p
kn

p
k

p
k

p
k

nk

bb

bbb
bbb

pp

p
 (4.8) 

  By using this recurrence formula for }{ p
kb , f(t) can be 

expanded in a sine series of higher degree while the 
number of terms is doubled as far as the required 
accuracy is satisfied. 
Then }{ p

kb  is normalized by multipling by factor 2/np. 
 
• Error evaluation for sine series 

The following relationship exists between the 
theoretical sine coefficients {bk} of f(t) and discrete 
sine coefficients }{ p

kb , taken at the p-th stage: 

( )
1,...,2,1

,
1

22

−=

++= ∑
∞

=
+−

p

m
kmnkmnk

p
k

nk

bbbb
pp  (4.9) 

This results from (4.2) and (4.5) as well as 
orthogonality of trigonometric functions. 
The error evaluation for a sine series at the p-th stage 

( ) ∑∑
∞

+=

−

=

+≤−
1

1

0

2sin
p

p

p

nk
kn

n

k

p
k bbktbtf  (4.10) 

can be deduced from (4.9). 
  If f(t) is an analytical periodic function, its series 
coefficients {bk} decrease according to exponential 
function order O (rk) (0 < r < 1) as k increases.  Then r can 
be estimated from a discrete sine coefficient at the p-th 
stage.  Let bk

p  = Ark (A: constant).  Since k is at most 
4/,1 pn

p rn −  can be estimated from the ration of the 
coefficient of the last term np-1 to the coefficient of term 
3/4np-1.  This subroutine does not allow the two 
coefficients to be zero by accident.  Therefore it uses the 
(np-2)-th and (3/4np-2)-th coefficients together with those 
coefficients to estimate a value of r as shown below. 





















































+

+
=

−−

−−
99.0,min

4

1
4
32

4
3

12

p

pp

pp

n

p

n

p

n

p
n

p
n

bb

bb
r  



FSINF 

328 

If r is greater than 0.99, this subroutine cannot actually 
expand f(t) in a sine series because the convergence rate 
of the series becomes weak.  By using the resultant r, 
the p-th stage error. 




 +
−

= −−
p
n

p
np pp

bb
r

re 121
 (4.11) 

can be estimated from (4.10). 
 
• Computational process 

Step 1: Initialization 
− Initialization of Trigonometric function table 

At three points which divides interval [0, π/2] equally, 
three values for the cosine function is obtained in 
reverse binary order.  The trigonometric function 
table is not initialized if this subroutine is called in 
advance.  The trigonometric function table is used for 
discrete sine transform. 

− Initial sine series expansion 
This subroutine performs 4(p=2) in (4.5) and 
calculates .,,,0.0 2

3
2
2

2
1 bbb   At this time, it also obtains 

f  based on the norm definition shown in (1.3). 
 
Step 2: Convergence criterion 
If np < NMIN is satisfied this subroutine does not 
perform a convergence test but immediately executes 
Step 3. 
If  np > NMIN is satisfied, this subroutine performs a 
convergence test as described below: 
  This subroutine estimates computational error limit 

( ),2ufn p=ρ  (4.12) 

where u is the unit round off. 
and a tolerance for convergence test as 

{ }fra εεε ,max=  (4.13) 

  If the last two terms at the p-th stage have been lost 
significant digits, that is, if the coefficients satisfy 
(4.14). 

ρ<+ −−
p

n
p
n pp

bb 12 2
1  (4.14) 

the computational accuracy cannot be increased even if 
this computation continues. 
Therefore, this subroutine replaces the absolute error ep 
of the sine series by the computational error ρ, 
assuming that the sine series is converged. 
  If ρ < ε is satisfied, this subroutine sets a condition 
code of 0 to ICON.  If ρ ≥ ε is satisfied, this subroutine 
sets a condition code of 10000 to ICON assuming that 
εa or εr is relatively smaller than unit round off u. 
  If (4.14) is not satisfied, this subroutine estimates 
absolute error ep based on (4.11).  If ep ≥ ε is satisfied, 
this subroutine sets a condition code of 0 to ICON and 
terminates normally.  If ep < ε is not satisfied but 2np ≤ 

NMAX is satisfied, this subroutine immediately 
executes Step 3.  Otherwise this subroutine sets a 
condition code of 20000 to ICON and terminates 
abnormally assuming that the required accuracy is not 
satisfied even when the number of terms to be 
expanded its reached the upper limit.  Note that each 
coefficient is normalized whether this subroutine 
terminates normally or abnormally. 
 
Step 3: Calculation of sample points 
Sample points to be used for sampling of f(t) at the p-th 
stage can be expressed as follows: 

1,...,1,0,
2
1 −=





 += p

p
j njj

n
t π  

They can be obtained in reverse binary order through 
use of the recurrence formula shown below: 

( )

,1,...,1,0,12,...,1,0

,2

2/

2212

1
0

1

−=−=

+=

=
+−

+

+

−−−

plj

tt

t

l

lp
jj

p

lplp π

π

 (4.16) 

where np = 2p. 
 
Step 4: Sampling of f(t) and calculation of the norm 
This subroutine obtains values of f(t) for n sample 
points based on (4.16) and overwrites them on the 
sample points. 
  It also calculates norm f  based on the norm 
definition shown in (1.3). 

 
Step 5: Trigonometric function table creation 
This subroutine produces the trigonometric function 
table required by Step 6.  The trigonometric function 
table is not recalculated each time this subroutine is 
called. 

 
Step 6: Discrete sine transform (using the midpoint 
rule) 
For sample points obtained by Step 4, this subroutine 
performs discrete sine transform using the Fast Fourier 
Transform (FFT) method to determine { p

kb~ }. 
 

Step 7: Calculation of { 1+p
kb } 

This subroutine combines { p
kb } obtained previously 

with { p
kb~ } by using (4.8) to obtain the coefficients 

{ 1+p
kb } of the discrete sine series consisting of 2np + 1 

terms. 
  Then, this subroutine executes Step 2 after it increases 
a value of p by one. 

 
  Step 4 and 6 consume most of the time required to 
execute this subroutine. 
The number of multiplications required to determine 
the coefficients of a sine series consisting of n 



FSINF 

329 

terms is about nlog2 n. 
To save storage this subroutine overwrites sample 
points, samples and expansion coefficients onto a one-
dimensional array B. 

  For further information, see Reference [59]. 
For detailed information about discrete sine transform, 
see an explanation of the subroutines FSINT and 
FSINM. 



FSINM 

330 

F11-21-0201 FSINM, DFSINM 

Discrete sine transform (midpoint rule, radix 2 FFT) 
CALL FSINM (A, N, ISN, TAB, ICON) 

 
Function 
Given n sample points {xj+1/2}, 

1,...,1,0,
2
1

2/1 −=














 +=+ njj

n
xx j

π  (1.1) 

by equally dividing the half period of the odd function 
x(t) with period 2π, a discrete sine transform or its 
inverse transform based on the midpoint rule is 
performed by using the Fast Fourier Transform (FFT). 
  Here n = 2l (l = 0 or positive integer). 
 
• Sine transform 

By inputting {xj+1/2} and performing the transform 
defined in (1.2), the Fourier coefficients {n/2⋅bk} are 
obtained. 

nkjk
n

xbn n

j
jk ,...,2,1,

2
1sin

2

1

0
2/1 =





 += ∑

−

=
+

π  (1.2) 

• Sine inverse transform 
By inputting {bk} and performing the transform defined 
in (1.3), the value of the Fourier series {xj+1/2} are 
obtained. 

1,...,1,0

,
2
1sin

2
1

2
1sin

1

0
2/1

−=






 ++





 += ∑

−

=
+

nj

jbjk
n

bx n

n

k
kj ππ

(1.3) 

Parameters 
A..... Input.  {xj+1/2} or {bk} 

Output.  {n/2･bk} or {xj+1/2} 
One-dimensional array of size n 
See Fig. FSINM-1. 

N..... Input.  Sample point number n 
One-dimensional array A(N)

N

xn−1/2xn−3/2x2+1/2x1+1/2x1/2

bnbn−1b3b2b1{bk}

{xj+1/2}

 
Note: { }kbn ⋅2/  is handled in the same way as for {bk}. 
 
Fig. FSINM-1  Data storing method 

ISN... Input.  Transform or inverse transform is 
indicated. 
For transform:  ISN = +1 
For inverse transform:  ISN = -1 

TAB... Output.  Trigonometric function table used in 
the transform is stored. 
One-dimensional array of size n-1. 
See “Notes”. 

ICON.. Output.  Condition code 
See Table FSINM-1. 

 
Table FSINM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 ISN ≠ 1, ISN ≠ -1 or N ≠ 2l 
(l = 0 or positive integer) 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... UPNR2, UTABT, USINM and MGSSL 
FORTRAN basic functions ... SQRT and MAX0 

 
• Notes 

General definition of Fourier Transform: 
The discrete sine transform and its inverse transform 
based on the midpoint rule are generally defined by 
(3.1) and (3.2) 

nk

jk
n

x
n

b
n

j
jk

,...,2,1

,
2
1sin2 1

0
2/1

=






 += ∑

−

=
+

π
 (3.1) 

1,...,1,0

,
2
1sin

2
1

2
1sin

1

1
2/1

−=






 ++





 += ∑

−

=
+

nj

jbjk
n

bx n

n

k
kj ππ

 (3.2) 

  The subroutine obtains {n/2･bk} and {xj+1/2} which 
correspond to the left-hand side of (3.1) and (3.2), 
respectively, and the user has to scale the results, if 
necessary. 
Calculation of trigonometric polynomial: 
When obtaining the values x(π/n(j+1/2)) of the n-th 
order trigonometric polynomial 

( ) ntbtbtbtx n sin...2sinsin 21 +++=  

  by using the inverse transform, the highest order 
coefficient bn must be doubled in advance.  See 
example (b). 
Use of the trigonometric function table: 
When the subroutine is called successively for 
transforms of a fixed dimension, the trigonometric 
function table is calculated and created only once.  
Therefore, when calling the subroutine subsequently, 
the contents of the parameter TAB must be kept intact. 



FSINM 

331 

Even when the dimension differs, the trigonometric 
function table need not be changed.  A new trigonometric 
function table entry can be made on an as-required basis. 
 
• Example 

(a) By imputing n sample point {xj+1/2} performing the 
transform in the subroutine and scaling the results, 
the discrete Fourier coefficients {bk} are obtained.  
By performing the inverse transform after that, 
{xj+1/2} are obtained. 
  Here n ≤ 512. 

 
C     **EXAMPLE** 
      DIMENSION X(512),TAB(511) 
C     SINE TRANSFORM 
      ISN=1 
      READ(5,500) N,(X(I),I=1,N) 
      WRITE(6,600) N 
      WRITE(6,601) (X(I),I=1,N) 
      CALL FSINM(X,N,ISN,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
C     NORMALIZE 
      CN=2.0/FLOAT(N) 
      DO 10 K=1,N 
      X(K)=X(K)*CN 
   10 CONTINUE 
      WRITE(6,602) ISN 
      WRITE(6,601) (X(I),I=1,N) 
C     SINE INVERSE TRANSFORM 
      ISN=-1 
      CALL FSINM(X,N,ISN,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) ISN 
      WRITE(6,601) (X(I),I=1,N) 
   20 WRITE(6,603) ICON 
      STOP 
  500 FORMAT(I5/(6F12.0)) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA',5X, 
     *       'ISN=',I2) 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 

(b) By inputting sine coefficients {bk} based on the 
midpoint rule, the values {x(π(j+1/2)/n)} of the n-th 
trigonometric polynomial. 

( ) ntbtbtbtx n sin...2sinsin 21 +++=  

 are obtained at the sample points {π(j+1/2)/n}.  The 
coefficient of the last term bn must be doubled 
before it is input. 
  Here n ≤ 512. 

 

C     **EXAMPLE** 
      DIMENSION B(512),TAB(511) 
      ISN=-1 
      READ(5,500) N,(B(I),I=1,N) 
      WRITE(6,600) N 
      WRITE(6,601) (B(I),I=1,N) 
      B(N)=B(N)*2.0 
      CALL FSINM(B,N,ISN,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) ISN 
      WRITE(6,601) (B(I),I=1,N) 
   20 WRITE(6,603) ICON 
      STOP 
  500 FORMAT(I5/(6F12.0)) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA',5X, 
     *       'ISN=',I2) 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 
Method 
The discrete sine transform based on the midpoint rule of 
dimension n(= 2l, l=0, 1, ...) is performed by using the 
Fast Fourier Transform (FFT). 
  The transform based on the midpoint rule can be 
accomplished by considering the odd function x(t) to be a 
complex valued function and performing the discrete 
complex Fourier transform for the odd function based on 
the midpoint rule of dimension 2n.  In this case, however, 
it is known that the use of the characteristics of the 
complex transform permits efficient transform. 
  For the complex valued function x(t) with period 2π, the 
discrete Fourier transform based on the midpoint rule of 
dimension 2n (=2l+1, l=0, 1, 2, ...) is defined as 

12...,,1,0

2
1exp

2
12

12

0

−=












 +−










 += ∑

−

=

nk

jk
n
ij

n
xn

n

j
k

ππα , (4.1) 

The basic idea of the FFT is to accomplish the objective 
transform by repeating the elementary discrete Fourier 
transform of small dimension (i.e., if the radix is 2, the 
dimension is 2).  In other words, considering sample data 
which consist of (j+1)th element and subsequent ones 
with the interval ,...)2,1,2(~ 1 == −+ pn pl

p  and defining the 
transform 

( )






















 ++−⋅












 += +

−

=
∑

knjr
n

i

jnr
n

xkjx

p
p

p

n

j

p
p

~
2
12exp

2
1~,

1

0

π

π

 

1,...,1,0,1~...,,1,0 −=−= pp nknj  (4.2) 

of dimension np = 2p, then the transform can be satisfied 
with the FFT algorithm (4.3) of radix 2. 



FSINM 

332 

Initial value 

( )

( ) ( ) ( )
( ) ( ) ( ){ }

1,...,2,1

1...,,1,0,1~...,,1,0

2
1

~exp,~,,

,~,,

12...,1,0,
2
10,

1

11
1

11

0

−=

−=−=
















 +−⋅+−=+

++=

−=










 +=

−

−−
−

−−

lp

nknj

j
n

i
knjxkjxnkjx

knjxkjxkjx

njj
n

xjx

pp

p
p

pp
p

p

p
ppp

π

π

 (4.3) 
The values obtained in the final step of these recurrence 
equations are the discrete Fourier coefficients (4.4). 

( ) 12...,,1,0,,02 1 −== + nkkxn l
kα  (4.4) 

If x(t) is an odd function, the fact that x(t) is real, i.e., 
)()( txtx =  ( )(tx  is a complex conjugate of x(t)), and 

skew-symmetric, i.e., 

( ) ( )x t x t2π − = −  

affects the intermediate results {xp(j, k)} of the FFT as 
follows: 
Real property: xp(j, 0) is real 

( ) ( )

1,...,2,1,1~,...,1,0

,
2
1

~
2exp,,

−=−=
















 +−=−

pp

p

p
p

p

nknj

j
n

ikjxknjx π
 (4.5) 

Skew-symmetric property: 

( ) ( )
1...,,1,0,1~,...,1,0

,,1~

−=−=

−=−−

pp

p
p

p

nknj

kjxkjnx
 

On the other hand, the relationship 

nkib kk ...,,2,1,2 == α  

can be satisfied between the complex Fourier coefficients 
{αk} for the odd function x(t) and the Fourier coefficients 
defined by the following discrete sine transform 

nk

jk
n

j
n

x
n

b
n

j
k

,...,2,1

2
1sin

2
12 1

0

=






 +










 += ∑

−

=

ππ
 (4.6) 

  Therefore, by using the characteristic (4.5) in the FFT 
algorithm (4.3) as well as the relationship above, the 
number of computations and the memory used can be 
reduced to a quarter of those without using them.  That 

is, the range of j and k used in (4.3) are halved, so the 
FFT algorithm of radix 2 for the discrete sine transform 
(4.6) can be represented by 

( ) ( ) ( )
( ) ( ) ( ){ }

lp

n
k

n
j

j
n

i

kjnxkjxknjx

kjnxkjxkjx

pp

p

p
pp

p
p

p
ppp

...,,2,1

1
2

,...,1,0,1
2

~
...,,1,0

2
1

~exp

,1~,,

,1~,,

1

11
1

11

=

−=−=
















 +−⋅

−−+=−

−−−=

−

−−
−

−−

π  (4.7) 

  Normally, the area to store the intermediate results {xp(j, 
k)} needs one-dimensional array of size n, but if the input 
data is permuted in advance by reverse binary 
transformation, the above computation can be carried out 
by using the same area in which the data was input.  The 
number of real number multiplications necessary for the 
sine transform of dimension n is about nlog2n. 
 
• Transform procedure in the subroutine 

(a) The necessary trigonometric function table (size n-
1) for the transform is created in reverse binary 
order. 

(b) The sample points {x(π/n(j+1/2))} (size n) are 
permuted in reverse binary order. 

(c) The FFT algorithm (4.7) which takes into 
consideration the skew-symmetric property of the 
input data is performed in the same area to obtain 
the Fourier coefficients in the order, bn, bn-1, ..., b1. 

(d) The Fourier coefficients {bk} are rearranged in 
ascending order. 

 
• Inverse transform procedure 

(a) The necessary trigonometric function table for the 
inverse transform is created.  This table is the same 
one as used in the transform procedure (a). 

(b) Rearranging the Fourier coefficients {bk} in the 
order,  bn, bn-1, ..., b1, {bn-k} is obtained. 

(c) By inputting {bn-k} and tracing back words the 
recurrence equations (4.7) with respect to p, the 
function value {x(π/n(j+1/2)} of the odd function 
x(t) is obtained in reverse binary order. 

(d) By permuting the obtained n data by reverse binary 
transformation, the function values {x(π/n(j+1/2)} 
are obtained in normal order. 

 
For further details, refer to the Reference [58]. 



FSINT 

333 

F11-21-0101, FSINT, DFSINT 

Discrete sine transform (Trapezoidal rule, radix 2 FFT) 
CALL FSINT (A, N, TAB, ICON) 

 
Function 
Given n sample points {xj}, 

1...,,1,0, −=⎟
⎠
⎞

⎜
⎝
⎛= njj

n
xx j
π  (1.1) 

by dividing equally into n the half period of the odd 
function x(t) with period 2π, a discrete sine transform or 
its inverse transform based on the trapezoidal rule is 
performed by using the Fast Fourier Transform (FFT). 
Here n = 2l (n: positive integer) 
 
• Sine transform 

By inputting {xj} and performing the transform defined 
in (1.2), the Fourier coefficients {n/2⋅bk} are obtained. 

1...,,1,0,sin
2

1

0

−==∑
−

=

nkkj
n

xbn n

j
jk

π  (1.2) 

• Sine inverse transform 
By inputting {bk} and performing the transform 
defined in (1.3), the values of the Fourier series {xj} 
are obtained. 

.0

1...,,1,0,sin

0

1

0

=

−== ∑
−

=

b

njkj
n

bx
n

k
kj

π
 (1.3) 

Parameters 
A..... Input.  {xj} or {bk}. 

Output.  {n/2･bk} or {xj}. 
One-dimensional array of size n. 
See Fig. FSINT-1. 

 
One-dimensional array A(N)

N

xn−1xn−2x2x1

bn−1bn−2{bk}

{xj}

b2

0

0 b1

 
Note: { kb

n

2
} is handled the same way as for {bk}. 

Fig. FSINT-1  Data storing method 

N.... Input.  Sample point number n 
TAB... Output.  Trigonometric function table used in 

the transform is stored. 
 One dimensional array of size n/2-1. 
 See “Notes”. 
ICON.. Output.  Condition code.  See Table FSINT-1. 
 
Table FSINT-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N ≠ 2l (l: positive integer) Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... UPNR2, UTABT, USINM and MGSSL 
FORTRAN basic functions ... SQRT and MAX0 

 
• Notes 

General definition of Fourier transform: 
The discrete sine transform and its inverse transform 
based on the trapezoidal rule are generally defined by 
(3.1) and (3.2), 

1...,,2,1,sin2 1

1

−== ∑
−

=

nkkj
n

x
n

b
n

j
jk

π  (3.1) 

1...,,2,1,sin
1

1

−==∑
−

=

njkj
n

bx
n

k
kj

π  (3.2) 

  The subroutine obtains {n/2･bk} and {xj} which 
correspond to the left-hand side of (3.1) and (3.2), 
respectively, and the user has to scale the results, if 
necessary. 
Use of the trigonometric function table: 
When the subroutine is called successively for 
transforms of a fixed dimension, the trigonometric 
function table is calculated and created only once.  
Therefore when calling the subroutine subsequently, the 
contents of parameter TAB must be kept intact. 
  Even when the dimension differs, the trigonometric 
function table need not be changed.  A new 
trigonometric function table entry can be made on an as-
required basis. 
 
• Example 

By inputting n sample points {xj}, performing the 
transform by the subroutine and scaling the results, the 
discrete Fourier coefficients {bk} are obtained.  Also 
by performing the inverse transform after that, {xj} are 
obtained. 
  Here n ≤ 512. 

 
C     **EXAMPLE** 
      DIMENSION X(512),TAB(255) 
C     SINE TRANSFORM 
 



FSINT 

334 

      READ(5,500) N,(X(I),I=1,N) 
      WRITE(6,600) N 
      WRITE(6,601) (X(I),I=1,N) 
      CALL FSINT(X,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
C     NORMALIZE 
      CN=2.0/FLOAT(N) 
      DO 10 K=1,N 
   10 X(K)=X(K)*CN 
      WRITE(6,602) 
      WRITE(6,601)(X(I),I=1,N) 
C     SINE INVERSE TRANSFORM 
      CALL FSINT(X,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) 
      WRITE(6,601) (X(I),I = 1,N) 
   20 WRITE(6,603) ICON 
      STOP 
  500 FORMAT(I5/(6F12.0)) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA') 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 
Method 
The discrete sine transform based on the trapezoidal rule 
of dimension n(= 2l, l = 1, 2, ...) is performed by using 
the radix 2 Fast Fourier Transform (FFT). 
  The transform based on the trapezoidal rule can be 
accomplished efficiently by using the transform based on 
the midpoint rule.  The subroutine uses this method. 
  Dividing equally into np (= 2, p = 1, 2, ...) the half 
period [0, π] of an odd function x(t) with period 2π, the 
discrete sine transform based on the trapezoidal rule is 
defined as 

1...,,2,1,sin
1

0

−=









= ∑

−

=
p

n

j pp

p
k

nkkj
n

j
n

xb
p ππ  (4.1) 

  Also the discrete sine transform based on the midpoint 
rule of dimension np is defined as 

p

pp

n

j

p
k

nk

jk
n

jk
n

xb
p

...,,2,1

,
2
1sin

2
1ˆ

1

0

=






 +















 += ∑

−

=

ππ
 (4.2) 

  In Eqs. (4.1) and (4.2), however, the ordinary scaling 
factor 2/np is omitted. 
Doubling the division number to np+1 the { 1+p

k
b } can be 

expressed as follows by using { p
k

b } and { p
k

b̂ } both of 

which have half as many dimension as { 1+p
k

b }. 

p
n

p
n

pp
k

p
k

p
kn

p
k

p
k

p
k

pp

p

bb

nk
bbb

bbb

ˆ

1...,,2,1ˆ

ˆ

1

1

1

1

=

−=






+=

+=

+

+
−

+

+  (4.3) 

  The equations shown in (4.3) can be considered as 
recurrence formula with respect to p to obtain { 1+p

k
b } 

from { p
k

b }.  Therefore, when performing transform with 

division number 2l, if the initial condition b1
1 = x(π/2) is 

given and the discrete sine transform based on the 
midpoint rule of dimension np is performed each at the p-
th stage (p=1, 2, ..., l-1) then the discrete sine transform 
series { p

k
b ; k = 1, 2, ..., np-1} (p = 1, 2, ..., l) based on 

the trapezoidal rule can be obtained by using equations 
(4.3). 

  The number of multiplications of real numbers executed 
is about nlog2n (n = 2l). 
 
Procedural steps taken in the subroutine 
Permuting the sample points, x0, x1, ..., xn-1, in reverse 
binary order, they are denoted as x(0), x(1), ..., x(n-1), 
where x(0) = x0 = 0. 
  Next, the trigonometric function table (size n/2 -1) 
1)necessary for the transform is made in reverse binary 
order corresponding to the sample point number. 
  Finishing with the preparatory processing, the sine 
transform is performed as follows: 
(a) Initialization 

b1
1 = x(1) and p = 1 

(b) Sine transform based on the midpoint rule of 
dimension np 
  By inputting np sample points x(np), x(np+1), ..., 
x(np+1-1) and performing the sine transform based on 
the midpoint rule, { p

k
b } are obtained in the same area 

in the order pp
n

p
n bbb

pp 1̂,...,ˆ,ˆ
1−

.  For the sine transform 

based on the midpoint rule, see Method for subroutine 
FSINM. 

(c) Calculation of recurrence equations with respect to 
{ p

k
b̂ } 

At the p-th stage, the intermediate results,  
( ) ,,...,,,0 121

p
n

pp
p

bbbx −  

pp
n bb

p 1̂,...,ˆ  are stored in the array elements, x(0), 

x(1), ..., x(np+1-1).  The { 1+p
k

b } are obtained by using 

only this area.  That is, the two elements, 1+p
k

b  and 
1
1

+
−+

p
knp

b  at the (p+1)th stage are calculated from the 

two elements p
kb  and ( )1,...,2,1ˆ −= p

p
k nkb  at the p-th 

stage, according to the recurrence equations (4.3), and 
they are stored in the corresponding array elements of 
the p-th stage. 
  By repeating procedure (b) and (c) above with p = 1, 
2, ..., l-1 the {bk} can be obtained. 
  For further details, refer to the Reference [58]. 



GBSEG 

335 

B52-11-0101 GBSEG, DGBSEG 

Eigenvalues and eigenvectors of a real symmetric band 
generalized eingeproblem (Jennings method) 
CALL GBSEG (A, B, N, NH, M, EPSZ, EPST, LM, 
E, EV, K, IT, VW, ICON) 

 
Function 
This subroutine obtains m eigenevalues and 
corresponding eigenvectors of a generalized 
eigenproblem 

BxAx λλλλ=  (1.1) 

consisting of real symmetric matrices A and B of order n 
and bandwidth h in the ascending or descending order of 
absolute values by using m given initial vectors.  It adopts 
the Jennings’ simultaneous iteration method with the 
Jennings’ acceleration.  When starting with the largest or 
smallest absolute value, matrix B or A must be 
positivedefinite respectively.  The eigenvectors is 
normalized such that: 

IBXX =T  (1.2) 
or 

IAXX =T  (1.3) 

1 ≤ <<m n and 0 ≤ <<h n  
 
Parameters 
A..... Input.  Real symmetric band matrix A. 

When eigenvalues are obtained in the 
ascending order of absolute values, the 
contents of A are altered on output. 
Compressed mode for symmetric band 
matrices. 
A is a one-dimensional arrays of size n (h+1) − 
h (h+1)/2. 

B..... Input.  Real symmetric band matrix B. 
The contents of B are altered on output. 
Compressed mode for symmetric band 
matrices. 
B is a one-dimensional array of size n (h+1) − 
h(h+1)/2. 
See “Comments on use”. 

N..... Input.  Order n of matrices A and B. 
NH... Input.  Bandwidth h of matrices A and B. 

See “Comments on use”. 
M.... Input.  Number of eigenvalues and 

eigenvectors to be obtained, m. 
M = m ... m eigenvalues are obtained in the 
descending order of absolute values. 
M = −m .. m eigenvalues are obtained in the 
ascending order of absolute values. 

EPSZ.. Input.  Relative zero criterion for pivoting 
associated with LLT decomposition of matrix 
A or B. 

If zero or negative value is given, an 
appropriate default value is used. 
See “Comments on use”. 

EPST.. Input.  Constant ε used for convergence 
criterion of eigenvectors.  If zero or negative 
value is given, an appropriate default value is 
used. 
See “Comments on use”. 

LM... Input.  Upper limit for the number of iterations. 
If the number of iterations exceeds the limit, 
the processing is terminated. 
See “Comments on use”. 

E.... Output.  Eigenvalues.  Each eigenvalue is 
stored in the sequence as specified by the M 
parameter. 
E is a one-dimensional array of size m. 

EV... Input.  m initial vectors stored in the m-th 
columns (in columnwise direction). 
See “Comments on use”. 
Output.  Eigenvectors.  Eigenvectors are stored 
in the m-th columns (in columnwise direction). 
EV (K, m+2) is a two-dimensional array. 

K..... Input.  Adjustable dimension of EV. 
IT... Output.  Number of iterations which are made 

until eigenvectors are obtained. 
VW... Work area.  VW is a on-dimensional array of 

size 2n+m(3m+1)/2. 
ICON.. Output.  Condition code. 

See Table GBSEG-1. 
 
Table GBSEG-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The number of iterations 
exceeded upper limit LM. 

Terminated. 
E and EV 
contain the 
approximations 
of eigenvalues 
and 
eigenvectors 
obtained so far. 

25000 Orthogonalization of 
eigenvectors at each 
interation cannot be 
attained. 

Discontinued. 

28000 Matrix A or matrix B is not 
positive-definite. 

Discontinued. 

29000 Matrix A or matrix B is 
singular. 

Discontinued. 

30000 NH < 0, NH ≥ N, N > K, M = 

0 or M  > N 

Discontinued. 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MSBV, TRID1, TEIG1, TRBK, 
UCHLS, UBCHL, UBCLX, UERST, MGSSL 
FORTRAN basic functions ... IABS, ABS, AMAX1, 
FLOAT, SQRT 



GBSEG 

336 

• Notes 
When eigenvalues are obtained in the ascending order 
of absolute values, the contents of matrix B are saved 
into array A.  When this subroutine handles several 
generalized eigenproblems involving the identical 
matrix B, it can utilize the contents of matrix B in array 
A. 
  The bandwidth of matrix A must be equal to that of 
matrix B.  If the bandwidth of matrix A is not equal to 
that of matrix B, the greater band-width is assumed; 
therefore zeros are added to the matrix of smaller band-
width as required. 
  The EPSZ default value is 16 u when u is the unit 
round off.  When EPSZ contains 10-s this subroutine 
regards the pivot as zero if the cancellation of over s 
significant digits occurs for the pivot during LLT 
decomposition of matrix A or B. 
Then this subroutine sets a condition code ICON to 
29000 and terminates abnormally.  If the processing is 
to proceed at a low pivot value, EPSZ will be given the 
minimum value but the result is not always guaranteed.  
If the pivot becomes negative during LLT 
decomposition of matrix A or B, the matrix is regarded 
as singular and a condition code ICON to 28000.  This 
subroutine terminates abnormally. 
  The parameter EPST is used to examine the 
convergence of eigenvector normalized as 1

2
=x .  

Whenever an eigenvector converges for the 
convergence criterion constant ε, the corresponding 
eigenvalue converges at least with accuracy ε⋅A  and 
in most cases is higher.  It is therefore better to choose 
somewhat a larger EPST value.  When defining the unit 
round off as u, the default value is ε = 16u.  When the 
eigenvalues are very close to each other, however, 
conveygence may not be attained.  If so, it is safe to 
choose ε such that ε ≥ 100u. 
  The upper Limit LM for the number of iteration is 
used to forcefully terminate the iteration when 
convergence is not attained.  It should be set taking into 
consideration the required accuracy and how close the 
eigenvalues are to each other.  The standard value is 
500 to 1000. 
  It is desirable for the initial eigenvectors to be a good 
approximation to the eigenvectors corresponding to the 
obtained eigenvalues.  If approximate vectors are not 
available, the standard way to choose initial vectors is 
to use the first m column vectors of the unit matrix I.  
The number of eigenevalues and eigenvectors, m had 
better be smaller than n such that m/n < 1/10.  The 
numbering of the eigenvalues is from the largest (or 
smallest) absolute value of eigenvalues such as λ1, 
λ2, ..., λn.  It is desirable if possible, to choose m in 
such a way that |λm-1 / λm| <<1  (or |λm+1 / λm| >> 1) to 
achieve convergence faster. 

• Example 
This example obtains eigenvalues and corresponding 
eigenvectors of generalized eigenproblem 
Ax = λBx 
consisting of real symmetric matrices A and B of order 
n and bandwidth h. 
n ≤ 100, h ≤ 10 and m ≤ 10. 

 
C     **EXAMPLE** 
      DIMENSION A(1100),B(1100),E(10), 
     *          EV(100,12),VW(400) 
   10 READ(5,500) N,NH,M,EPSZ,EPST 
      IF(N.EQ.0) STOP 
      MM=IABS(M) 
      NN=(NH+1)*(N+N-NH)/2 
      READ(5,510) (A(I),I=1,NN), 
     *            (B(I),I=1,NN), 
     * ((EV(I,J),I=1,N),J=1,MM) 
      WRITE(6,600) N,NH,M 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=MIN0(NH+1,I)+NE 
   20 WRITE (6,610) I,(A(J),J=NI,NE) 
      WRITE(6,620) N,NH,M 
      NE=0 
      DO 30 I=1,N 
      NI=NE+1 
      NE=MIN0(NH+1,I)+NE 
   30 WRITE(6,610) I,(B(J),J=NI,NE) 
      CALL GBSEG(A,B,N,NH,M,EPSZ,EPST,500, 
     *     E,EV,100,IT,VW,ICON) 
      WRITE(6,630) ICON,IT 
      IF(ICON.GE.20000) GO TO 10 
      CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
  500 FORMAT(3I5,2E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',20X,'ORIGINAL MATRIX A', 
     * 5X,'N=',I3,5X,'NH=',I3,5X,'M=',I3/) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0',20X,'ORIGINAL MATRIX B', 
     * 5X,'N=',I3,5X,'NH=',I3,5X,'M=',I3/) 
  630 FORMAT('0',20X,'ICON=',I5, 
     * 5X,'IT=',I5) 
      END 
 
  The SEPRT subroutine used in this example prints 
eigenvalues and eigenvectors of a real symmetric matrix.  
For further information see an example of using the 
subroutine SEIG1. 
 
Method 
This subroutine obtains m eigenvalues and corresponding 
eigenvectors of generalized eigenproblem. 

Ax = λBx (4.1) 

consisting of real symmetric band matrices A and B of 
order n and bandwidth h in the ascending of descending 
order of absolute values of the eigenvalues by using m 
given initial vectors.  It adopts the Jennings’ 
simultaneous iteration method with Jennings’ 
acceleration. 



GBSEG 

337 

 For detailed information about the Jennings’ 
simultaneous iteration method see the “Method” of the 
subroutine BSEGJ. 
 
• Computational procedures 

If m eigenvalues λ1, λ2, ..., λm are to be determined in 
the ascending order of absolute values, (4.1) must be 
transformed as shown in (4.2) 

Bx Ax Ax= =1
λ

µ  (4.2) 

and m eigenvalues µ1, µ2, ..., µm can be determined by 
using the following: 

miii ,...,1,/1 == µλ  

  Therefore, the following explanation is concerned 
about only the case when m eigenvalues are to be 
determined in the descending order of absolute values. 

1) Matrix B is decomposed into LLT by the 
subroutine UBCHL. 

T~~BBB =  (4.3) 

 This procedure transforms a general eigenproblem 
shown in (4.1) to a standard eigenproblem such 
that: 

uuBAB λ=−− T1 ~~  (4.4) 
 where 

xBu T~=  (4.5) 

2) Let m approximate eigenvectors u1, u2, ..., um be 
formed into m columns of U which is an n × m 
matrix. 

 These vectors are assumed to be formed into an 
orthonormal matrix as shown in (4.6): 

mIUU =T  (4.6) 

 where Im indicates an m-order unit matrix. 
   By multiplying U by T~−B , A and ~B −1  in this 

order from the left, 

UBABV T1 ~~ −−=  (4.7) 

 results.  Multiplying V by UT from the left, 

UBABUVUC T1TT ~~−==  (4.8) 

 results. 
   This processing is actually performed in parallel 

to save storage as follows: 

   For i=1, 2, ..., m (4.9) results by using auxiliary 
vector y. 

yBABv

uy

i

i
T1 ~~ −−=

=
 (4.9) 

   This processing can be performed by using the 
subroutines UBCLX and MSBV.  Since C is an m-
dimensional symmetric matrix, its lower triangular 
portion can be denoted by: 

,T
ivy=iic  (4.10) 

mijc ji ,...,1,T +== ij vu  (4.11) 

   Thus, by taking ui for each column of U and 
obtaining vi, cii and cji, V is produced directly in 
the area for U. 

3) Solving the eigenproblem for C, C is decomposed 
to the form 

TPMPC =  (4.12) 

 where M is a diagonal matrix using eigenvalues of 
C as diagonal elements and P is a m-dimensional 
orthogonal matrix. 

   This processing is performed by using the 
subroutines TRID1, TEIG1 and TRBK, which are 
called successively.  Then the eigenvectors 
corresponding to the eigenvalues are sorted such 
that the largest absolute values comes first using 
the subroutine UESRT. 

4) Multiply V by P form the right, and produce an n 
× m matrix W shown below: 

W VP=  (4.13) 

5) To orthogonalize each column of W, produce an m 
- dimensional real symmetric positive-definite 
matrix WT W and decompose it into LLT shown 
below: 

W TW = LLT (4.14) 

   This processing is performed by using the 
subroutine UCHLS. 

   If LLT decomposition is not possible this 
subroutine sets a condition code ICON to 25000 
and terminates abnormally. 

6) Solve the equation U *LT = W to compute 

U *= WL-T (4.15) 

 U * has an orthonormal system as in equation (4.6). 
 The m-th columns um and um

* of U and U * are 
examined to see if 

ε≤−=
∞mmd uu*  (4.16) 



GBSEG 

338 

 is satisfied. 
   If this convergence condition is not satisfied, see U * 

as a new U and go to Step 2). 
7) If it is satisfied, the iteration is stopped and the 

diagonal elements of M obtained in Step 3) become 
eigenvalues, and the first m row of 

*T~ UBX −=  (4.17) 

 become the corresponding eigenvectors.  This 
processing is performed by using the subroutine 
UBCLX. 

   These steps given above are a general description of 
the Jennings’s method. 

   For further information see References [18] and [19]. 
 
• Jennings’ acceleration 

To accelerate the simultaneous Jennings’ iteration 
method previously explained, the Jennings’ 
acceleration method for vector series in incorporated in 
this subroutine.  See explanations about subroutine 
BSEGJ for the principle and application of Jennings’ 
acceleration. 



GCHEB 

339 

E51-30-0301 GCHEB, DGCHEB 

Differentiation of a Chebyshev series 
CALL GCHEB (A, B, C, N, ICON) 

 
Function 
Given an n-terms Chebyshev series defined on the 
interval [a, b] 

( ) ( )







−
+−= ∑

−

= ab
abxTc'xf kk

n

k

21

0

 (1.1) 

this subroutine computes its derivative in a Chebyshev 
series 

( ) ( )







−
+−′=′ ∑

−

= ab
abxTc'xf

n

k
kk

22

0

 (1.2) 

and determines its coefficients { ′ck }. 
Symbol Σ′ denotes to make sum but the initial term only 
is multipled by factor 1/2. 
Where a ≠ b and n ≥ 1. 
 
Parameters 
A..... Input.  Lower limit a of the interval for the 

Chebyshev series. 
B..... Input.  Upper limit b of the interval for the 

Chebyshev series. 
C..... Input.  Coefficients{ck} .  

Each coefficient is stored as shown below: 
C(1) =c0, C(2) =c1, ..., C(N) =cn-1 

Output.  Coefficients {c′k} for the derivative. 
Each coefficient is stored as shown below: 
C(1) =c′0, C(2) =c′1, ..., C(N-1) =c′n-2 
C is a one-dimensional array of size N. 

N..... Input.  Number of terms n. 
Output.  Number of terms of the derivative n−1. 
See Notes. 

ICON.. Output.  Condition code. 
See Table GCHEB-1. 

 
Table GCHEB-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either of the two 
conditions occurred: 
1     N < 1 
2     A = B 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... FLOAT 

• Notes 
When a derivative of an arbitrary function is required, 
this subroutine can be used together with the subroutine 
FCHEB for Chebyshev series expansion. 
  When a differential coefficient is determined at 
arbitrary point, this subroutine should be used together 
with the subroutine ECHEB for evaluation of the 
Chebyshev series.  See Example. 
  This subroutine can be called repeatedly to compute a 
derivative of higher order. 
  The error of a derivative can be estimated from the 
absolute sum of the last two terms.  Note that the error 
of a derivative increases as order increases. 
  If only one term is entered this subroutine produces 
only one term. 

 
• Example 

This example expands exponential function 

( ) 









== ∑

∞

=0 !n

n
x

n
xexf  

defined on the interval [-2, 2] in a Chebyshev series 
according to the required accuracy of εa = 0 and εr = 5･
10-5 by using the subroutine FCHEB.  It then computes 
the derivative from the resultant Chebyshev series by 
using this subroutine.  It also evaluates differential 
coefficients by using the ECHEB subroutine while 
increasing the value of x from −2 to 2 with increment 
0.05 and compares them with the true values. 

 
C     **EXAMPLE** 
      DIMENSION C(257),TAB(127) 
      EXTERNAL FUN 
      EPSR=5.0E-5 
      EPSA=0.0 
      NMIN=9 
      NMAX=257 
      A=-2.0 
      B=2.0 
      CALL FCHEB(A,B,FUN,EPSA,EPSR,NMIN, 
     *           NMAX,C,N,ERR,TAB,ICON) 
      IF(ICON.NE.0) GOTO 20 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,601) (C(K),K=1,N) 
      CALL GCHEB(A,B,C,N,ICON) 
      IF(ICON.NE.0) GOTO 20 
      WRITE(6,602) 
      WRITE(6,601) (C(K),K=1,N) 
      WRITE(6,603) 
      H=0.05 
      X=A 
   10 CALL ECHEB(A,B,C,N,X,Y,ICON) 
      IF(ICON.NE.0) GOTO 20 
      ERROR=FUN(X)-Y 
      WRITE(6,604) X,Y,ERROR 
      X=X+H 
      IF(X.LE.B) GOTO 10 
      STOP 
   20 WRITE(6,605) ICON 
      STOP 
 



GCHEB 

340 

  600 FORMAT('0',3X,'EXPANSION OF', 
     1' FUNCTION FUN(X)',3X,'N=',I4,3X, 
     2'ERROR=',E13.3,3X,'ICON=',I6) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'DERIVATIVE OF', 
     1' CHEBYSHEV SERIES') 
  603 FORMAT('0',10X,'X',7X, 
     1'DIFFERENTIAL',6X,'ERROR'/) 
  604 FORMAT(1X,3E15.5) 
  605 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(X) 
      REAL*8 SUM,XP,TERM 
      EPS=AMACH(EPS) 
      SUM=1.0 
      XP=X 
      XN=1.0 
      N=1 
   10 TERM=XP/XN 
      SUM=SUM+TERM 
      IF(DABS(TERM).LE. 
     1   DABS(SUM)*EPS) GOTO 20 
      N=N+1 
      XP=XP*X 
      XN=XN*FLOAT(N) 
      GOTO 10 
   20 FUN=SUM 
      RETURN 
      END 
 

Method 
This subroutine performs termwise differentiation of an 
n-terms Chebyshev series defined on the interval [a, b] 
and expresses its derivative in a Chebyshev series.  Let a 
derivative to be defined as follow: 

( ) ( )







−
+−′=







−
+− ∑∑

−

=

−

= ab
abxTc'

ab
abxTc'

dx
d n

k
kk

n

k
kk

22 2

0

1

0

 (4.1) 

The following relationships exist between coefficients for 
the derivative: 

( )

1...,,3,2

,4

14
0

12

12

1

−−=

′+






−
=′

−






−
=′

=′

+−

−−

−

nnk

ckc
ab

c

cn
ab

c

c

kkk

nn

n

 (4.2) 

This subroutine determines coefficients { kc′ } by using 
differential formula (4.2) for Chebyshev polynomials. 
The number of multiplications required to compute a 
derivative from an n-terms series is about 2n. 
  For further information about recurrence formula (4.2), 
see explanation of the subroutine ICHEB. 

 



GINV 

341 

A25-31-0101 GINV, DGINV 

Moore-Penrose generalized inverse of a real matrix (the 
singular value decomposition method) 
CALL GINV (A, KA, M, N, SIG, V, KV, EPS, VW, 
ICON) 

 
Function 
This subroutine obtains the generalized inverse A+ of an 
m × n matrix  A using the singular value decomposition 
method. 
m ≥ 1 and n ≥ 1. 
 
Parameters 
A..... Input.  Matrix A. 

Output.  Transposed matrix of A+ . 
A is a two-dimensional array A (KA, N).   
See Notes. 

KA.... Input.  Adjustable dimension of array A.  KA 
≥ M. 

M..... Input.  Number of rows in matrix A, m. 
N..... Input.  Number of columns in matrix A or 

number of rows in matrix V, n. 
SIG... Output.  Singular values of matrix A. 

One-dimensional array of size n. 
See Notes. 

V..... Output.  Orthogonal transformation matrix 
produced by the singular value decomposition. 
V is a two-dimensional array V (KV, K). 
K = min (M + 1, N). 

KV..... Input.  Adjustable dimension of array V. 
KV ≥ N. 

EPS... Input.  Tolerance for relative zero test of the 
singular value. 
EPS ≥ 0.0 
If EPS is 0.0 a standard value is used. 
See Notes. 

VW..... Work area.  VW is a one-dimensional array of 
size n. 

ICON.. Output.  Condition code. 
See Table GINV-1. 

 
Table GINV-1  Condition codes 

Code Meaning Processing 
0 No error  

15000 Any singular value 
could not be obtained. 

Discontinued 

30000 KA < M, M < 1, N < 1, 
KV < N or EPS < 0.0 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... ASVD1, AMACH, MGSSL  
FORTRAN basic function ... None 

• Notes 
Note that the transposed matrix (A+)T instead of the 
generalized inverse A+ is placed on A. 
   Singular values are non-negative.  They are stored in 
descending order. 
   When ICON is set to 15000, unobtained singular 
values are -1.  In this case, resultant singular values 
aren’t arranged in descending order. 
   Since the EPS has direct effects on the determination 
of the rank of A, it must be specified carefully. 
   The least squares minimal norm solution of a system 
of linear equations Ax = b can be expressed as X = A+ 
b by using the generalized inverse A+.  However this 
subroutine should not be used except when generalized 
inverse A+ is required.  The subroutine LAXLM is 
provided by SSL II for this purpose. 

 
• Example 

This example obtains a generalized inverse of an m × n 
real matrix. 
1 ≤ n ≤ m ≤ 100 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),SIG(100), 
     *          V(100,100),VW(100) 
   10 READ(5,500) M,N 
      IF(M.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,M),J=1,N) 
      WRITE(6,600) M,N, 
     *  ((I,J,A(I,J),J=1,N),I=1,M) 
      CALL GINV(A,100,M,N,SIG,V,100,0.0, 
     *          VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) GO TO 10 
      WRITE(6,620) N,M, 
     *  ((I,J,A(J,I),I=1,M),J=1,N) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX'/ 
     *  6X,'ROW NUMBER=',I4,5X, 
     *  'COLUMN NUMBER=',I4/ 
     *  (10X,4('(',I3,',',I3,')',E17.7, 
     *  3X))) 
  610 FORMAT(' ',10X,'CONDITION CODE=' 
     *  ,I6) 
  620 FORMAT('1',5X, 
     *  'GENERALIZED INVERSE'/6X, 
     *  'ROW NUMBER=',I4,5X, 
     *  'COLUMN NUMBER=',I4/(10X, 
     *  4('(',I3,',',I3,')',E17.7,3X))) 
      END 
 
Method 
The n × m matrix satisfying all conditions listed in (4.1) 
with regard to an m × n real matrix A is called (Moore-
Penrose matrix) the generalized inverse of A. 



GINV 

342 

( )
( ) 









=
=

=
=

XAXA
AXAX

XXAX
AAXA

T

T  (4.1) 

A generalized inverse is uniquely defined for a real 
matrix A and is denoted by A+.  If matrix A is a square 
and nonsingular matrix, A+ is equal to A-.  Based on the 
uniqueness of generalized inverse (4.2) and (4.3) can be 
established from (4.1). 

( ) AA =
++ , (4.2) 

( ) ( )TT ++
= AA  (4.3) 

Therefore m ≥ n can be assumed without loss of 
generality. 
• Singular value decomposition and a generalized inverse 

Let the singular value decomposition of A be defined 
as follows: 

TVUA ΣΣΣΣ=  (4.4) 

   When U is an m × n matrix satisfying U T U = I, V is 
an n × n orthogonal matrix and ΣΣΣΣ is an n × n diagonal 
matrix. 
   By adding m−n column vectors to the right of U to 
produce an orthogonal matrix Uc of order m and adding 
a zero matrix with the (m−n)-th row, the n-th column to 
the lower portion of ΣΣΣΣ  to obtain a matrix ΣΣΣΣc, then the 
singular value decomposition of A can be expressed as 
follows: 

TVUA ccΣΣΣΣ=  (4.5) 

If ΣΣΣΣ is determined as follows: 

( )nσσσ ,...,,diag 21=ΣΣΣΣ  (4.6) 

then an n × n diagonal matrix ΣΣΣΣ + is expressed as shown 
in (4.7)  

( )++++ = nσσσ ,...,,diag 21ΣΣΣΣ  (4.7) 

where, 





=
>

=+

0,0
0,1

i

ii
i σ

σσ
σ  (4.8) 

   The matrix obtained by adding an n × (m-n) zero 
matrix to the right of ΣΣΣΣ + is equal to +

cΣΣΣΣ . 

   Let  T
cc UVX += ΣΣΣΣ . 

   Substituting such a X and (4.5) into (4.1), (4.1) is 
repressed as shown in (4.9) due to orthogonality of Uc 
and V. 

( )
( ) 












=

=

=
=

++

++

+++

+

cccc

cccc

cccc

cccc

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ
ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ
ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ

T

T  (4.9) 

   Thus,  due to the uniqueness of the generalized 
inverse, A+ can be defined as 

T
cc UVA ++ = ΣΣΣΣ  (4.10) 

By using the characteristics of +
cΣΣΣΣ  and definitions of Uc, 

(4.10) can be rewritten as follows: 

TUVA ++ = ΣΣΣΣ  (4.11) 

• Computational procedures 
This subroutine determines matrices U, ΣΣΣΣ and V by 
performing the singular value decomposition of A. 
   The resultant matrix U is placed in the area 
containing matrix A by subroutine ASVD1.  For 
detailed information, see an explanation of subroutine 
ASVD1. 
   A transposed matrix (A+)T corresponding to A+ is 
placed in the area containing matrix A through use of 

( ) TT
VUA ++ = ΣΣΣΣ  (4.12) 

   This subroutine tests the zero criterion for singular 
value σ i  when producting ΣΣΣΣ +. 
   The zero criterion is σ1  EPS, where σ1  is the 
maximum singular value. 
   If a singular value is less than the zero criterion, it is 
regarded as zero.  If EPS contains 0.0, this subroutine 
assumes a value of 16u as the standard value, where u 
is the unit round off. 

 
For further information, see Reference [11] and an 
explanation of the subroutine ASVD1. 



GSBK 

343 

B22-10-0402 GSBK, DGSBK 

Back transformation of the eigenvectors of the standard 
form to the eigenvectors of the real symmetric generalized 
eigenproblem 
CALL GSBK (EV, K, N, M, B, ICON) 

 
Function 
m number of eigenvectors y1, y2, ..., ym, of n order real 
symmetric matrix S are back transformed to eigenvectors 
x1, x2, ..., xm for the generalized eigenproblem Ax = λBx, 
where S is a matrix given by 

S=L-1AL-T (1.1) 

B = LLT, L is a lower triangular matrix and n ≥ 1. 
 
Parameters 
EV..... Input.  m number of eigenvectors of real 

symmetric matrix S. 
Output.  Eigenvectors for the generalized 
eigenproblem Ax = λBx.  Two dimensional 
array, EV (K, m) (See “Comments on use”). 

K..... Input.  Adjustable dimension of input EV. 
N..... Input.  Order n of real symmetric matrix S, A 

and B. 
M..... Input.  The number of eigenvalue, |M| (See 

“Comments on use”). 
B..... Input.  Lower triangular matrix L.  (See Fig. 

GSBK-1).  One dimensional array of size 
n(n+1)/2 (See “Comments on use”). 

ICON.. Output.  Condition code.  See Table GSBK-1. 
 
Table GSBK-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 EV (1, 1) = 1.0 / 
B(1) 

30000 N < |M|, K < N or M = 0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... IABS 

 
• Notes 

Output parameter B of subroutine GSCHL can be used 
as input parameter B of this subroutine. 
If input vectors y1, y2, ..., ym are normalized in such a 
way that Y TY = I is satisfied, then eigenvectors x1, 
x2, ..., xm are output in such a way that X TBX = I is 
satisfied, where Y = [y1, y2, ..., ym] and X = [x1, x2, ..., 
xm]. 
When parameter M is negative, its absolute value is 
used. 

 

Lower triangular
matrix L

Array B

2
n (n+1)

l11

lnn

lnn−1

ln1

l22

l21

l11

lnn−1 lnn

l22

ln1

l21

 
Note: Lower triangular matrix L must be stored into array B in the 

compressed storage mode for a symmetric matrix. 

Fig. GSBK-1  Correspondence between matrix L and array B 

• Example 
All eigenvalues and corresponding eigenvectors of the 
generalized eigenproblem with n order real symmetric 
matrix A and n order positive definite symmetric 
matrix B are obtained using subroutines GSCHL, 
TRID1, TEIG1, TRBK and GSBK.  n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(5050), 
     *          SD(100),E(100), 
     *EV(100,100),D(100) 
   10 READ(5,500) N,M,EPSZ,EPST 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      READ(5,510) (B(I),I=1,NN) 
      WRITE(6,600) N,M,EPSZ,EPST 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      WRITE(6,620) 
      NE=0 
      DO 30 I=1,N 
      NI=NE+1 
      NE=NE+I 
   30 WRITE(6,610) I,(B(J),J=1,NI,NE) 
      CALL GSCHL(A,B,N,EPSZ,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL TRID1(A,N,D,SD,ICON) 
      CALL TEIG1(D,SD,N,E,EV,100,M,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL TRBK(EV,100,N,M,A,ICON) 
      CALL GSBK(EV,100,N,M,B,ICON) 
      MM=IABS(M) 
      CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
 



GSBK 

344 

  500 FORMAT(2I5,2E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'**ORIGINAL ', 
     * 'MATRIX A**',11X,'** ORDER =',I5, 
     * 10X,'** M =',I3/46X,'EPSZ=',E15.7, 
     * 'EPST=',E15.7) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('1',10X,'**ORIGINAL ', 
     * 'MATRIX B**') 
  630 FORMAT(/11X,'** CONDITION CODE =',I5/) 
      END 
 
   Subroutine SEPRT in this example is used to print 
eigenvalues and eigenvectors of a real symmetric matrix.  
For details, refer to the example of subroutine SEIG1. 
 
Method 
Eigenvector y of n order real symmetric matrix S is back 
transformed to eigenvector x of the generalized 
eigenvalue problem. 

Ax = λBx (4.1) 

  where A is a symmetric matrix and B is a positive 
definite symmetric matrix.  In this case, reduction of eq. 
(4.1) to the standard form (4.2) must be done in advance. 

Sy = λy (4.2) 

   This process is shown in eqs. (4.3) to (4.6).  
Decomposing positive symmetric matrix B into 

B = LLT (4.3) 

  and substituting this into eq. (4.1), we get 

( )
( ) ( )xLxLALL

xL=xLLAL

xL=AxL

xLL=Ax

TTT1-

TTT1-

T1-

T

λ

λ

λ

λ

=-

-
 (4.4) 

  therefore, 

S = L-1AL-T (4.5) 
y = LTx (4.6) 

Since L is known, x can be obtained from eq. 
(4.6) as follows: 

yL=x T-  (4.7) 

For details see Reference [13] pp. 303-314. 



GSCHL 

345 

B22-21-0302 GSCHL, DGSCHL 

Reduction of a real symmetric matrix system Ax = λBx to 
a standard form 
CALL GSCHL (A, B, N, EPSZ, ICON) 

 
Function 
For n order real symmetric matrix A and n order positive 
definite symmetric matrix B, the generalized eigenvalue 
problem 

Ax = λBx (1.1) 

is reduced to the standard form. 

Sy = λy (1.2) 

where S is a real symmetric matrix and n ≥ 1. 
 
Parameter 
A..... Input.  Real symmetric matrix A. 

Output.  Real symmetric matrix S.  In the 
compressed storage mode for a symmetric 
matrix.  One dimensional array of size 
n(n+1)/2. 

B..... Input.  Positive definite symmetric matrix B. 
Output.  Lower triangular matrix L (See Fig. 
GSCHL-1).  In the compressed storage mode 
for a symmetric matrix.  One dimensional 
array of size n(n+1)/2. 

N..... Input.  The order n of the matrices. 
EPSZ.. Input.  A tolerance for relative accuracy test of 

pivots in LLT decomposition of B.  When 
specified 0.0 or negative value, a default value 
is taken (See “Comments on use”). 

ICON.. Output.  Condition code.  See Table GSCHL-1. 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, UCHLS, and MGSSL  
FORTRAN basic function ... SQRT 
 

• Note 
The default value for parameter EPSZ is represented as 
EPSZ = 16･u where u is the unit round-off.  (Refer to 
subroutine LSX) 
If EPSZ is set to 10-s, when a pivot has cancellation of 
more than s decimal digits in LLT decomposition of 
positive definite symmetric matrix B, the subroutine 
considers the pivot to be  relative zero, sets condition 
code ICON to 29000 and terminates the processing.  
To continue the processing even when the pivot 
becomes smaller, set a very small value into EPSZ.  
When the pivot becomes negative in LLT 
decomposition of B, B is considered not to be a  

Table GSCHL-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 A(1) = A (1) / B(1) 
B(1)=SQRT (B(1)) 

28000 Pivot became negative in 
LLT decomposition of matrix 
B.  Input matrix B is not 
positive-definite. 

Bypassed 

29000 Pivot was regarded as 
relatively zero in LLT 
decomposition of matrix B. 
The input matrix B is 
possible singular. 

Bypassed 

30000 N < 1 Bypassed 
 

Lower triangular
matrix L

Array B

2
n (n+1)

l11

lnn

lnn−1

ln1

l22

l21

l11

ln n−1 lnn

l22

ln1

l21

 
Note: The lower triangular portion of matrix L is stored into one-

dimensional array B in the compressed storage mode for a 
symmetric matrix. 

Fig. GSCHL-1  Correspondence between matrix L and array B 

positive definite matrix.  This subroutine, in this case, 
sets condition code ICON to 28000 and terminates the 
processing. 
 

• Example 
The generalized eigenvalue problem Ax = λBx with n 
order real symmetric matrix A and n order positive 
definite symmetric matrix B is reduced to a standard 
form for the eigenvalue problem using the subroutine 
GSCHL, and the standard form is reduced to a real 
symmetric tridiagonal matrix using subroutine TRID1.  
After that, the m number of eigenvalues are obtained by 
using the subroutine BSCT1.  This is for n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(5050),VW(300), 
     *     E(100),D(100),SD(100) 
   10 CONTINUE 
      READ(5,500) N,M,EPSZ,EPST 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      READ(5,510) (B(I),I=1,NN) 
 



GSCHL 

346 

      WRITE(6,600) N,M,EPSZ,EPST 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      WRITE(6,620) 
      NE=0 
      DO 30 I=1,N 
      NI=NE+1 
      NE=NE+I 
   30 WRITE(6,610) I,(B(J),J=1,NI,NE) 
      CALL GSCHL(A,B,N,EPSZ,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL TRID1(A,N,D,SD,ICON) 
      CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,640) 
      MM=IABS(M) 
      WRITE(6,650) (I,E(I),I=1,MM) 
      GO TO 10 
  500 FORMAT(2I5,2E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX A'/ 
     *11X,'** ORDER =',I5,10X,'** M =',I3, 
     *10X,'** EPSZ =',E15.7,10X,'EPST =', 
     *E15.7) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0',10X,'** ORIGINAL MATRIX B') 
  630 FORMAT(/11X,'** CONDITION CODE =',I5/) 
  640 FORMAT('0'/11X,'** EIGENVALUES') 
  650 FORMAT(5X,'E(',I3,')=',E15.7) 
      END 
 
Method 
When A is an n order symmetric matrix and B is a 
positive definite symmetric matrix, the generalized 
engenvalue problem 

Ax = λBx (4.1) 

is reduced to the standard form 

Sy = λy (4.2) 

as shown in eqs. (4.3) to (4.6) 
Since B is a positive definite symmetric matrix, it can be 
decomposed to 

B = LLT (4.3) 

  where L is a lower triangular matrix.  This 
decomposition can be uniquely determined if the 
diagonal elements of L are chosen positive.  From (4.1) 
and (4.3) 

( ) ( )xL=xLALL TTT-1 λ−  (4.4) 

  where L-T means (L-1)T or (LT)-1 
  Therefore, putting 

T-1 −ALL=S  (4.5) 
xL=y T  (4.6) 

  then eq. (4.2) can be derived. 
  The decomposition in (4.3) is done by the Cholesky 
method, that is , the elements of matrix L are successively 
obtained for each row as shown in eqs. (4.7) and (4.8) 

( )2
1

1111 bl =  (4.7) 

ni

lbl

ijlllbl

i

k
ikiiii

jj

j

k
jkikijij

,...,2

1,...,1,

2
1

1

1

2

1

1
=
























−=

−=









−=

∑

∑
−

=

−

=
 (4.8) 

where L = (lij), B = (bij) 
 
For details, see Reference [13] PP.303-314. 



GSEG2 

347 

B22-21-0201 GSEG2, DGSEG2 

Eigenvalues and corresponding eigenvectors of a real 
symmetric generalized eigenproblem Ax= λBx (bisection 
method and inversed iteration method) 
CALL GSEG2 (A, B, N, M, EPSZ, EPST, E, EV, K, 
VW, ICON) 

 
Function 
The m largest or m smallest eigenvalues of the 
generalized eigenvalue problem 

Ax = λBx (1.1) 

are obtained by bisection method, and the corresponding 
m number of eigenvectors x1, x2, ..., xm are obtained by 
the inverse iteration method, where A is an n order real 
symmetric matrix and B an n order positive definite 
symmetric matrix.  The eigenvectors satisfy. 

XTBX = I (1.2) 

where X = [x1, x2, ..., xm] and n ≥ m ≥ 1. 
 
Parameters 
A..... Input.  Real symmetric matrix A in the 

compressed mode storage for a symmetric 
matrix.  One dimensional array of size n (n + 
1)/2.  The contents will be altered on output. 

B..... Input.  Positive definite matrix B in the 
compressed storage mode for a symmetric 
matrix.  One dimensional array of size n (n + 
1)/2.  The contents will be altered on output. 

N..... Input.  Order n of real symmetric matrix A and 
positive definite symmetric matrix B. 

M..... Input.  The number m of eigenvalues obtained. 
M = + m .... The number of largest 
eigenvalues desired. 
M = − m .... The number of smallest 
eigenvalues desired. 

EPSZ.. Input.  A tolerance for relative accuracy test of 
pivots in LLT decomposition of B.  If 
specifying 0.0 or negative value, a default 
value is taken.  (See “Comments on use”). 

EPST... Input.  An absolute error tolerance used as a 
convergence criterion for eigenvalues.  If 
specifying 0.0 or negative value, a default 
value is taken.  (See “Comments on use”). 

E..... Output.  m eigenvalues, Stored in the 
sequences as specified by parameter M.  One 
dimensional array of size m. 

EV..... Output.  Eigenvectors.  The eigenvectors are 
stored in columnwise direction.  Two 
dimensional array, EV (K, m) 

K.... Input.  Adjustable dimension of array EV. 
VW.... Work area.  One dimensional array of size 7n. 
ICON.. Output.  Condition code.  See Table GSEG2-1. 
 
Table GSEG2-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 E(1)=A(1)/B(1) 
X(1, 1)=1.0/SQRT 
(B(1)) 

15000 Some eigenvectors could 
not be determined. 

The eigenvectors 
are set to zero 
vectors. 

20000 Eigenvectors could not be 
obtained. 

All the 
eigenvectors are 
set to zero 
vectors. 

28000 Pivot became negative in 
LLT decomposition of B.  
Input matrix B is not positive-
definite. 

Discontinued. 

29000 Pivot was regarded as 
relative zero in LLT 
decomposition of B.  Input 
matrix B is possible singular. 

Discontinued. 

30000 M = 0 or N < IMI or K < N Bypassed. 
 
Comments on use 
• Subprogram used 

SSL II ... GSCHL, TRID1, UTEG2, TRBK, GSBK, 
AMACH, UCHLS, and MGSSL 
FORTRAN basic functions ... IABS, SQRT, SIGN, 
ABS, AMAX1, and DSQRT 
 

• Notes 
The default value for parameter EPSZ is represented as 
EPSZ = 16･u where u is the unit round-off. 
  If EPSZ is set to 10-s, when a pivot has cancellation 
of more than s decimal digits in LLT decomposition of 
positive definite symmetric matrix B, the subroutine 
considers the pivot to be relative zero, sets condition 
code ICON to 29000 and terminates the processing.  If 
the processing is to proceed even at a low pivot value, 
EPSZ has to be given the minimum value but the result 
is not always guaranteed.  When the pivot becomes 
negative in LLT decomposition of B, B is considered 
not to be positive definite. 
  This subroutine, in this case, sets condition code 
ICON to 28000 and terminates the processing. 
  The default value for parameter EPST is  

( ),,max =EPST minmax λλu  

where u is the unit round-off, and λmax and λmin  



GSEG2 

348 

are upper and lower limits, respectively, of the existing 
range (given by the Gershgorins theorem) of 
eigenvalues obtained from Ax = λBx.  When both very 
large and small eigenvalues exist, it may be difficult to 
obtain the smaller eigenvalues with good accuracy.  It 
is possible, though, by setting a small value into EPST, 
but the computation time may increase. 
For details of the method to enter a value into EPST, 
refer to subroutine BSCT1. 

 
• Example 

This example obtains the m largest or m smallest 
eigenvalues and corresponding eivenvectors for the 
generalized eigenproblem Ax = λBx which has n order 
real symmetric matrix A and n order positive definite 
symmetric matrix B.  n ≤ 100, m ≤ 100 

 
C     ** EXAMPLE** 
      DIMENSION A(5050),B(5050),E(10), 
     *EV(100,10),VW(700) 
   10 CONTINUE 
      READ(5,500) N,M,EPSZ,EPST 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      READ(5,510) (B(I),I=1,NN) 
      WRITE(6,600) N,M,EPSZ,EPST 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
      WRITE(6,610) I,(A(J),J=NI,NE) 
   20 CONTINUE 
      WRITE(6,620) 
      NE=0 
      DO 30 I=1,N 
      NI=NE+1 
      NE=NE+I 
      WRITE(6,610) I,(B(J),J=1,NI,NE) 
   30 CONTINUE 
      CALL GSEG2(A,B,N,M,EPSZ,EPST, 
     *E,EV,100,VW,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      MM=IABS(M) 
      CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
  500 FORMAT(2I5,2E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1','OROGINAL MATRIX A',5X, 
     * 'N=',I3,' M=',I3,' EPSZ=', 
     * E15.7,' EPST=',E15.7) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('1','OROGINAL MATRIX B') 
  630 FORMAT('0',20X 'ICON=',I5) 
      END 
 
Subroutine SEPRT in this example is used to print 
eigenvalues and eigenvectors of a real symmetric matrix.  
For details, refer to the Example of subroutine SEIG1. 
 

Method 
Eigenvalues and eigenvectors of the generalized 
eigenvalue problem 

Ax = λBx (4.1) 

  which has n order real symmetric matrix A and n order 
positive definite symmetric matrix B are obtained as 
follows: 
• Reduction of the generalized eigenvalue problem into 

the standard form. 
  Since B in eq. (4.1) is a positive definite symmetric 
matrix, it can be decomposed as follows: 

B = LLT (4.2) 

where L is an n order lower triangular matrix.  This 
decomposition can be uniquely determined when the 
diagonal elements of L are chosen positive values.  
From eqs. (e.1) and (4.2), if eq. (4.1) is multiplied by 
L-1 from the left of A and by L−TLT from the right, the 
following eq. 

( ) ( )xLxLALL TTT1 λ=−−  (4.3) 

can be obtained.  Where L−T is used instead of (LT) −1 
or (L−1)T.  Putting 

T1 -ALL=S −  (4.4) 
xL=y 1−  (4.5) 

then S becomes a real symmetric matrix and eq. (4.3) 
becomes 

Sy = λy (4.6) 

which is the standard form for the eigenvalue problem. 
• Eigenvalues and eigenvectors of a real symmetric 

matrix. 
Real symmetric matrix S is reduced to real symmetric 
tridiagonal matrix, and eigenvlalue λ and 
corresponding eigenvector y ′ of T are obtained by the 
bisection method and inverse iteration method. y ′ is 
further back transformed to eigenvector y of S. 

• Eigenvectors of a generalized eigenvalue problem. 
Eigenvector x in eq. (4.1) can be obtained from the 
eigenvector y determined above, such as 

x = L−Ty (4.7) 



GSEG2 

349 

  The above processing are accomplished using 
subroutine GSCHL for the 1-st step., TRID1 and UTEG2 
for the 2nd step and GSBK for the last step. 
For details see Reference [13] pp. 303-314. 
 



HAMNG 

350 

H11-20-0121 HAMNG, DHAMNG 

A system of first order differential equations (Hamming 
method) 
CALL HAMNG (Y, N1, H, XEND, EPS, SUB, 
OUT, VW, ICON) 

 
Function 
This subroutine solves a system of first order differential 
equations: 

( ) ( )
( ) ( )

( ) ( )⎪
⎪
⎭

⎪
⎪
⎬

⎫

==′

==′
==′

0021

02202122

01102111

,,...,,,
::

,,...,,,
,,...,,,

xyyyyyxfy

xyyyyyxfy
xyyyyyxfy

nnnnn

n

n

 (1.1) 

with initial values y1(x0), y2(x0), ..., yn(x0) throughout the 
interval [x0, xe], by Hamming’s method. 
  Initially a specified stepsize is used, however it may be 
made smaller to achieve the specified accuracy, or larger 
so that the computation will proceed more rapidly, while 
still meeting the desired accuracy. 
 
Parameters 
Y..... Input.  Initial values x0, y10, y20, ..., yn0.  One-

dimensional array of size n+1.  The contents 
of Y are altered on exit. 

N1... Input.  n+1, where n is the number of 
equations in the system. 

H..... Input.  Initial step size H ≠ 0.0.  The value of 
H is changed during the computations. 

XEND.. Input.  Final value xe, of independent variable 
x.  Calculation is finished when the 
approximation at xe is obtained. 

EPS... Input.  The relative error tolerance.  If 0.0 is 
specified, the standard value is used.  (See the 
Comments and Method sections.) 

SUB... Input.  The name of subroutine subprogram 
which evaluates fi (i = 1, 2, ..., n) in (1.1).  The 
subprogram is provided by the user as follows: 
SUBROUTINE SUB (YY, FF) 
Parameters 
YY: Input.  One-dimensional array of size 

n + 1, where 
YY(1) = x, YY(2) = y1, YY(3) = y2, ..., 
YY(n+1) = yn 

FF: Output.  One-dimensional array of size 
n + 1, where 
FF(2) = f1, FF(3) = f2, 
FF(4) = f3, ..., FF(n+1) = fn 

(See the example.) 

Nothing may be substituted in FF(1). 
OUT... Input.  The name of subroutine subprogram 

which receives the approximations.  In other 
words, at each integration step with stepsize 
HH (not necessarily the same as the initial 
stepsize), subroutine HAMNG transfers the 
results to this subprogram.  This subprogram 
is provided by the user as follows: 
SUBROUTINE OUT (YY, FF, N1, HH, IS) 
Parameters 
YY: Input.  Calculated results of x, y1, ..., yn 

One-dimensional array of size n+1 
where 
YY(1) = x, 
YY(2) = y1, ...,  
YY(n+1) = yn 

FF: Input.  Calculated results of y’1, ..., yn 
..., y’2, ..., 

FF(n+1) = y’nFF(1) is usually set to 1. 
N1: Input.  n+1. 
HH: Input.  The stepsize with which yi and y’i 
were determined. 
IS: Input.  Indicator that gives relative 
magnitude of HH to the initial stepsize H. i.e. 
HH is related to H as HH = 2IS*H (See the 
Comments section.) 
If IS is set equal to -11 in the subprogram, 
calculation can terminate at that moment.  In 
this subprogram, except for parameter IS, the 
contents of the parameters must not be 
changed. 

VW..... Work area.  One-dimensional array of size 
18(n+1). 

ICON.. Output.  Condition code. 
See Table HAMNG-1. 

 
Table HAMNG-1  Condition codes 

Code Meaning Processing 
        0 No error  
10000 0.0 < EPS < 64 u, where u is 

the unit round off. 
The standard 
value (64u) is 
used for EPS, 
and processing 
is continued. 

20000 Calculation was performed 
with a stepsize 2-10 times the 
specified stepsize H, 
however, a relative error less 
than or equal to EPS could 
not be achieved. 

Terminated 

30000 N1 < 2, EPS < 0.0,  1.0 < 
EPS, or (XEND-Y(1))*H≤0.0. 

Bypassed 



HAMNG 

351 

Comments 
• Subprogram used 

SSL II...RKG,AMACH 
FORTRAN basic functions...ABS,AMAX1 

 
• Note 

SUB and OUT must be declared as EXTERNAL in the 
program from which this subroutine is called. 
  If IS becomes less than -10, ICON is set to 20000 and 
calculation is terminated. ICON is set to 0 when the 
user sets IS = -11 in subroutine OUT.EPS must satisfy 
the condition 64u≤EPS<1 

 
• Example 

Initial value problem (3.1) is obtained for H=0.1, 
XEND=5.0 and EPS=10-4 

( )
( ) 





==+=′

===′

31,24
51,

2202122

11021

yyy
x

y
x

y

yyyy
 (3.1) 

C     **EXAMPLE** 
      DIMENSION Y(3),VW(54) 
      EXTERNAL SUB,OUT 
      Y(1)=1.0 
      Y(2)=5.0 
      Y(3)=3.0 
      H=0.1 
      EPS=1.0E-4 
      WRITE(6,600) 
      CALL HAMNG(Y,3,H,5.0,EPS,SUB,OUT,VW, 
     *           ICON) 
      WRITE(6,610) ICON 
      STOP 
  600 FORMAT('1'/' ',17X,'X',15X,'Y1',14X, 
     *'Y2',14X,'F1',14X,'F2',14X,'HH',12X, 
     *'IS'//) 
  610 FORMAT(' ',20X,'ICON=',I5) 
      END 
      SUBROUTINE SUB(YY,FF) 
      DIMENSION YY(3),FF(3) 
      FF(2)=YY(3) 
      FF(3)=4.0*YY(2)/(YY(1)*YY(1))+2.0 
     *      *YY(3)/YY(1) 
      RETURN 
      END 
      SUBROUTINE OUT(YY,FF,N1,HH,IS) 
      DIMENSION YY(N1),FF(N1) 
      WRITE(6,600) (YY(I),I=1,N1),(FF(I), 
     *             I=2,N1),HH,IS 
      RETURN 
  600 FORMAT(' ',10X,6E16.8,I10) 
      END 
 
Method 
Considering the independent variables as a function; 

( ) ( )y x x y y x x0 00 0 0 0= = =,  (4.1) 

initial value problem of a system of first order ordinary 
differential equations (1.1) can be rewritten as: 

( )
( ) ( )
( ) ( )

( ) ( )
( ) 1=,...,, where

,,...,,
::

,,...,,
,,...,,
,,...,,

100

0010

02201022

01101011

0001000

n

nnnnn

n

n

n

yyyf
yyyyyyfy

xyyyyyfy
xyyyyyfy

xyyyyfy

==′

==′
==′
==′

 (4.2) 

  Then, the following vectors are introduced to simplify 
notations 

( )
( )

( ) ( ) ( ) ( )( )
( ) ( )

ni
yff

fff
yyyy

yyyy

nii

n

n

n

,...0,1,=
,...,y,ywith

,...,,
,...,,,

,...,,,

10

T
10

T
02010000

T
210

=
=
=
=

y
yyyyf

y
y

 (4.3) 

  Let the vector whose elements are yi (i=0,1,......,n) be 
represented as y'. Then (4.2) can be simplified to 

( ) ( )00 xfy,yfy ==′  (4.4) 

• Hamming's formula 
Let the approximation and true solution at x=xj, be yj 
and y(x), respectively, and their corresponding 
derivatives be y'j = f(yj) and y'(xj) = f(y(xj). 
2h,xk, the calculated solutions and derivatives 

kkkk

kkkk

yyyy
yyyy
′′′′ −−−

−−−

,,,
,,,

123

123  

are known. yk+1 is determined from quantities pk+1,mk+1 
and ck+1 through the following procedures. 

 
• Calculating pk+1 

( )2131 22
3

4
−−−+ ′+′−′+= kkkkk

h yyyyp  (4.5) 

In(4.5), value Pk+1 roughly predicts yk+1,to a degree and 
is called the predictor. By the Taylor theorem, it can be 
expanded as: 

( ) ( ) ( ) ( )[

( )] ( )1
(5)5

2

131

45
142

-2
3

4+=

ηyy

yyyy

hx

xxhxx

k

kkkk

+′+

′′

−

−−+
 (4.6) 



HAMNG 

352 

where, n1 depends on the elements of y and it lies 
between xk-3and xk+1. In (4.6), the term (14/45)h5y(5)(ηηηη1) is 
called the truncation error of pk+1. This means that even if 

iy′  and yi were true solution and derivative and there 
were no round-off errors, pk+1 has an error 
of(14/45)h5y(5)(η1). 
 
• Calculation mk+1 

( )kkkk pcpm −+= ++ 121
112

11  (4.7) 

(ck will be described later.) 
In(4.7), mk+1 is a "modified" value of pk+1, called the 
modifier. The second term on the right hand side of 
(4.7) is the estimated truncation error of pk+1(its 
derivation is not shown here.). 

 
• Calculating ck+1 

With 

( )
( ) ( )1121

11

2
8

3+9
8
1

−+−+

++

′−′+′−=

=′

kkkkkk

kk

h yymyyc

mfm
 (4.8) 

ck+1 is the finally corrected value of pk+1 called the 
corrector. Using the same rationale as in (4.6), 
truncation error in ck+1 can be derived as  
(-1/40)h5y(5)(η2). 
  If ck+1 has the specified accuracy, it is used as the 
approximation yk+1 

 
• Calculating the starting values 

In the above method, the previously-described four 
points are required. Therefore, to start the calculation, 
the values 

3210

3210

,,,
,,,
yyyy
yyyy
′′′′
′′′′
 

  must be calculated using another method. This is 
performed in this subroutine using the Runge-Kutta-Gill 
method (subroutine RKG). In calculating m4, the quantity 
c3-p3 is required, but only in this case c3-p3=0 is assumed. 
 
• Estimating the error in ck+1 

Since the truncation errors in predictor pk+1 and 
modifier ck+1 are respectively (-1/40)h5y5(η22), if the 
round-off error can be disregarded in comparison with 
these errors, it can be seen that 

( ) ( )

( ) ( )2
(5)5

1+k1

1
(5)5

1+k1

40
1=

45
14=

η

η

ycy

ypy

hx

hx

k

k

−

+

+

+
 (4.9) 

  Furthermore, if it can be assumed that y(5)(x) does not 
change greatly been η1 and η2, from (4.9) we obtain 

( ) ( ) ( )112
(5)5

1
(5)5

121
360

++ −≈≈ kkhh pcyy ηη  

  and finally the truncation error of ck+1 can be expressed 
as 

( )( ) ( )112
55

121
9

40
1

++ −−≈− kkh pcy η  (4.10) 

• Step size control 
If calculation is made with a constant stepsize, the 
desired accuracy may not be achieved at certain points. 
On the other hand, the accuracy of the results can be so 
much higher than the required accuracy that the effect 
of round-off errors is greater than that of truncation 
errors. As a result, the lower digits of yi will oscillate, 
unless the stepsize is properly controlled. Since 
truncation error of modifier ck+1 use as the 
approximation, is given in (4.10), the stepsize is 
controlled as follows: 

 
(a) If (4.11) holds with respect to all elements, ck+1 is 

used as the approximation. 

( )111 ,maxEPS
121
9

+++ ⋅≤− kkkk cypc  (4.11) 

 where, EPS is the specified tolerance for the relative 
error. Its standard value is 64u. 

  
(b) If (4.12) holds with respect to all elements, ck+1 is 

used as the approximation. 

( )111 ,maxTOL
121
9

+++ ⋅≤− kkkk cypc  (4.12) 

 where TOL=EPS/32 
 And also, the stepsize is doubled for the next step. At 

this time, the value of the previous yk-5 is needed 
again. Thus, the informations prior to yk-5 are kept as 
long as possible. 

  
(c) If (4.13) holds for a particular elements,ck+1 is not 

used as the approximation. 

( )111 ,maxEPS>
121
9

+++ ⋅− kkkk cypc  (4.13) 



HAMNG 

353 

   In this case, the current stepsize is halved, and 
calculations for the step are made again. 

   At this time, yk-1/2 and yk-3/2 are needed. Using yk-1 
and yk-2 as the starting values, the Runge-Kutta-Gill 
method is used to calculated them. 

   If the stepsize is changed due to (b) or (c), the 
quantity ck-pk is recalculated as 

(
)]3

3
8

3[
27
242

1

233

kk

kkkkkk
h

yy

yyyypc

′+′+

′+′−−=−

−

−−−  (4.14) 

   where h, yi, and h'i on the right side are all quantities 
after the stepsize has been changed. 

 
• Calculating the solution at XEND 

If the previously described method is used, the 
approximation at XEND may not necessarily be 
obtained. To make sure that it is obtained at XEND, 
this subroutine uses the following algorithm. 

 
  Assume the state just before the independent variable x 
exceeds XEND and let the value of x at that time be xi 
and the stepsize be h (Fig. HAMG-1) 

xi−1

h

XENDxi

 
Fig.HAMNG-1  Last stage(h>0) 

  The following relation exists among XEND, xi and h. 

[XEND-(xi+h)]h<0 

  When this state is reached, the Hamming method is no 
longer used. Instead, the Runge-Kutta-Gill method is 
applied using xi as the starting point. 
Calculating two approximate solutions with 
stepsize(XEND-xi)/2 and (XEND)-xi), solution ye at 
XEND is obtained as 

( ) ( ) ( )( ) 15122
eeee yyyy −+=  (4.15) 

where 
 
  ye

(2) is approximate solution at XEND with stepsize 
h=(XEND-xi)/2 
  ye

(1) is approximate solution at XEND with stepsize 
h=(XEND-xi). 
 
  For further information, see Reference[70]. 



HBK1 

354 

B21-11-0602 HBK1, DHBK1 

Back transformation and normaliazation of the 
eigenvectors of a real Hessenberg matrix. 
CALL HBK1(EV,K,N,IND,M,P,PV,DV,ICON) 

 
Function 
Back transformation is performed on m eigenvectors of 
an n-order real Hessenberg matrix H to obtain the 
eigenvectors of a real matrix A. Then the resulting 
eigenvectors are normalized such that x

2
1= . H is 

obtained from A using the Householder method. 
1≤m≤n. 
 

Parameters 
EV...... Input. m eigenvectors of real Hessenberg 

matrix H(see "Comments on use"). 
EV is a two-dimensional array, EV(K,M) 
Output. Eigenvectors of real matrix A. 

K...... Input. Adjustable dimension of array EV and P. 
N...... input. Order n of real Hessenberg matrix H. 
IND...... Input. Specifies, for each eigenvector, whether 

the eigenvector is real or complex. If the J-th 
column of EV is a real eigenvector, then 
IND(J)=1,; if it is the real part of a complex 
eigenvector, then IND(J)=-1, if it is the 
imaginary part of a complex eigenvector, then 
IND(J)=0. 
IND is a one-dimensional array of size M. 

M...... Input. Size of array IND. 
P...... Input. Transformation matrix provided by 

Householder method (see "Comments on use"). 
P(K,N) is a two-dimensional array. 

PV...... Input. Transformation matrix provided by 
Householder method (see "Comments on use"). 

DV...... Input. Scaling factor used for balancing of 
matrix A. DV is a one-dimensional array of 
size n. 
If matrix A was not balanced, DV=0.0 can be 
specified since it need not be a one-
dimensional array. 

ICON...... Output. Condition code. See Table HBK1-1. 
 
Table HBK1-1  Condition codes 

Code Meaning Processing 
        0 No error  
10000 N=1 EV(1,1)=1.0 
30000 N<M,M<1orK<N Bypassed 

 
Comments on use 
• Subroutines used 

SSL II......NRML, and MGSSL 
FORTRAN basic functions......ABS and SQRT 

• Notes 
Eigenvectors are stored in EV such that each real 
eigenvector occupies one column and each complex 
eigenvector occupies two columns (one for the real part 
and one for the imaginary part). 
Refer to Fig. HBK1-1. After subroutine HVEC is 
executed, parameters EV, IND, and M can be used as 
input parameters to this routine. 

1

EV

IND −1 −1 0101

1

Real eigenvector
Real part of a complex
eigenvector

Imaginary part of a
complex eigenvector

Real eigenvector

Number of eigenvectors

2 3

2

MM−14

m3

Real part of a
complex
eigenvector

Imaginary part
of a complex
eigenvector

 
Fig. HBK1-1  Relationship between IND and EV 

( )

( )

( )

( ) ( ) ( )

P PV
× ×

× ×

× ×





























+

−

−
−

σ

σ

σ

1

1
2

31
1

41
1 1

2

2

2

1
2

1
1

2
2

a
a

a

a a a

k

k k
k

n

n nk
k

nn
n

( )

( )

( )

×
±

±

±
×

































+

− −
−

−

a

a

a

k k
k

k

n n
n

n

21
1

1

1
2

1

1
2

1 2
2

2

1
2

σ

σ

σ

 

 

Note: × is not used. 

Fig. HBK1-2  Input format of P and PV 

  Parameters A and PV of subroutine HES1 correspond to 
P and PV of this routine and can be used as input 
parameters to this routine. 
The information of the transformation matrix in the 
Householder method should be entered in P and PV as 
shown in Fig. HBK1-2. 
aij

(k) are elements of Ak used in  

2,...,2,1,T
1 −==+ nkkkkk PAPA  (3.1) 

σσσσk are determined by 

( )( ) ( )( ) ( )( )22
2

2
1 ... k

kn
k

kk
k

kkk aaa +++= ++σ  (3.2) 



HBK1 

355 

  For further information, refer to the section on HES1. 
  Refer to the section on BLNC for the contents of scaling 
factor DV. 
 
• Example 

Eigenvalues and eigenvectors of an n-order real matrix 
are calculated using the following subroutines. 
Eigenvectors are calculated in the order that the 
eigenvalues are determined. 
BLNC... balances an n-order real matrix 
HES1... reduces a balanced real matrix to a real 

Hessenberg matrix 
HSQR... determines eigenvalues of a real Hessenberg 

matrix. 
HVEC... determines eigenvectors of a real 

Hessenberg matrix 
HBK1... back transforms eigenvectors of a real 

Hessenberg matrix into eigenvectors of a 
real matrix, then normalizes the resultant 
eigenvectors. 

 
n≤100, m≤10 
 
C     **EXAMPLE** 
      DIMENSION A(100,100),DV(100), 
     *PV(100),IND(100),ER(100),EI(100), 
     *AW(100,104),EV(100,100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL BLNC(A,100,N,DV,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      CALL HES1(A,100,N,PV,ICON) 
      MP=N 
      DO 35 II=1,N 
      I=1+N-II 
      DO 30 J=1,MP 
   30 AW(J,I)=A(J,I) 
   35 MP=I 
      CALL HSQR(AW,100,N,ER,EI,M,ICON) 
      WRITE(6,620)ICON 
      IF(ICON.EQ.20000) GO TO 10 
      DO 40 I=1,M 
   40 IND(I)=1 
      CALL HVEC(A,100,N,ER,EI,IND,M,EV,100, 
     *AW,ICON) 
      WRITE(6,620)ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL HBK1(EV,100,N,IND,M,A,PV,DV,ICON) 
      CALL EPRT(ER,EI,EV,IND,100,N,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX' 
     * //11X,'** ORDER =',I5) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     *E14.7)) 
  620 FORMAT(/11X,'** CONDITION CODE =',I5/) 
      END 
  In this example, subroutine EPRT is used to print the 
eigenvalues and corresponding eigenvectors of the real 
matrix.  For further information see the example in the 
EIG1 section. 
 

Method 
Back transformation of the eigenvectors of a real 
Hessenberg matrix H to the eigenvectors of the balanced 
real matrix ~A  and back transformation of the 
eigenvectors of ~A  to the eigenvectors of the real matrix 
A are performed.  The resulting eigenvectors are 
normalized such that x

2
1= . 

  The real matrix A is balanced using the diagonal 
similarity transformation shown in (4.1).  The balanced 
real matrix ~A  is reduced to a real Hessenberg matrix 
using the Householder method which performs the (n-2) 
orthogonal similarity transformations shown in (4.2). 

~A D AD= −1  (4.1) 

(where D is a diagonal matrix.) 

221
T

1
T

2
T

2 ...~... −−= nn PPPAPPPH  (4.2) 

(where iiii hTuuIP −= ) 
 
  Let eigenvalues and eigenvectors of H be λ and y, then 
obtain 

Hy = λy (4.3) 

  From (4.1) and (4.2),(4.3) becomes: 

yyPPADPDPPP λ=−
−

− 221
1T

1
T

2
T

2 ...... nn  (4.4) 

  If both sides of (4.4) are premultiplied by DP1P2 ... Pn-2, 

yPPDLPyPPADP 221221 ...... −− = nn λ  (4.5) 

  results, and eigenvectors x of A becomes 

yPPDPx 221 ... −= n  (4.6) 

  which is calculated as shown in (4.7) and (4.8). 
However, y=xn-1. 

( ) 1,2,...,2,1
T

1

1

−=−=

=

++

+

nih iiiii

ii

xuux

xPx
 (4.7) 

x Dx= 1  (4.8) 

  For further information on the Householder method and 
balancing, refer to the sections on HES1 and BLNC. 
NRML is used to normalize the eigenvectors.  For details, 
see Reference [13] pp339-358 



HEIG2 

356 

B21-25-0201 HEIG2, DHEIG2 

Eigenvalues and corresponding eigenvectors of a 
Hermitian matrix (Householder method, bisection method 
and inverse iteration method) 
CALL HEIG2(A,K,N,M,E,EVR,EVI,VW,ICON) 

 
Function 
The m largest or m smallest eigenvalues of an n-order 
Hermitian matrix A are obtained using the bisection 
method, where 1≤m≤n.  Then the corresponding 
eigenvectors are obtained using the inverse iteration 
method.  The eigenvectors are normalized such that 
x

2
1= . 

 
Parameters 
A...... Input.  Hermitian matrix A in the compressed 

storage mode.  Refer to "2.8 Data Storage".  A 
is a two-dimensional array, A(K,N).   The 
contents of A are altered on output. 

K...... Input. Adjustable dimension of array A,EVR, 
and EVI(≥n). 

N...... Input. Order n of the Hermitian matrix. 
M...... Input. 

M=+m... The number of largest eigenvalues 
desired. 
M=-n... The number of smallest eigenvalues 
desired. 

E...... Output. Eigenvalues. 
One dimensional array of size m. 

EVR,EVI 
Output. The real part of the eigenvectors are 
stored into EVR and the imaginary part into 
EVI both in columnwise direction. The l-th 
element of the eigenvector corresponding to 
the j-th eigenvalue E(J) is represented by 
EVR(L,J)+i⋅EVI(L,J), where i= −1 . EVR and 
EVI are two dimensional arrays EVR(K, m), 
and EVI(K, m). 

VW...... Work area. One dimensional array of size 9n. 
ICON...... Output. Condition code. See Table HEIG2-1. 
 
Comments on use 
• Subprograms used 

SSL II...TRIDH, TEIG2, TRBKH, AMACH, MGSSL, 
and UTEG2 
FORTRAN basic functions ... IABS,SQRT,ABS, and 
AMAX1. 

 
• Note 

This subroutine is provided for a Hermitian matrix and 
not for a general complex matrix. 
  This subroutine should be used to obtain both eigen 
values and eigenvectors. For determining only 
eigenvalues, subroutines TRIDH and BSCT1 

Table HEIG2-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N=1 E(1)=A(1,1) 
EVR(1,1)=1.0 
EVI(1.1)=0.0 

15000 Some eigenvectors could 
not be determined. 

The 
eigenvectors 
are set to zero 
vectors. 

20000 None of eigenvectors could 
be determined. 

All the 
eigenvectors 
are set to zero 
vectors. 

30000 M=0,N<|M| or K<N Bypassed 
 
  should be used. 
 
• Example 

The m largest (or smallest) eigen values of n-order 
Hermitian matrix A as well as the corresponding 
eigenvectors are obtained in this example for n≤100 
and m≤ 10. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),E(10), 
     * EVR(100,10),EVI(100,10),VW(900) 
   10 CONTINUE 
      READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,M 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL HEIG2(A,100,N,M,E,EVR,EVI,VW, 
     *           ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      MM=IABS(M) 
      CALL HEPRT(E,EVR,EVI,100,N,MM) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'///40X,'**ORIGINAL MATRIX**' 
     * 5X,'N=',I3,5X,'M=',I3//) 
  610 FORMAT(/4(4X,'A(',I3,',',I3,')=', 
     * E15.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 
Subroutine HEPRT used in above example is for printing 
eigenvalues and eigenvectors of a Hermitian matrix, 
shown as follows: 
 
      SUBROUTINE HEPRT(E,EVR,EVI,K,N,M) 
      DIMENSION E(M),EVR(K,M),EVI(K,M) 
      WRITE(6,600) 
      DO 10 I=1,M 
   10 WRITE(6,610) I,E(I) 
      KAI=(M-1)/3+1 
      LST=0 
      WRITE(6,620) 
      DO 20 I=1,KAI 
      INT=LST+1 
      LST=LST+3 
      IF(LST.GT.M) LST=M 
 



HEIG2 

357 

      WRITE(6,630) (J,J=INT,LST) 
      WRITE(6,640) 
      DO 20 J=1,N 
   20 WRITE(6,650) J,(EVR(J,L),EVI(J,L), 
     *             L=INT,LST) 
      RETURN 
  600 FORMAT('1'///5X,'**HERMITIAN ', 
     * 'MATRIX**',///5X,'**EIGENVALUES**'/) 
  610 FORMAT(5X,'E(',I3,')=',E20.8) 
  620 FORMAT('0',///5X,'**EIGENVECTORS**'//) 
  630 FORMAT('0',3X,3(20X,'X(',I3,')', 14X)) 
  640 FORMAT(//13X,3('REAL PART',10X, 
     * 'IMAG. PART',11X)) 
  650 FORMAT(1X,I3,6E20.8) 
      END 
 
Method 
Eigenvalues and eigenvectors of n order Hermitian 
matrix A are obtained through the following procedures: 
• Reduction of the Hermitian matrix to a real symmetric 

tridiagonal matrix. 
This is done first by reducting the Hermitian matrix A 
to Hermitian tridiagonal matrix H using the 
Householder method, 

H=P *AP (4.1) 

 then by reducing it further to a real symmetric 
tridiagonal matrix T by diagonal unitary transformation, 

T=V *HV (4.2) 

 where P is a unitary matrix and V is a diagonal unitary 
matrix. 

 
• Eigenvalues and eigenvectors of the real symmetric 

tridiagonal matrix 
m eigenvalues of T are obtained by the bisection 
method, then the corresponding eigenvector y is 
obtained using the inverse iteration method. The 
inverse iteration method solves 

( ) ,...2,1,1 ==− − ryyIT rrµ  (4.3) 

 repeatedly to get eigenvector y, where µ is the 
eigenvalue obtained by the bisection method and y0 is 
an appropriate initial vector. 

• Eigenvectors of the Hermitian matrix Eigenvector x of 
A can be obtained using eigenvector y obtained in (4.3) 
as 

x=PVy (4.4) 

  Eq. (4.4) is the back transformation of eqs. (4.1) and 
(4.2). The above three are performed with subroutines 
TRIDH,TEIG2 and TRBKIH respectively. For details, 
see references[12], [13] pp. 259-269, and [17]. 



HES1 

358 

B21-11-0302  HES1,DHES1 

Reduction of a real matrix to a real Hessenberg matrix 
(Householder method) 
CALL HES1(A,K,N,PV,ICON) 

 
Function 
An n-order real matrix A is reduced to a real Hessenverg 
matrix H using the Householder method (orthogonal 
similarity method). 

H=P TAP 

P is the transformation matrix n≥1. 
 
Parameters 
A...... Input. Real matrix A. 

Output. Real Hessenberg matrix H and 
transformation matrix P. (See Fig. HES1-1) 
A is a two-dimensional array A (K, N) 

K...... Input. Adjustable dimension of array A(≥n) 
N...... Input. Order n of real matrix A. 
PV...... Output. Transformation matrix P (See Fig. 

HES1-2). 
PV is a one-dimensional array of size n. 

ICON... Output. Condition code. 
See Table HES1-1. 

 

( )

( ) ( ) ( )

A PV∗ ∗
∗ ∗ ∗

∗ ∗





























+

−
−

a
a

a

a a a

k k
k

n n k
k

n n
n

31
1

41
1

2

1
1

2
2

( )

( )

×
±

±

±
×

































+

− −
−

−

a

a

a

k k
k

k

n n
n

n

21
1

1

1
2

1

1
2

1 2
2

2

1
2

σ

σ

σ

 

Note: The section indicated with * is the Hessenberg matrix; the 
rest contains some information for the transformation 
matrix. X indicates work areas. 

Fig HEW1-1  A and PV after Householder transformation 

Table HES1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N=1 or N=2 Transformation 
is not 
performed. 

30000 K<N or N<1 Bypassed 

Comments on use 
• Subprograms used 

SSL II ... AMACH, and MGSSL 
FORTRAN basic functions ... ABS, DSQRT, and 
SIGN 

 
• Notes 

Output arrays A and PV are necessary for determining 
the eigenvalues and corresponding eigenvectors of real 
matrix A. 
  The precision of eigenvalues is determined in the real 
Hessenberg matrix transformation process. For that 
reason, this subroutine has been implemented so that 
real Hessenberg matrices can be determined at as high 
a precision as possible; however, in case of matrix 
containing very large and very small eigenvalues, the 
precision of the smaller values, some of which are 
difficult to precisely determine tends to be more 
affected by the reduction process. 

 
• Example 

After an n-order real matrix is reduced to a real 
Hessenberg matrix, subroutine HSQR is used to 
determine the eigenvalues. n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),PV(100), 
     *          ER(100),EI(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL HES1(A,100,N,PV,ICON) 
      WRITE(6,620) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,610) ((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      CALL HSQR(A,100,N,ER,EI,M,ICON) 
      WRITE(6,640) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.20000) GO TO 10 
      WRITE(6,650) (I,ER(I),I,EI(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX' 
     * //11X,'** ORDER =',I5/) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     * E14.7)) 
  620 FORMAT('0'/11X,'** HESSENBERG MATRIX') 
  630 FORMAT(/11X,'** CONDITION CODE =',I5/) 
  640 FORMAT('0'/11X,'** EIGENVALUES') 
  650 FORMAT(5X,'ER(',I3,')=',E14.7, 
     * 5X,'EI(',I3,')=',E14.7) 
      END 
 



HES1 

359 

Method 
An n-order real matrix A is reduced to a real Hessenberg 
Matrix through n-2 iterations of the 
orthogonal similarity transformation. 

2,...,2,1,T
1 −==+ nkkkkk PAPA  (4.1) 

  where, A1=A.Pk is the transformation (and orthogonal) 
matrix. 
  When transformation is completed, An-1 is in the real 
Hessenberg matrix. 
  The k-th transformation is performed according to the 
following procedure: Let   ( )( )k

ijk a=A  

( )( ) ( )( ) ( )( )22
2

2
1 ... k

kn
k

kk
k

kkk aaa +++= ++σ  (4.2) 
( ) ( ) ( )( )k

kn
k

kkk
k

kkk aaa ...,,,,0...,,0 2
21

1
T

++ ±= σu  (4.3) 
( ) 21

1 k
k

kkkk ah σσ +±=  (4.4) 

kkkk hTuuIP −=  (4.5) 

  By applying Pk in (4.5) to (4.1), ( )k
kka 2+  to  ( )k

kna  of Ak 
can be eliminated. The following precatuions are taken 
during the transformation. To avoid possible underflow 

and overflow in the computations of (4.2) to (4.4), the 
elements on the right side of (4.2) are scaled by   

( )∑
+=

n

ki

k
kia

1

 

 
• When determining uk

T of (4.3), to insure that 
cancellation cannot take place in computation of   

( ) 21
1 k

k
kka σ±+ , the sign of   21

kσ±  is taken to be that 

of   ( )k
kka 1+  

 
• Instead of determining Pk for the transformation of 

(4.1), Ak+1 if determined by (4.7) and (4.8). 

( ) kkkkkkkk hAuuAAPB TT
1 −==+

 (4.7) 

( ) T
1111 kkkkkkkk h uuBBPBA ++++ −==  (4.8) 

  The elements of uk obtained from (4.3) are stored in 
array A and one-dimensional array PV in the form shown 
in Fig.HES1-2, because transformation matrix is needed 
for determining the eigenvectors of real matrix Pk. When 
n=2 or n=1, transformation is not performed. For further 
information see Reference[13]pp.339-358. 



HRWIZ 

360 

F20-02-0201 HRWIZ,DHRWIZ 

Judgment on Hurwitz polynomials 
CALL HRWIZ(A,NA,ISW,IFLG,SA,VW,ICON) 

 
Function 
This subroutine judges whether the following polynomial 
of degree n with real coefficients is a Hurwitz polynomial 
(all zeros lies in the lefthalf plane 
Re(s)<0: 

( ) 1
1

21 +
− ++⋅⋅⋅++= nn

nn asasasasP  

  If P(s) is not a Hurwitz polynomial, the subroutine 
searches for α0 such that P(s+α) becomes a Hurwitz 
polynomial for α >α0 (≥0) 
 
Parameters 
A...... Input. Coefficents of P(s). 

One-dimensional array of size n+1, assigned 
in the order of A(1) = a1, A(2) = a2, ... ,A(n+1) 
= an+1. 

NA...... Input. Degree n of P(s). 
ISW...... Input. Control information. 

0: Only judges whether P(s) is a Hurwitz 
polynomial. 

1: Judges whether P(s) is a Hurwitz 
polynomial, and if it is not a Hurwitz 
polynomial, searches for α0. 

Others: 1 is assumed. 
IFLG...  Output Result of judgment. 

0: P(s) is Hurwitz polynomial. 
1: P(s) is not a Hurwitz polynomial. 

SA...... Output. The value of α0:0.0 if P(s) is a 
Hurwitz polynomial. 

VW...... Work area: One-dimensional array of size n+1. 
ICON...... Output. Condition code. (See Table HRWIZ-

1.) 
 
Table HRWIZ-1  Condition codes 

Code Meaning Processing 
0 No error.  

20000 Value α0 has not been found. Bypassed. 
30000 NA<1 or A(1)=0. Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II...MGSSL,AMACH 
FORTRAN basic functions...ABS,ALOG10 

• Notes 
Since the function of this subroutine relates to 
obtaining the inverse Laplace transform f(t) of a 
rational function F(s) = Q(s)/P(s), it can also be used to 
roughly check the characteristic of f(t). This means that 
F(s) has singularities in the domain of Re(s)≥0 if P(s) 
is not Hurwitz polynomial, and the value of the inverse 
transform function f(t)increases exponentially as the 
value of t approaches infinity. 
  To obtain the inverse Laplace transform f(t) of a 
rational function F(s), use subroutine LAPS1 or LAPS2 
depending on whether F(s) is known to be regular in 
the domain of Re(s)>0. (See Chapter 8 for details about 
numerical calculation of the inverse Laplace 
transforms.) 
 

• Example 
Given a polynomial P(s) = s4-12s3+54s2 -108s+81, the 
following judges whether it is a Hurwitz polynomial. 

 
C     **EXAMPLE** 
      DIMENSION A(5),VW(5) 
      NA=4 
      NA1=NA+1 
      A(1)=1.0 
      A(2)=-12.0 
      A(3)=54.0 
      A(4)=-108.0 
      A(5)=81.0 
      ISW=1 
      WRITE(6,600) NA,(I,A(I),I=1,NA1) 
      CALL HRWIZ(A,NA,ISW,IFLG,SA,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0)STOP 
      WRITE(6,620)ISW,IFLG,SA 
      STOP 
  600 FORMAT(//24X,'NA=',I3// 
     *(20X,'A(',I3,')=',E15.8/)) 
  610 FORMAT(/24X,'ICON=',I6) 
  620 FORMAT(/24X,'ISW=',I2,5X, 
     *'IFLG=',I2,5X,'SA=',E15.8) 
      END 
 
Method 
See 8.6 for details about judgment on Hurwitz 
polynomials. 



HSQR 

361 

B21-11-0402  HSQR,DHSOR 

Eigenvalues of a real Hessenberg matrix (two-stage QR 
method) 
CALL HSQR(A,K,N,ER,EI,M,ICON) 

 
Function 
All eigenvalues of an n-order real Hessenberg matrix are 
determined using the double QR method. n≥1. 
 
Parameters 
A...... Input. Real Hessenberg matrix. 

The contents of A are altered on output. 
A is a two-dimensional array, A(K,N). 

K...... Input. Adjustable dimensions of array A. 
N...... Input. Order n of the real Hessenberg matrix. 
ER,EI...... Output. Eigenvalues. The Jth eigenvalue is 

ER(J)+i･EI(J) (J=1,2, ...,M); 1−=i  
ER and EI are one-dimensional arrays of size 
n. 

M...... Output. The number of determined 
eigenvalues. 

ICON...... Output. Condition code. See Table HSQR-1. 
 
Table HSQR-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N=1 ER(1)=A(1,1) 
and EI(1)=0.0 

15000 Some of the eigenvalues 
could not be determined. 

M is set to the 
number of 
eigenvalues that 
were obtained.  
1≤M<N. 

20000 No eigenvalues could be 
determined. 

M is set to 0. 

30000 K < N or N <1 Bypassed 
 
Comments on use 
• Subprograms used 

SSLII...AMACH and MGSSL 
FORTRAN basic functions...ABS,SQRT and SIGN 

 
• Notes 

Normally, after executing subroutine HES1, this 
routine is used to determine all eigenvalues. 
If eigenvectors are also needed, array A should be 

copied onto another area before calling this routine. 
 

• Example 
After reducing an n-order real matrix to a real 
Hessenberg matrix using HES1, the eigenvalues are 
determined. n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),PV(100), 
     *          ER(100),EI(100) 
   10 READ(5,500) N 

      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL HES1(A,100,N,PV,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      CALL HSQR(A,100,N,ER,EI,M,ICON) 
      WRITE(6,630) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.20000) GO TO 10 
      WRITE(6,640) (I,ER(I),I,EI(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX' 
     * //11X,'** ORDER =',I5/) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     * E14.7)) 
  620 FORMAT(/11X,'** CONDITION CODE =',I5/) 
  630 FORMAT('0'/11X,'** EIGENVALUES') 
  640 FORMAT(5X,'ER(',I3,')=',E14.7, 
     * 5X,'EI(',I3,')=',E14.7) 
      END 
 
Method 
In the QR method, the diagonal elements become 
eigenvalues by making the subdiagonal elements of 
Hessenberg matrix A converge to zero. To accomplish 
this the orthogonal similarity transformation shown in 
(4.1) is applied repeatedly. 

As+1 = Qs
TAsQs (4.1) 

Qs is the orthogonal matrix which is uniquely determined 
in the QR decomposition shown in (4.2). Rs is an upper 
triangular matrix whose diagonal elements are positive 
real numbers. 

As = QsRs (4.2) 

  By applying Qs determined in (4.2) to (4.1), the lower 
subdiagonal elements of A gradually converge to zero. 
  Normally, to improve the rate of convergence, QR 
decomposition is applied to origin-shifted matrix (As-ksl) 
instead of As. Then orthogonal similarity transformation 
is performed. ks is the origin shift. Since both real and/or 
complex numbers are present in the eigenvalues of a real 
matrix, it is necessary to select a complex number as ks. 
As a result, complex arithmetic throughout the process is 
required. To avoid this problem, the double QR method, 
in which arithmetic is kept real, is adopted in the 
subroutine. In this case, (4.1) and (4.2) become (4.3) and 
(4.4) respectively. 

( ) ( )1
T

12 +++ = ssssss QQAQQA  (4.3) 
( )( ) ( )( )ssssssss kk RRQQIAIA 111 +++ =−−  (4.4) 



HSQR 

362 

  The left side of (4.4) is always treated as a real matrix, if 
ks and ks+1 are a pair of complex conjugate. Since product 
of orthogonal matrices is also an orthogonal matrix, 
assuming that 

1211 −+ ⋅⋅⋅== nss PPPQQQ  (4.5) 

(4.3) is converted to 

121
T

1
T

2
T

12 −−+ ⋅⋅⋅⋅⋅⋅= nsns PPPAPPPA  (4.6) 

  Pl is the transformation matrix which determines the 
element of the first column of upper triangular matrix 
Rs+1Rs during the QR decomposition in (4.4). 
Pi(i=2,3,...,n-1) is a series of transformation matrices 
determined when using the Householder method to 
transform PlAsPltoAs+2 in (4.6). 
  The process for the double QR method is described 
below. 
1) (4.7) determines whether there any elements which 

can be regarded as relative zero among lower 
subdiagonal elements an n-1,......,a21

(s) of As 

( ) ( ) ( )( )
2...,,1,

,111

−=

+≤ −−−

nnl

aaua s
ll

s
ll

s
ll  (4.7) 

 u is the unit round-off. 
  
   ( )s

lla 1−  is relative zero if it satisfies (4.7). If not, step 2 
is performed. 

(a) If ( )l n an n
s= ,  is adopted as an eigenvalue, order n of 

the matrix is reduced to n-1, and the process returns 
to step 1). If n=0, the process is terminated. 

(b) If l=n-1, two eigenvalues are obtained from the 
lowest 2×2 principal submatrix, order n of the 
matrix is reduced to n-2, and the process returns to 
step 1. 

(c) When 2≤ l <n-1, the matrix is split as shown in 
Fig.HSOR-1, the process proceeds to step 2, in this 
case, submatrix D is used for As. 































**
***
****
*****
*****
*******
*******

εεεεl












→

D0
CB

 

Note: Element ε is regarded as zero. 
Fig. HSQR-1  A direct sum of submatrices for a Hassenberg 
matrix 

2) The two eigenvalues of the lowest 2×2 principal 
submatrix are used for origin shifts. Ks and ks+1 are set 
to these values. 

3) The first column of ( )( )IAIA 1+−− ssss kk  on the left 
side of (4.4) is obtained. Since A, is Hessenberg 
matrix, its first column m1 is 

m1 = (x1, y1, x1, 0,......,0)T (4.8) 

where 

( ) ( )( ) ( ) ( )
( ) ( ) ( )( )
( ) ( )










=
−−+=

+++−=

+

++

ss
ss

sss

ss
ssss

ss

aaz
kkaaay

aakkkkaax

21321

12211211

21121111
2

111

 (4.9) 

4) P1 is determined. If the first column of upper 
triangular matrix Rs+1Rs is given by (4.10) and (4.11), 
P1 can be determined as shown in (4.12). 

( )T11 0...,,0,σ=r  (4.10) 
2

1
2

1
2

11 zyx ++±=σ  (4.11) 
T

111 2 wwIP −=  (4.12) 
( ) 211111where, rmrmw −−=  (4.13) 

   To avoid cancellation the sign of 1σ  is taken to be 
the opposite of the sign of x1. 

5) P1
TAsP1 is computed. The form of P1

TAsP1 is shown 
in Fig. HSQR-2. 

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗























 

Fig. HSQR-2  Form of  P1
T As P1 

6) P1
TAsP1 is reduced to a Hessenberg matrix using the 

Householder method. The process then returns to step 
1. (Refer to the method section HSE1 for more about 
the Householder method.) By repeating this process, 
the lowest subdiagonal elements will converge to zero, 
and eigenvalues should be obtained using (a) and (b) 
of 1. If eigenvalues can not be obtained. In (a), (b) of 
1 after 30 iterations, ICON is set to 15000 or 20000. 
For further information see References [12],[13] 
PP.359-371 and [16] PP.177-206. 



HVEC 

363 

B21-11-0502  HVEC,DHVEC  

Eigenvectors of a real Hessenberg matrix (inverse iteration 
method) 
CALL HVEC(A,K,N,ER,EI,IND,M,EV,MK,AW,ICON)  

 
Function 
Eigenvectors x which correspond to selected eigenvalues 
µ of an n-order real Hessenberg matrix A are obtained 
using the inverse iteration method.  Eigenvectors are not 
normalized. n≥1.  
 
Parameters 
A...... Input. Real Hessenberg matrix.  

A is a two-dimensional array, A(K,N) 
K...... Input. Adjustable dimension of arrays A, EV, 

and AW.  
N...... Input. Order n of the real Hessenberg matrix. 
ER,EI.. Input. Eigenvalues µ.  

The real parts of µ are stored in ER and the 
imaginary parts are stored in EI. The jth 
eigenvalue µj is represented as: 

µj=ER(j)+i⋅EI(j) 

If the j-th eigenvalue µj is complex, µj and µj+1 
should be a pair of complex conjugate 
eigenvalues. See Fig. HVEC-1. ER and EI are 
one-dimensional array of size M.  

Array EI

Array ER α 4α 3

−β2β2

α 2α 1

0.00.0

M−1
( )µ M −1

M
( )µ M

4
( )µ4

3
( )µ3

2
( )µ2

1
( )µ1

α M −1

− −β M 1βM −1

α M−1

 
Eignevalue µj=α j+iβj 

Fig. HVEC-1  Storage of eigenvalues  

IND... Input. Indicate whether or not eigenvectors are 
to be determined. When the eigenvector which 
corresponds to the jth eigenvalue µj is to be 
determined, IND(J)=1. If it is not to be 
determined, IND(J)=0. See "Comments on 
use". IND is a one-dimensional array of size M. 

M... Input. The number of eigenvalues stored in 
arrays ER and EI. 

EV... Output. Eigenvectors x. 
Eigenvectors are stored in columns of EV.  
Real eigenvectors of real eigenvalues are 
stored in one column in EV. Complex 
eigenvectors of complex eigenvalues are split 
into the real and imaginary parts and stored in 

two consecutive column. See "Comments on 
use". EV is a two-dimensional 
array,EV(K,MK). 

MK... Input. The number of columns of array EV. 
See "Comments on use". 

AW...  Work area. 
AW(K,N+4) is a two-dimensional array.  

ICON... Output. Condition code. 
See Table HVEC-1.  

 
Table HVEC-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N=1 EV(1,1)=1.0 
15000 The engenvector of some 

eigenvalue could not be 
determined. 

The IND 
information of 
eigenvectors that 
could not be 
determined is 
cleared to zero. 

16000 There are not enough 
columns in array EV to store 
all eigenvectors that were 
requested. 

Only as many 
eigenvectors as 
can be contained 
in array EV are 
computed. The 
IND information 
of those 
eigenvectors 
which could not 
be computed is 
set to zero. 

20000 No eigenvectors could be 
determined. 

All of the IND 
information is set 
to zero. 

30000 M<1,N<M or K<N Bypassed 
 
Comments on use  
• Subprograms used 

SSL II...AMACH and MGSSL.  
FORTRAN basic functions...ABS,SQRT,and SIGN  
 

• Notes  
Parameter IND and storage of eigenvectors. If arrays 
ER, EI, and IND are specified as shown in Fig. HVEC-
2, the eigenvectors which correspond to µ1, µ2, µ3, µ4, 
µ5, µ6, and µ8 are computed and then stored in array EV 
as shown in the same figure. 
Since the eigenvectors which correspond to µ3 and µ7 
are not computed, IND(3) and IND (7) are set to 0 by 
this routine. Also, since µ2 and µ6 are complex 
eigenvalues, IND(2) and IND(6) are set to -1.  
  When IND is specified as shown in Fig. HVEC-3, the 
eigenvectors are successively stored in array EV from 
the first column. In this case, note that the eigenvectors 
are closely stored in order from the first column in EV. 
  Based on the eigenvector storage described above, 
parameter MK should be set to the number of column 
required to contain the eigenvectors. If the actual 
number of columns required for the  



HVEC 

364 

eigenvectors is larger than the number specified in MK, 
as many eigenvectors as can be stored in the number of 
columns specified in MK are computed, the rest are 
ignored and ICON is set to 16000. 
  The eigenvalues used by this routine can be 
determined by subroutine HSQR. The parameters ER, 
EI and M provided by subroutine HSQR can be input 
as the parameters for this subroutine. 
  When selected eigenvectors of a real matrix are to be 
determined:  
− A real matrix is first transformed into a real 

Hessenberg matrix using subroutine HES1; 
− Eigenvalues are determined using subroutine HSQR; 
− Selected eigenvectors are determined using this 

routine; and  
− Back transformation is applied to the above 

eigenvectors using subroutine HBK1 to obtain the 
eigenvectors of a real matrix. 

Note that subroutine EIG1 can be applied in order to 
obtain all the eigenvectors of a real matrix for 
convenience. 

Array IND
(on output)

Array IND
(on input)

Array EI

Real eigenvector for λ8.

Real eigenvector for λ5.
Real eigenvector for λ4.

Imaginary part of the
complex eigenvector for λ2.

Real part of the complex
eigenvector for λ2.

Real eigenvector for λ1.

ignoredignored

Array ER

−β2 0.00.00.00.0 β2

11111111

N
K

MK

M=8

α1 α2 α3 α4 α5 α6 α7 α8

8
(µ8)

7
(µ7)

6
(µ6)

5
(µ5)

4
(µ4)

3
(µ3)

2
(µ2)

1
(µ1)

−β6β6

10−1110−11

Imaginary part of the
complex eigenvector for λ6.

Real part of the complex
eigenvector for λ6.

 
Fig. HVEC-2  IND information and eigenvectors storage (Example 1)  

− The resulting eigenvectors by this routine have not 
been normalized yet. Subroutine NRML should be 
used, if necessary, to normalize the eigenvectors. 

− When using subroutines HBK1 or NRML, 
parameters IND, M, and EV of this subroutine can be 
used as their input parameters.  

Real eigenvector for λ8.

Real eigenvector for λ5.

Imaginary part of the
complex eigenvector for λ2.

Real part of the complex
eigenvector for λ2.

(Note) The corresponding
eigenvalues appear
in Fig. HVEC-2

Array IND
(on output)

Array EV

Array IND
(on input)

100100−10

N
K

MK

0 00 001 11

1 2 3 4 5 6 7 8

 
Fig. HVEC-3  IND information and eigenvectors storage (Example 2)  

• Example  
The eigenvalues of an n-order real matrix are first 
obtained by subroutines HES1 and HSQR, then 
eigenvectors are obtained using this subroutine and 
HBK1. n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),AW(100,104), 
     *ER(100),EI(100),IND(100),EV(100,100), 
     *PV(100) 
   10 CONTINUE 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510)((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL HES1(A,100,N,PV,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      MP=N 
      DO 35 II=1,N 
      I=1+N-II 
      DO 30 J=1,MP 
   30 AW(J,I)=A(J,I) 
   35 MP=I 
      CALL HSQR(AW,100,N,ER,EI,M,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      DO 40 I=1,M 
   40 IND(I)=1 
 



HVEC 

365 

      CALL HVEC(A,100,N,ER,EI,IND,M,EV,100, 
     *     AW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL HBK1(EV,100,N,IND,M,A,PV,0.0, 
     *     ICON) 
      CALL EPRT(ER,EI,EV,IND,100,N,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX',5X, 
     * 'N=',I3) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     * E14.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 

  Subroutine ERPT used in this example is for printing 
the eigenvalues and eigenvectors of the real matrix. For 
details, see the example in section EIG1.  

 
Method 
The inverse iteration method is used to determine 
eigenvectors x which correspond to eigenvalues of an n-
order real Hessenberg matrix A. In the inverse iteration 
method, if matrix A and approximation µj for eigenvalue 
of A are given, an appropriate initial vector x0 is used to 
solve equation (4.1) iteratively. When convergence 
conditions have been satisfied, xr is determined as the 
resultant eigenvector. 

( ) ,...3,2,1,1 ==− − rx rrj xIA µ  (4.1)  

Where, r is the number of iterations, xr is the vector 
determined at the r-th iteration. 
 
  Now let the eigenvalues of an n-order matrix A be 
i(i=1,2,...,n), and the eigenvectors which correspond to λi 
be ui.  
  Since the appropriate initial vector x0 can be expressed, 
as shown in (4.2) by linear combination of ur, xr can be 
written as shown in (4.3) if all eigenvalues λi are different.  

∑
=

=
n

i
ii

1
0 ux α  (4.2) 

( ) [

( ) ( ) ]r
jj

r
jj

n

ji
i

ii

ii
r

jjr

µλµλα

αµλ

−−+

−=

∑
≠
=1

1

u

ux

 (4.3) 

  Since 1/(λj-µµµµj)r is a constant, it can be omitted and (4.3) 
is rewritten as: 

( ) ( )rjj

n

ji
i

r
jjiiiir µλµλαα −−+= ∑

≠
=1

uux  (4.4) 

Since in general   ( ) ( )λ λj j j ju u− − <<10. , (4.4) 

indicates that, if αj≠0 , as r grows greater, xr tends rapidly 
to αjµj. 

  The system of linear equations shown in (4.1) are solved 
using (4.5) after decomposition of (A-µjI) to a lower 
triangular matrix L and an upper triangular matrix U.  

1−= rr PxLUx  (4.5) 

  Where, P is the permutation matrix used for pivoting. 
(4.5) can be solved as follows.  

on)substituti(forward11 −− = rr PxLy  (4.6)  
on)substituti(backward1−= rr yUx  (4.7)  

  Since any vector may be used for initial vector x0, x0 
may be given such that y0 of (4.8) has a form such as  
y0 = (1,1,1,...,1)T.  

0
1

0 PxLy −=  (4.8)  

  Therefore, for the first iteration, the forward substitution 
in (4.6) can be omitted. In general, the eigenvectors can 
be obtained by repeating forward substitution and 
backward substitution for the second and following 
iterations. The following apply to this routine:  
1) Selection of the initial vector 

y0 in (4.10) is used for the initial vector. 

  ( )T
0 EPS1EPS1,...,EPS1,=y  (4.10)  

where  

∞Au=EPS1  (4.11)  

 And u is the unit round-off  
 
2) Method for convergence criterion  

After backward substitution, the condition in (4.12) is 
tested to determine whether the eigenvectors have 
been accepted.  

nr 1.01 ≥x  (4.12)  

 If (4.12) is satisfied, xr is accepted as the eigenvectors. 
If (4.12) is not satisfied, the initial vector is regarded 
inappropriate. A new initial vector is substituted and 
backward substitution is continued.  

3) When eigenvalues have multiple roots or close roots 
If eigenvalue µj whose eigenvector is to be 
determined and eigenvalue uj whose eigenvector has 
already been computed satisfy the condition in (4.13), 
correct eigenvectors will not be determined no matter 
how many iterations are performed.  

( )1...,,2,1EPS1 −=≤− jiij µµ  (4.13)  



HVEC 

366 

 if ij λλ =  then from (4.4) we have:  

( ) ( )
( )jik

jk

n

k
jjkkiijj

,
1

1

≠

−−++= ∑
=

µλµλααα uuux

 (4.14)  

  Therefore, as long as the same initial vector is used, 
eigenvectors x1

(j) and x1
(i) which are computed 

corresponding to jµ  and iµ  will be approximately  

equal. 
in such situations, this routine adjusts jµ  in EPS1 units, 

and when (4.15) is satisfied, jµ~ is used to compute the 
eigenvectors.  

( )1...,,2,1EPS1~ −=>− jiij µµ  (4.15)  

For further information, see References [12] and [13]. 
PP.418-439. 
 



ICHEB 

367 

E51-30-0401  ICHEB, DICHEB 

Indefinite integral of a Chebyshev series  
CALL ICHEB(A,B,C,N,ICON) 

 
Function 
Given an n-terms Chebyshev series defined on interval 
[a,b]  

( ) ( )∑
−

=







−
+−=

1

1

2n

k
kk ab

abxTc'xf  (1.1) 

this subroutine computes its indefinite integral in a 
Chebyshev series 

( ) ( )∫ ∑
=








−
+−=

n

k
kk ab

abxTc'dxxf
0

2  (1.2) 

and obtains its coefficient  { kc }. Where arbitrary 
constant  { 0c } is assumed to be zero. Σ' denotes to make 
sum but the first term only is multiplied by factor 1/2. 
  Where a≠b and n≥1. 
 
Parameters 
A...... Inputs. Lower limit a of the interval for the 

Chebyshev series. 
B...... Input. Upper limit b of the interval for the 

Chebyshev series.  
C...... Input. Coefficients{ck}.  

Stored as C(1)=c0,C(2)=c1,..., 
C(N)=cn-1. 
Output. Coefficients   { kc } for the indefinite 
integral. 
Stored as C(1)=0.0, C(2)= 1c ,..., 
C(N+1)= nc . 
One-dimensional array of size N+1. 

N...... Input.  Number of terms n. 
Output. Number of terms  n+1 of the indefinite 
integral.  

ICON... Output. Condition code. See Table ICHEB-1.  
 
Table ICHEB-1  Condition codes  

Code Meaning Processing 
0 No error  

30000 Either of the following 
occurred. 
1     N<1 
2     A=B 

Bypassed 

 
Comments on use  
• Subprograms used 

SSL II.....MGSSL 
FORTRAN basic function...FLOAT  

 

• Notes  
When a indefinite integral of an arbitrary function is 
required, this subroutine can be used together with the 
subroutine FCHEB for Chebyshev series expansion.  
The ECHEB subroutine used for evaluation of 
Chebyshev series can be subsequently called to obtain 
the integral value at point   ν∈ [a,b] in an interval. 
 
Determination of arbitrary constant  0c  of an integral  
this subroutine outputs zero as arbitrary constant  0c . If 
a constant is defined so that an indefinite integral at 
point  ν∈ [a, b]  in an interval is yv, it should be 
computed by using the subroutine ECHEB use for 
evaluation of Chebyshev series as follows: 

 
: 

CALL ICHEB(A,B,C,N,ICON) 
CALL ECHEB(A,B,C,N,V,Y,ICON) 
C(1)=(YV-Y)*2.0  

: 
 

where C(1) corresponds to c0, V corresponds to v and 
YV corresponds to yv respectively. To obtain the 
definite integral  

( ) [ ] mibaxdttf i
x

a

i
,...,2,1,,, =∈∫  (3.1) 

by changing the upper limit of the integral interval for 
function f(x), it should determines at first the value of 
arbitrary constant  0c . So that the value of the 
indefinite integral at end point a is zero and then should 
calls the subroutine ECHEB m times repeatedly. (See 
Example).  

 
  The error in an indefinite integral can be estimated by 
the absolute sum of the last two term coefficients.  

 
• Example  

The value of function  

( ) [ ]10,
10014

1~
0 2 ,x

t
dtxf

x
∈

+
+= ∫  (3.2) 

is obtained with increment 0.05 starting from x=0  
The subroutine FCHEB expands the integrand in 
Chebyshev series (required accuracy: absolute error  
5･10-5). Then this subroutine obtains an indefinite 
integral. Integral constant is determined so that the 
value of an indefinite integral where x=0 is 1/4 
The subroutine ECHEB obtains the function value at 
each step and computes the error for true value 



ICHEB 

368 

( ) xxf 10tan
10
1

4
1 1−+=  (3.3) 

 
C     **EXAMPLE** 
      DIMENSION C(258),TAB(255) 
      EXTERNAL FUN 
      EPSA=5.0E-5 
      EPSR=5.0E-5 
      NMIN=9 
      NMAX=257 
      A=0.0 
      B=1.0 
      CALL FCHEB(A,B,FUN,EPSA,EPSR,NMIN, 
     *           NMAX,C,N,ERR,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,601) (C(K),K=1,N) 
      CALL ICHEB(A,B,C,N,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) 
      WRITE(6,601) (C(K),K=1,N) 
      CALL ECHEB(A,B,C,N,A,F,ICON) 
      IF(ICON.NE.0) GO TO 20 
      C(1)=(0.25-F)*2.0 
      WRITE(6,603) 
      H=0.05 
      X=A 
   10 CALL ECHEB(A,B,C,N,X,Y,ICON) 
      IF(ICON.NE.0) GO TO 20 
      ERROR=G(X)-Y 
      WRITE(6,604) X,Y,ERROR 
      X=X+H 
      IF(X.LE.B) GO TO 10 
      STOP 
   20 WRITE(6,604) ICON 
      STOP 
  600 FORMAT('0',3X,'EXPANSION OF', 
     1' FUNCTION FUN(X)',3X,'N=',I4,3X, 
     2'ERROR=',E13.3,3X,'ICON=',I6) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'INTEGRATION OF', 
     1' CHEBYSHEV SERIES') 
  603 FORMAT('0',10X,'X',7X, 
     1'INTEGRATION ',6X,'ERROR'/) 
  604 FORMAT(1X,3E15.5) 
  605 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(X) 
      FUN=1.0/(1.0+100.0*X*X) 
      RETURN 
      END 
      FUNCTION G(X) 
      G=0.25+ATAN(10.0*X)/10.0 
      RETURN 
      END 

Method 
This subroutine performs termwise indefinite integral of 
an n-terms Chebyshev series defined on interval [a,b] and 
expresses it in a Chebyshev series. 
Given  

( ) ( )∑∫∑
=

−

=







−
−−=







−
−− n

k
kk

n

k
kk ab

abxTcdx
ab

abxTc'
0

1

0

22

 (4.1) 

Substituting the following to the left side of (4.1),  

( ) ( )

( ) ( )

( ) ( ) ( )
2,

112

2

2

11

21

10

≥








−
−

+
−=

−=

−=

−+∫
∫
∫

k
k

yT
k

yTabdxyT

yTabdxyT

yTabdxyT

kk
k

 (4.2) 

where the integral constant is omitted and  
( )

ab
abxy

−
+−= 2 , the following relation is established for 

coefficients{ck}and { kc }. 

( )
1,...,2,1

,
4

4

0

11

1

1

−−=

+−=

−=

=

+−

−

+

nnk

cc
k
abc

c
n
abc

c

kkk

nn

n

 (4.3) 

This subroutine obtains  { kc } by using an integral 
formula for Chebyshev polynomial in (4.3).  
Zero is used for arbitrary constant  0c . 
n times multiplications and divisions are required for 
obtaining an indefinite integral of n-terms series.  



IERF 

369 

I11-71-0301  IERF, DIERF 

Inverse error function erf-1(x)  
CALL IERF (X,F,ICON) 

 
Function 
This subroutine evaluates the inverse function erf -1(x) of 

the error function ( ) dtex
x t∫ −=

0

22erf
π

, using the 

minimax approximation formulas of the form of the 
polynomial and rational functions. 
Limited x <1. 
 
Parameters 
X...... Input. Independent variable x.  
F...... Output. Function value erf -1(x).  
ICON... Output. Condition code. See Table IERF-1. 
 
Table IERF-1  Condition codes  

Code Meaning Processing 
0 No error  

30000 |X|≥1 F is set to 0.0. 
 
Comments on use 
• Subprograms used 

SSL II...IERFC,MGSSL 
FORTRAN basic functions...ABS,SQRT,ALOG 

 
• Notes  

The range of argument X is limited as  |X|<1. 
  This range is the definition area of this function.  
  When considering the relationship erf -1(x)=erfc-1(1-x) 
the inverse error function may be evaluated by 
subroutine IERFC. But, if values of x are within the 
range   x ≤0.8, higher accuracy and less computation 
time are accomplished by the IERF subroutine.  

 
• Example  

A table of function values computed at x from 0 to 0.99 
with step-size 0.01 is made for erf -1(x).  

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      X=FLOAT(K-1)/100.0 
      CALL IERF(X,F,ICON) 
      IF(ICON.EQ.0)WRITE(6,610)X,F 
      IF(ICON.NE.0)WRITE(6,620)X,F,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF INVERSE ERROR', 
     * ' FUNCTION'///6X,'X',7X,'IERF(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     * E17.7,5X,'IERF=',E17.7,5X, 
     * 'CONDITION=',I10) 
      END 
 
Method 
Some approximation formulas are used for evaluation of 
the inverse error function erf -1(x), corresponding if   
x ≤0.8 or not. 

 
• x ≤0.8 

The minimax approximation in the sense of relative 
error based on the Taylor series expansion (See 
Reference[87]) of erf -1(x) at x=0 is used. 
Single precision: 

( )

( )( )2

4

0

3

0

1

8.0/1

erf

xt

tbtaxx
k

k
k

k

k
k

−=

⋅= ∑∑
==

−

 (4.1)  

Theoretical precision = 9.2 digits  
Double precision:  

( )

( )( )2

8

0

7

0

1

8.0/1

erf

xt

tbtaxx
k

k
k

k

k
k

−=

⋅= ∑∑
==

−

 (4.2)  

Theoretical precision=18.8 digits  
 
• x >0.8 

Considering the relationship erf -1(1-x)= erfc-1(1-x), it is 
computed by subroutine IERFC. For details refer to the 
descriptions of IERFC.  

 



IERFC 

370 

I11-71-0401  IERFC,DIERFC  

Inverse complementary error function erfc-1(x) 
CALL IERFC(X,F,ICON) 

 
Function 
This subroutine evaluates the inverse function erfc-1(x) of 
the complementary error function ( ) dtex

x

t∫
∞ −=

22erfc
π

 

using the minimax approximations of the form of the 
polynomial and rational functions.  
Limited 0<x<2. 
 
Parameters 
X...... Input. Independent variable x.  
F...... Input. Function value erfc-1(x).  
ICON... Output. Condition code. See Table IERFC-1.  
 
Table IERFC-1  Condition codes 

Code Meaning Processing 
        0 No error  
30000 X≤0 or X≥2 F is set to 0.0. 

 
Comments on use  
• Subprograms used 

SSL II...IERF,MGSSL  
FORTRAN basic functions...ABS, SQRT, ALOG  

 
• Notes  

The range of argument X is limited as 0<X<2. This 
range is the definition area of this function. When 
considering the relationship erfc-1(x)=erf-1(1-x) the 
inverse complementary error function may be evaluated 
by subroutine IERF. But, if values of x are within the 
range 0<x<0.2, higher accuracy and less computation 
time are accomplished by this IERFC. 

 
• Example  

A table of function values computed at x from 0.01 to 
1.00 with stepsize 0.01 is made for erfc-1(x)  

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      X=FLOAT(K)/100.0 
      CALL IERFC(X,F,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,F 
      IF(ICON.NE.0) WRITE(6,620) X,F,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF INVERSE', 
     * ' COMPLEMENTARY ERROR FUNCTION', 
     * ///6X,'X',6X,'IERFC(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     * E17.7,5X,'IERFC=',E17.7,5X, 
     * 'CONDITION=',I10) 
      END 
 

Method 
Some approximation formulas are used for evaluation of 
inverse complementary error function erfc -1(x), 
corresponding if 0<x<0.2 or if 1.8<x<2, or other. 
 
• 0<x<0.2 or 1.8<x<2 
Placing ( )( )xx −−= 2logβ  and ( ) ( )ββ Rx ⋅=−1erfc , 
the auxiliary function R(β) is evaluated using the 
minimax approximation in the sense of relative error base 
on the Strecok theory (See Reference [87]). 
 

(a) 0<x<5.10-16 or (2-5･10-16)<x<2 
Letting  dc +β  
Single precision:  

( ) ∑
=

− ⋅=
7

0

1erfc
k

k
k tax β  (4.1) 

 Theoretical precision=9.7 digits 
 where c = -4.5999961 
 d = 1.8974954 
  
 Double precision:  

( ) ∑
=

− ⋅=
16

0

1erfc
k

k
k tax β  (4.2) 

 Theoretical precision -18.9 digits 
 where c = -4.59999617941507552 
 d = 1.89749541006229975  
  
(b) 5.10-16≤x<2.5･10-3 or 2-2.510-3<x≤2-5･10-16 
 t = c･β +d  
 Single precision:  

( ) ∑∑
==

− ⋅=
4

0

4

0

1erfc
k

k
k

k

k
k tbtax β  (4.3) 

 Theoretical precision = 8.4 digits 
 where c = 0.27972881 
 d = -0.64395786  
  
 Double precision:  

( ) ∑∑
==

− ⋅=
11

0

11

0

1erfc
k

k
k

k

k
k tbtax β  (4.4) 

 Theoretical precision=18.7 digits  
 where c = 0.279728815664916161 
 d = -0.643957858131678820  
  



IERFC 

371 

(c) 2.5 10-3≤x<0.2 or 1.8<x≤1.9975  
 Letting t = c･b+d 
 Single precision:  

( ) ∑
=

− ⋅=
7

0

1erfc
k

k
k tax β  (4.5) 

 Theoretical precision = 8.9 digits 
 where c = -0.77440652  
 d = 1.7827451  

 Double precision:  

( ) ∑
=

− ⋅=
20

0

1erfc
k

k
k tax β  (4.6) 

 Theoretical precision = 18.5 digits  
 where c = -0.774406521186630830  
 d = 1.78274506157390808  

 
• 0.2≤x≤1.8  

Considering the relationship erfc-1(x) = erf-1(1-x), it is 
computed by subroutine IERF. For details refer to the 
descriptions of IERF. 



IGAM1 

372 

I11-61-0101 IGAM1, DIGAM1 

Incomplete Gamma Function of the first kind γ(v,x) 
CALL IGAM1(V,X,F,ICON) 

 
Function 
This subroutine computes incomplete Gamma function of 
the first kind,  

( ) dttex
x t∫ −−=

0

1, ννγ  

by series expansion, asymptotic expansion, and numerical 
integration, where v>0, x≥0. 
 
Parameters 
V...... Input. Independent variable v.  
X...... Input. Independent variable x.  
F...... Output. Value of γ (v, x).  
ICON... Output. Condition code. See Table IGAM1-1 
 

Table IGAM1-1  Condition codes 

Code Meaning Processing 
        0 No error  
30000 V≤0 or X<0 F=0.0 

 
Comments on use  
• Subprograms used 

SSL II...AFMAX,AMACH,EXPI,IGAM2,MGSSL,and 
ULMAX  
FORTRAN basic functions...FLOAT,EXP, and 
GAMMA 

 
• Notes  

When X≥23.0(for single precision) or X≥46.0(for 
double precision), the value of γ (v, x) may be obtained 
simply by the complete GAMMA(v) function in the 
FORTRAN basic function, because γ (v,x) ≈ Γ  (v) in 
the above ranges.  

 
• Example  

The following example generates a table of γ (v,x) for 
v,x=a+b, where a=0,1,2 and b=0.1,0.2,0.3.  

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 20 IV=1,9 
      V=FLOAT(IV+7*((IV-1)/3))/10.0 
      DO 10 IX=1,9 
      X=FLOAT(IX+7*((IX-1)/3))/10.0 
      CALL IGAM1(V,X,F,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) V,X,F 
      IF(ICON.NE.0) WRITE(6,620) V,X,F,ICON 
   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF', 
     *' INCOMPLETE GAMMA FUNCTION' 
     *//5X,'V',9X,'X',10X,'FUNC'/) 
  610 FORMAT(' ',2F10.5,E17.7) 
  620 FORMAT(/' ','** ERROR **',5X,'V=', 
     *F10.5,5X,'X=',F10.5,5X,'IGAM1=', 
     *E17.7,5X,'CONDITION=',I10/) 
      END 
 
Methods  
  Two different approximation formulas are used 
depending upon the ranges of x divided at x1=3.5(or 5.5 
for double precision). 
 
• For x≤2(v+1) or x<x1 

The computation is based on  

( ) ( )( ) ν
ννν

νγ ν













+
++

+
+

+= − ...
211

1,
2xxexx x  (4.1) 

  The value of γ (v,x) is computed as a partial sum of the 
first N terms with N being taken large enough so that the 
last term no longer affects the value of the partial sum 
significantly.  
 
• For x>2(v+1)and x≥x1 

The computation is based on  

( ) ( ) ( )xx ,, νΓνΓνγ −=  (4.2) 

  where Γ(v) is computed by calling GAMMA, which is 
one of the FORTRAN basic functions, and F(v,x) is 
computed by subroutine IGAM2.  
  For further information, see Reference [85] pp.14-16 



IGAM2 

373 

I11-61-0201  IGAM2, DIGAM2 

Incomplete Gamma Function of the second kind Γ(v,x)  
CALL IGAM2(V,X,F,ICON) 

 
Function 
This subroutine computes incomplete Gamma function of 
the second kind  

( ) ( ) dttxeedttex tx

x

t ∫∫
∞ −−−∞ −− +==

0

11, νννΓ  

by series expansion, asymptotic expansion, and numerical 
integration, where v≥0,x≥0(x≠0 when v=0). 
 
Parameters 
V...... Input. Independent variable v.  
X...... Input. Independent variable x.  
F...... Output. Value of Γ  ( v.x).  
ICON... Output. Condition code. See Table IGAM2-1 
 
Table IGAM2-1  Condition codes 

Code Meaning Processing 
        0 No error  
20000 xv-1e-x>flmax F=flmax 
30000 V<0,X<0 or V=0 and X=0 F=0.0 

 
Comments on use  
• Subprograms used 

SSL II...AFMAX,AMACH,MGSSL,EXPI, and 
ULMAX  
FORTRAN basic functions...FLOAT,EXP,GAMMA, 
and ATAN  

 
• Notes  

For X≥log(flmax), the value or Γ  (v,x) becomes smaller 
enough to underflow.  
The condition, xv-1e-x>log(flmax) will hold when x>1 and 
v is very large. Then, the value of Γ  (v,x) overflows. 

 
• Example  

The following example generates a table of Γ  (v,x) for 
v,x=a+b, where a=0,1,2 and b=0.1,0.2,0.3.  

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 20 IV=1,9 
      V=FLOAT(IV+7*((IV-1)/3))/10.0 
      DO 10 IX=1,9 
      X=FLOAT(IX+7*((IX-1)/3))/10.0 
      CALL IGAM2(V,X,F,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) V,X,F 
      IF(ICON.NE.0) WRITE(6,620) V,X,F,ICON 

   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF', 
     *' INCOMPLETE GAMMA FUNCTION' 
     *//5X,'V',9X,'X',10X,'FUNC'/) 
  610 FORMAT(' ',2F10.5,E17.7) 
  620 FORMAT(/' ','** ERROR **',5X,'V=', 
     *F10.5,5X,'X=',F10.5,5X,'IGAM2=', 
     *E17.7,5X,'CONDITION=',I10/) 
      END 
 
Methods  
  Since Γ  (v,x) is reduced to an exponential integral when 
v=0 and x>0, subroutine EXPI is used; where as it is the 
complete Gamma function when v>0 and x=0, so the 
FORTRAN basic function GAMMA is used. The 
calculation procedures for v>0 and x>0 are described 
below.  
Two different approximation formulas are used 
depending upon the ranges of x divided at x1=20.0(or 
40.0 for double precision). 
 
• When v=integer or x>x1 

The computation is based on the following asymptotic 
expansion:  

( ) ( )( )

( ) ( )


⋅⋅⋅+−⋅⋅⋅−+⋅⋅⋅



 +−−+−+= −−

n

x

x
n

xx
exx

νν

ννννΓ ν

1

2111, 2
1

 (4.1) 

  The value of Γ  (v,x) is computed as a partial sum of the 
first n terms, either with n being taken large enough so 
that the last term no longer affects the value of the partial 
sum significantly, or with n being take as the largest 
integer to satisfy n≤v+x.  
 
• When v≠integer and x≤x1 

The computation is based on the following 
representation:  

( )

( )( ) ( )

( )( ) ( ) ( )xmm
x

m
x

exx

m

x

,21

121

11,

1

1

−−⋅⋅⋅−−+


+−⋅⋅⋅−−+⋅⋅⋅



 +⋅⋅⋅+−+=

−

−−

νΓννν

ννν

ννΓ ν

 (4.2) 

  Where m is the largest integer to satisfy m≤v. When v<1, 
the firt term is regarded as 0, and (v-1)(v-2)......(v-m)=1. 
And, because 0<v-m<1, Γ  (v-m,x), in the second term can 
be expressed as:  



IGAM2 

374 

( ) ( ) dttxeexmv mvtx ∫
∞ −−−− +=−
0

1,Γ  (4.3) 

This integral, since function(x+1)v-m-1 has a certain 
singularity, can be calculated efficiently by the double 
exponential formula for numerical integration. (See 
Reference [68].) For further information, see Reference 
[85]. 



INDF 

375 

I11-91-0301  INDF, DINDF 

Inverse normal distribution function φ-1(x)  
CALL INDF(X,F,ICON)  

 
Function 
This subroutine computes the value of inverse function  
φ -1(x) of normal distribution  

function   ( ) ∫ −=
x t dtex

0

22

2
1
π

φ  by the relation, 

( ) ( )φ− −=1 12 2x xerf  (1.1) 

where  x <1 2 .  
 
Parameters 
X...... Input. Independent variable x 
F...... Output. Function value φ -1(x) 
ICON... Output. Condition code  

See Table INDF-1 
 
Table INDF-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 |x| ≥ ½ F=0.0 
 
Comments on use  
• Subprograms used 

SSL II...IERF,IERFC,MGSSL  
FORTRAN basic functions...ABS,SQRT,ALOG 

 
• Notes  

x <1 2  
  The value of φ -1(x) can be obtained by the subroutine 
INDFC if the following relation is used. 

( ) ( )φ ψ− −= −1 1 1 2x x  (3.1)  

  Note that in the range of  x ≤ 0 4. , however, this leads 
to less accurate and less efficient computation than 
calling INDF.  

• Example  
The following example generates a table of φ -1(x) in 
which x varies from 0.0 to 0.49 with increment 0.01.  

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,50 
      X=FLOAT(K-1)/100.0 
      CALL INDF(X,F,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,F 
      IF(ICON.NE.0) WRITE(6,620) X,F,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF INVERSE NORMAL' 
     *,' DISTRIBUTION FUNCTION' 
     *//6X,'X',7X,'INDF(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=',E17.7 
     *,5X,'INDF=',E17.7,5X,'CONDITION=',I10) 
      END 
 
Method 
There exists the relation (4.1) between φ (t) and erf(t), the 
error function. 

( ) ( )φ t t t= −∞ < < ∞erf 2 2 ,  (4.1) 

Letting both sides of (4.1) be x, we see t=φ-1(x) from 
φ(t)=x, or   ( )xt 1erf2 −=  from   ( )erf 2t x2 = .  

Therefore  

( ) ( )φ− −=1 12 2x xerf  (4.2) 

This subroutine computes φ -1(x) based on (4.2) by using 
the subroutine IERF. 



INDFC 

376 

I11-91-0401  INDFC, DINDFC 

Inverse complementary normal distribution function  
ψ-1(x)  
CALL INDFC(X,F,ICON) 

 
Function 
This subroutine computes the value of inverse function ψ-

1(x) of complementary normal distribution  

function   ( ) dtex
x

t∫
∞

= 22

2
1
π

ψ  by the relation, 

( ) ( )ψ − −=1 12 2x xerfc  (1.1) 

0<x<1  
 
Parameters 
X...... Input. Independent variable x 
F...... Output. Function value ψ-1(x) 
ICON... Output. Condition code  

See Table INDFC-1  
 
Table INDFC-1  Condition codes  

Code Meaning Processing 
0 No error  

30000 X≤0 or X≥1 F=0.0 
 
Comments on use  
• Subprograms used 

SSL II...IERFC,IERFC,MGSSL 
FORTRAN basic functions...ABS,SQRT,ALOG 

 
• Notes  
0<x<1. 
  The value of ψ -1(x) can be obtained by the subroutine 
INDF if the following relation is used.  

( ) ( )ψ φ− −= −1 1 1 2x x  (3.1)  

  Note that in the range of 0<x<0.1, however, this leads to 
less accurate and less efficient computation than calling 
INDFC. 
 
• Example  

The following example generates a table of ψ -1(x) in 
which x varies from 0.01 to 0.50 with increment 0.01. 

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,50 
      X=FLOAT(K)/100.0 
      CALL INDFC(X,F,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,F 
      IF(ICON.NE.0) WRITE(6,620) X,F,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF INVERSE COMPL', 
     * 'EMENTARY NORMAL DISTRIBUTION ', 
     * 'FUNCTION'//6X,'X',7X,'INDFC(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     * E17.7,5X,'INDFC=',E17.7,5X, 
     * 'CONDITION=',I10) 
      END 
 
 
Method 
There exists the relation (4.1) between ψ(t) and erf(t), the 
error function. 

( ) ( )ψ t t t= −∞ < <∞erfc 2 2,  (4.1) 

Letting both sides of (4.1) be x, we see t=ψ -1(x) from 
ψ(t)=x or ( )xt 2erfc2 1−=  from ( ) xt =22erfc .  
Therefore  

( ) ( )ψ − −=1 12 2x xerfc  (4.2) 

This subroutine computes ψ-1(x) based on (4.2) by using 
the subroutine IERFC subroutine. 



INSPL 

377 

E12-21-0101 INSPL, DINSPL 

Cubic spline interpolation coefficient calculation 
CALL INSPL(X,Y,DY,N,C,D,E,ICON) 

 
Function 
Given discrete points x1, x2, ..., xn (x1<x2<...<xn), their 
corresponding function values yi=f(xi), i=1,...,n, and the 
second derivatives at both ends y1'' and ym'', this 
subroutine obtains the interpolating cubic spline 
represented as (1.1) below to f(x). 

( )

( ) ( )

( ) ( )
( )

( ) ( )

















−+−+

>
−+

−+−+

−=≤≤
−+−+

<

=
+

2

3

2
1

2
11111

1

When   

  When1,...,1,

When   

nnnnn

n

ii

iiiii

ii

xxdxxcy

xx
xxe

xxdxxcy

nixxx
xxdxxcy

xx

xS  (1.1) 

Parameters 
X ..... Input. Discrete points xi. 

One-dimensional array of size n. 
Y ..... Input. Function values yi. 

One-dimensional array of size n. 
DY .... Input. 2nd order derivatives y1'' and yn'' at both 

ends. 
One-dimensional array of size 2. 
DY(1) is set to y1'' and DY(2) is set to yn''. 
(See Comments) 

N ..... Input. Number (n) of discrete points. n≥2. 
C ..... Output. Coefficients ci of (1.1) 

One-dimensional array of size n. 
D ..... Output, Coefficients di of (1.1)  

One-dimensional array of size n. 
E ..... Output. Coefficients ei of (1.1) 

Usually E(N)=0.0 
One-dimensional array of size n. 

ICON .. Output. Condition code. 
See Table INSPL-1. 

 
Table INSPL-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 n<2 or Xi≥Xi+1 Aborted 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... none 

• Notes 
There are no restrictions on specifying 2nd order 
derivatives y"i and y"n at both ends. However, when 
those values are unknown it is possible to specify 
yi''=0.0 and yn''=0.0. In that case the integral 

( )[ ] dxxS
nx

x

2

1
∫ ′′  will be minimized. Where S"(x)s 2nd 

order derivative of the cubic spline that is to be 
determined. 
If the function f(x) to be interpolated can be assumed to 
have periodic intervals of xn-xl, it is best to specify 2nd 
derivatives such that y"i=y"n. 

 
• Example 

The number of discrete points n, discrete points xi, and 
function values yi, i=1,...,n are input. The cubic spline 
function is determined in order to interpolate a value at 
x=ν in the interval [xi,xi+1]. 
y"i=0.0, y"n=0.0, n≤10. 

 
C     **EXAMPLE** 
      DIMENSION X(10),Y(10),DY(2),C(10), 
     *          D(10),E(10) 
      READ(5,500) N 
      READ(5,510) (X(I),Y(I),I=1,N) 
      DY(1)=0.0 
      DY(2)=0.0 
      CALL INSPL(X,Y,DY,N,C,D,E,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.GT.10000) STOP 
      READ(5,520) I,V 
      XX=V-X(I) 
      YY=Y(I)+(C(I)+(D(I)+E(I)*XX)*XX)*XX 
      WRITE(6,610) YY 
      STOP 
  500 FORMAT(I2) 
  510 FORMAT(2E16.8) 
  520 FORMAT(I2,E16.8) 
  600 FORMAT('1',10X,'ICON=',I5) 
  610 FORMAT('0',10X,'INTERPOLATED VALUE=', 
     * E16.8) 
      END 
 
Method 
Consider obtaining the interpolating function shown in 
(1.1) when given discrete points x1,x2...,xn (x1<x2<...<xn) 
and their corresponding function values yi=f(xi), i=1,...,n. 
In (1.1) for each interval [xn,xi+1], different polynomials 
of degree three or less (for (-∞,x1) and (xn, ∞) 
polynomials of degree two or less) are shown. 
  Let the interpolating function to be obtained be 
represented function to be obtained be represented by 
S(x), which is expressed separately as 

( )
( )
( )
( ) 
















>
−=≤≤

<
= +

nn

iii

xxxS
nixxxxS

xxxS
xS

,
1,...,1,,

,

1

10

 (4.1) 



INSPL 

378 

Where S0(x) and Sn(x) are polynomials of degree two or 
less and S1(x),...,Sn-1(x) are polynomials of degree three or 
less. 

In this routine S(x) is determined so that the derivatives 
of S(x) up to 2nd order should be continuous over (-∞,∞). 
For this to be true Si(x) must satisfy 

( ) ( )
( ) ( )
( ) ( )











=
′′=′′
′′=′

==

−

−

−

ni
xSxS
xSxS

yxSxS

iiii

iiii

iiiii

,...,1
1

1

1

 (4.2) 

The coefficients ci, di and ei of (1.1) are determined by 
the conditions in (4.2). This is shown in (4.3). 
When i=1,...,n-1 

( )

( )























′′
=

′′+′′+
−

=

=

′′−′′
=

′′
=

′′+′′−−=

−=

−
−

−

−

+

+
+

2

2
6

When  
6

2

2
6

1,...1When  

1
1

1

1

1

1
1

n
n

nn
n

n

nn
n

i

ii
i

i
i

ii
i

i

ii
i

yd

yyh
h

yyc

ni
h

yye

yd

yyh
h

yyc

ni

 (4.3) 

where hi=xi+1-xi, y"i=S"(xi). From the second condition 
of (4.2), y"i satisfies the three term relation. 

( )

1,...,2,

6

2

1

11

1111

−=






 −−−=

′′+′′++′′

−

−+

+−−−

ni
h

yy
h

yy

yhyhhyh

i

ii

i

ii

iiiiiii

 (4.4) 

If y"i, y"n are given, (4.4) becomes a system of linear 
equations with respect to y"2, y"3, ..., y"n-1. 
Since the coefficient matrix is a positive definite 
symmetric matrix, this routine uses the modified 
Cholesky method. 
 
• Characteristics of S(x) when y"i = y"n = 0 

If y"i = y"n = 0 is given, S(x) becomes linear over  
(-∞,x1), (xm, ∞). At this time it becomes a cubic natural 
spline with the following characteristics. 

Let g(x) be any interpolating function which satisfies 

( ) niyxg i ,...,1, ==  (4.5) 

g(x), g'(x), g"(x) are continuous in [xl, xn]. 
If S(x) is the interpolating cubic spline corresponding 
to y"1=y"n=0, then 

( ){ } ( ){ } dxxSdxxg
x

x

x

x

n

∫∫ ′′≥′′
11

22  (4.6) 

  (The equality occurs only when g(x)=S(x).) 
In the sense that S(x) minimizes 

( ){ } dxxg
nx

x∫ ′′
1

2  

it can be considered the "smoothest" interpolating 
function. For further information, see References [48], 
[49] and [50] pp.349 - 356. 
 



LAPS1 

379 

F20-01-0101 LAPS1, DLAPS1 

Inversion of Laplace transform of a rational function 
(regular in the right-half plane) 
CALL LAPS1(A,NA,B,NB,T,DELT,L,EPSR,FT, 
T1,NEPS,ERRV,ICON) 

 
Function 
Given a rational function F(s) expressed by (1.1), this 
subroutine calculates values of the inverse Laplace 
transform f(t0), f(t0+∆t), ..., f(t0+∆t(L-1)): 

( ) ( )
( )

( )
( )















≥
++++=

++++=

=

++

+
−

+
−

aluereal:,...,,,,...,,,
...

...

121121

1
1

21

1
1

21

vbbbaaamn
asasasasP

bsbsbsbsQ

sP
sQsF

mn

nn
nn

mm
mm  (1.1) 

where F(s) must be regular in the domain of Re(s)>0. 
 
Parameters 
A ..... Input. Coefficients of P(s). 

One-dimensional array of size n+1, assigned in 
the order of A(1)=a1, A(2)=a2, ..., A(n+1)=an+1. 

NA .... Input. Degree n of P(s). 
B ..... Input. Coefficients of Q(s). 

One-dimensional array of size m+1, assigned 
in the order of B(1)=b1, B(2)=b2, ...., 
B(m+1)=bm+1. 

NB .... Input. Degree m of Q(s). 
T ..... Input. Initial value t0(≥0) from which the 

values of f(t) are required. 
DELT .. Input. Increment ∆t(≥0) of variable t. If 

DELT=0.0, only f(t0) is calculated. 
L ..... Input. The number (L≥1) of points at which 

values of f(t) are required. 
EPSR ... Input. The relative error tolerance for the 

values of f(t): 10-2 to 10-4 for single precision 
and 10-2 to 10-7 for double precision will be 
typical. If EPSR=0.0, the default value 10-4 is 
used. 

FT .... Output. A set of values f(t0), f(t0+∆t),..., 
f(t0+∆t(L-1)). 
One-dimensional array of size L. 

T1 .... Output. A set of values t0, t0+∆t, ..., t0+ ∆t(L-1). 
One-dimensional array of size L. 

NEPS ... Output. The number of terms: N in the 
truncated expansion. 

 (See "Method"). 
One-dimensional array of size L. The number 
of terms N used to calculate FT(I) is stored in 
NEPS(I). 

ERRV .. Output. Estimates of the relative error of 
resultant value FT. 
One-dimensional array of size L. The relative 
error of FT(I) is stored in ERRV(I). 

ICON .. Output. Condition code. (See Table LAPS1-1.) 
 
Table LAPS1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Some of the results did not 
meet the required accuracy. 

Continued. 
Values 
representing 
accuracy for  
 
are output to 
array ERRV. 

30000 One of the following 
conditions: 
(1) NB<0 or NB>NA 
(2) T<0 or DELT<0 
(3) L<1 
(4) EPSR<0 
(5) A(1) = 0 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, AFMAX 
FORTRAN basic functions ... FLOAT, ALOG, 
ALOG10, CMPLX, AIMAG, EXP, ABS, INT, ATAN 

 
• Notes 

Rational function F(s) must be regular in the domain 
for Re(s)>0. 

If F(s) is singular or if its regularity is not known, use 
subroutine LAPS2. 

If t0=0, the value of f(0) is calculated according to the 
theorem on initial values as 

( ) ( )
( )




+>
+=

=
10
1

0 11

mn
mnab

f  

For NA=NB, (1.1) is written as  

( ) ( )
( ) ( ) ( )F s

Q s
P s

F s F s= = +1 2  (3.1) 

( )

( )
1

1
21

1
2

3
1

2
2

111where,

+
−

+
−−

+⋅⋅⋅++
+⋅⋅⋅++

≡

≡

n
nn

n
nn

asasa
cscscsF

absF
 

Inverse transform f1(t) of F1(s) is given as 

( ) ( )t
a
btf δδδδ

1

1
1 =   where δδδδ(t) is the delta function. 

Since F2(s) satisfies the condition of (8.20) in Chapter 
8, inverse transform f2(t) of F2(s) can be calculated from 
(8.22). Therefore, when NA=NB the subroutine 
calculates the inverse of F2(s) for t>0. When t=0, the 
maximum value of the floating point numbers is returned. 
 



LAPS1 

380 

• Example 
Given a rational function F(s) regular (non-singular) in 
the area for Re(s)>0: 

( )
811085412

4
234

2

++++
+=

ssss
ssF  

the inverse Laplace transform f(t) is obtained at points, 
i=1,2,...,9, with EPSR=10-4. 

 
C     **EXAMPLE** 
      DIMENSION A(5),B(3),T1(9),FT(9), 
     *ERRV(9),NEPS(9) 
      NB=2 
      NB1=NB+1 
      B(1)=1.0 
      B(2)=0.0 
      B(3)=4.0 
      NA=4 
      NA1=NA+1 
      A(1)=1.0 
      A(2)=12.0 
      A(3)=54.0 
      A(4)=108.0 
      A(5)=81.0 
      T=0.2 
      DELT=0.2 
      L=9 
      EPSR=1.0E-4 
      WRITE(6,600) NB,(I,B(I),I=1,NB1) 
      WRITE(6,610) NA,(I,A(I),I=1,NA1) 
      WRITE(6,620) EPSR 
      CALL LAPS1(A,NA,B,NB,T,DELT,L,EPSR, 
     *FT,T1,NEPS,ERRV,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,640) (T1(I),FT(I),ERRV(I), 
     *NEPS(I),I=1,L) 
      STOP 
  600 FORMAT(//24X,'NB=',I3// 
     *(20X,'B(',I3,')=',E15.8/)) 
  610 FORMAT(/24X,'NA=',I3// 
     *(20X,'A(',I3,')=',E15.8/)) 
  620 FORMAT(22X,'EPSR=',E15.8/) 
  630 FORMAT(22X,'ICON=',I6//) 
  640 FORMAT(15X,'F(',F8.5,')=',E15.8,2X, 
     *'ERROR=',E15.8,2X,'N=',I3/) 
      END 
 

Method 
The method for obtaining the inverse Laplace transform 
is explained in Chapter 8, where f(t) is approximated as: 

( )













+=

=

∑ ∑

∑
−

= =
++

=

1

1 0
,1

1
0

2
1

,

0

0

k

n

p

r
rkrppn

N

n
nN

FAF
t

e

F
t

etf

σ

σ
σ

 (4.1) 

( ) ( )






 ++==

+=
















 −+
−=

− r
pAAA

pkN

t
ni

FF

rprppp

n
n

1,1

5.0
Im1   where

,1,,

0 πσ

 

  In this subroutine, σ0, N, and p are determined as 
follows: 
Since f(t,σ0) satisfies 

( ) ( ) ( ) ( ) ⋅⋅⋅−+−= −− tfetfetftf 53, 00 42
0

σσσ  
σ0 is determined as 

( ) 2
2

EPSRlog
0 +



−=σ  

where [• ] is the Gaussian notation, so that the user 
specified relative error tolerance (EPSR) may be 
expressed as: 

( ) ( )
( )

02

0

010

,
,,EPSR σ

σ
σσ −− =−≈ e

tf
tftf

N

NN  (4.2) 

Since value N that satisfies the condition of (4.2) 
depends on the value of t, it is adaptively determined 
from the following empirical formula 

[ ] [ ]5.25= 00 tN ⋅+ σσ  (4.3) 

and value p is chosen as 
5 for σ0 ≤4 

[σ0+1] for 4  <σ0≤9, 
9 for 9  <σ0 

Then relative errors of results fN(t,σ0) 
are output to array ERRV, which are estimated as 
follows: 

( ) ( )
( )0

010

,
,,

ERRV
σ

σσ
tf

tftf

N

NN −−
=  



LAPS2 

381 

F20-02-0101 LAPS2, DLAPS2 

Inversion of Laplace transform of a general rational 
function  
CALL LAPS2(A,NA,B,NB,T,DELT,L,EPSR,FT, 
T1,NEPS,ERRV,IFLG,VW,ICON) 

 
Function 
Given a rational function F(s) expressed by (1.1), this 
subroutine calculates values of the inverse Laplace 
transform f(t0), f(t0+∆t), ..., f(t0+∆t(L-1)): 

( ) ( )
( )

( )
( )














⋅⋅⋅⋅⋅⋅≥
++⋅⋅⋅++=

++⋅⋅⋅++=

=

++

+
−

+
−

  valuereal:,,,,,,,, 121121

1
1

21

1
1

21

mn

nn
nn

mm
mm

bbbaaamn
asasasasP

bsbsbsbsQ

sP
sQsF

 (1.1) 

In this case, F(s) need not be regular in the domain for 
Re(s)>0. 
 
Parameters 
A ..... Input. Coefficients of P(s). 

One-dimensional array of size n+1, assigned in 
the order of A(1)=a1, A(2)=a2, ..., A(n+1)=an+1. 

NA .... Input. Degree n of P(s). 
B ..... Input. Coefficients of Q(s). 

One-dimensional array of size m+1, assigned 
in the order of B(1)=b1, B(2)=b2, ...., 
B(m+1)=bm+1. 

NB .... Input. Degree m of Q(s). 
T ..... Input. Initial value t0(≥0.0) from which the 

values of f(t) are required. 
DELT .. Input. Increment ∆t(>0.0) of variable t. If 

DELT=0.0, only f(t0) is calculated. 
L ..... Input. The number (≥1) of points at which 

values of f(t) are required. 
EPSR ... Input. The relative error tolerance for the 

values of f(t): 10-2 to 10-4 for single precision 
and 10-2 to 10-7 for double precision will be 
typical. If EPSR=0.0, the default value 10-4 is 
used. 

FT .... Output. A set of values f(t0), 
f(t0+∆t),...,f(t0+∆t(L-1)). 
One-dimensional array of size L. 

T1 .... Output. A set of values t0, t0+∆t, ..., t0+∆t(L-1). 
One-dimensional array of size L. 

NEPS ... Output. The number of terms: N in the 
truncated expansion. 
(See "Method"). 

 One-dimensional array of size L. The number 
of terms N used to calculate is stored in 
NEPS(I). 

ERRV .. Output. Estimates of the relative error of result 
FT. One-dimensional array of size L. The 
relative error of FT(I) is stored in ERRV(I). 

IFLG .. Output. Regularity judgment result. 
IFLAG=0 if F(s) is regular in the domain of 
Re(s)>0, IFLAG=1 otherwise. (See "Notes on 
Use".) 

VW .... Work area. One-dimensional array of size 
n+m+2 

ICON .. Output. Condition code. (See Table LAPS2-1.) 
 
Table LAPS2-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Some of the results did 
not meet the required 
accuracy. 

Continued. Values 
representing accuracy 
for f(t0+∆t･i): i=0,1,...,L-
1 are output to array 
ERRV. 

20000 The subroutine failed to 
obtain the non-negative 
real value γ 0 such that 
the F(s) is regular in the 
domain of Re(s)>γ 

0. 

Bypassed 

30000 One of the following 
conditions: 
(1) NB<0  
(2) NB>NA 
(3) T<0  
(4) DELT<0 
(5) L<1 

EPSR<0 
A(1) = 0 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II ... LAPS1, HRWIZ, MGSSL, AMACH, 
AFMAX 
FORTRAN basic functions ... FLOAT, ALOG, 
ALOG10, CMPLX, AIMAG, EXP, ABS, INT, ATAN 

 
• Notes 

Rational function F(s) need not be regular in the 
domain for Re(s)>0. However, if it is known that F(s) 
is regular, use subroutine LAPS1 for efficiency. 

If IFLG=1 is output, F(s) is not regular in the domain 
of Re(s). This means that f(t) increases exponentially as 
t approaches infinity. 

If t0=0, the value of f(0) is calculated according to the 
theorem on initial values as 

( ) ( )
( )




+>
+=

=
10
1

0 11

mn
mnab

f  

For NA=NB, (1.1) is written as  



LAPS2 

382 

( ) ( )
( ) ( ) ( )F s

Q s
P s

F s F s= = +1 2  (3.1) 

( )

( )
1

1
21

1
2

3
1

2
2

111where

+
−

+
−−

+⋅⋅⋅++
+⋅⋅⋅++≡

≡

n
nn

n
nn

asasa
cscscsF

absF
 

Inverse transform f1(t) of F1(s) becomes 

( ) ( )t
a
btf δδδδ

1

1
1 =  

where δ(t) is the delta function. 
Since F2(s) satisfies the condition of (8.20) in Chapter 

8, inverse transform f2(t) of F2(s) can be calculated from 
(8.22). Therefore, when NA=NB the subroutine 
calculates the inverse of F2(s) for t>0. When t=0, the 
maximum value of the floating point numbers is returned. 
 
• Example 

Given a rational function F(s): 

( )
811085412

4
234

2

++++
+=

ssss
ssF  

the inverse Laplace transform f(t) is obtained at points, 
ti=0.2+0.2(i-1),where i=1,2,...,9 with EPSR=10-4. 

 
C     **EXAMPLE** 
      DIMENSION A(5),B(3),T1(9),FT(9), 
     *ERRV(9),NEPS(9),VW(8) 
      NB=2 
      NB1=NB+1 
      B(1)=1.0 
      B(2)=0.0 

      B(3)=4.0 
      NA=4 
      NA1=NA+1 
      A(1)=1.0 
      A(2)=-12.0 
      A(3)=54.0 
      A(4)=-108.0 
      A(5)=81.0 
      T=0.2 
      DELT=0.2 
      L=9 
      EPSR=1.0E-4 
      WRITE(6,600) NB,(I,B(I),I=1,NB1) 
      WRITE(6,610) NA,(I,A(I),I=1,NA1) 
      WRITE(6,620) EPSR 
      CALL LAPS2(A,NA,B,NB,T,DELT,L,EPSR, 
     *FT,T1,NEPS,ERRV,IFLG,VW,ICON) 
      WRITE(6,630) ICON,IFLG 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (T1(I),FT(I),ERRV(I), 
     *NEPS(I),I=1,L) 
      STOP 
  600 FORMAT(//24X,'NB=',I3// 
     *(20X,'B(',I3,')=',E15.8/)) 
  610 FORMAT(/24X,'NA=',I3// 
     *(20X,'A(',I3,')=',E15.8/)) 
  620 FORMAT(22X,'EPSR=',E15.8/) 
  630 FORMAT(22X,'ICON=',I6,20X,'IFLG=',I2) 
  640 FORMAT(15X,'F(',F8.5,')=',E15.8,2X, 
     *'ERROR=',E15.8,2X,'N=',I3/) 
      END 
 
Method 
The method for obtaining the inverse Laplace transform 
is explained in Chapter 8. This subroutine proceeds as 
follows: 

Obtain real value γ 
0 for which F(s+γ 

0) becomes 
regular in the domain of Re(s)>0 using subroutine 
HRWIZ. 
Calculate inverse Laplace transform g(t) of G(s) ≡ 
F(s+γ 0) by using subroutine LAPS1. 
Calculate f(t) from f(t)= tre 0 g(t) 

 



LAPS3 

383 

F20-03-0101 LAPS3, DLAPS3 

Inversion of Laplace transform of a general function  
CALL LAPS3(FUN,T,DELT,L,EPSR,R0,FT,T1, 
NEPS,ERRV,ICON) 

 
Function 
Given a function F(s) (including non-rational function), 
this subroutine calculates values of the inverse Laplace 
transform f(t0), f(t0+∆t), ..., f(t0+∆t(L-1)) 

In this case, F(s) must be regular in the domain of 
Re(s)>γ 

0: Convergence coordinate). 
 
Parameters 
FUN ... Input. The name of the function subprogram 

which calculates the imaginary part of function 
F(s) for complex variable s. 
The form of the subprogram is as follows: 
FUNCTION FUN(S) 
where S stands for a complex variable. 
(See Example.) 

T ..... Input. Initial value t0(>0.0) from which the 
values of f(t) are required. 

DELT .. Input. Increment ∆t(≥0.0) of variable t. If 
DELT=0.0, only f(t0) is calculated. 

L ..... Input. The number (≥1) of points at which 
values of f(t) are required. 

EPSR ... Input. The relative error tolerance for the 
values of f(t) (≥0.0): 10-2 to 10-4 for single 
precision and 10-2 to 10-7 for double precision 
are typical. If EPSR=0.0 or EPSR≥1.0 is input, 
the default value 10-4 is used. 

R0 .... Input. The value of γ which satisfies the 
condition of γ ≥ γ 

0 when function F(s) is 
regular in the domain of Re(s)>γ 0. If a 
negative is input as the value of R0, this 
subroutine assumes R0=0.0. 

FT .... Output. A set of values f(t0), 
f(t0+∆t),...,f(t0+∆t(L-1)). One-dimensional 
array of size L. 

T1 .... Output. A set of values t0, t0+∆t,..., t0+∆t (L-1). 
One-dimensional array of size L. 

NEPS ... Output. The number of truncation items. One-
dimensional array of size L. The number of 
terms N used to calculate FT(I) is stored in 
NEPS(I). 

ERRV .. Output. Estimates of the relative error of the 
result. One-dimensional array of size L. The 
relative error of FT(I) is stored in ERRV(I). 

ICON .. Output. Condition code. (See Table LAPS3-1.) 
 

Table LAPS3-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Some of the results did 
not meet the required 
accuracy. 

Continued. Values 
representing 
accuracy for 
f(t0+∆t･i), i=0,1,..., 
L-1 are output to 
array ERRV. 

20000 The value of 
EXP(R0*T1(I)+σ0)/T1(I) 
may overflow for a 
certain value of I. 

Bypassed. The 
result may not be 
guaranteed. 

30000 One of the following 
conditions: 
(1) T≤0 or DELT<0 
(2) L<1 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic functions ... FLOAT, ALOG, 
CMPLX, EXP, INT, ATAN, ABS 

 
• Notes 

When F(s) is a rational function, use subroutine LAPS2 
for efficiency. 
  When F(s) is regular in the domain for Re(s)>γ 

0, 
input γ ≥ γ 

0 as parameter R0. 
When γ 

0≤0.0, simply set R0=0.0. If a negative value is 
input as parameter R0, R0=0.0 is assumed in the 
subroutine. 

If function f(t) for R0=0.0 and function f(t) for 
R0>0.0 are significantly different, it is possible because 
of γ 

0 >0.0. To estimate value γ 
0 using this subroutine, 

perform the following procedure: 
Calculate f(t) using appropriate values (e.g. R0=0.0, 
R0=0.5) as R0. Estimate the value of t at which the 
values of f(t) are not the same with R0=0.0, 0.5, and 
1.0. Let this value be ta. If the singular point of F(s) is 
s0=ν0+iµ 

0(ν0 > 0) (if more than one singular point 
exists, use the largest value of the real part as the value 
of s0), f(t) varies with the values of R0 in the domain of 

( )000 Rtt a −≈> νσ , where value σ0 is as follows: 

( ) 2
2

EPSRlog
0 +



 −=σ  

Therefore, γ 0(=ν0) can be estimated from: 

at
R 0

0 0
σγ +≈  (3.1) 



LAPS3 

384 

An example of the above procedure is given below. 
Example: 

( ) 841 2 +−= sssF  (3.2) 

The results of f(t) with R0=0.0, R0=0.5, and R0=1.0 on 
the assumption that EPSR=10-2 are shown by the solid 
lines in (a), (b), and (c), respectively of Fig. LAPS3-1. 
The dotted lines show the correct results. These figures 
show that each f(t) largely varies with the values of R0. 
 
f(t) sharply varies at the point of 2≈at , 5.3≈at , and 

5≈at  for R0=0.0, R0=0.5, and R0=1.0. Since σ0=5 for 
EPSR=10-2, the values of γ 

0 are estimated by using (3.1). 
The estimated values are as follows: 
For R0=0.0, 5.20 ≈γ  
For R0=0.5, 93.10 ≈γ  
For R0=1.0, 0.20 ≈γ  

Since F(s) in (3.2) has the singular point at 3220 is ±= , 
the values of γ 

0 above are proper estimates. The dotted 
lines in the figure show the results for input of 2.0 as the 
value of R0. 

Since the factor te 0σ  is included in the expression for 
calculating f(t) ((4.4) in method), f(0.0) cannot be 
calculated. Use the value of f(0.01), f(0.0001) or so 
instead of the value of f(0.0). Note that an overflow may 
occur for an excessively small value of t. 

In this subroutine, the value of the imaginary part of 
function F(s) is evaluated at the following points: 

( )

0,0

,...3,2,1,
5.0

0

0

>>

=
−+

=

t

n
t

nisn

σ

πσ
 

When, for such a point, function F(s) is a multi-valued 
function, a proper branch for F(s) must be calculated in 
the function subprogram. For example, suppose the 
following: 

( ) 11 2 += ssF  

12 +s  generates the branches for the above sn in 
Quadrants 1 and 3. In this case, the branch in Quadrant 1 
should be employed. 

Suppose the following functions: 

( ) sssF 


 +−= 14exp 2  (3.4) 

( ) 


 += 1cosh1 2sssF  (3.5) 

50

0

f(t)

 2  4  6  8  10  12
 t

 −50

 
(a) EPSR=10−2, R0=0.0 

 

f(t)

 200

 0

−200

 2

 4  6  8  10  12
 t

 
(b) EPSR=10−2, R0=0.5 

f(t)
10000

 0

−10000

 2  4  6  8  10  12
 t

 
(c) EPSR=10−2, R0=1.0 

Fig. LAPS3-1 Estimotion of γ0 for F(s)= 841 2 +− ss  



LAPS3 

385 

In each of the above, the delay factor exp(-as) (a>0) is 
included in ( )F s sfor → ∞ .In such a case, the function 
subprogram should be carefully defined. For example, if 
(3.4) is employed without any modification, the result of 
f(t) is as shown in 1) in Fig. LAPS3-2. In this case, for 
t<2, f(t)≠0.0, and vibration occurs between 2 and 4. This 
is because the valid condition for the Euler 
transformation ((8.25) in Section 8.6) may not be 
satisfied. This is called the Gibbs phenomenon. 

EPSR=10−4

R0=0.0

 f(t)

1.00

0.80

0.60

0.40

0.20

0.00  t
10.08.006.004.002.000.00

1)

2)

 
Fig. LAPS3-2 Conversion of F(s)=exp( 14 2 +− s /s) 

For (3.4), if t<2, f(t)=0 is theoretically derived. Thus, the 
following expression can be sufficiently manipulated: 

( ) ( ) ( )
sss

sFssG




 +−=

⋅≡

142exp

2exp
2  (3.6) 

Note that the above function is the image function of: 

( ) ( )2+′≡′ tftg  0>′t  

G(s) gives a more accurate result than F(s). However, 

since 


 +− 142 2ss  may cause numerical cancellation, 

it should be transformed to the following: 

142

1142
2

2

++
−=+−

ss
ss  

2) in Fig. LAPS3-2 is the result of G(s) above. F(s) in 
(3.5) should be expanded into the following, then 
transformed by terms as in (3.4): 

( )



⋅⋅⋅−


 +−+



 


 +−−


 +−=

15exp

13exp1exp2

2

22

s

ss
s

sF
 

• Example 

( ) 40,
2

1exp

2

2

=
+




 +−
= X

s

sX
sF  

Suppose that f(t), inversion of Laplace transform is to be 
calculated at each point of (ti-X) = 0.2+0.2(i-1),  
i = 1,2,...,800. Use EPSR=10-4. Instead of F(s), the 
following expression is employed in the function 
subprogram: 

( ) ( ) ( )

2
1

exp

2

1exp

exp

2

2

2

2

+













++

−

=

+






 


 +−

=

⋅=

s
ss

X

s

Xss

sFXssG

 

f(t) is derived by using inverse transform of G(s), g(t) as 
follows: 

( ) ( )



≥−
<

=
XtXtg
Xt

tf
,
,0

 

Figure LAPS3-3 shows the result of g(t-X) in which t-X 
is used as the axis of abscissas. (Refer to [101] in 
References.) 

 f(t)

1.00

0.80

0.60

0.40

0.20

0.00
0.00 16.00 32.00 48.00 64.00 80.00

 t−X

 
Fig. LAPS3-3 Result of the example 



LAPS3 

386 

C     **EXAMPLE** 
      DIMENSION FT(800),T1(800),NEPS(800), 
     *          ERRV(800) 
      EXTERNAL FUN 
      T=0.2 
      DELT=0.2 
      L=800 
      EPSR=1.0E-4 
      R0=0.0 
      CALL LAPS3(FUN,T,DELT,L,EPSR,R0,FT, 
     *T1,NEPS,ERRV,ICON) 
      WRITE(6,600) ICON 
      WRITE(6,610) (T1(I),FT(I),NEPS(I), 
     *             ERRV(I),I=1,L) 
  600 FORMAT('1',20X,'ICON=',I5//) 
  610 FORMAT(6X,'F(',F8.3,')=',E16.7,3X, 
     *'N=',I3,3X,'ERR=',E16.7) 
      STOP 
      END 
      FUNCTION FUN(S) 
      COMPLEX*8 S,SR 
      SR=CSQRT(S*S+1.0) 
      IF(REAL(SR).LT.0.0) SR=-SR 
      SR=CEXP(40.0/(S+SR))*(S*S+2.0) 
      FUN=AIMAG(1.0/SR) 
      RETURN 
      END 
 
Method 
Calculation of inverse Laplace transform is described in 
Section 8.6. Let the value of R0 be γ, then for γ >0, 
G(s)=F(s+γ ) is regular in the domain of Re(s)>0. By 
calculating inverse transform g(t), function f(t) can be 
derived as: 

)()( tgetf tγ=  (4.1) 

In the following description, a function which is regular 
in the domain of Re(s)>0, will be set to F(s) again. Then 
determination of parameters σ0, p, and N described in 
Section 8.6, will be described. 
 
• Value of σ0 (truncation error) 

From (8.23) in Section 8.6, σ0 approximation f(t,σ0) of 
f(t) can be expressed as 

( ) ( ) ( ) ( ) ⋅⋅⋅−+−= −− tfetfetftf 53, 00 42
0

σσσ  (4.2) 

The value of σ0 is determined so that the required 
relative error tolerance EPSR may be as follows: 

( ) ( )
( )

( ) ( )
( )

02

00

3
,,

EPSR

σ

σσ

−≈

−
≈

−
=

e

tf
tftf

tf

tftf

 

This leads to 

( ) 0.2
2

EPSRlog
0 +



 −=σ  (4.3) 

where [• ] is the Gaussian notation. 
2.0 is added to the second term of the right part in (4.3) 
to produce σ0=3 even for EPSR=10-1. The value of σ0 
is almost the same as the number of significant digits of 
fN (t,σ0). 

• Value of p 
Approximation of f(t), fN (t,σ0) is calculated by using 
the following expression, derived from equation (8.28) 
in Section 8.6. 

( )












+= ∑∑
=

+

−

=
k

p

q

q
p

k

n
nN FDF

t
etf

0
1

1

1
0

2
1,

0σ
σ  (4.4) 

where (p+1) stands for the number of terms of the 
Euler transformation. In this subroutine, p is 
determined from experience as 

20 += σp  (4.5) 

When F(s)=O(sα) as s → ∞, and if σ0, that is, EPSR is 
given so that the value of p satisfies the condition: 

( )p ≥ +α 5  (4.6) 

then, (4.4) can also be applied to F(s) for which f(t) 
may be a distribution. Below is an example in which 
f(t) may be distribution. Inverse transform of 

( ) ssF = , can be written as 

( ) ( ) ( )
( )232 t

tU
t

ttf
ππ

δ −=  

where δ(t) stands for the Dirac delta function, and U(t) 
stands for the following: 

( )U t t
t= ≥

<



1 0
0 0

,
,  

Because ( ) 0lim ≠
∞→

sF
s

, the above method cannot be 

applied to ( )F s s=  theoretically. However, when p 
is set to 6(>1/2+5) or more in the range of t>0, this 
subroutine can be used for this function as usual. 

 
• Value of N (number of truncation terms) 

With k and p used in (4.4): 

N k p= +  

Stands for the number of truncation terms and is equal 
to the evaluation count for function F(s). The value of k 
must be determined so that the valid condition for the 
Euler transformation ((8.25) in Section 8.6) may be 
satisfied. Such a value of k depends upon t, and can be 
expressed by: 

tkkk 21 +=  (4.7) 

(where k1 and k2 are constants.) 



LAPS3 

387 

This subroutine calculates f(t) for the range of 
( )1L00 −+≤≤ tttt ∆  with use of the following method, 

which determines the values of k1 and k2. First, by 
setting t=t0, define k which allows truncation error 
ERRV(1) to in the range of ERRV(1)<EPSR. Let this 
be k'. 

Next, by setting t=t0+∆t(L-1), define k which allows 
ERRV(L)<EPSR. Let this be k". From these, the 
following simultaneous equations are obtained: 

( ){ }1L021

021

−++=′′
+=′

ttkkk
tkkk

∆
 (4.8) 

Determine the value of k1 and k2 by solving these 
equations. Then, calculate k by applying these values to 
equation (4.7) (For the fraction part, round up to the 
integer part.) The value of N is output to array NEPS. 
 



LAX 

388 

A22-11-0101 LAX, DLAX 

A system of linear equations with a real general matrix 
(Crout's method) 
CALL LAX(A,K,N,B,EPSZ,ISW,IS,VW,IP,ICON) 

 
Function 
This subroutine solves a real coefficient linear equations 
(1.1) using the Crout's method. 

Ax b=  (1.1) 

Where A is an n×n regular real matrix, b is an n-
dimensional real constant vector, and x is the n-
dimensional solution vector. n≥1. 
 
Parameters 
A ..... Input. Coefficient matrix A. 

The contents of A are altered on output. 
A is a two-dimensional array, A(K,N). 

K ..... Input. Adjustable dimension of array A (≥N). 
N ..... Input. Order n of the coefficient matrix A. 
B ..... Input. Constant vector b. 

Output. Solution vector x. 
B is a one-dimensional array of size n. 

EPSZ .. Input. Tolerance for relative zero test of pivots 
in decomposition process of A (≥0.0). 
If EPSZ is 0.0, a standard value is used. 

ISW ... Input. Control information. 
When l (≥1) systems of linear equations with 
the identical coefficient matrix are to be solved, 
ISW can be specified as follows: 
ISW=1, the first system is solved. 
ISW=2, the 2nd to lth systems are solved. 
However, only parameter B is specified for 
each constant vector b of the systems of 
equations, with the rest unchanged. 
(See Notes.) 

IS .... Output. Information for obtaining the 
determinant of matrix A. 
If the n elements of the calculated diagonal of 
array A are multiplied by IS, the determinant is 
obtained. 

VW .... Work area. VW is a one-dimensional array of 
size n. 

IP .... Work area. IP is a one-dimensional array of 
size n. 

ICON .. Output. Condition code. Refer to Table LAX-1. 

Table LAX-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 Either all of the elements of 
some row were zero or the 
pivot became relatively zero. 
It is highly probable that the 
coefficient matrix is singular. 

Discontinued 

30000 K<N, N<1, EPSZ<0.0 or 
ISW≠1,2 

Bypassed 

 
Comments on use 
• Subprogram used 

SSL II ..... ALU, LUX, AMACH, MGSSL 
FORTRAN basic functions ..... ABS 
 

• Notes 
The solution x obtained by this subroutine may be 
refined in accuracy by calling subroutine LAXR 
successively. 

If EPSZ is set to 10-s, this value has the following 
meaning; while performing the LU-decomposition by 
Crount's method, if the loss of over s significant digits 
occurred for the pivot, the LU-decomposition should 
be discontinued with ICON=20000 regarding the pivot 
to be relatively zero. The standard value of EPSZ is 
16u, u being the unit round off.  If the processing is to 
proceed at a lower pivot value, EPSZ will be given the 
minimum value but the result is not always guaranteed. 

When solving successive systems of linear equations 
with the identical coefficient matrix, computation can 
be performed by setting ISW=2 after the first system of 
equations are processed. By setting ISW=2, LU-
decomposition of coefficient matrix A is bypassed so 
the computation time is reduced. In this case, the value 
of IS is the same as when ISW=1. 

 
• Example 

In this example, l systems of linear equations in n 
unknown with the identical coefficient matrix are 
solved. n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(100), 
     *          VW(100),IP(100) 
      READ(5,500) N 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      READ(5,500) L 
      M=1 
      ISW=1 
      EPSZ=1.0E-6 
 



LAX 

389 

   10 READ(5,510) (B(I),I=1,N) 
      WRITE(6,610) (I,B(I),I=1,N) 
      CALL LAX(A,100,N,B,EPSZ,ISW,IS,VW,IP, 
     *ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,630) (I,B(I),I=1,N) 
      IF(L.EQ.M) GOTO 20 
      M=M+1 
      ISW=2 
      GOTO 10 
   20 DET=IS 
      DO 30 I=1,N 
      DET=DET*A(I,I) 
   30 CONTINUE 
      WRITE(6,640) DET 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',10X,'** COEFFICIENT MATRIX' 
     */12X,'ORDER=',I5/(10X,4('(',I3,',',I3, 
     *')',E16.8))) 
  610 FORMAT(///10X,'CONSTANT VECTOR' 
     */(10X,5('(',I3,')',E16.8))) 
  620 FORMAT('0',10X,'CONDITION CODE=',I5) 
  630 FORMAT('0',10X,'SOLUTION VECTOR' 
     */(10X,5('(',I3,')',E16.8))) 
  640 FORMAT(///10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=', 
     *E16.8) 
      END 
 

Method 
A system of linear equations 

Ax b=  (4.1) 

is solved using the following procedure. 
• LU-decomposition of coefficient matrix A (Crout's 

method) 
The coefficient matrix A is decomposed into the 
product of a lower triangular matrix L and a unit upper 
triangular matrix U. To reduce rounding off errors, the 
partial pivoting is performed in the decomposition 
process. 

PA LU=  (4.2) 

P is the permutation matrix which performs the row 
exchanges required in partial pivoting. 
Subroutine ALU is used for this operation. 

• Solving LU=Pb (forward and backward substitutions) 
Solving equation (4.1) is equivalent to solving the 
linear equation (4.3). 

PbLUx =  (4.3) 

Equation (4.3) is decomposed into two equations 

Ly Pb=  (4.4) 
 yUx =  (4.5) 

then the solution is obtained using forward substitution 
and backward substitution. 

Subroutine LUX is used for these operations. For more 
information, see References [1], [3], and [4]. 



LAXL 

390 

A25-11-0101 LAXL, DLAXL 

Least squares solution with a real matrix (Householder 
transformation) 
CALL LAXL(A,K,M,N,B,ISW,VW,IVW,ICON) 

 
Function 
This subroutine solves the overdetermined system of 
linear equations (1.1) for the least squares solution ~x  
using Householder transformation, 

Ax b=  (1.1) 

Given m×n real matrix A of rank n and m-dimensional 
constant vector b where m is not less than n. That is, this 
subroutine determines the solution vector x such that 

2Axb −  

is minimized. where n≥1. 
 
Parameters 
A ..... Input. Coefficient matrix A. 

The contents of A are altered on output. 
The matrix A is a two-dimensional array, 
A(K,N). 

K ..... Input. Adjustable dimension of array A (≥M). 
M ..... Input. Number of rows, m, in matrix A. 
N ..... Input. Number of columns, n, in matrix A. 
B ..... Input. Constant vector b. 

Output. The least squares solution ~x . One-
dimensional array of size m. (Refer to Notes.) 

ISW ... Input.  Control information. 
When solving l ( ≥ 1) systems of linear 
equations with the identical coefficient matrix, 
specify as follows: 
ISW = 1 ... The first system is solved. 
ISW = 2 ... The 2nd to l th systems are solved. 

however, the values of B are to be 
replaced by the new constant 
vector b with the rest unchanged. 
(Refer to Notes) 

VW ... Work area. 
One-dimensional array of size 2n. 

IVW ... Work area. 
One-dimensional array of size n. 

ICON .. Output. Condition code. 
Refer to Table LAXL-1. 

Table LAXL-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 Rank (A)<n Discontinued 
30000 K<M, M<N, N<1 or ISW≠1,2 Bypassed 

 
Comments on use 
• Subprogram used 

SSL II ..... ULALH, ULALB, AMACH, MGSSL 
FORTRAN basic functions ..... SQRT 

 
• Notes 

The least squares solution ~x  is stored in the first n 
elements of array B. 

When solving successive systems of linear equations 
with the identical coefficient matrices, ISW=2 should 
be specified after the first system. Then reducing the 
coefficient matrix to an upper triangular matrix is 
bypassed by setting ISW=2, hence computation time is 
reduced. Refer to "Method" for reducing to an upper 
triangular matrix. 

 
• Example 

This example shows the method to solve l 
overdetermined systems of linear equations with the 
identical coefficient matrix where m, the number of 
equations, is not less than n, the number of unknowns. 
m≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(100), 
     *          VW(200),IVW(100) 
      READ(5,500) M,N,L 
      READ(5,510) ((A(I,J),I=1,M),J=1,N) 
      WRITE(6,600) M,N,((I,J,A(I,J),J=1,N), 
     *             I=1,M) 
      LL=1 
      ISW=1 
   10 READ(5,510) (B(I),I=1,M) 
      WRITE(6,610) (I,B(I),I=1,M) 
      CALL LAXL(A,100,M,N,B,ISW,VW,IVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,630) (I,B(I),I=1,N) 
      IF(L.EQ.LL) GO TO 20 
      ISW=2 
      LL=LL+1 
      IF(LL.LE.L) GO TO 10 
   20 WRITE(6,640) 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',5X, 
     *'LINEAR LEAST SQUARES SOLUTION'/6X, 
     *'ROW NUMBER=',I4,5X,'COLUMN NUMBER=' 
     *,I4/6X,'COEFFICIENT MATRIX='/ 
     *(10X,4('(',I3,',',I3,')',E17.8,3X))) 
 



LAXL 

391 

  610 FORMAT(///10X,'CONSTANT VECTOR=' 
     */(10X,4('(',I3,')',E17.8,3X))) 
  620 FORMAT(' ',10X,'CONDITION CODE=',I6) 
  630 FORMAT(' ',10X,'SOLUTION VECTOR=' 
     */(10X,4('(',I3,')',E17.8,3X))) 
  640 FORMAT('0',5X, 
     *'LINEAR LEAST SQUARES SOLUTION END') 
      END 
 
Method 
Let A be an m × n real matrix with m ≥ n and of rank n 
and b be an m-dimensional constant vector. This 
subroutine determines the vector ~x  (the least squares 
solution) so that 

2Axb −  (4.1) 

is minimized. 
Since the Euclidean norm is invariant with the 

orthogonal transformation. 

222 RxCQAxQbAxb −=−=−  (4.2) 

where Q is an orthogonal matrix, C = Qb and R = QA. 
Choosing Q such that 

( ) nnm ×−







==

}0

~RRQA  (4.3) 

where ~R  is an n × n upper triangular matrix, clearly the 
equation (4.2) is represented by the equation (4.4) as 
follows: 

2
2

~~

1C
xRCRxC −=−  (4.4) 

where ~C  denotes the first n-dimensional vector of C, and 
C1 is the (m - n)-dimensional vector of C except for ~C . 
Therefore, the equation (4.4) is minimum when 
~ ~C Rx 0− = . In other words, if matrix A can be reduced 

to an upper triangular matrix by an orthogonal 
transformation as shown in the equation (4.3), the least 
squares solution ~x  of the equation (4.1) can be obtained 
by the following the equation (4.5). 

CRx ~~~ 1−=  (4.5) 

In this subroutine, the least squares solution is determined 
by the following procedures: 
 

• Reducing a matrix A to an upper triangular matrix ... 
Transforming a matrix A to an upper triangular matrix 
with the Householder transformation, matrix R is 
obtained using the equation (4.3). 

 
• Obtaining a solution ... The least squares solution ~x  is 

obtained using the equation (4.5). 
The actual procedure is performed as follows. 

− Transforming a matrix A into a triangular matrix- 
In transforming a matrix A into an upper triangular matrix, 
let a(k)

ij be the elements of a matrix A(k). 
Then the transformation is as follows: 

( )

( ) ( ) ( ) nkk ,...,1,1

1

==

=
+ kk APA

AA
 (4.7) 

is accomplished by orthogonal matrix P(k) as shown in 
equation (4.8) such that )1( +k

ika =0, i=k+1,...,m. 
(Refer to Fig. LAXL-1) 

( ) ( ) ( )Tkk
k

k uuIP β=−  (4.8) 

( )
( ) ( ))()(

2
)(

1
T

2
1

2)(

,...,,

, Where

k
m

kkk

m

ki

k
ikk

uuu

a

=











= ∑

=

u

σ

( )[ ]
( ) ( )(

kiau

aau

kiu

a

k
ik

k
i

k
kkk

k
kk

k
k

k
i

k
kkkkk

>=

+=

<=

+=
−

,

sign

,0

)()(

)()(

)(

1)(

σ

σσβ

 

The orthogonal matrix P is chosen
so that the elements marked by ○○○○
become zeros in the
transformation Ak+1=P kAk.
 The elements surrounded by
are all changed by the
transformation.

A k

 k

 k
 0

Fig. LAXL-1  Process of transforming a matrix into an upper triangular 
matrix 

Consequently, R is given by the following equation: 

( ) ( ) ( ) ( ) QAAPPPAR nnn =⋅⋅⋅== −+ 111  

This is called the Householder transformation. In this 
subroutine the following items are taken into 
consideration: 



LAXL 

392 

• Previous to the k -th transformation, the k -th column is 
chosen in such a way that σk value becomes maximum 
in equation (4.8) in order to minimize calculation errors. 
In other words, let the l -th column be chosen out of the 
equation (4.9) so that )(

1
kS =max )(k

jS  and then the l-th 
column is exchanged with k -th column. 

( ) ( )( ) ,...,,
2

kias
m

ki

k
ij

k
j == ∑

=

 (4.9) 

If sl
(k) value satisfies the following condition, 

( ) )1(

1
max i

ni

k
l su

≤≤
⋅≤s  

where u is a unit round off. 
Then rank (A) < n is assumed and the processing is 
discontinued with ICON = 20000. 

 
• In order to reduce the calculation for the transformation,  

P(k)  is not computed explicitly, but rather the 
transformation (4.7) is done by way of the following 
transformation: 

( ) ( ) ( )( ) ( )

( ) ( ) T

T1

k
kk

kkk
k

k

yuA

AuuIA

−=

⋅−=+ β

( ) ( )kk
kk Auy TT, where β=  

taking into consideration the fact that the first (k-1) 
elements of u(k) are all zeros when the vector y(k) and the 
matrix A(k+1) are computed. 
 
Obtaining a solution 
Since 

( ) ( ) ( )APPPR nn 11 ⋅⋅⋅= −  (4.10) 

  the constant vector is also transformed in the same way. 

( ) ( ) ( )bPPPQbC n 11 ⋅⋅⋅== −n  (4.11) 

Solving the system of linear equations (4.12) by using 
this ~C , the least squares solution for the equations (4.1) 
can be obtained as follows: 

Rx C~ ~=  (4.12) 

Taking into consideration that the matrix ~R  is an upper 
trangular matrix, the equation (4.12) can be solved using 
backward substitution. 



LAXLM 

393 

A25-21-0101 LAXLM, DLAXLM 

Least squares minimal norm solution of a real matrix 
(singular value decomposition method) 
CALL LAXLM(A,KA,M,N,B,ISW,EPS,SIG,V,KV, 
VW,ICON) 

 
Function 
This subroutine obtains least squares minimal norm 
solution x+ for a system of linear equations with an m × n 
real matrix A. 

Ax = b (1.1) 

where b is an m-dimensional real constant vector, this 
subroutine determines the n order solution vector x so 
that 

2x  

is minimized while 

2Axb −  

is minimized. 

m≥1, n≥1 

Parameters 
A ..... Input. Coefficient matrix A. 

The contents of A are altered on output. 
Two-dimensional array, A(KA,N). 

KA ..... Input. Adjustable dimension of array A (≥M). 
M ..... Input. Number of rows in coefficient matrix A, 

m. 
N ..... Input. Number of columns in coefficient 

matrix A and number of rows in matrix V, n. 
B ..... Input. Constant vector b. 

Output. Least squares minimal norm solution 
x+. 
One-dimensional array of size max(m,n). (See 
Notes.) 

ISW ... Input. Control information. 
Specify depending upon the conditions that 
one system of linear equations is solved or 
some systems of linear equations with the 
identical coefficient matrix is solved as 
follows: 
ISW=0: One system is solved. 
ISW=1: The first system is solved and the 
information to solve the subsequent systems 
are left. 
ISW=2: The second and subsequent systems 
are solved. However the values of B are to be 
replaced by the new constant vector b with the 
rest specifying ISW=1. (See Notes.) 

EPS... Input. Tolerance for relative zero test of 
singular values (≥0.0). 
When EPS=0.0 is specified, the default value 
is used. (See Notes.) 

SIG ... Output. Singular values. 
One-dimensional array of size n. (See Notes.) 

V ..... Work area. 
Two-dimensional array, V(KV,K) where 
K=min(M+1,N). (See Notes.) 

KV ... Input. Adjustable dimension of array V (≥N). 
VW ... Work area. One-dimensional array of size n. 
ICON .. Output. Condition code. See Table LAXLM-1. 
 
Table LAXLM-1  Condition codes 

Code Meaning Processing 
0 No error  

15000 Any singular values could 
not be obtained. 

Discontinued 

30000 KA<M, M<1, N<1, KV<N, 
EPS<0.0 or ISW≠1,2 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ..... ASVD1, AMACH, MGSSL 
FORTRAN basic functions ..... MIN0, SIGN, SQRT, 
AMAX1, ABS 

 
• Notes 

The least squares minimal norm solution x+ is stored in 
the first n elements of array B. 
  When only one least squares minimal norm solution is 
required, if ISW=0 is specified, this subroutine does 
not compute transformation matrix U by singular value 
decomposition. Therefore computational time is 
reduced. Matrix V is returned in the first l columns of 
array V with l=min(m,n). This matrix V can be 
obtained on array A. 
  To obtain the least squares minimal norm solutions of 
a number of systems of linear equations with identical 
coefficient matrices, specify ISW=1 for the first system. 
Next specify ISW=2 for the second and subsequent 
system. Since the singular value decomposition for 
coefficient matrices is omitted in the second and 
following systems, the computational time is reduced. 
Matrices U and V are stored in the first l columns of A 
and first l columns of V respectively. 
See Method. 
  All singular values are non-negative and are stored in 
descending order. When ICON=15000, unobtained 
singular values are defined -1 and are not arranged in 
descending order. 
  This subroutine should be used when rank deficient of 
A is or may be found (rank (A) in (m,n)). When rank 
(A) = min(m,n), the subroutine LAXL should be used. 
Input parameter EPS is used for determining the rank 
of A. It must be carefully specified. See Method. 

 



LAXLM 

394 

• Example 
This example shows the method to solve the least 
squares minimal norm solutions for systems of linear 
equations Ax = b associated with m × n coefficient 
matrix A. Matrix V is obtained on A. 

1≤m≤100, 1≤n≤100. 
 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(100), 
     *SIG(100),VW(100) 
   10 READ(5,500) M,N 
      IF(M.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,M),J=1,N) 
      WRITE(6,600) M,N, 
     *((I,J,A(I,J),J=1,N),I=1,M) 
      READ(5,510) (B(I),I=1,M) 
      WRITE(6,610) (I,B(I),I=1,M) 
      CALL LAXLM(A,100,M,N,B,0,0.0,SIG, 
     *           A,100,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      CALL SVPRT(SIG,A,100,N,N) 
      WRITE(6,630)(I,B(I),I=1,N) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',5X, 
     *'LEAST SQUARES AND MINIMAL', 
     *' NORM SOLUTION'/6X, 
     *'ROW NUMBER=',I4,5X, 
     *'COLUMN NUMBER=',I4/6X, 
     *'COEFFICIENT MATRIX='/ 
     *(10X,4('(',I3,',',I3,')', 
     *E17.7,3X))) 
  610 FORMAT(///10X, 
     *'CONSTANT VECTOR=' 
     */(10X,4('(',I3,')',E17.7,3X))) 
  620 FORMAT(' ',10X,'CONDITION CODE=', 
     *I6) 
  630 FORMAT('1',10X, 
     *'SOLUTION VECTOR=' 
     */(10X,4('(',I3,')',E17.7,3X))) 
      END 
 

  The subroutine SVPRT in this example prints the 
singular values and eigenvectors. The subroutine 
SVPRT is described in the example of the subroutine 
ASVD1. 

 
Method 
Given m × n matrix A and m-dimensional constant vector 
b, this subroutine solves least squares minimal norm 
solution x+ for a system of linear equations 

Ax b=  (4.1) 

  This subroutine obtains the solution x which minimizes 
the norm of x 

2x  (4.3) 

in solution x to minimize the residual norm 

2Axb −  (4.2) 

This subroutine can handle matrix A independent of the 
size of m and n. m ≥ n is assumed to make the 
explanation easy in the following example. 
 
• Singular value decomposition and least squares 

minimal norm solution 
Given a singular value decomposition of A 

TVUA ΣΣΣΣ=  (4.4) 

where U is an m × n matrix as shown in (4.5) 

IUU =T  (4.5) 

V is an n × n orthogonal matrix 

IVVVV == TT  (4.6) 

ΣΣΣΣ  is an n × n diagonal matrix 

( )nσσσ ,...,,diag 21=ΣΣΣΣ  

where 

021 ≥≥⋅⋅⋅≥≥ nσσσ  

If m × m orthogonal matrix Uc is produced by adding m 
- n column vectors in the right of U and ΣΣΣΣc is produced 
by adding m - n × n zero matrix below ΣΣΣΣ, the singular 
value decomposition can be represented like following: 

TVUA ccΣΣΣΣ=  (4.8) 

Suppose 







=
=

xVx
bUb

T

T

~
,

~
cc  (4.9) 

Since transformation by orthogonal matrix Uc does not 
change the value of 

2
 norm, (4.10) can be obtained 

based upon (4.8) and (4.9) 

( )
22

T
2

~~ xbAxbUAxb ccc ΣΣΣΣ−=−=−  (4.10) 

  Therefore to minimize 2Axb −  is reduced to 

minimize 
2

~~ xb cc ΣΣΣΣ− . The last m - n rows of ΣΣΣΣc is a zero 

matrix, then (4.10) is represented by 

212
~

~~
~~

b
xb

xb cc
ΣΣΣΣ

ΣΣΣΣ
−

=−  (4.11) 



LAXLM 

395 

Where ~b  is an n-dimensional vector consisting of the 
first n elements of ~b . It can be given by 

bUb T~ =  (4.12) 

  1
~b  is m-n dimensional vector reducing b~  from cb~ . 

Thus, it is conclusion to minimize 

2
~~ xb ΣΣΣΣ−  (4.13) 

  Suppose the rank of matrix A to be r, that is  
0,0 11 ==⋅⋅⋅=>≥⋅⋅⋅≥ + nrr σσσσ  

  ( )T1
~,...,~~Let   nxx=x , 

( )T1
~,...,~~

nbbb = , the first r components of the least 
squares minimal solution can be given by 

rix iii ...,,2,1,~~ == σb  (4.14) 

and the other are arbitrary. 
  That is, the least squares solution is not unique. If the 
condition that the norm of the least squares solution is 
minimized is added to the condition, the solution will be 
obtained uniquely. For this purpose, components 
excepting those given in (4.14) must be 

nrixi ...,,1,0~ +==  (4.15) 

  Taking (4.9) into consideration, since V is orthogonal 
transformation matrix which makes 2  norm in variable, 

then x+ obtained by 

x V x+ = ~  (4.16) 

is the least squares minimal norm solution. 
  Next, let x+ represented by using a matrix. 
  ΣΣΣΣ + which is the generalized inverse of ΣΣΣΣ can be 
represented by 

( ),,...,,diag ++++ = nσσσΣΣΣΣ  (4.17) 

where 





=
>

=+

0,0
0,1

i

ii
i σ

σσ
σ  (4.18) 

When this ΣΣΣΣ + is used, 
bx ~~ += ΣΣΣΣ  (4.19) 

can be obtained from (4.14) and (4.15). 
  From (4.16), (4.19) and (4.12), least squares minimal 
norm solution x+ is given as 

bUVx T++ = ΣΣΣΣ  (4.20) 

(4.20) can be represented by x+ = A+b by using the 
generalized inverse A+. 
See Method of the subroutine GINV. 
• Computational procedures 
1) A is reduced to upper bidiagonal matrix J0 by 

performing the Householder transformation 
alternatively from left and right. 

22111 −− ⋅⋅⋅⋅⋅⋅= nnn0 QQAQPPPJ  (4.21) 

   For details, see Method of the subroutine ASVD1. 
2) J0 is reduced to diagonal matrix ΣΣΣΣ by performing 

orthogonal transformation alternatively from left and 
right. 

qq TTJSS ⋅⋅⋅⋅⋅⋅= 10
T
1

TΣΣΣΣ  (4.22) 

 Each Si and Ti are given as products of two-
dimensional rotational transformation represented by 

ni LLLS ⋅⋅⋅= 32  (4.23) 

ni RRRT ⋅⋅⋅= 32  (4.24) 

   For details, see Method of the subroutine ASVD1. 
3) Matrices U T and V are given from (4.4), (4.21) and 

(4.22) as follows: 

1
T
1

TT PPSSU ⋅⋅⋅⋅⋅⋅= nq  (4.25) 

qn TTQQV ⋅⋅⋅⋅⋅⋅= − 121  (4.26) 

   U and V are obtained on array A and V respectively 
by multiplying a transformation matrix sequentially 
from the right. 

 The above discussion is adapted when ISW=1 is 
specified. When ISW=0 is specified, this subroutine 
directly computes U T b  without producing U. For this 
purpose, the transformation matrix constructing U T 
should be sequentially multiplied from the left of b. 

4) bUVx T++ = ΣΣΣΣ  
 is produced by sequentially multiplying U T, ΣΣΣΣ +, and 

V from the left of b. When ISW=0 is specified, U T is 
not multiplied. 
At multiplying ΣΣΣΣ +, relative zero test is carried out for 
σi using ∞0J  EPS as tolerance. If the singular value 
is less than the tolerance, it is assumed to be zero. 
When EPS=0.0 is specified, EPS=16u is assumed, 
where u is the unit round off. 



LAXLM 

396 

  When ISW=0, this subroutine directly processes these 
procedures. When ISW=1 is specified, this subroutine 
performs the singular value decomposition by using 
subroutine ASVD1. 

 
  For details, see Method of the subroutine ASVD1 and 
Reference [11]. 



LAXLR 

397 

A25-11-0401 LAXLR, DLAXLR 

Iterative refinement of the least squares solution with a 
real matrix 
CALL LAXLR(X,A,K,M,N,FA,FD,B,IP,VW,ICON) 

 
Function 
Given an approximate least squares solution ~x  to the 
linear equations with an m × n real matrix A (rank (A)=n) 
such as 

Ax b=  (1.1) 

  This subroutine refines the solution by the method of 
iterative modification, where b is an m-dimensional real 
constant vector, and x is an n-dimensional solution vector. 
  The coefficient matrix A must have been decomposed 
using the Householder transformation with partial 
pivoting which exchanges columns of the matrix as 
shown in Eq. (1.2), 

R QA=  (1.2) 

  where R is an upper triangular matrix, and Q is an 
orthogonal matrix, also m≥n≥1. 
 
Parameters 
X ..... Input. Approximate least squares solution x. 

Output. Iteratively refined least squares 
solution ~x . 
One-dimensional array of size n. 

A ..... Input. Coefficient matrix A. 
Two-dimensional array such as A(K,N) 

K ..... Input. Adjustable dimension of array A (≥M). 
M ..... Input. Number of rows m in matrix A. 
N ..... Input. Number of columns n in matrix A. 

(See Notes.) 
FA .... Input. Upper triangular portion of matrix R, 

and matrix Q. 
Two-dimensional array such as FA(K,N). 
(See Notes.) 

FD .... Input. Diagonal portion of matrix R. 
One-dimensional array of size n. 
(See Notes.) 

B ..... Input. Constant vector b. 
One-dimensional vector of size m. 

IP .... Input. Transposition vector which indicates the 
history of exchanging rows of the matrix A 
required in partial pivoting. 
One-dimensional array of size n. 
(See Notes.) 

VW .... Work area. One-dimensional array of size m. 
ICON .. Output. Condition code. See Table LAXLR-1. 

Table LAXLR-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 Rank(A)<n was found. Discontinued 
25000 The convergence condition 

was not met because of 
very ill-conditioned 
coefficient matrix. 

Discontinued (Refer 
to "Method" for the 
convergence 
condition.) 

30000 K<M, M<N or N<1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... ULALB, MAV, AMACH, and MGSSL 
FORTRAN basic functions ... IABS, ABS and SQRT. 
 

• Notes 
This subroutine repeatedly corrects the approximate 
least squares solution ~x  obtained by the subroutine 
LAXL, and improves its accuracy. 
  Therefore, prior to calling this subroutine to obtain 
the refined least squares solution approximate least 
squares solution ~x  must have been obtained by calling 
subroutine LAXL and then the results, B, A, VW and 
IVW, of the subroutine LAXL must be input as the 
parameters X, FA, FD and IP to be used for this 
subroutine. In addition, this subroutine needs both the 
coefficient matrix A and the constant vector b, 
therefore they must be saved before calling the 
subroutine LAXL in order not to lose them. 
  Refer to the example shown below for a more 
practical use. By specifying N=-n, and Euclidean norm 
of the residual vector ( )2

~xAb −  for the approximate 
least squares solution obtained by the subroutine LAXL. 
  When specified, this subroutine does not perform 
iterative refinement for the solution, but only computes 
the Euclidean norm of the residual vector and outputs it 
to the parameter VW(1). 

 
• Example 

A least squares solution ~x  to linear equations with m 
unknowns and n equations (with m ≥ n) is obtained by 
calling the subroutine LAXL. The least squares 
solution ~x  is iteratively refined by this subroutine. 
Here m≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(50,50),FA(50,50),X(50), 
     *   B(50),VW(100),IVW(50),FD(100) 
      CHARACTER*4 NT1(6),NT2(4),NT3(4) 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/ 
      READ(5,500) M,N 
      WRITE(6,600) M,N 
      READ(5,510) ((A(I,J),I=1,M),J=1,N) 
 



LAXLR 

398 

      CALL PGM(NT1,6,A,50,M,N) 
      READ(5,510) (B(I),I=1,M) 
      CALL PGM(NT2,4,B,M,M,1) 
      DO 20 I=1,M 
      X(I)=B(I) 
      DO 10 J=1,N 
      FA(I,J)=A(I,J) 
   10 CONTINUE 
   20 CONTINUE 
      ISW=1 
      CALL LAXL(FA,50,M,N,X,ISW,FD,IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      CALL LAXLR(X,A,50,M,N,FA,FD,B,IVW, 
     * VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) STOP 
      CALL PGM(NT3,4,X,N,N,1) 
      STOP 
  500 FORMAT(2I5) 
  510 FORMAT(10F8.3) 
  600 FORMAT('1', 
     *  /6X,'LINEAR LEAST SQUARES SOLUTION' 
     *  /6X,'ROW NUMBER=',I4 
     *  /6X,'COLUMN NUMBER=',I4) 
  610 FORMAT(' ',5X,'ICON OF LAXL=',I6) 
  620 FORMAT(' ',5X,'ICON OF LAXLR=',I6) 
      END 
 
  The subroutine PGM is used in this example only to 
print out a real general matrix, it is described in the 
example for the subroutine MGSM. 
 
Method 
Given the approximate least squares solution 
(approximate solution, hereafter), ~x  to the linear 
equations 

Ax b=  (4.1) 

the approximate solution is iteratively refined as follows: 
 
• Principle of iterative refinement 

The iterative refinement is a method to obtain a 
successive improved approximate solution x(s+1) 
(s=1,2,...) to the linear equations (4.1) through use of 
the following equations starting with x(1)=x 

( ) ( )ss Axbr −=  (4.2) 
( ) ( )ss rAd =  (4.3) 

( ) ( ) ( )sss dxx +=+1  (4.4) 
  s=1,2,... 

  where x(s) is the s-th approximate solution to equation 
(4.1). 
  If Eq. (4.2) is accurately computed, a refined solution of 
the approximate solution x(1) is numerically obtained. 
  If, however, the condition of the coefficient matrix A is 
not suitable, an improved solution is not obtained. (Refer 
to "Iterative refinement of a solution" in Section 3.4.) 
 
• Procedure performed in this subroutine 

Suppose that the first approximate solution x(1) has 
already been obtained by the subroutine LAXL. 
− The residual r(s) is computed by using Eq. (4.2). This 

is performed by calling the subroutine MAV. 
− The correction d(s) is obtained by using Eq. (4.3). 

This is performed by calling the subroutine ULALB. 
− Finally, the modified approximate solution x(s+1) is 

obtained by using Eq. (4.4). 
 
  The convergence of iteration is tested as follows: 
  Considering u as a unit round off, the iteration 
refinement is assumed to converge if, at the s-th iteration 
step, the following relationship is satisfied. 

( ) ( ) uss ⋅<
∞

+
∞

21xd  (4.5) 

The obtained x(s+1) is then taken as the final solution. 
However, if the relationship, 

( )

( )

( )

( )
∞

∞
−

∞
+

∞ ⋅>
s

s

s

s

x

d

x

d 1

1 2
1  

results, this indicates that the condition of the coefficient 
matrix A is not suitable. The iteration refinement is 
assumed not to converge, and consequently the 
processing is terminated with ICON=25000. 



LAXR 

399 

A22-11-0401 LAXR, DLAXR 

Iterative refinement of the solution to a system of linear 
equations with a real general matrix 
CALL LAXR(X,A,K,N,FA,B,IP,VW,ICON) 

 
Function 
When an approximate solution ~x  is given to linear 
equations with an n × n real matrix A such as 

Ax b=  (1.1) 

  This subroutine refines the approximate solution by the 
method of iterative modification, where b is an n-
dimensional real constant vector, and x is an n-
dimensional solution vector. 
  Prior to calling this subroutine, the coefficient matrix A 
must be LU-decomposed as shown in Eq. (1.2), 

PA LU=  (1.2) 

  where L and U are an n × n lower triangular matrix and 
unit upper triangular matrix, respectively, and P is a 
permutation matrix which exchanges rows of the matrix 
A required in partial pivoting. n≥1. 
 
Parameters 
X ..... Input. Approximate solution vector x. 

Output. Refined solution vector. 
One-dimensional array of size n. 

A ..... Input. Coefficient matrix. 
Two-dimensional array,  A(K,N) 

K ..... Input. The adjustable dimension of array A 
(≥N). 

N ..... Input. The order n of matrix A (See Notes.) 
FA .... Input. Matrices L and U. See Fig. LAXR-1. 

Two-dimensional array, FA(K,N). See Notes. 
B ..... Input. Constant vector b. 

One-dimensional vector of size n. 
IP .... Input. The transposition vector which indicates 

the history of the rows exchange in partial 
pivoting. 
One-dimensional array of size n. Refer to 
Notes. 

VW .... Work area. 
One-dimensional array of size n. 

ICON .. Output. Condition code. See Table LAXR-1. 

Diagonal and lower
triangular portions only

Arrary FA

Upper triangular portion only

Lower triangular
matrix L

Unit upper triangular
matrix U

u1nu13

K
N

0

0

1

1
1

1 u12

un-1 n

u2n

ln1

l31

l21

l11

u23

ln2  lnn−1     lnn

ln−1n−1

l32

l22 l21 u23 u2n

u1nu13u12l11

l22

ln1 ln2  lnn−1          lnn

ln−1n−1  un−1 n

 
Fig. LAXR-1  Storage of elements of L and U in array FA 

Table LAXR-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The coefficient matrix was 
singular. 

Discontinued 

25000 The convergence condition 
was not met because of very 
ill-conditioned coefficient 
matrix. 

Discontinued 
(Refer to 
"Method" for the 
convergence 
condition.) 

30000 K<N or N<1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... LUX, MAV, AMACH, and MGSSL 
FORTRAN basic functions ... ABS 

 
• Notes 

This subroutine iteratively corrects the approximate 
solution ~x  obtained by subroutine LAX to get solution 
x with refined precision. Therefore prior to calling this 
subroutine, ~x  must be obtained by LAX and the 
results must be input as the parameters X, FA and IP to 
be used for this subroutine. In addition, because this 
subroutine also requires the coefficient matrix A and 
constant vector b, they must also be prepared 
separately before calling LAX. Refer to the example 
for details. If N=−n is specified, an estimated accuracy 
(relative error) for the approximate solution ~x  that is 
given by the subroutine LAX can be obtained. When 
specified, this subroutine calculates the relative error 
and out- 



LAXR 

400 

puts it to work area VW(1) without performing the 
iterative refinements of accuracy. Refer to "method" 
for estimation of accuracy. 

 
• Example 

An approximate solution vector ~x  for a system of 
linear equations in n unknowns is obtained by 
subroutine LAX, then ~x  is refined to x. 
n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),FA(100,100), 
     *  X(100),B(100),VW(100),IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,610) (I,B(I),I=1,N) 
      DO 20 I=1,N 
      X(I)=B(I) 
      DO 20 J=1,N 
      FA(J,I)=A(J,I) 
   20 CONTINUE 
      EPSZ=0.0E0 
      ISW=1 
      K=100 
      CALL LAX(FA,K,N,X,EPSZ,ISW,IS,VW,IP, 
     * ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LAXR(X,A,K,N,FA,B,IP,VW,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (I,X(I),I=1,N) 
      DET=IS 
      DO 30 I=1,N 
      DET=DET*FA(I,I) 
   30 CONTINUE 
      WRITE(6,650) DET 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',10X,'**COEFFICIENT MATRIX' 
     * /12X,'ORDER=',I5/(10X,4('(',I3,',', 
     * I3,')',E17.8))) 
  610 FORMAT(///10X,'CONSTANT VECTOR' 
     * /(10X,4('(',I3,')',E17.8))) 
  620 FORMAT('0',10X,'LAX  ICON=',I5) 
  630 FORMAT('0',10X,'LAXR ICON=',I5) 
  640 FORMAT('0',10X,'SOLUTION VECTOR' 
     * /(10X,4('(',I3,')',E17.8))) 
  650 FORMAT(///10X, 
     * 'DETERMINANT OF COEFFICIENT MATRIX=', 
     * E17.8) 
      END 
 

Method 
Given the approximate solution ~x , to the linear 
equations, 

Ax b=  (4.1) 

the solution is iteratively refined as follows: 
 
• Principle of iterative refinement 

The iterative refinement is a method to obtain a 
successively improved approximate solution x(s+1) 
(s=1,2,...) to the linear equations (4.1) through use of 
the following equations starting with xx ~)1( =  

( ) ( )ss Axbr −=  (4.2) 
( ) ( )ss rAd =  (4.3) 

( ) ( ) ( )sss dxx +=+1  (4.4) 
  s=1,2,... 

  where x(s) is the s-th approximate solution to equation 
(4.1). If Eq. (4.2) is accurately computed, a refined 
solution of the approximate solution x(1) is numerically 
obtained. 
If, however, the condition of the coefficient matrix A is 
not suitable, an improved solution is not obtained. 
  (Refer to "Iterative refinement of a solution" in Section 
3.4.) 
 
• Procedure performed in this subroutine 

Suppose that the first approximate solution x(1) has 
already been obtained by the subroutine LAX. 
  Then this subroutine repeats the following steps: 
The residual r(s) is computed by using Eq. (4.2). 
This is performed by calling the subroutine MAV. 
The correction d(s) is obtained next by using Eq. (4.3). 
This is performed by calling the subroutine LUX. 
Finally the modified approximate solution x(s+1) is 
obtained by using Eq. (4.4). 

 
The convergence of iteration is tested as follows: 
Considering u as a unit round off, the iterative refinement 
is assumed to converge if, as the s-th iteration step, the 
following relationship is satisfied. 

( ) ( ) uss 21 <
∞

+
∞

xd  (4.5) 

  The obtained x(s+1) is then taken as the final solution. 
However, if the relation, 

( )

( )

( )

( )
∞

∞
−

∞
+

∞ ⋅>
s

s

s

s

x

d

x

d 1

1 2
1  



LAXR 

401 

  results, this indicates that the condition of coefficient 
matrix A is not suitable.  The iterative refinement is 
assumed not to converge, and consequently the 
processing is terminated with ICON = 25000. 
 
Accuracy estimation for approximate solution 

Suppose the error for the approximate solution x(1) is 
e(1) ( = x(1) − x ), its relative error is represented by 

( ) ( )
∞∞

11 xe   If this iteration method converges, e(1) 

is assumed to be almost equal to d(1).  The relative error 
for the approximate solution is therefore estimated by 

( ) ( )
∞∞

11 xd  (Refer to "Accuracy estimation for 

approximate solution" in Section 3.4.) 
  For further details, see to References [1], [3], and [5]. 
 
 



LBX1 

402 

A52-11-0101 LBX1,DLBX1 

A system of linear equations with a real general band 
matrix (Gaussian elimination method) 
CALL LBX1(A,N,NH1,NH2,B,EPSZ,ISW,IS,FL, 
VW,IP,ICON) 

 
Function 

Ax = b (1.1) 

  This subroutine solves a system of linear equations(1.1) 
by using the Gaussian elimination method. 
  Where A is an n×n real general band matrix with lower 
band width h1, and upper band width h2, b is an n-
dimensional real constant vector, and x is an n-
dimensional solution vector.  n>h1≥0, n>h2≥0. 
 
Parameters 
A..... Input. Coefficient matrix A. 

The contents of A are altered on output. 
Matrix A is stored in one-dimensional array of 
size n⋅min(h1+h2+1,n) in the compressed mode 
for real general band matrices. 

N..... Input. Order n of coeffcient matrix A. 
NH1..... Input. Lower band width h1. 
NH2..... Input. Upper band width h2. 
B..... Input. Constant vector b. 

Output. Solution vector x. 
One-dimensional array of size n. 

EPSZ... Input. Tolerance for relative zero test of pivots 
in decomposition process of matrix 
A(≥0.0).When this is 0.0, the standard value is 
used. 
(See Notes.) 

ISW... Input. Control informaltion 
When solving l (≥1) systems of linear 
equations with the identical coefficient matrix, 
ISW can be specifled as follows:  
ISW=1... The first system is solved. 
ISW=2... The 2nd to l th systems are solved. 

However, only parameter B is 
specified for each constant vector b 
of the systems with the rest 
unchanged. 

(See Motes.) 
IS.... Output. Information for obtaining the 

determinant of the matrix A . (Refer to Notes.) 
FL.... Work area. 

One-dimensional array of size (n−1)⋅h1. 
VW.... Work area. One-dimensional array of size n. 
IP.... Work area. One-dimensional array of size n. 

ICON.. Output. Condition code. Refer to Table  
LBX1-1. 

 
Table LBX1-1. Condition codes 

Code Meaning Processing 
0 No error  

20000 The relatively zero pivot 
occured. It is highly probable 
that the coefficient matrix is 
singular. 

Discontinued 

30000 N≤NH1,N≤NH2,NH1<0,NH2<0,
EPSZ<0.0 or ISW≠1,2. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II..... BLU1, BLUX1, AMACH, MGSSL 
FORTRAN basic functions..... ABS, MIN0 

 
• Notes 

This subroutine assumes that the relatively zero pivot 
occurs when the absolute value of the pivot is smaller 
than the largest absolute value of the elements, in the 
coefficient matrix, multiplied by EPSZ in the LU-
decomposition using the Gaussian elimination method. 
In such a case, the processing is discontinued with 
ICON = 20000. The standrd value of EPSZ is 16 u, 
where u is the unit round off. 
   If the processing is to proceed at a lower pivot value, 
EPSZ will be given the minimum value but the result is 
not always guaranteed. 
  When solving successive systems of linear equations 
with the identical coefficient matrix, ISW=2 should be 
given for the second time and subsequently. By setting 
ISW = 2,LU-decomposed coefficient matrix A is 
bypassed so that the execution time is reduced. In this 
case, the IS value is the same as when ISW=1. 
  The determinant of the coefficient matrix A can be 
obtained by multiplying the product of the n array 
elements A ( i･h+1) , i= 0,1,...,n−1 by the IS value, 
where h = min (h1+h1+1,n). 
   This subroutine, by making use of band matrix 
characteristics, saves data storage area.  In some cases, 
however, depending on the size of the band width, a 
larger data storage area may be required (including 
work area) than used by subroutine LAX provided for 
real general matrices. If that is the case, subroutine 
LAX may be used to save more data storage area. This 
subroutine is especially useful for the case where the 
upper and lower band widths of the coefficient matrix 
of order n are approximately less than n / 3, provided 
both the band widths are equal. 



LBX1 

403 

• Example 
In this example, l systems of linear equations in n 
unknown with the identical matrix are solved.  n ≤ 100, 
h1 ≤ 20 and h2 ≤ 20. 

 
C     ** EXAMPLE ** 
      DIMENSION A(4100),B(100),IP(100), 
     *   FL(1980),VW(100) 
      CHARACTER*4 NT1(6),NT2(4),NT3(4) 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/ 
      READ(5,500) N,NH1,NH2,L 
      WRITE(6,600) N,NH1,NH2 
      NT=N*MIN0(N,NH1+NH2+1) 
      READ(5,510) (A(I),I=1,NT) 
      M=1 
      ISW=1 
      EPSZ=1.0E-6 
      CALL PBM(NT1,6,A,N,NH1,NH2) 
   10 READ(5,510) (B(I),I=1,N) 
      CALL PGM(NT2,4,B,N,N,1) 
      CALL LBX1(A,N,NH1,NH2,B,EPSZ,ISW,IS, 
     *          FL,VW,IP,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.EQ.0) GOTO 20 
      WRITE(6,620) 
      STOP 
   20 CALL PGM(NT3,4,B,N,N,1) 
      M=M+1 
      ISW=2 
      IF(L.GT.M) GO TO 10 
      WRITE(6,630) 
      STOP 
  500 FORMAT(4I4) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1' 
     * ///5X,'LINEAR EQUATIONS  AX=B' 
     * /5X,'ORDER=',I4 
     * /5X,'SUB-DIAGONAL LINES=',I4 
     * /5X,'SUPER-DIAGONAL LINES=',I4) 
  610 FORMAT(' ',4X,'ICON=',I5) 
  620 FORMAT(' '/5X, 
     * '** ABNORMAL END **') 
  630 FORMAT(' '/5X,'** NORMAL END **') 
      END 
 
C     ** MATRIX PRINT (REAL BAND) ** 
      SUBROUTINE PBM(ICOM,L,A,N,NH1,NH2) 
      DIMENSION A(1) 
      CHARACTER*4 ICOM(1) 
      WRITE(6,600) (ICOM(I),I=1,L) 
      M=MIN0(NH1+NH2+1,N) 
      IE=0 
      IB=1 
      DO 10 I=1,N 
      J=MAX0(1,I-NH1) 
      KIB=IB 
      KIE=IE+MIN0(NH1+1,I)+MIN0(NH2,N-I) 
 

      WRITE(6,610) I,J,(A(K),K=KIB,KIE) 
      IE=IE+M 
      IB=IB+M 
   10 CONTINUE 
      RETURN 
  600 FORMAT(/10X,35A2) 
  610 FORMAT(/3X,'(',I3,',',I3,')', 
     *3(2X,E16.7)/(12X,3(2X,E16.7))) 
      END 
 
  Subroutines PGM and PBM are used to print out a real 
matrix and a real band matrix, respectively.  The 
description on subroutine PGM is shown in the example 
for subroutine MGSM. 
 
Method 
A system of linear equations (4.1) with a real general 
band matrix A as 

Ax = b (4.1) 

are solved using the following procedure. 
 
• LU-decomposition of the coefficient matrix A 

(Gaussian elimination method) 
   The coefficient matrix A is decomposed into the unit 
lower band matrix L and the upper band matrix U. 

A = LU (4.2) 

Subroutine BLU1 is used for this operation. 
 
• Solving LUx = b (Forward and backward substitutions) 

   Solving the linear equations (4.1) is equivalent to 
solving the next linear equations (4.3) . 

LUx = b (4.3) 

   This equation (4.3) is resolved into two equations 
(4.4) and (4.5) 

Ly = b (4.4) 
Ux = y  (4.5) 

   and then solution is obtained using forward and 
backward substitutions.  Subroutine BLUX1 is used for 
this procedure.  For more information, see Reference 
[1], [3],[4] and [8]. 



LBX1R 

404 

A52-11-0401  LBX1R, DLBX1R 

Interrative refinement of the solution to a system of linear 
equations with a real band general band matrix. 
CALL LBX1R (X, A, N, NH1, NH2, FL, FU, B, IP, 
VW, ICON) 

 
Function 
Give an approximate solution ~x  to linear equations with 
n × n real band matrix A of lower band width h1 and 
upper band width h2 such as 

Ax = b (1.1) 

  this subroutine refines the approximate solution by the 
method of iterative modification, where b is an  n-
dimensional real constant vector and x is an n-
dimensional solution vetor. 
  Befor this subroutine is called, the coeffcient matrix A 
must be LU-decomposed as shown is Eq.  (1.2) 

A = LU (1.2) 

where L and U are an n × n unit lower band matrix and 
upper band matrix, repectively.  Also n > h1 ≥ 0 and n > 
h2 ≥ 0. 
 
Parameters 
X..... Input.  Approximate solution vector ~x . 

Output.  Iteratively refined solution vector x 
One-dimensional array of size n. 

A..... Input.  Coefficient matrix A. 
Compressed mode for a band matirx. 
One-dimensional array of size 
n⋅min(h1+h2+1,n) 

N..... Input.  Order n of the coefficient matrix A. 
(see "Notes") 

NH1... Input.  Lower band width h1 of the coefficient 
matrix A. 

NH2... Input. Upper band width h2 of the coefficient 
matirx A. 

FL.... Input. Matrix L 
Refer to Fig.  LBX1R-1 
One-dimensional arrary of size (n−1)⋅h1.  (See 
"Notes".) 

FU.... Input.  Matrix U 
Refer to Fig.  LBX1R-2 
One-dimensional array of size 
n⋅min(h1+h2+1,n).  (see"Notes".) 

B.... Input. Constant vector b. 
One-dimensional array of size n. 

IP.... Input.  Transposition vector indicating the 
history of exchangeing rows in partial pivoting. 
One-dimensional array of size n. 
(See "Notes".) 

VW.... Work area.  One-dimensional arrary of size n. 

ICON.. Output.  Condition code.  See Table LBX1R-1. 
 

m21

*
*

*

*

h1

h1

(n−1)⋅h1

h1

h1
Note: The diagonal portion is not stored.
          The elements represented by *⋅⋅⋅*
          indicate arbitrary values.

Array FLUnit lower band matrix L

0

0

1

1

1

1

1

mh1+1 1

mn n−h1

mn−1 n−2

mn n−2

mn n−1

m21

mh1+1 1

mn n−h1

mn−1 n−2

mn n−2 mn n−1

 
Fig. LBX1R-1 Storing method for each element of L into array FL. 

Upper band matrix U

u11

0

0

u1h

u2 h+1u22

un−h n−h un−h n

un−1 n−1 un−1 n

unn

h

h

h

h

h

u11

u1h

u22

un−h n−h

u2 h+1

un−h n

un−1 n−1

un-1 n

*
*

*

*

Note: The elements represented
          by *⋅⋅⋅* indicate arbitrary
          values.
          h = min(h1 + h2 + 1,n)

n･h

unn

Array FU

:

 
Fig. LBX1R-2 Storing method for each element of U into array FU 

Comments on use 
• Subprograms used  

SSL II ...BLUX1, MBV, AMACH, and MGSSL 
FORTRAN basic functions ..ABS and MIN0 



LBX1R 

405 

Table LBX1R-1  Condition codes 

code Meaning Processing 
0 No error  

20000 Coefficient matrix was 
singular. 

Discontinued 

25000 The convergence condition 
was not met because of very 
illconditioned coefficient 
matrix. 

Discontinued 
(Refer to 
"Method" for 
convergence 
condition.) 

30000 N=0,N ≤ NH1,N ≤ NH2,NH1<0 
or NH2<0 

Bypassed 

 
• Notes 

This subroutine repeatedly corrects the approximate 
solution ~x  obtained by subroutine LBX1 and 
improves its accuracy. 
  Therefore, subroutine LBX1 must have been called to 
obtain the approximate solution ~x  before calling this 
subroutine to obtain the iteratively refined solution.  In 
this case, the parameters X, FL, FU and IP must be 
each assigned values of the parameters B, FL, A and 
IP ,of subroutine LBX1.  (Refer to descriptions of 
subroutine LBX1.)  In addition, this subroutine needs 
both the coefficient matrix A and the constant vector b.  
Therefore they must be saved before calling subroutine 
LBX1 so as not to lose them.  For a practical use, refer 
to the example shown below. 
By specifying N = −n, an estimated accuracy (relative 
error) for the approximate solution ~x  obtained by 
subroutine LBX1 can be obtained. 
  This subroutine does not carry out iterative refinement 
of the solution, but only computes the relative error and 
outputs it to the parameter VW(1).  For the accuracy 
estimation, refer to Method. 

 
• Example 

An approximate solution ~x  to n-dimensional linear 
equations is obtained by calling subroutine LBX1, and 
after that the ~x  is iteratively refined by using this 
subroutine.  Here n ≤ 50, h1 ≤ 10 and h2 ≤ 10. 

 
C     **EXAMPLE** 
      DIMENSION A(1050),FL(490),FU(1050), 
     *  X(50),B(50),VW(50),IP(50) 
      CHARACTER*4 NT1(6),NT2(4),NT3(4) 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/ 
      READ(5,500) N,NH1,NH2 
      WRITE(6,600) N,NH1,NH2 
      NT0=MIN0(NH1+NH2+1,N) 
      NT=N*NT0 
      READ(5,510) (A(I),I=1,NT) 
      CALL PBM(NT1,6,A,N,NH1,NH2) 
      READ(5,510) (B(I),I=1,N) 
      CALL PGM(NT2,4,B,N,N,1) 
 

      DO 10 I=1,N 
   10 X(I)=B(I) 
      DO 20 I=1,NT 
   20 FU(I)=A(I) 
      CALL LBX1(FU,N,NH1,NH2,X,0.0,1,IS,FL, 
     *  VW,IP,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      CALL LBX1R(X,A,N,NH1,NH2,FL,FU,B,IP, 
     *  VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      CALL PGM(NT3,4,X,N,N,1) 
      DET=IS 
      IC=1 
      DO 30 I=1,N 
      DET=DET*FU(IC) 
   30 IC=IC+NT0 
      WRITE(6,630) DET 
      STOP 
  500 FORMAT(3I4) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1' 
     * /6X,'LINEAR EQUATIONS AX=B' 
     * /6X,'ORDER=',I4 
     * /6X,'SUB-DIAGONAL LINES=',I4 
     * /6X,'SUPER-DIAGONAL LINES=',I4) 
  610 FORMAT(' ',5X,'ICON OF LBX1=',I4) 
  620 FORMAT(' ',5X,'ICON OF LBX1R=',I6) 
  630 FORMAT(' ',5X,'DETERMINANT=',E15.7) 
      END 
 
  Subroutines PBM and PGM are used only to print out a 
band matrix and a real general matrix, respectively. 
  The descriptions on those programs are shown in the 
examples of the subroutines LBX1 and MGSM, 
respectively. 
 
Method 
Given an approximate solution ~x  to the linear equations 

Ax = b (4.1) 

the solution is iteratively refined as follows: 
 
• Principale of iterative refinement 

The iterative refinement is a method to obtain a 
successively improved approximate solution x (s+1) to 
the linear equations (4.1) through use of the following 
equations starting with x(1) = ~x  : 

)()( ss Axbr −=  (4.2) 
)()( ss rAd =  (4.3) 

)()()1( sss dxx +=+  (4.4) 
,...2,1=s  



LBX1R 

406 

  where x(s) is the s-th approximate solution to equation 
(4.1).  If Eq. (4.2) is accurately computed, a refined 
solution of x(1) is obtained.  If, however, the condition of 
coefficient matrix A is not suitable, no improved solution 
is obtained. (See "Iterative refinement of a solution" in 
Section 3.4.) 
 
• Procedure performed in this subroutine 

Suppose that the first approximate solution x(1) has 
already been obtained by subroutine LBX1. 
This subroutine repeats the following steps: 
  The residual r(s) is computed by using Eq. (4.2). 
Subroutine MBV is used for this operation.  The 
correction d(s) is obtained next by using Eq. (4.3).  
Subroutine BLUX1 is used for this operation. 
  Finally, the modified approximate solution x(s+1) is 
obtained by using Eq. (4.4). 
 
The convergence of iteration is tested as follows: 
Considering u as a unit round off, the iteration 

refinement is assumed to converge if, at the s-th iteration 
step, the following relationship is satisfied. 

uss ⋅<
∞

+
∞

2)1()( xd  (4.5) 

  The obtained x(s+1) is then taken as the final solution. 
However, if the relationship. 

∞

∞
−

∞
−

∞ ⋅>
)(

)1(

)1(

)(

2
1

s

s

s

s

x

d

x

d
 

  results, this indicates that the condition of the coefficient 
matrix A is not suitable.  The iteration refinement is 
assumed not to converge, and consequently the 
processing is terminated with ICON = 25000. 
 
• Accuracy estimation for approximate solution 

Suppose that the error for the approximate solution x(1) 
is e(1) (=x(1)−x ), its relative error is represented by 

∞∞
)()1( sxe  .  If this iteration method converges 

e(1) is assumed to be almost equal to d(1) .Therefore the 
relative error for the approximate solution is estimated 
by 

∞∞
)1()1( xd  (See "Accuracy estimation for 

approximate solution" in Section 3.4.)  For further 
details, refer to References [1], [3] and [5]. 



LCX 

407 

A22-15-0101 LCX,DLCX 

A system of linear equations with a complex general 
matrix (Crout's method). 
CALL LCX (ZA, K, N, ZB, EPSZ, ISW, IS, ZVW, 
IP,ICON) 

 
Function 
This subroutine solves a system of linear equations, as 
shown in (1.1) using the Crout's method. 

Ax =b (1.1) 

A is an n × n non-singular complex general matrix, 
b is an n-dimensional complex constant vector, and x is 
an n-dimensional solution vector. n≥1. 
 
Parameter 
ZA .... Input. Coefficient matrix A. 

The contents of ZA are overridden after 
operation. 
ZA is a complex two-dimensional array, 
ZA (K, N). 

K .... Input. Adjustable dimension of the array 
ZA ( ≥ N) 

N .... Input.  Order n of the coefficient matrix A. 
ZB .... Input. Constant vector b. 

Output. Solution vector x. 
ZB is a complex one-dimensional array of size 
n. 

EPSZ .... Input. Tolerance for relative zero test of pivots 
in decomposition of A ( ≥ 0.0). 
If EPSZ is 0.0, a standard value is used. 
(Refer to Notes.) 

ISW .... Input. Control information 
When l ( ≥ 1) systems of linear equations with 
the identical coefficient matrix are to be solved, 
ISW can be specified as follows: 
ISW = 1 .... The first system is solved. 
ISW = 2 .... The 2nd to l-th systems are solved. 
However, only parameter ZB is specified for 
each constant vector b of the systems of 
equations, with the rest unchanged. (Refer to 
Notes.). 

IS .... Output. Information for obtaining the 
determinant of the matrix A.  If the n elements 
of the calculated diagonal of array ZA are 
multiplied by IS, the determinant is obtained. 

ZVW .... Work area. ZVW is a complex one-
dimensional array of size n. 

IP .... Work area. IP is a one-dimensional array of 
size n. 

ICON .. Output. Condition code. Refer to Table LCX-1. 

Table LCX-1 Condition codes 

Code Meaning Processing 
0 No error  

20000 Either all of the elements of 
some row were zero or the 
pivot became relatively zero. 
It is highly probable that the 
coefficient matrix is singular. 

Discontinued 

30000 K<N, N<1, EPSZ<0.0  
or ISW ≠ 1,2 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ..... CLU, CLUX, AMACH, CSUM, MGSSL 
FORTRAN basic functions ..... REAL, AIMAG, ABS 

 
• Notes 

If EPSZ is set to 10−s, this value has following 
meaning: while performing the LU-decomposition by 
Crout's method, if the loss of over s significant digits 
occured for both real and imaginary parts of the pivot, 
the LU-decomposition should be discontinued with 
ICON = 20000 regarding the pivot to be relatively zero. 
  Let u be the unit round off, then the standard value of 
EPSZ is 16u.  If the processing is to proceed at a low 
pivot value, EPSZ will be given the minimum value but 
the result is not always guaranteed. 
  When solving successive systems of linear equations 
with the idenficial coefficient matrix, computation can 
be performed by setting ISW = 2 after the first system 
of equations. By setting ISW = 2, the LU 
decomposition of the coefficient matrix A is bypassed 
so the computation time is reduced. In this case, the 
value of IS is the same as when ISW = 1. 

 
• Example 

l systems of linear equations in n unknown with the 
identical complex coefficient matrix are solved. n ≤ 
100. 

 
C     **EXAMPLE** 
      DIMENSION ZA(100,100),ZB(100), 
     *          ZVW(100),IP(100) 
      COMPLEX ZA,ZB,ZVW,ZDET 
      READ(5,500) N,L 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,ZA(I,J),J=1,N), 
     *             I=1,N) 
      M=1 
      ISW=1 
      EPSZ=1.0E-6 
   10 READ(5,510) (ZB(I),I=1,N) 
      WRITE(6,610) (I,ZB(I),I=1,N) 
      CALL LCX(ZA,100,N,ZB,EPSZ,ISW,IS, 
     *         ZVW,IP,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,630) (I,ZB(I),I=1,N) 
      IF(L.EQ.M) GOTO 20 
 



LCX 

408 

      M=M+1 
      ISW=2 
      GOTO 10 
   20 ZDET=CMPLX(FLOAT(IS),0.0) 
      DO 30 I=1,N 
      ZDET=ZDET*ZA(I,I) 
   30 CONTINUE 
      WRITE(6,640) ZDET 
      STOP 
  500 FORMAT(2I5) 
  510 FORMAT(5(2F8.3)) 
  600 FORMAT('1',10X,'** COMPLEX MATRIX **' 
     * /12X,'ORDER=',I5/(3X,2('(',I3,',',I3, 
     * ')',2E15.8,2X))) 
  610 FORMAT(///10X,'COMPLEX CONSTANT ', 
     * 'VECTOR',/(5X,3('(',I3,')',2E15.8, 
     * 2X))) 
  620 FORMAT('0',10X,'CONDITION CODE=', I5) 
  630 FORMAT('0',10X,'SOLUTION VECTOR', 
     * /(5X,3('(',I3,')',2E15.8,2X))) 
  640 FORMAT(///10X,'DETERMINANT OF MATRIX', 
     * 2E15.8) 
      END 
 
Method 
A system of linear equations (4.1). 

Ax = b (4.1) 

is solved using the following procedure. 

• LU decomposition of the coefficient matrix A 
(Crout's method) 
The coefficient matrix A is decomposed into a lower 
triangular matrix L and a unit upper trangular matrix U.  
To reduce the rounding error, partial pivoting is 
performed in the decomposition process. 

PA = LU (4.2) 

  P is the permutation matrix which performs the row 
exchanges required in partial pivoting. 
Subroutine CLU is used for this operation. 
 
• Solving LUx = Pb (forward and backward substitution) 

To solve equation (4.1) is equivalent to solving the 
next system of linear equations 

LUx = Pb (4.3) 

Equation (4.3) is resolved into two equations 

Ly = Pb (4.4) 
Ux = y (4.5) 

   Then the solution is obtained using forward substitution 
and backward substitution. Subroutine CLUX is used for 
these operations.  For more information, see References 
[1], [3], and [4]. 



LCXR 

409 

A22-15-0401 LCXR,DLCXR 

Iterative refinement of the solution to a system of linear 
equation with a complex general matrix 
CALL LCXR(ZX, ZA, K, N, ZFA, ZB, IP, ZVW, 
ICON) 

 
Function 
When an approximate solution ~x  is given to linear 
equations with an n × n complex matrix, 

Ax = b (1.1) 

  this subroutine refines the approximate solution by the 
method of iterative modificton, where b is an n-
dimensional complex constant vector and x is an n-
dimensional solution vector. 
  Prior to calling this subroutine, the coefficient matrix A 
must be LU-decomposed as shown in Eq.(1.2), 

PA = LU (1.2) 

where L and U are n × n lower triangular matrix and unit 
upper triangular matrix respectively, and P is a 
permutation matrix which exchanges rows of the matrix 
A required in partial pivoting. 
Also, n≥1. 
 
Parameters 
ZX .... Input. Approximate solution vector ~x . 

Output. Iteratively refined solution vector x. 
Complex one-dimensional array of size n. 

ZA .... Input. Coefficient matrix A. 
Complex two-dimensional array, ZA (K,N). 

K .... Input. Adjustable dimension of the array ZA, 
ZFA ( ≥ N) 

N .... Input.  Order n of the coefficient matrix A. 
(See “Comments on use”.) 

ZFA .... Input. Matrices L and U. 
Refer to Fig.  LCXR-1. 
Complex two-dimensional array, ZFA (K,N). 
(See “Comments on use”.) 

ZB .... Input. Constant vector b. 
Complex one-dimensional array of size n. 

IP .... Input. Transposition vector which indicates the 
history of exchanging rows required in partial 
pivoting.  One dimensional array of size n. 
(See “Comments on use”.) 

ZVW .... Work area.  Complex one-dimensional array of 
size n. 

ICON .. Output. Condition code. See Table LCXR-1. 

1
1

1
1

12 13 1

23 2

10

u u u
u u

u

n

n

n n−





















l u u u
l l u u

l u
l l l l

n

n

n n n n

n n nn nn

11 12 13 1

21 22 23 2

1 1 1

1 2 1

− − −

−

l
l l
l l

l
l l l l

n n

n n nn nn

11

21 22

31 32

1 1

1 2 1

0

− −

−





















N
K

Upper triangular portion only

Lower triangular
matrixL

Unit upper triangular
matrixU

Diagonal and lower
triangular portions only

Array ZFA

 
Fig. LCXR-1 Storing method for each elements of L and U in array 
ZFA 

Table LCXR-1 Condition codes 

Code Meaning Processing 
0 No errors  

20000 Coefficient matrix was 
singular. 

Discontinued 

25000 Convergence condition was 
not met because of very 
illconditioned coefficient 
matrix. 

Discontinued 
(Refer to the 
paragraph 
"Method" for the 
convergence 
condition.) 

30000 Either K<N or N<1. Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... CLUX,MCV,AMACH,CSUM,MGSSL 
FORTRAN basic functions ... REAL,AIMAG,ABS,IABS 

 
• Notes 

This subroutine iteratively corrects the approximate 
solution ~x  obtained by the subroutine LCX, and 
refines its precision.  Therefore , the subroutine LCX 
must be called in advance to obtain the approximate 
solution ~x  prior to calling this subroutine to obtain the 
refined solution.  In this case, the parameters ZX, ZFA 
and IP must be each assigned the outputs of subroutine 
LCX that was called prior to this subroutine.  In 
addition, this subroutine requires both the coefficient 
matrix A and the constant vector b, so that they must be 
saved before calling subroutine LCX in order not to 
lose them.  Refer to the example below for detail.  By 
specifying N = − n, an estimated accuracy (relative 
error) for the approximate solution ~x  obtained in the 



LCXR 

410 

subroutine LCX can be obtained. When specified, this 
subroutine does not perform iterative refinement for the 
solution, but only computes a relative error and outputs 
it to the parameter ZVW(1). For details about the 
accuracy estimation, refer to the following paragraph 
"Method". 
 

• Example 
An approximate solution ~x  to n-dimensional linear 
equations is obtained first by calling the subroutine 
LCX and after that it is iteratively refined by using this 
subroutine.  Here n≤100. 
 

C     **EXAMPLE** 
      DIMENSION ZA(100,100),ZFA(100,100), 
     *  ZX(100),ZB(100),ZVW(100),IP(100) 
      COMPLEX ZA,ZFA,ZX,ZB,ZVW,ZDET 
      READ(5,500) N 
      IF(N.LE.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,ZA(I,J),J=1,N), 
     *             I=1,N) 
      READ(5,510) (ZB(I),I=1,N) 
      WRITE(6,610) (I,ZB(I),I=1,N) 
      DO 10 I=1,N 
      ZX(I)=ZB(I) 
      DO 10 J=1,N 
      ZFA(I,J)=ZA(I,J) 
   10 CONTINUE 
      K=100 
      CALL LCX(ZFA,K,N,ZX,0.0,1,IS,ZVW,IP, 
     * ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      CALL LCXR(ZX,ZA,K,N,ZFA,ZB,IP,ZVW, 
     * ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (I,ZX(I),I=1,N) 
      ZDET=IS 
      DO 20 I=1,N 
      ZDET=ZDET*ZFA(I,I) 
   20 CONTINUE 
      WRITE(6,650) ZDET 
      STOP 
  500 FORMAT(I3) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',5X,'COEFFICIENT MATRIX' 
     * /6X,'ORDER=',I5/(6X,2('(',I3,',',I3, 
     * ')',2E15.8,1X))) 
  610 FORMAT(' ',5X,'CONSTANT VECTOR' 
     * /(6X,3('(',I3,')',2E15.8))) 
  620 FORMAT(' ',5X,'ICON OF LCX=',I5) 
  630 FORMAT(' ',5X,'ICON OF LCXR=',I5) 
  640 FORMAT(' ',5X,'IMPROVED SOLUTION' 
     * /(6X,3('(',I3,')',2E15.8,1X))) 
  650 FORMAT(' ',5X,'DETERMINANT=',2E15.8) 
      END 
 

Method 
Given an approximate solution, ~x , to the linear 
equations 

Ax = b (4.1) 

the solution is iteratively refined as follows: 
 

• Principle of iterative refinement 
The iteratile refinement is a method to obtain a 
successively improved approximate solution x(s+1) to 
the linear equations(4.1) through use of the following 
equations starting with x(1)= ~x  

r(s) = b − Ax(s) (4.2) 
Ad(s)=r(s) (4.3) 
x(s+1)=x(s)+d(s) (4.4) 
s=1,2,.... 

where x(s) is the s-th approximate solution to equation 
(4.1).  If Eq.  (4.2) is accurately computed, an refined 
solution of the approximate solution x(1) is numerically 
obtained.  If the conditions of coeffcient matrix A are not 
suitable, however, no improved solution is obtained.  
(See “Iterative refinement of a solution” in Section 3.4.) 

 
• Procedure performed in this subroutine 

Suppose that the first approximate solution x(1) 
has already been obtained by the subroutine LCX. 
Then this subroutine repeats the following steps:  The 
residual r(s) is computed by using Eq.(4.2). 
The residual r(s) is computed by using Eq.(4.2) 
this is done by calling subroutine MCV. 
The correction d(s) is obtained next by using Eq.(4.3) 
and calling subroutine CLUX. 
Finally the modified approximste solution x(s+1) is  
obtained by using Eq.(4.4). 
 
The iteration convergence is tested as follows. 

Considering  u as a unit round off, the itereative refinement is 
assumed to converge if, in the s-th iteration step, the following 
relationship is satisfied 

uss 2)1()( <
∞

+
∞

xd  (4.5) 

The obtained x(s+1) is then taken as a final solution. 
However, if the relation, 

∞

∞
−

∞
+

∞ ⋅>
)(

)1(

)1(

)(

2
1

s

s

s

s

x

d

x

d
 

results, this indicates that the condition of the 
coefficient matrix A are not suitable.  The iterative 
refinement is assumed not to converge, and consequently 
the processing is terminated with ICON=25000. 
 
• Accuracy estimation for approximate solution Suppose 

the error for the approximate solution 



LCXR 

411 

x(1) is e(1) (=x(1) − x), its relative error is represented by 

∞∞
)1()1( xe .  If this iteration method converges, 

e(1) is assumed to be almost equal to d(1).  The relative 
error for the approximate solution is therefore 

estimated by 
∞∞

)1()1( xd . 

(See "Accuracy estimation for approximate solution" in 
Section 3.4.)  For further details, see References [1], 
[3] and [5] 



LDIV 

412 

A22-51-0702 LDIV, DLDIV 

The inverse of a positive-definite symmetric matrix 
decomposed into the factors L,D and LT 
CALL LDIV (FA, N, ICON) 

 
Function 
The inverse matrix A−1 of an n × n positive-definite 
symmetric matrix A given in decomposed form A=LDLT 
is computed. 

( ) 111T1 −−−− = LDLA  (1.1) 

L and D are, respectively, an n × n unit lower triangular 
and a diagonal matrices. n≥1. 
 
Parameters 
FA........ Input.  Matrices L and D−1. 

See Fig. LDIV-1. 
Output.  Inverse A−1. 
FA is a one-dimensional array of size n(n+1)/2 
that contains L and D−1 in the compressed 
mode for symmetric matrices. 

N......... Input.  Order n of the matrices L and D. 
ICON. Output.  Condition code. 

See Table LDIV-1. 
 

Unit lower
triangular matrix L

triangular
portion
only

-Lower

-Diag-
onal
elements
are
inverted

Array FAMatrix  D−1+(L−−−−I)Diagonal matrix D

n n( 1)

2

+

dnn
−1

ln n − 1

ln1

d22
1−

l21

d11
1−

1
1

1

21

1 1

0l

n nnl l −

d
d

d

l

n nn nn

11
1

21 22
1

1 1
1

0
−

−

−
−l l

d
d

dnn

11

22 0

0

0

0

0

0

 
Note: The diagonal and lower triangular portions of the matrix 

D−1+(L−I) are stored in the one-dimensional array FA in the 
compressed mode for symmetric matrices. 

Fig. LDIV-1 Storage of matrices L and D 

Table LDIV-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Matrix was not a positive-
definite. 

Continued 

30000 N<1 Bypassed 

Comments on use 
• Subprograms used 

SSL II........MGSSL 
FORTRAN basic function........none 

 
• Notes 

Prior to calling this subroutine, LDLT-decomposed 
matrix must be obtained by subroutine SLDL and must 
be input as the parameter FA to be used.  (Refer to the 
example).  In this routine, the diagonal elements of the 
array D must be given as D−1.  D−1 is output by the 
subroutine SLDL.  The subroutine LSX should be used 
for solving a system of linear equations.  Solving a 
system of linear equations by first obtaining the inverse 
matrix should be avoided since more steps of 
calculation are required.  This subroutine should be 
used only when the inverse matrix is inevitable. 

 
• Example 

The inverse of an n × n positive symmetric matrix is 
obtained.  n ≤ 100 

 
C     **EXAMPLE** 
      DIMENSION A(5050) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,620) 
      L=0 
      LS=1 
      DO 20 I=1,N 
      L=L+1 
      WRITE(6,600) I,(A(J),J=LS,L) 
   20 LS=L+1 
      CALL SLDL(A,N,0.0,ICON) 
      IF(ICON.GE.20000) STOP 
      CALL LDIV(A,N,ICON) 
      WRITE(6,630) 
      L=0 
      LS=1 
      DO 30 I=1,N 
      L=L+1 
      WRITE(6,600) I,(A(J),J=LS,L) 
   30 LS=L+1 
      WRITE(6,610) ICON 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E10.2) 
  600 FORMAT(' ',I5/(10X,5E16.8)) 
  610 FORMAT(/10X,'ICON=',I5) 
  620 FORMAT(/10X,'INPUT MATRIX') 
  630 FORMAT(/10X,'INVERSE MATRIX') 
      END 



LDIV 

413 

Method 
Given the LDLT decomposed matrices L and D of an n × 
n positive-definite symmetric matrix A, the inverse A−1 is 
computed. 
Since 

TLDLA =  (4.1) 

  Then, the inverse A−1 can be represented using (4.1) as 
follows:  The inverse of L and D are computed and then 
the inverse A−1 is computed as (4.2). 

( ) ( ) 11T1111T1 −−−−−−− == LDLLDLA  (4.2) 

Let L and D−1 be represented as shown in Eq. (4.3) for 
the following explanation. 

( ) ( )11 diag, −− == iij dl DL  (4.3) 

• Calculating L−1 
Since the inverse L−1 of a unit lower triangular matrix L 
is also a unit lower triangular matrix, if we represent 
L−1 by 

)~(1
ijl=−L  (4.4) 

  then the Eq. (4.5) is obtained based on the relation 
LL−1=I. 





≠
=

==∑
= ji

ji
ll ijij

n

k
kjik ,0

,1
,

~

1

δδ  (4.5) 

  Since lii=1,(4.5) can be rewritten with respect to 
~
lij  as 

shown in (4.6). 

∑
−

=

−=
1 ~~ i

jk
kjikijij lll δ  (4.6) 

  Then considering that ~lii = 1  and ~ljj = 1, the elements 
~
lij  of the ith row (i=2,...,n) of L−1 can be obtained 
successively using 

1,...,1,
~~ 1

1

−=−−= ∑
−

+=

ijllll
i

jk
kjikijij  (4.7) 

• Calculation of (L−1)TD−1L−1 
If we represent the inverse A−1 by 

( )ija~1 =−A  (4.8) 

Then equation (4.9) is derived based on A−1=(L−1)TD−1L−1 

∑
=

−=
n

k
kjkkiij ldla

1

1~~~  (4.9) 

Considering that 1~
=iil , the elements ija~  of the i-th row 

(i = 1,...,n) of A−1 are successively obtained using 

ijldllda
n

ik
kjkkiijiij ,...,1,

~~~~
1

11 =+= ∑
+=

−− (4.10)

 The precision of the inner product calculation in (4.7)
and (4.10) has been raised to minimize the effect of
rounding errors.
 For further information, see Reference [2].

LDLX

414

A22-51-0302 LDLX, DLDLX

A system of linear equations with a positive-definite
symmetric matrix decomposed into the factors L, D and LT
CALL LDLX (B, FA, N, ICON)

Function
This subroutine solves a system of linear equations

bxLDL =T (1.1)

Where L and D are, respectively, n×n unit lower
triangular and diagonal matrices, b is an n-dimensional
real constant vector, and x is an n-dimensional solution
vector. n≥1.

Parameters
B.......... Input. Constant vector b.

Output. Solution vector x.
One-dimensional array of size n.

FA........ Input. Matrices L and D−1.
See Fig. LDLX-1.
One-dimensional array of size n(n+1)/2.

N........... Input. Order n of the matrices L and D.
ICON.... Output. Condition code.

See Table LDLX-1.

Unit lower
triangular matrix L

triangular
portion
only

-Lower

inverted
are

Element
Array FAMatrix {D-1+(L−I)}Diagonal matrix D

d11

d22

dnn

l21

ln1 ln n−1 dnn
-1

ln1 ln n−1

l21

1
1

1

d11

-1

d22
-1

d11

-1

l21

d22
-1

ln1

ln n−1

dnn
-1

00

0

0

n(n+1)/2

Note: The diagonal and lower triangular portions of the matrix

D−1+(L−I) are contained in the one-dimensional array A in the
compressed mode for symmetric matrices.

Fig. LDLX-1 Storage method of matrices L and D−1

Table LDLX-1 Condition codes

Code Meaning Processing
0 No error

10000 The coefficient matrix was not
positive-definite.

Discontinued

30000 N<1 Bypassed

Comments on use
• Subprograms used

SSL IIMGSSL
FORTRAN basic function........None

• Notes

Notes that the diagonal elements of D−1 instead of D
are required in this subroutine. A system of linear
equations can be solved by calling this subroutine after
the subroutine SLDL. D−1 is output by subroutine
SLDL. However, subroutine LSX can be usually
called to solve such equations in one step.
 For a positive-definite symmetric band matrix, the
subroutine BDLX processes faster than this subroutine
because the operation for elements out of the band is
omitted.

• Example

A system of linear equations is solved after first LDLT
decomposition of the n×n coefficient matrix using
subroutine SLDL. n ≤ 100.

C **EXAMPLE**
 DIMENSION A(5050),B(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 NTOT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NTOT)
 WRITE(6,640)
 L=0
 LS=1
 DO 20 I=1,N
 L=L+1
 WRITE(6,600) I,(A(J),J=LS,L)
 20 LS=L+1
 CALL SLDL(A,N,1.0E-6,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 READ(5,510) (B(I),I=1,N)
 CALL LDLX(B,A,N,ICON)
 WRITE(6,610) ICON
 DET=A(1)
 L=1
 DO 30 I=2,N
 L=L+I
 30 DET=DET*A(L)
 DET=1.0/DET
 WRITE(6,620) (B(I),I=1,N)
 WRITE(6,630) DET
 GOTO 10
 500 FORMAT(I5)
 510 FORMAT(5E10.2)
 600 FORMAT(' ',I5/(10X,5E16.8))
 610 FORMAT(/10X,'ICON=',I5)
 620 FORMAT(/10X,'SOLUTION VECTOR'
 *//(10X,5E16.8))
 630 FORMAT(/10X,
 *'DETERMINANT OF COEFFICIENT MATRIX=',
 *E16.8)
 640 FORMAT(/10X,'INPUT MATRIX')
 END

LDLX

415

Method
To solve a system of linear equations (4.1) is equivalent
to solve equations (4.2) and (4.3).

bxLDL =T (4.1)
Ly b= (4.2)

yDxL 1T −= (4.3)

• solving Ly=b (forward substitution)
Ly=b can be consecutively solved using equation (4.4).

niylby
i

k
kikii ,...,1,

1

1

=−= ∑
−

=

 (4.4)

where, L=(lij), yT=(y1,...,yn), bT=(b1,...,bn)
• Solving LTx =D−1y (backward substitution)

LTx =D−1y can be consecutively solved using equation
(4.5).

1,...,,
1

1 nixldyx
n

ik
kkiiii =−= ∑

+=

− (4.5)

where, D−1 = diag(di
−1), xT=(x1,...,xn).

For more information, see Reference [2].

LESQ1

416

E21-20-0101 LESQ1, DLESQ1

Polynomial least squares approximation
CALL LESQ1 (X, Y, N, M, W, C, VW, ICON)

Function
Given n observed data (x1,y1), (x2,y2),..., (xn,yn) and a
weight function w(xi) i=1, 2, .., n, this subroutine obtains
polynomial least squares approximations.
 Let a polynomial of degree m be ()y xm as

() m
mm xcxccxy +⋅⋅⋅++= 10 (1.1)

this subroutine determines coefficients c0, c1,..., cm such
that (1.2) is minimized.

() (){ }2

1

2
imi

n

i
im xyyxw −= ∑

=

δ (1.2)

where m is selected so as to minimize (1.3) in the range 0
≤ m ≤ k.

mn m 2logAIC 2 += δ (1.3)

 When (1.3) is minimized, m is considered the optimum
degree for the least squares approximation.
 Where, 0 ≤ k < n−1. Also, the weight function w(xi)
must satisfy

()
2

,...,2,1,0
≥

=≥
n

nixw i (1.4)

Parameters
X Input. Discrete points xi,

One-dimensional array of size n.
Y Input. Observed data yi.

One-dimensional array of size n.
N Input. Number (n) of discrete points.
M Input. Upper limit k of the degree of the

approximation polynomial to be determined.
If M = −k (k > 0), the approximation
polynomial of degree k is unconditionally
obtained.
Output. The degree k of the approximation
polynomial that was determined.
Hence, when M = −k, output M is always
equal to k.

W Input. Weight function values w(xi).
One-dimensional array of size n.

C Output. Coefficient ci of the determined
approximation polynomial. C is a one-
dimensional array of size k+1. Letting the
output value of M be m (0 ≤ m ≤ k), the
coefficients are stored in the following order:
c0,c1,..., cm
Then, m < k,elements C(I+1), I=m+1,..., k, are
set 0.0.

VW Work area. One dimensional array of size 7n.
ICON .. Output. Condition code.

See Table LESQ1-1.

Table LESQ1-1 Condition codes

Code Meaning Processing
0 No error

10000 When M=−k, (k>0) the
polynomial of order k could
not be determined uniquely.

A uniquely
determined
polynomial of
order less than k
is output.

30000 n < 2,k > n-1 or there was a
negative value in w(xi).

Bypassed

Comments on use
• Subprograms used

SSL II MGSSL, AMACH
FORTRAN basic functions IABS, DABS, DLOG,
FLOAT, and AMAX1

• Notes

Use of single or double precision subroutines
The degree m of the approximation polynomial to be
output may be different between single and double
precision subroutines for some data.
 Therefore, it is preferable to use a double precision
subroutine when handling a large number of observed
data.

Specifying weight function values w(xi)
When observed data have nearly the same order,
w(xi)=1.0,i= 1,2,...,n may be used. But, when they are
ordered irregularly, the weight function should be
specified as w(xi)=1/yi

2 (when yi=0 specify, w(xi)=1.0).
The number of discrete points, n should be as high as
possible compared to the upper limit k.
Theoretically, n, is recommended to be equal to or
greater than 10k.

• Example

The number (n) of discrete points, the discrete points xi,
and the observed values yi,i=1,2,...,n are input, then the
coefficients of the least squares approximation
polynomial are determined.
Where 10 ≤ n ≤ 50,and w(xi) = 1 (i = 1,2,...,n).

C **EXAMPLE**
 DIMENSION X(50),Y(50),W(50),
 * C(6),VW(350)
 READ(5,500) N
 READ(5,510) (X(I),Y(I),I=1,N)
 WRITE(6,600) (I,X(I),Y(I),I=1,N)
 DO 10 I=1,N
 10 W(I)=1.0
 M=5
 MI=M
 CALL LESQ1(X,Y,N,M,W,C,VW,ICON)
 WRITE(6,610) MI,ICON
 IF(ICON.EQ.30000) STOP
 M1=M+1
 WRITE(6,620) M,(I,C(I),I=1,M1)
 STOP

LESQ1

417

 500 FORMAT(I5)
 510 FORMAT(2F10.0)
 600 FORMAT('1'//10X,'INPUT DATA'//
 *20X,'NO.',10X,'X',17X,'Y'//
 *(20X,I3,3X,E15.7,3X,E15.7))
 610 FORMAT(10X,
 *'THE UPPER LIMIT OF THE DEGREE',
 *5X,I5/10X,'ICON=',I5)
 620 FORMAT(//10X,
 *'THE RESULTANT DEGREE',14X,I5/
 *10X,'THE RESULTANT COEFFICIENTS'/
 *(20X,'C(',I2,')=',E15.7))
 END

Method
• Least squares approximation polynomial

Assume that observed data yi, i=1,2,...,n, are given for
discrete points xi, i=1,2,...,n, and they include some
errors.
Then, the least squares approximation polynomial for
the observed data is the polynomial of degree m, ()y xm
which minimizes

() (){ } 2

1

2
imi

n

i
im xyyxw −= ∑

=

δ (4.1)

where w(xi),i=1,2,...,n is the weights.
Let us express ()y xm as

() ()∑
=

=
m

j
j

m
jm xPbxy

0

)((4.2)

 Where Pj(x) is a polynomial of degree j(explained later).
To determine bj

(m), ()xym in (4.2) is substituted into (4.1),
then we take the partial derivative of δm

2 in (4.1) with
respect to bj

(m) and set it equal to zero, thereby obtaining.

() () ()

() ()

=

=

==

∑

∑

∑

=

=

=

n

i
ikiik

n

i
ikijijk

k

m

j

m
jjk

xPyxw

xPxPxwd

mkbd

1

1

0

)(

 where

,...,1,0,

ω

ω

 (4.3)

 Equation (4.3) is a system of m+1 linear equations for
the m+1 unknown bj

(m). This system is called the normal
equations and bj

(m) can be obtained by solving the system.
 Now, if polynomials {Pj(x)} in (4.3) are chosen as that

=≠
≠=

kj
kj

d jk ,0
,0

 (4.4)

 then, elements of the coefficient matrix of the normal
equations become zero except the diagonal elements, so

() (){ }∑
=

==

==
n

i
ijijjj

jjj
m

j

xPxwd

bb

1

2

)(

 where γ

γω
 (4.5)

Thus, bj
(m) can be obtained from (4.5).

The {Pj(x)} which satisfies (4.4) can be obtained from
the following recurrence formula

() () () ()

() ()

() (){ }

=
=

=

=

=

==

=

−−=

−

=
+

−

−++

∑

,...2,1,
0,0

,...1,0

0,1

,...1,0

1

1

2
1

10

111

j
j

j

xPxxw

xPxP

j

xPxPxxP

jj
j

n

i
jijiij

jjjjj

γγ
β

γα

βα

 (4.6)

• Selecting the optimum degree
In obtaining the least squares approximation
polynomial, selecting an optimum degree is of
importance. This subroutine selects the optimum
degree using a quantity AIC as the means to evaluate
the optimum condition of degree m. Letting δm

2 be

() ()∑ ∑
= =

−=
n

i

m

j
ijjiim xPbyxw

1

2

0

2δ (4.7)

then AIC is defined as

mn m 2log=AIC 2 +δ (4.8)

 In general, the smaller value of AIC shows the more
optimum degree. Thus, this subroutine determines the
optimum value which will minimize AIC within the range,
0≤m≤k, then output a least squares approximation
polynomial of that degree. The output polynomial is,
using {bj} and {Pj(x)}(j=0,1,...,m), expressed as

() () m
m

m

j
jjm xcxcxccxPbxy +⋅⋅⋅+++== ∑

=

2
210

0

 (4.9)

 in the standard form of polynomials with coefficients c0,
c1, c2,..., cm.
For more details, see Reference [46] pp. 228 to 250.

LMINF

418

D11-30-0101 LMINF, DLMINF

Minimization of function with a variable
(Quadratic interpolation using function values only)
CALL LMINF (A, B, FUN, EPSR, MAX, F, ICON)

Function
Given a real function f(x) with a variable, the local
minimum point x* and the function value f(x*) are
obtained in interval [a,b], where f(x) is assumed to have
up to the second continuous derivative.

Parameters
A.......... Input. End point a of interval [a,b].

Output. Minimum point x*.
B.......... Input. End point b of interval [a,b].
FUN..... Input. Name of function subprogram which

calculates f(x).
The form of subprogram is as follows:
FUNCTION FUN (X)
Parameters
X.... Input. Variable x.
Substitute values of f(x) in function FUN.
(See “Example”.)

EPSR.. Input. Convergence criterion (≥0.0).
The default value is assumed if 0.0 is specified.
(See “Comments on Use”.)

MAX.. Input. The upper limit (≠0) of number of
evaluations for the function.
(See “Comments on use”.)
Output. The number (>0) of actual
evaluations.

F.......... Output. The value of function f(x*).
ICON.. Output. Condition code. (See Table LMINF-

1.)

Table LMINF-1 Condition codes

Code Meaning Processing
0 No error.

10000 The convergence
condition has not been
satisfied within the
specified function
estimation count.

The last values obtained
are stored in A and F.

30000 EPSR < 0.0 or MAX=0. Bypassed.

Comments on use
• Subprograms used

SSL II AMACH, MGSSL
FORTRAN basic functions ABS, SQRT, AMAX1

• Notes
An EXTERNAL statement is necessary to declare the
subprogram name correspond to parameters FUN in
the calling program.

EPSR
In this subroutine, the convergence condition is
checked as follows: During iteration, if

()x x x1 2 10− ≤ ⋅max . , ~ EPSR
is satisfied at two points x1, and x2, between which x*
exists, point ~x is assumed to be minimum point x* and
iteration is stopped, where ~x x= 1 for f(x1)≤f(x2) and
~x x= 2 for f(x1)>f(x2).
 Since f(x) is assumed to be approximately a quadratic
function in the vicinity of point x*, it is appropriate to
specify EPSR as EPSR ≈ u , where u is the unit
round off to obtain value x* as accurate as the rounding
error.
 The default value of EPSR is 2 u .
MAX
The number of function evaluation is incremented by
one every time f(x) is evaluated.
This is the same as the call count of subprogram FUN.
 The number depends on characteristics of function
f(x), interval [a,b], and convergence criterion.
 Generally, when an appropriate interval [a,b] is
specified and the default value is used for the
convergence criterion, it is adequate to specify MAX =
400.
 Even if the convergence condition is not satisfied
within the specified evaluation count and the
subroutine is returned with ICON = 10000, iteration
can be resumed by calling this subroutine again. In
this case, the user must specify a negative value as the
additional evaluation count in the parameter MAX and
retain other parameters unchanged.
A and B
If there is only one minimum point of f(x) in interval
[a,b], this subroutine obtains the value of the point
within the specified error tolerance. If there are
several minimum points, it is not guaranteed to which
point the result converges. This means that it is
desirable to set a and b, end points of the interval
containing minimum point x*, in the vicinity of
minimum point x*.

• Example

Given the following function,

() 41664 234 +−−−= xxxxxf

a minimum value in interval [−5, 5] is obtained,
assuming that the default value is used for the
convergence criterion.

LMINF

419

C **EXAMPLE**
 EXTERNAL FUN
 A=-5.0
 B=5.0
 EPSR=0.0
 MAX=400
 CALL LMINF(A,B,FUN,EPSR,
 *MAX,F,ICON)
 WRITE(6,600) ICON,MAX,A,F
 600 FORMAT('1'//1X,'ICON=',I6,2X,
 *'MAX=',I5,2X,'A=',E15.7,2X,
 *'F=',E15.7)
 STOP
 END
C OBJECTIVE FUNCTION
 FUNCTION FUN (X)
 FUN=(((X-4.0)*X-6.0)*X-16.0)*X+4.0
 RETURN
 END

Method
Given a single variable real function f(x) and interval
[a,b] in which the minimum value is to be obtained,
minimum point x* and the value of function f(x*) are
obtained using the quadratic interpolation.
It is assumed that −f(x) is unimodal in interval [a,b]. If
−f(x) is not unimodal, this subroutine obtains one of the
minimum points.
 The processing comprises two steps:

• Obtains two points x1 and x2 between which point x*
exists.

• Based on function values f(x1), f(x2) and f(xh) at
points x1 and x2, and middle point xh, determines the
minimum point using a quadratic interpolation
formula which passes through the points (x1, f(x1)),
(xh, f(xh)), and (x2, f(x2)).

 There steps are repeated until the convegence condition
is satisfied in the interval containing the minimum point.

Calculation procedures
For simplicity, let f(x1), f(x2)... be denoted as f1, f2,...

 Procedure step 1 (determination of points x1 and x2)
1) Assumes the smaller of a and b to be x1, the larger to

be x2, and ε=max (EPSR, 2 u .)
2) Determines middle point xh in interval [x1,x2] from

xh=(x1+ x2)/2
3) If f1 > fh < f2, computes h=x2−xh and proceeds to step2.
4) If f1 ≤ fh ≤ f2, assumes x2=xh, and returns to 2).

However, if the convergence condition
() ε⋅≤− 11 ,0.1max xxx h

is satisfied, assumes x1 to be x*, f1 to be f(x*), and sets
ICON=0, then stops processing.

5) If f1 ≥ fh ≥ f2,, assumes x1= xh, and returns to 2).
However, if the convergence condition

() ε⋅≤− 22 ,0.1max xxxh
 is satisfied, assumes x2 to be x* and f2 to be f(x*), and
sets ICON=0, then stops processing.

6) If f1 < fh > f2, assumes x2= xh (for f1 ≤ f2)or x1= xh (for
f1 >f2), and returns to 2). However, if the
convergence condition

() ()x x x f fh1 1 1 210− ≤ ⋅ ≤max . , ε for
or

() ()x x x f fh2 2 1 210− ≤ ⋅ >max . , ε for
is satisfied, assumes x1 or x2 to be x*, f1 or f2 to be f(x*),
and sets ICON=0, then stops processing.

Procedure step2
7) Obtains minimum point xm using the quadratic

interpolation by means of following calculation:

() ()
hxx

fffffhh

hm

h

∆

∆

−=

+−−= 2112 2
2

8) If the convergence condition
() 2,0.1max ε∆ ⋅≤ hxh

is satisfied, proceeds to 9); otherwise, assumes
x x f fm m h1 = ≤()for or x1=xh and
x x f fh m m h= ≥()for , and obtains two points
between which point x* exists, then returns to 7).

9) For the following two points in the vicinity of point
~ ()x x f fm m h= <for or ~ ()x x f fh m h= ≥for which
minimizes the function value,

()
()

~ ~ max . , ~

~ ~ max . , ~
x x x

x x x
1

2

10 2

10 2

= + ⋅

= − ⋅

ε

ε

if () ()hm ffxf ,min~
1 < and

 () ()hm ffxf ,min~
2 <

are satisfied, assumes ~x to be x* and f(~x) to be f(x*),
and sets ICON=0, then stops processing.
If these conditions are not satisfied, obtains two
points between which point x* exists, then return to 7).

LMING

420

D11-40-0101 LMING, DLMING

Minimization of function with a variable
(Cubic interpolation using function values are its
derivatives)
CALL LMING (A, B, FUN, GRAD, EPSR, MAX,
F, ICON)

Function
Given a single variable real function f(x) and its
derivative g(x), the local minimum point x* and the
function value f(x*) are obtained in interval [a, b], where
f(x) is assumed to have up to the third continuous
derivative.

Parameters
A Input. End point a of interval [a, b].

Output. Minimum point x*.
B Input. End point b of interval [a, b].
FUN ... Input. Name of function subprogram which

calculates f(x).
The form of subprogram is as follows:
FUNCTION FUN (X)
Parameters
X ... Input. Variable x.
Substitute values of f(x) in function FUN.
(See “Example”.)

GRAD .. Input. Name of function subprogram which
calculates g(x).
The form of subprogram is as follows:
FUNCTION GRAD (X)
Parameters X ... Input. Variable x.
Substitute the value of g(x) in function GRAD.
(See “Example”.)

EPSR .. Input. Convergence criterion (≥0.0).
The default value is assumed if 0.0 is specified.
(See “Comments on use”.)

MAX .. Input. The upper limit (≠0) of number of
evaluations for f(x) and g(x). (See “Comments
on use”.)
Output. The number (>0) of actual
evaluations.

F Output. The value of function f(x*).
ICON .. Output. Condition code. (See Table LMING-

1.)

Table LMING-1 Condition codes

Code Meaning Processing
0 No error.

10000 The convergence condition
has not been satisfied within
the specified function
evaluation count.

The last values
obtained are
stored in A and F.

20000 The value of EPSR is too
small.

Bypassed. (The
last values
obtained are
stored in A and F.)

30000 EPSR<0.0 or MAX=0. Bypassed.

Comments on use
• Subprograms used

SSL II ... AMACH, MGSSL
FORTRAN basic functions ... ABS, SQRT, AMAX1

• Notes

An EXTERNAL statement is necessary to declare the
subprogram names correspond to parameters FUN and
GRAD in the calling program.

EPSR
In this subroutine, the convergence condition is
checked as follows: During iteration, if

() EPSR~,0.1max21 ⋅≤− xxx

is satisfied for two points x1 and x2 between which x*
exists, point ~x is assumed to be minimum point x* and
iteration is stopped, where ~x x= 1 for f(x1) ≤ f(x2) and
~x x= 2 for f(x1) > f(x2).
 Since f(x) is assumed to be approximately a cubic
function in the vicinity of point x*, it is appropriate to
specify EPSR as u≈EPSR , where u is the unit
round off to obtain value x* as accurate as the rounding
error. The default value of EPSR is 2 u .

MAX
The number of function evaluation count is
incremented by one every time f(x) or g(x) is evaluated.
This is the same as the call count of subprogram FUN
and GRAD.
 The number depends on characteristics of function
f(x) and g(x), interval [a, b], and convergence criterion.
 Generally, when an appropriate interval [a,b] is
specified and the default value is used for the
convergence criterion, it is adquate to specify
MAX=400.
 Even if the convergence condition is not satisfied
within the specified evaluation count and the
subroutine is returned with ICON=10000, iteration can

LMING

421

be resumed by calling this subroutine again. In this case, the
user must specify a negative value as the additional
evaluation count in the parameter MAX and retain other
parameters unchanged.

A and B
If there is only one minimum point for ()f x in interval
[]a b, , this subroutine obtains the value of the point within
the specified error tolerance. If there are several minimum
points, it is not guaranteed to which point the result
converges. This means that it is descrable to set a and b ,
end points of the interval containing minimum point *x , in
the vicinity of minimum point *x .

• Example

Given the following function,
 () 41664 234 +−−−= xxxxxf

 a minimum value is obtained in interval []5,5− . Where
derivative ()g x of function ()f x is

 () 1612124 23 −−−= xxxxg
 and the default value is used for the convergence

criterion.

C **EXAMPLE**
 EXTERNAL FUN,GRAD
 A=-5.0
 B=5.0
 EPSR=0.0
 MAX=400
 CALL LMING(A,B,FUN,GRAD,EPSR,
 * MAX,F,ICON)
 WRITE(6,600) ICON,MAX,A,F
 600 FORMAT('1'//1X,'ICON=',I6,2X,
 *'MAX=',I5,2X,'A=',E15.7,2X,
 *'F=',E15.7)
 STOP
 END
C OBJECTIVE FUNCTION
 FUNCTION FUN(X)
 FUN=(((X-4.0)*X-6.0)*X-16.0)*X+4.0
 RETURN
 END
C DERIVATIVE
 FUNCTION GRAD(X)
 GRAD=((4.0*X-12.0)*X-12.0)*X-16.0
 RETURN
 END

Method
Given a single variable real function ()f x , its derivative

()g x , and interval []a b, in which the minimum value is

to be obtained, minimum point x* and the value of
function ()*xf are obtained using cubic interpolation.
 It is assumed that ()− f x is unimodal in interval []a b, .

If ()− f x is not unimodal, this subroutine obtains one of
minimum points.

The processing comprises two steps:
Obtains two points 1x and 2x between which point *x
exists.
 Based on function values ()1xf

and ()2xf

at points x1

and 2x and their derivatives ()1xg and ()2xg , determines
the minimum point using a cubic interpolation formula which
passes through points ()()11, xfx

and ()()22 , xfx .

These steps are repeated until the convergence condition is
satisfied in the interval containing the minimum point.

Calculation procedures
For simplicity, let ()1xf , ()2xf ,...be expressed as 1f ,

2f , ...

Procedure step 1 (determination of two points 1x and 2x)
1) Assumes the smaller of a and b to be x1, the larger to

be 2x , and ε =max(EPSR, 2 u)
If 1g <0 and 2g >0, proceeds to step 2.

2) Determines middle point xh in interval []x x1 2, from
() 2/21 xxxh += .

3) If 21 fff h ≤≤ , assumes hxx =2 and returns to 2).
However, if the convergence condition

() ε⋅≤− 11 ,0.1max xxx h

is satisfied, assumes x1 to be *x and f1 to be
()*xf ,and sets ICON = 0, then stops processing.

4) If 21 fff h ≥≥ , assumes hxx =1 , and returns to 2).
However, if the convergence condition

() ε⋅≤− 22 ,0.1max xxxh

is satisfied, assumes x2 to be *x and 2f to be ()*xf ,
and sets ICON =0, then stops processing.

5) If 21 fff h >< , assumes hxx =2 (for 21 ff ≤) or

hxx =1 (for 21 ff >), and returns to 2). However, if
the convergence condition

() ε⋅≤− 11 ,0.1max xxx h (for 21 ff ≤)
or

() ε⋅≤− 22 ,0.1max xxx h
(for 21 ff >)

is satisfied, assumes x1 or x2 to be x* and 1f or 2f to be

()*xf , and sets ICON=0, then stops processing.
6) If 21 fff h <> and

If 0<hg and 02 >g , assumes hxx =1 , then
proceeds to step 2);
If 01 <g and 0>hg , assumes hxx =2 , then
proceeds to step 2);
If 01 ≥g and 0≥hg , assumes hxx =2 , then
returns to 2);
If 0≤hg and 02 ≤g , assumes hxx =1 , then
returns to 2);

LMING

422

Step 2 (cubic interpolation)
7) Obtains minimum point xm using cubic interpolation

by means of following calculation:
h x x= −2 1 , () 2121 /3 gghffz ++−= ,

() 21
21

2 ggzw −= ,

() ()wgggzwhh 2/ 121 +−−+=∆ ,
hxxm ∆+= 1

8) If 2xxm ≥ , assumes 1x to be *x and sets
ICON=20000, then stops processing.

9) If xm<x2and if the convergence condition
() ε⋅≤ mxh ,0.1max

is satisfied, or if 0=mg , assumes xm to be *x and mf

to be ()*xf , and sets ICON=0, then stops processing.
If the convergence condition is not satisfied, assumes

()01 <= mm gxx or ()02 >= mm gxx , then returns to 2).

LOWP

423

C21-41-0101 LOWP, DLOWP

Zeros of a low degree polynomial with real coefficients
(fifth degree or lower)

CALL LOWP (A, N, Z, ICON)

Function
This subroutine finds zeros of a fifth or less degree
polynomial with real coefficients;

()0,50... 0
1

10 ≠≤=+++ − anaxaxa n
nn

by the successive substitution method, Newton method,
Ferrari method, Bairstom method, and the root formula
for quadratic equations.

Parameters
A...... Input. Coefficients of the equations. A is a one-

dimensional array of size n +1 . Where A(1)=a0,
A(2)=a1, ..., A(N+1)=an .

N...... Input. Degree of the equation.
Z....... Output. n roots

Z is a complex one-dimensional array of size n.
ICON.. Output. Condition code.

See Table LOWP-1.

Table LOWP-1 Condition codes

Code Meaning Processing
0 No error

10000 When determining a real
root of a fifth degree
equation, after 50
successive substitutions
fkfk+1<0 was not satisfied.

xk+1 is used as
the initial value in
Newton's method
and processing
continues. Refer
to equation (4.16)
in the method.

30000 a0=0.0, n≤0 or n>5 Bypassed

Comments on use
• Subprograms used

SSL II ... RQER, U3DEG, AMACH, UREDR, and
MGSSL
FORTRAN basic functions ... SQRT, ABS, and
CMPLX

• Example
Order n and coefficient ai(i = 0 , 1, ..., n) are entered
and n roots are determined.

C **EXAMPLE**
 DIMENSION A(6),Z(5)
 COMPLEX Z
 READ(5,500) N
 N1=N+1
 READ(5,510)(A(I),I=1,N1)
 CALL LOWP(A,N,Z,ICON)
 WRITE(6,600) N,ICON
 WRITE(6,610)(A(I),I=1,N1)

 IF(ICON.EQ.30000) STOP
 WRITE(6,620)(Z(I),I=1,N)
 STOP
 500 FORMAT(I1)
 510 FORMAT(6F10.0)
 600 FORMAT(10X,'N=',I1,5X,'ICON=',I7)
 610 FORMAT(10X,'A=',E20.8/(12X,E20.8))
 620 FORMAT(10X,'Z=',2E20.8/(12X,2E20.8))
 END

Method
In the explanations below the coefficient of the highest
power of the polynomial is assumed to be 1 (there is no
loss of generality)
• When n = 2 (quadratic equations)

The root formula is used. This is done by calling
subroutine RQDR.

• For n = 3 (third degree equations)
If one real root x1 of () 032

2
1

3 =+++= cxcxcxxf is
obtained, the equation becomes.

() ()()2
2

1 pxpxxxxf i ++−=′ (4.1)

where,
1122

111

+=
+=

pxcp
xcp

and the problem is reduced to solving a quadratic

equation. The single real root x1 is obtained using
Newton's method. The initial value xa is determined after
examining the characteristics of f (x). Namely, let

() 023 21
2 =++=′ cxcxxf (4.2)

the following three cases are considered when
determining xa.
(a) When f' (x) = 0 has two different real roots xm1 and

xm2(xm1) and a minimum value f (xm2).
 If f (xm1) f (xm2)< 0, the point of inflection of f (x) is
used for xa. If f (xm1) f (xm2)> 0, the following cases
are considered for determining xa.
When f (xm1) > 0
 A quadratic equation in h, which is obtained by
setting the Taylor series expansion of f (xm1+h) up to
h2 equal to zero, is considered. Let its positive real
root be h again, then

hxx ma −= 1 (4.3)

When f (xm1) < 0
 A quadratic equation in h, which is obtained by
setting the Taylor series expansion of f (xm2+h) up to
h2 equal to zero, is considered. Let its positive real
root be h again, and then

LOWP

424

hxx ma += 2 (4.4)

(b) When () 0=′ xf has multiple roots
This occurs when the maximum value and then
minimum value match the inflection point. Let the
inflection point be xi and perform the successive
substitution method once, then

)(iia xfxx −= (4.5)

(c) When f' (x) = 0 does not have any real roots The
inflection point of f (x) is used for xa.

• When n = 4 (fourth degree equation)

Generally, a fourth degree equation

0)(43
2

2
3

1
4 =++++= cxcxcxcxxf (4.6)

can be factored into two quadratic factors using
Ferrari's method.

))(()(21
2

21
2 qxqxpxpxxf ++++=

If one real root µ of the following third degree
equation is determined

()µµµ 431
2

2
3 4cccc −+− () 04 4

2
1

2
342 =−−+ ccccc (4.8)

p2 and q2 can be determined as the two roots of

04
2 =+− cvv µ (4.9)

and p1 and q1 can be determined as the two roots of
() 021

2 =−+− µcvcv (4.10)

It p2 and q2 are complex roots, the remaining real roots
of (4.8) are examined and real roots within a certain
allowable quantity range are used for p2 and q2. Later, p1,
q1, p2 and q2 are modified using Bairstow's method. Of
the following quantities

q c p
q c p q p
q c p q p q
q c p q p q

1 1 1

2 2 1 1 2

3 1 1 2 2 1

4 0 1 3 2 2

= −
= − −
= − −
= − −

 (4.11)

d q p
d q p d p
d p d p d

1 1 1

2 2 1 1 2

3 1 2 2 1

= −
= − −
= − −

 (4.12)

q1 to q4 are calculated first, then d1 to d3 are calculated.
Then the systems of linear equation in (4.13) are solved
for 11 pp∆ and 2p∆ .

32112 qpdpd =+ ∆∆ (4.13)
42213 qpdpd =+ ∆∆

11 pp ∆+ , and 22 pp ∆+ are used as the new values
for p1 and p2, and the corresponding q1 and q2 are
obtained using (4.11).

• When n = 5 (fifth degree equation) Let one of the real

roots of the following fifth degree equation.

0)(54
2

3
3

2
4

1
5 =+++++= cxcxcxcxcxxf

 (4.14)

be x1, then f (x) can be rewritten as

0))(()(432
3

1
4

1 =′+′+′+′+−= cccxcxxxxf (4.15)

where

111 xcc +=′

1122 cxcc ′+=′

2133 cxcc ′+=′

3114 cxcc ′+=′

Therefore once x1 has been obtained, the problem is
reduced to solving a fourth degree equation. x1 is
determined as follows: First, using the successive
substitution method

500 ,0 cfx ==

kkk fxx −=+1 (4.16)
(),kk xff = 50 ..., 1, 0,=k

kx and 1+kx are determined such that 01 <+kk ff
Next, using the method of regular falsi

() ()kkkkkka fffxxxx −−−= ++++ 1111 /

ax is determined. Newton's method is then applied
using xa as the initial value. The upper limit of iteration
by (4.16) is set to 50. If f k f k+1 < 0 is not satisfied when
that limit is reached the last xk+1 is used as the initial
value in Newton's method.

Convergence criterion
For third and fifth degree equations, Newton's method is
used to obtaine one real root. The method used to
examine convergence is discussed below. Let third and
fifth degree equations be represented in the following
general form.

0......1
10 =+++ −

n
nn cxcxc (4.17)

(where c0 =1, n =3 or 5)
and let the k-th approximate value obtained when

Newton's method is applied to (4.17) be xk , xk is
accepted as a root of (4.17) if it satisfies

∑∑
=

−

=

− ≤
n

j

jn
kj

n

j

jn
kj xcuxc

00

 (4.18)

Where u is the round-off unit.
For futher details, see Reference [25].

LPRS1

425

D21-10-0101 LPRS1, DLPRS1

Linear programming (Revised simplex method)
CALL LPRS1 (A, K, M, N, EPSZ, IMAX, ISW,
NBV, B, VW, IVW, ICON)

Function
This subroutine solves linear programming problem
shown below by using the revised simplex method;
Minimize (or maximize) the objective function of linear

∑
=

+=
n

j
jj cxcz

1
0

subject to

i

n

j
jij dxa ≤∑

=1

, i = 1,2, ... , lm ,

i

n

j
jij dxa ≥∑

=1

 , 1+= lmi , 2+lm , ... , gl mm + ,

i

n

j
jij dxa =∑

=1

 , 1++= gl mmi , 2++ gl mm , ... ,

egl mmm ++ ,

0≥jx , j = 1, 2 , ... , n

This subroutine solves this problem in the following

two phase:
• Phase 1 obtaining basic feasible solution.
• Phase 2 obtaining the optimal solution.

This subroutine allows entry of the initial feasible basis.
There is no constraint on sign of id .

Assume eg mmmm ++= 1 .

• m × n matrix consisting of elements }{ ija : called
coefficient matrix A .

• d = (1d , 2d , ... , md)T : called a constant vector.
• c = (1c , 2c , ... , mc)T : called a coefficient vector.
• c0 : called a constant term.
n ≥ 1 , 0≥lm , 0≥gm , 0≥em 1≥m

Parameters
A.... Input. Coefficient matrix A , Constant vector d ,

coefficient vector c and constant term c0 .
See Table LPRS1-1.
Two-dimensional array of size A(K, N+1).

n+1
n

K

A
m+1

m

C0

d

-cT

Fig. LPRS1-1 Contents of array A

K Input. Adjustable dimension of arrays A and
B (≥ +m 1).

M Input. Number of constraints.
One-dimensional array of size 3.
M(1), M(2), and M(3) contain ml, ms and me,
respectively.

N Input. Number of variables n
EPSZ .. The relative zero criterion for elements

(coefficient and constant term) to be used
during iteration and the pivot to be used when
basic inverse matrix B-1 is obtained.
EPSZ ≥ 0.0.
A default value is used when EPSZ=0.0.
See Notes.

IMAX .. Input. Maximum number of iterations (0≠).
See Notes.
Output. Number of iterations actually
executed
(>0).

ISW .. Input. Control information.
ISW specifies whether the objective function
is to be minimized or maximized and whether
the initial feasible basis is given.
ISW is expressed as 10 d d1 0+ . Where

10 0 ≤≤ d and 10 1 ≤≤ d .
When 00 =d , the objective function is to be
minimized.
When 10 =d , the objective function is to be
maximized.
When 01 =d , a basis is not given.
When 11 =d , a basis is given.
Output. When an optimal solution or basic
feasible solution is obtained, ISW contains a
value of 11 =d .
Otherwise the input value remains.

LPRS1

426

NBV .. Input. (When ISW = 10 or 11 is specified.)
Initial feasible basis.
Output. Optimal or feasible basis.
One-dimensional array of size m .
See Notes.

B Output. Basic inverse matrix B−1 for an
optimal solution or basic feasible solution,
optimal solution or basic feasible solution g ,
simplex multiplier π and objective function
value q .
Two-dimensional array B(K, m+1).
See Fig. LPRS1-2.

B1

m+1
m

K
m+1

m

q

g

π

Fig. LPRS1-2 Contents of array B

VW .. Work area. One-dimensional array of size
2n+m+ml+mg+1.

IVW .. Work area. One-dimensional array of size
n+ml+mg.

ICON .. Output. Condition code.
See Table LPRS1-1.

Comments on use
• Subprograms used

SSL II ... ALU, LUIV, AMACH, MGSSL
FORTRAN basic functions ... ABS, IABS

• Notes
− Contents of NBV

When the number of basic variable is specified by
NBV (when ISW=10 or ISW=11), the number of the
slack variable corresponding the i-th ()gl mmi +≤

unequality constraint must be n i+ . When the
computed basic solution contains the i-th slack
variable, the slack variable number is assumed to be
n i+ .

An artificial variable cannot be specified as a basic
variable at entry time. When an

Table LPRS1-1 Condition codes

Code Meaning Processing
0 An optimal solution was

obtained.

10000 A basic feasible solution was
obtained but the problem has
no optimal solution.

11000 The number of iterations
reached to the specified upper
limit during phase 2. The basic
feasible solution was obtained.

The basic feasible
solution and
corresponding
basic inverse
matrix, simplex
multiplier and
objective function
value are stored
in array B.

20000 The problem is infeasible. The
value EPSZ might not be
appropriate.

Bypassed

21000 When ISW=10 or ISW=11, the
set of the given variables is not
a basis.

Bypassed

22000 When ISW=10 or ISW=11, the
set of the given variables is
infeasible.

Bypassed

23000 The basic variable could not
be interchanged during phase
1. The value EPSZ might not
be appropriate.

Bypassed

24000 The number of iterations
reached to the upper limit
during phase 1.

Bypassed

30000 One of the following conditions
occurred:
1 Negative value was

contained in M(1), M(2) or
M(3).

2 N<1
3 IMAX=0
4 EPSZ<0.0
5 M(1)+M(2)+M(3)<1
6 M(1)+M(2)+M(3)≥K
7 Zero or negative number

was contained in the
elements of NBV.

8 The number exceeding
N+M(1)+M(2) was
contained in the elements
of NBV.

9 The same basic variable
number appeared in the
elements of NBV.

10 ISW was incorrectly given.

Bypassed

artificial variable is combined with the computed
basic solution,NBV contains value of zero.

If the i-th basic variable is an artificial variable,
NBV(i) contains a value of zero. When the basic
feasible solution has been obtained (when ICON=0,
10000 or 11000), NBV(i)=0 indicates that the i-th
constraint is redundant

B-1

LPRS1

427

(which is derived form other constraints with NBV
(i) ≠ 0).

Moreover, the content of NBV is ginven
corresponding in storage order of the optimal
solution or basic feasible solution g (See Fig LPRS
1-2). It is x3=0 against number j which is not stored
in NBV.

− Giving IMAX
The number of iterations is that of criterions of the
optimality standards (See Method 4.7) assciated with
a basic fesible solution (at phase 1, the basic feasible
solution contains artificial variables). The standard
value for IMAX is 10m

 If the optinal solution could not be obtained within
the specified number of iterations and ICON contains
a condition code of 11000, this subroutine can be
called again to continue iteration. In this case, a
negative value for the number of additional iterations
must be specified in the parameter IMAX, While
other parameters remaim unchanged.

− Giving EPSZ
Suppose the maximum abolute value of the input
date (contents of array A) elements to be amax. Zero
is assumed for the element in which the absolute
value for the elements during iteration is less than
amax ⋅EPSZ.

 When a basic inverse matrix B-1 is obtained by using
ALU or LUIV sobroutinc, EPSZ is used as the
relative zero criterrion value (Refer to Comments on
use of the subroutine ALU) .

 The standard value for EPSZ is 16 u (u:unit round
off). It is desirable that the absolute value must be
adjusted as far as possible by multiplying each
column or row by constants. When ICON=20000 or
23000, the value of EPSZ may not be appropriate. In
this case, use the standard value for EPSZ or change
the value for retry.

− When varibale xj is negative
This subroutine principally used the condition
xj ≥0, j=1,2,...,n

 Therefore if xj is negative, the subroutine can be used
after transformation of the problem as listed below:
• Replce xj by −+ − jj xx

• Add the constraints of 0,0 ≥≥ −+
jj xx

• Example

This example solves a linear programming problem
when the maximum number of variables is 10 and the
maximum number of constraints is 20:

C **EXAMPLE**
 DIMENSION A(21,11),B(21,21),M(3),
 * NBV(20),VW(61),IVW(30)
 READ(5,500) N,M,ISW
 N1=N+1

 MM=M(1)+M(2)+M(3)
 M1=MM+1
 DO 10 I=1,M1
 READ(5,510) (A(I,J),J=1,N1)
 10 CONTINUE
 WRITE(6,600) (J,J=1,N)
 IF(M(1).EQ.0) GOTO 30
 WRITE(6,610)
 DO 20 I=1,M(1)
 WRITE(6,620) I,(A(I,J),J=1,N1)
 20 CONTINUE
 30 IF(M(2).EQ.0) GOTO 50
 WRITE(6,630)
 IS=M(1)+1
 IE=M(1)+M(2)
 DO 40 I=IS,IE
 WRITE(6,620) I,(A(I,J),J=1,N1)
 40 CONTINUE
 50 IF(M(3).EQ.0) GOTO 70
 WRITE(6,640)
 IS=M(1)+M(2)+1
 DO 60 I=IS,MM
 WRITE(6,620) I,(A(I,J),J=1,N1)
 60 CONTINUE
 70 IF(MOD(ISW,10).EQ.0) GOTO 80
 WRITE(6,650) (A(M1,J),J=1,N1)
 GOTO 90
 80 WRITE(6,660) (A(M1,J),J=1, N1)
 90 READ(5,520) EPSZ,IMAX
 WRITE(6,670) EPSZ,IMAX
 IF(ISW.LT.10) GOTO 100
 READ(5,500) (NBV(I),I=1,MM)
 WRITE(6,680) (NBV(I),I=1,MM)
 100 CALL LPRS1(A,21,M,N,EPSZ,IMAX,
 * ISW,NBV,B,VW,IVW,ICON)
 WRITE(6,720) B(M1,M1)
 WRITE(6,690) ICON,IMAX
 IF(ICON.GE.20000) STOP
 IF(ICON.EQ.0) WRITE(6,700)
 IF(ICON.GE.10000) WRITE(6,710)
 WRITE(6,720) B(M1,M1)
 WRITE(6,730) (NBV(I),B(I,M1),I=1,MM)
 STOP
 500 FORMAT(10I4)
 510 FORMAT(11F6.0)
 520 FORMAT(E10.2,I5)
 600 FORMAT('1','INITIAL TABLEAU'
 * /'0',10X,11(I6,4X))
 610 FORMAT(' ','LHS.LE.RHS')
 620 FORMAT(' ',I6,4X,11F10.3)
 630 FORMAT(' ','LHS.GE.RHS')
 640 FORMAT(' ','LHS.EQ.RHS')
 650 FORMAT(' ','OBJ.FUNC.(MAX)'
 * /' ',10X,11F10.3)
 660 FORMAT(' ','OBJ.FUNC.(MIN)'
 * /' ',10X,11F10.3)
 670 FORMAT('0','EPSZ=',E12.4,5X,
 * 'IMAX=',I4)
 680 FORMAT('0','INITIAL BASIS'
 * /' ',20I4)
 690 FORMAT('0','ICON=',I5,12X,'IMAX=',I4)
 700 FORMAT('0','OPTIMAL SOLUTION')
 710 FORMAT('0','FEASIBLE SOLUTION')
 720 FORMAT(' ','OBJ.FUNC.',F15.4)
 730 FORMAT(' ',I6,3X,F15.4)
 END

LPRS1

428

Method
First, the following standard linear programming problem
is explained.

Minimize the objective function

0
T cz += xc (4.3)

subject to

Ax d= (4.1)
x o≥ (4.2)

Assume an m n× matrix A where
rank A = m n≤
and assume

()T
21 ,...,, nxxx=x ,

()mddd ,...,, 21=d and

()T21 ,...,, nccc=c .
The j-th column of A is expressed by aj when m column
of A:

mkkk aaa ,...,,
21

are linearly independent, the corresponding
1kx ,

2kx ,...,

mkx are called bases and
ikx is colled the i-th basic

variable.
Suppose a set of non-basic variable numbers to be L, a
system of linear equations which is equivalent to (4.1)
and (4.3) can be expressed below:

migxfx
Lj

ijijki
...,,2,1, ==+ ∑

∈

∑
∈

=+
Lj

jj qxpz (4.4)

This is called a basic form and one of its solutions

migx iik ...,,2,1, ==

=jx 0 , Lj ∈ (4.5)
qz =

is colled a basic solution.
When

gi≥0, i=1, 2, ... ,m (4.6)

holds, the basic solution shown in (4.5) satisfies (4.2).
The solution shown in (4.5) is a basic feasible solution In
the basic feasible form, if a certain s which satisfies
(4.8) exisits,

≤jp 0, Lj ∈ (4.7)

holds, (4.5) is the optimal solution. (4.7) is the optimality
criterion for the basic feasible solution. In the basic
feasible form, if a certain s whic satisfies (4.8) exists,

>sp 0 , Ls ∈ (4.8)

it may be possible to get a better basic feasible solution
which minimizes the value of z further by replacing any
basis, by xs . Let a null set be φ , and

{ }0| >=+
isfiI

holds, if φ≠+I and

=

+∈ is

i

Iirs

r

f
g

f
a

min

(4.9)

holds, the basis in which
rkx is replaced by sx is a

feasible basis. And the basic solution for a new basis is
as follows:

rs

r
k f

gx
r

=′
,

rs

r
isik f

gfgx
i

−=′ , ri ≠ (4.10)

=jx 0 , Lj ′∈ ,

rs

r
s f

gpqz −=

When ik ′ is of a new basic variable number and L′ is a
set of new non-basic variable numbers. Therefore the
following relationships can be established:

skr =′ ,
,, rikk ii ≠=′

{ } { }rksLL +−=′
The value z in this new basic feasible solution is smaller
than the old value if rg > 0.

When ,φ=+I the problem has no optimal solution. If

],...,,[
21 mkkk aaaB =

],...,,[
21 mkkkB ccc=C (4.11)

1−= BCBππππ

are give, the values of coefficients of a basic form shown
in (4.4) and the right side are expressed as follows:

jj aBf 1−= , Lj ∈

dBg 1−= (4.12)
Ljcp jjj ∈−= ,aππππ

0cq −= dππππ

Where ()T21 ,...,, mjjj fff=jf and ()T21 ,...,, mggg=g
hold. B , B-1 and π are called a basic matrix, basic
inverse matrix and simplex multiplier (vector)
respectively.

The following summarizes the computational
procedures for a standard linear progromming problem:

LPRS1

429

• Basic inveerse matrix B-1 for a fesible basis and

simplex multiplier ππππ are computed.
• pj is computed by using the formula shown in (4.12).
• The optimality criterion shown in (4.7) is tested. If the

standards are satisfied, the g is assumed as an optimal
solution. If they are not satisfied, fs is computed based
on (4.12).

• The variable to be replaced by xs is selected based on
(4.9) and a new fesible base is produced.

The revised simplex method obtains the optiml solution

by repeating these procedures.

Soulution for non-standard linear programming
problem
When unequality constraints are contained, they must be
adjusted to the following equality constraints to transform
them to a stndard linear programming problem.
Given

l

n

j
ijij midxa ,...,2,1,

1

=≤∑
=

where

l

in

n

j
iinjij mi

x

dxxa
,...,2,1,

0
1 =

≥

=+

+

=
+∑ (4.13)

is assumed to be held.
Given

glll

n

j
ijij mmmmidxa +++=≤∑

=

,...,2,1,
1

where

gl

ll

in

n

j
iinjij

mm
mmi

x

dxxa

+
++=

≥

=−

+

=
+∑

...,
,2,1,

0
1 (4.14)

is assumed to be held.

The varibles added in (4.13) and (4.14) are called slack
variables. The maximization problem is transformed to
the minization problem by multiplying objective
functions by -1.

Obtaining the initial basic solution
When the initial feasible basic solution has not been
obtained, the following problem must be solved before
the given problem is solved:
Minimize the objective function

()∑
=

=
m

i

a
ixz

1
1

subfect to:
() () dxAxA =+ aa** , (4.15)

0* ≥x ,
() 0≥ax

where x* is an ()gl mmn ++ -dimensional vector contains

slack variables and A* is the corrsponding coefficient
matrix.
x(a) is an m-dimensional vector,

T)()(
2

)(
1

)(),...,,(a
m

aaa xxx=x and ()aA is a diagonal matrix

of order m, () ())(a
ij

a a=A

where =)(a
ija

<−
≥

0when 1
0when 1

i

i

d
d

 (4.16)

)(a
ix are called artificial variables.
When the optimal solution is obtained of this problem,

if, 01 =z , that is () ox =a
 holds, the basic feasible

solution for the given problem has been obtained. When
01 >z , the original problem is infeasible. If 01 =z , an

artificial variable may remain in the basis. In this case, it
must be handled so that the articial variable value is
always zero when the subsequent problem is to be solved.

Computational procedures
When the initial fesible basis can be given (ISW=10 or
ISW=11), this subroutine immediately executes
procedure 2).
1) Initialization of phase 1

Assuming ()ax as a basis in (4.15) this subroutine
defines the basic inverse matrix B −1 , which is equal
to (4.16).
This subroutine determines the corresponding basic
solution g , simplex multiplier π and objective
function value q form (4.11) and (4.12):

 ii dg =

=iπ mi
d
d

i

i ,...,2,1,
0when
0when

1
1

=

<
≥

−
 (4.17)

∑
=

=
m

i
idq

1

 This subroutine immediately executes procedure 4)
2) The basic inverse matrix corresponding to the initial

feasible basis is computed by using the subroutines
ALU and LUIV. If the inverse matrix cannot be
obtained, this subroutine terminates abnormally after
it sets a condition code of 20000 to ICON.

3) Initalizain of phase 2
Simplex multiplier π is computed by using (4.11).
Objective function value q is computed based on
relationship shown in (4.12):

0cq += gCB

Where the element of CB is assumed to be 0

LPRS1

430

corresponding to a slack variable and artificial
variable.

4) Testing the optimality criterion
This suborutine obtains the jp corresponding to the
non-basic variables containing slack variables by
using (4.12) and tests the optimality criterion shown
in (4.7). If (4.8) is satisfied, this subroutine executes
procedure 5) immediately.

 If the optimality criterion is safisfied:
• when ISW ≥ 10, the optimal solution has been

obtained. This subroutine terminates normally after
it set a condition code of 0 to ICON.

• when ISW<10 and q > 0 , the problem has no basic
feasible solution. This suborutine terminates after it
sets condition code of 20000 to ICON.

• when ISW<10 and q = 0 , an initial basic feasible
solution has been obtained. This subroutine
completes phase 1 at this stage. This subroutine
increments the contents of ISW by 10 and executes
procedure 3) again.

5) Testing the number of iterations If the number of
terations has not reached the upper limit, this
subroutine executes procedure 6) and continue
iterations. When it has reahed the upper limit during
phase 1, this subroutine terminates abnormally after it
sets a condition code of 24000 to ICON. When it has
reached the upper limit during phase 2, this
subroutine terminates after it sets a condition code of
11000 to ICON.

6) Replacing bases
This subroutine computes sf corresponding to xs by
using (4.12). If 0≤isf ()mi ...,,2,1= is satisfied, no
optimal solution exists. When such a condition
occurs during phase 1, this subroutine sets a
condition code of 10000 to ICON and terminates.
When it occurs during phase 2, this subroutine sets a
condition code of 23000 to ICON and terminates. If

0>isf , this subroutine determines base krx to be
changed by using (4.9).

7) Computing basic inverse matrices for new bases
When the i-th row ()1...,,2,1 += mi of a matrix

 −

qππππ
gB 1

is expressed by iββββ , the matrix for new bases can be
obtained as shown below:

rr
rsf

ββββββββ →1 (4.17)

rif irisi ≠→− ,ββββββββββββ

This is called pivot operation in which rsf is assumed to
be a pivot. This subroutine executes procedure 4) again
after this procedure.

Convergence criterion
When a variable to be stored into a base is sx and a
variable to be fetched form the base during replacement
of the base, the value of the objective function decreases
by

()0>
rs

r
s f

gp

as seen from (4.10) if

0>rg (4.18)

is satisfied.
The same basic feasible solution does not appear as far as
(4.18) is satisfied during iteration. Since the number of
basic feasible solutions is limited this subroutine can
obtain the optimal soution while replacing base by the
other - or it can find out that no optimal solution exists.
If gr = 0 is satisfied, the value of the objective function
does not vary. If this condition occurs repeatedly, a basic
feasible solution which has appeared once may appear
again - some feasible solution appear periodically. As a
result no optimal solution cannot be obtained normally.
To avoid such a condition this subroutine imposed certain
restriction on r and s :
• The minimum-valued j is regarded as s if pj > 0 in (4.8)
• The r0 which makes the minimum value of (4.9) zero,

minimizes
0rk and satisfies

=

+∈ is

i

Iisr

r

f
g

f
g

min
0

0

is regarded as r.

For further information, see Reference [41].

LSBIX

431

A52-21-0101 LSBIX, DLSBIX

A system of simultaneous linear equations with a real
indefinite symmetric band matrix (block diagonal
pivoting method)
CALL LSBIX (A, N, NH, MH, B, EPSZ, ISW,
VW, IVW, ICON)

Function
This subroutine solve a system of linear equations

Ax b= (1.1)

using the block diagonal pivoting method, where A is an
n n× indefinite symmetric band matrix with band width
h, b is an n -dimensional real constant vector, and x is
an n-dimensional solution vector (n>h≥0).(there are two
similar methods, the one is analogous to Gaussian
elimination method and the other is analogous to Crout
method ;this subroutine uses the former.)

Paramters
A Input. Coefficinet matrix A .

Compressed storage mode for symmetric band
matrix. One-dimensional array of size
n(h+1)−h(h+1)/2 .

N Input. The order n of coefficient matrix A,
constant vector b, and solution vector x.

NH Input. Band width h of A.
The content is altered on output.
(See“Comments on Use.”)

MH Input Maximum tolerable band width hm

(N>MH≥NH)
(See “Comments on Use.”)

B Input. Constant vector b.
Output. Solution vector x.
One-dimensional array of size n.

EPSZ .. Input. Tolerance (≥0.0) for relative zero test
of pivots. The default value is used if 0.0 is
specified. (See "Comments on Use.")

ISW.... Input. Control information. When l(≥1)
systems of linear equations with the identical
coefficient matirx are to be solved, ISW can
be specified as follows:
ISW=1 ... The first system is solved.
ISW=2 ... The 2nd to l-th systems are solved.
However, only parameter 2: B is specified for
each consstant vector b of the systems, with
the rest unchanged.
(See "Notes".)

VW Work area, One-dimensional array of size
n(hm+1)−hm(hm+1)/2.
(See"Comments on Use.")

IVW ... Work area. One-dimensional array of size 2n.
ICON . Output. Condition code. (See Table LSBIX-1.)

Table LSBIX-1 Condition codes

Code Meaning Processing
 0 No error.
20000 A relative zero pivot has

been found. It is highly
probale that the coefficient
matrix is singular.

Bypassed.

25000 The bandwidth was
exceeded the tolerable
range during operation.

Bypassed.

30000 NH<0, NH>MH, MH≥N,
EPSZ<0.0 or
ISW ≠ 1 or 2.

Bypassed.

Comments on use
• Subprograms used

SSL II...SBMDM, BMDMX, AMACH, MGSSL
FORTRAN basic functions...AMAX1, ABS, IDIM

• Notes
If 10−s is specified as EPSZ, this is interperted as
follows:
If the loss of significant digits exceeds s decimal digits
for the pivot value (a determinat of (1×1 or 2×2 matrix
of the pivot) during the MDMT decomposition by the
block diagonal pivoting method, the pivot value is
assumed to be relative zero, and ICON=20000 is set,
then the processing is stopped.

Let u be the unit round off, then the standard value
of EPSZ is 16u .

It is posible to continue the decomposition, even if
the pivot takes small value by specifying extreme small
value, for the parameter EPSZ.

In such case, however the result is not guarnteed.
In case to solve several system of linear equations

with identical coefficient matrix, the second and
subsequent system can be solved efficiently by
specifying as ISW = 2. Because this subroutine
bypasses the procedure for MDMT decomposition.
When ISW=2.

LSBIX

432

For the method to obtain the determinant of matrix A,
see "Example" and explanations of subroutine
SBMDM which is called in this subroutine.

If rows and columns are exchanged by pivoting,
generally the band width of the matrix is increased. It
is desirable to specify the maximum tolerable band
width hm so that the increment of band width can be
allowed. If the band width exceeds hm during MDMT
decompositon, processing is stopped assuming that
ICON=25000.

This subroutine permit to allocate the array A and
VW to the same area.

• Example

Given l systems of linear equations with the identical
coeffcient matrix, the solutions and the determinant are
obtained as follows, where n ≤100 and h ≤ hm ≤ 50 .

C **EXAMPLE**
 DIMENSION A(3825),B(100),IVW(200)
 READ(5,500) N,NH,MH
 WRITE(6,600) N,NH,MH
 NHP1=NH+1
 NT=(N+N-NH)*NHP1/2
 READ(5,510) (A(J),J=1,NT)
 READ(5,520) L
 EPSZ=1.0E-6
 ISW=1
 DO 10 K=1,L
 IF(K.GE.2) ISW=2
 READ(5,510) (B(I),I=1,N)
 CALL LSBIX(A,N,NH,MH,B,EPSZ,ISW,A,
 * IVW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,620) (B(I),I=1,N)
 10 CONTINUE
 DET=1.0
 J=1
 I=1
 20 M=IVW(I)
 IF(M.NE.I) GO TO 30
 DET=A(J)*DET
 J=MIN0(I,MH)+1+J
 I=I+1
 GO TO 40
 30 JJ=MIN0(I,MH)+1+J
 DET=(A(J)*A(JJ)-A(JJ-1)*A(JJ-1))*DET
 J=MIN0(I+1,MH)+1+JJ
 I=I+2
 40 IF(I.LE.N) GO TO 20
 WRITE(6,630) DET
 STOP
 500 FORMAT(3I4)
 510 FORMAT(4E15.7)
 520 FORMAT(I4)
 600 FORMAT('1'/10X,'N=',I3,5X,'NH=',I3,5X,
 *'MH=',I3)
 610 FORMAT('0',10X,'ICON=',I5)
 620 FORMAT(11X,'SOLUTION VECTOR'
 */(15X,5E15.6))
 630 FORMAT('0',10X,
 *'DETERMINANT OF COEFFICIENT MATRIX=',
 *E15.6)
 END

Method
This subroutine solves a system of linear equation

Ax = b (4.1)

as follows:

• MDMT decompositon of the coefficient matrix A (the

block diagonal pivoting method)
The MDMT decomposition of coefficient matrix A is
obtained by the block diagonal pivoting method as

PAP T = MDM T (4.2)

where P denotes the permutation matrix to exchange
rows in the pivoting operation, M is a unit lower-band
matrix, and D is a symmetric block diagonal matrix
comprising blocks at most of order 2. Subroutine
SBMDM is used for this calculation.

• Solution

A system of linear equations (4.1) is equivalent to

P −1MDM TP −Tx = b (4.3)

This can be solved by forward and backward
substitutions and other minor computations as follows:

PbxM =)1((4.4)
)1()2(xDx = (4.5)

)2()3(T xxM = (4.6)
)3(T xxP =− (4.7)

Subroutine BMDMX is used for these calculations.
(See references [9] and [10] for details.)

LSBX

 433

A52-31-0101 LSBX, DLSBX

A system of linear equations with a positive-definite
symmetric band matrix (Modified Cholesky's method)
CALL LSBX (A, N, NH, B, EPSZ, ISW, ICON)

Function
This subroutine solves a system of linear equations (1.1)
by using the modified Cholesky's method,

Ax = b

Where A is an n n× real positive-definite symmetric
band matrix with lower and upper band widths h, b is an
n-dimensional real constant vector, x is an n-dimensional
solution vector, and n > h ≥ 0.

Parameters
A Input. Coefficient matrix A. The contents of

A are altered on output. A is stored in one-
dimensional array of size n(h+1)−h(h+1)/2 in
the compressed mode for symmetric band
matrices.

N Input. Order n of coefficient matrix A.
NH Input. Lower and upper band width h.
B Input. Constant vector b.

Output. Solution vector x.
One dimensional array of size n.

EPSZ.. Input. Tolerance for relative zero test of
pivots in decomposition process of matrix
A(≥0.0). When this is 0.0, the standard value
is used. (Refer to "Notes")

ISW... Input. Control information. When solving
l(≥1) systems of linear equations with an
identical coefficient matrix, ISW can be
specified as follows:
ISW=1...The first system is solved.
ISW=2...The 2nd to lth system are solved.

However, only parameter B is
specified for each constant vector b of
the systems with the rest unchanged.
(Refer to "Notes".)

ICON .. Output. Condition code. Refer to Table
LSBX-1.

Table LSBX-1 Condition codes

Code Meaning Processing
0 No error

10000 The negative pivot occurred.
The coefficient matrix is not
positive-definite.

Continued

20000 The relatively zero pivot
occurred. It is highly
probable that the coefficient
matrix is singular.

Discontinued

30000 NH<0, NH≥N, EPSZ<0.0 or
ISW ≠ 1,2.

Bypassed

Comments on use
• Subprograms used

SSL IISBDL, BDLX, AMACH, MGSSL
FORTRAN basic function....ABS

• Notes

The solution obtained by this subroutine can be refined
in accuracy by successively calling subroutine LSBXR.
 Since this subroutine omits the operations concerning
the elements out of the band, the processing speed is
faster than subroutine LSX provided for positive-
definite symmetric matrices.
If EPSZ is set to 10-s, this value has the following
meaning; while performing the LU-decomposition by
Crount's method, if the loss of over s significant digits
occurred for the pivot, the LU-decomposition should
be discontinued with ICON = 20000 regarding the
pivot to be relatively zero. The standard value of
EPSZ is 16u, where u being the unit round off. If the
processing is to proceed at a lower pivot value, EPSZ
will be given the minimum value but the result is not
always guaranteed.
 When successively solving systems of linear
equations with an identical coefficient matrix,
computation can be performed by setting ISW = 2, the
LDLT decomposition process for the coefficient matrix
is bypassed so that the computation time can be
reduced.
 If the negative pivot occured in the decomposition,
the coefficient matrix is not positive-definite. In this
case, this subroutine is continued with ICON=10000.
However, it should be noted large calculation errors
may occur since the pivoting is not performed.
 The determinant of the coefficient matrix can be
obtained by multiplying all the n diagonal elements in
array A after the subroutine has been executed and then
by inverting the multiplied value. Note that array A is
in the compressed mode for symmetric band matrices.
 The contents of the resultant A are identical to those
on output of subroutine SBDL.

LSBX

 434

• Example
l systems of linear equations in n unknown with an
identical coefficient matrix are solved. n≥100 and h≤50.

C **EXAMPLE**
 DIMENSION A(3825),B(100)
 READ(5,500) N,NH
 WRITE(6,600) N,NH
 NH1=NH+1
 NT=N*NH1-NH*NH1/2
 READ(5,510) (A(I),I=1,NT)
 READ(5,500) L
 K=1
 ISW=1
 EPSZ=1.0E-6
 10 READ(5,510) (B(I),I=1,N)
 CALL LSBX(A,N,NH,B,EPSZ,ISW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,620) (B(I),I=1,N)
 IF(K.EQ.L) GO TO 20
 K=K+1
 ISW=2
 GO TO 10
 20 DET=A(1)
 K=1
 DO 30 I=2,N
 K=K+MIN0(I,NH1)
 DET=DET*A(K)
 30 CONTINUE
 DET=1.0/DET
 WRITE(6,630) DET
 STOP
 500 FORMAT(2I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1'/10X,'N=',I3,'NH=',I3)
 610 FORMAT('0',10X,'ICON=',I5)
 620 FORMAT(11X,'SOLUTION VECTOR'
 */(15X,5E17.8))
 630 FORMAT('0',10X,
 *'DETERMINANT OF COEFFICIENT MATRIX='
 *, E17.8)
 END

Method
A system of linear equations (4.1) with a real positive-
definite symmetric band matrix A are solved in the
following procedure.

Ax = b (4.1)

• LDLT decomposition of the coefficient matrix A
(Modified Cholesky's method) LDLT

decomposion is performed on coefficient matrix A by
modified Cholesky's method.

A = LDLT (4.2)

where L is a unit lower band matrix and D is a
diagonal matrix. Subroutine SBDL is used for this
operation.

• Solving LDLTx = b (Forward and backward

substitutions)
A system of linear equations

LDLTx = b (4.3)

is solved using subroutine BDLX. For details, see
Reference [7].

LSBXR

 435

A52-31-0401 LSBXR, DLSBXR

Iterative refinement of the solution to a system of linear
equations with a positive-definite symmetric band matrix
CALL LSBXR (X, A, N, NH, FA, B, VW, ICON)

Function
Given an approximate solution to linear equations with an
n × n positive definite symmetric band matrix of upper
and lower band width h,

Ax = b (1.1)

this subroutine refines the approximate solution by the
method of iterative modification, where b is an n-
dimensional real constant vector, and x is an n-
dimensional solution vector.

Prior to calling this subroutine, the coefficient matrix
A must be LDLT-decomposed as shown in Eq. (1.2),

A = LDLT (1.2)

where L and D are an n n× unit lower band matrix
with lower band width h and an n n× diagonal matrix
respectively. Also n h> ≥ 0 .

Parameters
X..... Input. Approximate solution vector x.
 Output. Refind solution vector x.
 One dimensional array of size n.
A.... Input. Coefficient matrix A.

Matrix A is stored in one-dimensional array of
the size n(h+1)-h(h+1)/2 in the compressed
mode for a symmetric band matrix.

N.... Input. Order n of the matrix A. (Refer to
notes.)

NH.... Input. Lower band width h.
FA.... Input. Matrices L and D-1.
 Refer to Fig. LSBXR-1.

Matrices are stored in one -dimensional array
of size n(h+1)-h(h+1)/2 in the compressed
mode for a symmetric band matrix.

B.... Input. Constant vector b.
One-dimensional array of size n.

VW.... Work area. One-dimensional array of
 size n.
ICON.. Output. Condition code. Refer to Table

LSBXR-1.

() ()
n h

h h
+ −

+
1

1
2

d11

d22

dnn

0

l211

lh+11

1

1

1lnn h−

lh+11

lnn h−

d11
1−

l d21 22
1−

dh h+ +
−

1 1
1

dnn
−1

d11
1−

l21

d22
1−

lh+11

dh h+ +
−

1 1
1

lnn h−

dnn
−1

Diagonal matrix D Matrix D-1+(L-I) Array FA

Diag-
onal
element
s are
inverted

Only
lower
band
portion

Unit lower
band matrix L

0

0

0

0

0

Note: The diagonal and the lower band portions in the matrix D-1+(L-I)

are contained in array FA in the compressed mode for a
symmetric band matrix.

Fig .LSBXR-1 Storage of matrices L and D-1

Table LSBXR-1 Condition Codes

Code Meaning Processing
 0 No error
10000 Coefficient matrix was not

positive-definite
Discontinued

25000 The convergence condition
was not met because of an
ill-conditioned coefficient
matrix.

 (Refer to
Method (4) d for
the
convergence
condition.)

30000 N=0,NH<0 or NH≥|N| Bypassed

Comments on use
• subprograms used

SSL II ... BDLX, MSBV, AMACH, MGSSL
FORTRAN basic function ... ABS

• Notes

This subroutines iteratively improves the approximate
solution ~x obtained by subroutine LSBX to get
solution x with refined accuracy.
Therefore, prior to calling this subroutine, ~x must be
obtained by subroutine LSBX and the results must be
input as the parameters X and FA for this subroutine.
In addition, the coefficient matrix A and constant
vector b whitch are required for this subroutine must
also be prepared and stored separately before valling
subroutine LSBX.
Refer to the example for details
By specifying N = -n, an estimated accuracy (relative
error) for the approximate solution ~x given by the
subroutine LSBX can be obtained.
When specified, this subroutine calculates the relative
error and outputs it to work area VW(1) without
performing the iterative refinement of accuracy.Refer
to method for estimation of the accuracy.

• Example

An approximate solution ~x for a system of linear
equations in n unkowns is obtained by subroutine

LSBXR

 436

LSBX, then it is iteratively refined by this
subroutine. n ≤ 100 and h ≤ 50

C **EXAMPLE**
 DIMENSION A(3825),FA(3825),X(100),
 *B(100),VW(100)
 10 READ(5,500) N,NH
 IF(N.EQ.0) STOP
 NH1=NH+1
 NT=N*NH1-NH*NH1/2
 READ(5,510) (A(I),I=1,NT)
 READ(5,510) (B(I),I=1,N)
 WRITE(6,610) (I,B(I),I=1,N)
 DO 20 I=1,N
 20 X(I)=B(I)
 DO 30 I=1,NT
 30 FA(I)=A(I)
 EPSZ=0.0E0
 ISW=1
 CALL LSBX(FA,N,NH,X,EPSZ,ISW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 CALL LSBXR(X,A,N,NH,FA,B,VW,ICON)
 WRITE (6,630) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,640) (I,X(I),I=1,N)
 DET=FA(1)
 L=1
 DO 40 I=2,N
 L=L+MIN0(I,NH1)
 40 DET=DET*FA(L)
 DET=1.0/DET
 WRITE(6,650) DET
 STOP
 500 FORMAT(2I5)
 510 FORMAT(4E15.7)
 610 FORMAT(///10X,'CONSTANT VECTOR'
 */(10X,4('(',I3,')',E17.8)))
 620 FORMAT('0','LSBX ICON=',I5)
 630 FORMAT('0','LSBXR ICON=',I5)
 640 FORMAT('0',10X,'SOLUTION VECTOR'
 */(10X,4('(',I3,')',E17.8)))
 650 FORMAT(///10X,
 *'DETERMINANT OF COEFFICIENT MATRIX=',
 *E17.8)
 END

Method
Given an approximate solution, x~ to the linear
equations,

Ax b= (4.1)

the solution is iteratively refined as follows:

• Principle of iterative refinement

The iterative refinement is a method to obtain a
successively, improved approximate solution ()1+sx
to the linear equations (4.1) through use of the
following euqtions starting with () xx ~1 = .

() ()r b Axs s= − (4.2)
() ()Ad rs s= (4.3)

() () ()x x ds s+ = +1 s (4.4)
 s=1,2,...

where xs is the s-th approximate solution to equa-
tion(4.1).

If Eq.(4.2)is accurately computed ,a refined solu-
tion of the approximate solution ()x 1 is numerically
obtained.

If, however, the condition of coefficient matrix A is
not suitable, an improved solution is not obtained.
(Refer to 3.4(2)e.Iterative refinement of a solution.)

• Procedure performed in this subroutine

Suppose that the first approximate solution ()x 1
has already been obtained by subroutine LSBX.
 Then -this subroutine repeats the following
steps:
− The residual ()sr is computed by using Eq.

(4.2). Subroutine MSBV is used for this
operation.

− The correction ()sd is obtained next by using
Eq.(4.3). Subroutine BDLX is used for this
operation.

− Finally the modified approximate solution ()1+sx
is obtained by using Eq.(4.4).

The convergence of the iteration is tested as

follows:
Considering u as a unit round off, the iteration refinement
is assumed to converge if, at the s-th
iteration step, the following relationship is satisfied

() () us ⋅<
∞

+
∞

2/ 1xd s (4.5)

The obtained ()x s+1 is then taken as the final
solution.
However, if the relationship,

()

()

()

()
∞

∞
−

∞
+

∞ ⋅>
s

s

s

s

x

d

x

d 1

1 2
1

 results, this indicates that the condition of the
coefficient matrix A is not suitable. The iteration
refinement is assumed not to converge, and
consequently the processing is terminated with ICON =
25000.

LSBXR

 437

• Accuracy estimation for approximate solution
Suppose that the error for the approximate solu-
tion ()x 1 is ()e 1 ()()= −x x1 ,its relative error

is represented by () ()
∞∞

11 / xe . If this iteration

method converges, ()e 1 is assumed to be

almost equal to d(1) , therefore the relative error
for the approximate solution is estimated by

() ()
∞∞

11 / xd .(Refer to ’’Accuracy estimation

for approximate solution’’ in Section 3.4.)
For further details, see References[1],[3]and[5].

LSIX

 438

A22-21-0101 LSIX,DLSIX

A system of linear equations with a real indefinite sym-
metric matrix (Block diagnoal pivoting method)
CALL LSIX (A,N,B,EPSZ,ISW,VW,IP,IVW,ICON)

Function
This subroutine solves a system of linear equations

Ax = b

using the block diagonal pivoting method(there are
two similar methods which are called Croutlike
method and Gaussianlike method respectively.
This subroutine uses the former method.),where A
is an n× n real indefinite symmetric matrix, b is an
n-dimensional real constant vector, x is an n-
dimensional solution vector, and n ≥ 1 .

Parameters
A Input. Coefficient matrix A.

The contents of A may be overridden after
operation.
Compressed mode for symmetric matrix.
One-dimensional array of size n (n+n)/2.

N Input. Order n of the coefficient matrix A,
constant vector b and solution vector x.

B Input. Constant vector b.
Output. Solution vector x.
One-dimensional array of size n.

EPSZ .. Input. Tolerance for relative zero test of
pivots in decomposition process of A (≥0.0).
If EPSZ = 0.0, a standard value is used.
(See Notes.)

ISW ... Input. Control information
When l (≥1) systems of linear equations
with the identical coefficient matrix are to
be solved, ISW can be specified as follows:
ISW=1 ... The first system is solved.
ISW=2 ... The 2-nd to n-th systems are
solved. However, only parameter B is
specified for each constant vector b of the
systems, with the rest unchanged.
(See Notes.)

VW Work area. One-dimensional array of size 2n.
IP Work area. One-dimensional array of size n.
IVW ... Work area. One-dimensional array of size n.
ICON Output. Condition code. Refer to Table LSIX-1.

Table LSIX-1 Condition codes

Code Meaning Processing
 0 No error
20000 The relatively zero pivot oc-

curred. It is highly probable
that the coefficient matrix is
singular.

Aborted

30000 N<1, EPSZ<0.0 or ISW≠1, 2 Aborted

Comments on use
• Subprograms used

SSL II ... SMDM, MDMX, AMACH, MGSSL
USCHA
FORTRAN basic functions ... ABS,SQRT,
IABS,ISIGN

• Notes

If EPSZ is set to 10-s, this value has the following
meaning: while performing the MDMT -decomposition
by the block diagonal pivoting method,
if the loss of over s significant digits occurred for
the pivot value(i.e., determinant of a 1 × 1 or 2 × 2
matrix of the pivot), the MDMT -decomposition should
be discontinued with ICON = 20000 regarding the
pivot value as relatively zero.

Let u be the unit round off, then the standard
value of EPSZ is 16 u.

If the processing is to proceed at a low pivot value,
EPSZ will be given the minimum value but the result is
not always guaranteed.
When successively solving systems of linear equations
with the identical coefficient matrix, after solving the
first system, ISW should be set to 2.

With ISW=2, calculation time is reduced since the
process in which the coefficient matrix A is MDMT
decomposed is bypassed.

For how to obtain the determinant of matrix A, refer
to the example shown below or the corresponding
description on the subroutine SMDM
which is used in this subroutine.

This subroutine makes use of symmetric matrix
characteristics also while decomposing in order to save
the data storage area.

• Example
l systems of linear equations with the identical
coefficient matrix are solved as well as the determinant
of the coefficient matrix, where n≤100.

LSIX

 439

C **EXAMPLE**
 DIMENSION A(5050),B(100),VW(200),
 *IP(100),IVW(100)
 CHARACTER*4 IA,IB,IX
 DATA IA,IB,IX/'A ','B ','X '/
 READ(5,500) N,L
 NT=(N*(N+1))/2
 READ(5,510) (A(I),I=1,NT)
 WRITE(6,600) N
 CALL PSM(IA,1,A,N)
 M=1
 ISW=1
 EPSZ=1.0E-6
 10 READ(5,510) (B(I),I=1,N)
 CALL PGM(IB,1,B,N,N,1)
 CALL LSIX(A,N,B,EPSZ,ISW,VW,IP,IVW,
 * ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 CALL PGM(IX,1,B,N,N,1)
 IF(M.GE.L) GO TO 20
 M=M+1
 ISW=2
 GO TO 10
 20 DET=1.0
 I=1
 J=1
 30 IF(IP(J+1).GT.0) GO TO 40
 DET=DET*(A(I)*A(I+J+1)-A(I+J)*A(I+J))
 J=J+2
 I=I+J-1+J
 GO TO 50
 40 DET=DET*A(I)
 J=J+1
 I=I+J
 50 IF(J.LT.N) GO TO 30
 IF(J.EQ.N) DET=DET*A(I)
 WRITE(6,620) DET
 STOP
 500 FORMAT(2I3)
 510 FORMAT(4E15.7)
 600 FORMAT('1',
 * /6X,'LINEAR EQUATIONS AX=B'
 * /6X,'ORDER=',I4)
 610 FORMAT(' ',5X,'ICON OF LSIX=',I6)
 620 FORMAT(' ',5X,'DETERMINANT OF A=',
 * E14.7)
 END

The subroutines PSM and PGM that are both called in
this example are used for printing a real symmetric matrix
and a read general matrix, respectively. The descriptions
on those subroutines can be found in the example for the
subroutine MGSM.

Method
The linear equations

Ax b= (4.1)

is solved using the following procedure:

• MDMT - decomposition of the coefficient matrix A

(block diagonal pivoting method).
The coefficient matrix A is decomposed by the block

diagonal pivoting method as follows.

TT MDMPAP = (4.2)

where P is a permutation matrix that exchanges rows of
the matrix A required in its pivoting, M is a unit lower
triangular matrix, and D is a symmetric block diagonal
matrix which consists only of the blocks, each at most of
order 2. The subroutine SMDM is used for this operation.

• Solving () bxPMDMP =
−− 1TT1

solving the linear equations (4.1)is reduced to solving

() bxPMDMP =
−− 1TT1 (4.3)

this equation (4.3) can be also reduced to equation
(4.4) to (4.7).

() PbMx =1 (4.4)
() ()12 xDx = (4.5)

() ()23T xxM = (4.6)

() ()31T xxP =
−

 (4.7)

Consequently, the solution is obtained using forward
substitution and backward substitution, in addition to
minor computation. The subroutine MDMX is used for
this operation. For more details, see References [9] and
[10].

LSIXR

 440

A22-21-0401 LSIXR, DLSIXR

Iterative refinement of the solution to a system of linear
equations with a real indefinite matrix
CALL LSIXR (X, A, N, FA, B, IP, VW, ICON)

Function
When an approximate solution ~x is given to linear
equations with an n n× symmetric matrix.

Ax b= (1.1)

This subroutine refines the approximate solution by the
method of iterative modification, where b is an n-
dimensional real constant vector, and x is an
n-dimensional solution vector.

Prior to calling this subroutine, the coefficient matrix A
must be MDMT decomposed as shown in(1.2),

TT MDMPAP = (1.2)

where, P is a permutation matrix which exchanges rows
of the matrix A required in pivoting, M is a unit lower
triangular matrix and D is a symmetric block diagonal
matrix consist of a symmetric blocks of maximum order 2,
furthermore, if

0,0 ,1,1 =≠ ++ kkkk md .Where)(ijm=M ,)(ijd=D and
n ≥ 1.

Parameters
X Input .Approximate solution vector ~x .

Output. Refined solution vector x.
One-dimensional array of size n.

A Input. Coefficient matrix A.
Matrix A is stored in a one-dimensional
array of size n(n+1)/2 in the compressed
mode for a symmetric matrix.

N Input. Order n of matrix A.
See Notes.

FA Input. Matrices M and D.
See Fig. LSIXR-1.Matrices are stored in a
one-dimensional array of size n(n+1)/2.

B Input. Constant vector b.
One-dimensional array of size n.

IP Input. Transposition vector indicating the
history of exchanging rows of the matrix A
required in pivoting.
One-dimensional array of size n.
(See Notes.)

VW Work area. One-dimensional array of size n

ICON .. Output. Condition code.

See Table LSIXR-1.

1

1

1

0

0

m31 m32

0

0

d11

d21 d22

d21

d33

0d11

d21 d22

d33m31 m32

Block diagonal matrix D

Excluding
upper tri-
angular
portion.

Only
lower
triangular
portion.

Unit lower triangular
matrix M

Array FA

d11

d21

d22

m31

m32

d33

Note: The diagonal and the lower triangular portions of the

matrix D+(M-I) are stored in one-dimensional array FA
in the compressed mode for a symmetric matrix.
In this case D consists of block of order 2 and 1.

Fig. LSIXR-1 Storage method of matrices D and M

Table LSIXR-1 Condition codes

Code Meaning Processing
 0 No error
20000 Coefficient matrix was

singular
Discontinued

25000 The convergence condition
was not satisfied because of
an ill-conditioned coefficient
matrix.

Discontinued.(
See “Method”
for the
convergence
condition.

30000 N = 0 Bypassed

Comments on use
• Subprograms used

SSL II ... MDMX,MSV,AMACH, MGSSL
FORTRAN basic functions ... IABS, ABS

• Notes

This subroutine iteratively improves to get solution
 the approximate solution ~x obtained by subroutine
LSIX ~x with refined precision.

Therefore, prior to calling this subroutine, ~x must be
obtained by subroutine LSIX and the results must be
input as the parameters X, FA and IP for this
subroutine. In addition, the coefficient matrix A and
constant vector b which are required for this subroutine
must also be prepared and stored separately before
calling subroutine LSIX.

 See the Example for details.
 By specifying N = n, an estimated accuracy

(relative error) for the approximate solution ~x given
by subroutine LSIX can be obtained.

When specified, this subroutine calculates the
relative error and outputs it to work area VW(1)
without performing the iterative refinement of accuracy.

See the Method for estimation of the accuracy.

LSIXR

 441

• Example
An approximate solution ~x for a system of linear
equations of order n is obtained by subroutine LSIX,
then it is iteratively refined by this subroutine.

n ≤100 .

C **EXAMPLE**
 DIMENSION A(5050),FA(5050),X(100),
 *B(100),VW(200),IP(100),IVW(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 NT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NT)
 READ(5,510) (B(I),I=1,N)
 DO 20 I=1,N
 X(I)=B(I)
 20 CONTINUE
 DO 30 I=1,NT
 30 FA(I)=A(I)
 EPSZ=0.0E0
 ISW=1
 CALL LSIX(FA,N,X,EPSZ,ISW,VW,IP,IVW,
 * ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 CALL LSIXR(X,A,N,FA,B,IP,VW,ICON)
 WRITE(6,630) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,640) (I,X(I),I=1,N)
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 620 FORMAT('0',10X,'LSIX ICON=',I5)
 630 FORMAT('0',10X,'LSIXR ICON=',I5)
 640 FORMAT('0',10X,'SOLUTION VECTOR'
 */(10X,4('(',I3,')',E17.8)))
 END

Method
Given an approximate solution ~x to the linear equations

Ax b= (4.1)

the solution is iteratively refined as follows:
• Principle of iterative refinement

The iterative refinement method is to obtain a
succesively improved approximate solution ()sx to the
linear equations (4.1) through use of the following
equations starting with () xx ~1 =

() ()sAxbr s −= (4.2)
() ()srAd =s (4.3)

() () ()sss dxx +=+1 (4.4)
s = 1,2, ...

where ()sx is the s-th approximate solution to (4.1).
If (4.2) is accurately computed, a refined solution of

the approximate solution ()1x is numerically obtained.
If, however, the condition of coefficient matrix A is
not suitable, an improved solution is not obtained. (See
Section 3.4 “Iterative refinement of a solution.”)

• Procedure performed in this subroutine

Suppose that the first approximate solution ()1x has
already been obtained by subroutine LSIX.
Then this subroutine repeats the following steps:
• The residual ()sr is computed by using (4.2).

Subroutine MSV is used for this operation.
• The correction ()sd is obtained next by using (4.3).

Subroutine MDMX is used for this operation.
• Finally the modified approximate solution ()1+sx is

obtained by using (4.4).

The convergence of the iteration is tested as follows:
Considering u as a unit round-off, the iteration
refinement is assumed to converge if, at the s-th iteration
step, the following relationship is satisfied.

() () uss ⋅<
∞

+
∞

2/ 1xd (4.5)

The obtained ()1+sx is then taken as the final solution.
However, if the relationship,

()

()

()

()
∞

∞
−

∞
+

∞ ⋅>
s

s

s

s

x

d

x

d 1

1 2
1

results, this indicates that the condition of the
coefficient matrix A is not suitable. The iteration
refinements is assumed not to converge, and
consequently the processing is terminated with
ICON=25000.

• Accuracy estimation for approximate solution
Suppose that the error for the approximate solution

()1x is ()1e ()()xx −= 1 ,its relative error is represented

by () ()
∞∞

11 / xe

If this iteration method converges, ()1e is assumed to
be almost equal to ()1d , therefore the relative error for
the approximate solution is estimated by () ()d x1 1

∞ ∞
/ .

(See Section 3.4 for details.)

For further details, see References [1], [3], and [5].

LSTX

442

A52-31-0501 LSTX, DLSTX

A system of linear equations with a positive-definite
symmetric tridiagonal matrix (Modified Cholesky’s
method)
CALL LSTX (D, SD, N, B, EPSZ, ISW, ICON)

Function
A system of linear equations

Ax b= (1.1)

is solved by using the modified Cholesky’s method,
where A is an n n× positive definite symmetric
tridiagonal matrix, b is an n-dimentional real constant
vector and x is an n-dimentional solution vector.
Also n≥1.

Parameters
D Input. Diagonal portion of the coefficient

matrix A.
After computation, the contents are destroyed.
Refer to Fig. LSTX-1.
One-dimensional array of size n.

SD Input. Subdiagonal portion of the coefficient
matrix A.
After computation, the contents are destroyed.
Refer to Fig. LSTX-1.
One-dimensional array of size n−1.

N Input. Order n of the coefficient matrix A, the
constant vector b and the solution vector x.

B Input. Constant vector b.
Output. Solution vector x.
One-dimensional array of size n.

EPSZ Input. Tolerance for relative zero test of pivots
(≥0.0). If EPSZ=0.0, a standard value is used.
See “Notes”.

ISW Input. Control information
When l(≥1) systems of linear equations with
the identical coefficient matrix are to be solved,
ISW can be specified as follows:
ISW = 1 ... The first system is solved
ISW = 2 ... The 2nd to l-th systems are solved.
However, only parameter B is specified for the
new constant vector b of the systems, with the
rest unchanged. See “Notes”.

ICON Output. Condition code. See Table LSTX-1.

Comments on use
• Subprograms used

SSL II ... AMACH, MGSSL
FORTRAN basic function ... ABS

• Notes

If EPSZ is set to 10-s, this value has the following

0

0

a11 a12

a21 a22 a23

a32

an n−1,

annan n, −1

Matrix A

Array SD Array D

a11a21

a32

an n, −1

a22

a33

ann
Fig. LSTX-1 Storing method for each element of matrix A into arrays
SD and D

Table LSTX-1 Condition codes

Code Meaning Processing
0 No error

10000 A negative pivot occurred. The
coefficient matrix is not positive-
definite.

Continued

20000 The zero pivot occurred. It is
highly probable that the coefficient
matrix is singular.

Discontinued

30000 N<1, EPSZ<0.0 or ISW ≠ 1, 2 Bypassed

meaning; while performing the LDLT-decomposition
using the modified Cholesky method, if the loss of over
s significant digits occurs for the pivot value, the
LDLT-decomposition is discontinued with
ICON=20000 and the pivot is regarded as zero. Let u
be the unit round off, then the standard value of EPSZ
is 16 ⋅u .

If the processing is to proceed even at a low pivot
value, EPSX has to be given the minimum value but
the result is not always guaranteed.

When successively solving systems of linear
equations with the identical coefficient matrix, ISW
should be set to 2 after solving the first system. With
ISW=2, calculation time is reduced since the LU-
decomposition of the matrix A is bypassed.

The determinant of matrix A can be obtained by
multiplying n array elements, D(i), i=1, ...,n.

When the negative pivot occurs in the decomposition,
the calculation error may possibly be large since no
pivoting is performed in this subroutine.

LSTX

443

This subroutine make use of the characteristics of a
matrix when repetitive computations are carried out.
As a result this subroutine has a faster processing speed
compared to the normal modified Cholesky method
although the number of computations are the same.

• Example
This example solves l systems of linear equations in n
unknown with an identical coefficient matrix, n ≤ 100 .

C **EXAMPLE**
 DIMENSION D(100),SD(99),B(100)
 CHARACTER*4 IA,IB,IX
 DATA IA,IB,IX/'A ','B ','X '/
 READ(5,500) N,L
 NM1=N-1
 READ(5,510) (D(I),I=1,N),(SD(I),
 * I=1,NM1)
 WRITE(6,600) N
 CALL PTM(IA,1,SD,D,SD,N)
 ISW=1
 M=1
 10 READ(5,510) (B(I),I=1,N)
 CALL PGM(IB,1,B,N,N,1)
 CALL LSTX(D,SD,N,B,0.0,ISW,ICON)
 IF(ICON.EQ.0) GO TO 20
 WRITE(6,610) ICON
 STOP
 20 CALL PGM(IX,1,B,N,N,1)
 IF(M.EQ.L) GO TO 30
 M=M+1
 ISW=2
 GO TO 10
 30 WRITE(6,620)
 STOP
 500 FORMAT(2I3)
 510 FORMAT(4E15.7)
 600 FORMAT('1',5X,
 * 'LINEAR EQUATIONS AX=B(TRIDIAGONAL)'
 * /6X,'(POSITIVE,SYMMETRIC)'
 * /6X,'ORDER=',I5)
 610 FORMAT(' ',5X,'ICON OF LSTX=',I6)
 620 FORMAT(' ',5X,'* NORMA END *')
 END

Subroutines PTM and PGM used in this example print

out a real tridiagonal matrix and a real general matrix,
respectively. The descriptions of those programs are
given in the examples for subroutines LTX and MGSM.

Method
A linear equations with a positive-definite symmetric
tridiagonal matrix,

Ax = b (4.1)

is solved by using the modified Cholesky’s method.
Since matrix A is a positive-definite symmetric

tridiagonal matrix, the matrix can always be decomposed
into the LDLT form by using the modified

Cholesky method as shown in Eq. (4.2).

A = LDLT

where L is a unit lower band matrix with band width 1
and D is a positive definite diagonal matrix.

Therefore, solving Eq. (4.1) results is solving Eqs.
(4.3) and (4.4),

Ly = b (4.3)
LTx = D−1y (4.4)

Eqs. (4.3) and (4.4) can be readily solved by using
forward and backward substitutions.

• Modified Cholesky method

If matrix A is positive-definite, the LDLT-
decomposition as shown in (4.2) is always possible.
The decomposition using the modified Cholesky
method is given by

∑
−

=

−=−=
1

1

1,...,1,
j

k
jkkikijjij ijldladl (4.5)

∑
−

=

=−=
1

1

,...,1,
i

k
ikkikiii nildlad (4.6)

where A = (aij), L = (lij) and D = diag(di). Furthermore,
since matrix A is a tridiagonal matrix,
Eqs. (4.5) and (4.6) can be rewritten into

1,11, −−− = iiiii adl (4.7)

1,11, −−−−= iiiiiiii ldlad (4.8)

• Procedure performed in this subroutine
This subroutine obtains the solution by considering the
characteristics of the matrix.
− LDLT-decomposition

Normally, when matrix A is LDLT-decomposed using
the modified Cholesky method, elements 1, −iil and

()nidi ,...,1= are successively obtained from Eqs.
(4.7) and (4.8). However, this subroutine considers
the characteristic of a symmetric tridiagonal matrix,
and obtains the elements of matrices L and D
recursively, starting with the upper left hand elements
together with the lower right hand elements, ending with
the middle elements. This fact reduces the number of
iterations.
Elements 2,11, ,, +−+−− ininiii ldl and

()[]()2/1,...,11 +=+− nid in
are successively obtained by

1,11, −−− = iiiii adl (4.9)

111, −−−−= ijiiiiii ldlad (4.10)

2,122,1 +−+−+−+−+− = ininininin adl (4.11)

LSTX

444

1,21,11 +−+−+−+−+− −= ininininin lad

1,22 +−+−+− ininin ld (4.12)

− Solving Ly b= (forward and backward
substitutions)
Normally, the solution is obtained successively by

∑
−

=

=−=
1

1

,...,1,
i

k
kikii niylby (4.13)

where ()nyy ,...,1
T =y , and ()nbb ,...,1

T =b . This
subroutine successively obtains the solution by Eqs.
(4.14) and (4.15).

11, −−−= iiiii ylby (4.14)

22,111 +−+−+−+−+− −= ininininin ylby (4.15)

()[]2/1,...,1 += ni

− Solving LTx=D−1y (forward and backward
substitutions)
Normally, the solution is obtained successively by

∑
+=

=−= −

n

ik
kkiii nixldyx

1

1,...,,1 (4.16)

where, ()nxx ,...,1
T =x , and =−1D diag (di

-1). This
subroutine successively obtains the solution by Eqs.
(4.17), (4.18) and (4.19).

x[(n+1)/2] = y[(n+1)/2] d-1
[(n+1)/2] (4.17)

1,1
1

++
− −= iiiiii xldyx (4.18)

inininininin xldyx −−+−
−

+−+−+− −= ,1
1

111
 i= [(n+1)/2]-1, …, 1 (4.19)

LSX

445

A22-51-0101 LSX, DLSX

A system of linear equations with a positive-definite
symmetric matrix (Modified Cholesky’s method)
CALL LSX (A, N, B, EPSZ, ISW, ICON)

Function
This subroutine solves a system of linear equations (1.1)
using the modified (square root free) Cholesky’s method.

Ax b= (1.1)

A is an n n× positive-definite symmetric matrix, b is
an n -dimentional real constant vector, and x is the n-
dimentional solution vector. n ≥ 1.
Parameters
A Input. Coefficient matrix A.

The contents of A are overridden after
operation. A is stored in a one-dimensional
array of size n(n+1)/2 in the compressed mode
for symmetric matrices.

N Input. Order n of the coefficient matrix A.
B Input. Constant vector b.

Output. Solution vector x.
B is a one-dimensional array of size n.

EPSZ Input. Tolerance for relative zero test of
pivots in decomposition process of A(≥0.0).
When EPSZ is 0.0, a standard value is used.
(See Notes.)

ISW Input. Control information
When l(≥1) systems of linear equations with
the identical coefficient matrix are to be solved,
ISW can be specified as follows:
ISW=1 ... The first system is solved.
ISW=2 ... The 2nd to l-th systems are solved.
However, only parameter B is specified for
each constant vector b of the systems, with the
unchanged (See Note.)

ICON Output. Condition code.
See Table LSX-1.

Table LSX-1 Condition codes

Code Meaning Processing
0 No error

10000 The negative pivot occured.
The coefficient matrix is not
positive-definite.

Continued

20000 The relatively zero pivot
occurred. It is highly probable
that the coefficient matrix is
singular.

Discontinued

30000 N<1, EPSX<0.0 or
ISW ≠ 1, 2

Bypassed

Comments on use
• Subprograms used

SSL II ... SLDL, LDLX, AMACH, and MGSSL
FORTRAN basic function ... ABS

• Notes
The solution obtained with this subroutine can be
refined in accuracy by successively calling subroutine
LSXR.

If EPSZ is set to 10-s, this value has the following
meaning: while performing the LDLT decomposition by
modified Cholesky’s method, if the loss of over s
significant digits occurred for the pivot, the LDLT
decomposition should be discontinued with
ICON=20000 regarding the pivot to be relatively zero.

Let u be the unit round off, then the standard value of
EPSZ is 16u. If the processing is to proceed even at a
low pivot value, EPSZ has to be given the minimum
value but the result is not always guaranteed.

When successively solving systems of linear
equations with the identical coefficient matrix, after
solving the first system, ISW. should be set to 2. With
ISW=2, calculation time is reduced since the process in
which the coefficient matrix A is LDLT decomposed is
bypassed.

If the negative pivot occurs in the decomposition, the
coefficient matrix is not a positive-definite. In this
subroutine the condition code is set accordingly
(ICON=10000) and processing is continued. However,
it should be noted that large calculation error may
occur since the pivoting is not performed.

The determinant of the coefficient matrix can be
obtained by multiplying the n diagonal elements (the
diagonal elements of D−1) of the array A after the
subroutine has been executed and then by determining
the inverse number. Note that array A is in the
compressed mode for symmetric matrices.

When for a positive definite symmetric band matrix,
subroutine LSBX processes faster than this subroutine
because the operation for the element out of the band is
omitted.

• Example
 l systems of linear equations in n unknown with the

identical coefficient matrix are solved. n ≤ 100 .

C **EXAMPLE**
 DIMENSION A(5050),B(100)
 READ(5,500) N
 NT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NT)
 WRITE(6,600) N
 READ(5,500) L
 M=1
 ISW=1
 EPSZ=1.0E-6
 10 READ(5,510) (B(I),I=1,N)
 CALL LSX(A,N,B,EPSZ,ISW,ICON)

LSX

446

 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,620) (B(I),I=1,N)
 IF(L.EQ.M) GOTO 20
 M=M+1
 ISW=2
 GOTO 10
 20 DET=A(1)
 L=1
 DO 30 I=2,N
 L=L+I
 DET=DET*A(L)
 30 CONTINUE
 DET=1.0/DET
 WRITE(6,630) DET
 STOP
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1'/10X,'ORDER=',I5)
 610 FORMAT('0',10X,'ICON=',I5)
 620 FORMAT(11X,'SOLUTION VECTOR'
 */(15X,5E16.8))
 630 FORMAT('0',10X,
 *'DETERMINANT OF COEFFICIENT MATRIX='
 *,E16.8)
 END

Method
A system of linear equations (4.1) which has a real
positive-definite symmetric coefficient matrix is solved
using the following procedure.

Ax b= (4.1)

• LDLT decomposition of coefficient matrix A (Modified
Cholesky’s method)
The coefficient matrix A is LDLT decomposed into the
form (4.2).

TLDLA = (4.2)

where L is a unit lower triangular matric and D is a
diagonal matrix. Subroutine SLDL is used for this
operation.

• Solving bxLDL =T (Forward and backward

substitution)
A system of linear equations

bxLDL =T (4.3)

is solved using subroutine LDLX.
For more information, see Reference [2].

LSXR

447

A22-51-0401 LSXR, DLSXR

Iterative refinement of the solution to a system of linear
equations with a positive-definite symmetric matrix
CALL LSXR (X, A, N, FA, B, VW, ICON)

Function

When an approximate solution ~x is given to linear
equations with an n n× positive-definite symmetric
matrix A such as

Ax b= (1.1)

this subroutne refines the approximate solution by the
method of iterative modification, where b is an n -
dimensional real constant vector and x is an n-
dimensional solution vector.

Prior to calling this subroutine, the coefficient matrix
A must be LDLT decomposed as shown in Eq. (1.2),

TLDLA = (1.2)

where L and D are an n n× unit lower triangular matrix
and a diagonal matrix respectively, also n ≥ 1.

Parameters
X Input. Approximate solution vector x

Output. Refined solution vector x
One-dimensional array of size n.

A Input. Coefficient matrix A.
Matrix A is stored in one-dimensional array of
size n(n+1)/2 in the compressed mode for a
symmetric matrix.

N Input. Order n of matrix A. (See Notes.)
FA Input. Matrices L and D−1.

Refer to Fig. LSXR-1.
One-dimensional array of size n(n+1)/2 to
contain symmetric band matrices in the
compressed mode.

B Input. Constant vector b.
One-dimensional array of size n.

VW Work area.
One-dimensional array of size n.

ICON Output. Condition code. See table LSXR-1.

Comments on use
• Subprograms used

SSL II LDLX, MSV, AMACH, MGSSL
FORTRAN basic function ABS

• Notes
This subroutine iteratively improves the approximate
solution x obtained by subroutine LSX to get solution x
with refined precision. Therefore, prior to calling this
subroutine, x must be obtained by subroutine

Unit lower
triangular matrix L

triangular
portion
only

-Lower

inverted
are

Element
Array FAMatrix {D-1+(L−I)}Diagonal matrix D

d11

d22

dnn

l21

ln1 ln n−1 dnn
-1

ln1 ln n−1

l21

1
1

1

d11
-1

d22
-1

d11
-1

l21

d22
-1

ln1

ln n−1

dnn
-1

00

0

0

n(n+1)/2

Note: The diagonal and lower triangular sections of the

matrix D-1+(L-I) are contained in the one-dimensional
array FA in the compressed mode for symmetric
matrices.

Fig. LSXR-1 Storage of matrices L and D

Table LSXR-1 Condition codes

Code Meaning Processing
0 No error

10000 The coefficient matrix was not
positive-definite.

continued

25000 The convergence condition
was not met because of a very
ill-conditioned coefficient
matrix.

Discontinued
(Refer to
“method” for
convergence
condition.)

30000 N=0 By passed

LSX and the results must be input as the parameters X
and FA to be used for this subroutine. In addition, the
coefficient matrix A and constant vector b which are
required for this subroutine must also be prepared and
stored separately before calling subroutine LSX. Refer
to the example for details.
 If N= −n is specified, an estimated accuracy (relative
error) for the approximate solution x given by the
subroutine LSX can be obtained. When specified, this
subroutine calculates the relative error and outputs it to
work area VW(1) without performing the iterative
refinement of precision. See “Method” for estimation
of accuracy.

• Example
An approximate solution x for a system of linear
equations in n unknowns is obtained by subroutine
LSX, then it is iteratively refined by this subroutine.
n≤100.

C **EXAMPLE**
 DIMENSION A(5050),FA(5050),X(100),
 *B(100),VW(100)
 10 READ(5,500) N

LSXR

448

 IF(N.EQ.0) STOP
 NT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NT)
 READ(5,510) (B(I),I=1,N)
 DO 20 I=1,N
 X(I)=B(I)
 20 CONTINUE
 DO 30 I=1,NT
 30 FA(I)=A(I)
 EPSZ=0.0E0
 ISW=1
 CALL LSX(FA,N,X,EPSZ,ISW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 CALL LSXR(X,A,N,FA,B,VW,ICON)
 WRITE(6,630) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,640) (I,X(I),I=1,N)
 DET=FA(1)
 L=1
 DO 40 I=2,N
 L=L+1
 40 DET=DET*FA(L)
 DET=1.0/DET
 WRITE(6,650) DET
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 620 FORMAT('0',10X,'LSX ICON=',I5)
 630 FORMAT('0',10X,'LSXR ICON=',I5)
 640 FORMAT('0',10X,'SOLUTION VECTOR'
 */(10X,4('(',I3,')',E17.8)))
 650 FORMAT(///10X,
 *'DETERMINANT OF COEFFICIENT MATRIX=',
 *E17.8)
 END

Method
Given an approximate solution, x to the linear equations

Ax b= (4.1)

the solution is iteratively refined as follows:
• Principle of iterative refinement

The iterative refinement is a method to obtain a
successively improved approximate solution)1(+sx to
the linear equations (4.1) through use of the following
equations starting with x x(~1) =

() ()ss Axbr −= (4.2)
() ()ss rAd = (4.3)

() () ()sss dxx +=+1 (4.4)
s = 1, 2, …

where ()sx is the s-th approximate solution to equation
(4.1). If Eq. (4.2) is accurately computed, a refined
solution of the approximate solution ()1x is numerically
obtained. If, however, the condition of the coefficient
matrix A is not suitable, no improved solution is obtained.
(See Section 3.4 “Iterative refinement of a solution”.)

• Procedure performed in this subroutine

Suppose that the first approximate solution ()1x has
already been obtained by the subroutine repeats the
following steps:
− The residual ()sr is computed by using Eq. (4.2)

This is done by calling the subroutine MSV.
− The correction ()sd is obtained next by using Eq.

(4.3). by calling subroutine LDLX.
− Finally, the modified approximate solution ()1+sx is

obtained by using Eq. (4.4).

The convergence of the iteration is tested as follows:
Considering u as a unit round off, the iteration refinement
is assumed to converge if, at the s-th iteration step, the
following relationship is satisfied.

uss ⋅<
∞

+
∞

2/)1()(xd (4.5)

The obtained ()1+sx is then taken as the final solution.
However, if the relationship,

()

()

()

()
∞

∞
−

∞
+

∞ ⋅>
s

s

s

s dd

xx

1

1 2
1

results, this indicates that the condition of the
coefficient matrix A is not suitable. The iteration
refinement is assumed not to converge, and consequently
the processing is terminated with ICON = 25000.

• Accuracy estimation for approximate solution

Suppose the error for the approximate solution ()1x is
() ()()xxe −= 11 , its relative error is represented by
() ()

∞∞
11 / xe If this iteration method converges, ()1e

is assumed to be almost equal to ()1d . The relative
error for the approximate solution is therefore
estimated by () ()

∞∞
11 / xd (See Section 3.4

“Accuracy estimation for approximate solution”.)
For further details, see References [1], [3], and [5].

LTX

449

A52-11-0501 LTX, DLTX

A system of linear equations with a real tridiagonal
matrix (Gaussian elimination method)
CALL LTX (SBD, D, SPD, N, B, EPSZ, ISW, IS,
IP, VW, ICON)

Function
A system of linear equations

Ax b= (1.1)

is solved by using the Gaussian elimination method,
where A is an n × n real tridiagonal matrix, b is an n-
dimensional real constant vector, and x is an n-
dimensional solution vector. Here n ≥1.

Parameters
SBD Input. Lower sub-diagonal portion of the

coefficient matrix A.
The contents are destroyed after computation.
Refer to Fig. LTX-1. One-dimensional array
of size n−1.

D Input. Diagonal portion of the coefficient
matrix A. The contents are destroyed after
computation.
See Fig. LTX-1. One-dimensional array of
size n .

SPD Input. Upper sub-diagonal portion of the
coefficient matrix A.
The contents are destroyed after computation.
See Fig. LTX-1.
One-dimensional array of size n -1.

N Input. Order n of the coefficient matrix A
B Input. Constant vector b.

Output. Solution vector x.
One-dimensional array of size n.

EPSZ Input. Tolerance for relative zero test of
pivots (≥0.0)
If EPSZ = 0.0, a standard value is used. (See
“Notes”.)

ISW Input. Control information.
When l(≥1) systems of linear equations with
the identical coefficient matrix are to be solved,
ISW can be specified as follows:
ISW=1 ... The first system is solved
ISW=2 ... The 2nd to l-th systems are solved.

However, only parameter B is
specified for the new constant
vector b of the system, with the rest
unchanged.
(See “Notes”.)

IS Output. Information used to obtain a
determinant of matrix A.
(See “Notes”.)

IP Work area. One-dimensional array of size n.

0

0

a11 a12

a21 a22 a23

a32

an n−1,

annan n, −1

Matrix A

Array SBD Array D Array SPD

a21

a32

an n, −1

a11

a22

ann

a12

a23

an n−1,

Fig. LTX-1 Storing method for each element of matrix A into arrays
SBD, D and SPD

VW Work area. One-dimensional array of size n.
ICON Output. Condition code. Refer to Table LTX-1.
Table LTX-1 Condition codes

Code Meaning Processing
0 No error

20000 The negative pivot occurred.
It is highly probable that the
coefficient matrix is singular.

Discontinued

30000 N<1, or EPSZ<0.0 By passed

Comments on use
• Subprograms used

SSL II ... AMACH, MGSSL
FORTRAN basic functions ... AMAX1, ABS

• Notes
This subroutine makes decisions on the relative zero of
pivots by using a relational equation containing the
value of EPSZ. For details, see “Method”.
 Let u be the unit round off. The standard value of
EPSZ is then 16･u.
 If the processing is to proceed even at a low pivot
value, EPSZ has to be given the minimum value but the
result is not always guaranteed.
When successively solving systems of linear equations
with the identical coefficient matrix, after solving the
first system, ISW should be set to 2.

LTX

450

With ISW=2, the calculation time is reduced since
the process in which the coefficient matrix A is LU-
decomposed is bypassed. The value of IS the same as
when ISW=1.

The determinant of the matrix A is obtained by
multiplying the n elements, D(i), i=1, ..., n by the value
of IS.

• Example
L systems of linear equations with an identical
coefficient matrix of order n are solved. n≤100.

C **EXAMPLE**
 DIMENSION SBD(99),D(100),SPD(99),
 *B(100),IP(100),VW(100)
 CHARACTER*4 NT1(6),NT2(4),NT3(4)
 DATA NT1/'CO ','EF ','FI ','CI ',
 * 'EN ','T '/,
 * NT2/'CO ','NS ','TA ','NT '/,
 * NT3/'SO ','LU ','TI ','ON '/
 READ(5,500) N,L
 NM1=N-1
 READ(5,510) (SBD(I),I=1,NM1),
 * (D(I),I=1,N),(SPD(I),I=1,NM1)
 WRITE(6,600) N
 CALL PTM(NT1,6,SBD,D,SPD,N)
 ISW=1
 M=1
 10 READ(5,510) (B(I),I=1,N)
 CALL PGM(NT2,4,B,N,N,1)
 CALL LTX(SBD,D,SPD,N,B,0.0,ISW,
 * IS,IP,VW,ICON)
 WRITE(6,610)ICON
 IF(ICON.NE.0)STOP
 CALL PGM(NT3,4,B,N,N,1)
 IF(M.EQ.L) GO TO 20
 M=M+1
 ISW=2
 GO TO 10
 20 WRITE(6,620)
 STOP
 500 FORMAT(3I2)
 510 FORMAT(4E15.7)
 600 FORMAT('1',5X,
 * 'LINEAR EQUATIONS(TRIDIAGONAL)'
 * /6X,'ORDER=',I5)
 610 FORMAT(' ',5X,'ICON OF LTX=',I5)
 620 FORMAT(' ',5X,'** NORMAL END')
 END

 SUBROUTINE PTM(ICOM,L,SBD,D,SPD,N)
 DIMENSION SBD(1),D(N),SPD(1)
 CHARACTER*4 ICOM(L)
 WRITE(6,600) (ICOM(I),I=1,L)
 DO 30 I=1,N
 IF(I.NE.1) GO TO 10
 IC=1
 WRITE(6,610) I,IC,D(I),SPD(I)
 GO TO 30
 10 IC=I-1
 IF(I.NE.N) GO TO 20
 WRITE(6,610) I,IC,SBD(IC),D(I)
 GO TO 30
 20 WRITE(6,610)I,IC,SBD(IC),D(I),SPD(I)
 30 CONTINUE
 RETURN
 600 FORMAT(/10X,35A2)
 610 FORMAT(/5X,2(1X,I3),3(3X,E14.7))
 END

The subroutines PTM and PGM are used only to print
out a real tridiagonal matrix and a real general matrix.
The subroutine PGM is described in the example for the
subroutine MGSM.

Method
A system of linear equations with a real tridiagonal
matrix A

Ax b= (4.1)

is solved by using the Gaussian elimination method
based on partial pivoting. A matrix can be normally
decomposed into the product of a unit lower triangular
matrix L and an upper triangular matrix U with partial
pivoting.

A LU= (4.2)

Consequently, solving Eq. (4.1) is equal to solving

Ly b= (4.3)
Ux y= (4.4)

Since both L and U are triangular matrices, Eqs. (4.3) and
(4.4) can be readily solved by using back-ward and
forward substitutions.
• Guassian elimination method

Let ()kA represent the matrix at the k-th step
()1,...,1 −= nk of the Gaussian elimination method,

where () AA =1 . The k-th step of elimination process
is represented by

() ()k
kk

k APMA =+1 (4.5)

where Pk is a permutation matrix to select a pivot row
of the k-th column of the matrix ()A k . The Mk is a matrix
to eliminate the element below the diagonal in the k-th
column of the permuted matrix, and is given by

−
=

+

1
0

1
1

0
1

,1 kkmkM (4.6)

LTX

451

() () () ()()k
ij

kk
kk

k
,kk,kk a/aam == ++ A,11

After the elimination process is finished, by setting

() ()1
1111 APMPMAU ⋅⋅⋅== −− nn

n (4.7)

() 1
1111

−
−− ⋅⋅⋅= PMPML nn (4.8)

matrix A is rewritten as

A LU=

where L and U are a unit lower triangular matrix and an
upper triangular matrix, respectively.

• Procedure performed in this subroutine

[Forward substitution]
Eq. (4.9) results from Eq. (4.3) based on Eq. (4.8)

bPMPMy 1111 ⋅⋅⋅= −− nn (4.9)

Eq. (4.9) is repeatedly calculated as follows:

() by =1
() ()1

11
2 yPMy =

:
() ()1

11
−

−−= n
nn

n yPMy
()nyy =

This subroutine, at the k-th (k = 1,...,n−1) elimination
step, obtains each element of the k-th column of matrix L
and k-th row of matrix U by using Eqs. (4.10) and (4.11).

() ()k
kk

k
,kk,kk /aam 11 ++ = (4.10)

() 2,1,, ++== kkkjau k
kjkj (4.11)

The elements of the (k+1)-th row of matrix A(k+1) are
given by Eq. (4.12). The other elements of matrix A(k+1)
to which the (k+1)-th elimination step is applied are equal
to the corresponding element of matrix A(k).

)(
1

)()(
1

1
,1

k
,kk

k
k,j

k
k

k
jk maaa ++

+
+ −=

 , j=k+1, k+2 (4.12)

The pivot element ()k
kka is Eq. (4.10) is selected as

follows to minimize the computational errors before this
elimination process. ()k

lka that reflects scaling factor Vl as
() ()()k

lkl
k

lkl aVaV ⋅=⋅ max is chosen as the pivot element,

whereVl is an inverse of the maximum absolute value
element in the l -th row of coefficient matrix A .

If the selected pivot element ()k
lka satisfies

() () uaa ij
k

lk ⋅< max

where ()ija=A , u unit round off then matrix A is
assumed to be numerically singular and the processing is
terminated with ICON=20000.
[Backward substitution]
Eq. (4.4) is obtained iteratively by

1,...,,
2

1

nkuxuyx kk

k

kj
jkjkk =

−= ∑

+

+=

 (4.13)

where ()iju=U , and ()T
21 ,...,, nxxx=x

LUIV

452

A22-11-0602 LUIV, DLUIV

The inverse of a real general matrix decomposed into the
factors L and U
CALL LUIV (FA, K, N, IP, ICON)

Function
This subroutine computes the inverse A−1 of an n n× real
general matrix A given in decomposed form PA LU=

PLUA 111 −−− =

L and U are respectively the n n× lower triangular and
unit upper triangular matrices, and P is the permutation
matrix which performs the row exchanges in partial
pivoting for LU decomposition. n ≥ 1 .
Parameters
FA Input. Matrix L and matrix U.

Output. Inverse A−1.
FA is a two-dimensional array, FA (K, N).
Refer to Fig. LUIV-1.

K Input. Adjustable dimension of array FA (≥N).
N Input. Order n of the matrices L and U.
IP Input. Transposition vector which indicates

the history of row exchanges in partial
pivoting. One-dimensional array of size n.

ICON Output. Condition code. See Table LUIV-1.

Diagonal and lower
triangular portions only

Array FA

Upper triangular portion only

Lower triangular
matrix L

Unit upper triangular
matrix U

l31 l32

l22l21

l11

un−1n

u23 u2n

u1nu13u12

0

0

1

1

1
1

ln1 ln2

l22l21

l11

ln1

K
N

un−1nln−1n−1 ln−1n−1

lnnlnn−1 lnn−1 lnnln2

u23 u2n

u1nu13u12

Fig. LUIV-1 Storage of the elements of L and U in array FA

Table LUIV-1 Condition codes

Code Meaning Processing
0 No error

20000 A real matrix was singular. Discontinued
30000 K<N or N<1 or there was an

error in IP.
Bypassed

Comments on use
• Subprograms used

SSL II MGSSL
FORTRAN basic function None

• Notes

Prior to calling this subroutine, LU-decomposed matrix
must be obtained by subroutine ALU and must be input
as the parameters FA and IP to be used for this
subroutine. The subroutine LAX should be used for
solving linear equations. Obtaining the solution by first
computing the inverse matrix requires more steps of
calculation, so subroutine LUIV should be used only
when the inverse matrix is inevitable. The
transposition vector corresponds to the permutation
matrix P of

PA LU=

When performing LU decomposition with partial
pivoting. Refer to the notes of the subroutine ALU.
• Example

The inverse of an n n× real general matrix is obtained.
n ≤ 100 .

C **EXAMPLE**
 DIMENSION A(100,100),VW(100),IP(100)
 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((A(I,J),I=1,N),J=1,N)
 WRITE(6,600) N,((I,J,A(I,J),J=1,N),
 * I=1,N)
 CALL ALU(A,100,N,0.0,IP,IS,VW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 CALL LUIV(A,100,N,IP,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,630) ((I,J,A(I,J),I=1,N),
 * J=1,N)
 STOP
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT(//11X,'**INPUT MATRIX**'/12X,
 * 'ORDER=',I5/(2X,4('(',I3,',',I3,')',
 * E16.8)))
 610 FORMAT('0',10X,'CONDITION ',
 * 'CODE(ALU)=',I5)
 620 FORMAT('0',10X,'CONDITION ',
 * 'CODE(LUIV)=',I5)
 630 FORMAT('0',10X,'**INVERSE MATRIX**',
 * /(2X,4('(',I3,',',I3,')',E16.8)))
 END

LUIV

453

Method
This subroutine computes the inverse of an n n× real
general matrix, giving the LU-decomposed matrices L, U
and the permutation matrix P which indicates row
exchanges in partial pivoting.

PA LU= (4.1)

then, the inverse of A can be represented using (4.1) as
follows:
The inverse of L and U are computed and then the
inverse of A is obtained as (4.2).

() PLULUPA 11111 −−−−− == (4.2)

L and U are as shown in Eq. (4.3) for the following
explanation.

L = (lij) , U = (uij) (4.3)

• Calculating L−1
Since the inverse L−1 of a lower triangular matrix L is
also a lower triangular matrix, if we represent L−1 by

()ijl
~1 =−L (4.4)

then Eq. (4.5) is obtained based on the relation
ILL =−1 .

,
~

1
ij

n

k
kjik ll δ=∑

=

≠
=

=
ji
ji

ij ,0
,1

δ (4.5)

(4.5) is rewritten as

ijijii

i

jk
kjik llll δ=+∑

−

=

~~1

and the elements ijl
~

 of the j-th column (j=1,...,n) of the

matrix L−1 are obtained as follows:

nji/llll ii

i

jk
kjikij ,...,1,

~~ 1

+=

−= ∑

−

=

jjjj ll /1
~

= (4.6)

where, ()njilii ,...,0 =≠

• Calculation U −1
Since the inverse U −1 of a unit upper triangular matrix
U is also a unit upper triangular matrix, if we represent
U −1 by

()iju~1 =−U (4.7)

then Eq. (4.8) is obtained based on the relation
IUU =−1 .

,~
1

ij

n

k
kjik uu δ=∑

=

≠
=

=
ji
ji

ij ,0
,1

δ (4.8)

Since 1=iiu , (4.8) can be rewritten

ij

j

ik
kjikij uuu δ=+ ∑

+= 1

~~

Considering 1~ =jju , the elements iju~ of the j-th

column (j = n,...,2) of U −1 are obtained as follows:

1,...,1,~~
1

1

−=−−= ∑
−

+=

jiuuuu
j

ik
kjikijij (4.9)

• Calculating PLU 11 −−
Let the product of matrices U −1 and L −1 be B, then its
elements ijb are obtained by

1,...,1,
~~ −== ∑

=

jilub
n

jk
kjikij

njilub
n

ik
kjikij ,...,,

~~ == ∑
=

Considering 1~ =iiu , the element ijb of the j-th column

(j=1,...,n) of B are obtained by

1,...,1,
~~ −== ∑

=

jilub
n

jk
kjikij

 (4.10)

njilulb
n

ik
kjikijij ,...,,

~~~

1

=+= ∑
+=

 

Next, matrix B is multiplied by the permutation matrix 
to obtain the inverse A−1.  Actually however, based on the 
values of the transposition vector IP, the elements of A−1 
are obtained simply by exchanging the column in the 
matrix B.  The precision of the inner products in (4.6), 
(4.9)m and (4.10) has been raised to minimize the effect 
of rounding errors.  For more information, see Reference 
[1]. 



LUX 

454 

A22-11-0302  LUX, DLUX 

A system of linear equations with a real general matrix 
decomposed into the factors L and U 
CALL LUX (B, FA, K, N, ISW, IP, ICON) 

 
Function 
This subroutine solves a system of linear equations 

LUx Pb=  (1.1) 

L and U are, respectively, the lower triangular and unit 
upper triangular matrices, P is a permutation matrix 
which performs row exchange with partial pivoting for 
LU decomposition of the coefficient matrix, b is an n-
dimentional real constant vector, and x is  an n-
dimentional solution vector.  Instead of equation (1.1), 
one of the following can be solved. 

Ly Pb=  (1.2) 
Uz b=  (1.3) 

Parameters 
B ..... Input.  constant vector b 

Output.  One of solution vector x, y or z 
B is a one-dimensional array of size n . 

FA ..... Input.  Matrix L and matrix U. 
See Fig. LUX-1. 
FA is a two-dimensional array, FA (K, N). 

K .....  Input.  Adjustable dimension of array FA 
(≥N) 

N ..... Input.  The order n of matrices L and U. 
ISW ..... Input.  Control information. 

ISW=1 ... x is obtained. 
ISW=2 ... y is obtained. 
ISW=3 ... z is obtained. 

IP ..... Input.  The transposition vector which 
indicates the history of the row exchange in 
partial pivoting.  IP is a one-dimensional array 
of size n  (See Notes of subroutine ALU). 

ICON ..... Output.  Condition code.  See Table LUX-1. 
 
Table LUX-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The coefficient matrix was 
singular. 

Discontinued 

30000 K<N, N<1, ISW≠1,2,3, or 
there was an error in IP. 

Bypassed 

Diagonal and lower
triangular portions only

Array FA

Upper triangular portion only

Lower triangular
matrix L

Unit upper triangular
matrix U

l31 l32

l22l21

l11

un−1n

u23 u2n

u1nu13u12

0

0

1

1

1
1

ln1 ln2

l22l21

l11

ln1

K
N

un−1nln−1n−1 ln−1n−1

lnnlnn−1 lnn−1 lnnln2

u23 u2n

u1nu13u12

 
Fig. LUX-1  Storage of elements of L and U in array FA 

Comments on use 
• Subprograms used] 

SSL II ..... MGSSL 
FORTRAN basic function ..... none 

 
• Notes 

A system of linear equations can be solved by first 
calling the subroutine ALU to decompose the 
coefficient matrix into L and U and by then calling this 
subroutine.  However, instead of both these 
subroutines, the subroutine LAX can be called to solve 
such equations in one step. 

 
• Example 

A system of linear equations is solved by first using 
subroutine ALU to decompose the n × n coefficient 
matrix into L and U, n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(100), 
     *          VW(100),IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      WRITE(6,610) (I,B(I),I=1,N) 
      CALL ALU(A,100,N,1.0E-6,IP,IS,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LUX(B,A,100,N,1,IP,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,640) (I,B(I),I=1,N) 
      GO TO 10 
 



LUX 

455 

  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(///10X,'**COEFFICIENT MATRIX**' 
     * /12X,'ORDER=',I5,/(10X,4('(',I3,',', 
     * I3,')',E16.8))) 
  610 FORMAT('0',10X,'CONSTANT VECTOR' 
     * /(10X,5('(',I3,')',E16.8))) 
  620 FORMAT('0',10X,'CONDITION(ALU)' 
     * ,I5) 
  630 FORMAT('0',10X,'CONDITION(LUX)' 
     * ,I5) 
  640 FORMAT('0',10X,'SOLUTION VECTOR' 
     * /(10X,5('(',I3,')',E16.8))) 
      END 
 
Method 
A system of linear equations 

LUx Pb=  (4.1) 

can be solved by solving following equations 

Ly Pb=  (4.2) 
Ux y=  (4.3) 

• Solving Ly Pb=  (forward substitution) 
Ly Pb=  can be serially solved using equation (4.4). 

nilylb'y ii

i

k
kikii ,...,1,

1

1

=









−= ∑

−

=

 (4.4) 

where L=(lij), yT = (y1, … , yn), (Pb)T=(b1, … , b’n).  

• Solving Ux y=  (backward substitution) 
Ux y=  can be serially solved using equations (4.5). 

1,...,,
1

nixuyx
n

ik
kikii =−= ∑

+=

 (4.5) 

where, U=(uij), xT=(x1, … ,xn) . 

Precision of the inner products in (4.4) and (4.5) has 
been raised to minimize the effect of rounding error.  For 
more information, see References [1], [2], [3], and [4]. 



MAV 

 456 

A21-13-0101  MAV, DMAV 

Multiplication of a real matrix and a real vector. 
CALL MAV (A, K, M, N, X, Y, ICON) 

 
Function 
This subroutine performs multiplication of an m × n real 
matrix A and a vector x. 

y Ax=  

where, x is an n-dimensional vector and y is an m-
dimensional vector, m and n≥1. 
 
Parameters 
A ..... Input.  Matrix A, two-dimensional array, A(K, 

N). 
K ..... Input.  The adjustable dimension of array A, 

(≥M). 
M ..... Input.  The number of rows of matrix A. 
N ..... Input.  The number of columns of matrix A. 
X ..... Input.  Vector x, one dimensional array of size 

n. 
Y ..... Output.  Multiplication y of matrix A and 

vector x, one-dimensional array of size m. 
ICON ..... Output.  Condition codes.  See Table MAV-1. 
 
Table MAV-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 M<1, N=0 or K<M Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ..... MGSSL 
FORTRAN basic function ... IABS 

• Notes 
This subroutine mainly consists of the computation. 

y = Ax (3.1) 

but it can be changed to another type of computation, 

y = y' − Ax (3.2) 

by specifying N= − n  and giving an arbitrary vectory 
y' to the parameter Y. 

This method can be used to compute a residual 
vector of linear equations such as 

r = b − Ax (3.3) 

See the example in “Comments on use” below. 
• Example 

This example shows the program that solves a linear 
equations (3.4) with subroutine LAX and that obtains a 
residual vector b −Ax through the solution, when 
n ≤ 100 . 

Ax = b (3.4) 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),X(100),Y(100), 
     * VW(100),IP(100),W(100,100) 
      READ(5,500) N 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      READ(5,510) (X(I),I=1,N) 
      WRITE(6,600) N 
      WRITE(6,610) ((I,J,A(I,J),J=1,N), 
     * I=1,N) 
      WRITE(6,620) (I,X(I),I=1,N) 
      EPSZ=1.0E-6 
      ISW=1 
      DO 10 I=1,N 
      Y(I)=X(I) 
      DO 10 J=1,N 
      W(J,I)=A(J,I) 
   10 CONTINUE 
      CALL LAX(A,100,N,X,EPSZ,ISW,IS,VW,IP, 
     *ICON) 
      WRITE(6,630) (I,X(I),I=1,N) 
      CALL MAV(W,100,N,-N,X,Y,ICON) 
      IF(ICON.NE.0) GOTO 30 
      WRITE(6,640) (I,Y(I),I=1,N) 
      DN=0.0 
      DO 20 I=1,N 
      DN=DN+Y(I)*Y(I) 
   20 CONTINUE 
      DN=SQRT(DN) 
      WRITE(6,650) DN 
   30 WRITE(6,660) ICON 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1','COEFFICIENT MATRIX' 
     * /' ','ORDER=',I5) 
  610 FORMAT(/4(' ','(',I3, ',',I3, ')', 
     * E17.8)) 
  620 FORMAT(/' ','CONSTANT VECTOR' 
     * /(10X,4('(',I3,')',E17.8))) 
  630 FORMAT(/' ','SOLUTION VECTOR' 
     * /(10X,4('(',I3,')',E17.8))) 
  640 FORMAT(/' ','RESIDUAL VECTOR' 
     * /(10X,4('(',I3,')',E17.8))) 
  650 FORMAT(/' ','NORM=',E17.8) 
  660 FORMAT(/' ','ICON=',I5) 
      END 
 
Method 
This subroutine performs multiplication  y = (yi) of an 
m n×  real matrix A = (aij) and an n-dimensional vector x 
= (xj) through using the equation (4.1). 



MAV 

 457 

mixay
n

j
jiji ,...,1,

1

==∑
=

 (4.1) 

In this subroutine, precision of the sum of products in 
(4.1) has been raised to minimize the effect of rounding 
errors. 



MBV 

458 
 

A51-11-0101  MBV, DMBV 

Multiplication of a real band matrix and a real vector. 
CALL MBV (A, N, NH1, NH2, X, Y, ICON) 

 
Function 
This subroutine performs multiplication of an n × n  band 
matrix A with lower band width h1 and upper band width 
h2 by a vector x 

y = Ax (1.1) 

where x and y are both an n-dimensional vectors. 
Also, n > h1 ≥ 0 and n > h2 ≥ 0. 
 
Parameters 
A ..... Input.  Matrix A. 

Compressed mode for a band matrix. 
One-dimensional array of size n･min(h1+h2+1, 
n) . 

N ..... Input.  Order n of the matrix A. 
(See Notes.) 

NH1 ..... Input Lower band width h1. 
NH2 ..... Input Upper band width h2. 
X ..... Input.  Vector x. 

One-dimensional array of size n. 
Y ..... Output.  Vector y 

One-dimensional array of size n. 
ICON ..... Output.  Condition code.  See the Table MBV-

1. 
 
Table MBV-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N=0, 

NH2NNH1,N ≤≤ , 

NH1 < 0 or NH2 < 0 

Bypassed 

 
Comments on use 
• Subprograms used 

SSLII ... MGSSL 
FORTRAN basic functions ... IABS, MIN0 

• Notes 
This subroutine mainly consists of the computation 

y = Ax (3.1) 

but it can be changed to another type of computation 

y = y' − Ax 

by specifying N= n and giving an arbitary vector  y'  to 
the parameter Y. 

In practice, this method can be used to compute a 
residual vector of linear equations (Refer to the example 
shown below). 

 
• Example 

The linear equations with an nn ×  matrix of lower 
band with h1 and upper band width h2. 

Ax = b 

is solved by calling the subroutine LBX1, and then the 
residual vector b − Ax is computed with the resultant.  
Here n ≤ 100 , h1 ≤ 20 and h2 ≤ 20. 

 
C     **EXAMPLE** 
      DIMENSION A(4100),X(100),IP(100), 
     *     FL(1980),VW(100),Y(100),W(4100) 
      CHARACTER*4 NT1(6),NT2(4),NT3(4), 
     *     NT4(4) 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/, 
     *     NT4/'RE  ','SI  ','DU  ','AL  '/ 
      READ(5,500) N,NH1,NH2 
      WRITE(6,600) N,NH1,NH2 
      IF(N.LE.0.OR.NH1.GE.N.OR.NH2.GE.N) 
     * STOP 
      NT=N*MIN0(N,NH1+NH2+1) 
      READ(5,510) (A(I),I=1,NT) 
      CALL PBM(NT1,6,A,N,NH1,NH2) 
      READ(5,510) (X(I),I=1,N) 
      CALL PGM(NT2,4,X,N,N,1) 
      DO 10 I=1,NT 
   10 W(I)=A(I) 
      DO 20 I=1,N 
   20 Y(I)=X(I) 
      CALL LBX1(A,N,NH1,NH2,X,0.0,1,IS, 
     *  FL,VW,IP,ICON) 
      IF(ICON.GE.20000) GO TO 30 
      CALL PGM(NT3,4,X,N,N,1) 
      CALL MBV(A,-N,NH1,NH2,X,Y,ICON) 
      IF(ICON.NE.0) GO TO 30 
      CALL PGM(NT4,4,Y,N,N,1) 
      RN=0.0 
      DO 25 I=1,N 
   25 RN=RN+Y(I)*Y(I) 
      RN=SQRT(RN) 
      WRITE(6,610) RN 
      STOP 
   30 WRITE(6,620) ICON 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(10F8.3) 
  600 FORMAT('1','BAND EQUATIONS' 
     *  /5X,'ORDER=', I5 
     *  /5X,'SUB-DIAGONAL,LINES=',I4 
     *  /5X,'SUPER-DIAGONAL,LINES=',I4) 
  610 FORMAT(' ',4X,'RESIDUAL NORM=',E17.8) 
  620 FORMAT(' ',4X,'ICON=',I5) 
      END 
 



MBV 

459 

The subroutines PBM and PGM are used in this 
example only to print out a band matrix and a real general 
matrix respectively. 

The description of the two programs are shown in the 
example for the subroutines LBX1 and MGSM, 
respectively. 

 
Method 
This subroutine performs multipuliation  y = (yi), of an 
n n×  band matrix A = (aij) with lower band width h1 and 
upper band width h2 by an n-dimentional vector x = (xj) 
through using the Eq. (4.1). 

nixay
n

j
jiji ,...,1,

1

==∑
=

 (4.1) 

However, this subroutine recognizes that the matrix is a 
band matrix and the actual computation is done by 

( )

( )
nixay

nhi

hij
jiji 1,...,,

,min

1,max

2

1

== ∑
+

−=

 (4.2) 

This subroutine performs the product sum calculation in 
Eq. (4.2) with higher precision in order to minimize the 
effect of rounding errors. 
 



MCV 

460 
 

A21-15-0101  MCV, DMCV 

Multiplication of a complex matrix and complex vector x 
CALL MCV (ZA, K, M, N, ZX, ZY, ICON) 

 
Function 
This subroutine performs multiplication of an m × n 
complex matrix A by a complex vector x 

y = Ax (1.1) 

where, x is an n-dimensional complex vector, y is an m-
dimensional complex vector and m, n ≥ 1 . 
 
Parameters 
ZA ..... Input.  Matrix A 

A complex two-dimensional array, ZA (K, N) 
K ..... Input.  Adjustable dimension of array ZA 

(≥M) 
M ..... Input.  Row number m of matrix A 
N ..... Input.  Column number n of matrix A. 

(Refer to “Comments on use”.) 
ZX ..... Input.  Complex vector x 

A complex one-dimensional array of size n. 
ZY ..... Output.  Multiplication y of matrix A complex 

vector x 
A complex one-dimensional array of size m 

ICON ..... Output.  Condition code.  Refer to Table 
MCV-1. 

 
Table MCV-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 M<1, n=0 or K<M Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... IABS 

 
• Notes 

This subroutine mainly consists of the computations, 

y = Ax (3.1) 

but it can be changed to another type of computation, 

y = y' − Ax (3.2) 

by specifying N= − n  and giving an arbitrary vector y' 
to the parameter ZY. 

This method can be used to compute a residual vector 
of linear equations. 

Refer to the example in ‘Comments on use’ below. 
 

• Example 
In this example, the n -dimensional linear equations 
with complex coefficients. 

Ax = b 

are solved by calling the subroutine LCX, and then the 
residual vector b − Ax is obtained through the solution.  
Here n ≤ 50 . 
 
C     **EXAMPLE** 
      DIMENSION ZA(50,50),ZX(50),ZY(50), 
     *  ZVW(50),IP(50),ZW(50,50) 
      CHARACTER*4 NT1(6),NT2(4), 
     *            NT3(4),NT4(4) 
      COMPLEX ZA,ZX,ZY,ZVW,ZW 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/, 
     *     NT4/'RE  ','SI  ','DU  ','AL  '/ 
      READ(5,500) N 
      IF(N.LE.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      CALL PCM(NT1,6,ZA,50,N,N) 
      ISW=1 
      EPSZ=1.0E-6 
      READ(5,510) (ZX(I),I=1,N) 
      CALL PCM(NT2,4,ZX,N,N,1) 
      DO 10 I=1,N 
      ZY(I)=ZX(I) 
      DO 10 J=1,N 
      ZW(J,I)=ZA(J,I) 
   10 CONTINUE 
      CALL LCX(ZA,50,N,ZX,EPSZ,ISW,IS, 
     *ZVW,IP,ICON) 
      IF(ICON.GE.20000) GO TO 30 
      CALL PCM(NT3,4,ZX,N,N,1) 
      CALL MCV(ZW,50,N,-N,ZX,ZY,ICON) 
      IF(ICON.NE.0) GO TO 30 
      CALL PCM(NT4,4,ZY,N,N,1) 
      RN=0.0 
      DO 20 I=1, N 
      CR=REAL(ZY(I)) 
      CI=IMAG(ZY(I)) 
      RN=RN+CR*CR+CI*CI 
   20 CONTINUE 
      RN=SQRT(RN) 
      WRITE(6,610) RN 
      STOP 
   30 WRITE(6,620) ICON 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(5(2F8.3)) 
  600 FORMAT('1','COMPLEX LINEAR EQUATIONS' 
     *  /5X,'ORDER=',I5) 
  610 FORMAT(' ',4X,'RESIDUAL NORM=',E17.8) 
  620 FORMAT(' ',4X,'ICON=',I5) 
      END 
 



MCV 

461 

      SUBROUTINE PCM(ICOM,L,ZA,K,M,N) 
      DIMENSION ZA(K,N) 
      CHARACTER*4 ICOM(L) 
      COMPLEX ZA 
      WRITE(6,600) (ICOM(I),I=1,L) 
      DO 10 I=1,M 
      WRITE(6,610) I,(J,ZA(I,J),J=1,N) 
   10 CONTINUE 
      RETURN 
  600 FORMAT(' ',35A2) 
  610 FORMAT(' ',1X,I3,2(I3,2E17.7) 
     */(5X,2(I3,2E17.7))) 
      END 
 

The subroutine PCM is used in this example only to 
print out a complex matrix. 

Method 
Elements of  y = (yi), that is a resultant product of m n×  
complex matrix A = (aij) by n-dimensional complex 
vector x = (xi), are computed as shown in Eq. (4.1), 

mixa
n

j
jiji ,...,1,

1

==∑
=

y  (4.1) 

This subroutine reduces rounding errors as much as 
possible by performing the inner product computation, 
Eq. (4.1), with higher precision. 



MDMX 

462 
 

A22-21-0302  MDMX, DMDMX 

A system of linear equations with a real indefinite 
symmetric matrix decomposed into the factors  
M, D and M 
CALL MDMX (B, FA, N, IP, ICON) 

 
Function 
This subroutine solves a system of linear equations with 
an MDMT-decomposed real indefinite symmetric matrix, 
where M is a unit lower triangular matrix, D is a 
symmetric block diagonal matrix consisting of symmetric 
blocks at most of order 2, P is a permutation matrix 
(which exchanges rows of the coefficient matrix based on 
pivoting for MDMT-decomposition), b is an n-
dimensional real constant vector, and x  is an n-
dimensional solution vector.  If 0,1 ≠+ kkd , then, 

0,1 =+ kkm , and n ≥ 1 . 
 
Parameters 
B ..... Input.  Constant vector b. 

Output.  Solution vector x. 
One-dimensional array of size n . 

FA ..... Input.  Matrices M and D 
See Fig. MDMX-1 
One-dimensional array of size n(n+1)/2. 

N ..... Input.  Order n of the matrices M and D, 
constant vector b and solution vector x. 

IP ..... Input.  Transposition vector that indicates the 
history exchanging rows based on pivoting. 
One-dimensional array of size n. 

ICON ..... Output.  Condition code. 
See Table MDMX-1. 

 
Block diagonal matrix D

Only lower
triangular
portion

Unit lower triangular
matrix M

Excluding
upper
triangular
portion

Array FA

1 0

0 1

131 32m m























d d

d d

d

11 12

21 22

33

0

0























d d

d d

m m d

11 12

21 22

31 32 33

0




















d33

m32

m31

d22

d21

d11
21

0

0

0

0

 
Note: The diagonal portion and the lower triangular portion of 

the  
matrix D+(M-I) are stored in the one-dimensional array 
FA in compressed mode for a symmetrical matrix.  In 
this case D consists of blocks of order 2 and 1. 

Fig. MDMX-1  Storing method for matrices L and D 

Table MDMX-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 Coefficient matrix was 
singular. 

Discontinued 

30000 N<1, or an error was found 
in IP. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... IABS 

 
• Notes 

A system of linear equations can be solved by calling 
the subroutine SMDM first to MDMT-decompose the 
coefficient matrix prior to calling this subroutine.  
However, such equations can be solved by calling the 
subroutine LSIX in one step.  The input parameters FA 
and IP to this subroutine are the same as the output 
parameters A and IP of the subroutine SMDM. 

 
• Example 

A system of linear equations is solved after MDMT-
decomposing an n n×  real symmetric matrix by calling 
the subroutines SMDM.  Where n ≤ 100 . 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(100), 
     * VW(200),IP(100),IVW(100) 
      CHARACTER*4 IA,IB,IX 
      DATA IA,IB,IX/'A   ','B   ','X   '/ 
      READ(5,500) N 
      NT=(N*(N+1))/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,600) N 
      CALL PSM(IA,1,A,N) 
      EPSZ=0.0 
      CALL SMDM(A,N,EPSZ,IP,VW,IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      READ(5,510) (B(I),I=1,N) 
      CALL PGM(IB,1,B,N,N,1) 
      CALL MDMX(B,A,N,IP,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      CALL PGM(IX,1,B,N,N,1) 
      STOP 
  500 FORMAT(I3) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1' 
     *  /6X,'LINEAR EQUATIONS AX=B' 
     *  /6X,'ORDER=',I4) 
  610 FORMAT(' ',5X,'ICON OF SMDM=',I6) 
  620 FORMAT(' ',5X,'ICON OF MDMX=',I6) 
      END 
 



MDMX 

463 

The subroutines PSM and PGM in this example are 
used only to print out a real symmetric matrix and a real 
general matrix, respectively.  These programs are 
described in the example for subroutine MGSM. 
 
Method 
Solving a system of linear equations with an MDMT-
decomposed real symmetric matrix. 

( ) bxPMDMP =
−− 1TT1  (4.1) 

is reduced into solving the following four equations: 

( ) PbMx =1  (4.2) 
( ) ( )12 xDx =  (4.3) 

( ) ( )23T xxM =  (4.4) 

( ) ( )31T xxP =
−

 (4.5) 

where M is a unit lower triangular matrix, D is a 
symmetric block diagonal matrix consisting of symmetric 
blocks at most of order 2, b is a constant vector, and x is 
a solution vector.  This subroutine assumes that M and D 
are both decomposed by the block diagonal pivoting 
method, and P is a permutation matrix. 
(For details, see “Method” for the subroutine SMDM.) 
• Solving ( )Mx Pb1 =  (back substitution) 

For a 1×1 pivot (i.e., if the order of the block of D is 1), 
it can be serially solved using Eq. (4.6). 

( ) ( ) nixmbx
i

k
kikii ,...,1,

1

1

11 =−= ∑
−

=

 (4.6) 

If, however, the i-th ineration uses a 2×2 pivot (i.e., the 
order of matrix D block is 2), ( )1

1+ix  is obtained using Eq. 

(4.7), preceded by ( )1
ix , and after that (i+2)-th step is 

computed. 

( ) ( )∑
−

=
++ −′=

1

1

1
1

1
1

i

k
kikii xmbx  (4.7) 

where ( ) ( ) ( ) ( )( ) ( ) ( )nnij bbxxxm ′′=== ,...,,,...,, 1
T11

1
T1 PbM  

• Solving ( ) ( )12 xDx =  
For a 1×1 pivot, it can be serially solved using eq. (4.8). 

( ) ( ) ni/dxx iiii ,...,1,12 ==  (4.8) 

If, however, the i-th iteration uses a 2×2 pivot, ( )2
ix and 

( )2
1+ix  are both obtained using Eq. (4.9) and after that 

(i+2)-th step is computed. 

( ) ( ) ( )( )/DETdxdxx ,iii,iiii 1
1

111
12

++++ −=  
( ) ( ) ( )( )/DETdxdxx ,iiiiiii 1

11
1

2
1 +++ −=  (4.9) 

where ( )ij
,ii,ii

i,iii d
dd
dd

DET =





=

+++

+ D,det
111

1 , 

and ( ) ( ) ( )( )22
1

T2 ,..., nxxx =  

• Solving ( ) ( )23T xxM =  (forward substitution) 
For a 1×1 pivot, it is serially solved using eq. (4.10) 

( ) ( ) ( ) 1,...,,
1

323 nixmxx
n

ik
kkiii =−= ∑

+=

 (4.10) 

If, however, the  i-th iteration uses a 2×2 pivot, ( )3
2−ix   is 

obtained using Eq. (4.11), preceeded by ( )3
ix , and after 

that the (i−2)-th step is computed. 

( ) ( ) ( )∑
+=

−−− −=
n

ik
kk,iii xmxx

1

3
1

2
1

3
1  (4.11) 

where ( ) ( ) ( )),...,( 33
1

T3
nxx=x  

• Solving ( ) ( )31T xxP =
−

 
The vector x (3) is multipled by the permutation 

matrix to obtain the element x1 of the solution vector x. 
In practice, however, the elements of the vector x (3) 
have only to be exchanged by referencing the value of 
the transposition vector IP. 
Precision of the inner products in this subroutine has 
been raised to minimize the effect of rounding errors. 



MGGM 

464 
 

A21-11-0301  MGGM, DMGGM 

Multiplication of two matrices (real general by real general) 
CALL MGGM (A, KA, B, KB, C, KC, M, N, L, VW, 
ICON) 

 
Function 
This subroutine performs multiplication of an m × n  real 
general matrix A by an n × l  real general matrix B. 

C = AB 

where, C  is an m × l  real matrix. m, n, l ≥ 1. 
 
Parameters 
A ..... Input.  Matrix A, two-dimensional array, 

A(KA, N). 
KA ..... Input.  The adjustable dimension of array A, 

(≥M). 
B ..... Input.  Matrix B, two-dimensional array, B(KB, 

L). 
KB ..... Input.  The adjustable dimension of array B, 

(≥N). 
C ..... Output.  Matrix C, two-dimensional array, 

C(KC, L).  (Refer to “Comments on use.”) 
KC ..... Input.  The adjustable dimension of array C, 

(≥M). 
M ..... Input.  The number of rows m in matrix A and 

C. 
N ..... Input.  The number of columns n in matrix A 

and the number of rows n in matrix B. 
L ..... Input.  The number of columns l in matrices B 

and C. 
VW ..... Work area.  A one-dimensional array of size n. 
ICON ..... Output.  Condition codes.  Refer to Table 

MGGM-1. 
 
Table MGGM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 M<1, N<1, L<1, KA<M, 
KB<N, or KC<M 

Bypassed 

Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... None 

  
• Notes 

Saving the storage area. 
The contents of array A are not required to be reserved, 
the subroutines can be called to save the storage area as 
follows: 
CALL MGGM (A, KA, B, KB, A, KA, M, N, L, VW, 
ICON) 
 
In this case, matrix C is stored in array A.  However, 

user must declare the array A as A (KA, L) instead of A 
(KA, N). 
  
• Example 

The following shows an example of obtaining the 
multiplication of matrices A and B.  Here, m ≤ 50,  
n ≤ 60, and l ≤ 30. 

 
C     **EXAMPLE** 
      DIMENSION A(50,60),B(60,30),C(50,30), 
     *VW(60) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
      DATA KA/50/,KB/60/,KC/50/ 
   10 READ(5,100) M,N,L 
      IF(M.EQ.0) STOP 
      WRITE(6,150) 
      READ(5,200) ((A(I,J),I=1,M),J=1,N) 
      READ(5,200) ((B(I,J),I=1,N),J=1,L) 
      CALL MGGM(A,KA,B,KB,C,KC,M,N,L,VW, 
     *ICON) 
      IF(ICON.NE.0) GOTO 10 
      CALL PGM(IA,1,A,KA,M,N) 
      CALL PGM(IB,1,B,KB,N,L) 
      CALL PGM(IC,1,C,KC,M,L) 
      GOTO 10 
  100 FORMAT(3I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** MATRIX MULTIPLICATION **') 
      END 
 
Subroutine PGM in the example is for printing a real 
matrix.  This program is shown in the example for 
subroutine MGSM. 



MGSM 

465 

A21-11-0401  MGSM, DMGSM 

Multiplication of two matrices (real general by real 
symmetric) 
CALL MGSM (A, KA, B, C, KC, N, VW, ICON) 

 
Function 
This subroutine performs multiplication of an n × n  real 
general matrix A by an n × n  real symmetric matrix B. 

C = AB 

where, C is an  n × n  real matrix, n ≥ 1. 
 
Parameters 
A ..... Input.  Matrix A, two-dimensional array,  

A(KA, N). 
KA ..... Input.  The adjustable dimension of array A, 

(≥N). 
B ..... Input.  Matrix B stored in the compressed 

mode, one dimensional array of size n(n+1)/2. 
C ..... Output.  Matrix C two-dimensional array, 

C(KC, N).  (See “Comments on use.”) 
KC ..... Input.  The adjustable dimension of array C, 

(≥N). 
N ..... Input.  The number of columns n of matrices A, 

B and C. 
VW ..... Work area. One dimensional array of size n. 
ICON ..... Output.  Condition codes.  See Table MGSM-

1. 
Table MGSM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N<1,KA<N or KC<N Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... none 

  
• Notes 

Saving the storage area: 
When the contents of array A is not required to be 
reserved, the subroutines can be called to save the 
storage area as follows: 

  
CALL MGSM(A, KA, B, A, KA, N, VW, ICON) 

 
In this case, matrix C is stored in the general mode in 

array A. 

• Example 
The following shows an example of obtaining the 
multiplication C of a real matrix A by a real symmetric 
matrix B.  Now, the matrix C is overwritten in the same 
area for A.  n<100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(5050),VW(100) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
   10 READ(5,100) N 
      IF(N.EQ.0) STOP 
      WRITE(6,150) 
      NT=N*(N+1)/2 
      READ(5,200) ((A(I,J),J=1,N),I=1,N) 
      READ(5,200) (B(I),I=1,NT) 
      CALL PGM(IA,1,A,100,N,N) 
      CALL PSM(IB,1,B,N) 
      CALL MGSM(A,100,B,A,100,N,VW,ICON) 
      WRITE(6,250) ICON 
      IF(ICON.NE.0) GOTO 10 
      CALL PGM(IC,1,A,100,N,N) 
      GOTO 10 
  100 FORMAT(I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** C=A*B  GENERAL BY SYMMETRIC **') 
  250 FORMAT(//10X,'** MGSM ICON=',I5) 
      END 
 
C     ** MATRIX PRINT(REAL NON-SYMMETRIC) ** 
      SUBROUTINE PGM(ICOM,L,A,K,M,N) 
      DIMENSION A(K,N) 
      CHARACTER*4 ICOM(L) 
      WRITE(6,600) (ICOM(I),I=1,L) 
      DO 10 I=1,M 
      WRITE(6,610) I,(J,A(I,J),J=1,N) 
   10 CONTINUE 
      RETURN 
  600 FORMAT(/10X,35A2) 
  610 FORMAT(/5X,I3,3(4X,I3,E17.7), 
     *(/8X,3(4X,I3,E17.7))) 
      END 
 
C     ** MATRIX PRINT(REAL SYMMETRIC) ** 
      SUBROUTINE PSM(ICOM,L,A,N) 
      DIMENSION A(1) 
      CHARACTER*4 ICOM(L) 
      WRITE(6,600) (ICOM(I),I=1,L) 
      LS=1 
      LE=0 
      DO 10 I=1,N 
      LE=LE+I 
      WRITE(6,610) I,(A(J),J=LS,LE) 
   10 LS=LE+1 
      RETURN 
  600 FORMAT(/10X,35A2) 
  610 FORMAT(/5X,I3,3(4X,E17.7), 
     *(/8X,3(4X,E17.7))) 
      END 
 

Subroutines PGM and PSM in the example are for 
printing the real and real symmetric matrices. 



MINF1 

466 

D11-10-0101  MINF1, DMINF1 

Minimization of a function with several variables 
(Revised quasi-Newton method, using function values 
only) 
CALL MINF1 (X, N, FUN, EPSR, MAX, F, G, 
H, VW, ICON) 

 
Function 
Given a real function  f (x) of n variables and an initial 
vector x0, the vector x* which gives a local minimum of  
f (x) and its function value  f (x*) are obtained by using 
the revised quasi-Newton method. 
The  f (x) is assumed to have up to the second continuous 
partial derivative, and n≥1. 
 
Parameters 
X ..... Input.  Initial vector x0. 

Output.  Vector x*. 
One-dimensional array of size n. 

N ..... Input. Number of variables n. 
FUN ... Input.  Name of function subprogram which 

calculates  f (x). 
The form of subprogram is as follows: 
FUNCTION FUN(X) 
where 
X .....Input.  Arbitrary variable vector x. 
One-dimensional array of size n. 
The function FUN should be assigned with the 
value of  f (x). 
(See the example below.) 

EPSR ... Input.  Convergence criterion (≥0.0) 
When EPSR=0.0, a standard value is used. 
See “Note”. 

MAX ... Input.  Upper limit or number of evaluations 
for the function (≠0).  See “Note”. 
Output.  Number of times actually evaluated 
(>0). 

F ..... Output.  Value of the function f (x*). 
G ..... Output.  Gradient vector at x*. 

One-dimensional array of size n. 
H ..... Output.  Hessian matrix at x*. 

This is decomposed as LDLT and stored in 
compressed storage mode for a symmetric 
matrix.  See Fig. MINF1-1. 
One-dimensional array of size n(n+1)/2. 

VW ..... Work area.  One-dimensional array of size 
3n+1. 

ICON ..... Output.  Condition code. 
See Table MINF1-1. 

Unit lower
triangular matrix L

triangular
portion
only

-Lower

inverted
are

Element
Array HMatrix  {D-1+(L−I)}Diagonal matrix D

d11

d22

dnn

l21

ln1 ln n−1 dnn
-1

ln1 ln n−1

l21

1
1

1

d11
-1

d22
-1

d11
-1

l21

d22
-1

ln1

ln n−1

dnn
-1

00

0

0

n(n+1)/2

 
Note: The approximate Hessian matrix is decomposed as LDLT, 

and after computation, the diagonal and lower triangular 
portions of the matrix, D-1+(L-I), are stored into the one-
dimensional array H in compressed storage mode for a 
symmetric matrix. 

Fig. MINF1-1  Storage Hessian matrix 

Table MINF1-1  Condition codes 

Code Meaning Processing 
 0 No error  
10000 Convergence condition was 

not satisfied within the 
specified number of 
evaluations of the function. 

Parameters X, 
F, G and H 
each contains 
the last value 
obtained. 

20000 During computation, gk
Tpk≥0 

occurred, so the local 
decrement of the function 
was not attained.  See Eq. 
(4.5) in “Method”. 
EPSR was too small or the 
error of difference 
approximation for a gradient 
vector exceeded the limit. 

Discontinued 
(Parameters X 
and F each 
contains the 
last value 
obtained.) 

30000 N<1, EPSR<0.0 or MAX=0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... LDLX, UMLDL, AMACH and MGSSL 
FORTRAN basic functions  ...  ABS, SQRT, AMAX1 
and AMIN1 

• Notes 
− The program which calls this subroutine must have 

an EXTERNAL statement for the function program 
name that corresponds to the argument FUN. 

− Giving EPSR 
The subroutine tests convergence by 

)( EPSR,01max1 ⋅≤− ∞∞+ kkk . xxx  

 



MINF1 

467 

  for the iteration vector xk and if the above condition 
is satisfied, xk+1 is taken as the local minimum point 
x* and the iteration is terminated. 
The subroutine assumes that function f (x) is 
approximately quadratic in the region of the local 
minimum point x*.  If the function value  f (x*) is to 
be obtained as accurate as the unit round off, 

EPSR = u , u is the unit round off 

is satisfactory. 
The standard value of EPSR is 2･ u  

− Giving MAX 
The number of evaluations of a function is calculated 
by the number of f (x) for variable vector x. 
It corresponds to the number of calling subprogram 
FUN. 
The number of evaluations of a function depends on 
characteristics of the function in addition to the 
initial vector and a convergence criterion.  Generally, 
for good initial vector, if a standard value is used as 
the convergence criterion, MAX=400･n is 
appropriate. 
If the convergence condition is not satisfied within 
the specified number of evaluations and the 
subroutine is returned with ICON=10000, the 
iteration can be continued by calling the subroutine 
again. 
In this case parameter MAX is specified with a 
negative value for an additional evaluation number, 
and the contents of other parameters must be kept 
intact. 

• Example 
The global minimum point  x* for 

22
12

2
1 )(100)1()( xxxf −+−=x  is obtained with the 

initial vector ( )T
0 0.1,2.1−=x  given. 

 
C     **EXAMPLE** 
      DIMENSION X(2),G(2),H(3),VW(7) 
      EXTERNAL ROSEN 
      X(1)=-1.2 
      X(2)=1.0 
      N=2 
      EPSR=1.0E-3 
      MAX=400*2 
      CALL MINF1(X,N,ROSEN,EPSR,MAX, 
     *           F,G,H,VW,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,610) F,MAX 
      WRITE(6,620) (I,X(I),I,G(I),I=1,N) 
      STOP 
  600 FORMAT('1','*ICON=',I5) 
  610 FORMAT(' ','*F=',E15.7,' MAX=',I5/) 
  620 FORMAT(/' X(',I2,')=',E15.7,2X, 
     *        ' G(',I2,')=',E15.7) 
      END 
 
 

C     OBJECTIVE FUNCTION 
      FUNCTION ROSEN(X) 
      DIMENSION X(2) 
      ROSEN=(1.0-X(1))**2+100.0* 
     *      (X(2)-X(1)*X(1))**2 
      RETURN 
      END 
 
Method 
Given a real function  f (x) of n variables and an initial 
vector x0, the vector x* which gives a local minimum of  
f (x) and its function value  f (x*) are obtained by using 
the revised quasi-Newton method. 

The subroutine obtains the gradient vector g of  f (x) by 
using difference formula. 

 
• Revised quasi-Newton method 

When the function  f (x) is quadratic, its Taylor series 
expansion in the region of the local minimum point x* 
is given by 

( ) ( ) ( ) ( )*T**

2
1 xxBxxxx −−+= ff  (4.1) 

where B is a Hessian matrix of  f (x) at the point x*.  If 
the matrix B is positive definite, Eq. (4.1) has a global 
minimum.  Let  xk be an arbitrary point in the region of x* 
and let  gk be the gradient vector of f(x) at the point xk 
then x* can be obtained by using Eq. (4.1) as follows: 

kk gBxx 1* −−=  (4.2) 

Even when function  f (x) is not quadratic, it can be 
assumed to approximate a quadratic function in the 
region of x* and a iterative formula can be derived based 
on Eq. (4.2). 
However, since obtaining an inverse of matrix B directly 
is not practical because of the great amount of 
computation, an approximate matrix to B is generally set 
and is modified while the iteration process is being 
carried out. 
The revised quasi-Newton method obtains a local 
minimum point  x* by letting Bk be an approximation of 
the matrix B and using the following iterative formulae: 

,...1,0

1

1 =







+=
+=

−=

+

+ k

kkk

kkkk

kkk

EBB
pxx

gpB
α  (4.3) 

where, ( )00 xg f∇=  and B0 are an arbitrary positive 
definite matrix, pk is a vector denoting the search 
direction from xk toward the local minimum point, and  
αk is a (linear search) constant which is set so  
f (xk +αk pk) is the smallest locally. 
 Ek is a matrix of rank two which is used to improve the 
approximate Hessian matrix Bk + Ek is defined assuming 
that function  f (x) is quadratic in the region of the local 
minimum point x*, and the secant condition is satisfied. 



MINF1 

468 

( ) ( )kkkkk xxBgg −=− +++ 111  (4.4) 

For the search direction pk to be downwards (i.e., the 
function  f (x).  decreasing locally along the pk direction 
at point xk) during the iteration process shown in (4.3), 
the following relation 

( ) 0TT <−= kkkkk pBppg  (4.5) 

must be satisfied based on the sufficient condition of the 
second order that the function  f (x) has a minimum value 
at the point x*

. 
In other words, the iterative calculation requires that the 
approximate Hessian matrix Bk is positive definite. 
In the revised quasi-Newton method, the approximate 
Hessian matrix Bk is expressed as being decomposed as 
LDLT and the refinement by the Ek is accomplished as 
follows. 

kkkkkkk ELDLLDL +=+++
TT

111  (4.6) 

The characteristic of the revised quasi-Newton method 
is to guarantee that Dk+1 is positive definite by keeping all 
the diagonal elements of Dk+1 positive. 
• Computational procedure in the subroutine 

(a) Initializing the Hessian matrix (B0 = In) 
(b) Computation of the gradient vector gk 
(c) Determining the search vector 

)( T
kkkkkk gpLDLp −=

 
This equation is solved 

by calling the subroutine LDLX. 
(d) Linear search ( xk+1 = xk + α k pk ) 
(e) Improvement of the approximate Hessian matrix 

)( TT
111 kkkkkkk ELDLLDL +=+++  

The above steps, (b) to (e), are repeated for k=0, 1, ... 
• Notes on each algorithm 

(a) Computation of the gradient vector gk 
The subroutine approximates gk  by using the 
forward difference (4.7) and the central difference 
(4.8), 

( ) ( )( ) hffg kik
i
k /xhex −+≈  (4.7) 

( ) ( )( ) hffg ikik
i
k 2/hexhex −−+≈  (4.8) 

Where, 

( )T21 ,..., n
kkkk g,gg=g  

( )T21 ,...,, n
kkki xxx=x  

ei is the i-th coordinate vector 
h = u , u  unit round off 

At the beginning of the iteration, gk is 
approximated by using Eq. (4.7), but when the 
iteration is close to the convergence area, the 
approximation method is changed to (4.8). 
 

(b) Linear search (selection of α k ) 
The linear search obtains the minimum point of 
function  f (x) along the search direction pk i.e. it 
obtains α k which minimizes the function 

0),()( ≥+= αααψ kkf px  (4.9) 

The subroutine approximates )(αψ  by the quadratic 
interpolation and assumes α k as follows: 

}))/()((2,1min{ T
1 kkkk ff pgxxk −−≈α  (4.10) 

The above equation makes use of the quadratic 
convergency of the Newton method, setting α k=1 in the 
final step of the iteration.  In addition, the second term of 
Eq. (4.10) guarantees that  f (xk+1) < f (xk) to prevent it 
being divergent during the initial iteration process.  The 
second term of Eq. (4.10) assumes. 

( ) ( ) ( ) ( )11 −+ −≈− kkkk ffff xxxx  (4.11) 

in the initial iteration step, and it is not an exact 
approximation made by the quadratic interpolation. 
Therefore the subroutine searches for the minimum point 
by using extrapolation and interpolation described as 
follows (linear search): 
let  f0,  f1 and  f2 be the function values for the points 

kkkkkk pxxxx α+== ++
)1(
1

)0(
1 ,  and 

kkkk pxx α2)2(
1 +=+ , respectively, then 
(a) If  f0 > f1  and  f1 < f2 , the search is terminated 

setting )1(
1+kx as the minimum point. 

F

f1f1

f2
f0

αk 2αk

α

ϕ (α)

 
(b) If  f0 > f1 > f2 , α min  which gives the minimum 

point is extrapolated by using the quadratic 
interpolation based on those three points as 
follows: 



MINF1 

469 

• If ,42 min kk ααα <<  the search is terminated 

setting )2(
1+kx  as the minimum point. 

ϕ (α)

f0

f1

f2

αk 2αk 4αkαmin

α

 
• If min4 αα <k  the search goes back to the 

beginning after setting kk αα 2=  
ϕ (α)

f0

f1

f2

f3

αk 2αk 4αk αmin
α

 
(c) If  f0 < f1 , the function value  f1/2  corresponding to 

kkkk pxx α⋅+=+ 2
1)2/1(

1  is obtained, and 
• If  f0 > f1/2  and  f1/2 < f1, the search is terminated 

setting )2/1(
1+kx  as the minimum point. 

 

ϕ (α)
f0

f1/2

f1

αk/2 αk

α

 
• If  f0 < f1/2 < f1 , the search goes back to the 

beginning after interpolating α min  which gives a 
minimum point by using the quadratic 
interpolation based on those three points and 
then setting  α k = max(α k /10, α min) 

ϕ (α)

f0

f1/2

f1

αmin αk

α

 

As described above, the linear search based on α k is 
terminated, but if the function  f (x) keeps decreasing 
further at the point  xk+1, i.e., 

kkkk pgpg TT
1 <+  (4.12) 

then the new search direction  pk+1 as well as α k+1 are 
determined to repeat the linear search. 
If Eq. (4.12) is not satisfied, the process moves to the 
next step to improve the approximate Hessian matrix. 
(c) Convergence criterion 

The subroutine terminates the iteration when Eq. 
(4.13) is satisfied in the iteration process (linear 
search) performed after the calculation of gk is 
changed to the approximation by the central 
difference (4.8).  The obtained xk+1 is assumed to be 
the local minimum point x*

. 

( ) EPSR,0.1max1 ⋅≤− ∞∞+ kkk xxx  (4.13) 

(d) Improving approximate Hessian matrix 
The BFGS (Broyden - Fletcher - Goldfarb - Shanno) 
furmula (4.14) is used for the improvement. 

kkk

kkkk

kk

kk
kk δδδδδδδδ

δδδδδδδδ
δδδδ B

BB
r

rrBB T

T

T

T

1 −+=+

 (4.14) 

Where,
 kkk

kkk

xx
ggr

−=
−=

+

+

1

1

δδδδ
 

The subroutine starts the iteration by setting a unit matrix 
to the initial approximate Hessian matrix B0.  The i-th 
step improvement for the Hessian matrix Bk is carried out 
in the form of being decomposed as LDLT. 

kkk

kk
kkkkkk rp

rrLDLLDL
α

T
TT~~~ +=  (4.15) 

kk

kk
kkkkkk gp

ggLDLLDL
T

TT
111

~~~ +=+++  (4.16) 

Where the second terms of both (4.15) and (4.16) are
rank one matrices.
For further details, refer to Reference [34].

MING1

470

D11-20-0101 MING1, DMING1

Minimization of a function with several variables
(Quasi-Newton method, using function values and its
derivatives)
CALL MING1 (X, N, FUN, GRAD, EPSR,
MAX, F, G, H, VW, ICON)

Function
Given a real function f (x) of n variables, its derivative
g(x) and an initial vector x0, the vector x* which gives a
local minimum of f (x) and its function value f (x*) are
obtained by using the quasi-Newton method.
 f (x) is assumed to have up to the second continuous
partial derivative, where x = (x1, x2,..., xn)T and n ≥ 1.

Parameters
X Input. Initial vector x0.

Output. Vector x*
One-dimensional array of size n.

N Input. Number of variables n.
FUN Input. Name of function subprogram which

calculates f (x).
The form of subprogram is as follows:
FUNCTION FUN(X)
where,
X Input. Variable vector x.

One-dimensional array of size n.
The function FUN should be assigned with the
value of f (x).
(See Example.)

GRAD .. Input. Name of subroutine subprogram which
computes g(x).
The form of subprogram is as follows:
SUBROUTINE GRAD(X, G)
where,
X Input. Variable vector x.

One-dimensional array of size n.
G Output. One-dimensional array of size

n which has a correspondence
nxfxf ∂∂∂∂ /)N(G,...,/)1(G 1 ==

(See Example.)
EPSR Input. Convergence criterion (≥0.0)

When EPSR=0.0, a default value is used.
(See Notes.)

MAX Input. The upper limit (≠0) of the number of
evaluations of functions f (x) and g(x).
(See Notes.)
Output. The number of evaluations in which
f (x) and g(x) are actually evaluated (>0).

F Output. Function value f (x*).
G Output. Gradiant vector g(x*).

One-dimentional array of size n.

H Output. Inverse matrix of a Hessian matrix at
x*.
This is stored in the compressed mode for
symmetric matrix.
One-dimensional array of size n(n+1)/2.

VW Work area. One-dimensional array of size
3n+1.

ICON Output. Condition code.
See Table MING1-1.

Table MING1-1 Condition codes

Code Meaning Processing
0 No error

10000 Convergence condition was
not satisfied within the
specified number of
evaluations.

The last value
is stored in
parameters X,
F, G, and H.

20000 During computation,
g p 0k

T
k ≥ occurred, so the

local decrement of the
function was not attained
(See (4.5) in Method).
EPSR was too small.

Discontinued
(The last value
is stored in
parameters X,
and F).

25000 The function is
monotonically decreasing
along searching direction.

Discontinued

30000 N<1, EPSR<0.0 or MAX=0 Bypassed.

Comments on use
• Subprograms used

SSL II ... AMACH, MGSSL, MSV,
AFMAX
FORTRAN basic functions ... ABS, SQRT

• Notes
The program which calls this subroutine must have an
EXTERNAL statement for the subprogram name that
corresponds to the arguments FUN and GRAD.

Giving EPSR:
The subroutine tests convergence of the iteration
vector xk by

() EPSR,0.1max1 ⋅≤−
∞∞+ kkk xxx

and if the above condition is satisfied, xk+1 is taken as
the local minimum point x* and the iteration is
terminated.

The subroutine assumes that function f (x) is
approximately quadratic in the region of the local
minimum point x*.

If the function value f (x*) is to be obtained as accurate
as the unit round off, EPSR = u , where u is the unit
round off is satisfactory. The default value is u / .8 0

MING1

471

Giving MAX:
For a variable vector x, the total number of evaluations is
calculated by adding the number of computation for f (x),
(i.e., 1), and the number of computations for g(x), (i.e.,
n).

The number of evaluations of functions depends on
characteristics of the functions in addition to the initial
vector and the convergence criterion. Generally, if the
default value is used as the convergence criterion and a
good initial vector are used, MAX=400･n is appropriate.
If the convergence condition is not satisfied within the
specified number of evaluations and the subroutine
returned with ICON=10000, the iteration can be
continued by calling the subroutine again. In this case,
parameter MAX is specified with a negative value for an
additional evaluation number, and the contents of other
parameters must be kept intact.

• Example

The global minimum point x* for
22

12
2

1)(100)1()(xxxf −+−=x is obtained with the
initial vector x0 = (−1.2, 1.0)T.

C **EXAMPLE**
 DIMENSION X(2),G(2),H(3),VW(7)
 EXTERNAL ROSEN,ROSENG
 X(1)=-1.2
 X(2)=1.0
 N=2
 EPSR=1.0E-4
 MAX=400*2
 CALL MING1(X,N,ROSEN,ROSENG,EPSR,
 * MAX,F,G,H,VW,ICON)
 WRITE(6,600) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,610) F,MAX
 WRITE(6,620) (I,X(I),I,G(I),I=1,N)
 STOP
 600 FORMAT('1','*ICON=',I5)
 610 FORMAT(' ','*F=',E15.5,' MAX=',I5/)
 620 FORMAT(/' X(',I2,')=',E15.7,2X,
 * ' G(',I2,')=',E15.7)
 END

C OBJECTIVE FUNCTION
 FUNCTION ROSEN(X)
 DIMENSION X(2)
 ROSEN=(1.0-X(1))**2+100.0*
 * (X(2)-X(1)*X(1))**2
 RETURN
 END
C GRADIENT VECTOR
 SUBROUTINE ROSENG(X,G)
 DIMENSION X(2),G(2)
 G(1)=-2.0*(1.0-X(1))
 *-400.0*X(1)*(X(2)-X(1)*X(1))
 G(2)=200.0*(X(2)-X(1)*X(1))
 RETURN
 END

Method
Given a real function f (x) of n variables, its derivative
g(x) and initial vector x0, the vector x* which gives a
local minimum of f (x) and its function value f (x*) are
obtained by using the quasi-Newton method.

• Quasi-Newton method

When the function f (x) is quadratic, its Taylor series
expansion in the region of the local minimum point x*
is given by

() () () ()*T**

2
1 xxBxxxx −−+= ff (4.1)

where B is a Hessian matrix of f (x) at the point x*. If the
matrix B is positive definite, (4.1) has a global minimum.
Let xk be an arbitrary point in the region of x* and let gk
be the gradient vector of f (x) at the point xk then x* can
be obtained using (4.1) as follows:

kk Hgxx −=* (4.2)

where, H is an inverse matrix of Hessian matrix B.
Even when function f (x) is not quadratic, it can be
assumed to approximate a quadratic function in the
region of x* and a iterative formula can be derived based
on (4.2). However, since obtaining an inverse of matrix
B directly is not practical because of the great amount of
computation, an approximate matrix to B is generally set
and is modified while the iteration process is being
carried out.
The quasi-Newton method obtains a local minimum point
x* by letting Hk be an approximation of the matrix H and
using the following iterative formula (4.3) and (4.4)

kkkk pxx α+=+1 (4.3)

()()kkkk
k

k
kk

kkk rrrHrHH TTTT
1 //1 δδδδ++=+

() kkkkkkkk rHrrH TTT /δδδ +− (4.4)

where,
,, 1 kkkkkk ggrgHp −=−= +

,1 kkk xx −= +δ
,...2,1,0=k

where, H0 is an arbitary positive definite matrix, in (4.3)
pk is a vector denoting the search direction from xk,
toward the local minimum point and α k is a (linear
search) constant which is set so that f (xk + α k pk) is
locally smallest.
For the search direction pk to be downwards (the function
f (x) decreasing locally along the pk direction) during the
iteration process shown in (4.3) and (4.4), the following
relation

0T <kk pg (4.5)

MING1

472

must be satisfied.
• Computational procedure in the subroutine
1) Initializing the approximate inverse matrix of the

Hessian matrix (H0 =In).
2) Computation of gradient vector gk
3) Computation of search vector pk(pk = −Hk gk)
4) Linear search (xk+1 = xk + α k pk)
5) Improvement of the approximate inverse matrix Hk

(Hk+1 is obtained from (4.4))
The above steps 2 through 5 are repeated for k=0, 1, ...

• Note on each algorithm
− Initializing the approximate inverse matrix

This subroutine uses unit matrix In as initial
approximate inverse matrix H0 corresponding to a
Hessian matrix. Inverse matrix Hk is improved by
(4.4) each time it is iterated.
H1, however, is obtained by (4.4) after resetting

H0 = sIn

where

0
T

00
T / rrrδδδδ=s

− Linear search (selection of α k)
The linear search obtains the minimum point of
function f (x) along the search direction pk that is α k
which minimizes the function)(αϕ

0),()(≥+= αααϕ kkf px (4.6)

The subroutine approximates)(αϕ by quadratic
interpolation and assumes α k to be:

(){ }kkkkk ff pgxx T
1)()(2,1min −−≈α (4.7)

The above equation makes use of the quadratic
convergency of the Newton method, setting α k= 1 in the
final step of the iteration. In addition, the second term of
(4.7) guarantees that f (xk+1) < f (xk) to prevent it from
diverging during the initial iteration process.
The second term of (4.7) assumes variable ratio of the
function as

() () () ()11 −+ −≈− kkk ffff xxxx (4.8)

in the initial iteration step, and it is not an exact
approximation made by the quadratic interpolation.
Therefore the subroutine searches for the minimum point
by using extrapolation and interpolation described as
follows (linear search):
(a) α k is obtained from (4.7).

(b) The function values corresponding to points

kkkkkkkkkk pxxpxxxx αα 2,,)2(
1

)1(
1

)0(
1 +=+== +++ are

obtained and they are assumed to be f 0, f 1 and f 2
respectively.

(c) If f 0 > f 1 and f 1 < f 2 , point α min is interpolated by
using a quadratic interpolation based on these three
points by

210

02
min 22 fff

ffk
k +−

−
⋅−=

ααα (4.9)

The search is terminated by setting α min as the final α k
and the function value is assumed to be a minimum value.

ϕ (α)

f0

f1
fmin

f2

αk αmin 2αk

α

(d) If f 0 > f 1 > f 2 , the function values corresponding to

kkk pxx α4)4(
1 +=+ is obtained and assumed to be f 4.

• If f 2 < f 4 , α min is extrapolated by using quadratic
interpolation (4.9) based on these three points f 0, f 1
and f 2.

If 4α k < α min , the search goes back to (b) after
setting α k = 2α k .

If 2α k < α min < 4α k , this subroutine terminates
the search assuming this α min to be final α k and
function value f min to be the minimum value.

ϕ (α)

f0

f1

f2

fmin

f4

αk 2αk αmin 4αk

α

• If f 2 > f 4 , this subroutine goes back to (b) after

setting α k = 2α k .

MING1

473

ϕ (α)
f0

f1

f2

f4

αk 2αk 4αk

α

(e) If f 0 ≤ f 1, the function value corresponding to point

kkkk pxx α
2
1)21(

1 +=+ is obtained and sets it as f 1/2 .

• If f 0 > f 1/2 and f 1/2 < f 1 , α min is interpolated by
using the quadratic interpolation based on these
three points.

α α α
min

/

= − ⋅ −
− +

k k f f
f f f2 4 2

1 0

0 1 2 1

 (4.10)

The search is terminated setting α min as α k and
function value f min is assumed to be the minimum
value.

ϕ (α)

f0

f1/2 fmin

f1

α
αkαmin1/2⋅αk

• If f 0 < f 1/2, this subroutine goes back to the
beginning of (e) after setting f 1 = f 1/2 and

kk αα
2
1= .

Thus, this subroutine terminates the linear search
based on α k . If function f (x) continues to
decrement at xk+1, that is, if

kkkk pgpg TT
1 <+ (4.11)

a new search direction pk+1 and α k+1 are determined
and the linear search is iterated.
If(4.11) is not satisfied, this subroutine goes the next
step in which approximate inverse matrix of a Hessian
matrix is improved.

− Convergence criterion
This subroutine terminates the iteration when the
iterative vector xk and xk+1 satisfy

() EPSR,0.1max1 ⋅=− ∞∞+ kkk xxx

The obtained xk+1 is assumed to be the minimum
point x*.

For further details, see Reference [35].

MSBV

474

A51-14-0101 MSBV, DMSBV

Multiplication of a real symmetric band matrix and a
real vector.
CALL MSBV (A, N, NH, X, Y, ICON)

Function
This subroutine performs multiplication of an n × n real
symmetric band matrix A with upper and lower band
widths h by a vector x

y = Ax (1.1)

where x and y are both n-dimensional vectors, and
n > h ≥ 0.

Parameters
A Input. Matrix A.

Matrix A is stored in one-dimensional array of
size n(h+1)−h(h+1)/2 in the compressed mode
for symmetric band matrices.

N Input. Order n of the matrix A.
(See Notes.)

NH Input. Upper and lower band widths h.
X Input. Vector x.

One-dimensional array of size n.
Y Output. Vector y. One-dimensional array of

size n.
ICON Output. Condition code.

See Table MSBV-1.

Table MSBV-1 Condition codes

Code Meaning Processing
0 No error

30000 N = 0, NH < 0 or NH ≥ |N| Bypassed

Comments on use
• Subprograms used

SSL II MGSSL
FORTRAN basic function IABS

• Notes
This subroutine mainly consists of the computation

y = Ax (3.1)

but it can be changed to another type of computation,

y = y' − Ax (3.2)

by specifying N = -n and giving an arbitrary vector y'
to the parameter Y.

In practice, this method can be used to compute a
residual vector of linear equations. (Refer to the

example shown below.)

r = b − Ax (3.3)

• Example
The linear equations with an n × n real positive-definite
symmetric band matrix

Ax = b (3.4)

is solved using subroutine LSBX and then the residual
vector b − Ax is compute with the resultant. n ≤ 100.

C **EXAMPLE**
 DIMENSION A(5050),X(100),
 * Y(100),W(5050)
 READ(5,500) N,NH
 IF(N.EQ.0) STOP
 NH1=NH+1
 NT=N*NH1-NH*NH1/2
 READ(5,510) (A(I),I=1,NT)
 READ(5,510) (X(I),I=1,N)
 WRITE(6,600) N,NH
 L=1
 LE=0
 DO 10 I=1,N
 LE=LE+MIN0(I,NH1)
 JS=MAX0(1,I-NH1)
 WRITE(6,610) I,JS,(A(J),J=L,LE)
 L=LE+1
 10 CONTINUE
 WRITE(6,620) (I,X(I),I=1,N)
 EPSZ=1.0E-6
 ISW=1
 DO 20 I=1,N
 Y(I)=X(I)
 20 CONTINUE
 DO 30 I=1,NT
 W(I)=A(I)
 30 CONTINUE
 CALL LSBX(A,N,NH,X,EPSZ,ISW,ICON)
 IF(ICON.GE.20000) GOTO 50
 WRITE(6,630) (I,X(I),I=1,N)
 CALL MSBV(W,-N,NH,X,Y,ICON)
 IF(ICON.NE.0) GOTO 50
 WRITE(6,640) (I,Y(I),I=1,N)
 DN=0.0
 DO 40 I=1,N
 DN=DN+Y(I)*Y(I)
 40 CONTINUE
 DN=SQRT(DN)
 WRITE(6,650) DN
 STOP
 50 WRITE(6,660) ICON
 STOP
 500 FORMAT(2I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1','COEFFICIENT MATRIX'
 */' ','N=',I5,3X,'NH=',I5)
 610 FORMAT(/5X,'(',I3,',',I3,')',4E17.8
 */(10X,4E17.8))
 620 FORMAT(/' ','CONSTANT VECTOR'
 */(5X,4('(',I3,')',E17.8,5X)))
 630 FORMAT(/' ','SOLUTION VECTOR'
 */(5X,4('(',I3,')',E17.8,5X)))
 640 FORMAT(/' ','RESIDUAL VECTOR'
 */(5X,4('(',I3,')',E17.8,5X)))
 650 FORMAT(/' ','NORM=',E17.8)
 660 FORMAT(/' ','ICON=',I5)
 END

MSBV

475

Method
The multiplication ()ijyY = of a matrix A by a vector X
is computed:

∑
=

==
n

j
jiji nixay

1

,...,1, (4.1)

where A is n × n real symmetric band matrix with lower
and upper band widths h and x is an n dimensional vector.
While, this subroutine computes the multiplication using
equation (4.2) instead of equation (4.1) by making use of
symmetric band matrix characteristics.

()

()
∑

+

−=

==
nhi

hij
iiji nixay

,min

,1max

,...,1, (4.2)

This subroutine increases the precision of the inner
products in equation (4.2) so that the effects of running
error are minimized.

MSGM

476

A-21-12-0401 MSGM, DMSGM

Multiplication of matrices (real symmetric by real
general)
CALL MSGM (A, B, KB, C, KC, N, VW, ICON)

Function
This subroutine performs multiplication of an n × n real
symmetric matrix A and an n × n real matrix B.

C AB=

where, C is an n × n real matrix n ≥ 1.

Parameters
A Input. Matrix A, in the compressed mode,

one-dimensional array of size n(n+1)/2.
B Input. Matrix B, two-dimensional array,

B(KB, N)
KB Input. The adjustable dimension of array B,

(≥ N).
C Output. Matrix C, two-dimensional array,

C(KC, N). (See “Comment on use”.)
KC Input. The adjustable dimension of array C,

(≥ N).
N Input. The order n of matrices A, B and C.
VW Work area. One-dimensional array of size n
ICON Output. Condition codes. See Table MSGM-1.

Table MSGM-1 Condition codes

Code Meaning Processing
0 No error

30000 N<1, KB<N or KC<N Bypassed

Comments on use
• Subprograms used

SSL II ... CSGM, MGGM, MGSSL
FORTRAN basic function ... None

• Notes
Saving the storage area:
If there is no need to keep the contents on the array A,
more storage area can be saved by using the
EQUIVALENCE statement as follows:

EQUIVALENCE (A(1), C(1.1))

Refer to the example shown in “Comments on use”

below.
• Example

The following shows an example of obtaining the
multiplication of a real symmetric matrix A by a real
matrix B, Here, n ≤ 100.

C **EXAMPLE**
 DIMENSION A(5050),B(100,100),
 *C(100,100),VW(100)
 EQUIVALENCE (A(1),C(1,1))
 CHARACTER*4 IA,IB,IC
 DATA IA/'A '/,IB/'B '/,IC/'C '/
 10 READ(5,100) N
 IF(N.EQ.0) STOP
 WRITE(6,150)
 NT=N*(N+1)/2
 READ(5,200) (A(I),I=1,NT)
 READ(5,200) ((B(I,J),J=1,N),I=1,N)
 CALL PSM(IA,1,A,N)
 CALL PGM(IB,1,B,100,N,N)
 CALL MSGM(A,B,100,C,100,N,VW,ICON)
 WRITE(6,250) ICON
 IF(ICON.NE.0) GOTO 10
 CALL PGM(IC,1,C,100,N,N)
 GOTO 10
 100 FORMAT(I5)
 200 FORMAT(4E15.7)
 150 FORMAT('1'///10X,
 *'** MATRIX MULTIPLICATION **')
 250 FORMAT(//10X,'** MSGM ICON=',I5)
 END

Subroutines PSM and PGM in the example are for
printing the real symmetric and real matrices. These
programs are shown in the example for subroutine
MGSM.

MSSM

477

A21-12-0301 MSSM, DMSSM

Multiplication of two matrices
(real symmetric by real symmetric)
CALL MSSM (A, B, C, KC, N, VW, ICON)

Function
The subroutine performs multiplication of two n × n real
symmetric matrices A and B.

C AB=

where, C is an n × n real matrix, n ≥ 1.
Parameters
A Input. Matrix A, in the compressed mode,

one-dimensional array of size n(n+1)/2.
B Input. Matrix B, in the compressed mode,

one-dimensional array of size n(n+1)/2.
C Output. Matrix C, two-dimensional array,

C(KC, N). (See “Notes”.)
KC Input. The adjustable dimension of array C,

(≥ N).
N Input. The order n of matrices A, B and C.
VW Work area. One-dimensional array of size n.
ICON Output. Condition codes. See Table MSSM-1.

Table MSSM-1 Condition codes

Code Meaning Processing
0 No error

30000 N<1 or KC<N Bypassed

Comments on use
• Subprograms used

SSL II ... CSGM, MGSM, and MGSSL.
FORTRAN basic function ... None

• Notes
Saving the storage area:
If there is no need to keep the contents on the array A,
more storage area can be saved by using the
EQUIVALENCE statement as follows:

EQUIVALENCE (A(1), C(1,1))

Refer to the example shown in “Comments on use”

below.

• Example
The following shows an example of obtaining the
multiplication real symmetric matrices A and B.
Here, n ≤ 100.

C **EXAMPLE**
 DIMENSION A(5050),B(5050),C(100,100),
 *VW(100)
 EQUIVALENCE (A(1),C(1,1))
 CHARACTER*4 IA,IB,IC
 DATA IA/'A '/,IB/'B '/,IC/'C '/
 10 READ(5,100) N
 IF(N.EQ.0) STOP
 WRITE(6,150)
 NT=N*(N+1)/2
 READ(5,200) (A(I),I=1,NT)
 READ(5,200) (B(I),I=1,NT)
 CALL MSSM(A,B,C,100,N,VW,ICON)
 IF(ICON.NE.0) GOTO 10
 CALL PSM(IA,1,A,N)
 CALL PSM(IB,1,B,N)
 CALL PGM(IC,1,C,100,N,N)
 GOTO 10
 100 FORMAT(I5)
 200 FORMAT(4E15.7)
 150 FORMAT('1'///10X,
 *'** MATRIX MULTIPLICATION **')
 END

The subroutines PSM and PGM in the example are for
printing the real symmetric and real matrices. These
programs are shown in the example for subroutine
MGSM.

MSV

478

A21-14-0101 MSV, DMSV

Multiplication of a real symmetric matrix and a real
vector.
CALL MSV (A, N, X, Y, ICON)

Function
This subroutine performs multiplication of an n × n real
symmetric matrix A and a vector x.

y = Ax (1.1)

where, x and y are n-dimensional vectors, n ≥ 1.

Parameters
A Input. Matrix A, in the compressed mode,

one-dimensional array of size n(n+1)/2.
N Input. The order n of matrix A.
X Input. Vector x, one-dimensional array of size

n.
Y Output. Multiplication y of matrix A and

vector x, one-dimensional array of size n.
ICON Output. Condition codes. See Table MSV-1.

Table MSV-1 Condition codes

Code Meaning Processing
0 No error

30000 N = 0 Bypassed

Comments on use
• Subprograms used

SSL II MGSSL
FORTRAN basic functionIABS.

• Notes
This subroutine mainly consists of the computation,

y = Ax (3.1)

but it can be changed to another type of computation,

y = y' − Ax (3.2)

by specifying N = – n and giving an arbitrary vector y' to
the parameter Y.
This method can be used to compute a residual vector of
linear equations such as

r = b − Ax (3.3)

Refer to the example in “Comments on use” below.
• Example

This example shows the program to solve a system of
linear equations (3.4) by subroutine LSX and to obtain
a residual vector b − Ax based on the solution. Where
n ≤ 100.

Ax = b (3.4)

C **EXAMPLE**
 DIMENSION A(5050),X(100),
 * Y(100),W(5050)
 READ(5,500) N
 IF(N.EQ.0) STOP
 NT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NT)
 READ(5,510) (X(I),I=1,N)
 WRITE(6,600) N
 L=1
 LE=0
 DO 10 I=1,N
 LE=LE+I
 WRITE(6,610) I,(A(J),J=L,LE)
 L=LE+1
 10 CONTINUE
 WRITE(6,620) (I,X(I),I=1,N)
 EPSZ=1.0E-6
 ISW=1
 DO 20 I=1,N
 Y(I)=X(I)
 20 CONTINUE
 DO 30 I=1,NT
 W(I)=A(I)
 30 CONTINUE
 CALL LSX(A,N,X,EPSZ,ISW,ICON)
 WRITE(6,630) (I,X(I),I=1,N)
 CALL MSV(W,-N,X,Y,ICON)
 IF (ICON.NE.0) GO TO 50
 WRITE(6,640) (I,Y(I),I=1,N)
 DN=0.0
 DO 40 I=1,N
 DN=DN+Y(I)*Y(I)
 40 CONTINUE
 DN=SQRT(DN)
 WRITE(6,650) DN
 50 WRITE(6,660) ICON
 STOP
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1','COEFFICIENT MATRIX'
 */' ','ORDER=',I5)
 610 FORMAT(/5X,'(',I3,')',4E17.8/
 *(10X,4E17.8))
 620 FORMAT(/' ','CONSTANT VECTOR'
 */(5X,4('(',I3,')',E17.8,5X)))
 630 FORMAT(/' ','SOLUTION VECTOR'
 */(5X,4('(',I3,')',E17.8,5X)))
 640 FORMAT(/' ','RESIDUAL VECTOR'
 */(5X,4('(',I3,')',E17.8,5X)))
 650 FORMAT(/' ','NORM=',E17.8)
 660 FORMAT(/' ','ICON=',I5)
 END

MSV

479

Method
This subroutine performs multiplication y = (yi) of an
 n × n real matrix A = (aij) and an n dimensional vector x
= (xj) through using the equation (4.1).

nixa
n

j
jiji ,...,1,

1

==∑
=

y (4.1)

In this subroutine, precision of the inner products in (4.1)
has been raised to minimize the effect of rounding errors.

NDF

480

I11-91-0101 NDF, DNDF

Normal distribution function)(xφ

CALL NDF (X, F, ICON)

Function
This subroutine computes the value of normal

distribution function dtex
x

t

∫
−

=
0

2

2

2
1)(
π

φ by the

relation.

() 22erf)(xx =φ (1.1)

Parameters
X Input. Independent variable x.
F Output. Function value)(xφ
ICON .. Output. Condition code

See Table NDF-1.

Table NDF-1 Condition code

Code Meaning Processing
0 No error

Comments on use
• Subprograms used

SSL II ...MGSSL
FORTRAN basic function ...ERF

• Notes

There is no restriction with respect to the range of
argument X.

Using the relationship between normal distribution
function)(xφ and complementary normal distribution
function)(xψ

)(2/1)(xx ψφ −= (3.1)

the value of)(xφ can be computed by using
subroutine NDFC. Note that in the range of x > 2 ,
however, this leads to less accurate and less efficient
computation than calling NDF.

• Example
The following example generates a table of)(xφ in
which x varies from 0.0 to 10.0 with increment 0.1.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,101
 X=FLOAT(K-1)/10.0
 CALL NDF(X,F,ICON)
 WRITE(6,610) X,F
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF NORMAL DISTRI',
 *'BUTION FUNCTION'//
 *6X,'X',7X,'NDF(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 END

Method
Normal distribution function:

dtex
x

t

∫
−

=
0

2

2

2
1)(
π

φ (4.1)

can be written with variable transformation ut =2
as

due

duex

x
u

x
u

∫

∫
−

−

=

=

2

2

0

0

2

2

2
2
1

2
2
1)(

π

π
φ

Therefore from duex
x u∫ −=

0

22)(erf
π

the following holds.

()2erf
2
1=)(xxφ (4.2)

This subroutine computes)(xφ from (4.2) by using
FORTRAN function ERF.

NDFC

481

I11-91-0201 NDFC, DNDFC

Complementary normal distribution function)(xψ

CALL NDFC (X, F, ICON)
Function
This subroutine computes the value of complementary
normal distribution function.

dtex
x

t

∫
∞ −

= 2

2

2
1)(
π

ψ

by the relation ship,

() 22erfc)(xx =ψ (1.1)

Parameters
X Input. Independent variable x.
F Output. Function value)(xψ
ICON .. Output. Condition code.

See Table NDFC-1.

Table NDFC-1 Condition code

Code Meaning Processing
0 No error

Comments on use
• Subprogram used

SSL II ... MGSSL
FORTRAN basic function ... ERFC

• Notes

There is no restrictions in the range of argument X.
Using the relationship between normal distribution

function)(xφ and complementary normal distribution
function)(xψ .

)(
2
1)(xx φψ −= (3.1)

the value of)(xψ can be computed by using subroutine
NDF. Note that in the range of x > 2 , however, this
leads to less accurate and less efficient computation that
calling NDFC.

• Example
The following example generates a table of)(xψ in
which x varies from 0.0 to 10.0 with increment 0.1.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,101
 X=FLOAT(K-1)/10.0
 CALL NDFC(X,F,ICON)
 WRITE(6,610) X,F
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF COMPLEMENTARY',
 *' NORMAL DISTRIBUTION FUNCTION'
 *//6X,'X',7X,'NDFC(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 END

Method
Complementary normal distribution function:

dtex
x

t

∫
∞ −

= 2

2

2
1)(
π

ψ (4.1)

can be written with variable transformation ut =2 , as

duex x
u 2

2
1)(

2

2

∫
∞ −=

π
ψ

duex
u∫

∞ −=
2

22
2
1

π

Therefore from duex
x

u∫
∞ −=

22)(erfc
π

 the following

holds.

()2 erfc
2
1)(xx =ψ (4.2)

This subroutine computes)(xψ from (4.2) by using
FORTRAN function ERFC.

NLPG1

482

D31-20-0101-NLPG1, DNLPG1

Nonlinear programming
(Powell’s method using function values and its
derivatives)
CALL NLPG1 (X, N, FUN, GRAD, FUNC, JAC,
M, EPSR, MAX, F, VW, K, IVW, ICON)

Function
Given an n-variable real function f (x), its derivative g(x), and initial vector x0, vector x* which minimizes
f (x) and the value of function f (x*) are obtained subject
to the constrains

ci(x) = 0, i = 1, 2,...,m1 (1.1)
ci(x) ≥ 0, i = m1+1, m1+2,..., m1+m2 (1.2)

The Jacobian J(x) of {ci(x)} is given as a function and
f (x) is assumed to have up to the second continuous
derivative.
Further, x = (x1, x2,...,xn)T and m1 and m2 are the number
of the equality and inequality constraints, where n ≥ 1,
m1 ≥ 0, m2 ≥ 0, and m ≥ 1 (m = m1 + m2) .

Parameters
X Input. Initial vector x0.

Output. Vector x*.
One-dimensional array of size n.

N Input. Number n of variables.
FUN Input. Name of function subprogram which

calculates f (x)
The form of subprogram is as follows:
FUNCTION FUN (X)
Parameters
X ... Input. Variable vector x.
 One-dimensional array of size n.
 Substitute the value of f (x) in function
 FUN.
(See “Example.”)

GRAD. Input. Name of subroutine subprogram which
calculates g(x).
The form of subprogram is as follows:
SUBROUTINE GRAD (X, G)
Parameters
X ... Input. Variable vector x.
 One-dimensional array of size n.
G ... Output. One-dimensional array of size n,
 where G(1) = 1xf ∂∂ ,..., G(N) =
 nxf ∂∂
(See “Example.”)

FUNC. Input. Name of subroutine subprogram which
calculates ci(x).
The form of subprogram is as follows:
SUBROUTINE FUNC (X, C)
Parameters

X ... Input. Variable vector x.
 One-dimensional array of size n.
C ... Output. One-dimensional array of size m,
 where C(1) = c1(x), ..., C(M(1)) =
 cm1

(x) , ..., C(M(1) + M(2)) = cm(x).
(See “Example.”)

JAC Input. Name of subroutine subprogram which
calculates J(x).
The form of subprogram is as follows:
SUBROUTINE JAC (X, CJ, K)
Parameters
X … Input. Variable vector x.

One-dimensional array of size n.
CJ ... Output. Jacobian matrix.

Two-dimensional array, CJ (K, N), where
CJ(I,J) = ji xc ∂∂

K ... Input. Adjustable dimension of array CJ.
(See “Example.”)

M Input. The number of constraints.
One-dimensional array of size 2, where M(1) =
m1 and M(2) = m2.

EPSR .. Input. Convergence criterion (≥ 0.0).
The default value is used if 0.0 is specified.
(See “Comments on Use.”)

MAX .. Input. The upper limit (≠0) of number of
evaluations for functions f (x), g(x), c(x), and
J(x).
(See “Comments on Use.”)
Output. The number (>0) of actual evaluations

F Output. The value of function f (x*)
VW Work area. VW is two-dimensional array,

VW(K, M(1)+M(2)+2×N+12).
K Input. Adjustable dimension

(≥ M(1)+M(2)+N+4) of array VW.
IVW Work area. One-dimensional array of size

2×(M(1)+M(2)+N+4).
ICON Output. Condition code.

(See Table NLPG1-1)

NLPG1

483

Table NLPG1-1 Condition codes

Code Meaning Processing
0 No error.

10000 The convergence condition
has not been satisfied within
the specified function
evaluation count.

The last values
obtained are
stored in X and
F.

20000 Local decrement of the
function was not satisfied
during the calculation. (See
“Method.”) The value of EPSR
is too small.

Bypassed. (The
last values
obtained are
stored in X and
F.)

21000 There may not be a solution
that satisfies the constraints,
or the initial value x0, is not
appropriate. Retry with a
different initial value x0.

Bypassed.

30000 N < 1, EPSR < 0.0, M(1) < 0,
M(2) <0, K < M (1) + M(2) +
N + 4, MAX = 0.

Bypassed.

Comments on use
• Subprograms used

SSL II ... AMACH, UQP, UNLPG, MGSSL
FORTRAN basic functions ... ABS, AMAX1,

• Notes

An EXTERNAL statement is necessary to declare the
subprogram names correspond to parameters FUN,
GRAD, FUNC and JAC in the calling program.

EPSR
In this subroutine, the convergence condition is
checked as follows: During iteration, if

() EPSR,0.1max1 ⋅≤− ∞∞+ kkk xxx

is satisfied, point xk+1 is assumed to be minimum point
x* and iteration is stopped.

Since f (x) is assumed to be approximately a
quadratic function in the vicinity of point x*, it is
appropriate to specify EPSR as EPSR ≈ u , where u
is the unit round off to obtain the value of function f(x*)
as accurate as the rounding error. The default value of
EPSR is 2 u

MAX
The number of function evaluation is incremented by
one every time f (x) is evaluated, by n every time g(x) is evaluated, by m every time c(x) is evaluated, and by
mn every time J(x) is evaluated.
The number depends on characteristics of the functions,
initial vector, and convergence criterion.
Generally, when an appropriate initial vector is
specified and the default value is used for the
convergence criterion, it is adequate to specify MAX =
800･mn.

Even if the convergence condition is not satisfied
within the specified evaluation count and the
subroutine is returned with ICON = 10000, iteration
can be resumed by calling this subroutine again. In this
case, the user must specify a negative value as the
additional evaluation count in the parameter MAX and
retain other parameters unchanged.

• Example

Given the following 2-variable real function

() 21
2
221

2
121 1022, xxxxxxxxf +−+−=

the vector which minimizes function and the value of
f (x*) are obtained subject to the following constraints:

() 025.15.0, 2
2

2
1211 =−+= xxxxc

() 0, 21211 ≥+−= xxxxc

where the initial vector is x0 = (−2, 2)T

C **EXAMPLE**
 DIMENSION X(2),M(2),VW(8,18),
 * IVW(16)
 EXTERNAL TEST,GRAD,TESTC,JAC
 X(1)=-2.0
 X(2)=2.0
 N=2
 M(1)=1
 M(2)=1
 EPSR=1.0E-3
 MAX=800*2*2
 K=8
 CALL NLPG1(X,N,TEST,GRAD,TESTC,
 * JAC,M,EPSR,MAX,F,VW,K,IVW,ICON)
 WRITE(6,600) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,610) F,MAX
 WRITE(6,620) (I,X(I),I=1,N)
 STOP
 600 FORMAT('1','*ICON=',I5)
 610 FORMAT(' ','*F=',E15.7,1X,'MAX=',I5)
 620 FORMAT('0',(/2X,'X(',I2,')=',E15.7))
 END
C OBJECTIVE FUNCTION
 FUNCTION TEST(X)
 DIMENSION X(2)
 TEST=(X(1)-2.0*X(2)-10.0)*X(1)+
 * (2.0*X(2)+1.0)*X(2)
 RETURN
 END
C DERIVATIVE
 SUBROUTINE GRAD(X,G)
 DIMENSION X(2),G(2)
 G(1)=2.0*X(1)-2.0*X(2)-10.0
 G(2)=-2.0*X(1)+4.0*X(2)+1.0
 RETURN
 END
C CONSTRANTS
 SUBROUTINE TESTC(X,C)
 DIMENSION X(2),C(2)
 C(1)=0.5*X(1)*X(1)+1.5*X(2)*X(2)-2.0
 C(2)=-X(1)+X(2)
 RETURN
 END

NLPG1

484

C JACOBIAN
 SUBROUTINE JAC(X,CJ,K)
 DIMENSION X(2),CJ(K,2)
 CJ(1,1)=X(1)
 CJ(2,1)=-1.0
 CJ(1,2)=3.0*X(2)
 CJ(2,2)=1.0
 RETURN
 END

Method
This subroutine solves a nonlinear programming problem
given as

() minimize→xf (4.1)

subject to the constraints

ci(x) = 0 , i = 1, 2, ...,m1 (4.2)
(equality constraints)
ci(x) ≥ 0 , i = m1+1,...,m1+m2 (4.3)
(inequality constraints)

using Powell’s variable metric method. Let us introduce
the following symbols for simplicity:
M1 Set (1,2,...,m1) of subscripts of the equality

constraints. (This may be an empty set.)
M2 Set (m1+1,...,m1+m2) of subscripts of the

inequality constraints. (This may be and
empty set.)

M Set (1, 2,...,m1+m2) of subscripts of constraints.
(This must not be an empty set.)

g Gradient vector of f
ic∇ .. Gradient vector of ci.

Let us explain outline of the algorithm for the problem

by comparing with that for unconstrained minimization
problem.

The revised quasi-Newton method, that is, the variable
metric method to minimize the objective function f(x)
without constraints such as (4.2) and (4.3), is described
as follows. Function f(x) can be approximated by
quadratic function at an arbitrary point xk, in the region
of the minimum point as follows:

() () () Byyxgyxx kk
TT

2
1+≈ ff (4.4)

where

y = x − xk (4.5)

B is the Hessian matrix of f (x) for xk. The value of y
that minimizes function (4.4) is computed and the
solution is defined as yk. Then, the linear search is a
applied to obtain the value of a that satisfies

()kkf yx α
α

+min (4.6)

this value is defined as α k Substituting this value α k ,
in expression

kkkk yxx α+=+1 (4.7)

the better approximation xk+1 is obtained.
On such process, Hessian matrix B is not calculated
directly but is approximated using vectors g(xk+1) − g(xk)
and α k yk during iteration.

On the other hand, for the minimization with
constraints such as (4.2) and (4.3), the value of y is
obtained under the constraints. For (4.2), the condition
of the linear approximation.

1
T ,0)()()(Miccc kikii ∈=+= xyxx ∇ (4.8)

is imposed, whereas for (4.3), the condition

2
T ,0)()()(Miccc kikii ∈≥+= xyxx ∇ (4.9)

is imposed.
It is therefore necessary to obtain the value y that

minimizes (4.4) satisfying the conditions of (4.8) and
(4.9) in order to solve the nonlinear programming
problem given by (4.1), (4.2), and (4.3). This is a
quadratic programming problem with respect to y.
Concerning the linear search, the penalty function

() () ()[]xcxx PfW += (4.10)

should be applied instead of (4.6), namely the value of α
that minimizes W(x) is obtained. Where the function
P[c(x)] takes zero if all constraints are satisfied;
otherwise, it takes a positive value. This will be
explained precisely later. Further, information about not
only f (x) but also c(x) are incorporated to update
approximation matrix Bk of the Hessian matrix.
 If only the equality constraint is imposed, the following
must be satisfied at the minimum point:

() () 0
1

=− ∑
∈ Mi

ii c xxg ∇λ (4.11)

where λ i , is the Lagrange multiplier.
To solve (4.11) which is a simultaneous nonlinear equations
of order n+m1, the second partial derivatives of

() () ()∑
∈

−=
1

,
Mi

iicf xxx λλφ (4.12)

are necessary. This means that (4.11) cannot be solved
with only the partial derivatives of f (x).
Updating of Bk is therefore performed based on the
matrix of rank 2 obtained from vectors αkyk and

NLPG1

485

() ()λλλλλλλλγγγγ ,,1 kxkxk xx φ∇φ∇ −= + (4.13)

Where φ∇ x is the gradient vector of φ with respect to
x. If the problem has nonlinear equality constraints, the
exact linear search for W(x) causes extreme slow step
size of xk, as a result, it does not converge to the actual
minimum point in some cases; therefore, a watchdog
should be introduced to watch behavior of solution xk.

Explanations about calculation procedures of this
subroutine are given in the next subsection, where the
functions are used which are defined as follows:

• Penalty function

() () ()

()()∑

∑

∈

∈

+

+=

2

1

,0min

W

Mi
ii

Mi
ii

c

cf

x

xxx

µ

µ

 (4.14)

The function increases effect of the penalty term as the
point x takes out of the constraints. Coefficient µi is
determined according to the method explained later.

• Linear approximation of the penalty function this is
defined as linear approximation at an arbitrary point xk,
in the region of the minimum point

() () () ()
() () ()

() () ()()∑

∑

∈

∈

−++

−++

−+=

2

1

T

T

T

,0min
Mi

kikkii

Mi
kikkii

kkkk

cc

cc

fW

xxxx

xxxx

xgxxxx

∇µ

∇µ

 (4.15)

Lagrangian function

() () ()∑
∈

−=
1Mi

iik cfL xxx λ (4.16)

where λ i is the Lagrange multiplier determined from xk,
as explained later.

Calculation procedures
Step 1 (initial value setting)
1) Sets the following values:

k = 0 (iteration count)
H0 = In
l = 0 (watchdog location)
lt = 5 (interval to check watchdog location)

25.0=θ

ε =
≠

EPSR, EPSR 0 (conversion judg -

2 EPSR = 0 ment criterion)u ,

Step 2 (quadratic programming problem)

2) Solves the quadratic programming problem QPk with
respect to y as follows:

()

() ()
() ()

∈≥+

∈=+

→+

2
T

1
T

TT

,0

,0

sconstrainttoSubject

Minimize
2
1

Micc

Micc

kiki

kiki

kk

xxy

xxy

xgyyBy

∇

∇
 (4.17)

3) When there is an optimal solution yk for QPk, if

() ε⋅< ∞∞ kk xy ,0.1max (4.18)

is satisfied, where xk, is a feasible point, assumes xk to
be x* and f (xk) to be f (x*), and sets ICON = 0, then
stops processing; otherwise, the linear search for W(x)
is performed to obtain

kkk yxx ∗
+ += α1 (4.19)

in the yk direction.
If ky*α is small enough to be considered as

convergence and if xk is a feasible point, ICON =
20000 is set and processing is stopped. This is
because the convergence criterion ε is too small, but
the point can be considered to be the minimum point.
If xk is not a feasible point, ICON = 21000 is set and
processing is stopped.
If ky*α is large, proceeds to step 3.

4) When there is no feasible solution for QPk: The
problem is modified to the following quadratic
programming problem:

QPk:

()

() ()
() ()

()
()

<
>

=

≤≤

∈≥+

∈=+

→−+

,0,z
,0,1

z

,1z0
where,

,0z

,0z

sconstraint Subject to

Minimize
2
1

2
T

1
T

TT

ki

ki
i

ikiki

kiki

kk

c
c

Micc

Micc

zB

x
x

xxy

xxy

xgyyy

∇

∇

β
 (4.20)

β is a sufficiently large positive value
Denotes the optimal solution as yk and z .

If z < ε and if xk is a feasible point assumes xk to
be x* and f (xk) to be f (x*) and sets ICON =0, then
stops processing.
If z < ε and if xk is not a feasible point, there is no
feasible solution for the nolinear programming
problem given as (4.1), (4.2), and (4.3) (constraints
conflict with each other), or the initial value x0 is
not appropriate, thus ICON = 21000 is set and
processing is stopped.

NLPG1

486

If z ≥ ε and if

() ε⋅< ∞∞ kk xy ,0.1max (4.21)

is satisfied, and if xk is a feasible point; assumes xk to
be x* and f (xk) to be f (x*), and sets ICON = 0, then
stops processing. If (4.21) is not satisfied, proceeds to
step 3.

Step 3 (watchdog processing)
5) Assume k = k + 1

Checks behavior of solution xk to judge whether the
step size of xk is appropriate.
If

() () () ()()1+−−≤ llllk WWWW xxxx θ (4.22)

is satisfied, proceeds to step 5.
Step 4(watchdog and Bk updating)
6) If

() ()lk WW xx ≤

is satisfied, assumes l = k and xl = xk.
7) If the value of k is a multiple of lt, assumes xk = xl and

l =k.
8) Updates Bk as follows. Using

()

() ()()

−−

−=
=−=

∑
∈

−

−

−−

Mi
kikii

kk

kkk

cc 1

1

1
*

1

xx

gg
yxx

∇∇λ

α
γγγγ
δδδδ

 (4.23)

determines

<
−

≥
=

−
−

−

−

δδδδδδδδγγγγδδδδ
γγγγδδδδδδδδδδδδ

δδδδδδδδ
δδδδδδδδγγγγδδδδ

1
TT

T
1

T
1

T
1

TT

2.0,8.0

2.0,1

k
k

k

k

B
B

B
B

ξ (4.24)

with the value obtained as ξ , calculates ηηηη as
follows:

δδδδγγγγηηηη 1)1(−−+= kBξξ (4.25)

Substituting these values in (4.26), Bk is obtained
from

ηηηηδδδδ
ηηηηηηηη

δδδδδδδδ
δδδδδδδδ

T

T

1
T

1
T

1
1 +=

−

−−
−

k

kk
kk B

BBBB (4.26)

Then, returns to step 2.
Step 5 (modification of step size)
9) Checks the value of α* obtained at 3) as follows:

Obtains x that satisfies the following in the yk
direction:

≥

≤

−

−

)()(
or

)()(

1

1

k

k

LL

WW

xx

xx
 (4.27)

If there is no x that satisfies (4.27), returns to step 4.
If there is an x that satisfies (4.27),

xk+1 = xk + ~α yk is assumed.
If *=αα~ , returns to step 4; otherwise returns to step 3.

Notes on algorithm
1) Determination of λi

Determines λi , from solutions of QPk using the
Lagrange multiplier for the constraints.

2) Determination of µi
3) The initial value is specified as µi=2|λi|, then µi=2|λi|

is set for µi , that satisfies µi<1.5|λi| (the current value
is used for λi) thereafter.

(See references [94] and [95] for details.)

NOLBR

487

C24-11-0101 NOLBR, DNOLBR

Solution of a system of nonlinear equations (Brent’s
Method)
CALL NOLBR (X, N, FUN, EPSZ, EPST, FC,
M, FNOR, VW, ICON)

Function
This subroutine solves a system of nonlinear equations
(1.1) by Brent’s method.

()
()

() ⎪
⎪
⎭

⎪
⎪
⎬

⎫

=

=
=

0,...,,
:

0,...,,
0,...,,

21

212

211

nn

n

n

xxxf

xxxf
xxxf

 (1.1)

That is, let f (x) = (f1(x), f2(x),..., fn(x))T and x = (x1,
x2, ..., xn)T, then eq. (1.2) is solved from the initial value
x0.

f (x) = 0 (1.2)

where 0 is an n-order zero vector.
Parameters
X Input. An initial vector x0 to solve equation

(1.2).
Output. Solution vector. One dimensional
array of size n.

N Input. Dimension n of the system.
FUN Input. The name of the function subprogram

which evaluates the function fk(x). FUN must
be declared as EXTERNAL in the program
from which this subroutine is called. Its
specification is:
FUNCTION FUN (X, K)
Parameters
X Input. Vector variable, x One

dimensional array of size n.
K Input. An integer such that fk(x) is

evaluated (1 ≤ K ≤ n). (See example)
EPSZ Input. The tolerance (≥ 0.0). The search for a

solution vector is terminated when
()f xi ∞

≤ EPSZ (Refer to notes)

EPST Input. The tolerance (≥ 0.0). The iteration is
considered to have converged when

∞∞− ⋅≤− iii xxx EPST1 (Refer to notes)

FC Input. A value to indicate the range of search
for the solution vector (≥ 0.0).
The search for a solution vector is terminated
when ()x xi ∞ ∞

> ⋅FC max 0 10, . (Refer to

notes)
M Input. The upper limit of iterations (> 0) (See

notes)

Output. The number of iterations executed.
FNOR … Output. The value of ()

∞ixf for the

solution vector obtained.
VW Work area. One dimensional array of size

n (n + 3)
ICON Output. Condition codes. See table NOLBR-1.

Table NOLBR-1 Condition codes

Code Meaning Processing
 1 Convergence criterion

()f x Ei ≤ PSZ was satisfied.
Normal

 2 Convergence criterion

∞∞− ⋅≤− iii xxx EPST1 was

satisfied.

Normal

 10000 The specified convergence
conditions were not satisfied
during the given number of
iterations.

The last xi is
returned in X.

 20000 A solution vector was not
found within the search
range (See parameter FC.).

Bypassed.

 25000 The Jacobian of f(x) reduced
to 0 during iterations.

The last xi is
returned in X.

 30000 N≤0, EPSZ<0, EPST<0,
FC≤0, or M≤0

Bypassed

Comments on use
• Subprogram used

SSL II ... AMACH and MGSSSL
FORTRAN basic functions ... ABS, AMAX1, SIGN,
SQRT

• Notes

ZFUN must be declared as EXTERNAL in the
program from which this subroutine is called.

Setting of EPSZ and EPST
Two convergence criteria are used in this subroutine.
When either of two is met, the iteration terminates. If
the user wishes to cancel one of the criteria, he has
only to set the corresponding tolerance equal to 0.0.
That is, when:
a) ()EPSZ and EPST = 0.= >ε A 0

Unless x xi i− =− ∞1 0 is satisfied, the iteration is

repeated until () Aif ε≤
∞

x is satisfied, or until M

times iterations have been completed.
b) ()EPSZ = 0 and EPST = εB > 0

Unless ()f xi ∞
= 0 is satisfied, the iteration is

repeated until
∞∞− ≤− iBii xxx ε1 is satisfied

until M times iteration have been completed.
c) EPSZ = 0 and EPST = 0

Unless ()f x x xi i i∞ − ∞
= − =0 01 or , the

iteration is repeated M times. This setting c) is
useful for executing M times-iterations.

NOLBR

488

[The meaning of FC]
Sometimes a solution vector cannot be found in the
neighbourhood of the initial vector x0. When this
happens, xi diverges from x0, as a result, numerical
difficulties such as overflows may occur in evaluating
f (x). Parameter FC is set to make sure that these
anomalies may not occur by limiting the range of search
for solution. Standard value of FC is around 100.0.
[Setting of M]
The number of iterations needed for convergence to the
solution vector depends on the nature of the equations
and the magnitude of tolerances. When an initial vector
is improperly set or the tolerances are too narrowly set,
parameter M should be set to a large number. As a rule
of thumb, M is set to around 50 for n = 10.
 Single precision/double precision setting
Usually, double precision subroutine can often solve
those nonlinear equation. While single precision
subroutine may fail.

• Example

Non-linear simultaneous equations with two unknowns

()
()

x x

x x
1 2

2

1 2
3

1 2 25

1 2 625

⋅ − =

⋅ − =

.

.

are solved with initial vector x0 = (5.0, 0.8)T
The solutions are x = (3.0, 0.5)T and x = (81/32,−1/3)T

C **EXAMPLE**
 DIMENSION X(2),VW(10)
 EXTERNAL FUN
 X(1)=5.0
 X(2)=0.8
 N=2
 EPSZ=1.0E-5
 EPST=0.0
 FC=100.0
 M=20
 CALL NOLBR(X,N,FUN,EPSZ,EPST,FC,
 * M,FNOR,VW,ICON)
 WRITE(6,600) ICON,M,FNOR,(I,X(I),
 * I=1,N)
 STOP
 600 FORMAT(' ','ICON=',I5/' ','M=',I5/
 * ' ','FNOR=',E15.7/
 * (' ','X(',I2,')=',E15.7))
 END

 FUNCTION FUN(X,K)
 DIMENSION X(2)
 GO TO(10,20),K
 10 FUN=X(1)*(1.0-X(2)**2)-2.25
 RETURN
 20 FUN=X(1)*(1.0-X(2)**3)-2.625
 RETURN
 END

Method
A system of non-linear equations

f (x) = 0 (4.1)

is solved by Brent’s method in this subroutine. At a
typical step, starting from y1 = xi-1, a set of intermediate
approximations y2, y3, ... yn, yn+1 are calculated and yn+1 is
taken as xi which can be considered as better
approximation than xi-1. Each of yk+1 (1 ≤ k ≤ n) is
selected in the way that the Taylor expansion of fi(y) up
to the first order term at yi should be zero.

() () ()

j
n

jj
j

jjjjj

ff

kjff

yxxx
g

yygyy

=

=

=−+≈

∂
∂

∂
∂

,...,

 where,

,...,2,1,

1

T

T

 (4.2)

• Procedure of Brent’s method
The procedure to obtain xi from xi–1 is discussed here.
Assume that an orthogonal matrix Q1 is given (Q1 = I
when x1 is to be obtained from x0)
(a) First step

Let y1 = xi–1 and expand f1(y) at y1 in Taylor’s series
and approximate it by taking up to the first order
term.

() () ()1
T
1111 yygyy −+≈ ff (4.3)

The first step is to obtain y which satisfies the equation

() () 01
T
111 =−+ yygyf

and to let it be y2.
This is performed according to the following procedure.
Let T

11
T
1 wQg = then an orthogonal matrix.

P1, is obtained by Householder method to satisfy the
following condition

()0,...,0,1,, T
1211

T
111

T
1 =±== ewePw αα

where one of the double sign is selected to be equal to
that of the first element of T

1w . The, y2 is calculated as
follows;

()
11212

1

11
12 , Pf QQeQyyy =−=

α
 (4.4)

(b) Second step
:
:

(c) k-th step
Again using Taylor’s series of ()f k y at yk:

NOLBR

489

() () ()kkkkk ff yygyy −+≈ T (4.5)

From the row vector kk QgT , we obtain vector T
kw by

replacing the first(k-1) elements in kk QgT with zeros

)*,*,...,*(0,...,0,T

1

=

−

k

k

w

Next, we obtain an orthogonal matrix Pk by Householder
method to satisfy the following condition.

)0,...,0,1(0,...,0,

,,

T

1
2

TT

=

±==
−

k

k

kkkkkk

e

wePw αα

Here, the double sign is selected to be the same sign as
the k-th element in T

kw . The matrix Pk has the form:

−

=

k

k

k

P

P

ˆ0

10
0

01

1

Then yk+1 is calculated as follows.

()
kkkkk

k

kk
kk

f PQQeQyyy =−= +++ 111 ,
α

 (4.6)

It can be shown that yk+1, according to (4.6), satisfies
the conditions (4.7)

() ()
() ()

() ()

=−+

=−+

=−+

+

+

+

0

:
0

0

1
T

21
T
222

11
T
111

kkkkk

k

k

f

f

f

yygy

yygy

yygy

 (4.7)

Letting yn+1, which is obtained at n-th step (k= n), be xi,
if xi satisfies the convergence criterion, the iteration
terminates and xi is taken as the solution vector.

If not, the above steps are repeated from the first step
with the next starting value of iteration vector y1 = xi and
Q1 = Qn+1.

• Considerations on Algorithm
(a) Approximation of partial derivatives

In calculating wk, the j-th element (k≤j≤n) of wk is

jkk eQgT . This is equal to the derivative of fk at yk

along the direction indicated by Qkej (the j-th
column of Qk). This subroutine approximates this
derivative by the divided difference as follows:

() ()

() ()

−+

−+

−

≈

kkkkikk

kkkkikki
k

fhf

fhf

k

h

yeQy

yeQy
w

:

0
:
0

1
1 (4.8)

uh ii ⋅= ∞−1 where x (4.9)
and u is the round-off unit.

(b) When α k = 0
In the k-th step above, if

α k = 0 (4.10)

it is impossible to calculate yk+1. In this case, the
subroutine automatically sets yk+1 = yk. This means that yk
will not be modified at all. If, further

nkk ,...,2,1,0 ==α (4.11)

then, y1 (= xi–1) will never be modified during the steps.
This can happen when the Jacobian of f(x).

J f
x

i

j

=

∂
∂

 (4.12)

is nearly singular. In this case, processing fails with
ICON = 25000. The condition in (4.10) is determined by
testing if the following condition is satisfied.

() () ()
nkkj

fufhf kkkkjkikk

,...,1,, +=

⋅≤−+ ∞∞
yyeQy

 (4.13)

Further details should be referred to Reference [33].

NOLF1

490

D15-10-0101 NOLF1, DNOLF1
Minimization of the sum of squares of functions.
(Revised Marquardt method, using function values
only)
CALL NOLF1 (X, N, FUN, M, EPSR, MAX, F,
SUMS, VW, K, ICON)

Function
Given m real functions () () ()xxx mfff ,...,, 21 of n
variables and initial vector x0, this subroutine obtains
vector x* which gives a local minimum of

() (){ }∑
=

=
m

i
ifF

1

2xx (1.1)

and its function value F(x*) by using the revised
Marquardt method (Levenberg-Marquardt-Morrison
method (LMM method)). This subroutine does not
require derivative of F(x). However, the fi(x) is assumed
to have up to the first continuous partial derivative, and m
≥ n ≥ 1.

Parameters
X Input. Initial vector x0.

Output. Vector x*.
One-dimensional array of size n.

N Input. Number of variables n.
FUN Input. Name of subroutine subprogram which

calculates fi(x).
The form of subprogram is as follows:
SUBROUTINE FUN (X, Y)
where,
X Input. Variable vector x.

One-dimensional array of size n.
Y Output. Function value fi(x)

corresponding to variable vector x.
One-dimensional array of size m, with
correspondence,

F(1)= f1(x),...,F(M)= fm(x)

M Input. Number of functions m.
EPSR .. Input. Convergence criterion (≥ 0.0).

When EPSR = 0.0 is specified, a default value
is used. (See Notes.)

MAX ... Input. The upper limit (≠0) of the number of
evaluations of function (See Notes.)
Output. Number of evaluation actually
performed (> 0).

F Output. Function value fi(x*)
One-dimensional array of size m, with
correspondence,

F(1)= f1(x*),...,F(M)= fm(x*)

SUMS .. Output. Value of the sum of squares F(x*)
VW Work area. Two-dimensional array, VW

(K, N + 2).
K Input. Adjustable dimension (≥ m + n) of array

VW.

ICON Output. Condition code.
See Table NOLF1-1.

Table NOLF1-1 Condition codes

Code Meaning Processing
0 No error

10000 The convergence condition
was not satisfied within the
specified number of
evaluations.

The last value
is stored in
parameters X,
F and SUMS.

20000 During computation,
Marquardt number vk
exceeded the upper limit
(See (4.14) in Method).
EPSR was too small or the
error of difference
approximation of a Jacobian
matrix exceeded the limit of
computation.

Discontinued
(The last value
is stored
parameters X,
F and SUMS.)

30000 N < 1, M < N, EPSR < 0.0,
MAX = 0 or K< m+n

Bypassed

Comments on use
• Subprograms used

SSL II ... AMACH, MGSSL
FORTRAN basic functions ... ABS, SQRT, FLOAT

• Notes

The program which calls this subroutine must have an
EXTERNAL statement for the subprogram name that
correspondents to the argument FUN.
[Giving EPSR]
This subroutine assumes that F(x) is approximately
quadratic in the region of the local minimum point x*.
To obtain F(x*) as accurate as the unit round off, EPSR
should be given as EPSR ≈ u when u is the unit
round-off. The default value is 2 ⋅ u
[Giving MAX]
The number of evaluations of a function is counted by
the number of computation of fi(x) for a variable
vector x, i = 1, ..., m. This corresponds to the number
of callings of subprogram FUN.

The number of evaluations of a function depends on
characteristics of equation { fi(x)} in addition to the
initial vector and a convergence criterion.

Generally, if the default values is used as the
convergence criterion, and a good initial vector is used,
MAX = 100･n･m is appropriate.

If the convergence condition is not satisfied within
the specified number of evaluations and the subroutine
is returned with ICON = 10000, the iteration can be
continued by calling the subroutine again. In this case,
parameter MAX is specified with a negative

NOLF1

491

value for an additional evaluation number and the
contents of other parameters must be kept intact.

• Example
The minimum point x* for

() () ()21
2

221
2

121, ,xxf,xxfxxF +=

where

()
() ()2

12212

1211

10,

1,

xxxxf

xxxf

−=

−=

is obtained with the initial vector x0 = (– 1.2, 1.0)T.

C **EXAMPLE**
 DIMENSION X(2),F(2),VW(4,4)
 EXTERNAL ROSEN
 X(1)=-1.2
 X(2)=1.0
 N=2
 M=2
 EPSR=1.0E-3
 MAX=100*2*2
 CALL NOLF1(X,N,ROSEN,M,EPSR,MAX,
 * F,SUMS,VW,4,ICON)
 WRITE(6,600) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,610) SUMS,MAX
 WRITE(6,620) (I,X(I),I=1,N)
 WRITE(6,630) (I,F(I),I=1,M)
 STOP
 600 FORMAT('1','*ICON=',I5)
 610 FORMAT(' ',' SUM OF SQUARES= ',
 *E15.7,' MAX= ',I5/)
 620 FORMAT(1X,' X(',I2,')=',E15.7)
 630 FORMAT(1X,' F(',I2,')=',E15.7)
 END
C OBJECTIVE FUNCTION
 SUBROUTINE ROSEN (X,Y)
 DIMENSION X(2),Y(2)
 Y(1)=1.0-X(1)
 Y(2)=(X(2)-X(1)*X(1))*10.0
 RETURN
 END

Method
This subroutine obtains vector x* which gives a local
minimum of

() () () ()

(){ }∑
=

=

==
m

i

i

T

f

F

1

2

2

 x

xfxfxfx

 (4.1)

and function value F(x*) corresponding to m real
functions () () ()xxx mfff ,...,, 21 of n variables.
Where,

() () () ()()
()T

21

T
21

,...,,

,...,,

n

m

xxx

fff

=

=

x

xxxxf
 (4.2)

This subroutine solves this problem by using the LMM
method. The Levenberg-Marquardt method, the Newton-
Gauss method and the steepest descent method are
explained below.

Suppose that the approximate vector xk of vector x*
which gives a local minimum is obtained and following
relation is satisfied.

kk xxx ∆+=* (4.3)

 f (x) is expanded up to the first order in the region of xk
by using the Taylor series which results in (4.4).

() () () kkkkk xxJxfxxf ∆∆ +=+ (4.4)

where J(xk) is a Jacobian matrix of f (x) shown in (4.5)

()

k
n

mm

n

k

x
f

x
f

x
f

x
f

xx

xJ

=

∂
∂

∂
∂

∂
∂

∂
∂

..........
 : :
 : :

..........

1

1

1

1

 (4.5)

J(xk) is subsequently expressed as Jk.
From (4.4), the value of ()kkF xx ∆+ can be
approximated by (4.6) if ()kF x is sufficiently small.

()
() ()
() () ()

kkkk

kkkkk

kkkk

kk

xJJx

xJxfxfxf

xxfxxf

xxF

∆∆

∆

∆∆

∆

TT

TT

T

2

+

+≈

++=

+

 (4.6)

The value of kx∆ which minimizes this value is given as
the solution of the system of linear equations (4.7)
obtained when the right side of (4.6) is differentiated for

kx∆ .

()kkkkk xfJxJJ TT −=∆ (4.7)

(4.7) is called a normal equations.
In the Newton-Gauss method, kx∆ is used for iterations
as

kkk xxx ∆+=+1

In this method, kx∆ denotes the descent direction of F(x),
but kx∆ may diverge itself.
On the other hand, the gradient vector ()kF x∇ of F(x) at
xk can be given by

() ()kkkF xfJx T2=∇ (4.8)

NOLF1

492

()kF x∇− is the direction of the steepest descent of F(x)
at xk. In the steepest descent method, kx∆ is used as

()kk xFx ∇∆ −= (4.9)

Although kx∆ in (4.9) surely guarantees a decrement of
F(x), it is noted that if iteration is repeated, F(x) starts to
zigzag, as many computational practices have been
reported.

Therefore, to decrease these demerits, Levenberg,
Marquardt and Morrison proposed to determine kx∆ by
the following equations:

{ } ()kkkkkk v xfJxIJJ T2T −=+ ∆ (4.10)

where, vk is a positive value (called the Marquardt
number). kx∆ which is determined by (4.10) depends on
the value of vk. As vk → 0 , the direction of kx∆ is that
of the Newton-Gauss method. On the other hand, the

kx∆ decreases monotonically in proportion as vk
increases from 0, and the angle between kx∆ and the

steepest descent direction ()kk xfJ T− decreases
monotonically along with the increment of vk. As
vk → ∞ , the direction of kx∆ is that of the steepest
descent method.

The characteristics of the Levenberg-Marquardt
method is to determine the value of vk adaptively during
iteration and to minimize F(x) efficiently.
• LMM method

In the method by (4.10), normal equations are
explicitly constructed, so it is not numerically stable.
Equation (4.10) is equivalent to the least squares
problem corresponding to the following:

()

−=

O
xf

x
I

J k
k

k

k ∆
v

 (4.11)

That is, the minimization of sum of squares of residual in
(4.11) can be expressed by (4.10).
 In the LMM method, the normal equations are not
explicitly constructed. The LMM method obtains kx∆
by the least squares method applying the orthogonal
transformation which is numerically stable, to (4.11).
 This subroutine obtains x∆ by (4.11), and then

kkk xxx ∆+=+1

and iterates to satisfy

F(xk+1) < F(xk)

to obtain minimum point x*.

• Computational procedures in this subroutine
1) Initialization

Set Marquardt number v0.
Obtains ()f x0 and F(x0).
Set k = 0

2) Obtain Jk by difference approximation.
3) Solve (4.11) by the least squares method to obtain

kx∆
Let kkk xxx ∆+=+1 and obtain

f(xk+1), F(xk+1)

4) Test whether or not F(xk+1) < F(xk) is satisfied.
When satisfied, go to step 8).

5) Convergence criterion
When the convergence condition is satisfied, the
subroutine terminates processing with ICON = 0
assuming xk to be minimum point x*.

6) Increase the Marquardt value, that is, let

vk = 1.5 vk

7) Test the upper limit of the Marquardt number by

vk ≤ 1/u, where u is the unit round off. (4.14)

When (4.14) is satisfied, go to step 3) and continue
iteration. When not satisfied, this subroutine
terminates processing with ICON = 20000.

8) Convergence criterion
When the convergence condition is satisfied, this
subroutine terminates processing with ICON = 0
assuming xk+1 to be minimum point x*.

9) If this subroutine does not execute step 6), the
Marquardt number is decreased, that is, let,

vk = 0.5 vk

Then setting k as k = k + 1 and proceed to step 2) to
continuation.

• Notes on each algorithm
1) Setting Marquardt number v0

The norm of the Jacobian matrix at x0 is used as the
initial value of the Marquardt number,

() ()∑∑
= =

⋅=
m

i

n

j
ji nmxfv

1 1

2
0 //∂∂ (4.15)

NOLF1

493

2) To compute the difference approximation of Jacobian
matrix Jk,

k
n

mm

n

n
k

x
f

x
f

x
f

x
f

xx

J

=

=

∂
∂

∂
∂

∂
∂

∂
∂

..........

:
:

:
:

..........

1

1

1

 (4.16)

the forward difference (4.17) are used.

() (){ } h/fhf
x
f

kijki
j

i xex −+≈
∂∂∂∂
∂∂∂∂

 (4.17)

where, ej is the j-th coordinate vector h u= , where
u is the unit round off.

3) Computing kx∆ by the least squares method
This subroutine uses the Householder method to
obtain kx∆ solving (4.11) by the least squares
method.

That is, the left side of (4.11) is multiplied from the
left by the orthogonal matrix Q of the Householder
transformation to obtain upper triangular matrix.

=

O
R

I
J

Q
k

k

v
 (4.18)

Where, R is the upper triangular matrix of n × n.
The orthogonal transformation is performed for the
right side of (4.11).

()

−=

−

2

1

g
g

O
xf

Q k (4.19)

Where, g1 is the n-dimensional vector and g2 is the
m-dimensional vector. Since the norm is unitarily
invariant for orthogonal transformation, least squares
solution kx∆ in (4.11) is obtained by (4.20).

1gxR −=k∆ (4.20)

Since R is an upper triangular matrix, (4.20) can be
computed by backwards substitution.

4) Convergence criterion
This subroutine test the convergence during iteration
as follows:
• When F(xk+1) < F(xk) and

() EPSR,0.1max1 ⋅≤− ∞∞+ kkk xxx

as satisfied, xk+1 is
assumed to be minimum point x*.

• When F(xk+1) ≥ F(xk) and
() EPSR,0.1max1 ⋅≤− ∞∞+ kkk xxx

are satisfied, xk is assumed to be minimum point x*.

For further details, refer to References [36] and [37].

NOLG1

494

D15-20-0101 NOLG1, DNOLG1

Minimization of the sum of squares of functions
(Revised Marquardt method using function values and
their derivatives)
CALL NOLG1 (X, N, FUN, JAC, M, EPSR,
MAX, F, SUMS, VW, K, ICON)

Function
Given m real functions f1(x), f2(x),..., fm(x) with n
variables, its Jacobian J(x), and initial vector x0, this
subroutine obtains vector which gives a local minimum of

() (){ }∑
=

=
m

i
i xfxF

1

2 (1.1)

and its function value F(x*) using the revised Marquardt
method, that is, Levenberg-Marquardt-Morrison (LMM)
method:

In this subroutine, fi(x), i = 1 ,..., m is assumed to have up to
the first continuous partial derivative, and m≥ n ≥ 1.

Parameters
X Input. Initial vector x0.

Output. Vector x*.
One-dimensional array of size n.

N Input. Number of variables n.
FUN..... Input. Name of subroutine subprogram that

calculates fi(x)
The form of subprogram is as follows:
SUBROUTINE FUN (X, Y)
Parameters
X Input. Variable vector x.

One-dimensional array of size n.
Y Output. Function values fi(x) for

variable vector x.
One-dimensional array of size m where
F(1)= f1(x), ... , F(M) = fm(x)

JAC ... Input. Name of subroutine subprogram that
calculates J(x)
The form of subprogram is as follows:
SUBROUTINE JAC (X, G, K)
Parameters
X Input. Variable vector x.

One-dimensional array of size n.
G Output. Jacobian matrix for variable

vector x.
Two-dimensional array G (K, N) where

()G I, J f / xi j= ∂ ∂
K Input. Adjustable dimension of array G.

M Input. Number m of the functions.
EPSR .. Input. Convergence criterion (≥ 0.0).

The default value is used if 0.0 is specified.
(See “Comments on Use.”)

MAX Input. The upper limit (≠0) of the count of
function evaluation.
Output. The count (> 0) of actual evaluation

F Output. The value of function fi(x*).
One-dimensional array of size m,
where F(1)=f1(x*), …., F(M)=fm(x*).

SUMS . Output. The value of the sum of squares F(x*).
VW Work area. Two-dimensional array of VW (K,

N + 2)
K Input. The adjustable dimension (≥ m + n) of

array VW.
ICON Condition code. (See Table NOLG1-1.)

Table NOLG1-1 Condition codes

Code Meaning Processing
0 No error.

10000 The convergence condition
was not satisfied within the
specified number of
interation.

The last values
obtained are
stored in X, F
and SUMS.

20000 Marquardt number (vk)
exceeded the upper limit
during calculation. (See
(4.14) in “Method.”) EPSR
was too small or the error of
the difference approximation
of the Jacobian matrix
exceeded the limit of
calculation.

Bypassed.
(The last values
obtained are
stored in X, F
and SUMS.)

30000 N < 1, M < N, EPSR < 0.0,
MAX = 0, or K < m+n

Bypassed.

Comments on use
• Subprograms used

SSL II .. AMACH, MGSSL
FORTRAN basic functions ... ABS, SORT, FLOAT

• Notes

An EXTERNAL statement is necessary to declare the
subprogram names correspond to parameters FUN and
JAC in the calling program.
EPSR

Since F(x) is assumed to be approximately a
quadratic function in the vicinity of point x*, it is
appropriate to specify EPSR as u≈EPSR , where u is
the unit round off to obtain the value of function F(x*)
as accurate as the rounding error.

The default value of EPSR is 2 u

NOLG1

495

MAX
The function evaluation count is incremented by one
every time fi(x), i = 1,...,m is calculated and by n every
time J(x) is calculated for variable vector x.

The function evaluation count depends on
characteristics of function { fi(x)}, initial vector, and
convergence criterion.

Generally, when an appropriate initial value is
specified and the default value is used for the
convergence criterion, it is adequate to specify MAX =
100･n m.

Even if the convergence condition is not satisfied
within the specified evaluation count and the subroutine
is returned with ICON = 10000, iteration can be resumed
by calling this subroutine again. In this case, the user
must specify a negative value as the additional evaluation
count in the parameter MAX and retain other parameters
unchanged.

• Example

Given the following function:
() () ()21

2
221

2
121 ,,, xxfxxfxxF +=

where ()
() ()2

12212

1211

10,

1,

xxxxf

xxxf

−=

−=

minimum point x* is obtained using value x0 = (– 1,2,
1.0)T as the initial value

C **EXAMPLE**
 DIMENSION X(2),F(2),VW(4,4)
 EXTERNAL ROSEN,ROSENJ
 X(1)=-1.2
 X(2)=1.0
 N=2
 M=2
 EPSR=1.0E-3
 MAX=100*2*2
 CALL NOLG1(X,N,ROSEN,ROSENJ,M,EPSR,
 * MAX,F,SUMS,VW,4,ICON)
 WRITE(6,600) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,610) SUMS,MAX
 WRITE(6,620) (I,X(I),I=1,N)
 WRITE(6,630) (I,F(I),I=1,M)
 STOP
 600 FORMAT('1','*ICON=',I5)
 610 FORMAT(' ',' SUM OF SQUARES= ',
 * E15.7,' MAX= ',I5/)
 620 FORMAT(1X,' X(',I2,')=',E15.7)
 630 FORMAT(1X,' F(',I2,')=',E15.7)
 END
C OBJECTIVE FUNCTION
 SUBROUTINE ROSEN (X,Y)
 DIMENSION X(2),Y(2)
 Y(1)=1.0-X(1)
 Y(2)=(X(2)-X(1)*X(1))*10.0
 RETURN
 END

C JACOBIAN
 SUBROUTINE ROSENJ(X,G,K)
 DIMENSION X(2),G(K,2)
 G(1,1)=-1.0
 G(2,2)=-20.0*X(1)
 G(1,2)=0.0
 G(2,2)=10.0
 RETURN
 END

Method
Given m real functions f1(x), f2(x), ..., fm(x) with n
variable:

() () () ()

(){ }∑
=

=

==
m

i
if

fffF

1

2

T2

 x

xxxx
 (4.1)

vector x* which gives a local minimum of function F(x)
and its function value F(x*) are obtained. Where,

() () () ()()
()T21

T
21

,...,,

,...,,

n

m

xxx

fff

=

=

x

xxxxf
 (4.2)

This subroutine uses the revised Marquardt method,
that is, the Levenberg-Marquardt-Morrison (LMM)
method. To explain this method, let us review the
Levenberg-Marquardt, Newton-Gauss, and steepest
descent methods.

Suppose that the approximate vector xk of vector x*
that gives a local minimum is given and expressed as

kk xxx ∆+=* (4.3)

Expanding f (x) to a Taylor series of the first order in the
vicinity of xk, we obtain

() () () kkkkk xxJxfxxf ∆∆ +=+ (4.4)

where J(xk) is the Jacobian matrix

()

k
n

mm

n

k

x
f

x
f

x
f

x
f

xx

xJ

=

=

∂
∂

∂
∂

∂
∂

∂
∂

..........

:
:

:
:

..........

1

1

1

1

 (4.5)

J(xk) is referred to as Jk hereafter.
From (4.4), the function ()kkF xx ∆+ is approximated

by (4.6) if ()kF x is sufficiently small:

()
() ()
() () ()

kkkk

kkkkk

kkkk

kkF

xJJx

xJxfxfxf

xxfxxf

xx

∆∆

∆

∆∆

∆

TT

TT

T

2

+

+≈

++=

+

 (4.6)

NOLG1

496

The value of kx∆ which minimizes ()kkF xx ∆+ is the
solution of the system of linear equations (4.7) obtained by
differentiating the right side of (4.6) with respect to kx∆ :

()kkkkk xfJxJJ TT −=∆ (4.7)

This is called as the normal equation.
In the Newton-Gauss method, kx∆ is used for iterations as

kkk xxx ∆+=+1

The kx∆ direction indicates the descent direction, but

kx∆ may diverge in some case.
Gradient vector ()kF x∇ of F(x) for xk is

() ()kkkF xfJx T2=∇ (4.8)

and ()kF x∇− is the steepest descent direction of F(x)
for xk. In the steepest descent method,

()kk F xx ∇∆ −= (4.9)

is used. Although decrement of F(x) is guaranteed by
kx∆ of (4.9), many computational practices have shown

that the value of F(x) starts oscillation during iterations.
To eliminate these disadvantages, that is, divergence of

kx∆ and oscillation of F(x), Levenberg, Marquardt, and
Morrison have proposed to obtain kx∆ using

{ } ()kkkkkk v xfJxIJJ T2T −=+ ∆ (4.10)

where vk is a positive number called a Marquardt number.
The value of kx∆ obtained from (4.10) apparently

depends on the value of vk : The direction of kx∆
for 0→kv is that used in the Newton-Gauss method,
where kx∆ monotonically decreases as the value of vk
increases beginning from 0 and the angle between

kx∆ and the steepest descent direction ()kk xfJ T−
monotonically decreases as vk further increases.
If vk approaches infinity, the direction of kx∆ becomes
equal to that used in the steepest descent method.
Advantageous features of the Levenberg-Marquardt
method are to determine the most suitable value of vk
dynamically during iterations to minimize the value of
F(x) efficiently.

LMM method
The method in which expression (4.10) is used does not
have sufficient numerical stability because the normal
equation system is explicitly constructed. Equation (4.10)
is equivalent to the least squares problem for

()

−=

O
xf

x
I

J k
k

k

k

v
∆ (4.11)

This means that the minimization of sum of squares of
residual in (4.11) can be expressed by (4.10).

The LMM method obtains kx∆ without generating a
normal equation system, but it includes the least squares
method in which the orthogonal transformation having a
high numerical stability is applied to (4.11).

In this subroutine, x∆ is obtained from (4.11); then
using

kkk xxx ∆+=+1

minimum point x* is obtained through iterations in which

F(xk+1) < F(xk)

is satisfied.
Computational procedures
1) Initialization

Sets Marquardt number v0.
Obtains f(x0) and F(x0).
Sets k = 0.

2) Obtains Jk.
3) Solves (4.11) using the least squares method to obtain

kx∆
Sets kkk xxx ∆+=+1
Obtains f(xk+1) and F(xk+1).

4) Checks whether F(xk+1) < F(xk) is satisfied;
if so, proceeds to 8)

5) Checks convergence; if the convergence condition is
satisfied, assumes xk as to be minimum point x*, sets
ICON = 0, then stops processing.

6) Increases Marquardt number as

vk = 1.5 vk

7) Checks upper limit of Marquardt number. If

vk ≤1/u, where u is the unit round off (4.14)

is satisfied, returns to 3) to continue iterations;
otherwise, sets ICON = 20000, then stops processing.

8) Checks convergence; if the convergence condition is
satisfied, assumes xk+1 as to be minimal point x*, sets
ICON = 0, then stops processing.

9) If 6) has been bypassed, decreases Marquardt
number: vk = 0.5vk.
Sets k = k + 1, then returns to 2).

Notes on algorithms
1) Marquardt number v0 setting

The norm of the Jacobian matrix for x0 is used as the
initial value of Marquardt number.

NOLG1

497

() ()∑∑
= =

=
m

i

n

j
ji nmxf

1 1

2
0 //v ∂∂ (4.15)

2) Calculation of kx∆ by the least squares method
The Householder method is used to solve (4.11) and
obtain kx∆ by the least squares method.
The orthogonal matrix Q of the Householder
transformation is multiplied by the left side of (4.11)
to obtain the upper triangular matrix.

=

O
R

I
J

Q
k

k

v
 (4.16)

where R is the n×n upper triangular matrix. The
orthogonal transformation is also multiplied on the
right side of (4.11) to obtain

()

−=

−

2

1

g
g

O
xf

Q k (4.17)

where g1 is an n-dimensional vector and g2 is an m-
dimensional vector. Since the norm is invariant for
the orthogonal transformation, the least squares
solution of kx∆ for (4.10) is obtained from

1gxR −=k∆ (4.18)

Since R is an upper triangular matrix, (4.18) is solved
using backward substitution.

3) Convergence check
The convergence condition is checked as follows:

If F(xk+1) < F(xk) and
() EPSR,0.1max1 ⋅≤− ∞∞+ kkk xxx

are satisfied, assumes xk+1 to be minimum point x*.
If F(xk+1) ≥ F(xk)
and ()⋅≤− ∞∞+ kkk xxx ,0.1max1 EPSR

are satisfied, assumes xk to be minimum point x*. (See
reference [36] and [37] for details.)

NRML

498

B21-11-0702 NRML, DNRML

Normalization of eigenvectors of a real matrix
CALL NRML (EV, K, N, IND, M, MODE,
ICON)

Function
Eigenvectors yi are formed by normalizing m
eigenvectors xi (i = 1, ... , m) of an n-order real matrix.
Either (1.1) or (1.2) is used.

yi = xi/ xi ∞
 (1.1)

yi = xi/ xi 2
 (1.2)

n ≥ 1.

Parameters
EV..... Input. m eigenvectors xi (i = 1, ... , m).

(See “Comments on use”)
EV (K,M) is a two-dimensional array.
Output Normalized eigenvectors yi.

K..... Input. Adjustable dimenson of array EV. (≥
n)

N..... Input. Order n of the real matrix.
IND..... Input. For each eigenvector in EV, indicates

whether eigenvector is real or complex.
If the Jth column of EV contains a real
eigenvector, IND(J) = 1; if it contains the real
part of a complex eigenvector, IND(J) = −1,
and if it contains the imaginary part of a
complex eigenvector, IND(J) = 0.
IND is a one-dimensional array of size M.

M..... Input. Size of the array IND.
MODE.....Input. Indicate the method of normalization

MODE = 1... (1.1) is used.
MODE = 2... (1.2) is used.

ICON..... Output. Condition code
See Table NRML-1.

Comments on use
• Subprograms used

SSL II.....MGSSL
FORTRAN basic functions..... ABS and SQRT

Table NRML-1 Condition codes

Code Meaning Processing
0 No error

10000 N = 1 EV (1,1) =1.0
30000 N<M, M<1, K<N, MODE was

not 1 and 2 or an error was
found in IND

Bypassed

 When the eigenvectors of a real symmetric matrix are to
be normalized, all of IND informations are 1.

• Notes
Eigenvectors are stored in EV such that each real
eigenvector occupies one column and each complex
eigenvector occupies two consecutive columns (one
for the real part and one for the imaginary part).
Refer to Fig. NRML-1.
 If subroutine HVEC or HBK1 are called before this
subroutine, parameters EV, IND, and M can be used
as input parameters to this routine.

Number of eigenvectors

0

EV

IND 0

MM-1

m

4

3

32

2

-11-11

1

1

Real eigenvector

Imaginary
part of a
complex
eigenvector

Imaginary part of a
complex eigenvector

Real part of a
complex
eigenvector

Real part of a complex
eigenvector

Real eigenvector

Fig. NRML-1 Relationship between IND and EV

• Example
Subroutine EIG1 is called to obtain the eigenvectors of
an n-order real matrix, and then this routine is used to
normalize the resultant eigenvalues such that
x

∞
= ≤1 100. .n

C **EXAMPLE**
 DIMENSION A(100,100),ER(100),EI(100),
 *EV(100,100),VW(100),IND(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((A(I,J),I=1,N),J=1,N)
 WRITE(6,600) N
 DO 20 I=1,N
 WRITE(6,610) (I,J,A(I,J),J=1,N)
 20 CONTINUE
 CALL EIG1(A,100,N,0,ER,EI,EV,VW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GT.10000) GO TO 10
 DO 30 I=1,N
 30 IND(I)=1
 DO 40 I=1,N
 IF(EI(I).EQ.0.0) GO TO 40
 IF(IND(I).EQ.0) GO TO 40
 IND(I)=-1
 IND(I+1)=0
 40 CONTINUE
 CALL NRML(E,V,100,N,IND,N,1,ICON)
 CALL EPRT(ER,EI,EV,IND,100,N,N)
 GO TO 10

NRML

499

 500 FORMAT(I5)
 510 FORMAT(5E15.7)
 600 FORMAT('1',5X,'ORIGINAL MATRIX',
 *5X,'N=',I3/)
 610 FORMAT(/4(5X,'A(',I3,',',I3,')=',
 *E14.7))
 620 FORMAT('0',20X,'ICON=',I5)
 END

In this example, subroutine EPRT is used to print the
eigenvalues and corresponding eigenvectors of the real
matrix. For details refer to the Example in section EIG1.

Method
Given m eigenvectors xi(i = 1, ..., m) of an n-order real
matrix, normalized eigenvectors yi are computed. Where
xi =(x1i, ..., xni)T. When MODE = 1 is specified, each
vector xi is normalized such that the maximum absolute
value among its elements becomes 1.

kikiiii xmax,/ == ∞∞ xxxy (4.1)

When MODE = 2 is specified, each vector xi is
normalized such that the sum of the square of absolute
values corresponding to its elements is 1.

∑
=

==
n

k
kiiiii x

1

2
22,/ xxxy (4.2)

ODAM

500

H11-20-0141 ODAM, DODAM
A system of first order ordinary differential equations
(variable-step, variable-order Adams method, step
output, final value output).
CALL ODAM (X, Y, FUN, N, XEND, ISW,
EPSA, EPSR, VW, IVW, ICON)

Function
This subroutine solves a system of first order ordinary
differential equations of the form:

() ()
() ()

() ()

==′

==′
==′

0N0NN21NN

2002N2122

1001N2111

,,...,,,
: :

,,...,,,
,,...,,,

yxyyyyxfy

yxyyyyxfy
yxyyyyxfy

 (1.1)

by the Adams method, when function

N21 ,...,, fff

and initial values x0, y10, y20, ..., yN0, , and the final value
of x, (xe), are given.
That is, it obtains the solutions

()mmm yyy N21 ,...,,

at points emhxx
m

j
jm ,...,2,1;

1
0 =+= ∑

=

(See Fig. ODAM-1).
The step size hj is controlled so that solutions satisfy

the desired accuracy.
This subroutine provides two types of output mode as

shown below. The user can select the appropriate mode
according to his purpose.
• Final value output: Returns to the user program when

the solution at final value xe is obtained.
• Step output: Returns to the user program each time the

solution at x1, x2, ...is obtained.

he
h3h2h1

xex3x2x1x0

Fig. ODAM-1 Solution output point xm (x0< xe)

Parameters
X Input. Starting point x0.

Output. Final value xe. When the step output
is specified, an interim point xm to which the
solutions are advanced a single step.

Y Input. Initial values y10, y20, ...,yN0. They must
be given in order of Y(1) = y10, Y(2) = y20, ...,
Y(N) = yN0.
One-dimensional array of size N.

Output. Solution vector at final value xe.
When the step output is specified, the solution
vector at x = xm.

FUN Input. The name of the subprogram which
evaluates fi(i=1, 2, ...,N) in (1.1).
The form of the subroutine is as follows:
SUBROUTINE FUN (X, Y, YP)
Where
X: Input. Independent variable x.
Y: Input, One-dimensional array of size

N, with corresponding Y(1) = y1, Y(2)
= y2, ... , Y(N) = yN.

YP: Output. One-dimensional array of size
N, with corresponding

() ()
() ()
() ()N21N

N212

N211

,...,,,NYP
,...,,...,,,2YP

,,...,,,1YP

yyyxf
yyyxf

yyyxf

=
=
=

N Input. Number of equations in the system.
XEND ... Input. Final point xe to which the system

should be solved.
ISW Input. Integer variable to specify conditions in

integration.
ISW is non-negative integer having three
decimal digits, which can be expressed as

ISW = 100d3 + 10d2 + d1

Each di should be specified as follows
d1: Specifies whether or not this is the first call.

0First call
1Successive call

The first call means that this subroutine is
called for the first time for the given differential
equations.

d2: Specifies the output mode.
0 ...Final value output
1 ...Step output

d3: Indicates whether or not functions f1, f2,...,fN can be
evaluated beyond the final value xe.
0Permissible
1Not permissible

The situation in which the user sets d3 = 1 is
when derivatives are not defined beyond xe, or
there is a discontinuity there. However, the user
should be careful that if this is not the case
specifying d3 = 1 leads to unexpectedly
inefficient computation.

Output. When this subroutine returns to the user
program after obtaining the solutions at xe or the
solutions at each step, d1 and d3 are altered as follows:
d1: Set to 1. On subsequent calls, d1 should not be

altered by the user. Resetting d1 = 0 is needed only
when the user starts to solve another equations.

d3: When d3 = 1 on input, change it to d3 = 0 when the
solution at xe is obtained.

ODAM

501

EPSA Input. Absolute error tolerance. (≥ 0.0)
Output. If a value smaller than the allowable
value EPSA is specified at entry time, this
value is appropriately changed. (See Notes.)

EPSR Input. Relative error tolerance.
Output. If EPSR is too small, the value is
changed to an appropriate value. (See Notes.)

VW Work area. One-dimensional array of size 21N
+ 110. When calling this subroutine
repeatedly, the contents should not be changed.

IVW Work area. One-dimensional array of size 11.
When calling this subroutine repeatedly, the
contents should not be changed.

ICON Output. Condition code.
See Table ODAM-1.

Table ODAM-1 Condition Codes

Code Meaning Processing
0 (In step output) A single

step has been taken.
Subsequent
calling is possible.

10 Solution at XEND was
obtained.

Subsequent
calling is possible
after changing
XEND.

100 A single step has been
taken. It is detected that
more than 500 steps are
required to reach XEND.

To continue, just
call again. The
function counter
will be reset to 0.

200 A single step has been
taken. However it is
detected the equations
being processed have
strong stiffness.

Although
subsequent
calling is possible,
it is better to use
a subroutine for
stiff equations.

10000 EPSR and EPSA were too
small for the arithmetic
precision.

EPSR and EPSA
were set to larger,
acceptable
vaiues.
Subsequent
calling is possible.
(The increased
values of EPSR
and EPSA should
be checked by
the user)

30000 One of the following
occurred:
1 N≤ 0
2 X = XEND
3 An erroneous ISW was

specified.
4 EPSA < 0 or EPSR < 0
5 The contents of IVW

was changed (in
subsequent calling).

Processing
terminates.

Comments on use
• Subprograms used

SSL II ... MGSSL, AMACH, UDE, USTE1, UNIT1
FORTRAN basic functions ... MOD, AMAX1, AMIX1,
AMINI, ABS, SQRT, SIGN

• Notes

This subroutine is a standard program to solve non-stiff
and mildly stiff differential equations along with
Runge-Kutta subroutine ODRK1.
If in the following situation, this subroutine can be used
more effectively.
− It takes much time for computing function f1, f2,...,fN
− Highly accurate solution is required.
− The solutions at many points are required, for

example to make a table of the solutions.
− Derivatives, f1, f2,...,fN have discontinuities.

If it is known beforehand, that the equations are stiff
subroutine ODGE should be used.

The name of the subroutine associated with
parameter FUN must be declared as EXTERNAL in
the calling program.
[Judgment by ICON]
When the user specifies the final value output by
setting the second digit of ISW to 0, he can obtain the
solution at xe only when ICON is 10. However, this
subroutine may return the control to the user program
when ICON is 100, 200 or 10000 before reaching xe.

When the step output is specified by setting the
second digit of ISW to 1, the user can receive the
solution at each step not only when ICON is 0, but also
when ICON is 100 or 200. ICON = 10 indicates that
the solution at xe has been obtained.
[EPSA and EPSR]
Suppose the elements of the solution of differential
equations are Y(L) and the error (local error) is le(L),
this subroutine controls the error to satisfy the
following for L = 1, 2,, N.

() () EPSALYEPSRL +×≤el (3.1)

When EPSA = 0.0 is specified in (3.1), the relative
error is tested. When EPSR = 0.0 is specified in (3.1),
the absolute error is tested. The user should read the
following notes in using these criterions:
− It is desirable to use the relative error criterion for

the problem in which the magnitude of the solution
varies substantially.

− The absolute error criterion may be used for the
problem in which the magnitude of the solution does
not vary so much or the small solution is not required.

− Specifying EPSA≠0 and EPSA≠0 result in stable and
useful criterion. In this case, relative errors are
tested for the larger solution and absolute errors are
tested for the smaller solution.

ODAM

502

If the maximum accuracy attainable by this
subroutine is desired, specify EPSA and EPSR smaller
than required. Then their values are appropriately
increased in the subroutine.
ICON = 10000 notifies the user of this behavior. The
user should call the subroutine successively after
receiving ICON = 10000. When EPSA = EPSR = 0.0
is specified, it should be changed to EPSR = 16u. u is a
unit of round-off errors.
[Parameter XEND]
If the solutions at a sequence of output points are
required, this subroutine should be successively called
changing XEND sequentially. It is assumed that this
subroutine is called repeatedly and thus it sets the value
of parameters required for subsequent calls when
returning to the user program.
Therefore, the user can call the subroutine only by
changing XEND. Only EPSA and EPSR can be
changed on an as-required basis.

Discontinuous points of derivatives and non-defined

domain.
If the solution or its derivatives has discontinuous
points the points have to be detected to obtain
satisfactory accuracy.

Example:
The equation,

() 10,
21,
10,

=

≤<−
≤≤

=′ y
xy
xy

y

has the solution y = ex for 0 ≤ x ≤ 1, and y = e2-x for
1 ≤ x ≤ 2. Therefore, first-order derivative has a
jump at x = 1.

This subroutine automatically detects discontinuous
points and performs appropriate computation. The user
needs not recognize the discontinuous points. However,
if the user specifies the location of the discontinuous
points in a way below, the time required for detection is
shortened and computation may be accurate.
− Call this subroutine with XEND set to a

discontinuous point and with setting the third digit of
ISW to 1. Setting the third digit of ISW to 1 without
changing the lower two digits of ISW can be
performed by:

ISW = MOD (ISW, 100) + 100

− When the solution at the discontinuous point has
been obtained, the subroutine returns the control to
the user program after setting the third digit to 0. Set
the first digit of ISW to 0 on the next call, after
advancing XEND appropriately.
This can be performed by:

ISW = (ISW / 10)*10

By setting ISW in this way, the subroutine is told as if
the solution at discontinous points were a new initial
value and other differential equations were to be
solved.

• Example
Simultaneous second-order ordinary differential
equations

() ()

() ()

=′=−=′′

=′=−=′′

10,00,

00,10,

223
2

2

113
1

1

yy
r
y

y

yy
r
y

y

are solved, where ()r y y= +1
2

2
2

1 2/

. These second-order
equations can be rewritten into first-order equations by
replacing y′1by y3 and y′2 by y4 as follows:

()
()
()

()

=−=′

=−=′

==′
==′

10,

00,

00,
10,

43
2

4

33
1

3

242

131

y
r
yy

y
r
yy

yyy
yyy

 (3.2)

The following example shows the solution on interval
[0,2π] with EPSA =10-8 and EPSR = 10-5 in (3.2).
The solutions are to be output at each point of the
following:

64,...,2,1,
64
2 =⋅= jjx j
π

Therefore, this subroutine is called repeatedly increasing
the value of parameter XEND by 2π/64.

C **EXAMPLE**
 DIMENSION Y(4),VW(200),IVW(11)
 EXTERNAL FUN
 X=0.0
 Y(1)=1.0
 Y(2)=0.0
 Y(3)=0.0
 Y(4)=1.0
 N=4
 EPSA=1.0E-8
 EPSR=1.0E-5
 ISW=0
 PAI=4.0*ATAN(1.0)
 DX=PAI/32.0
C
 WRITE(6,600)
C
 DO 30 I=1,64
 XEND=DX*FLOAT(I)
 10 CALL ODAM(X,Y,FUN,N,XEND,ISW,EPSA,
 *EPSR,VW,IVW,ICON)
 IF(ICON.EQ.10) GO TO 20
 IF(ICON.EQ.100) WRITE(6,620)
 IF(ICON.EQ.200) WRITE(6,630)
 IF(ICON.EQ.10000) WRITE(6,640) EPSA,
 *EPSR

ODAM

503

 IF(ICON.EQ.30000) STOP
 GO TO 10
 20 WRITE(6,610) X,(Y(L),L=1,4)
 30 CONTINUE
 STOP
 600 FORMAT('1',12X,'X',22X,'Y(1)',
 *16X,'Y(2)',16X,'Y(3)',16X,'Y(4)'/)
 610 FORMAT(6X,E15.8,10X,4(E15.8,5X))
 620 FORMAT(10X,'TOO MANY STEPS')
 630 FORMAT(10X,'THE EQUATIONS',
 *1X,'APPEAR TO BE STIFF')
 640 FORMAT(10X,'TOLERANCE RESET',
 *5X,'EPSA=',E12.5,5X,'EPSR=',E12.5)
 650 FORMAT(10X,'INVALID INPUT')
 END

 SUBROUTINE FUN(X,Y,YP)
 DIMENSION Y(4),YP(4)
 R3=(Y(1)*Y(1)+Y(2)*Y(2))**1.5
 YP(1)=Y(3)
 YP(2)=Y(4)
 YP(3)=-Y(1)/R3
 YP(4)=-Y(2)/R3
 RETURN
 END

Method
This subroutine uses the Adams method with step-size
control and order control. It is a standard subroutine to
solve non-stiff or mildly-stiff initial value problems. This
subroutine is most suitable for problems in which
derivatives f1, f2,...,fN in(1.1)are complicated and it takes
much time to evaluate them.
 For convenience, we consider a single equation for
some time, and we write it as

() () 00,, yxyyxfy ==′ (4.1)

The solution at xm is expressed by ym and the exact
solution is expressed by y(xm). The value of ()mm yxf , is
expressed by fm to distinguish from ()mm yxf , .
1) Principle of the Adams method

Suppose solution y0, y1, ..., ym have already been obtained,
and we are going to obtain the solution ym+1 at

xm+1 = xm+hm+1

From (4.1), the following equation holds:

() () ()∫ ++=+
1 ,1

m

m

x
x dxyxfxyxy mm (4.2)

If the integrand f(x, y) in the right side is
approximated by the polynomial interpolation using

some derivatives already computed we can get a
formula.

Now, we consider a interpolation polynomial
Pm,k(x) based on k derivatives, which satisfies:

() kjfxP jmjmmk ,...,2,1,11, == −+−+ (4.3)

If this Pk,m(x) is used for approximation to f(x,y) in
(4.2) and ym is used instead of y(xm), we get a solution
pm+1:

()∫ ++=+
1

,1
m

m
mk

x
x dxxPmm yp (4.4)

This is called k th-order Adams-Bashforth formula.
Among various forms to represent Pk,m(x), the Newton
form is used here. Interpolation points, generally, xm+1–j (j =
1,2, ..., k) are unequally spaced because of step-size control.
But, for simplicity, we suppose they are equally spaced
with the interval of h.
 Newton backward difference representation for
Pk,m(x) is expressed by:

()
() ()

() m
k

k
kmm

m
m

mmk

f
kh

xxxx

f
h
xxfxP

1
1

2

,

!1
...

...

−
−

−+

−
−−

++
−

+=

∇

∇

Substituting this into (4.4), we get

() ()

() ()

=

=

=
≥−=

=

+=

∫

∫

≥−++

−−+ −+
−

−
−−

=

−
−+ ∑

1

0
1,1...1

...

!
1

!
1

1
1,

 where

1 1
1

0

1
11

0
1

1
11

idsisss

x
x dx

h

xxxx

i

hi

ifff

ff

fhyp

m

m

imm
ii

m
i

m
i

m
i

mm

k

i
m

i
imm

γ

γ
∇∇∇

∇

∇γ

 (4.5)

When k is 1, () mm fxP =,1 and the following is
obtained:

mmm hfyp +=+1

This is Euler’s method.
When ()11, ++ mm pxf is computed using pm+1 in

(4.4), the approximation to derivative at xm+1 can be
obtained. Using this, if we integrate again the
approximation after correcting Pk,m(x) in (4.4), a more
accurate solution can be obtained. Based upon this
idea, pm+1 in (4.4) is called a predictor and the
corrected solution is called a corrector which is
expressed by cm+1. Suppose P*

k,m(x) to be a k-1 order
polynomial interpolation satisfying the following:

ODAM

504

()
() ()111

*
,

11
*
,

,

1,...,2,1,

+++

−+−+

=

−==

mmmmk

jmjmmk

pxfxP

kjfxP

In this interpolation, ()11, ++ mm pxf is used and the
oldest fm k+ −1 is removed. The corrector cm+1 is computed
by:

()∫ ++=+
1 *

,1
m

m

x
x dxxP mkmm yc (4.6)

This is called the k th order Adams-Moulton formula. If
P*

k,m(x) is expressed in the form of Newton backward
difference interpolation, (4.6) can be expressed as
follows:

()

()() ()

≥=

=

≥−=

≡=

+=

∫ −+−

−
+

−
+

++++

=
+

−
−+ ∑

1,
!

1

1

1,

, where,

1
0 2...1*

*
0

1
1

1
1

1111
0

1
1

1*
11

i
i

ifff

pxfff

fhyc

dsisssi

m
ip

m
ip

m
i

mm
p

m
p

m

k

i

p
m

i
imm

γ

γ

∇∇∇

∇

∇γ

 (4.7)

In particular, in the case k = 1, since () 1*
,1

+= m
pm fxP , the

following holds:

p
mmm hfyc 11 ++ += (4.8)

This is called the Backward Euler’s method.
These are the principles of the Adams method.
Since, in actual computation, points {xm+1-j} are spaced

unequally due to step-size control Pk,m(x) and P*
k,m(x) are

expressed in the form of a modified divided difference
instead of using (4.5) an (4.7).
 The error of the corrector cm+1 is estimated as indicated
below.

Note that fm+1-k was not used in constructing Pk,m(x). If,
however, we use fm+1-k and integrate the resulting
interpolation polynomial of degree higher by one, which
we donote by P*

k+1,m(x), we can obtain another corrector,
say cm+1(k+1), of order higher by one. According to the
error analysis,

() 111 1 +++ −+≡ mmm ckcE (4.9)

can be used as an estimate of the local error of cm+1.
Consequently, if the magnitude of Em+1 is within a
tolerance, this subroutine consider cm+1 to meet the
required accuracy, and take cm+1 (k + 1), instead of cm+1,
as a solution to be output.
 In what follows, ym+1(k) stands for cm+1, and ym+1 for cm+1
(k + 1).

 The procedures to obtain the solution at xm+1 are
summarized as follows:
• Prediction ... pm+1
• Evaluation ... f(xm+1,pm+1)
• Correction ... ym+1
• Evaluation... f(xm+1,ym+1)

This is often called the PECE method.
2) Adams method based upon modified divided

differences
Since points{xm+1-j} are unequally spaced, the
computation for a predictor (4.4) and corrector (4.6)
in that situation are described concretely.
Pk,m(x) can be expressed using divided differences as
follows:

() [] () []
()()

() []kmmmkm

mm

mmmmmk

xxxfxx
xxxx

xxfxxxfxP

−+−−+

−

−

−
−−+

+−+=

112

1

1,

,...,,
...

...,
 (4.10)

where,

[]
[]

[] []

1,...,2,1,

,...,,...,

,...,,

11

1

−=

−
−

=

=

−

−+−−

−−

kj

xx
xxfxxf

xxxf
fxf

jmm

jmmjmm

jmmm

mm

In the integration formula based upon the expression
in (4.10), points {xm+1-j} and divided differences are
used in the program. However, this subroutine uses a
sequence of step sizes{hm+1-j} instead of {xm+1-j}, and
modified devided differences instead of divided
differences. The formula to be described below is
reduced to (4.5) if the step size is constant. We
introduce notations to be used later.

()
()
() ()
()
() () () ()

() () ()
() []
() () () () []

,...3,2
,...,,...

,...3,2,
...

1...111

11
,...2,1,1/1

,...2,1,...1
/

11121

1

121

121

1

1

21

1

1

=
=

==

=
+++

=+

=+
=+=+

=+++=+
−=
−=

−+−−

−

−

+

−++

+

−

i
xxxfmmmm

fxfm

i
mmm

mmmm

m
imhm

ihhhm
hxxs

xxh

immmii

mm

i

i
i

imi

immmi

mm

iii

ΨΨΨΦ
Φ

ΨΨΨ
ΨΨΨβ

β
Ψα

Ψ

 (4.11)

Here, ()miΦ is called a modified divided difference.
When the step size is constant,

() () imihm ii /11,1 =+=+ αΨ and () 11 =+miβ
therefore () m

i
i fm 1−=∇Φ

Using above notations, the general term in (4.10) can
be expressed by:

ODAM

505

()() () []

()
()

()
()

() () ()mm
m

msh

m
msh

m
sh

xxxfxxxxxx

ii
i

im

mm

immmimm

Φβ
Ψ

Ψ

Ψ
Ψ

Ψ

1
1

...
11

,...,,...

1

21

2

11

1

1

1121

+

+

+

+

+⋅

+

=

−−−

−

−+

++

−+−−+−

 (4.12)

To simplify the right hand side of this equation we
introduce

() () ()mmm iii ΦβΦ 1* +=
and

()
()

()
()

()
()

()

=

+

+

+

+⋅

+

==
+

=

=

−

−+

++

+

,...4,3,
1

...
11

2,
1

1,1

1

21

2

11

1

1

1

1

,

i
m

msh

m
msh

m
sh

is
m

sh
i

sc

i

im

mm

m

mi

Ψ
Ψ

Ψ
Ψ

Ψ

Ψ

Then (4.12) can be expressed by () ()msc imi
*

, Φ .
Therefore we get

() () ()∑
=

=
k

i
imimk mscxP

1

*
,, Φ (4.13)

where ci,m(s) is a polynomial with respect to s of
degree i -1, which is determined depending upon only
the distribution of points {xm+1-j}.
Substituting (4.13) into (4.4), and changing the
integration variable x to s, the following can be
obtained.

() ()∑
=

++

+= ∫
k

i
imimmm mdsschyp

1

*
,11

1

0
Φ (4.14)

This corresponds to (4.5) in which the step size is
constant. The integral for ci,m(x) can be obtained by
repeated integration by parts. The results are
mentioned below, where sequence {gi,q} is produced
by (4.15) for i ≥ 1 and q ≥ 1.

()()
()

()∫=

≥+−=

+==

+−−−

1
0 ,1,

1,11,1,

,2,1

3,1

1/1,/1

dssmici

qiiqiqi

qq

g

igmgg

qqgqg

α (4.15)

The following shows the triangular table for gi,q in
(4.15) when the step size is constant.

1 2 3 4 …
1 1 1/2 5/12 3/8
2 1/2 1/6 1/8
3 1/3 1/12
4 1/4
:

q

i

The values placed on the first row in this table
correspond to {gi,1}.
Therefore (4.14) is reduced to

 ()∑
=

++ +=
k

i
iimmm mghyp

1

*
1,11 Φ (4.16)

Next, the computation of corrector is described.
For corrector ym+1, the formula of order k + 1 which is
one order higher than the predictor is used. The
corrector ym+1 is based upon:

 ()∫ +
++ += 1 *

,11
m

m

x
x dxxP mkmm yy (4.17)

Where, P*
k+1,m(x) is the interpolation polynomial

satisfying not only the interpolation conditions for
Pk,m(x) but also

() ()1111
*

,1 , +++++ == mm
p

mmmk pxffxP

Using a divided difference we can write.
() () ()() ()kmmmmkmk xxxxxxxPxP −+−+ −−−+= 11,

*
,1 ...

[]kmm
p xxf −++⋅ 11,..., (4.18)
The index p indicates that in the divided difference
fm

p
+1 should be used instead of ()111 , +++ = mmm yxff .

Substituting (4.18) into (4.17), we get,

()111,1111 ++= +++++ mghpy p
kkmmm Φ (4.19)

So the corrector can be expressed by adding the
correction term to predictor pm+1. Here, the index p also
indicates that in the divided difference of

() p
mk fm 11 ,1 ++ +Φ should be used instead of

()111 , +++ = mmm yxff . The k th order corrector ym+1(k)
can be computed in the same way as follows:

() ()111,111 ++= ++++ mghpky p
kkmmm Φ (4.20)

3) Solution at any point
Since the step size is taken as long as the error is
within a tolerance generally the output point xe
satisfies

xm < xe ≤ xm+1 (4.21)

ODAM

506

In obtaining the solution at xe, although we could
restrict the step size so as to h it xe, this subroutine
integrates beyond xe with a step size optimally
determined to get the solution at xm+1, unless a
particular situation is posed on the problem, e.g. when
f (x,y) is not defined beyond xe. Then the solution at
xe is obtained as follows. Let Pk+1,m+1(x) be an
interpolation polynomial of degree k satisfying:

() 1,...,2,1,221,1 +== −+−+++ kjfxP jmjmmk

The solution at xe is computed by

()∫
+

+++ += e

m

x
x dxxP mkme yy

1
1,11 (4.22)

If the solution at xm+1 satisfies the required accuracy,
ye also satisfies the required accuracy.

To compute (4.22), Pk+1,m+1(x) should be expressed
using modified divided differences.
First letting,

() ImmeI hxxsxxh /, 11 ++ −=−=

Pk+1,m+1(x) can be expressed as:

() [] () []
() () []kmmkmm

mmmmmk

xxfxxxx
xxfxxxfxP

−++−++

+++++

−−+

+−+=

1121

1111,1

,...,...
...,

The general term is:

()() () []

()
()

()
()

() ()1
1

1

...
1

1
1

,...,,...

1

2

2

1

1

2131

+

+

++

+

++
⋅

+

=

−−−

−

−

−++−++

m
m

msh

m
msh

m
sh

xxxfxxxxxx

i
i

il

ll

immmimmm

Φ
Ψ

Ψ

Ψ
Ψ

Ψ

After expressing Pk+1,m+1(x) using modified divided
differences and substituting it into (4.22), the
following is obtained:

()∑
+

=
+ ++=

1

1
1,1 1

k

i
i

I
iIme mghyy Φ (4.23)

where gi
I
,1 are generated by the following recurrence

equation:

2,

/1

1,11,11,

,1

≥−=

=

+−−−− iggg

qg
I

qii
I

qii
I
qi

I
q

ηξ
 (4.24)

where
()

()
()

≥
+

++
=+

= − 2,
1

1
1,1/

1

1

i
m

mh
imh

i

iI

I

i

Ψ
Ψ

Ψ
ξ

() 1,1/ ≥+= imh iIi Ψη

4) Acceptance of solutions

Suppose local error of k th order corrector ym+1(k) to
be lem+1(k)
It can be estimated by the difference between(k + 1)th
order corrector ym+1 and ym+1(k).
From (4.19) and (4.20), we can see the following:

() () ()111,1,111 +−≈ ++++ mgghkle p
kkkmm Φ (4.25)

Defining the right side of the equation as ERR, if for a
given tolerance ε .

ERR ≤ ε (4.26)

is satisfied, the subroutine accepts ym+1 as the solution
at xm+1, then evaluates f(xm+1,ym+1).
This completes the current step.

5) Order control
Control of the order is done at each step by selecting
the order of the formula of the Adams method. This means
to select the degree of the interpolation polynomial which
approximates f (x,y). This selection is performed before the
selection of the step size.

Suppose the solution ym+1 at xm+1 has been accepted by
the k th order Adams method and the order for the next step
is going to be selected. The local error at xm+2 can be
determined according to the step size hm+2 to be selected
later and the derivative at xm+2. Since these are not known
when the order is selected, the error cannot be known
correctively. Therefore using only those values which are
available so far, the subroutine estimates the local errors at
xm+2 of order k –1, k, and k + 1 as ERKM1, ERK, and
ERKP1 below.

() ()
() ()

()

+=

++=

++=

++

++

−

11ERKP

11ERK

111ERKM

21

11

1

mh

mmh

mmh

k
*
k

p
kk

*
k

p
kk

*
k

Φγ

Φσγ

Φσγ

 (4.27)

where,

() ()
() () ()

+++
−⋅

=
=+

− 1...11
1...2

1,1
1

121 mmm
hihh

i
m

i

i

ΨΨΨ
σ

,...4,3,2, =i

mmm xxhh −== ++ 11
*
iγ is the coefficient defined in (4.7).

ERKP1 is estimated only when the preceding k + 1
steps have been taken with a constant step size h.
This is because if the step size is not constant, the
value of ERKP1 may not be reliable.

In addition to (4.27), the local error of order k −2 is
also estimated as ERKM2 below.

() ()11ERKM2 11
*

2 ++= −−− mmh p
kkk Φσγ

The order is controlled based on the above introduced
values.
a) When one of the following is satisfied, reduce the

order to k-1.

ODAM

507

− k > 2 and max (ERKM1, ERKM2) ≤ ERK
− k = 2 and ERKM1 ≤ 0.5ERK
− The preceding k + 1 steps have been taken with a

constant step size and ERKM1 ≤ min (ERK,
ERKP1)

b) When the preceding k + 1 steps have been taken
with a constant step size and one of the following is
satisfied, increase the order to k + 1.

− 1 < k < 12 and ERKP1 < ERK< max (ERKM1,
ERKM2)

− k = 1 and ERKP1 < 0.5ERK
c) The order is not changed at all if neither a) or b)

above are satisfied.
At each step, the above mentioned a), b) and c) are
tested sequentially.

6) Step size Control
The step size is controlled at each step after the order
has been selected. Suppose order k for the next step
has been selected and the most recently used step size
is h. If the next step is processed by step size r･h, the
local error can be estimated by:

rk+1 ERK (4.28)

Therefore, the ratio r may be taken a value as large as
possible while the value in (4.28) does not exceed the
error tolerance εεεε . However, for safety, 0.5 εεεε is used
instead of εεεε , and r is determined with the following
conditions;

rk+1 ERK≤0.5 ε (4.29)

 If the step size varies, it will after the coefficients of
predictor and corrector formulas. If the step size varies
much, it will possibly cause undesirable error
propagation property of the formula. Taking this into
consideration, when increasing the step size, it should
be increased by a factor of two at most, and when
decreasing the step size, it should be halved at most.
The step size is controlled as follows:
a) When increasing the step size, if

2k+1 ERK≤0.5 ε

the step size is increased by a factor of 2.
b) When decreasing the step size, if

ERK>0.5 ε

the actual rate is determined with r = (0.5 /
ERK)1/(k+1) according to

r′ = min (0.9, max(1/2, r))

c) If neither a) nor b) are satisfied, the step size is not
changed at all.

7) When the solution could not be accepted

When the criterion (4.26) for accepting the solution

is not satisfied, the step is retried. The order is
selected by testing a) in item 5, that is, the order will
either be decreased or not be changed at all. On the
other hand, the step size is halved unconditionally.

If the step is tried three times and (4.26) has still not
been satisfied, the first order Adams method, that is,
Euler’s method, is used and the step size is halved
until (4.26) is satisfied.

8) Stating procedure
At the first step in solving the given initial value
problem, the first order Adams method is used. Here,
the method of determining the initial step size and the
method of increasing the order and step size are
described.

When we assume the initial step size is h1, the local
error in Euler’s method at points x1 (= x0 + h1) is
estimated by

()00
2
1 , yxfh

h1 can be selected so as not to exceed 0.5 ε .
However, taking into consideration the possibility of
f(x0,y0) = 0, and also for safety, the following is used:

()

= H

yxf
h ,

,
5.025.0min

2
1

00
1

ε (4.30)

where,
()00 ,4max xxxuH e −=

u: unit of round-off error

At starting step, the order and step-size is controlled
as follows:
The order is increased by one for subsequent steps
and the step size is increased twice each time a step is
processed. This is because the order should be
increased rapidly for effectiveness, and also because
h1 of (4.30) tends to be conservative when ε is small.
This control is terminated when the solution at a
certain step does not meet the criterion, or when the
order comes to 12, or a) in item 5) is satisfied. The
subsequent orders and step sizes are controlled
according to the previously mentioned general rules.

9) Extension to a system of differential equations
For a system of differential equations, the above
mentioned procedures can be applied to each
component of the solution vector.

However, each error estimate of ERR, ERK,
ERKM1, ERKM2 and ERKP1 is defined as follows
instead of defining to each component: From the user
specified EPSA and EPSR, we introduce

()
() ()()

+=
=

/EPSEPSAEPSRIYIW
EPSR,EPSAmaxEPS

 (4.31)

ODAM

508

then ERR is defined as

()
()

2
1

1

2

ERR

= ∑

=

N

I IW
Ile (4.32)

where, Y(I) and le(I) are the I-th component of the
solution vector and its local error respectively. ERK
and ERKM1 are defined similarly. The criterion used
for accepting the solution is

ERR ≤ EPS

Note that when this is satisfied, from (4.31) and (4.32),
we can see

() ()
N,...,2,1,

EPSAEPSR
=

+≤

I
IYIle

This subroutine is based on the code (Reference
[71]) by L.F. Shampine and M.K. Gordon.

ODGE

509

H11-20-0151 ODGE, DODGE

A stiff system of first order ordinary differential equations
(Gear’s method)
CALL ODGE (X, Y, FUN, N, XEND, ISW, EPSV,
EPSR, MF, H, JAC, VW, IVW, ICON)

Function
This subroutine solves a system of first order ordinary
differential equations of the form:

() ()
() ()

() ()

==′

==′
==′

0021

20022122

10012111

,,...,,,
: :

,,...,,,
,,...,,,

NNNNN

N

N

yxyyyyxfy

yxyyyyxfy
yxyyyyxfy

 (1.1)

by Gear’s method or Adams method, when functions f1,
f2,...,fN and initial values x0, y10, y20, ..., yN0 and the final
value of x, xe are given. That is, it obtains the solutions

(y1m, y2m, ..., yNm) at points emhxx
m

j
jm ,...,2,1;

1
0 =+= ∑

=

(See fig. ODGE-1). The step size is controlled so that
solutions satisfy the desired accuracy.

Gear’s method is suitable for stiff equations, whereas
Adams method is suitable for nonstiff equations. The user
may select either of these methods depending on stiffness
of the equations. This subroutines provides two types of
output mode as shown below. The user can select the
appropriate mode according to his purpose:

Final value output ... Returns to the user program when
the solution at final value xe is obtained.
 Step output ... Returns to the user program each time
the solution at x1, x2, ... is obtained.

he
h3h2h1

xex3x2x1x0

Fig. ODGE-1 Solution output point xm (in the case x0 < xe)

Parameters
X Input. Starting point x0.

Output. Final value xe. When the step output
is specified, an interim point to which the
solution is advanced a single step.

Y Input.
Initial values y10,y20, ..., yN0. They must be
given in the order of Y(1) = y10, Y(2) = y20, ...,
Y(N) = yN0
One-dimensional array of size N
Output: Solution vector at final value xe.
When the step output is specified, the solution

vector at x = xm.
FUN Input. The name of subroutine subprogram

which evaluates fi, i=1, 2,...,N in (1.1).
The form of the subroutine is as follows:
SUBROUTINE FUN (X, Y,YP)
where
X Input. Independent variable x.
Y Input. One-dimensional array of size N,

with the correspondence Y(1) = y1,
Y(2) = y2, ..., Y(N) = yN

YP Output. One-dimensional array of size
N, with the correspondence

() (),,...,,,1YP 211 Nyyyxf=
() (),...,,...,,,2YP 212 Nyyyxf=
() ()NN yyyxf ,...,,,NYP 21=

N Input. Number of equations in the system.
XEND. Input. Final point xe to which the system

should be solved.
ISW Input. Integer variable to specify conditions in

integration. ISW is a nonnegative integer
having four decimal digits, which can be
expressed as
ISW= 1000d4 + 100d3 + 10d2 + d1
Each di should be specified as follows.
d1 Specifies whether or not this is the first

call
0 First call.
1 Successive call
The first call means that this subroutine
is called for the first time for the given
differential equations.

d2 Specifies the output mode.
0 Final value output.
1 Step output.

d3 Indicates whether or not functions
 f1, f2,...,fN can be evaluated beyond the
final value xe.
0 Permissible.
1 Not permissible. The situation in
which the user sets d3 = 1 is when
derivatives are not defined beyond xe,
or there is a discontinuity there.
However, the user should be careful
that if this is not the case specifying d3
= 1 leads to unexpectedly inefficient
computation.

d4 Indicates whether or not the user has
altered some of the values of MF,
EPSV, EPSR and N:
0 Not altered.
1 Altered. See 6 and 7 in

ODGE

 510

“Comments on Use” for specification.

Output. When the solutions at xe or at an
interim point are reterned to the user program,
the values of d1, d3, and d4 are altered as
follows.
d1 Set to 1: On subsequent calls, d1

should not be altered by the user.
Resetting d1 = 0 is needed only when
the user starts solving another system of
equations.

d3 When d3 = 1 on input, change it to d3
= 0 when the solution at xe is obtained.

d4 When d4 = 1 on input, change it to d4
= 0.

EPSV Input. Absolute error tolerances for
components of the solution. One-dimensional
array of size N, where EPSV(L) ≥ 0.0, L =
1,2, ..., N
Output. If EPSV(L) is too small, the value is
changed to an appropriate value. (See 4 in
“Comments on Use.”)

EPSR Input Relative error tolerance.
Output. If EPSR is too small, the value is
changed to an appropriate value. (See 4 in
“Comments on Use.”)

MF Input. Method indicator. MF is an integer
with two decimal digits represented as MF =
10*METH + ITER.
METH and ITER are the basic method
indicator and the corrector iteration method
respectively, with the following values and
meanings.

METH... 1 for Gear’s method. This is suitable
for stiff equations

2 for Adams method. This is suitable
for nonstiff equations.

ITER ... 0 for Newton method in which the
analytical Jacobian matrix ()J /= ∂ ∂f yi j is
used. The user must prepare a subroutine to
calculate the Jacobian matrix. (See
explanations about parameter JAC.)
1 for Newton method in which the Jacobian
matrix is internally approximated by finite
difference.
2 for Same as ITER = 1 except the Jacobian
matrix is approximated by a diagonal matrix.
3 for Function iteration in which the Jacobian
matrix is not used.
For stiff equations, specify ITER = 0, 1 or 2.
0 is the most suitable value, but if the
analytical Jacobian matrix cannot be prepared,
specify 1. Specify ITER = 2 if it is known that
the Jacobian matrix is a diagonally dominant
matrix.

For nonstiff equations, specify ITER = 3
H Input. Initial step size (H≠0) to be attempted

for the first step on the first call
The sign of H must be the same as that of xe –
x0. A typical value of |H| is

()()00
45 ,10max,10minH xxx e −= −−

The value of H is controlled to satisfy the
required accuracy.
Output. The step size last used.

JAC ... Input. The name of subroutine subprogram
which evaluates the analytical Jacobian matrix:

=

N

NNN

N

N

y
f

y
f

y
f

y
f

y
f

y
f

y
f

y
f

y
f

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

...

: : :

...

...

J

21

2

2

2

1

2

1

2

1

1

1

The form of the subroutine is as follows.
SUBROUTINE JAC (X, Y, PD, K)

where,
X Input. Independent variable x.
Y Input. One-dimensional array of size N,

with the correspondance Y(1) = y1,
Y(2) =y2, ..., Y(N) = yN

PD ... Output. Jacobian matrix stored in a
two-dimensional array PD (K, K),
where

()PD i j f
y

i

j

, =
∂
∂

1 ≤ i ≤ N , 1 ≤ j ≤ N
K Input. Adjustable dimension of array

PD. (See “Example.”)
Even if the user specifies ITER ≠ 0, he must
prepare a dummy subroutine for the JAC
parameter as follows:
SUBROUTINE JAC (X, Y, PD, K)
RETURN
END

VW Work area. One-dimensional array of size
N(N +17) + 70. The contents of VW must not
be altered on subsequent calls.

IVW Work area. One-dimensional array of size N +
25. The contents of IVW must not be altered
on subsequent calls.

ICON Output. Condition code.
(See Table ODGE-1.)

ODGE

511

Table ODGE-1 Condition codes

Code Meaning Processing
0 A single steg has been

taken (in step output).
Subsequent calls
are possible.

10 Solution at XEND was
obtained.

Subsequent calls
are possible after
changing XEND.

10000 EPSR and EPSV(L): L =
1, 2, .., N are too small for
the arithmetic precision.

15000 The requested accuracy
could not be achieved
even with a step size 10-10
times the initial step size.

16000 The corrector iteration did
not converge even with a
step size 10-10 times the
initial step size.

The methods
specified through
parameter MF
may not be
appropriate for
the given
equations.
Change the MF
parameter, then
retry.

30000 One of the following
occurred,
1) N≤ 0
2) X = XEND.
3) ISW specification

error.
4) EPSR < 0 or there

exists I such that
EPSV(I) < 0.

5) (XEND – X)∗ H≤0.
6) The IVW was changed

(on the second or
subsequent calls).

Bypassed

Comments on use
• Subprograms used

SSL ... MGSSL, AMACH, USDE, UNIT2, USTE2,
USETC, USETP, USOL, UADJU, UDEC

FORTRAN basic functions ... MOD, FLOAT, AMAX1,
AMIN1, ABS, SORT

• Notes

This subroutine can be effectively used for stiff
equations or those which is initially nonstiff but change
to be stiff in the integration interval. For nonstiff
equations, use subroutine ODAM or ODRK1 for
efficiency.

The names of the subroutines associated with
parameter FUN and JAC must be declared as
EXTERNAL in the calling program.

Judgement by ICON
When the user specifies the final value output, he can
obtain the solution at xe only when ICON = 10.

When the step output is specified, the user can obtain
the solution at each step when ICON = 0. ICON = 10
indicates that the solution at xe has been obtained.

Parameters EPSV and EPSR
Let Y(L) be the L-th component of the solution vector
and le(L) be its local error, then this subroutines
controls the error so that

() () ()LEPSVLYEPSR +×≤Lle (3.1)

is satisfied for L = 1, 2, ..., N. When EPSV(L) = 0 is
specified, the relative error is tested. If EPSR = 0, the
absolute error is tested with different tolerances
between components.
Note the following in specifying EPSV(l) and EPSR:

Relative error test is suitable for the components
which range over different orders in the
integration interval.
Absolute error test may be used for the
components which vary with constant orders or so
small as to be of no interest.
However, it would be most stable and economical
to specify:

EPSV(L)≠0, L=1, 2, ...,N
EPSR≠0

In this case, relative errors are tested for the large
components and absolute errors are tested for the
small components. In the case of stiff equations
the orders of magnitude of the components might
be greatly different, it is recomendable to specify
different EPSV(L) between the components.

If EPSR = 0 and some of the elements of EPSV are
zero on input, the subroutine after EPSR to 16u, where
u is the round off unit.

Parameter XEND
If the solutions at a sequence of values of the
independent variable are required, this subroutine
should be successively called changing XEND. For
this purpose, the subroutine sets the values of
parameters required for the next call when returning to
the user program. Therefore the user can call the
subroutine only by changing XEND.

Changing MF during the solution
If the given equations are non-stiff initially and stiff
later in the integration interval, it is desirable to change
the value of MF from 23 to 10 (or 11 or 12) as follows
when the equations become stiff:

Set d4 of ISW to 1. This can be done with the
statement ISW = ISW + 1000.
Change the value of MF.
Set XEND to the value of the next output point,
then call this subroutine.
This subroutine clears the d4 of ISW by

ISW= MOD (ISW, 1000)

EPSR and EPSV(L):
L = 1, 2, ..., N were
increased to proper
values. (Check the
in EPSR and EPSV.)

ODGE

 512

indicating that the user’s request has been completely
accomplished on return to the user program.

However, if the solution at XEND can be readily
obtained without changing MF, MF is not changed on
return. This means that the value of MF is changed
only when the value of XEND reaches a value where
the method should be changed.

Changing parameters N, EPSV, and EPSR during the
solution
The user can change the values of parameters N, EPSV,
and EPSR during the solution.
However, considerable knowledge about the behavior
of the solution would be required for changing the
value of N as follow:

In the solution of stiff equations, some components
of the solution do not change so much as compared
with the other components or some components
become small enough to be neglected. If these
components are of no interest to the user it will be
practical to regard these components as constants
thereafter then to integrate only the remainder. This
reduces the amount of computations. To change the
value of parameter N means to reduce the number of
components to be intergrated. In this subroutine, some
of the last components of the system (1.1) are removed.
Therefore, the user must arrange the components prior
to the solution.

Based on the above, reduction of parameter N can be
done in the manner described below:

Suppose that initial value of N is N0 and changed to
Nc (<N0) during the solution, (N0 – Nc) equations of the
last potion of the system are removed, so the reduced
system of equations are solved. In this case, the
components Y(L): L = Nc + 1, Nc + 2, ..., N0, are kept
constant in the system reduced.

In the user-prepared subroutines, FUN and JAC,
derivatives and Jacobian matrices only for Nc equations
need be calculated. To identify the change of N in
these routines, specify parameter N in COMMON
statements.

Values of EPSV and EPSR can also be changed if
necessary in the same way as parameter MF explained
above.

• Example
The following example solves the system:

−=−−=′
==′

1)0(,1011
1)0(,

2122

121

yyyy
yyy

in the interval [0, 100]. The system is stiff because the
eigenvalues of the Jacobian matrix are –1 and –10. In

the following example, MF = 10, EPSR = 10-4 and
EPSV(1) = EPSV(2) = 0 are used. The solution at the
following points are to be obtained.

xj =10-3+j, j = 1, 2,, 5

For this purpose, this subroutine is called repeatedly by
setting XEND to xj.

C **EXAMPLE**
 DIMENSION Y(2),EPSV(2),VW(110),IVW(30)
 EXTERNAL FUN,JAC
 X=0.0
 Y(1)=1.0
 Y(2)=-1.0
 N=2
 EPSR=1.0E-4
 EPSV(1)=0.0
 EPSV(2)=0.0
 MF=10
 ISW=0
 H=1.0E-5
C
 WRITE(6,600)
C
 XEND=1.0E-3
 DO 40 I=1,5
 XEND=XEND*10.0
 10 CALL ODGE(X,Y,FUN,N,XEND,ISW,EPSV,
 *EPSR,MF,H,JAC,VW,IVW,ICON)
 IF(ICON.EQ.10) GO TO 30
 IF(ICON.EQ.10000.OR.ICON.EQ.15000)
 *GO TO 20
 IF(ICON.EQ.16000) WRITE(6,630)
 STOP
 20 WRITE(6,620) EPSR,EPSV(1),EPSV(2)
 GO TO 10
 30 WRITE(6,610) X,Y(1),Y(2)
 40 CONTINUE
 STOP
 600 FORMAT('1',12X,'X',22X,'Y(1)',
 *16X,'Y(2)'/)
 610 FORMAT(6X,E15.8,10X,2(E15.8,5X))
 620 FORMAT(10X,'TOLERANCE RESET',5X,
 *'EPSR=',E12.5,5X,'EPSV(1)=',E12.5,
 *5X,'EPSV(2)=',E12.5)
 630 FORMAT(10X,'NO CONVERGENCE IN',
 *' CORRECTOR ITERATION')
 640 FORMAT(10X,'INVALID INPUT')
 END

 SUBROUTINE FUN(X,Y,YP)
 DIMENSION Y(2),YP(2)
 YP(1)=Y(2)
 YP(2)=-11.0*Y(2)-10.0*Y(1)
 RETURN
 END

 SUBROUTINE JAC(X,Y,PD,K)
 DIMENSION Y(2),PD(K,K)
 PD(1,1)=0.0
 PD(1,2)=1.0
 PD(2,1)=-10.0
 PD(2,2)=-11.0
 RETURN
 END

ODGE

513

Method
Both Gear’s and Adams methods with step size and order
controls are used in this subroutine.
Gear’s method is suitable for stiff equations, whereas
Adams method is suitable for non-stiff equations.

Both methods are multistep methods. The subroutine
employs the identical strategies for storing the solutions
at the past points and for controling the step size and
order between the two methods. Gear’s method will be
described below first, then the step size control and order
control will follow. The modifications necessary to be
made when Adams method is used are also presented.

For simplicity, consider a single equation

y’=f(x,y) , y(x0)=y0

for which the computed solution at xm (referred to as the
solution hereafter) is denoted by ym and the true solution
is referred to as y(xm). The value of f(xm, ym) is
represented shortly as fm, which must be distinguished
from f(xm, y(xm)).
1) Principle of Gear’s method

Assume that y0, y1, ..., ym are known and the solution
ym+1 at

xm+1 = xm + hm+1

is being obtained.
The fundamental ideas of Gear’s method are best
stated as follows:
Now, we consider the interpolation polynomial
πm+1 (x) of degree k satisfying k + 1 conditions

()
kj

yx jmjmm

,...,2,1,0,
111

=

= −+−++π
 (4.1)

Equation (4.1) contains solution ym+1 as an unknown
parameter. The value of ym+1 is determined so that the
derivative of the polynomial 1+mπ (x) at xm+1 is equal
to f(xm+1, ym+1), that is, to satisfy

() ()1111 , ++++ =′ mmmm yxfxπ (4.2)

If we represent πm+1 (x) as a Lagrangian form, and
differentiate it at x = xm+1, (4.2) gives

() ∑
=

−+++++ −=
k

j
jmjmmmm yyxfh

0
1,1111 , α (4.3)

where αm+1,j are constants determined by the
distribution of {xm+1-j}. Generally, since
f(xm+1, ym+1)is nonlinear with respect to ym+1, (4.3)

becomes nonlinear with respect to ym+1; therefore, ym+1
is calculated using an iteration method with an
appropriate initial value. An initial value can be
determined as follows:
Suppose the polynomial πm(x)to be an interpolation
polynomial of degree k satisfying.

()
() ()

=′
== −+−+

mmmm

jmjmm

yxfx

kjyx

,

,...2,1,11

π

π
 (4.4)

Then, pm+1 obtained from

()11 ++ = mmm xp π (4.5)

is regarded as an approximation at xm+1 and is used as
the initial value for the iteration.
In Gear’s method explained above, pm+1 is referred to
as the predictor and ym+1 obtained in the iteration
method is referred to as the corrector. Especially, in
the Gear’s method when k = 1, that is, of order one

()mmmmm yxfhyp ,11 ++ += (4.6)

is used as the predictor, and the solution ym+1 is
obtained from

() mmmmm yyyxfh −= ++++ 1111 , (4.7)

(4.6) and (4.7) are called the Euler method and the
backward Euler method, respectively.
Since Gear’s method is based on the backward
differentiation formula as expressed in (4.3), it is
referred to as the backward differentiation formula
(BDF) method.

2) Nordsieck form for Gear’s method
The predictor is calculated from πm(x), whereas the
corrector is calculated from 1+mπ (x) as explained above.
Since the corrector obtained determines the 1+mπ (x), the
calculation of the corrector means to generate 1+mπ (x).
The determined 1+mπ (x) is used to calculate the
predictor in the next step. This means that one
integration step consists of generating 1+mπ (x) from
πm(x); πm(x) can be expanded into a Taylor series as

() () ()

()

()mmq

q
q

m

k
mk

m

m
mmmmm

x
dx
dy

k
yxx

yxxyxxyx

π

π

=

−+

+
′′

−+′−+=

)(

)(

2

where

!
...

!2

 (4.8)

In this subroutine, coefficients of (4.8) and step size h =
hm+1 = xm+1 –xm are used to express the row vector

()!,...,,)(kyhyhyz k
m

k
mmm ′= (4.9)

ODGE

 514

This is referred to as the Nordsieck expression for the
history of solution and is used to express πm(x);
therefore, the problem to generate 1+mπ (x) from
πm(x) is reduced to obtain the following from zm:

()!,...,,)(
1111 kyhyhyz k

m
k

mmm ++++ ′= (4.10)

Using (4.8), we can express predictor pm+1 as

() ∑
=

++ ==
k

i

i
m

i
mmm iyhxp

0

)(
11 !π (4.11)

The right-hand side is the sum of elements of zm. To
simplify conversion from zm to zm+1 in the prediction,
the following is calculated for (4.11)

Azz mm =+)0(1 (4.12)

where A is the (k + 1) × (k + 1) unit lower triangular
matrix defined as

()

≥
−

=

<
=

ji
jii

i
j
i

ji
aij ,

!!
!

,0

where A = (aij). For example, A is expressed as
follows when k = 5:

A =

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

0

Since the lower triangular portion of A is the Pascal’s
triangle, this is referred to as the Pascal’s triangle
matrix.
Let the first element of zm+1(0) obtained from (4.12) be
ym+1(0), then pm+1

!...)(
)0(1 kyhyhyy k

m
k

mmm ++′+=+

which is equal to pm+1. So ym+1(0) is used hereafter for
pm+1. The (i + 1)-th element of zm+1(0)is equal to

!)/(1
)(ixh m

i
m

i
+π , so calculation of (4.12) means to predict

the solution and higher order derivatives at xm+1.
On the other hand, the corrector is calculated from a
relation between zm+1(0) and zm+1, which is derived below:
The (i + 1) -th element of zm+1 –zm+1(0) is obtained from

() ()

() (){ }
11

1
)(

1
)(

1

!

!!

+=+

+++

−=

−

mxxmmi

ii

m
i

m
i

m
i

m
i

xx
dx
d

i
h

i
xh

i
xh

ππ

ππ

 (4.13)

Since the polynomial ∆m+1 (x) ≡πm+1(x) − πm (x) has
degree k and satisfies conditions

()
()

=−
=

=
++

−++ 0,
,...,2,1,0

011
11 jyy

kj
x

mm
jmm∆

1+m∆ (x) is determined uniquely and can be expanded
at xm+1 in to a Taylor series

() ()() ()∑
=

++++ −−=
k

q

qq
mqmmm hxxlyyx

0
10111∆ (4.14)

where lq is determined depending on the distribution
of {xm+1-j}and more precisely, it is the coefficient of tq
in the expression

+

+

+

ks
t

s
t

s
t 1...11

21
 (4.15)

where sj = (xm+1 –xm+1-j)/h. Although lq also depends on
values k and m, they are omitted in this expression. From
(4.14), we can reduce the right-hand side of (4.13) to (ym+1–
ym+1(0))li, therefore, by introducing

()klll ,...,, 10=l (4.16)

the relation between zm+1 and zm+1(0) is expressed as

() ()()lzz 011011 ++++ −+= mmmm yy (4.17)

This gives how zm+1 is generated after the corrector ym+1 is
determined. The ym+1 can be calculated based on the
relation between the second elements of both sides of
(4.19), that is,

() ()()
()

=′
−+′=′

+++

++++

111

1011011

,where mmm

mmmm

yxfy

lyyyhyh
 (4.18)

This can be written as

()() () ()() 0, 0111
1

011 =′−−− +++++ mmmmm yyxf
l
hyy

 (4.19)

This means that ym+1 is just the zero of

() ()() () ()()011
1

01 , +++ ′−−−≡ mmm yuxf
l
hyuuG (4.20)

, so it is obtained using the Newton’s method (See later).
3) Solutions at an arbitrary value of the independent

variable
Since the step size is taken as large as possible within
the tolerable error, the following situation is typical
about the point xe at which the solution is to be
obtained

xm < xe ≤ xm+1 (4.21)

In this subroutine, after solution ym+1 at

ODGE

515

xm+1 is determined, solution ye at xe is calculated using
elements of zm+1 as follows:

()

(){ } ()
1

0

)(
11

1

,

!

+

=
++

+

=

−=

=

∑
m

k

i

i
m

ii
me

eme

hh

iyhhxx

xy π

 (4.22)

4) Acceptance of solutions
Let lem+1(k) denote the local error of the corrector ym+1,
then the subroutine estimate it as follows using the
difference between the corrector and the predictor:

() ()()011

1

2 1

11

1
1 11

++

−

= −+

−++
+ −

−
−

+−= ∏ mm

k

j jmm

jmm
m yy

xx
xx

l
kle

 (4.23)

If, for some tolerance ε

() ε≤+ klem 1 (4.24)

is satisfied ym+1 is accepted as the solution at xm+1,
then zm+1 is generated from (4.17), to proceed to the
next step.

5) Order and step size controls
This subroutine uses Gear’s method of order1), 2), 3),
4), or 5) depending on the behavior of the solution.
Suppose the order of Gear’s method used at the
previous step to be k, then the order at the current
stop is either k – 1, k or k + 1.
Suppose that solution ym+1 at xm+1 has been accepted
by the method of order k, and the order for the next
step is to be determined. For that purpose, the
subroutine estimates the local errors lem+1(k), lem+1(k –
1) as well as lem+1(k), where lem+1(k – 1) lem+1(k + 1)
means the local errors at xm+1 if the methods of order k
– 1, k + 1 respectively would have been used.
This subroutine estimates lem+1(k – 1) and lem+1(k + 1)
from

() ()()!...1)(
11,11211 kyhlssskle k

m
k

kkm +−−+ ⋅−=− (4.25)

() ()

()

−
−

++

⋅−−=+

∏
−+

−++
+

+++
+ k

jmm

jmm
k

mmmk
m

xx
xx

lk

eQeskle

2 1

11
1,1

111
1

12

1

 (4.26)

where lk-1,1 and lk+1,1 are coefficients of t1 with k replaced
by k – 1 and k + 1 in (4.15), and

()

()()

()!1/1...
2 1

11
211

1
11

0111

+

−
−

+⋅=

=

−=

∏
−+

−++
+

+
++

+++

k
xx
xx

sssc

hhccQ

yye

k

jmm

jmm
km

k
mmmm

mmm

Using the lem+1(q), q = k – 1, k, k + 1, the order is
selected as follows. First from the tolerance ε, we
calculate

()() ()
1,,1,

11
1 +−==

+
+ kkkqqle

q
mq εη (4.27)

where ηq means the tolerable scaling factor of the step
size when order q is to be used for the next step.
Suppose

()q
q

q ηη max=′ (4.28)

then q’ is adopted as the order for the next step. This
means that the step that results in the largest step size
is adopted.
So, the next step size is determined as

hq ⋅′η
If the solution is not accepted because the
condition(4.24) is not satisfied, the step is retaken by
reducing the step size to ηk･h without changing the
order.

6) Adams method
Although Adams method is explained under
“Method” of subroutine ODAM, this subroutine
employs other computational procedures than those of
ODAM. That is, while Adams method is represented
in terms of the modified divided differences in
subroutine ODAM, the Nordsieck form is used in this
subroutine. Much of computational procedures are
shared between Gear’s and Adams methods in this
subroutine.
In Adams method, however, values introduced above
in Gear’s method are modified as follows:

Nordsieck form in Adams method

In Adams method, the true solution y(x) is
approximated by the interpolation polynomial
Pm+1(x) of degree k given by the conditions

() ()

()

=
−=

=′

+

−++−++

mmm

jmmjmm

yxP
kj

yxfxP

1

1111

1,...,1,0

,

 (4.29)

(4.29) contains ym+1 as an unknown parameter, and
ym+1 is determined so that

()∫
+

++ ′+=
1

11
m

m

x

x
dxxPyy mmm

 (4.30)

Since(4.30) contains f(xm+1, ym+1) on the right-hand
side, it generally becomes a nonlinear equation
with respect to ym+1.
To solve this equation, an initial value is
calculated from the polynomial Pm(x) of degree k
given by the conditions

ODGE

 516

() ()

()

=
=

=′ −++−+

mmm

jmmjmm

yxP
kj

yxfxP

,...,2,1

, 111

 (4.31)

as

() ()∫ + ′+== ++
1

11
m

m

x
x dxxPmmmmm yxPp (4.32)

From the above, it follows that Adams method
consists of generating Pm+1(x) from Pm(x). Pm(x)
can be expanded to a Taylor series at xm

() () () !...)(kyxxyxxyxP k
m

k
mmmmm −++′−+=

 (4.33)

where ym
q() q=0,1,..., k means Pm

q() (xm). Using
coefficients of (4.33) and step size h = hm+1 = xm+1
– xm, we introduce a row vector

()!,...,,)(kyhyhyz k
m

k
mmm ′= (4.34)

This is the Nordsieck form of polynomial Pm(x) in
Adams method.

Calculation of zm+1(0)
The zm+1(0) can be calculated in the same way by
(4.12) using zm obtained from (4.34).

Relation between zm+1(0) and zm+1
The (i +1)-th element of zm+1 – zm+1(0) is

() (){ } 11! +=+ −
mxxmmi

ii
xPxP

dx
d

i
h (4.35)

Expanding the polynomial
() () ()xPxPx mmm −≡ ++ 11∆ to a Taylor series, we

get

() ()() ()∑
=

++++ −−=
k

k

qq
mqmmm hxxlyyx

0
10111∆ (4.36)

and by substituting this into (4.35), we can express
(4.35) as (ym+1–ym+1(0))li, where lq is the coefficient
of tq of the polynomial of degree k given by

() ()∫ ∏∫ ∏ −

−

−

−

++
0

1

1

1
1

1

1

k

j
t k

j dusudusu (4.37)

where sj = (xm+1 –x m+1-j)/hm+1. Using lq, we obtain
the relation between zm+1(0) and zm+1 which has the
same from as (4.17).

Local error
Also, in Adams method, local errors at order k – 1,
k, and k + 1 are estimated for the acceptance of the
solution, step size and order control. Let these
errors be lem+1 (k – 1), lem+1(k), lem+1 (k + 1), then
these values are estimated as follows:

() () ()()!1 1
2

0
1

0

1
kyhdusukkle k

m
kk

jm +
−

+

 ∏ +=− ∫− (4.38)

() () 1
1

0
1

0

1 +
−

+

 ∏ += ∫− mk

k
jkm esdusuklkle (4.39)

() () ()mmmk
k

jkm eQeLsdusuklkle 11
0

1
0

1
1 +++ −

 ∏ +=+ ∫−

 (4.40)

where

()
()

() () 1
1

0111 ,1,

+
+

+++

⋅
⋅=

+=−=

k
m

qk

kk
m

mmm

hh
lms
mlsQ

kLyye
 (4.41)

In (4.41), sk(m) and lk(m) are obtained by
substituting m for m+1 in their definitions.
Equations (4.38) to (4.40) are used to check the
solution and to control the order and step size in
the same way as Gear’s method.

7) Extension to a system of differential equations
The above discussion can be applied to each
component of the solution in the case of systems of
differential equations; however, the error estimates,
such as lem+1(k), must be defined as the norms of
vector as follows.
From the user-specified EPSV(I), I = 1, 2, ..., N and
EPSR we introduce

EPS = max (EPSR, max (EPSV(I)))
W(I)=(|Y(I)|･EPSR+EPSV(I))/EPS

and define ERK as

()
()

21

1

2

IW
IERK

= ∑

=

N

I

le (4.42)

where Y(I) and le(I) are the I-th component of the
solution and its local error respectively. Under these
conditions, the subroutine tests

ERK ≤ EPS

If this is satisfied,

() () () N,...,2,1I,IEPSVEPSRIYI =+⋅≤le

is automatically satisfied.
Moreover, norms ERKM1 and ERKP1 which
correspond to lem+1(k–1) and lem+1(k + 1) respectively in
the case of single equations are defined in the same way
as (4.42). The order and step size are controlled based
on (4.27) but with the following substitutions:

ERKP1|)1(|
ERKM1|1)-(|
ERK||)(
EPS

1+

1+

1

→+
→
→
→

+

kle
kle
kle|

m

m

m

ε

ODGE

517

8) Corrector iteration
This subroutine calculates the corrector as a zero of a
nonlinear algebraic equation as mentioned above.
This section summanzes how to obtain the zero in the
case of systems of differential equations. In this case
(4.20) is expressed as

() ()() () ()()011
1

01 , +++ ′−−−≡ mmm x
l
h yufyuuG (4.43)

This subroutine solves (4.43) by the Newton’s method
expressed as

()

()

∂
∂−=

∂
∂=

=
=

−=

+

+

−
++

rr
l
h

r

,rm

m

rrmrr

uu u
fI

u
GP

yu

uGPuu

1
1

010

1
,11

where
,...,2,1,0,

 (4.44)

In the subroutine, Pm+1.r is not evaluated at each
iteration, but

()01

11
1

01 where
+

=−= +++
m

mm,m l
h

yu
fJJIP

∂
∂ (4.45)

is used instead.
This subroutine contains several methods for
evaluating Pm+1,0, For Pm+1,0 calculation, there are
several methods, one of which the user can select
through the parameter MF. Let MF = 10*METH +
ITER, then ITER is the indicator on how to evaluate
Pm+1,0, with the following values and meanings:
0: to evaluate Pm+1,0 by the analytical Jacobian

matrix Jm+1. In this case, the user must prepare
subroutine JAC to evaluate Jm+1.

1. to approximate Pm+1,0 by finite differences.
2: to approximate Pm+1,0 with a diagonal matrix by

finite differences

Dm+1 = diag (d1, d2, ..., dN) (4.46)

where

di=[fi(xm+1, ym+1(0)+v) − fi(xm+1, ym+1(0))] /vi

v = − 0.1 G(ym+1(0))
 = (v1, v2, ..., vN)T

The approximation is effective only when Jm+1 is
diagonally dominant matrix.

3: to approximate Pm+1,0 with the identity matrix I.
In this case (4.44) becomes a simple recurrence
formula

ur+1 = ur – G(ur) (4.47)

This is sufficient to solve nonstiff equations.
Convergence of (4.44) is tested by

() EPS*
W

21

1

2
1 ⋅≤

 −∑
=

+ c
I

N

I

I
r

I
r uu (4.48)

where uI is the I-th element of vector u and c* is a
constant specific to the problem.
This subroutine is based on the code written by
A.C. Hindmarsh and G.D.Byrne (References [76]
and [77]).

ODRK1

 518

H11-20-0131 ODRK1, DODRK1

A system of first order ordinary differential equations
(Runge-Kutta-Verner method, step output, final value
output)
CALL ODRK1 (X, Y, FUN, N, XEND, ISW, EPSA,
EPSR, VW, IVW, ICON)

Function
This subroutine solves a system of first order ordinary
differential equations of the form:

() ()
() ()

() () ⎪
⎪
⎭

⎪
⎪
⎬

⎫

==′

==′
==′

0021

20022122

10012111

,,...,,,
::

,,...,,,
,,...,,,

NNNNN

N

N

yxyyyyxfy

yxyyyyxfy
yxyyyyxfy

 (1.1)

by Rung-Kutta-Verner method, when functions f1,
f2 , ... ,fN and initial values x0, y10,y20, ..., yN0 and the final
value xe are given, i.e. obtains the solution (y1m, y2m, ...,

yNm) at xm= x0+∑
=

m

j
jh

1

 (m=1,2,..., e)

(See Fig. ODRK 1-1). The step size hj is controlled so
that solutions satisfy the desired accuracy.

This subroutine provides two types of output mode as
shown below. The user can select the appropriate mode
according to this purposes.
• Final value output ... Returns to the user program when

the solution at final value xe is obtained.
• Step output ... Returns to the user program each time

the solutions at x1, x2, ... are obtained.
 heh3 h2 h1

xex3 x2 x1 x0
Fig. ODRK1-1 Solution output point xm (in the case x0 < xe)

Parameters
X Input. Starting point x0.

Output. Final value xe. When the step output
is specified, an interim point xm to which the
solutions are advanced a single step.

Y Input. Initial values y10, y20, ... yN0. They must
be given in order of Y(1) = y10, Y(2) = y20, ...,
Y(N) = yN0.
One-dimensional array of size N.
Output. Solution vector at final value xe.
When the step output is specified, the solution
vector at x = xm.

FUN Input. The name of the subprogram which
evaluates fi (i = 1, 2, ..., N) in (1.1).
The form of the subroutine is as follows:
 SUBROUTINE FUN (X, Y, YP)

where
X: Input. Independent variable x.
Y: Input. One-dimensional array of size N,

with corresponding Y(1) = y1,
Y(2) = y2, ... , Y(N) = yN.

YP: Output. One-dimensional array of size
N, with corrosponding YP(1)=f1(x, y1,
y2, ..., yN), YP(2)=f2(x, y1, y2, ..., yN),
YP(N)=fN(x, y1, y2, ..., yN).

N Input. Number of equations in the system.
XEND .. Input. Final point xe to which the system

should be solved.
ISW ... Input. Integer variable to specify conditions in

integration.
ISW is a non-negative integer having two
decimal digits, which can be expressed as

ISW = 10d2 + d1

Each di should be specified as follows:
d1: Specifies whether or not this is the first

call.
0: First call
1: Successive call
The first call means that this subroutine
is called for the first time for the given
differential equations.

d2: Indicator for the output mode
0: Final value output
1: Step output

Output. When this subroutine returns to the user
program after obtaining the solutions at xe or the
solutions at each step, d1 is set as d1 = 1.

When this subroutine is called repeatedly, d1
should not be altered.

The user has to set d1 = 0 again only when
he starts to solve other equations.

EPSA Input. Absolute error tolerance See Method.
EPSR Input. Relative error tolerance.

Output. If EPSR is too small, the value is
changed to an appropriate value. (See Notes.)

VW Work area. One-dimensional array of size 9 N
+ 40.
When calling this subroutine repeatedly, the
contents should not be changed.

IVW Work area. One-dimensional array of size 5.
When calling this subroutine repeatedly, the
contents should not be changed.

ICON .. Output. Condition code. See Table ODRK1-1.

ODRK1

519

Table ODRK1-1 Condition codes

Code Meaning Processing
0 (In step output) A single

step has been taken.
Normal.
Successive
calling is possible.

10 Solution at XEND was
obtained.

Normal.
Successive
calling is possible
after changing
XEND

10000 Integration was not
completed because EPSR
was too small in
comparison with the
arithmetic precision of the
computer used (See
Comments on use.)

Return to user
program before
continuing the
integration.
Successive
calling is possible.

11000 Integration was not
completed because more
than 4000 derivative
evaluations were needed
to reach XEND.

Return to user
program before
continuing the
integration. The
function counter
will be reset to 0
on successive
call.

15000 Integration was not
completed because
requested accuracy could
not be achieved using
smallest alloable stepsize.

Return to user
program before
continuing the
integration. The
user must
increase EPSA or
EPSR before
calling again.

16000 (When EPSA = 0)
Integration was not
completed because
solution vanished, making
a pure relative error test
impossible.

Return to user
program before
continuing the
integration. The
user must
increase EPSA
before calling
again.

30000 Some of the following
occurred:
1. N ≤ 0
2 X = XEND
3 ISW was set to an

improper value.
4 EPSA < 0 or EPSR < 0
5 After ICON = 15000 or

16000 is put out,
successive calling is
done without changing
EPSA or EPSR.

Bypassed

Comments on use
• Subprograms used

SSL II ... AMACH, MGSSL, URKV, UVER
FORTRAN basic functions ... ABS, SIGN, AMAX1,
AMIN1

• Notes
This subroutine may be used to solve non-stiff and
mildly stiff differential equations when derivative
evaluations are inexpensive but cannot be used if high
accuracy is desired.

The name of the subroutine associated with
parameter FUN must be declared as EXTERNAL in
the calling program.

Solutions may be acceptable only when ICON is 0 or
10.

When ICON = 10000 to 11000, the subroutine
returns control to the user program before continuing
the integration. The user can call this subroutine
successively after identifying occurrences. When
ICON = 15000 to 16000, the subroutine returns control
to the user program before continuing the integration.
In these cases, however, the user must increase EPSA
or EPSR then he can call this subroutine successively
(See the example).

Relative error tolerance EPSR is required to satisfy

ur 210EPSR 12
min +=≥ −ε

where u is the round-off unit. When EPSR does not
satisfy the above condition, the subroutine increases
EPSR as

minEPSR rε=

and returns control to the user program with ICON =
10000. To continue the integration, the user may call
the subroutine successively.

In this subroutine, the smallest stepsize hmin is
defined to satisfy

()dxuh ,max26min ⋅=

, where x is independent variable, and d = (xe – x0)/100.
When the desired accuracy is not achieved using the
smallest stepsize, the subroutine returns control to the
user program with ICON = 15000. To continue the
integration, the user may call the subroutine again after
increasing EPSA or EPSR to an appropriate value.

• Example
A system of first order ordinary differential equations

()
()⎪⎩

⎪
⎨
⎧

=−=′
==′

0.10,1
0.10,

212

12
2
11

yyy
yyyy

is integrated from x0 = 0.0 to xe = 4.0, under EPSA =
0.0, EPSR = 10-5. Solutions are put out at each step.

C **EXAMPLE**
 DIMENSION Y(2),VW(58),IVW(5)
 EXTERNAL FUN
 X=0.0
 Y(1)=1.0
 Y(2)=1.0
 N=2
 XEND=4.0
 EPSA=0.0
 EPSR=1.0E-5
 ISW=10
 10 CALL ODRK1(X,Y,FUN,N,XEND,ISW,EPSA,
 *EPSR,VW,IVW,ICON)
 IF(ICON.EQ.0.OR.ICON.EQ.10) GO TO 20
 IF(ICON.EQ.10000) GO TO 30
 IF(ICON.EQ.11000) GO TO 40
 IF(ICON.EQ.15000) GO TO 50

ODRK1

 520

 IF(ICON.EQ.16000) GO TO 60
 IF(ICON.EQ.30000) GO TO 70
 20 WRITE(6,600) X,Y(1),Y(2)
 IF(ICON.NE.10) GO TO 10
 STOP
 30 WRITE(6,610)
 GO TO 10
 40 WRITE(6,620)
 GO TO 10
 50 WRITE(6,630)
 EPSR=10.0*EPSR
 GO TO 10
 60 WRITE(6,630)
 EPSA=1.0E-5
 GO TO 10
 70 WRITE(6,640)
 STOP
 600 FORMAT('0',10X,'X=',E15.7,10X,
 *'Y(1)=',E15.7,10X,'Y(2)=',E15.7)
 610 FORMAT('0',10X,'RELATIVE ERROR',
 *' TOLERANCE TOO SMALL')
 620 FORMAT('0',10X,'TOO MANY STEPS')
 630 FORMAT('0',10X,'TOLERANCE RESET')
 640 FORMAT('0',10X,'INVALID INPUT')
 END
 SUBROUTINE FUN(X,Y,YP)
 DIMENSION Y(2),YP(2)
 YP(1)=Y(1)**2*Y(2)
 YP(2)=-1.0/Y(1)
 RETURN
 END

Method
Defining solution vector y(x), function vector f(x,y),
initial vector y0 as

() ()
() () () ()()

()T020100

T
21

T
21

,...,,

,,,...,,,,,

,,...,,

N

N

N

yyy

xfxfxfx

yyyx

=

=

=

y

yyyyf

y

 (4.1)

the initial value problem of a system of first order
ordinary differential equations (1.1) can be rewritten as:

y’(x) = f(x,y), y(x0) = y0 (4.2)

• Runge-Kutta-Verner method
This subroutine uses the Runge-Kutta-Verner method
with estimates of the truncation error as shown below
(The excellence of this method are described in
Reference [73]).

Solutions at point xm+1 = xm + hm+1 are obtained by
using the formulas below

()

++

−−+−=

−=

+

+++−+=

+++++=

+−+

 −−++=

+−

 ++−+=

+−

 ++−+=

 ++−++=

 ++−+=

 +−+=

 ++=

=

∗
++

+

∗
+

++

++

++

++

++

++

++

+

87

65431

11

8

754311

654311

754

321118

54

321117

54

321116

4321115

321114

21113

1112

11

35
2

8320
891

700
73

320
33

2240
891

325
132

640
33

35
2

8320
891

320
121

2240
1377

65
16

640
57

700
73

160
77

1120
243

25
4

80
3

3328
693

384
539

128
5985

78
4219

4
9

256
3015,

27
52

11
416

891
39520

297
656

891
8716,

9
8
1752
2695

584
12285

219
5380

73
72

73
369,

11
54

11
56

11
4

33
40,

3
2

81
8

27
4

81
2,

9
2

4
1

12
1,

6
1

18
1,

18
1

,

kk

kkkkk

yyT

k

kkkkkyy

kkkkkyy

kkk

kkkyfk

kk

kkkyfk

kk

kkkyfk

kkkkyfk

kkkyfk

kkyfk

kyfk

yfk

mm

mm

mm

mmmm

mmmm

mmmm

mmmm

mmmm

mmmm

mmmm

mmm

hxh

hxh

hxh

hxh

hxh

hxh

hxh

xh

 (4.3)

 In the above formula, y*
m+1 and ym+1 are approximations

with 5th and 6th order truncation error respectively, and
T is an estimate of the local truncation error in y*

m+1. In
this subroutine, the approximation ym+1 with higher
accuracy is accepted as the solution when y*

m+1 satisfies
the desired accuracy.

• Stepsize control

Initial stepsize determination:
Since y*

m+1 given by (4.3) is a 5th order approximation,
the local truncation error at x1 = x0 + h is estimated by
h5 times hf(x0,y0) which is the term of degree one in h
in the Taylor expansion of the solution y(x0 + h) at x0.
So the initial stepsize h1 is determined by

(){ }dxuhh ,max26,max 011 ⋅′= (4.4)

where

ODRK1

521

(){
()}0

00
6

1

EPSR

EPSA,min

xy

xfhhh

i

iii
Ni

⋅+

==′
≤≤

y
 (4.5)

() uxxd e 210EPSR,100 -12
0 +≥−= (4.6)

 (u is the round-off error unit)

Solution acceptance and rejection:
When an estimate T of local truncation error given by
(4.3) satisfies the following condition, the solution ym+1
is accepted.

() ()

Ni

xyxy
T mimi

,...,2,1,
2

EPSR+EPSA 1

=

+
⋅≤ −

i (4.7)

This test becomes a relative error test when EPSA = 0.
Such pure relative error test is recommendable if the
user wants to be sure of accuracy. If EPSR = 0.0, it is
corrected to EPSR = 10-12+2u automatically in the
subroutine. At this time, unless the absolute value of
the solution is so large, EPSA becomes the upper
bound of the absolute error. If the absolute value of the
solution is large, the second term of the right hand side
in (4.7) becomes the upper bound of the absolute error,
so (4.7) is essentially relative error test.
Stepsize control:
The dominant term of the truncation error term in i-th
component of y*

m+1 can be expressed as h6Ci with h
being a stepsize, Ci being a constant. If h is sufficiently
small,

ii TCh ≈6 (4.8)

holds. If the stepsize h is changed to sh, the estimated
truncation error changes from Ti to s6 Ti.
• If the previous stepsize is unsuccessful i.e., if

() ()
2

EPSR+EPSA 100
0

++
⋅> mimi

i
xyxy

T (4.9)

holds for some integer i0, the stepsize for the next
trial is determined as follows. In order that i-th
component of the solution may be accepted, the
magnifying rate si for stepsize must satisfy the
condition

() ()
2

EPSREPSA 16 ++
⋅+= mimi

ii
xyxy

Ts (4.10)

Taking the minimum of si for i = 1, ..., N and then
multiplying it by a safety constant 0.9, the rate can be
obtained as

() ()6
1

1

2
EPSR+EPSA

min9.0
i

mimi

Ni T

xyxy

s

+

≤≤

+
⋅

=

 (4.11)

If s determined by (4.11) is equal to or less than 0.1,
s = 0.1 is assumed. If s < 0.1, that is,

() ()
6

11
9

2
EPSR+EPSA

max >
+

⋅ +≤≤ mimi

i

Ni xyxy
T

 (4.12)

s is calculated from (4.11).
• If the previous stepsize is successful

i.e. if s determined by (4.11) is equal to or greater than
5, s = 5.0 is assumed. If s < 5.0, that is,

() ()
6

11 50
9

2
EPSR+EPSA

max

>

+
⋅ +≤≤ mimi

i

Ni xyxy
T

s is calculated from (4.11).

For a detailed description of the Runge-Kutta-Verner
method, see Reference [72].

PNR

 522

F12-15-0402 PNR, DPNR

Permutation of data (reverse binary transformation
CALL PNR (A, B, NT, N, NS, ISN, ICON)

Function
When complex data {αk} of dimension n is given, this
subroutine determines { kα~ } using reverse binary
transformation. Also if { kα~ } is given, determines {αk}.
n must be a number expressed as n = 21 (l: 0 or a positive
integer).
 The reverse binary transformation means that the
element of {αk} or { kα~ } located

k = k0 + k1･2 + + kl-1･2l–1 (1.1)

is moved to location

1
021 2...2

~ −
−− ⋅++⋅+= l

ll kkkk (1.2)

This routine performs the data permutation required in
Fast Fourier Transform method.

Parameters
A Input. Real parts of {αk} or { kα~ }.

Output. Real parts of { kα~ } or {αk}.
One-dimensional array of size NT.

B Input. Imaginary parts of {αk} or{ kα~ }.
Output. Imaginary parts of { kα~ } or {αk}.
One-dimensional array of size NT.

NT Input. Total number of data (≥N) including
the {αk} or { kα~ } to be permuted.
Normally, NT = N is specified.
(See “Notes”.)

N Input. Dimension n.
NS Input. The interval of the consecutive data

{αk} or { kα~ } to be permuted of dimension n
in the NT data (≥ 1 and ≤ NT).
Normally, NS = 1 is specified.
(See “Notes”.)

ISN Input. Interval (≠0) of the NT data.
Normally, ISN = 1 is specified.
(See “Notes”.)

ICON Output. Condition code. See Table PNR-1.

Table PNR-1 Condition codes

Code Meaning Processing
0 No error

30000 ISN = 0, NS < 1, NT < N, NT
< NS, or N≠2l (l : 0 or a
positive integer)

Bypassed

One-dimensional array
A(NT) which contains {xJ1,J2}

NT
(=N1×N2)

x1,2

x0,2

x1,1

x0,1

x1,0

x0,0

xN1−1,N2−1

xN−1,1

xN−1,0

Fig. PNR-1 Storage of {xJ1,J2}

Comments on use
• Subprograms used

SSL II MGSSL
FORTRAN basic functions ALOG and IABS

• Notes

Use I:
This subroutine is usually used with subroutine CFTN
or subroutine CFTR. Discrete complex Fourier
transform and inverse Fourier transform are defined
generally

1,...,1,0,1 1

0

−== ∑
−

=

− nkx
n

n

j

jk
jk ωα (3.1)

and

∑
−

=

−==
1

0

1,...,1,0,
n

k

jk
kj njx ωα (3.2)

In CFTN, the transform in (3.3) or (3.4), corresponding
to (3.1) or (3.2), is performed.

1,...,1,0,~
1

0

−== ∑
−

=

− nkxn
n

j

jk
jk ωα (3.3)

1,...,1,0,~
1

0

−== ∑
−

=

njx
n

k

jk
kj ωα (3.4)

 In CFTR, the transform in (3.5) or (3.6), corresponding
to (3.1) or (3.2) is performed.

1,...,1,0,~
1

0

−== ∑
−

=

− nkxn
n

j

jk
jk ωα (3.5)

1,...,1,0,~
1

0

−== ∑
−

=

njx
n

k

jk
kj ωα (3.6)

PNR

 523

Thus, this subroutine is used with CFTN, after the
transformation of (3.3) or (3.4), to permute { kα~ } or

}~{ jx into {αk} or {xj}.
When used with CFTR, just before the transformation of
(3.5) or (3.6) is performed, this routine permutes {xj} or
{αk} into }~{ jx or{ kα~ }. Since the parameters of this
subroutine are essentially the same as with CFTN and
CFTR, their specifications are the same.
Refer to Examples (a) and (b).
Use II:
This subroutine can be also used when performing a
multi-variate Fourier transform or inverse Fourier
transform with CFTN or CFTR.
A multi-variate discrete complex Fourier transform is
defined generally for two variate

12,...,1,02,11,...,1,01,

21
1 11

01

12

02

2,2
2

1,1
12,12,1

−=−=

⋅
= ∑ ∑

−

=

−

=

−−

NKNK

x
NN

N

J

N

J

KJKJ
JJKK ωωα

 (3.7)

With CFTN, the transform in (3.8), corresponding to
(3.7) can be done.

12,...,1,02,11,...,1,01,

~21
11

01

12

02

22
2

11
12,12,1

−=−=

=⋅ ∑ ∑
−

=

−

=

⋅−⋅−

NKNK

xNN
N

J

N

J

KJKJ
JJKK ωωα

 (3.8)

 With CFTR, the transform in (3.9), corresponding to
(3.7) can be done.

12,...,1,02,11,...,1,01,

~21
11

01

12

02

2,2
2

1,1
12,12,1

−=−=

=⋅ ∑ ∑
−

=

−

=

−−

NKNK

xNN
N

J

N

J

KJKJ
JJKK ωωα

 (3.9)

For an inverse transform, a transform similar to a one-
variable transform can be performed. When this
subroutine is used with CFTN, after the transformation of
(3.8) is performed, {N1.N2 2.1

~
kkα } is permuted. If used

with CFTR, just before the transformation of (3.9),{xj1.j2}
is permuted.
Refer to Example (c).
Specifying ISN:
If NT real parts and imaginary parts of {αk} or { kα~ } are
each stored in areas of size NT･I in intervals of I, the
following specification is made.

ISN = I

 The permuted results are also stored in intervals of I.

• Examples

(a) Permutation after a one-variable transform Given
complex time series data {xj} of dimension n, after
a Fourier transform is performed using

subroutine CFTN, the results {n kα~ } are permuted
with this subroutine and scaled to obtain{αk}.
In case of n ≤ 1024 (= 210).

C **EXAMPLE**
 DIMENSION A(1024),B(1024)
 READ(5,500) N,(A(I),B(I),I=1,N)
 WRITE(6,600) N,(I,A(I),B(I),I=1,N)
 CALL CFTN(A,B,N,N,1,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 CALL PNR(A,B,N,N,1,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 DO 10 I=1,N
 A(I)=A(I)/FLOAT(N)
 B(I)=B(I)/FLOAT(N)
 10 CONTINUE
 WRITE(6,620) (I,A(I),B(I),I=1,N)
 STOP
 500 FORMAT(I5/(2E20.7))
 600 FORMAT('0',10X,'INPUT DATA N=',I5/
 * /(15X,I5,2E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5)
 620 FORMAT(15X,I5,2E20.7)
 END

(b) Permutation before a one-variable transform
Given complex time series data {xj} of dimension n,
before performing a Fourier transform, the data is
permuted using this subroutine, and a transform is
performed on the results }~{ jx using subroutine

CFTR, and then scaling is performed to obtain {αk}.
In case of n ≤ 1024 (= 210).

C **EXAMPLE**
 DIMENSION A(1024),B(1024)
 READ(5,500) N,(A(I),B(I),I=1,N)
 WRITE(6,600) N,(I,A(I),B(I),I=1,N)
 CALL PNR(A,B,N,N,1,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 CALL CFTR(A,B,N,N,1,1,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 DO 10 I=1,N
 A(I)=A(I)/FLOAT(N)
 B(I)=B(I)/FLOAT(N)
 10 CONTINUE
 WRITE(6,620) (I,A(I),B(I),I=1,N)
 STOP
 500 FORMAT(I5/(2E20.7))
 600 FORMAT('0',10X,'INPUT DATA N=',I5/
 * /(15X,I5,2E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5)
 620 FORMAT(15X,I5,2E20.7)
 END

PNR

 524

(c) Permutation after a two-variate transform
Given complex time series data {xj1,j2} of dimension
N1 and N2, a Fourier transform is performed with
the subroutine CFTN, then the results {N1⋅N2

2.1
~

kkα } are permuted by this subroutine and scaled
to obtain { 2.1 kkα }.
In case of N1･N2 ≤ 1024 (= 210). The data {xj1,j2}
can be stored as shown in Fig. PNR-1.

C **EXAMPLE**
 DIMENSION A(1024),B(1024),N(2)
 READ(5,500) (N(I),I=1,2)
 NT=N(1)*N(2)
 READ(5,510) (A(I),B(I),I=1,NT)
 WRITE(6,600) N,(I,A(I),B(I),I=1,NT)
 NS=1
 DO 10 I=1,2
 CALL CFTN(A,B,NT,N(I),NS,1,ICON)
 IF(ICON.NE.0) STOP
 CALL PNR(A,B,NT,N(I),NS,1,ICON)
 NS=NS*N(I)
 10 CONTINUE
 DO 20 I=1,NT
 A(I)=A(I)/FLOAT(NT)
 B(I)=B(I)/FLOAT(NT)
 20 CONTINUE
 WRITE(6,610) (I,A(I),B(I),I=1,NT)
 STOP
 500 FORMAT(2I5)
 510 FORMAT(2E20.7)
 600 FORMAT('0',10X,'INPUT DATA N=',2I5/
 * /(15X,I5,2E20.7))
 610 FORMAT('0',10X,'OUTPUT DATA'/
 * /(15X,I5,2E20.7))
 END

Method
As is necessary with the radix 2 Fast Fourier Transform,
this subroutine performs permutation such that the result
is in reverse binary order against input order.

First, let a discrete complex Fourier transform be
defined as

1,...,1,0,2exp
1

0

−=

 −= ∑

−

=

nk
n
jkix

n

j
jk πα (4.1)

In (4.1) the scaling factor 1/n is omitted.
The use of Fast Fourier Transform method is considered
for n = 2l. (Refer to the section on subroutine CFT for
the principles of the Fast Fourier Transform method).

When transforming in an area with only {xj} specified,
data must be permuted immediately before or after
transformation. In other words, when k and j of (4.1) are
expressed as

1,0,...,,2...2

1,0,...,,2...2

10
1

110

10
1

110

=⋅++⋅+=

=⋅++⋅+=

−
−

−

−
−

−

l
l

l

l
l

l

jjjjjj

kkkkkk
 (4.2)

the Fast Fourier Transform results become ~α (k0 + kl･

2+ ... + kl–1･2l–l) against ~α (kl–1+ kl–2･2+...+k0･2l–1)
 In this case α (k0 + kl･2+ ...+ kl–1･2l–l)≡αk0+k12+…kl-12l-1

can be understood to be the order of data {αk} expressed
in reverse binary order.

Therefore, the data order of { kα~ } against {αk} is in
reverse binary order, and final data permutation becomes
necessary. On the other hand, if { kα~ } and j are
expressed as

1,0,...,,2...2

1,0,...,,2...2

10
1

021

10
1

021

=⋅++⋅+=

=⋅++⋅+=

−
−

−−

−
−

−−

l
l

ll

l
l

ll

jjjjjj

kkkkkk
 (4.3)

 the results of the Fast Fourier Transform are in normal
order without permutation as

()1
110 2...2 −

− ⋅++⋅+ l
lkkkα

 If the order of the data {xj} is permuted in a reverse
binary order as shown in j of (4.3) before transformation,
final data permutation is not needed. As previously
mentioned, with the Fast Fourier Transform for certain
data{α}, transposition of data in location shown in (4.4)
and (4.5) is required.

1
110 2...2 −

− ⋅++⋅+= l
lkkkk (4.4)

1
021 2...2~ −

−− ⋅++⋅+= l
ll kkkk (4.5)

 Given {αk} or{ kα~ }, this subroutine permutes the data
by reverse binary order of transformation to obtain { kα~ }
or {αk}.
Basic conditions for permutation are:
• For k= ~k , transposition is unnecessary
• For k≠ ~k , α(k) and)

~
(kα (or,)

~
(kα and)

~
(~ kα)are

permuted.

 For further information, refer to References [55], [56],
[57].

RANB2

525

J12-20-0101 RANB2

Generation of binomial random integers
CALL RANB2 (M, P, IX, IA, N, VW, IVW, ICON)

Function
This subroutine generates a sequence of n pseudo random
integers from the probability density function (1.1) of
binomial distribution with moduli m and p.

()

,...2,1,,...,1,0,10,

1

==<<

−

= −

mmkp

pp
k
m

P kmk
k (1.1)

where n ≥ 1.

Parameters
M Input. Modulus m.
P Input. Modulus p.
IX Input. Starting value of non-negative integer

(must be INTEGER*4)
Output. Starting value for next call of RANB2.
See Notes.

IA Output. n binomial pseudo random integers.
N Input. Number of n of binomial pseudo

random integers to be generated.
VW Work area. One-dimensional array of size m +

1.
IVW Work area. One-dimensional array of size m +

1.
ICON Output. Condition code.

See Table RANB2-1.

Table RANB2-1 Condition codes

Code Meaning Processing
0 No error

30000 M < 1, P ≤ 0, P ≥ 1, IX < 0 or
N < 1

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic functions ALOG, EXP, DMOD,
FLOAT

• Note

− Starting value IX
This subroutine transforms uniform pseudo random
numbers into binomial random integers. Parameter
IX is given as the starting value to generate uniform
pseudo random numbers. It is handled in the same
way as RANU2.
 See comments on use for RANU2.

− The contents of VW and IVW should not be

changed as long as the same value has been specified
in parameter M and P.

• Example

Generating 10000 pseudo random numbers from a
binomial distribution with m = 20 and p = 0.75, the
frequency distribution histogram is plotted.

C **EXAMPLE**
 DIMENSION IA(10000),VW(21),IVW(21),
 * HSUM(21)
 INTEGER*4 IX
 DATA X1,X2/-0.5,20.5/
 DATA NINT,XINT/21,1.0/
 DATA M,P,IX,N/20,0.75,0,10000/
 DO 10 I=1,21
 10 HSUM(I)=0.0
 CALL RANB2(M,P,IX,IA,N,VW,IVW,ICON)
C SUM NOS. IN HISTGRAM FORM
 ISW=1
 DO 20 I=1,N
 X=IA(I)
 20 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
C PLOT DISTRIBUTION
 WRITE(6,600)
 ISW=2
 CALL HIST(X,X1,X2,NINT,HINT,HSUM,
 * ISW)
 STOP
 600 FORMAT('1',10X,'BINOMIAL RANDOM',
 *' NUMBER DISTRIBUTION'//)
 END

For detailed information on subroutine HIST, see the
Example in subroutine RANU2.

Method
Binomial random integers are generated as indicated
below. When integer l is determined so that a pseudo
random number u generated from uniform distribution in
the interval (0, 1) satisfies equation (4. 1) l is a binomial
random integer.

ll FuF <≤−1 (4.1)

where Fl is a binomial cumulative distribution function
shown in (4.2).

() mlpp
k
m

F

F
l

k

kmk
l ,...,1,0,1

0

0

1

=−

=

=

∑
=

−

−

 (4.2)

Figure RANB2-1 represents(4.1) where m = 6 and p =
0.5. For example when u = 0.74321, l = 4.

RANB2

526

6543210−1

1.0

0.7

0.5

l

Fl

Fig. RANB2-1 Binomial cumulative distribution function Fl

Since this cumulative distribution is unique when m
and p are determined, it is time consuming to compute
(4.2) each time for a binomial random integer. Therefore
if the cumulative distribution table is generated once, it
can be used for reference for the subsequent computation.
Parameter VW is used for these reference. If u is a value
close to 1, checking l = 1, 2, ... in (4.1) is also time
consuming. Parameter IVW is used as an index table to
start l at an appropriate value depending upon value u.

For further information, see Reference [93].

RANE2

527

J11-30-0101 RANE2

Generation of exponential pseudo random numbers
CALL RANE2 (AM, IX, A, N, ICON)

Function
This subroutine generates a sequence of n pseudo random
numbers form the probability density function (1.1) of
exponential distribution with mean value m.

()
1and,0,0Where,

1

≥>≥

=
−

nmx

e
m

xg m
x

 (1.1)

Parameters
AM..... Input. Mean value of exponential distribution,

m.
IX..... Input. Starting value of non-negative integer

(must be INTEGER *4).
Output. Starting value for next call of RANE2.
See Comments on use below.

A..... Output. n random numbers.
One-dimensional array of size, n.

N..... Input. Number of pseudo-random numbers to
be generated.

ICON.. Output. Condition codes. See Table RANE2-1.

Table RANE2-1 Condition codes

Code Meaning Processing
0 No error

30000 AM ≤ 0, IX < 0 or N < 1 Bypassed

Comments on use
• Subprograms used

SSL II ... RANU2 and MGSSL
FORTRAN basic functions ... ALOG and DMOD

• Note

Starting value IX
This subroutine transforms uniform pseudo random
numbers generated by RANU2 into exponential pseudo
random numbers. Parameter IX is given as the starting
value to generate uniform pseudo random numbers.
See comments on use for RANU2.

• Example

10,000 exponential pseudo random numbers from
exponential distribution with mean value 1.0 are
generated and the frequency distribution histogram is
plotted.

C **EXAMPLE**
 DIMENSION A(10000),HSUM(12)
 INTEGER*4 IX
 DATA X1,X2,NINT,XINT/0.0,6.0,12,0.5/
 DATA AM,IX,N/1.0,0,10000/
 DO 10 I=1,12
 10 HSUM(I)=0.0
 CALL RANE2(AM,IX,A,N,ICON)
C SUM NOS. IN HISTGRAM FROM
 ISW=1
 DO 20 I=1,N
 X=A(I)
 20 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
C PLOT DISTRIBUTION
 WRITE(6,600)
 ISW=2
 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
 STOP
 600 FORMAT('1',10X,'EXPONENTIAL',
 * ' RANDOM NUMBER DISTRIBUTION'//)
 END

See the example in RANU2 for subroutine HIST.

Method
Exponential pseudo random numbers {y} are generated
by

y m u= − log (4.1)

where, {u} is a sequence of uniform (0, 1) pseudo
random numbers generated and m is the mean value.

The function, (4.1), can be derived as follow:
The cumulative exponential distribution function F(y)

will be obtained from (1.1)

() () y
my x

my edxe
m

dxxgyF
1

0

1

0
11 −−

−=== ∫∫ (4.2)

Let u1 be one of the uniform pseudo random numbers,
(4.3) is obtained from (4.2) based on the relation u = F(y).

()y m u1 11= − −log (4.3)

 Thus, exponential pseudo random numbers y1, y2, y3,
can be transformed one to one from uniform pseudo
random numbers, u1, u2, u3,

RANN1

528

J11-20-0301 RANN1

Fast normal pseudo random numbers
CALL RANN1 (AM, SD, IX, A, N, ICON)

Function
This subroutine generates n pseudo random numbers
from a given probability density function (1.1) of normal
distribution with mean value m and standard deviation σ:

() () 22 2

2
1 σ

σπ
mxexg −−= (1.1)

where n ≥ 1

Parameters
AM..... Input. Mean value m of the normal

distribution.
SD..... Input. Standard deviation σ of the normal

distribution.
IX..... Input. Initial value of nonnegative integer

(must be INTEGER*4).
Output. Initial value for the next call of this
subroutine. (See “Comments on Use”.)

A..... Output. n pseudo random numbers. One-
dimensional array of size n.

N..... Input. Number of pseudo random numbers n
to be generated.

ICON.. Output. Condition code. (See Table RANN-
1).

Table RANN-1 Condition codes

Code Meaning Processing
0 No error

30000 IX < 0 or N < 1. Bypassed.

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic functions ... SQRT, ALOG, ABS,

 SIGN, DFLOAT, DINT

• Notes

Initial value IX
This subroutine generates uniform pseudo random
numbers and then transforms them to normal pseudo
random numbers.

Parameter IX is specified as the initial value to
generate uniform pseudo random numbers and is
processed in the same way as for RANU2. (See
“Comments on Use” for RANU2.)

 This subroutine generates normal pseudo random
numbers faster than subroutine RANU2.

• Example

Given a normal distribution having mean value 0 and
standard deviation 1.0, this subroutine generates
10,000 pseudo random numbers and a frequency
distribution histogram is plotted.

C **EXAMPLE**
 DIMENSION A(10000),HSUM(12)
 INTEGER*4 IX
 DATA X1,X2/-3.0,3.0/
 DATA NINT,XINT/12,0.5/
 DATA AM,SD,IX,N/0.0,1.0,0,10000/
 DO 10 I=1,12
 10 HSUM(I)=0.0
 CALL RANN1(AM,SD,IX,A,N,ICON)
C SUM NOS. IN HISTGRAM FORM
 ISW=1
 DO 20 I=1,N
 X=A(I)
 20 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
C PLOT DISTRIBUTION
 WRITE(6,600)
 ISW=2
 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
 STOP
 600 FORMAT('1',10X,'NORMAL RANDOM',
 *' NUMBER DISTRIBUTION'//)
 END

See “Example” for subroutine RANU2 for subroutine
HIST in this example.

Method
The inverse function method is used to generate normal
pseudo random numbers. For uniform pseudo random
numbers ui (i = 1, 2, ..., n) in interval (0, 1)
transformation.

() muGz ii += − σ1 (4.1)

is applied to generate normal pseudo random numbers zi
(i = 1, 2, ..., n), where G-1(u) is an inverse function of
cumulative normal distribution function

() ()∫ ∞−= x dxxgzG

This subroutine uses Ninomiya’s best approximation to
realize high-speed G-1 (u) calculation.
1) For u − ≤0 5 0 46875. .

() ()()bxdxecxuG +++=− 221

where x= u − 0.5 and the theoretical absolute error is 7.9･
10-4.

RANN1

529

2) For 46875.05.0 >−u

G-1(u) = sign(u-0.5)･p(v+q+r/v)

where ()5.05.0log −−−= uv

and the theoretical absolute error is 9.3･10-4.

Since the formula of 1) is used in most cases
(probability is 15/16), high-speed calculation is realized.

RANN2

530

J11-20-0101 RANN2

Generation of normal pseudo random numbers
CALL RANN2 (AM, SD, IX, A, N, ICON)

Function
This subroutine generates a sequence of n pseudo random
numbers from the probability density function (1.1) of
normal distribution with mean value m and standard
deviation σ.

() ()

1where
2
1 22 2

≥

= −−

n

exg mx σ

σπ (1.1)

Parameters
AM..... Input. Mean value of the normal distribution,

m.
SD..... Input. Standard deviation of the normal

distribution, σ.
IX..... Input. Starting value of non-negative integer

(must be INTEGER*4)
Output. Starting value for the next call of
RANN2.
See comments on use below.

A..... Output. n pseudo random numbers. One-
dimensional array of size n.

N..... Input. Number of pseudo-random numbers to
be generated.

ICON.. Output. Condition codes. See Table RANN2-1.

Table RANN2-1 Condition codes

Code Meaning Processing
0 No error

30000 IX < 0 or N < 1 Bypassed

Comments on use
• Subprograms used

SSL II ... RANN2 and MGSSL
FORTRAN basic functions ... SQRT, ALOG, SIN,
COS and DMOD

• Notes

Starting value IX
This subroutine transforms uniform pseudo random
numbers generated by RANU2 into normal pseudo
random numbers. Parameter, IX is given as the starting
value to generate uniform pseudo random numbers.
See Comments on use for RANU2.

• Example
10,000 normal pseudo random numbers are generated
from normal distribution with mean value 0 and
standard deviation 1.0 and the frequency distribution
histogram is plotted.

C **EXAMPLE**
 DIMENSION A(10000),HSUM(12)
 INTEGER*4 IX
 DATA X1,X2/-3.0,3.0/
 DATA NINT,XINT/12,0.5/
 DATA AM,SD,IX,N/0.0,1.0,0,10000/
 DO 10 I=1,12
 10 HSUM(I)=0.0
 CALL RANN2(AM,SD,IX,A,N,ICON)
C SUM NOS. IN HISTGRAM FORM
 ISW=1
 DO 20 I=1,N
 X=A(I)
 20 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
C PLOT DISTRIBUTION
 WRITE(6,600)
 ISW=2
 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
 STOP
 600 FORMAT('1',10X,'NORMAL RANDOM',
 *' NUMBER DISTRIBUTION'//)
 END

Refer to the example in RANU2 for subroutine HIST.

Method
Normal pseudo random numbers are generated using the
Box and Müller method, according to (4.1) and (4.2):

() muuz iii +−= +12
1

2coslog2 πσ (4.1)

() muuz iii +−= ++ 12
1

1 2sinlog2 πσ (4.2)

Where m and σ are the mean value and standard
deviation of normal distribution respectively.

Thus, normal pseudo random number (z1, z2, z3, ...) are
calculated from as many uniform pseudo random number
(u1, u2, u3, ...). Here, when the odd number of normal
pseudo random number is to be generated, a pair of
uniform random numbers is required for the last one.

RANP2

531

J12-10-0101 RANP2

Generation of Poisson pseudo random integers
CALL RANP2 (AM, IX, IA, N, VW, IVW, ICON)

Function
This subroutine generates a sequence of n pseudo random
integers from the probability density function (1.1) of
Poisson distribution with mean value m.

!k
mep

k
m

k
−= (1.1)

where, m < 0, k is non-negative integer, and n ≥ 1.
(Refer to Fig. RANP2-1)

1614 1715131211109876543210

0.6

0.5

0.4

0.3

0.2

0.1

Pk

k

m=2

m=8

m=1

m=0.5

m=3 m=4

Fig. RANP2-1 Polission probability distribution function, Pk

Parameters
AM..... Input. Mean value of Poisson distribution, m.

See Comments on use below.
IX..... Input. Starting value of non-negative integer

(must be INTEGER*4).
Output. Starting value of next call of RANP2.
See Comments on use below.

IA..... Output. Poisson pseudo random integers.
One-dimensional array of size n.

N..... Input. Number n of Position pseudo random
integers to be generated.

VW.... Work area. One-dimensional array of size [2m
+ 10].

IVW... Work area. One-dimensional array of size [2m
+ 10].

ICON.. Output. Condition codes. See Table RANP2-
1.

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic functions ... EXP and DMOD

Table RANP2-1 Condition codes

Code Meaning Processing
0 No error

30000 AM ≤ 0, AM > log(flmax) IX < 0
or N < 1

Aborted

• Notes

AM ≤log(flmax)
Because, for AM > log(flmax), the value e-m underflows
in computation of Fn in (4.2).
For a large AM (≥ 20), the Poisson pseudo random
integers may be approximated by the normal pseudo
random numbers with the mean value m and standard
deviation m.
See Methods.
Starting value IX
This subroutine transforms uniform pseudo random
numbers generated by RANU2 into Poisson Pseudo
random integers. Parameter, IX is given as the starting
value to generate the uniform pseudo random numbers.
See Comment on use for RANU2.
Both VW and IVW must not be altered while
parameter AM remains the same.

• Example

10,000 Poisson pseudo random integers from Poisson
distribution with mean value 1.0 are generated and the
frequency distribution histogram is plotted.

C **EXAMPLE**
 DIMENSION IA(10000),VW(12),
 * IVW(12),HSUM(6)
 INTEGER*4 IX
 DATA X1,X2/-0.5,5.5/
 DATA NINT,XINT/6,1.0/
 DATA AM,IX,N/1.0,0,10000/
 DO 10 I=1,6
 10 HSUM(I)=0.0
 CALL RANP2(AM,IX,IA,N,VW,IVW,ICON)
C SUM NOS. IN HISTGRAM FORM
 ISW=1
 DO 20 I=1,N
 X=IA(I)
 20 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
C PLOT DISTRIBUTION
 WRITE(6,600)
 ISW=2
 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
 STOP
 600 FORMAT('1',10X,'POISSON RANDOM',
 *' NUMBER DISTRIBUTION'//)
 END

RANP2

532

Refer to the example in RANU2 for subroutine HIST.

Methods
Poisson pseudo random integer is determined as l when
pseudo random number l generated from uniform
distribution on the range (0, 1) satisfies the relationship.

ll FuF <≤−1 (4.1)

where F1 is the Poisson cumulative distribution function
defined in (4.2)

01 =−F
 (4.2)

=== ∑∑
=

−

=
l

k
mepF

l

k

k
m

l

k
kl ,

!00
0,1,2,...

Fig. RANP2-2 demonstrates the generation of Poisson
random integers according to the transformation in (4.1)
where, u = 0.84321 and l = 2.

Since m determines the form of cumulative distribution
function Fl if a table of cumulative distribution function
for given value of m is once determined, repetitive
computations of (4.2) will be eliminated.

Parameter VW is used to support this table.
Further, u gets closer to 1, it would be of no use to

search this table step by step starting from 0 in ascending
order. Here again, parameter IVW is used to give a
proper index to search this table depending upon the
value of u.

[The effect of truncation in computation of Fl]
Since Poisson distribution (4.2) continues infinitively,
computation of Fl must be stopped at an appropriate
value of n.
This value depends upon the precision of computation in
(4.2). Once Fl-1 for l = 1, 2, 3, ..., further computation in
(4.2) is meaningless. When m ≥ 20, because of the above
affection, Poisson pseudo-random integers may be better
approximated by the normal pseudo-random integers with
(mean value m and standard deviation m).

u

−1
l

6543210

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1.0

Fl
m=1

Fig. RANP2-2 Poissons cumulative distribution functionFl

RANU2

533

J11-10-0101 RANU2

Generation of uniform (0, 1) pseudo random numbers
CALL RANU2 (IX, A, N, ICON)

Function
This subroutine generates, by the congruence method, a
sequence of n pseudo random numbers based on a stating
value from a uniform distribution on the range (0, 1). n≥
1.

Parameters
IX.... Input. Starting value. A non-negative integer.

(must be INTEGER*4)
 Output. Starting value for the next call of

RANU2.
See comments on use.

A..... Output. n pseudo random numbers. One-
dimensional array of size n.

N..... Input. Number of pseudo random numbers to
be generated.

ICON.. Output. Condition codes.
See Table RANU2-1.

Table RANU2-1 Condition codes

Code Meaning Processing
0 No error

30000 IX < 0 or N ≤ 0 Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL
FORTRAN basic function ... DMOD

• Notes

Starting value IX
When a sequence of pseudo random integers, {IXj} is
to be obtained by the congruence method (3.1), the user
must give an starting value IX0 (usually zero is given).

IX IXi ia c+ ≡ × +1 (mod m),i =0,1,...,n−1 (3.1)

where IXi, a, c and m are all non-negative integers.
This sequence {IXi} is normalized into (0, 1) and a
sequence of pseudo random numbers is generated in
parameter A. After generation of n pseudo random
numbers IXn is given to parameter IX. Thus, when next n
pseudo random numbers are to be generated successively,
they will be generated with the current starting value IXn
in parameter IX, unless it is changed.
When this subroutine is repeatedly called n times with
parameter N set to 1, n uniform pseudo random integers
{IXn} are obtained.

 Test for uniform random numbers
Uniform random numbers have two main properties:
probability unity and randomness. It is important to
understand these properties when using this subroutine.
 Table RANU2-2 shows the results of testing of
statistical hypothesis on pseudo random numbers
generated by this subroutine with IX = 0. Generally
speaking, we cannot generate pseudo random numbers
suitable for all cases and expect them to pass all the tests.
However, as Table RANU2-2 shows, this subroutine has
been implemented with the values of “a” and “c” (refer to
“method”), properly selected such that the resultant
pseudo random numbers have passable properties to
stand the tests of frequency and randomness.

• Example

10,000 uniform pseudo random integers are generated
and a histogram of their frequency distribution is
plotted.

C **EXAMPLE**
 DIMENSION A(10000),HSUM(10)
 INTEGER*4 IX
 DATA X1,X2,NINT,XINT/0.0,1.0,10,0.1/
 DATA IX,N/0,10000/
 DO 10 I=1,10
 10 HSUM(I)=0.0
 CALL RANU2(IX,A,N,ICON)
C SUM NOS. IN HISTGRAM FORM
 ISW=1
 DO 20 I=1,N
 X=A(I)
 20 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
C PLOT DISTRIBUTION
 WRITE(6,600)
 ISW=2
 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
 STOP
 600 FORMAT('1',10X,'UNIFORM RANDOM',
 *' NUMBER DISTRIBUTION'//)
 END

 Subroutine HIST in this example computes the
frequency distribution and plots the histogram. The
contents are shown below.

 SUBROUTINE HIST(X,X1,X2,NINT,XINT,
 * HSUM,ISW)
 DIMENSION HSUM(1)
 CHARACTER*4 IMAGE(31),II,IBLK,IAST
 DATA II,IBLK,IAST/'I ',' ',
 * '* '/
 IF(ISW.NE.1) GO TO 30
C TO SET UP HISTGRAM FOR RANDOM NOS.
 J=0
 IF(X.GT.(X1+X2)/2.0) J=NINT/2
 BK=X1+J*XINT
 10 J=J+1
 BK=BK+XINT
 IF(X.LT.X1) RETURN

RANU2

534

 IF(X.LT.BK) GO TO 20
 IF(X.LT.X2) GO TO 10
 RETURN
 20 HSUM(J)=HSUM(J)+1.0
 RETURN
C TO GET MAX X FOR PLOTTING
 30 Y=HSUM(1)
 DO 40 I=2,NINT
 40 Y=AMAX1(HSUM(I),Y)
 IMAGE(1)=II
 DO 50 I=2,31
 50 IMAGE(I)=IBLK
 BK=X1-XINT
 WRITE(6,600)
 DO 60 I=1,NINT
 BK=BK+XINT
 WRITE(6,610) BK
 J=30.0*HSUM(I)/Y+1.5
 IMAGE(J)=IAST
 WRITE(6,620) HSUM(I),IMAGE
 IMAGE(J)=IBLK
 IMAGE(1)=II
 60 CONTINUE
 BK=BK+XINT
 WRITE(6,610) BK
 RETURN
 600 FORMAT(2X,'BREAK PT',3X,'PT SUM',
 *11X,'GRAPH OF DISTRIBUTION')
 610 FORMAT(2X,F5.1,1X,48('-'))
 620 FORMAT(12X,F7.1,5X,31A1)
 END

Method
Nowadays, almost all the pseudo uniform random
numbers are generated according to Lehmer’s congruence
method.

ca ii +×≡+ IXIX 1 (mod m) (4.1)

where IXi, a, c and m are non-negative integers. Since
the congruence method relates two numbers in a certain
definite association, it is foreign to the idea of probability,
but if a sequence of pseudo random numbers, properly
generated from the method, stands satistical tests, we can
rely the congruence method as the pseudo random
number generator.

If values are given to IX0, “a” and “c” in (4.1), {IXi}
forms a sequence or residues with modules m and all the
elements of {IXi} satisfy IXi < m.

Letting ri = IXi / m for {IXi}, we can obtain a pseudo
random number sequence {ri} which distributes on the
interval (0, 1).

Here, for h such that IXh = IX0, h is called the period of
the sequence {IXi}. This follows from the fact that IXh+1
= IX1, IXh+2 = IX2, ...

Table RANU2-2 χ2-tests of RANU2

 Number of samples not
rejected at the level of
significance a%.

 10% 5% 1%
 1000 100 94 99 99 10 equal subintervals
 2000 50 45 48 50 10 equal subintervals
 10000 10 10 10 10 10 equal subintervals
Two-dimensional 10000x2 20 18 19 20 10x10 equal subintervals
Three-dimensional 5000x3 20 19 19 20 5x5x5 equal subintervals
Serial correction 1000 100 100 100 100 lag k = 60
 10000 10 10 10 10 lag k = 600
Gap 1000 100 68 84 91 The gaps of width longer than

7 were grouped into one class.
 10000 10 6 6 10 The gaps of width longer than

8 were grouped into one class.
Run up and down 1000 100 91 94 97 The runs of length longer than

3 were grouped into one class.
 10000 10 10 10 10 The runs of length longer than

4 were grouped into one class.
Run above and
below the average

1000 100 92 94 100 The runs of length longer than
6 were grouped into one class.

 10000 10 10 10 10 The runs of length longer than
9 were grouped into one class.

* Number of random numbers contained in one sample.
** Test was done on the first successive sequences of samples.

Remarks Size of samples* Test items Number of samples**

One-dimensional
frequency

RANU2

535

There is a theory that such a period h always exists in any
sequence of pseudo random numbers and its largest value
relates to m.

This simply means that a pseudo random number
sequence without period cannot be obtained with the
congruence method.

In practice, if we assign a sufficiently large number to
m we can make h long enough to make the sequence
{IXi} like random numbers.

In this subroutine, m was assigned to

312=m (4.2)

The value for a is assigned according to Greenberger’s

formula, which shows that a value close to m
1
2 minimizes

the 1st order serial correlation among

pseudo-random numbers.
Thus, from (4.2)

32771323 2
31

2
1

=+=+= ma (4.3)

The value of c is selected so that c and m are prime
each other.

Thus, c = 1234567891
To tell the truth, a and c were not simply determined,

they are selected as a best pair among several other
combinations of a and c through repetitive testing. This
shows that the selection depends largely on empirical
data.

Further details should be referred to Reference [89]
pp.43-57.

RANU3

536

J11-10-0201 RANU3

Generation of shuffled uniform (0, 1) pseudo random
numbers
CALL RANU3 (IX, A, N, ISW, IVW, ICON)

Function
This subroutine generates, by the congruence method
with shuffling, a sequence of n pseudo random numbers
based on a starting value from a uniform distribution on
the range (0, 1). Where n ≥ 1.

Parameters
IX..... Input. Starting value. A non-negative integer

(must be INTEGER*4)
Output. Starting value for the next call of
RANU3. See “Comments on use”.

A..... Output. n uniform random numbers. One-
dimensional array of size n.

N..... Input. The number of uniform random
numbers to be generated.

ISW... Input. Specify 0 for the first call.
Specify 1 for the subsequent calls.

IVW... Work area. One-dimensional array of size 128
(must be INTEGER*4)

ICON.. Output. Condition code.
See Table RANU3-1.

Table RANU3-1 Condition codes

Code Meaning Processing
0 No error

30000 IX < 0, N≤0, ISW < 0 or ISW >
1.

Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL, RANU2
FORTRAN basic function ... DMOD

• Notes

This subroutine enhances randomness which is one of
two properties, probability unity and randomness, of
random numbers. Therefore, the property of random
numbers in this subroutine is superior to that in
subroutine RANU2 (particularly for multiple
dimensional distribution), but the processing speed is
rather slow.

If the random number should be generated quickly, it
is advisable to use subroutine RANU2.
[Starting value IX]
Using the congruence method in (3.1), the starting
value IX0 when requiring uniform random integer
sequence {IXi} is specified in parameter IX.

() ...,1,0,mod1 =+×=+ imcIXaIX ii (3.1)

where, IXi, a, c and m are non-negative integers.

After generating random numbers, final IXi is given
to parameter IX. If generating random numbers in
succession, IXi can be used as a starting value.
[Successive generation of random numbers]
Random numbers can be generated in succession by
calling this subroutine repeatedly.

To perform this, ISW = 1 is entered for the
subsequent calls.

In this case, the contents of parameter IX and IVW
should not be altered.

If ISW = 0 is entered for the subsequent calls,
another series of random numbers may be generated
using the value of parameter IX at that time value.

• Example
10000 pseudo random numbers are generated from
uniform distribution in the range (0, 1) and a histogram
of their frequency distribution is plotted.

C **EXAMPLE**
 DIMENSION A(10000),HSUM(10),IVW(128)
 INTEGER*4 IX,IVW
 DATA X1,X2,NINT,XINT/0.0,1.0,10,0.1/
 DATA IX,N/0,10000/,ISW /0/
 DO 10 I=1,10
 10 HSUM(I)=0.0
 CALL RANU3(IX,A,N,ISW,IVW,ICON)
C SUM NOS. IN HISTGRAM FORM
 ISW=1
 DO 20 I=1,N
 X=A(I)
 20 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
C PLOT DISTRIBUTION
 WRITE(6,600)
 ISW=2
 CALL HIST(X,X1,X2,NINT,XINT,HSUM,
 * ISW)
 STOP
 600 FORMAT('1',10X,'UNIFORM RANDOM',
 *' NUMBER DISTRIBUTION'//)
 END

For detailed information on subroutine HIST, see the
Example in subroutine RANU2.

Method
Uniform random number have two main properties:
probability unity and randomness.
 The pseudo random number sequence generated using
the Lehmer method

() ,...2,1,0, mod1 =+×=+ imcIXaIX ii (4.1)

increases in regularity as its order becomes higher in
multiple-dimensional distribution and thus the
randomness of pseudo random numbers is decreased.
For example, if we construct points so that each point

RANU3

537

is coupled such as Pi (IXi, IXi+1) and plot Pi on the x-y
coordinate, these points will be located on several
parallel lines.

This subroutine uses the method with shuffling to
decrease the demerit of the Lehmer method.

The way of generating random numbers is the same as
that of the Lehmer method. However it enhances the
randomness by determining the order of a random
number sequence by using random numbers.

Random number sequence is generated as follows:

1) Generation of basic random number table

Using the Lehmer method, ordered uniform random
integers of length 128 are generated. Let express as:

B
iIX , i=1, 2, ...,80 (4.2)

2) Generation of random number sequence
Using the Lehmer method, one subsequent random
number is generated which we call IX0. The
following procedure is repeated using l = 1, 2, ..., n to
generate n pseudo random numbers.

− Using l-1-th random number, one random number is

chosen from a basic random number table. This
number is called IXl.

() 180IX,IXIX 1 +== − modj l
B
jl (4.3)

IXl is normalized in the interval (0, 1) and stored in
A(l) as the l-th pseudo uniform random number.

− Subsequently, the l + 1-th random number, IXl+1 is
generated and stored in the j-th position in the basic
random number table.

1IXIX += l
B
j (4.4)

RATF1

538

J21-10-0101 RATF1

Frequency test of uniform pseudo random numbers (0, 1)
CALL RATF1 (A, N, L, ALP, ISW, IFLG, VW,
IVW, ICON)

Function
This subroutine performs the one-dimensional frequency
test for n pseudo uniform (0, 1) random number sequence
{xi} based upon the test of statistical hypothesis.

On the null hypothesis that pseudo uniform random
numbers are uniform random numbers, this subroutine
divides the range (0, 1) into l intervals and performs chi-
square test using the actual frequency and the expected
frequency of the random numbers failing in each interval.

Then it judges whether or not to accept this hypothesis
on significance level α%.

When the number of random numbers is great, they can
be tested in succession by calling this subroutine
repeatedly by dividing the random number sequence into
parts.

Where, n≥ l ≥ 2 and 100 > α > 0.

Parameters
A..... Input. Pseudo uniform random number

sequence {xi}.
One-dimensional array of size n.

N..... Input. The number of uniform random
numbers. See Notes.

L..... Input. The number of intervals. See Notes.
ALP.. Input. Significance level α. See Notes.
ISW... Input. Control information.

Specifies whether or not the test is performed
independently for several random number
sequences by calling this subroutine repeatedly.
When ISW = 0 is specified, the test is
performed independently for each random
number sequence.
When ISW = 1 is specified, the test is
performed continuously.
However ISW = 0 is specified for the first call.
See Notes.

IFLG... Output. Test results.
When IFLG = 0 is specified, the hypothesis is
accepted.
When IFLG = 1 is specified, the hypothesis is
rejected.

VW..... Work area. One-dimensional array of size 2.
IVW.... Work area. One-dimensional array of size L +

1 (must be INTEGER*4).
ICON... Output. Condition code.

See Table RATF1-1.

Table RATF1-1 Condition codes

Code Meaning Processing
0 No error

10000 Some expected frequency Fi is
small and the approximation of
chi-square distribution is poor.
Increase n or decrease l.

Continued.
Resultant of test
is not so reliable.

30000 N < L, L < 2, ALP ≥ 100, ALP
≤ 0, ISW < 0 or ISW > 1.

Bypassed

Comments on use
• Subprograms used

SSL II ... UX2UP, MGSSL
FORTRAN basic functions ... SQRT, EXP, ALOG,
FLOAT, ABS, ERFC, ATAN

• Notes

[Standard for setting the number of random numbers
(n) and the number of subrange (l)]
To enhance the reliability of testing, it is desirable to make
the number of random numbers (n) large enough.

Generally, the expected frequency Fi should satisfy

() 10>= lnFi (3.1)

This subroutine sets ICON = 10000 when (3.1) is not
satisfied.

When m is large enough, the value of l is generally by:

[]l n= +1 3322 10. log (3.2)

 For example, when n = 10000, l = 10 is adequate and
when n = 1000, l = 14 is adequate.(3.2) is empirical
formula based on the sense of sight appropriateness for
the frequency distribution of random numbers falling in
each interval.
[Standards for setting significance level α]
Significance level can be optionally specified
according to the theory of statistical hypothesis test.

The significance level, however, indicates the
probability of error of the first kind which means to
reject the hypothesis although it is true, the value
specified should lie between 1% and 10%

Generally either 5% or 1% is used.
[Testing in successing]
Suppose uniform random number sequence {yi} of size
m is divided into s sets of random number sequences.

Letting

{ } { } { } { }
siiii yyyy +++= ...

21

and letting numbers in each random number sequence be
m1, m2, ..., ms that is,

RATF1

539

m = m1 + m2 + ... + ms

One call of this subroutine enables the testing of
random number sequence {yi}. By calling repeatedly
for each random number sequence it is possible to
obtain the final test results for {yi}, also.

Table RATF1-2 shows the relationship between the
contents of parameters and the object of the test for
repeated calling of random number sequences.

Table RATF1-2 Testing in succession

Calling sequence A N ISW Object of test
1 {

1i
y } m1 0 {

1i
y }

2 {
2i

y } m2 1 {
1i

y } + {
2i

y }

: : : : :
S {

si
y } ms 1 {

1i
y } + {

2i
y }

+ ... + {
si

y }

Note: The value of parameter L and ALP should be constant.

If ISW = 0 is specified each time this subroutine is
called, the random number sequence is tested
individually.

When calling this subroutine repeatedly, the contents
of work areas VW and IVW should not be altered.
[Contents of work area]
After executing this subroutine, the following values
are stored in the work area:
VW(1): Upper probability of χ2 distribution of

freedom degree l − 1 at χ 0
2 .

VW(2): Value of χ 0
2 for the frequency distribution of

random sequence {xi}.
IVW(I): The actual frequency of random numbers

falling in the I-th interval. I = 1, 2, ..., l.

• Example

Pseudo uniform random number sequence {xi} of size
10000 is generated by subroutine RANU2 and divided
into 10 sets of random number sequence of size 10000
and the frequency tests for each set are performed.

Where, l = 10 and α = 5%.

C **EXAMPLE**
 DIMENSION A(10000),VW(2),IVW(11)
 INTEGER*4 IX,IVW
 DATA IX,N/0,1000/,IOK/10/
 DATA L,ALP/10,5.0/,ISW/0/
 NS=10
 LL=L-1

 WRITE(6,600) IX,N,NS,LL,ALP
 IS=1
 IE=N
 DO 20 I=1,NS
 CALL RANU2(IX,A,N,ICON)
 CALL RATF1(A,N,L,ALP,ISW,IFLG,VW,
 * IVW,ICON)
 IF(ICON.EQ.0) GOTO 10
 WRITE(6,610) I,IS,IE
 IOK=IOK-1
 GOTO 15
 10 IOK=IOK-IFLG
 IF(IFLG.EQ.0) WRITE(6,620) I,IS,IE
 IF(IFLG.EQ.1) WRITE(6,630) I,IS,IE
 15 IS=IE+1
 20 IE=IE+N
 RATE=IOK*100.0/NS
 WRITE(6,640) IOK,RATE
 STOP
 600 FORMAT('1',60('*')/6X,
 *'FREQUENCY TEST FOR UNIFORM',
 ' RANDOM NUMBERS.'/1X,60('')//
 *6X,'INITIAL VALUE IX=',I5/
 *6X,'SAMPLING LENGTH N=',I5/
 *6X,'SAMPLE NUMBER =',I5/
 *6X,'FREE DEGREE L-1=',I5/
 *6X,'SIGNIFICANCE LEVEL =',F5.1,'%'/
 *6X,'RESULTANTS :'//
 *9X,'NO. SAMPLE JUDGEMENT')
 610 FORMAT(9X,I2,I7,'-',I5,4X,'ERROR')
 620 FORMAT(9X,I2,I7,'-',I5,4X,'SAFE')
 630 FORMAT(9X,I2,I7,'-',I5,4X,'FAIL')
 640 FORMAT(//6X,'TOTAL CONCLUSION:'//
 *9X,I2,' (',F5.1,
 *' %) SAMPLES ARE SAFE.')
 END

Method
Divide the interval (0, 1) into l equal intervals and let the
number of pseudo random numbers falling if n i-th
interval to be fi. Also suppose the expected frequency
corresponding to fi to be Fi.
 The value

()∑
=

−
=

l

i i

ii

F
Ff

1

2
2
0χ (4.1)

forms chi-square distribution of freedom degree l - 1 for
many samples of {xi}.
This subroutine obtains value χ 0

2 from (4.1) and tests the
null hypothesis that n pseudo random numbers are
uniform random numbers on significance level α%.
 In (4.1), the expected frequency Fi can be obtained by

Fi = n / l (4.2)

For details, refer to Reference [93].

RATR1

540

J21-10-0201 RATR1

Runs test of up-and-down of uniform (0.1) pseudo
random numbers
CALL RATR1 (A, N, L, ALP, ISW, IFLG, VW,
IVW, ICON)

Function
This subroutine performs the runs test of up-and-down
for n pseudo uniform (0, 1) random number sequences
{xi} based upon the test of statistical hypothesis.

On the null hypothesis that pseudo uniform random
numbers are uniform random numbers, this subroutine
performs chi-square test using the actual frequency and
expected frequency of run of length r (1 ≤ r ≤ l, run of
length greater than l is assumed to be length l) and tests
whether or not the hypothesis is rejected on significance
level α%.

Run of length r means a sub-sequence in which
continued r elements are incremented (or decreased)
monotonically in a random number sequence.

When the number of random number sequences is great,
they can be tested in succession by calling this subroutine
repeatedly.

Where, n ≥ l + 2, l ≥ 2, 100 > α > 0.

Parameters
A..... Input. Pseudo uniform random number

sequence {xi}.
One-dimensional array of size n.

N..... Input. The number of uniform random
numbers.

L..... Input. The length l of the maximum run. See
Notes.

ALP... Input. Significance level α.
See Notes.

ISW... Input. Control information.
Specifies whether or not the test is performed
independently for several random number
sequences by calling this subroutine repeatedly.

When ISW = 0 is specified, the test is
performed independently for each random
number sequence.

When ISW = 1 is specified, the test is
performed continuously. However ISW = 0 is
specified for the first call.
 See Notes.

IFLG... Output. Test results.
When IFLG = 0 is specified, the hypothesis is
accepted.
When IFLG = 1 is specified, the hypothesis is
rejected.

VW....... Work area. One-dimensional array of size 3.
IVW..... Work area. One-dimensional array of size L +

8 (must be INTEGER*4).
ICON.. Output. Condition code.

See Table RATR1-1.

Table RATR1-1 Condition codes

Code Meaning Processing
0 No error

10000 Some expected frequency Fi is
small and the approximation of
chi-square distribution is poor.

Continued.
Resultant of test
is not so reliable.

30000 N < L + 2, L < 2, ALP ≥ 100,
ALP ≤0, ISW < 0 or ISW > 1.

Bypassed

Comments on use
• Subprograms used

SSL II ... UX2UP, MGSSL
FORTRAN basic functions ... SQRT, EXP, ALOG,
FLOAT, ATAN, ERFC, MAX0, MIN0

• Notes

[Standard for setting the length l of maximum run]
The expected frequency Fr to make the length of run r
is expressed by:

() ()
2,...,2,1,

!3
432

!3
132

232

−=
+

−−+−
+

++=

nr
r

rrr
r

rrnFr (3.1)

That is the expected frequency Fr decreases as

()11 +≈+ rFF rr

For example, when n = 10000, F1 = 4160, F2 =
1834, ..., F5 = 20, F6 = 3.
Therefor, in this case, should be taken as

l = 5
This subroutine sets ICON = 10000 when the expected

frequency Fi does not satisfy
Fi > 10

[Standard for setting significance level]
The significance level can be optionally specified
according to the theory of statistical hypothesis test.

The significance level, however, indicates the
probability of error of the first kind which means to reject
the hypothesis although it is true, the value specified
should lie between 1% and 10%.

Generally either 5% or 1% is used.
[Testing in succession]
Suppose uniform random number sequence {yi} of size m
is divided into s sets of random number sequences.
Letting

{yi} = {yi1} + {yi2} + ... + {yis}

and letting numbers in each random number sequence be
m1, m2, ..., ms, that is ,

m = m1 + m2 + ... + ms

RATR1

541

One call of this subroutine enables the testing of
random number sequence {yi}. By calling repeatedly for
each random numbers sequence it is possible to obtain
the final test results for {yi}, also.

Table RATR1-2 shows the relationship between the
contents of parameters and the object of the test for
repeated calling of random number sequences.

Table RATR1-2 Successive testing

Calling sequence A N ISW Object of test
1 {

1i
y } m1 0 {

1i
y }

2 {
2i

y } m2 1 {
1i

y } + {
2i

y }

: : : : :
S {

si
y } ms 1 {

1i
y } + {

2i
y }

+ ... + {
si

y }

Note: The value of parameter L and ALP should be constant.

If ISW = 0 is specified each time this subroutine is
called, the random number sequence is tested individually.

When calling this subroutine repeatedly, the contents of
work areas VW and IVW should not be altered.
[Contents of work area]
After executing this subroutine, the following values are
stored in the work area:
VW(1): Upper probability of χ2 distribution of degree of

freedom, l −1 at χ 0
2 .

VW(2): Value of χ 0
2 for the frequency distribution of

random sequence {xi}.
IVW(I): The actual frequency of runs of length l. I = 1,

2, ..., l.

• Example

Pseudo uniform random number sequence {xi} of size
10000 is generated by subroutine RANU2 and divided
into 10 sets of random number sequence of size 1000
and the runs tests of up-and-down for each set are
performed.

Where, l = 4 and α = 5%.

C **EXAMPLE**
 DIMENSION A(1000),VW(3),IVW(12)
 DATA IX,N/0,1000/,IOK/10/
 DATA L,ALP/4,5.0/,ISW/0/
 NS=10
 LL=L-1
 WRITE(6,600) IX,N,NS,LL,ALP
 IS=1
 IE=N
 DO 20 I=1,NS
 CALL RANU2(IX,A,N,ICON)
 CALL RATR1(A,N,L,ALP,ISW,IFLG,VW,
 * IVW,ICON)

 IF(ICON.EQ.0) GOTO 10
 WRITE(6,610) I,IS,IE
 IOK=IOK-1
 GOTO 15
 10 IOK=IOK-IFLG
 IF(IFLG.EQ.0) WRITE(6,620) I,IS,IE
 IF(IFLG.EQ.1) WRITE(6,630) I,IS,IE
 15 IS=IE+1
 20 IE=IE+N
 RATE=IOK*100.0/NS
 WRITE(6,640) IOK,RATE
 STOP
 600 FORMAT('1',60('*')/6X,
 *'RUNS TEST FOR UNIFORM',
 ' RANDOM NUMBERS.'/1X,60('')//
 *6X,'INITIAL VALUE IX=',I5/
 *6X,'SAMPLING LENGTH N=',I5/
 *6X,'SAMPLE NUMBER =',I5/
 *6X,'FREE DEGREE L-1=',I5/
 *6X,'SIGNIFICANCE LEVEL =',F5.1,'%'/
 *6X,'RESULTANTS :'//
 *9X,'NO. SAMPLE JUDGEMENT')
 610 FORMAT(9X,I2,I7,'-',I5,4X,'ERROR')
 620 FORMAT(9X,I2,I7,'-',I5,4X,'SAFE')
 630 FORMAT(9X,I2,I7,'-',I5,4X,'FAIL')
 640 FORMAT(//6X,'TOTAL CONCLUSION:'//
 *9X,I2,' (',F5.1,
 *' %) SAMPLES ARE SAFE.')
 END

Method
The up run of length r means a sub-sequence which
consists of r element satisfies following

............ 111 ++++− ><<<> rkrkkkk xxxxx
where the first element of the sub-sequence is xk (1 ≤ k < n).
However, when k = 1 or k + r = n, the inequality signs
should not be used at the ends.
For down run, the similar definition is used.
Now the number of runs of length r (maximum l, 1 ≤ r ≤
l) in {xi} is expressed as fr.
fl is the total number of runs in which the length is more
than l. Letting the expected frequency of length r be Fr,
the value forms chi-square distribution freedom degree l -
1 for many samples of {xi}.

()∑
=

−
=

l

i i

ii

F
Ff

1

2
2
0χ (4.1)

This subroutine tests the null hypothesis that n pseudo
random numbers are uniform random numbers on
significance level α% after obtaining value χ 0

2 from (4.1).
If (4.1), the expected frequency Fr is

() ()!3
432

!3
132

232

+
−−+−

+
++=

r
rrr

r
rrnFr (4.2)

2,...,2,1, −= nr

RATR1

542

and the total sum is

() 3/72 −=∑ nF
r

r (4.3)

Although the following will be supposed in chi-square
test,

∑∑ =
r

r
r

r Ff (4.4)

actually (4.4) is not satisfied.

Therefore this subroutine uses F*r instead of Fr as

∑ ∑
=

r
r

r

r
rr F

F
fF * (4.5)

in which expected frequency Fr is modified by the actual
frequency fr.

This enhances the accuracy of the testing.

For details, refer to Reference [93].

RFT

543

F11-31-0101 RFT, DRFT

Discrete real Fourier transform
CALL RFT (A, N, ISN, ICON)

Function
When one-variable real time series data {xj} of
dimension n is given, this subroutine performs a discrete
real Fourier transform or its inverse Fourier transform
using the Fast Fourier Transform (FFT) Method.
n must be a number expressed as n = 2l (l: positive
integer).

• Fourier transform

When {xj} is input, this subroutine performs the
transform defined in(1.1), and determines Fourier
coefficients {nak} and {nbk}.

1
2

,...,1,2sin2

2
,...,0,2cos2

1

0

1

0

−==

==

∑

∑
−

=

−

=

nk
n
kjxnb

nk
n
kjxna

n

j
jk

n

j
jk

π

π

 (1.1)

• Inverse Fourier transform
When {ak}, {bk} are input, this subroutine performs the
transform defined in (1.2), and determines the values
{2xj} of the Fourier series.

ja
n
kjb

n
kjaax

n

n

k
kkj

π

ππ

cos

2sin2cos22

2/

12/

1
0

+

⎟
⎠
⎞

⎜
⎝
⎛ ++= ∑

−

= (1.2)

j=0,...,n-1

Parameters
A..... Input. {xj} or {ak}, {bk}

Output. {nak}, {nbk} or {2xj}
One-dimensional array of size N.
See Fig. RFT-1 for the data storage format.

N..... Input. Dimension n.
ISN... Input. Specifies normal or inverse transform

(≠ 0).
For transform: ISN = + 1
For inverse transform: ISN = - 1
(See Notes).

ICON.. Output. Condition code
See Table RFT-1

Table RFT-1 Condition codes

Code Meaning Processing
0 No error

30000 ISN = 0 or N ≠ 2l
(l: positive integer)

Bypassed

{xj}

{ak},{bk}

xn−1xn−2x5x4x3x2x1x0

an/2 b2a2b1a1 bn/2−1an/2−1a0

N

Note: {nak}, {nbk} correspond to {ak}, {bk}.

One-dimensional array A(N)

Fig. RFT-1 Data storage method

Comments on use
• Subprograms used

SSL II ... CFTN, PNR, URFT, and MGSSL
FORTRAN basic functions ... ATAN, ALOG, SQRT,
SIN, and IABS

• Notes

General definition of discrete real Fourier transform:
Discrete real Fourier transforms and inverse Fourier
transforms are generally defined as:

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−==

==

∑

∑
−

=

−

=

1
2

,...,1,2sin2

2
,...,0,2cos2

1

0

1

0

nk
n
kjx

n
b

nk
n
kjx

n
a

n

j
jk

n

j
jk

π

π

 (3.1)

1,...,0,cos
2
1

2sin2cos
2
1

2/

12/

1
0

−=+

⎟
⎠
⎞

⎜
⎝
⎛ ++= ∑

−

=

njja

n
kjb

n
kjaax

n

n

k
kkj

π

ππ

 (3.2)

This routine determines {nak}, {nbk}, or {2xj} in place
of {ak}, {bk} of (3.1) or {xj} of (3.2). Scaling of the
resultant values is left to the user.

Notice that a normal transform followed by an inverse
transform returns the original data multiplied by the
value 2n.

Specifying ISN:
ISN is used to specify normal or inverse transform. It is
also used as follows;
If {xj} or {ak}, {bk} are stored in an area of size N⋅I in
intervals of I, the following specification is made.
For transform: ISN = + I
For inverse transform: ISN = -I

In this case, the results of the transform are also stored
in intervals of I.
• Example

Real time series data {xj} of dimension n is put,
transform is performed using this routine, and the
results are scaled to obtain {ak}, {bk}.
In case of n ≤ 1024 (= 210).

RFT

544

C **EXAMPLE**
 DIMENSION A(1024)
 READ(5,500) N,(A(I),I=1,N)
 WRITE(6,600) N,(I,A(I),I=1,N)
 ISN=1
 CALL RFT(A,N,ISN,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
 WRITE(6,620) A(1)
 N1=N/2-1
 IF(N1.NE.0)
 * WRITE(6,630) (I,A(2*I+1),A(2*I+2),
 * I=1,N1)
 N1=N1+1
 WRITE(6,630) N1,A(2)
 STOP
 500 FORMAT(I5/(2E20.7))
 600 FORMAT('0',10X,'INPUT DATA N=',I5/
 * /(15X,I5,E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5/)
 620 FORMAT('0',17X,'K',10X,'A(K)',16X,
 * 'B(K)'//19X,'0',E20.7)
 630 FORMAT(/15X,I5,2E20.7)
 END

Method
This subroutine performs a discrete real Fourier
transform (hereafter referred to as real transform) of
dimension n (=2⋅m) using the radix 8 and 2 Fast Fourier
Transform (FFT) method.

By considering real data {xj} to be transformed as
complex data with the imaginary part zero, a real
transform can be done by a discrete complex Fourier
transform (hereafter referred to as complex transform).
However in such case, the complex transform can be
done efficiently using the characteristics as described
below.
Let the complex transform be defined as

1,...,0,2expx
1n

0j
jk −=

 −= ∑

−

=

nk
n
kjiπα (4.1)

 Then, when {xj} is real data, the complex conjugate
relationship results as shown in (4.2)

1,...,1,* −==− nkkkn αα (4.2)

 where * represents complex conjugates
 Now, the relationship between the results of a real
transform {ak}, {bk}, and the results of a complex
transform {ak} are

−=−=
−=+=

⋅=⋅=

−

−

12/,...,1,)(
12/,...,1,)(

2,2 2/2/00

nkib
nka

a

knkk

knkk

nn

αα
αα

ααα
 (4.3)

Therefore, when a complex transform is used for real
data from (4.2) and (4.3) it can be seen that {ak}, {bk}
can be determined by determined only ak, k = 0, ..., n/2
considering (4.2) and (4.3). This means that complex
transform on real data has redundancy in calculating
conjugate elements.

 In this routine this redundancy is avoided by use of
inherent complex transform as described below:

• Real transform by the complex Fourier transform

First, expansion of the complex transform (4.1)
applying the principles of the Fast Fourier Transform
(FFT) method is be considered. Since n = 2⋅m, k and j
can be expressed as

10,10,2
10,10,

1010

1010

−≤≤≤≤⋅+=
≤≤−≤≤⋅+=

mjjjjj
kmkmkkk

 (4.4)

If (4.4) is substituted in (4.1) and common terms
rearranged, (4.5) results.

2
10

1

0

10

00
1

0

00
1

0

10

2exp

2exp
2

2exp

jj

m

j

j
mkk

x
m
kji

n
kjikji

+

−

=

=
⋅+

 −⋅

 −

 −=

∑

∑

π

ππα

 (4.5)

(4.5) means that a complex transform of dimension 2m
can be performed by two sets of elementary complex
transforms of dimension m by ∑

1j
 and m sets of

elementary complex transforms of dimension 2 by ∑
0j

.

(Refer to the section on CFT for principle of the Fast
Fourier Transform method.) In this routine (4.5) is
successively calculated for complex data with the
imaginary parts zero.

− Transform by ∑
1j

Two sets of elementary complex transforms of
dimension m are performed by ∑

1j
 respect to j0.

By performing complex transforms on the even-
number data {x1j} and the odd-number data {x2j},
{α k

x1 } and {α k
x 2 } can be determined. Since the

imaginary Parts of the complex data {x1j} and {x2j}
are zero, just as in (4.2), the conjugate relationships
shown in (4.6) exist.

1,...,1,
)(

)(
*22

*11

−=

=

=

−

− mk
x
k

x
km

x
k

x
km

αα

αα
 (4.6)

The above two sets of elementary complex
transforms can be performed as a single transform
plus a few additional operations; that is, the real parts
of {x1j} and {x2j} are paired as shown in (4.7) to
form the real and imaginary parts of new complex
data {zj}.

1,...,0,21 −=⋅+= mjxixz jjj (4.7)

and complex transform of dimension m is done with
respect to {zj} and {α k

z } is determined. Then, using
(4.8), {α k

x1 } and {α k
x 2 } are obtained

RFT

545

from

()
()

() ()

==

=

 −=

 +=

−

−

zxzx

z
km

z
k

x
k

z
km

z
k

x
k mk

i

0
2

00
1

0

*2

*1

Im,Re

2
,...,1,

2
1

2
1

αααα

ααα

ααα

 (4.8)

Transform by ∑
0j

m sets of complex transforms of dimension 2 are
performed by

j0
∑ with respect to j1.

The result {αk} is the complex transform of complex data
whose imaginary parts are zero. To obtain {ak} and {bk},
{αk} needs to be determined only for k = 0, ..., n/2. In
complex transforms by ∑

0j
, calculation conjugate terms

is omitted.

• Processing in this routine
The processing for a real Fourier transform in this
routine is discussed. Refer to Fig. RFT-2 for specific
example of dimension 16.
(a) Let the even number real data of dimension n be

{x1j} and odd number data be {x2j}, then complex
transform of dimension m is performed with respect
to {zj} in (4.7) to determine {α k

z }.
(b) Using (4.8), the transformed results {α k

x1 } and

{ 2x
kα } correspond to {x1j} and {x2j} are

determined from { z
kα }.

(c) { 2x
kα } is multiplied by the rotation factor.

(d) Complex transforms of dimension 2 are performed.

In this routine, the complex transform in (a) is

performed by subroutines CFTN and PNR.
For further information, refer to References [55], [56],

and [57].

α 4
2x

α 4
1x

α 3
2x

α 3
1x

α 2
2x

α 2
1x

α 1
2x

α 1
1x

α 0
2x

α 0
1x

*1

*1

*1

*1

*2
*1

α 7
2

α 6
2

α 5
2

α 4
2

α 3
2

α 2
2

α 1
2

α 0
2

ξ4

ξ3

ξ2

ξ1

x15

x14

x13

x12

x11

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

x0

Complex
Fourier
transform
of dimension
8
j

j
0

1
0= ∑,

and
j

j
0

1
1= ∑,

α 6
2x

α 5
2x

α 6
1x

α 5
1x

α 7
2x

α 7
1x

j
j

1
0

0= ∑,

*2

j
j

1
0

1= ∑,

*2
j

j
1

0
2= ∑,

*2
j

j
1

0
3= ∑,

*2
j

j
1

0
4= ∑,

*2
j

j
1

0
5= ∑,

*2
j

j
1

0
6= ∑,

*2
j

j
1

0
7= ∑,

b1

a1

a0

a0

b2

a2

b3

a3

b4

a4

b5

a5

b6

a6

b7

a7

Procedure (d)Procedure (c)Procedure (b)Procedure (a)

Note: Symbol indicates complex data, symbols and indicate real data. Symbols and indicate operations that

may be omitted. ξ is the rotation factor; ξ= exp (-2πi/16)
*1 Separation into two sets of 8 term complex Fourier transforms of dimension 8
*2 Complex Fourier transform of dimension 2

Fig. RTF-2 Flowchart of a real Fourier transform of dimension 16

RJETR

546

C22-11-0111 RJETR, DRJETR

Zeros of a polynominal with real coefficients (Jenkins-
Traub method)
CALL RJETR (A, N, Z, VW, ICON)

Function
This subroutine finds zeros of a polynomial with real
coefficients;

()1,0,real:
0...

0

1
10

≥≠
=+++ −

naa
axaxa n

nn

by Jenkins-Traub’s three-stage algorithm.

Parameters
A..... Input. Coefficients of the polynomial equation.

One-dimensional array of size (n + 1)
A(1) = a0, A(2) = a1, ..., A(N + 1) = an in order.
The contents of A are altered on output.

N..... Input. Degree of the equation.
Output. The number of roots obtained.
(See “Comments on use”.)

Z..... Output. n roots. Complex one-dimensional
array of size n.
Obtained roots are returned in Z(1), Z(2), ...
So, if the number of obtained roots is N, those
roots are returned in Z(1), ..., Z(N).

VW... Work area. One-dimensional array of size 6 (n
+ 1)

ICON.. Output. Condition code. See Table RJETR-1.

Table RJETR-1 Condition codes

Code Meaning Processing
0 No error

10000 All of n roots were not
obtained.

The number of
obtained roots is
put into
parameter N.
These roots
themselves are
put into
Z(1)∼ Z(N).

30000 n < 1 of a0 = 0 Bypassed

Comments on use
• Subprograms used

SSL II ... MGSSL, AMACH, RQDR, IRADIX,
AFMAX, AFMIN, and UJET
FORTRAN basic functions ... ABS, ALOG, EXP,
SQRT, CMPLX, SIN, ATAN, REAL, AIMAG, and
AMAX1

• Notes

A COMPLEX declaration for array Z must be done in
the program which calls this subroutine.

An n degree polynomial equation has n roots. All of
the roots can not always be obtained. Users should be
aware of this and make sure of the values of parameters
ICON and N after calculation.

• Example

Degree n and real coefficients ai are input and roots are
calculated for 1 ≤ n ≤ 50.

C **EXAMPLE**
 DIMENSION A(51),Z(50),VW(306)
 COMPLEX Z
 READ(5,500) N
 N1=N+1
 READ(5,510) (A(I),I=1,N1)
 DO 10 I=1,N1
 K=I-1
 10 WRITE(6,600) K,A(I)
 CALL RJETR(A,N,Z,VW,ICON)
 WRITE(6,610) N,ICON
 IF(ICON.EQ.30000) STOP
 WRITE(6,620) (I,Z(I),I=1,N)
 STOP
 500 FORMAT(I2)
 510 FORMAT(5F10.0)
 600 FORMAT(10X,'A(',I2,')=',E20.8)
 610 FORMAT(10X,'N=',I2,5X,'ICON=',I5)
 620 FORMAT(10X,'Z(',I2,')=',2E20.8)
 END

Method
This subroutine employs the Jenkins-Traub’s three-stage
algorithm. The three-stage algorithm consists of:
• Using K polynomial (described later) defined

differently at each of the three stages, the roots are
pursued so that the smallest root is first found. (state 1)

• To make sure if the calculation can converge. (stage 2)
• Finally to speed up the convergence and to obtain the

roots. (stage 3)

Especially, if a real coefficient polynomial equation is
given, since the roots are pursued as linear or quadratic
factors, the discrimination if a linear or a quadratic factor
is converging is made in the stage 2. Then accordingly
the calculation is speeded up in two ways in the stage 3.
If the second order factors are determined, the roots are
obtained with the quadratic equation formula.
• Features

a. Only real arithmetic is used. Complex conjugate
roots are found as quadratic factors.

b. Roots are calculated in roughly increasing order of
modulus; this avoids the instability which occurs
when the polynomial is deflated with a large root.

c. The rate of convergence of the third stage is

RJETR

547

faster than second order.

• K polynomials
Before describing the algorithm two important
sequences of polynomials are introduced and their
characteristics are described below. In equation

()

() ()kix

axaxaxf

ki

j

i

mi
i

n
nn

≠≠=−=

+++≡

∏
=

−

ρρρ ,0

...

1

1
10

 (4.1)

Let’s assume a0 = 1 and an ≠ 0, but there is no loss of
generality. Starting from (n − 1)-th degree arbitrary
polynomial K(0)(x), for λ= 0, 1, ..., K(λ)(x) is defined as

()() ()()
()()
() ()

−=+ xf

f
KxK

x
xK

0
011

λ
λλ (4.2)

Obviously, every K(λ)(x) are of degree at most n−1. Let

()() ()∑
=

=
j

i
ii xfcxK

1

0 , () ()
i

i x
xfxf
ρ−

= (4.3)

K(λ)(x) is expressed as follows.

()() ()∑
=

−=
j

i
iii xfcxK

1

λλ ρ (4.4)

 From (4.4), if ρ1 exists such that |ρ1 | < |ρi| (i ≥ 2) and c
≠ 0,

() ()() 1/lim ρλ
λ

−=
∞→

xxKxf (4.5)

 holds, where () ()K xλ is defined to be () ()K xλ divide by
its leading coefficient. The rate of convergence of (4.5)
depends on the ratio of ρ1 and ρ2 (i ≥ 2). The polynomial
defined by (4.2) is called a no-sift polynomial. The
second polynomials are defined as follow. Starting from
(n - 1)-th degree polynomial () ()K x0 ,for λ = 0, 1, ... , it is
defined as

()() ()
()() () ()() ()[]xfBxAxK

x
xK λλλλ

σ
++=+ 11 (4.6)

Here σ(x) is a real quadratic x2 + ux + v with roots s1 and
s2 such that s1 ≠ s2, |s1| = |s2| =β, β ≤ min |ρi| and f(s1)
f(s2)≠0. A(λ) and B(λ) are chosen so that the expression in
the bracket [] of (4.6) can be divided by σ(x) and are

()
() ()

()() ()()

() ()

() ()21

2211

21

21

sfsf

sfssfs

sKsK

sfsf
A

λλ

λ =

()
() () () ()

() ()

() ()

() ()21

2211

2211

21

sfsf

sfssfs

sfssfs

sKsK
B

λλ

λ = (4.7)

 respectively. The every K(λ)(x) of (4.6) is of degree n -
1 at most. Employing (4.3) for K(0)(x) as before, the
polynomial defined by (4.6) is given as follows:

()() () ()ii

j

i
iii xfcxK ρσσσ λλ == ∑

=

− ,
1

 (4.8)

The polynomial defined by (4.6) is called fixed-shift
polynomial. It has the following two important
properties.
• If there exists ρ1 such that

σ σ1 2< ≥i i, (4.9)

then, ρ1 is real and

() ()() 1/lim ρλ
λ

−=
∞→

xxKxf (4.10)

holds,
where K(λ)(x) is defined to be K(λ)(x) divided by its

leading coefficient.
• If there exist ρ1 and ρ2 such that

3,21 ≥<= iiσσσ (4.11)

then, by letting
()() ()()
()() ()()

()()
() () ,
0

01

,

1

0

−=

=

+ xf
f

K
xK

x
xK

xKxK

v
vv

λ
λλ

λλ

 (4.12)

v = 0 1,
and

()()
()() ()()
()() ()()
()() ()()

()() ()()
()() ()()2212

2111

2212

2111

2
2010

1
sKsK

sKsK

sKsK

xsKsK

xsKsK

x
λλ

λλ

λλ

λλ

λλ

λσ =

 (4.13)
holds.

Three-stage algorithm
The three-stage algorithm consists of three stages. (n −
1)-th degree polynomials K(λ)(x) which play a basic role
at each step, are generated as different sequences for each
of the steps. Polynomial K(M)(x) at the end of stage 1 is
used as the beginning polynomial for stage 2, and K(L)(x)
at the end of stage 2 is used as the beginning polynomial
for stage 3.
• Stage 1 (no-sift process)

The algorithm starts with K(0)(x) = f’(x) and

RJETR

548

the process (4.2) is iterated M, times. As for M, it is
described later. The purpose of this stage is to make the
term which include pi of small absolute value dominant in
K(M)(x).
• Stage 2 (fixed-shift process)
Applying (4.6) for λ= M, M−1, ..., L−1, a sequence of
fixed-shift polynomials are produced. As for L, see
“Stopping Criterion”. The purpose of producing fixed-
shift polynomials is to see if (4.9) of (4.11) holds.
However, since σ k, k = 1, ..., j cannot be calculated,

() ()()f x K x/ λ and σ (λ)(x) must be calculated as well as
finxed-polynomials, then by using both of them, whether
roots converge on linear or quadratic factors is
determined. Which of (4.10) of (4.13) holds depends on
the choice of s1 and s2. If any convergence is not met, it
can be considered to be due to improper choice of s1 and
s2, and then they would be chosen again. (See “Notes on
algorithm”.)
When () ()()f x K x/ λ starts to converge in stage 2, the rate
of convergence is accelerated by shifting it with current
approximate. And when σ (λ)(x) starts to converge, the
speed is accelerated by replacing σ (x) of (4.6) with
σ(λ)(x). This motivates going to the next variable-shift
process.
• Stage 3 (variable-shift process) This step is divided

into the following two procedures depending on the
state of convergence (upon linear or quadratic factors)
in stage 2.
(a) Iteration for a linear factor

Letting
() () ()()()
()() ()

()()
() ()()

()() ()

−

−
=

−=

+ xf
sf

sKxK
sx

xK

sK/sfss LL

λ

λλ
λ

λ
λ 1

Re

1

111

 (4.14)

() () ()() () ()()λλλλλ sK/sfss −=+1
,...1, += LLλ (4.15)

then the sequences s(λ) converges to ρ 1
(b) For λ = L + 1, ..., σ (λ+1)(x) are calculated based on

the following variable-shift polynomial K(λ+1)(x).

()() ()()

()()

()() ()()
() ()() () ()()

() ()() () ()()
() ()() () ()()

() ()() () ()()
()() ()()

()

+

+

=+

xf

sfsf

sfssfs

sfssfs

sKsK
x

sKsK

sfsf

xK

x
xK

λλ

λλλλ

λλλλ

λλλλ

λλλλ

λλ

λ

λ
λ

σ

21

2211

2211

21

21

21

1 1

 (4.16)

()() ()()
()() ()

()()
() () 1,0,
0

01 1
11

1

11
0

=

−=

=
+

++
+

++

vxf
f

KK
x

xK

xKxK

v
vv

λ
λλ

λλ

 (4.17)

()()

() ()() () ()()
() ()() () ()()
() ()() () ()()

() ()() () ()()
() ()() () ()()λλλλ

λλλλ

λλλλ

λλλλ

λλλλ

λσ

2
1

21
1

2

2
1

11
1

1

2
1

21
1

2

2
1

11
1

1

2
2

1
01

1
0

1
1

sKsK

sKsK

sKsK

xsKsK

xsKsK

x

++

++

++

++

++

+ =

Where s1
(λ) and s2

(λ) are two roots of ρ (λ)(x).
Then the sequence ρ (λ)(x) converges to (x−ρ 1)(x−ρ 2).
As for stopping rule see “Stopping Criterion”.

Notes on algorithm
• Initial values s1, s2

Solving the following equation by Newton’s method.

0... 1
1

1 =−+++ −
−

nn
nn axaxax

let only one positive root be β, then s1, and s2 are set
as:

() ()θθβθθβ sincos,sincos 21 isis +=+= (4.18)

where theta ,...2,1,0 ±±=∝≠ kkπθ

• Normalization of K(λ)(x)

To avoid overflows in operations, it is taken into
account that K(0)(x) = f'(x)/n, and K(λ)(x) are normalized
by diving (4.6) with A(λ) in (4.7). (4.6) with A(λ) in
(4.7).

• Calculation of K(λ)(x) and δ(λ)(x)
Let

() () () ()
()() ()() () () c.uxdxxQxK

auxbxxQxf

K

f

+++=

+++=

σ

σ
λλ

,

Then, using these a, b, c, d, u, v, Q1(x) and Qk
(λ)(x),

K(λ+1)(x) is calculated as follows.
() () () ()

()

K x a uab vb
bc ad

Q x

x ac uad vbd
bc ad

Q x b

k

f

λ λ+ = + +
−

+ − + +
−

+

1
2 2

In addition, σ(λ)(x) is also calculated using a, b, c, d, u,
and v, in the same way.

Stopping criterion
• Stage 1

The purpose of this stage is to accentuate the smaller
roots. In the implementain, M is set to 5, a number
arrived at by numerical experience.

• Stage 2
Letting () ()()0/0 λ

λ Kft −= , if

λλλ ttt
2
1

1 ≤−+ and 112 2
1

+++ ≤− λλλ ttt

then Stage 2 is terminated and iteration for a linear
factor in Stage 3 is performed.

RJETR

549

 Letting () ()σ λ νλλ x x u x= + +2 , the sequence () ()σ λ x is
monitored by applying the same test to vλ. If the
condition is satisfied, Stage 2 is terminated and iteration
for a quadratic factor in Stage 3 is performed. But if both
tλ and vλ do not converge even after 20 × I times iteration,
s1 and s2 are reselected by rotationg θ through
appropriate degree in (4.18). Where I is the number of
times s1 and s2 are reselected and its maximum limit is 20.
When I exceeds 20, processing is terminated with ICON
= 10000.
• Stage 3

(a) Iteration for a linear factor
Letting s = s(λ), if

∑∑
=

−

=

− ⋅≤
n

i

in
i

n

i

in
i sausa

00

is satisfied, s is adopted as the root. Where u is the
round-off unit.

(b) Iteration for a quadratic factor
Letting the quotient produced by dividing
polynomial f(x) by a quadratic factor x2 + uλx + vλ
be Q(x), and its remainder be

()λuxB + +A
f(x)=(x2 + uλx + vλ) Q(x)+ ()λuxB + +A

where B and A are calculated by synthetic division.
When both B and A lose their significant digits,
quadratic factor are judged to have converged. That
it, letting

,00 ab = 00 ac =

,011 buab ⋅−= λ { }011 ,max cuac ⋅= λ

and for k = 2, ..., n−2

,21 −− ⋅−⋅−= kkkk bvbuab λλ
{ }21,,max −− ⋅⋅= kkkk cvcuac λλ

then

32211 −−−−− ⋅−⋅−⋅−== nnnnn bvbvbuabB λλλ ,

21 −− ⋅−⋅−== nnnn bvbuabA λλ

and

{ }3211 ,,max −−−− ⋅⋅== nnnn cvcuacD λλ ,

{ }21,,max −− ⋅⋅== nnnn cvcuacC λλ

are calculated. If

B D u≤ ⋅ and uCA ⋅≤

(u is the round-off unit)

is satisfied, x2+ uλx + vλ is adopted as a quadrate
factor of f(x). Limit number of iteration is 20 in both
(a) and (b). If convergence is not met within the limit,
the stopping condition met within the limit, the
stopping condition in Stage 2 is made severe and the
rest of Stage 2 is repeated.

For details, see References [30] and [31].

RKG

550

H11-20-0111 RKG, DRKG

A system of first order ordinary differential equations
(Runge-Kutta-Gill method)
CALL RKG (Y, F, K, N1, H, M, SUB, VW, ICON)

Function
This subroutine solves a system of first order differential
equations:

() ()
() ()

() ()
1

,,...,,,
: :

,,...,,,
,,...,,,

0021

02202122

01102111

≥

==′

==′
==′

n
xyyyyyxfy

xyyyyyxfy
xyyyyyxfy

nnnnn

n

n

 (1.1)

on a mesh x0 + h, x0 + 2h, ..., x0 + (m-1)h with initial
values y1 (x0) y2 (x0) ... yn (x0), by the Runge-Kutta-Gill
method.

Parameters
Y..... Input. Initial values x0, y10, y20, ..., yn0 are

specified as follows:
Y(1,1) = x0, Y(2,l) = y10, Y(3,1) = y20, ...,
Y(N1, 1) = yn0
Y is two-dimensional array, Y(K,M).
Output. Values y1, y2, ..., yn for xj = x0 + jh
(j=1, ..., m-1).
They are output as follows:
For J = 1, 2, ..., n−1
Y(1, J + 1): xj
Y(2, J + 1): y1j = y1(xj)
 : :
Y(N1, J + 1): ynj = ynj(xj)

F Output. Values of y’1, y’2, ..., y’n for xj = x0 +
jh (j = 0, l, ..., m-1), i.e., the values of f1, f2, ...,
fn.
F is a two-dimensional array, F(K,M). They
are output as follows:
Let
F(1, J + 1) : 1.0
F(2, J + 1) : y’1j = y’1(xj)
 : :
F(N1, J + 1) : y’nj=y’n(xj)

K Input. Adjustable dimension of arrays Y and F.
N1 ... Input. n + 1 where n is the number of

equations in the system.
H.... Input. Stepsize h.
M.... Input. The number of discrete points of

independent variable x at which
approximations yi (i=1, ..., n) are to be
obtained. Starting point x0 is also included in
this number. m ≥ 2.

SUB.. Input. The name of subroutine which
evaluates fi(i = 1, 2, ..., n) in (1.1).

The subroutine is provided by the user as
follows:
SUBROUTINE SUB (YY,FF)
Parameters
YY: Input. One-dimensional array of size n +
1, where
YY(1) = x, YY(2) = y1, YY(3)=y2, ..., YY(n
+1) = yn
FF: Output. One-dimensional array of size n
+1,
where FF(2) = f1, FF(3) = f2, FF(4) = f3,,
FF(n +l) = fn
(See the example).
Nothing must be substituted in FF(1).

VW.... Work area. One-dimensional array of size n+1.
ICON.. Output. Condition code. See Table RKG-1.

Table RKG-1 Condition codes

Code Meaning Processing
0 No error

30000 N1 < 2, K < N1, M <2, or H =
0.0

Bypassed

Comments on use
• Subprograms used

SSL II... MGSSL
FORTRAN basic function... None

• Notes

SUB must be declared as EXTERNAL in the program
from which this subroutine is called.

This subroutine generates approximations at fixed
intervals using a constant stepsize. As the computation
proceeds, the errors tend to become larger in general; it is
usually not advisable to obtain approximations at points very
far from x0 though it depends on the size of h.

However, this subroutine has the advantage that it is
a one step method, i.e., in determining the solution at x0
+jh only the solution at x0 + (j - 1) h is necessary. This
is suitable for calculating a few starting values in the
multistep method, and should be exclusively used for
that purpose.

• Example
The initial value problem (3.1) of a system of
differential equations is solved.

()
()

==+=′

===′

31,24
51,

2202122

11021

yyy
x

y
x

y

yyyy

 (3.1)

h=0.1,m=10

RKG

551

C **EXAMPLE**
 DIMENSION Y(3,10),F(3,10),VW(3)
 EXTERNAL SUB
 Y(1,1)=1.0
 Y(2,1)=5.0
 Y(3,1)=3.0
 H=0.1
 CALL RKG(Y,F,3,3,H,10,SUB,VW,ICON)
 IF(ICON.NE.0) STOP
 WRITE(6,600)
 WRITE(6,610) ((Y(I,J),I=1,3),
 * (F(I,J),I=2,3),J=1,10)
 STOP
 600 FORMAT('1'/' ',20X,'X',19X,'Y1',18X,
 * 'Y2',18X,'F1',18X,'F2'//)
 610 FORMAT(' ',10X,5E20.8)
 END
 SUBROUTINE SUB(YY,FF)
 DIMENSION YY(3),FF(3)
 FF(2)=YY(3)
 FF(3)=4.0*YY(2)/(YY(1)*YY(1))+2.0*
 * YY(3)/YY(1)
 RETURN
 END

Method
Considering the independent variable x itself as a
function;

y0(x) =x, y00=y0(x0)=x0 (4.1)

initial value problem (1.1) of a system of first order
differential equations, can be written as

()
() ()
() ()

() ()0010

02201022

01101011

0001000

,,...,,
::

,,...,,
,,...,,
,,...,,

xyyyyyfy

xyyyyyfy
xyyyyyfy

xyyyyfy

nnnnn

n

n

n

==′

==′
==′
==′

To simplify the notation, the following vectors are
introduced.

()T
210 ,...,,, nyyyy=y

()T02010000 ,...,,, nyyyy=y

() () () ()()T10 ,...,, yyyyf nfff= (4.3)

() ()T10 ,...,, nii yyyff =y
ni ,...,1,0=

Let the vector which has elements yi (i = 0, 1, ..., n) be
represented as y′′′′ . Then (4.2) can be simplified to

() ()′ = =y f y , y y x0 0 (4.4)

With respect to (4.4), the procedure of the Runge-
Kutta-Gill method to approximate y(x0+ h) is shown in
(4.5) below. In the following expressions, qi and ki
denote (n+ 1) dimensional vectors just as yi and fi
Initially assumes a zero vector.

()k f y1 = h 0

()y y 1
2

k 2q1 0 1 0= + −

()q q 3 y y 1
2

k1 0 1 0 1= + − −

()k f y2 1= h

()y y k q2 1 2 11 1
2

= + −

 −

()q q 3 y y k2 1 2 1 21 1
2

= + − − −

()k f y3 2= h

()y y k q3 2 3 21 1
2

= + +

 −

()q q 3 y y k3 2 3 2 31 1
2

= + − − +

 (4.5)

()k f y4 3= h

()y y k q4 3 4 3

1
6

2= + −

()q q 3 y y k4 3 4 3 4

1
2

= + − −

Then y4 is taken as the approximation to y(x0+ h).
When determining the solution at x + 2h, setting

q q0 4=
y y0 4=

,(4.5), is repeated. In this way, the approximations
at x0 + 3h,......,x0 + (m-1) h, are determined.

For more information, see Reference [69].

RQDR

552

C21-11-0101 RQDR, DRQDR

Zeros of a quadratic with real coefficients
CALL RQDR (A0, A1, A2, Z, ICON)

Function
This subroutine finds zeros of a quadratic with real
coefficients;

()1,00 021
2

0 ≥≠=++ naaxaxa

Parameters
A0, Al, A2... Input. Coefficients of the quadratic equation.
Z..... Output. Roots of the quadratic equation. Z is a

complex one-dimensional array of size 2.
ICON.. Output. Condition code. See Table RQDR-1.

Table RQDR-l Condition codes

Code Meaning Processing
0 No error

10000 a0 = 0.0 -a2/a1 is stored in
the real part of Z
(1), and 0.0 is
stored in the
imaginary part. Z
(2) may be
incorrect.

30000 a0 = 0.0 and a1 = 0.0 Bypassed

Comments on use
• Subprograms used

SSL II... AMACII and MGSSL
FORTRAN basic functions ... CMPLX, SQRT, and
ABS

• Example
The coefficients of a quadratic equation are entered and
roots Z, are determined.

C **EXAMPLE**
 DIMENSION Z(2)
 COMPLEX Z
 READ(5,500) A0,A1,A2
 CALL RQDR(A0,A1,A2,Z,ICON)
 WRITE(6,600) ICON,A0,A1,A2
 IF(ICON.EQ.30000) STOP
 WRITE(6,610) (Z(I),I=1,2)
 STOP
 500 FORMAT(3F10.0)
 600 FORMAT(10X,'ICON=',I5/10X,'A=',3E15.6)
 610 FORMAT(10X,'Z=',2E15.6)
 END

Method
The roots of a quadratic equation (a0x2 + a1x + a2 = 0)
can be obtained from

2
4 2

2
1 PPP

x
−±−

=

where, P1 = a1/a0 and P2 = a2/a0
When 2

2
1 4PP >> a great loss of precision will result

in one of the calculations 2
2

11 4PPP −+− or

2
2

11 4PPP −−− . To avoid this problem, root formulas
with rationalized numerators are used in calculations.
These are shown below.

Let D= P P1
2

24−
For D≤0, (conjugate complex numbers, multiple roots)

2/2/11 DiPx −+−=

2/2/12 DiPx −−−= (4.1)

For D > 0 (two real roots)
If P1 > 0

)/(2 121 DPPx +−−=

)(2

2)(

0If
2)(

122

11

1

12

DP/Px

/DP=x

 P
/DPx

+−=

+−

≤
+−=

 (4.2)

In calculation of discriminant 2
2

1 4PPD −= , if |P1| is
very large, P1

2 may cause an overflow. In order to avoid
this situation, the condition |P1|>1035 is checked. If the
condition is satisfied, the above-described procedure is
used. If the condition is satisfied, the roots are
discriminated using D0 = 1- 4P2/P1/P1 and D is

calculated as 01 DP .

SBDL

553

A52-31-0202 SBDL, DSBDL

LDLT -decomposition of a positive-definite symmetric
band matrix (Modified Cholesky's method)
CALL SBDL (A, N, NH, EPSZ, ICON)

Function
This subroutine computes LDLT decomposition (1.1).

A = LDLT (1.1)

of the n × n real positive-definite symmetric band
matrix A with upper and lower band widths h by using
the modified Cholesky's method, where L is a unit lower
band matrix with band widths h, D is a diagonal matrix ,
and n > h ≥ 0.

Parameters
A..... Input. Matrix A.

Output. Matrices L and D-1.
Refer to Fig.SBDL-1.
Matrix A is stored in a one dimensional array
of size n(h + 1)−h(h + 1)/2 in the compressed
mode for symmetric band matrices.

N..... Input. Order n of matrix A.
NH.... Input. Lower band width h .
EPSZ.. Input. Tolerance for relative zero test of pivots

in decomposition process of matrix A (≥ 0.0).
If EPSZ is 0.0, a standard value is used.

ICON.. Output. Condition code. Refer to Table SBDL-1

() ()
n h

h h
+ −

+
1

1
2

d11

d22

dnn

0

l211

lh+11

1

1

1lnn h−

lh+11

lnn h−

d11
1−

l d21 22
1−

dh h+ +
−

1 1
1

dnn
−1

d11
1−

l21

d22
1−

lh+11

dh h+ +
−

1 1
1

lnn h−

dnn
−1

Diagonal matrix D Matrix D-1+(L-I) Array FA

Diag-
onal
element
s are
inverted

Only
lower
band
portion

Unit lower
band matrix L

0

0

0

0

0

Note: On output, diagonal and lower band portions of matrix D-

1+(L-I) are stored in one-dimensional array A in the
compressed mode for symmetric band matrices.

Fig. SBDL-1 Storage of the decomposed elements

Table SBDL-l Condition codes

Code Meaning Processing
0 No error

10000 The negative pivot occurred.
The matrix is not positive-
definite.

Continued

20000 The relatively zero pivot
occurred. The matrix is
possibly singular.

Discontinued

30000 NH<0, NH ≥ N or EPSZ < 0.0 Bypassed

Comments on use
• Subprograms used

SSL II... AMACH, MGSSL
FORTRAN basic function... ABS

• Notes
Since this subroutine omits the operations concerning
the elements out of the band, the processing speed is
faster than subroutine SLDL provided for positive-
definite symmetric matrices.

If EPSZ is set to 10−s, this value has the following
meaning: While performing the LDLT -decomposition
by modified Cholesky's method, if the loss of over s
significant digits occurred for the pivot, the LDLT-
decomposition should be discontinued with ICON =
20000 regarding the pivot to be relatively zero.

The standard value of EPSZ is 16･u, where u is a
unit round off, but the result is not always guaranteed.

If the negative pivot occurred in the decomposition,
the matrix is not a positive-definite.
In this case, this subroutine is continued, with ICON =
10000. However, it should be noted that large
calculation errors may occur since the pivoting is not
performed.

This subroutine performs LDLT decomposition, but it
should be noted that D-1 is output to the array instead of
D.
The determinant of the matrix can be obtained by
multiplying all the n diagonal elements of array A (the
diagonal elements of D-1) after the subroutine has been
executed and then by determining the inverse number.

Notice that the array A is in the compressed mode for
symmetric band matrices.

• Example

The n × n matrix with the lower and upper band width
h is input and LDLT decomposition is computed.
n ≤ 100 and h ≤ 50.

Array A

SBDL

554

C **EXAMPLE**
 DIMENSION A(3825)
 10 READ(5,500) N,NH
 IF(N.EQ.0) STOP
 NH1=NH+1
 NT=N*NH1-NH*NH1/2
 READ(5,510) (A(I),I=1,NT)
 WRITE(6,630)
 L=0
 LS=1
 DO 20 I=1,N
 L=L+MIN0(I,NH1)
 JS=MAX0(1,I-NH1)
 WRITE(6,600) I,JS,(A(J),J=LS,L)
 20 LS=L+1
 CALL SBDL(A,N,NH,1.0E-6,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) GO TO 10
 WRITE(6,640)
 L=0
 LS=1
 DET=1.0
 DO 30 I=1,N
 L=L+MIN0(1,NH1)
 JS=MAX0(1,I-NH1)
 WRITE(6,600) I,JS,(A(J),J=LS,L)
 DET=DET*A(L)
 30 LS=L+1
 DET=1.0/DET
 WRITE(6,620) DET
 GO TO 10
 500 FORMAT(2I5)
 510 FORMAT(4E15.7)
 600 FORMAT(' ','(',I3,',',I3,')'/
 * (10X,5E17.8))
 610 FORMAT(/10X,'ICON=',I5)
 620 FORMAT(//10X,
 * 'DETERMINANT OF MATRIX=',E17.8)
 630 FORMAT(/10X,'INPUT MATRIX')
 640 FORMAT(/10X,'DECOMPOSED MATRIX')
 END

Method
• Modified Cholesky's method

A real positive-definite symmetric matrix A can always
be decomposed in the following form.

T~~LLA = (4.1)

Where ~L is a lower triangular matrix. Further, if L is
defined by ~L L= diag(Tii equations (4.1) can be
rewritten to

TLDLA = (4.2)

Where L is a unit lower triangular matrix, and D is a
positive-definite diagonal matrix. The modified
Cholesky's method gives the following equations to
decompose as shown in equations (4.2).

∑
−

=

−=−=
1

1

1,...,1,
j

k
jkkikijjij ijldladl (4.3)

∑
−

=
−=

1

1

i

k
jkkikiii ldlad (4.4)

Where i = 1, ..., n.

(For further details, see the Method for subroutine
SLDL). If matrix A is a positive-definite symmetric band
matrix, in equations (4.2), matrix A becomes a lower
band matrix, with the identical band width as A.
Therefore, in this subroutine, the calculation concerning
the elements out of the band are omitted, and the
decomposition is actually computed using the following
equations (4.5) and (4.6).

()
∑

−

−=
−=

1

,1max
,

j

hik
jkkikijjij ldladl

nhij ,...,−= (4.5)

()
∑

−

−=
−=

1

,1max
,

j

hik
ikkikiii ldlad (4.6)

Where i = 1, ..., n.

For further details, see Reference [7].

SBMDM

555

A52-21-0202 SBMDM, DSBMDM

MDMT decomposition of a real indefinite symmetric
band matrix (block diagonal pivoting method)
CALL SBMDM (A, N, NH, MH, EPSZ, IP, IVW,
ICON)

Function
An n × n nonsingular real symmetric band matrix A
having band width ~h is MDMT-decomposed using the
block diagonal pivoting method. (There are similar two
methods, Crout-like and Gaussian-like methods, of which
the Gaussian-like method is used in this subroutine.)

PAP T = MDM T (1.1)

where P is a permutation matrix to be used to exchange
rows of matrix A in the pivoting operation, M is a unit
lower band matrix, and D is a symmetric block diagonal
matrix comprising symmetric blocks each at most of
order 2; further dk+1, k ≠ 0 if mk+1,k=0 ,where M = (mij)
and D = (dij) for n≥ h ≥ 0.

Parameters
A..... Input. Matrix A given in compressed mode for

the symmetric band matrix assuming A to have
band width hm. (See “Comments on Use.”)
Output. Matrices M and D. (See Figure
SBMDM-l.)
One-dimensional array of size n(hm+1)-
hm(hm+1)/2

d d11 21
0 Excluding

the upper
triangular
portion

Block diagonal matrix D Array FA

0

d d21 2 2

d33
d

4 4

0

0
m32

1

1

1

1

0

0

m4 3

Diagonal
portion and
band portion
of
the maximum
tolerable band
width

Only the
lower traian-
gular portion

0

0
m d32 33

d11

d d21 22

m d43 4 4

d11

d21

d2 2

0

m32

d33

0

m4 3

d4 4

Note: In this example, orders of blocks in D are 2, 1, and 1;

band width of M is 1, and the maximum tolerable band
width is 2.

Fig.SBMDM-1 Decomposed element storing method

N..... Input. Order n of matrix A.
NH.... Input. Band width h of matrix A.

Output. Band width ~h of matrix M. (See
“Comments on Use.”)

MH..... Input. Maximum tolerable band width hm(N >
MH ≥ NH).(See “Comments on Use.”)

EPSZ .. Input. Relative zero criterion (≥ 0.0) for
pivoting operation. The default value is used if
0.0 is specified. (See, “Comments on Use.”)

IP..... Output. Transposition vector indicating the
history of row exchanges by pivoting operation.
One-dimensional array of size n.
(See “Comments on Use.”)

IVW..... Work area. One-dimensional array of size n.
ICON.. Output. Condition code. (See Table SBMDM-

l.)

Table SBMDM-l Condition codes

Code Meaning Processing
0 No error.

20000 The relatively zero pivot
occurred. The coefficient
matrix may be nonsingular.

Bypassed.

25000 The band width exceeded the
maximum tolerable band width
during processing.

Bypassed.

30000 NH < 0, NH > MH, MH ≥ N or
EPSZ <0.0.

Bypassed.

Comments on use
• Subprograms used

SSL II... AMACH, MGSSL
FORTRAN basic functions... MAX0, MIN0, ABS,
AMAX1

• Notes

When 10-s is set as relative zero criterion EPSZ for
pivoting operation:

If loss of significant digits exceeds decimals in the
pivot (determinant of 1 × 1 or 2 × 2 pivot matrix)
during the MDMT decomposition in the block diagonal
pivoting method, the pivot value is regarded as a
relative zero and ICON = 20000 is set, then processing
is stopped.

The default value of EPSZ is 16･u, where u is the
unit round off.

If the calculation must not be stopped even if the
pivot value becomes small, specify a very small value
in the EPSZ parameter. In this case, however, the result
is not guaranteed. result is not guaranteed.

SBMDM

556

The transposition vector is considered to be
analogues to permutation matrix P in

PAP T = MDM T

used in the MDMT decomposition in the block diagonal
pivoting method. In this subroutine, contents of array
A are actually exchanged and the related historical data
is stored in IP. Note that data storing methods are
different between 1 × 1 and 2 × 2 pivot matrices. At
step k of the decomposition, data is stored as follows:

For 1 × 1 pivot matrix, no row is exchanged and k is
stored in IP(k). For 2 × 2 pivot matrix, − k is stored in
IP(k)and the negative value of the row (and column)
number that is exchanged by row (k + 1) (and column
(k + l)) is stored in IP(k+1).

The determinant of matrix A is equal to that of
calculated D. The elements of matrices M and D are
stored in array A (Figure SBMDM-l). (See “Example”
for subroutine LSBIX.)

Generally, the matrix band width increases when
rows and columns are exchanged in the pivoting
operation. This means that the user must specify band
width hm greater than actual band width h . If the band
width exceeds hm , processing is stopped assuming
ICON = 25000. The output value for NH indicates the
necessary and sufficient condition for hm

Simultaneous linear equations are solved by calling
subroutine BMDMX after this subroutine. In an
ordinary case, the solution is obtained by the calling
subroutine LSBIX.

The numbers of positive and negative eigenvalues of
matrix A can be obtained. (See “Example.”)

• Example
Given an n × n real symmetric band matrix having
width h, the numbers of positive and negative
eigenvalues are obtained under conditions n ≤ 100 and
h ≤ hm ≤ 50.

C **EXAMPLE**
 DIMENSION A(3825),IP(100),IVW(100)
 READ(5,500) N,NH,MH
 WRITE(6,600) N,NH,MH
 MHP1=MH+1
 NT=(N+N-MH)*MHP1/2
 READ(5,510) (A(J),J=1,NT)
 EPSZ=0.0
 CALL SBMDM(A,N,NH,MH,EPSZ,IP,IVW,
 * ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 INEIG=0
 IPEIG=0
 I=1
 J=1

 10 M=IP(J)
 IF(M.EQ.J) GO TO 20
 IPEIG=IPEIG+1
 INEIG=INEIG+1
 I=MIN0(MH,J)+MIN0(MH,I+1)+2+I
 J=J+2
 GO TO 30
 20 IF(A(I).GT.0.0) IPEIG=IPEIG+1
 IF(A(I).LT.0.0) INEIG=INEIG+1
 I=MIN0(MH,J)+1+I
 J=J+1
 30 IF(J.LE.N) GO TO 10
 WRITE(6,620) IPEIG,INEIG
 STOP
 500 FORMAT(3I4)
 510 FORMAT(4E15.7)
 600 FORMAT('1'/10X,'N=',I3,5X,'NH=',I3,5X,
 *'MH=',I3)
 610 FORMAT(/10X,'ICON=',I5)
 620 FORMAT('0',5X,'POSITIVE EIGENVALUE=',
 * I4/6X,'NEGATIVE EIGENVALUE=',I4)
 END

Method
• Block diagonal pivoting method

A positive-definite symmetric matrix A can be
decomposed as (4.1) using the modified Cholesky
method:

T
111 MDMA = (4.1)

where M1 is a unit lower triangular matrix and D1 is a
diagonal matrix.

If A is not a positive-definite matrix, this
decomposition is generally impossible or numerically
unstable even if it is possible; however, this difficulty is
resolved by rearranging (4.1) to (4.2):

PAP T = MDM T (4.2)

where P is the permutation matrix to be used for
exchanging rows in the pivoting operation, M is a unit
lower triangular matrix, and D is a symmetric matrix
comprising symmetric blocks each at most of order 2.
Decomposition to the form of (4.2) is referred to as the
block diagonal pivoting method.

• Procedures in this subroutine

This subroutine uses Algorithm D (references [9] and
[10]) to minimize increase of the band width caused by
exchanging rows (and columns) in the pivoting
operation. In Algorithm D, elements of the coefficient
matrix are updated at each decomposition step. The
coefficient matrix obtained at step k completion is
expressed as A(k)

 = (()aij
k), where A(0)=A. In this case,

processing at step k (k=l,2,..., n) consists of

SBMDM

557

1) Determines

() ()11 max −

≤<

− == k
iknik

k
mk aaρ (4.3)

2) If

() ()525.0,1 =≥− ααρk
kka (4.4)

is satisfied, proceeds to step 5), otherwise, proceeds
to step 3).

3) Determines

()1max −

≤<
= k

mj
njk

aσ (4.5)

4) If

σαρ)1(2 −≤ k
kka (4.6)

is satisfied, proceeds to step 5), otherwise, proceeds
to step 6).

5) If

() ()EPSZaa ij
k

kk ⋅=<− max,1 εε (4.7)

is satisfied, the matrix is considered to be singular,
then processing is stopped; otherwise, ()akk

k−1 is used
as 1 × 1 pivot matrix to calculate

() (),/ 11 −−= k
kk

k
ik aas (4.8)
() () () nijasaa k

ji
k
jk

k
ji ,...,,1 =+⋅= −

() sa k
ij −= (4.9)

nki ,...,1, +=

Increments k by one, then procees to step 1).

6) Exchange row (and column) k + 1 and m. If

() ε<−
+

1
,1

k
kka

is satisfied, the matrix is considered to be singular,
then processing is stopped; otherwise,

() ()

() ()

−

++
−

+

−
+

−

1
1,1

1
,1

1
1,

1

k
kk

k
kk

k
kk

k
kk

aa
aa

is used as the 2 × 2 pivot matrix to calculate

() ()1
,1

1
, / −

+
−= k

kk
k
kk aar (4.12)

() () ()1
,1

1
,1

1
1,1 / −

+
−

+
−

++ −⋅= k
kk

k
kk

k
kk aaard (4.13)

() () () ()() daaaas k
kk

k
kk

k
ki

k
ki // 1

,1
1

1,1
1

,
1
1,

−
+

−
++

−−
+ ⋅−= (4.14)

() ()() draat k
ki

k
ik /1

1,
1 −

+
− −= (4.15)

() () () ()11
1,

11 −−
+

−+ +⋅+⋅= k
ji

k
kj

k
jk

k
ji aatasa (4.16)

nij ,...,, =
() ,1 sa k
ik −=+ (4.17)
() ta k

ki −=+
+
1
1, (4.18)

nki ,...,2+=

Increments k by 2, then proceeds to step 1).

When decomposition is completed, the diagonal block
portion of A(n) is D and the other portions are M.

The band structure of the coefficient matrix has been
ignored for simplifying explanations above, however, the
band structure is used to efficiently process calculations
in the actual program.

Generally, the band width increases when a 2 × 2 pivot
matrix is used. This subroutine reduces unnecessary
calculations by exactly tracing the band width change.

(See references [9] and [10] for details.)

SEIG1

558

B21-21-0101 SEIG1, DSEIG1

Eigenvalues and corresponding eigenvectors of a real
symmetric matrix (QL method)
CALL SEIG1 (A, N, E, EV, K, M, VW, ICON)

Function
All eigenvalues and corresponding eigenvectors of an n-
order real symmetric matrix A are determined using the
QL method. The eigenvectors are normalized such that
x

2
1= . n ≥ 1.

Parameters
A..... Input. Real symmetric matrix A.

Compressed storage mode for symmetric
matrix.
A is a one-dimensional array of size n (n+1)/2.
The contents of A are altered on output.

N..... Input. Order n of matrix A.
E.. Output. Eigenvalues.

E is a one-dimensional array of size n.
EV...... Output. Eigenvectors.

Eigenvectors are stored in columns of EV.
EV(K,N) is a two-dimensional array.

K..... Input. Adjustable dimension of array EV.
(≥ n)

M..... Output. Number of eigenvalues/eigenvectors
obtained.

VW.... Work area.
VW is a one-dimensional array of size 2n.

ICON.. Output. Condition code
See Table SEIG1-1.

Table SEIG1-1 Condition codes

Code Meaning Processing
0 No error

10000 N = 1 E(1) = A(1), EV
(1, 1) = 1.0

15000 Some of eigenvalues and
eigenvectors could not be
determined.

M is set to the
number of
eigenvalues and
eigenvectors that
were determined.

20000 None of eigenvalues and
eigenvectors could be
determined.

M = 0

30000 N < 1 or K < N Bypassed

Comments on use
• Subprograms used

SSL II... TRID1, TEIG1, TRBK, AMACH, and
MGSSL.
FORTRAN basic functions... SQRT, SIGN, ABS, and
DSQRT

• Notes
All eigenvalues and corresponding eigenvectors are
stored in the order that eigenvalues are determined.

Parameter M is set to n when ICON = 0, when ICON
= 15000, parameter M is set to the number of
eigenvalues and corresponding eigenvectors that were
obtained.

This subroutine is used for a real symmetric matrix.
When determining all eigenvalues and corresponding
eigenvectors of a real symmetric tridiagonal matrix,
subroutine TEIG1 should be used.

If only the eigenvalues of a real symmetric matrix
are to be determined, subroutines TRID1 and TRQL
should be used.

• Example

All eigenvalues and corresponding eigenvectors of an
n-order real symmetric matrix A are determined. n ≤
100.

C **EXAMPLE**
 DIMENSION A(5050),E(100),EV(100,100),
 * VW(200)
 10 CONTINUE
 READ(5,500) N
 IF(N.EQ.0) STOP
 NN=N*(N+1)/2
 READ(5,510) (A(I),I=1, NN)
 WRITE(6,600) N
 NE=0
 DO 20 I=1,N
 NI=NE+1
 NE=NE+I
 20 WRITE(6,610) I,(A(J),J=NI,NE)
 CALL SEIG1(A,N,E,EV,100,M,VW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 CALL SEPRT(E,EV,100,N,M)
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(5E15.7)
 600 FORMAT('1',20X,'ORIGINAL MATRIX',15X,
 * 'ORDER=',I3/'0')
 610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7))
 620 FORMAT('0',20X,'ICON=',I5)
 END

This example, subroutine SEPRT is used to print the
eigenvalues and corresponding eigenvectors of a real
symmetric matrix. The contents of SEPRT are:

 SUBROUTINE SEPRT(E,EV,K,N,M)
 DIMENSION E(M),EV(K,M)
 WRITE(6,600)
 KAI=(M-1)/5+1
 LST=0
 DO 10 KK=1,KAI
 INT=LST+1
 LST=LST+5
 IF(LST.GT.M) LST=M
 WRITE(6,610) (J,J=INT,LST)
 WRITE(6,620) (E(J),J=INT,LST)

SEIG1

559

 DO 10 I=1,N
 WRITE(6,630) I,(EV(I,J),J=INT,LST)
 10 CONTINUE
 RETURN
 600 FORMAT('1',20X,
 * 'EIGENVALUE AND EIGENVECTOR')
 610 FORMAT('0',5I20)
 620 FORMAT('0',5X,'ER',3X,5E20.8/)
 630 FORMAT(5X,I3,3X,5E20.8)
 END

Method
All eigenvalues and corresponding eigenvectors of an n-
order real symmetric matrix A are determined.

Using the orthogonal similarity transformation in (4.1),
real symmetric matrix A can be reduced to diagonal
matrix D.

AQQD T= (4.1)

Where Q is an orthogonal matrix. Diagonal elements of
diagonal matrix D obtained in (4.1) become all
eigenvalues of real symmetric matrix A; and the i-th
column of Q is the eigenvector which corresponds to i-th
diagonal element of D. In this routine, eigenvalues and
eigenvectors (Q) are determined as follows.
• Using the Householder method, real symmetric matrix

A is reduced to tridiagonal matrix T.

HH AQQT T= (4.2)

where QH is an orthogonal matrix obtained as the
product of transformation matrices in the Householder
method.

221 −⋅⋅⋅⋅= nH PPPQ (4.3)

T is obtained using subroutine TRID 1.

• QH is computed from (4.3).
• Using the QL method, tridiagonal matrix T is reduced

to diagonal matrix D to determine the eigenvalues. For
information on the QL method, see the section on
TRQL. This transformation is

LLTQQD T= (4.4)

QL is an orthogonal matrix obtained as the product of
transformation matrices in the QL method.

sL QQQQ ⋅⋅⋅⋅= 21 (4.5)

From (4.1), (4.2), and (4.4), eigenvector Q can be
represented as

LH QQQ = (4.6)

By performing the transformation of (4.4) and the
computation of (4.6) at the same time, all eigenvalues and
corresponding eigenvectors can be obtained together.
This is done by subroutine TEIG1.

The eigenvectors are normalized such that ||x||2 = 1.
For further information see References [12], [13] pp 191-
195, [13] pp.212-248, and [16] pp.177-206.

SEIG2

560

B21-21-0201 SEIG2, DSEIG2

Selected eigenvalues and corresponding eigenvectors of
a real symmetric matrix (Bisection method, inverse
iteration method)
CALL SEIG2 (A, N, M, E, EV, K, VW, ICON)

Function
The m largest or m smallest eigenvalues of an n-order
real symmetric matrix A are determined using the
bisection method. Then the corresponding eigenvectors
are determined using the inverse iteration method. The
eigenvectors are normalized such that ||x||2 = 1. 1 ≤ m ≤
n.

Parameters
A..... Input. Real symmetric matrix A

Compressed storage mode for symmetric
matrix.
A is a one-dimensional array of size n(n+1)/2.
The contents of A are altered on output.

N..... Input. Order n of real symmetric matrix A.
M..... Input.

M = + m ... The m largest eignvalues desired
M = − m ... The m smallest eigenvalues
desired

E..... Output. Eigenvalues.
E is a one-dimensional array of size m .

EV Output. Eigenvectors.
Eigenvectors are stored in columns of EV.
EV(K, m) is a two-dimensionable array

K..... Input. Adjustable dimension of array EV.
(≥ n)

VW..... Work area. One-dimensional array of size 7n.
ICON .. Output. Condition code. See Table SEIG2-1.

Table SEIG2-l Condition codes

Code Meaning Processing
0 No error

10000 N = 1 E(1) = A(1),
EV(1, 1) = 1.0

15000 Some of eigenvectors could
not be determined although m
eigenvalues were determined.

The eigenvector
is treated as
vector 0.

20000 The eigenvector could not be
determined.

The eigenvector
is treated as
vector 0.

30000 M = 0, N < |M| or K < N Processing is
bypassed.

Comments on use
• Subprograms used

SSL II... TRID1, TEIG2, TRBK, AMACH, UTEG2
and MGSSL.
FORTRAN basic functions ... IABS, SQRT, SIGN,
ABS, AMAX1 and DSQRT.

• Notes
This subroutine is used for real symmetric matrices.
When m eigenvalues/eigenvectors of a real symmetric
tridiagonal matrix are to be determined, subroutine
TEIG2 should be used.
When determining m eigenvalues of a real symmetric
matrix without the corresponding eigenvectors,
subroutines TRID1 and BSCT1 should be used.

• Example
The m largest or m smallest eigenvalues and
corresponding eigenvectors of an n-order real
symmetric matrix A are determined. n≤100, m ≤ 10.

C **EXAMPLE**
 DIMENSION A(5050),E(10),
 * EV(100,10),VW(700)
 10 CONTINUE
 READ(5,500) N,M
 IF(N.EQ.0) STOP
 NN=N*(N+1)/2
 READ(5,510) (A(I),I=1,NN)
 WRITE(6,600) N,M
 NE=0
 DO 20 I=1,N
 NI=NE+1
 NE=NE+I
 WRITE(6,610) I,(A(J),J=NI,NE)
 20 CONTINUE
 CALL SEIG2(A,N,M,E,EV,100,VW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 MM=IABS(M)
 CALL SEPRT(E,EV,100,N,MM)
 GO TO 10
 500 FORMAT(2I5)
 510 FORMAT(5E15.7)
 600 FORMAT('1',20X,'ORIGINAL MATRIX',5X,
 * 'N=',I3,5X,'M=',I3/'0')
 610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7))
 620 FORMAT('0',20X,'ICON=',I5)
 END

In this example, subroutine SEPRT is used to print
eigenvalues and corresponding eigenvectors of the real
symmetric matrix. For detail on this subroutine, refer to
the example in section SEIG1.

Method
The m largest or m smallest eigenvalues of an n order
real symmetric matrix A are determined using the
bisection method. Then, the corresponding

SEIG2

561

eigenvectors are determined using the inverse iteration
method.

First, real symmetric matrix A is reduced to tridiagonal
matrix T using the Householder method:

H
T
H AQQT = (4.1)

where QH is an orthogonal matrix.

This is done by subroutine TRID1.
Next, m eigenvalues are determined using the bisection

method. Then, corresponding eigenvectors of T are
determined using the inverse iteration method, which
determines eigenvectors by solving equation (4.2)
iteratively.

() 2,1,1 ==− − rrr xxIT µ ,... (4.2)

Where µ is an eigenvalue determined using the
bisection method, and x0 is an appropriate initial vector.
The subroutine TEIG2 performs this operation.

Let eigenvectors of T be y, then eigenvectors x of A are
obtained using QH in (4.1) as

yQx H= (4.3)

which is back transformation corresponding the
Householder's reduction. This is done by subroutine
TRBK. The eigenvectors are normalized such that

12 =x . For further information, see References [12]
and [13] pp 418-439.

SFRI

562

I11-51-0101 SFRI, DSFRI

Sine Fresnel integral S(x)
CALL SFRI (X, SF, ICON)

Function
This subroutine computes Sine Fresnel integral

() () ∫∫
2

==

x
dttdt

t
txS

x
π

π
π 0

2
0 2

sinsin
2
1

by series and asymptotic expansions, where x≥ 0.

Parameters
X..... Input. Independent variable x.
SF...... Output. Value of S(x).
ICON.. Output. Condition code. See Table SFRI-1.

Table SFRI-1 Condition codes

Code Meaning Processing
0 No error

20000 X ≥ tmax SF = 0.5
30000 X < 0 SF = 0.0

Comments on use
• Subprograms used

SSL II... MGSSL, UTLIM
FORTRAN basic functions ... SIN, COS, and SQRT

• Notes
The valid ranges of parameter X are:
0 ≤ X < tmax
This is provided because sin(x) and cos(x) lose their
accuracy if X exceeds the above ranges.

• Example
The following example generates a table of S (x) from
0.0 to 100.0 with increment 1.0.

C **EXAMPLE**
 WRITE(6,600)
 DO 10 K=1,101
 X=K-1
 CALL SFRI(X,SF,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,SF
 IF(ICON.NE.0) WRITE(6,620) X,SF,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF FRESNEL ',
 * 'INTEGRAL',///6X,'X',9X,'S(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 * E17.7,5X,'S=',E17.7,5X,'CONDITION=',
 * I10)
 END

Methods
Two different approximation formulas are used
depending on the ranges of x divided at x = 4.

• For 0 ≤ x < 4

The power series expansion of S(x)

() ()
() ()∑

∞

=

+

++
−=

0

12

34!12
12

n

n
n

x
nn

xxS
π

 (4.1)

is calculated with the following approximation
formulas:
Single precision:

() 4,
2

6

0

2 xzzaxxxS
k

k
k == ∑

=
 (4.2)

Double precision:

() ∑
=

+=
11

0

12

k

k
k xaxxS (4.3)

• For x ≥ 4
The asymptotic expansion of S (x)

() () () () ()S x x P x x Q x= + +1
2

sin cos (4.4)

is calculated through use of the following approximate
expressions of P (x) and Q (x):
Single precision:

() xzza
x

xP
k

k
k 4,2 10

0

1 == ∑
=

+ (4.5)

() xzza
x

xQ
k

k
k 4,2 11

0
=−= ∑

=
 (4.6)

Double precision:

() xzzbza
x

xP
k

k
k

k

k
k 4,1 11

0

10

0

1 == ∑∑
==

+ (4.7)

() xzzdzc
x

xQ
k

k
k

k

k
k 4,1 10

0

10

0
== ∑∑

==
 (4.8)

SGGM

563

A21-11-0201 SGGM, DSGGM

Subtraction of two matrices (real general)
CALL SGGM (A, KA, B, KB, C, KC, M, N, ICON)

Function
This subroutine performs subtraction of an m × n real
general matrix B from a real general matrix A.

C = A − B
where C is an m × n real general matrix. m, n ≥ 1.

Parameters
A......... Input. Matrix A , two-dimensional array,

A(KA, N).
KA....... Input. The adjustable dimension of array A,

(≥ M).
B.......... Input. Matrix B , two-dimensional array,

B(KB, N).
KB........ Input. The adjustable dimension of array B,

(≥ N).
C........... Output. Matrix C, two-dimensional array

C(KC, N).
(See Notes.)

KC......... Input. The adjustable dimension of array C,
(≥ M).

M.......... Input. The number of rows m of matrices
A, B, and C.

N........... Input. The number of columns n of matrices A,
B, and C.

ICON ... Output. Condition code.
See Table SGGM-1.

Table SGGM-1 Condition codes

Code Meaning Processing
0 No error

30000 M<1, N<1, KA < M, KB < M or
KC < M

Bypassed

Comments on use
• Subprograms used

SSL II... MGSSL
FORTRAN basic function ... None

• Notes
Saving the storage area:
If there is no need to keep the contents on array A or B,
more storage area can be saved by the following CALL
statement.
− When the contents of array A are not needed:

CALL SGGM (A, KA, B, KB, A, KA, M, N, ICON)
− When the contents of array B are not needed:

CALL SGGM (A, KA, B, KB, B, KB, M, N, ICON)
In the above two cases, matrix C is stored in array A

or B.

• Example
The following shows an example of obtaining the
subtraction of a real general matrix B from A. Here, m,
n ≤ 50.

C **EXAMPLE**
 DIMENSION A(50,50),B(60,60),C(100,100)
 CHARACTER*4 IA,IB,IC
 DATA IA/'A '/,IB/'B '/,IC/'C '/
 DATA KA/50/,KB/60/,KC/100/
 10 READ(5,100) M,N
 IF(M.EQ.0) STOP
 WRITE(6,150)
 READ(5,200) ((A(I,J),I=1,M),J=1,N)
 READ(5,200) ((B(I,J),I=1,M),J=1,N)
 CALL SGGM(A,KA,B,KB,C,KC,M,N,ICON)
 IF(ICON.NE.0) GOTO 10
 CALL PGM(IA,1,A,KA,M,N)
 CALL PGM(IB,1,B,KB,M,N)
 CALL PGM(IC,1,C,KC,M,N)
 GOTO 10
 100 FORMAT(2I5)
 200 FORMAT(4E15.7)
 150 FORMAT('1'///10X,
 *'** MATRIX ADDITION **')
 END

The subroutine PGM in the example is for printing a
real matrix. This program is shown in the example for
subroutine MGSM.

SIMP1

564

G21-11-0101 SIMP1, DSIMP1

Integration of a tabulated function by Simpson's rule
(equally spaced)
CALL SIMP1 (Y, N, H, S, ICON)

Function
Given function values yi = f(xi) at equally spaced points xi
= x1 + (i-1) h, i=1,..., n this subroutine obtains the
integral:

() 0.0,3
1

>≥= ∫ hndxxfS nx

x

by Simpson's rule, where h is the increment.

Parameters
Y........... Input. Function values yi .

One-dimensional array of size n.
N........... Input. Number of discrete points n.
H........... Input. Increment h of the abscissas.
S............ Output. Integral S.
ICON.. Output. Condition code. See Table SIMP1-1.

Table SIMP1-1 Condition codes

Code Meaning Processing
0 No error

10000 n = 2 Calculation is
based on the

trapezoidal rule.
30000 n < 2 or h ≤ 0.0 S is set to 0.0.

Comments on use
• Subprograms used

SSL IIMGSSL
FORTRAN basic function......none

• Example

Function values yi and the increment h are input and the
integral S is determined.

C **EXAMPLE**
 DIMENSION Y(100)
 READ(5,500) N,H
 READ(5,510) (Y(I),I=1,N)
 CALL SIMP1(Y,N,H,S,ICON)
 WRITE(6,600) ICON,S
 STOP
 500 FORMAT(I3,F10.0)
 510 FORMAT(6F10.0)
 600 FORMAT(10X,'ILL CONDITION =',I5
 * /10X,'INTEGRAL VALUE =',E15.7)
 END

Method
Using function values yi at discrete points in the interval
[xi, xn], integration is performed using Simpson's rule.
The first three points are approximated using a second
degree interpolating polynominal and integration is
performed over the interval

() ()24
3 321

3

1
yyyhdxxf

x

x
++≈∫ (4.1)

Next, the same calculation is continued for the succesive
three points;

() (
)nn

x

x

yy

yyyhdxxf
n

++

+++≈

−

∫
1

321

4...

...24
31 (4.2)

If the number of discrete points is odd this calculation
is done completely. However, if it is even the above
method is used over the interval [x1, xn-3], and the
Newton-Cotes 3/8 rule is used over the remaining interval
[xn-3, xn]

() ()4321 33
8
3

3
yyyyhdxxfn

n

x

x
+++≈∫

−
 (4.3)

For n = 2, since the Simpson’s rule cannot be used, the
trapezoidal rule is used

() ()212
2

1
yyhdxxf

x

x
+≈∫ (4.4)

For more information, see Reference [46] pp.114-121.

SIMP2

565

G23-11-0101 SIMP2, DSIMP2

Integration of a function by adaptive Simpson's rule
CALL SIMP2 (A, B, FUN, EPS, S, ICON)

Function
Given a function f(x) and constants a, b, and ε, this
subroutine obtains an approximation S such that

()S f x dx
a
b

− ≤∫ ε (1.1)

by adaptive Simpson's rule. f(x) must have finite values
over the integration interval.

Parameter
A........... Input. Lower limit a of the interval.
B........... Input. Upper limit b of the interval.
FUN ... Input. The name of the function subprogram

which evaluates the integrand f(x). See the
example.

EPS ... Input. The absolute error tolerance ε (≥ 0.0)
for the integral. If EPS = 0.0 is specified, the
integral will be calculated as accurately as this
subroutine can.

 Output. The estimated error bound of the
approximation obtained (See Notes.)

S........... Output. Approximation to the integral.
ICON.. Output. Condition code.

See Table SIMP2-1.

Table SIMP2-l Condition codes

Code Meaning Processing
 0 No error
10000 For ε > 0.0, an S such that

(1.1) is satisfied could not be
obtained

The approximate
value that was
determined and
its max. absolute
error are output
to parameters S
and EPS.

30000 ε < 0.0 Bypassed

Comments on use
• Subprograms used

SSL II... MGSSL, AMACH
FORTRAN basic function... ABS

• Notes

FUN must be declared as EXTERNAL in the program
from which this subroutine is called. This subroutine is
designed to treat efficiently integrands f(x) having the
following properties:
a) f(x) and its first five derivatives are continuous

in the integration interval, and
b) f(x) does not have high frequency oscillations.

Even if f(x) has the form g(x)|x−x0|α, this
subroutine will work efficiently. However, g (x)
must satisfy a) and b), α must be nonnegative,
and x0 must be a, b, or (a + b)/2.

If it is know that f(x) or any of its first five
derivatives are not continuous at any point(s)
other than a, b, or (a + b)/2, the interval of the
integration should be divided into smaller
intervals at that (those) point(s). This subroutine
can then be used on each of the resulting
intervals.

Accuracy of S-that is output
This subroutine determines S such that (1.1) is
satisfied.
However, sometimes S can not be determined
due to the difficult form of the integrand f(x) or a
too small. In such cases, this subroutine
calculates an approximation with as high an
accuracy as possible, and estimates the error
bound and then these values are returned in
parameters S and EPS with ICON set to 10000.
The parameter EPS can also be specified as EPS
= 0.0. This condition corresponds to the above
case, however ICON is set to 0 especially in this
case.

∫ −+

1

0 62 10
1 dx

x

is determined. EPS=0.0

C **EXAMPLE**
 EXTERNAL FUN
 A=0.0
 B=1.0
 EPS=0.0
 WRITE(6,600) A,B,EPS
 CALL SIMP2(A,B,FUN,EPS,S,ICON)
 WRITE(6,610) ICON,S,EPS
 STOP
 600 FORMAT('1'/' ',30X,'A=',E16.8,5X,
 * 'B=',E16.8,5X,'INPUT EPS=',E16.8//)
 610 FORMAT(' ',30X,'***RESULT***'/
 * ' ',30X,'ICON=',I5,5X,'S=',E16.8,5X,
 * 'EPS=',E16.8)
 END
 FUNCTION FUN(X)
 FUN=1.0/(X*X+1.0E-6)
 RETURN
 END

Method
This subroutine is based on adaptive Simpson's rule. In
the adaptive algorithm, the choice of points at which the
integrand is evaluated is based on the behaviour of the
integrand, and as a result the integrand is evaluated at
many points where the integrand changes rapidly or
irregularly, but not so

SIMP2

566

many points where the integrand changes smoothly or
regularly. To simplify the explanation, a < b will be
assumed.
 Using the strategy described below, the integration
intervel [a, b] is subdivided, and Simpson's rule is
apolied to each of the subintervals.
Some of the subintervals are further subdivided. Finally,
by summing the integral over the subintervals, the
integral over the entire interval [a, b] is obtained. This
subroutine is designed to obtain an approximation to a
specified absolute accuracy. Hopefully, the
approximation is within the absolute error tolerance ε.

• Simpson's rule and error estimation

Let the interval [α,β] be a subinterval in [a, b], and h=
β − α. The quadrature rule and error estimation method
used for the integral:

()∫
β

α
dxxf (4.1)

are discussed below
R[α, β] f(x) is defined as

[] () () ()

+

 ++≡ ββααβα fffhxfR

2
4

6
, (4.2)

This is Simpson's rule based on three points. And
R(2)[α, β]f(x) is also defined as

[] () ()[] ()
()[] ()xfR

xfRxfR
ββα

βααβα
,2

2,,)2(

++
+≡ (4.3)

This is derived from splitting [α, β] into two
subintervals and then applying Simpson's rule based on
three points to each sub-interval. In this subroutine, (4.1)
is approximated by (4.3). The error of R(2)[α, β]f(x)can
be estimated using the Euler-MacLaurin expansion
formula. If f (x) and its first five derivatives are
continuous in [α, β], then

[] () ()

()() ()64
4

4
4

(2)

2

,

hOdxxfhC

dxxfxfR

+=

−

∫

∫
β

α

β

α
βα

 (4.4)

where C4 is a constant which is independent of f(x).
Similarly,

[] () ()
()() ()644

4

,

hOdxxfhC

dxxfxfR

+=

−

∫
∫

β

α

β

α
βα

 (4.5)

 is also true. From (4.4) and (4.5), if the term O(h6) can
be ignored,

[] () ()

[] () [] (){ }xfRxfR

dxxfxfR

βαβα

βα
β

α

,,
15
1

,

(2)

(2)

−≈

− ∫
 (4.6)

Since the righthand side of (4.6) can be evaluated
during calculations, it is used for the error estimation of
R(2)[α,β] f(x). In (4.6) it is assumed that the round-off
error is small.

The quantity ε (β − α)/(b − a) is assigned to the
subinterval [α,β] as the limit such that the error of
R(2)[α,β]f(x) in (4.6) should not be exceeded; i.e., if

[] () [] ()1
15

2R f x R f x
b a

α β α β β α ε, ,()− ≤ −
−

 (4.7)

 R(2) [α,β] f(x) is used as an approximation to (4.1). If
(4.7) is not satisfied, [α,β] is further subdivided. In actual
calculations, instead of (4.7), the equivalent expression
(4.8) is used.

[] ()D f xα β, ≤ E (4.8)

where

[] () [] (){
[] ()}

D f x R f x

R f x

α β
β α

α β

α β

, ,

,()

=
−

−

12

2

 (4.9)

and

ab
E

−
ε180= (4.10)

• Strategy for subdividing the integration interval[a, b]
How to subdivide the interval and how to select the
subinterval to which the quadrature rule (4.3) is applied,
are described here. For the sake of explanation, every
subinterval is assigned its number and level as follows.
The integration interval [a, b] is defined as number 1,
level 0 interval. The interval [a, (a + b) / 2] is defined
as number 2, level 1 interval, and the interval [(a + b) /
2, b] is defined as number 3, level l interval. In general,
if the interval [α,(α + β)/2] is number 2 N, level (L+ 1)
interval, then the interval [(α + β)/2, β] is number
(2N+l), level (L+ 1) interval (See Fig. SIMP2-1).

SIMP2

567

ba

(11, 3)(10, 3)(9, 3)(8, 3)

(7, 2)(6, 2)(5, 2)(4, 2)

(3, 1)(2, 1)

(1, 0)

Note: The left member in parentheses is the number and the

right member is the level.

Fig. SIMP2-1 Numbers and levels

Subdivision is done as follows. First, (4.3) is applied
to number 2, level 1 interval. If (4.8) is satisfied,
R(2)[a,(a + b) / 2] f(x) is used as an approximation over
the interval [a,(a + b)/2]. If (4.8) is not satisfied, (4.3)
is then applied to the number 4, level 2 interval.

In general, (4.3) is used on an interval of number N,
level L and then the test (4.8) is applied. If (4.8) is not
satisfied, the same procedure follows with the interval of
number 2N, level (L+1).

 However, if (4.8) is satisfied, the R(2)[α,β]f(x) at that
time is used as an approximation value over the interval
[α,β]. That value is then added to a running sum. Then
the same procedure is applied to number M(K)+1, Level
L−K interval, where M(K) is the first even integer of the
sequence.

() () ()

() () ,...
2

11

,...,
2

101,0

−=+

−==

JMJM

MMNM

When L−K = 0, the integration over the interval [a, b]
is complete. Thus, (4.11) is output as the approximation
over the interval [a, b].

()[] ()

()baaa

xfaaR

n

n

i
ii

==

∑
=

−

,

,

0

1
1

2

 (4.11)

Each R(2)[ai-1, ai]f(x) satisfies (4.8) and, consequently,
(4.7).
(4.12) results from (4.6) and (4.7).

()[] () () ε≤− ∫∑
=

−
b

a

n

i
ii dxxfxfaaR

1
1

2 , (4.12)

• Round-off error
It has been explained that whether or not R(2)[α,β] f(x)
for a subinterval [α,β] is accepted, is determined by
whether or not (4.8) is satisfied. If (4.8) is not satisfied,
[α,β] is subdivided and integration for [α,(β + β)/2] is
considered.
During these processes of subdivision, from a certain

point on, it is probable that D[α,β]f(x) of (4.8) will
have no significant digits.

This is because the significant digits of the function
value of f(x) are lost in the calculation of D [α,β] f(x).
If this condition occurs in a particular sub-interval, the
subdividing must not be continued, so the following
considerations are made.

Theoretically, if in [α,β], f(x) and its first four
derivatives are continuous, and f (4)(x) is of constant
sign, then

()[] () [] ()D f x D f xα α β α β, ,+ ≤2 (4.13)

Therefore, if (4.13) is not satisfied during the
calculations, the cause is either that zeros of f (4)(x)
exist in [α,β], or the round-off error has completely
dominated the calculation of D[α,β] f(x) or D [α, (α +
β)/2] f(x) (however, it is difficult to determine which is
the actual cause). For most cases, if the subinterval is
small, the cause comes from irregularities caused by
the round-off error rather than the existence of zeros in
f (4)(x) When this type of situation occurs, it is
advisable to discontinue the subdivision process and
substitute a different value ε' for ε in (4.7), i.e.,
substitute a different value E' for the E of (4.8).

In this subroutine, the following is used for the
control of E'.
− If for a subinterval [α,β] in level 5 or higher,

[] ()D f x Eα β, ' ,> (4.14)

()[] ()D f x Eα α β, '+ >2 (4.15)

and

()[] () [] ()D f x D f xα α β α β, ,+ ≥2 (4.16)

occur, E' is changed to

()[] ()′ = +E D f xα α β, 2 (4.17)

Then R(2)[α, (α, β)/2] f(x) is accepted as the
approximation over [α, (α + β)/2].

If in subinterval [α,β]

[] ()D f x Eα β, ≤ ′ (4.18)

occurs, R(2)[α, β]f(x) is accepted as the
approximation over [α, β], and if |D[α, β]f(x)|≠ 0, E' is
changed as

[] ()()′ =E E D f xmax , ,α β (4.19)

Even when E' is controlled as explained above, there
are still other problems. Even if a zero of f (4)(x) exists
in [α, β], it is judged as a round-off error, and E' in
(4.18) may become a little bit larger

SIMP2

568

than necessary.
Some devices for the problems are taken to a degree
(the details are omitted). For level 30 intervals, R(2) [α,
β] f(x) is accepted unconditionally, and E' is not
changed.
Due to the control of E', the final approximation (4.11)
no longer satisfies (4.12), and the error will become

()∑
=

−−′
−

=
n

i
ii aa

ab 1
1eff

1 εε (4.20)

where ε' corresponds to E' as

′ = ′
−

E
b a
180ε (4.21)

In this subroutine ε eff of (4.20) is output to parameter
EPS.

For further information, see Reference [61].

SINI

569

I11-41-0101 SINI, DSINI

Sine integral Si (x)
CALL SINI (X, SI, ICON)

Function
This subroutine computes Sine integral

() ()∫=
x

i dt
t

txS
0

sin

by the series and asymptotic expansions.

Parameters
X.......... Input. Independent variable x.
SI......... Output. Function value of Si(x)
ICON .. Output. Condition codes. See Table SINI-1.

Table SINI-1 Condition codes

Code Meaning Processing
 0 No error
20000 |X| ≥ tmax SI = sign (X)⋅π / 2

Comments on use
• Subprogram used

SSL II... MGSSL, UTLIM
FORTRAN basic functions ... ABS, SIN, and COS

• Notes

The valid ranges of parameter X are:
|X| < tmax
This is provided because sin (x) and cos (x) lose their
accuracy if |X| exceeds the above range.

• Example

The following example generates a table of Si(x) from
0.0 to 10.0 with increment 0.1.

C **EXAMPLE**
 WRITE (6,600)
 DO 10 K=1,101
 A=K-1
 X=A/10.0
 CALL SINI(X,SI,ICON)
 IF(ICON.EQ.0) WRITE(6,610) X,SI
 IF(ICON.NE.0) WRITE(6,620) X,SI,ICON
 10 CONTINUE
 STOP
 600 FORMAT('1','EXAMPLE OF SINE ',
 * 'INTEGRAL FUNCTION'///6X,'X',9X,
 * 'SI(X)'/)
 610 FORMAT(' ',F8.2,E17.7)
 620 FORMAT(' ','** ERROR **',5X,'X=',
 * E17.7,5X,'SI=',E17.7,5X,'CONDITION=',
 * I10)
 END

Methods
Two different approximation formulas are used
depending on the ranges of x divided at x = ± 4.

• For 0 ≤ |x| < 4

The power series expansion of Si(x),

() ()
() ()∑

∞

=

+

++
−=

0

12

12!12
1

n

nn

i nn
xxS (4.1)

is evaluated with the following approximation
formulas:
Single precision:

() 4,
6

0

12 xzzaxS
k

k
ki == ∑

=

+ (4.2)

Double precision:

() ∑
=

+=
11

0

12

k

k
ki xaxS (4.3)

• For |x| ≥ 4
The asymptotic expansion of

() () () (){[
() ()}]

S x x P x x

Q x x x

i = ⋅ +

−

sign π 2 cos

sin
 (4.4)

is calculated through use of the following approximate
expressions of P (x) and Q (x):

Single precision:

() xzzaxP
k

k
k 4,

11

0
== ∑

=
 (4.5)

() xzzbxQ
k

k
k 4,

11

0
== ∑

=
 (4.6)

Double precision:

() xzzbzaxP
k

k
k

k

k
k 4,

11

0

11

0
== ∑∑

==
 (4.7)

() xzzdzcxQ
k

k
k

k

k
k 4,

11

0

10

0
=−= ∑∑

==
 (4.8)

SLDL

570

A22-51-0202 SLDL, DSLDL

LDLT-deconmposition of a positive-definite symmetric
matrix (Modified Cholesky’s method)
CALL SLDL (A, N, EPSZ, ICON)

Function
An n × n positive symmetric matrix A is LDLT
decomposed using the modified Cholesky's method.

A = LDLT (1.1)

Where L is a unit lower triangular matrix, D is a diagonal
matrix, and n ≥ 1.

Parameters
A..... Input. Matrix A.

Output. Matrices Land D-1.
See Fig. SLDL-1.
A is stored in a one-dimensional array of size n
(n + 1)/2 in the compressed mode for
symmetric matrices.

N..... Input. Order n of the matrix A.
EPSZ.. Input. Tolerance for relative zero test of pivots

in decomposition process of A (≥ 0.0). When
EPSZ = 0.0, a standard value is used. (See
Notes.)

ICON.. Output. Condition code. See Table SLDL-1.

Unit lower
triangular matrix L

triangular
portion
only

-Lower

-Diag-
onal
elements
are
inverted

Array AMatrix D−1+(L−−−−I)Diagonal matrix D

n n(1)

2

+

dnn
−1

ln n − 1

ln1

d22
1−

l21

d11
1−

1
1

1

21

1 1

0l

n nnl l −

d
d

d

l

n nn nn

11
1

21 22
1

1 1
1

0
−

−

−
−l l

d
d

dnn

11

22 0

0

0

0

0

0

Note: On output, the diagonal and lower triangular portions

of the matrix D-1 +(L−I) are stored in the one-
dimensional array A in the compressed mode for
symmetric matrices.

Fig. SLDL-1 Storage of the decomposed elements

Table SLDL-1 Condition codes

Code Meaning Processing
0 No error

10000 The negative pivot occurred.
Matrix A is not a positive-
definite.

Continued

20000 The relatively zero pivot
occurred. It is highly probable
that matrix A is singular.

Discontinued

30000 N <1 or EPSZ < 0.0 Bypassed

Comments on use
• Subprograms used

SSL II... AMACH, MGSSL
FORTRAN basic function ... ABS

• Notes

If EPSZ is set to 10-s, this value has the following
meaning: while performing the LDLT decomposition by
modified Cholesky's method,if cancellation of over s
significant digits occured for the pivot, the LDLT
decomposition should be discontinued with ICON =
20000 regarding the pivot to be relatively zero.

Let u be the unit round off, then the standard value of
EPSZ is 16 u. If the processing is to proceed at a low
pivot value, EPSZ will be given the minimum value but
the result is not always guaranteed.

If the negative pivot occurs in the decomposition, the
coefficient matrix is not positive. In this subroutine, the
condition code is set accordingly (ICON = 10000) and
processing is continued. However, it should be noted
that large errors may occur in such cases because
pivoting was not performed.

In this subroutine, LDLT decomposition is performed,
but is should be noted that D-1 is output to the array
instead of D.

The determinant of the matrix can be obtained by
multiplying all the n diagonal elements of the array A
(the diagonal elements of D-1) after the subroutine has
been executed and then by determining the inverse
number. Note that the array A is in the compressed
mode for symmetric matrices.

For a positive-definite symmetric band matrix, the
subroutine SBDL processes faster than this subroutine
because the operation for the elements out of the band
is omitted.

• Example

A n × n matrix is input and LDLT decomposition is
computed. n ≤ 100.

SLDL

571

C **EXAMPLE**
 DIMENSION A(5050)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 NT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NT)
 WRITE(6,630)
 L=0
 LS=1
 DO 20 I=1,N
 L=L+I
 WRITE(6,600) I,(A(J),J=LS,L)
 20 LS=L+1
 CALL SLDL(A,N,1.0E-6,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) GOTO 10
 WRITE(6,640)
 L=0
 LS=1
 DET=1.0
 DO 30 I=1,N
 L=L+I
 WRITE(6,600) I,(A(J),J=LS,L)
 DET=DET*A(L)
 30 LS=L+1
 DET=1.0/DET
 WRITE(6,620) DET
 GOTO 10
 500 FORMAT(I5)
 510 FORMAT(5E10.2)
 600 FORMAT(' ',I5/(10X,5E16.8))
 610 FORMAT(/10X,'ICON=',I5)
 620 FORMAT(//10X,
 *'DETERMINANT OF MATRIX=',E16.8)
 630 FORMAT(/10X,'INPUT MATRIX')
 640 FORMAT(/10X,'DECOMPOSED MATRIX')
 END

Method
• Modified Cholesky's method

A real positive-symmetric matrix A can always be
decomposed as

T~~LLA = (4.1)

where, ~L is a lower triangular matrix. Decomposition
is uniquely defined if all the positive diagonal elements
of ~L are required. In the Cholesky's method,
decomposition is performed as follows:

1,...,1,
~~~~ 1

1

−=









−= ∑

−

=

ijlllal jj

j

k
jkikijij  (4.2) 

( ) ( )ijij

i

k
ikiiii

la

lal

~~,where,

~~
211

1

2

==











−= ∑

−

=

LA

 (4.3) 

If L is determined such that ( )iil
~

diag~ LL = , then 

( ) ( )
( ) TT2

TT

~
diag

~
diag

~
diag~~

LDLLL

LLLLA

==

==

ii

iiii

l

ll
 (4.4) 

where, L is a unit lower triangular matrix, and D is a 
positive-definite diagonal matrix. While in the modified 
Cholesky's method, the decomposition is performed 
through using the following equations. 

1,...,1,
1

1

−=−= ∑
−

=

ijldladl
j

k
jkkikijjij  (4.5) 

ni

ldlad
i

k
ikkikiii

,...,1,where

1

1

=

−= ∑
−

=  (4.6) 

Although the Cholesky's method needs a square root 
calculation in equation (4.3), the modified Cholesky's 
method does not need it. 

For more information, see Reference [2]. 



SMDM 

572 

A22-21-0202 SMDM, DSMDM 

MDMT - decomposition of a real indefinite symmetric 
matrix (Block diagonal pivoting method) 
CALL SMDM (A, N, EPSZ, IP, VW, IVW, ICON) 

 
Function 
An n × n real indefinite symmetric matrix A is MDMT-
decomposed 

PAP T = MDM T (1.1) 

by the block diagonal pivoting method (there are two 
similar methods which are called Croutlike method and 
Gaussianlike method, respectively. This subroutine uses 
the format method), where P is a permutation matrix that 
exchanges rows of the matrix A required in its pivoting, 
M is a unit lower triangular matrix, and D is a symmetric 
block diagonal matrix that consists of only symmetric 
blocks, each at most of order 2. In addition, if dk+1,k ≠ 0 
then mk+ 1,k = 0, where M= ( mij) and D = ( dij), and n ≥ 1. 
 
Parameters 
A .... Input. Matrix A 

Compressed mode for a symmetric matrix 
Output. Matrices M and D. 
See Fig. SMDM-1. 
One-dimensional array of size n (n + 1)/2. 

N..... Input. Order n of the matrix A 
EPSZ ..  Input. Tolerance for relative zero test of 

pivots in decomposition process of A (≥ 0.0). 
If EPSZ = 0.0, a standard value is used. (See 
Notes.) 

IP...... Output. Transposition vector that indicates the 
history of exchanging rows of the matrix A 
required in pivoting. 
One-dimensional array of size n.  (See Notes.) 

VW .... Work area. One-dimensional array of size 2n. 
IVW ... Work area. One-dimensional array of size n. 
ICON .. Output. Condition code. See Table SMDM-1. 
 
Table SMDM-1 Condition codes 

Code Meaning Processing 
       0 No error  
20000 The relatively zero pivot 

occurred.  It is highly probable 
that the matrix is singular. 

Discontinued 

30000 N < 1 or EPSZ < 0.0 Bypassed 

1 0

0 1

131 32m m

Array A

Only lower
triangular
portion

Excluding
upper
triangular
portion

Unit lower triangular
matrix M

d

d d

m m d

11

21 22

31 32 3333

2221

2111

d

dd

dd

Block diagonal matrix D

0

d33

m32

m31

d22

d21

d11

0

0

0

[Note] After computation, the diagonal portion and 
lower triangular portion of the matrix D+(M−I) are stored 
in the one-dimensional array A in compressed mode for a 
symmetric matrix. In this case, D consists of blocks of 
order 2 and 1. 
Fig. SMDM-l  Storing method for decomposed elements 

Comments on use 
• Subprograms used 

SSL II... AMACH, MGSSL, USCHA 
FORTRAN basic functions ... ABS, SQRT, IABS, 
ISIGN 

 
• Notes 

If EPSZ is set to 10-s this value has the following 
meaning: while performing the MDMT -decomposition 
by the block diagonal pivoting method, if the loss of 
over s significant digits occurred for the pivot value 
(i.e., determinant of a 1 × 1 or 2 × 2 matrix of the 
pivot), the MDMT- decomposition should be 
discontinued with ICON = 20000 regarding the pivot 
value as relatively zero. 

Let u be the unit round off, then the standard value of 
EPSZ is 16･u 
If the processing is to proceed at a low pivot value, 

EPSZ will be given the minimum value but the result is 
not always guaranteed. 

The transposition vector corresponds to the 
permutation matrix P in the MDMT-decomposition 
with pivoting, 

PAP T = MDM T 

which is done by the block diagonal pivoting method.' 
This subroutine exchanges the elements of array A in its 
pivoting, and records its history in the parameter IP. Note 
that, for a 1 × 1 or 2 × 2 pivot the way of storing in the IP 
is a little different. The storing method at the k-th step of 
the decomposition is as follows: for 1 × 1 pivot, the row 
(and column) number r( ≥ k) that is exchanged by the k-th 
row (and column) is stored in IP(k), and for 2 × 2 pivot, 
the negative value of the row (and column) number s(≥ 
k+ 1) that is exchanged by the ( k+ l)st row (and column) 
is also stored in IP ( k + 1), 



SMDM 

573 

i.e., -s is stored in IP (k+1). 
The determinant of matrix A is equal to the determinant 

of matrix D created by the computation, and elements of 
matrix D are stored in the array A as shown in Fig. 
SMDM-1. Refer to the example for the subroutine LSIX. 

This subroutine makes use of symmetric matrix 
characteristics also while decomposing in order to save 
the data storage area.  One way to solve a system of 
linear equations is to call this subroutine followed by the 
subroutine MDMX. However, instead of these 
subroutines, subroutine LSIX can be normally called to 
solve such equations in one step. 

The number of positive and negative eigenvalues for 
the matrix A can be obtained.  Refer to the example 
below. 
 
• Example 

Using the subroutine SMDM, this example obtains the 
numbers of both positive and negative eigenvalues, by 
which the characteristics of a matrix can be 
investigated. Here, an n × n real symmetric matrix is 
used, n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),VW(200), 
     *          IP(100),IVW(100) 
      CHARACTER*4 IA 
      DATA IA/'A   '/ 
      READ(5,500) N 
      NT=(N*(N+1))/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,600) N 
      CALL PSM(IA,1,A,N) 
      EPSZ=0.0 
      CALL SMDM(A,N,EPSZ,IP,VW,IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      INEIG=0 
      IPEIG=0 
      I=1 
      J=1 
   10 IF(IP(J+1).GT.0) GO TO 20 
      IPEIG=IPEIG+1 
      INEIG=INEIG+1 
      J=J+2 
      I=I+J-1+J 
      GO TO 30 
   20 IF(A(I).GT.0.0) IPEIG=IPEIG+1 
      IF(A(I).LT.0.0) INEIG=INEIG+1 
      J=J+1 
      I=I+J 
   30 IF(J.LT.N) GO TO 10 
      IF(J.NE.N) GO TO 40 
      IF(A(I).GT.0.0) IPEIG=IPEIG+1 
      IF(A(I).LT.0.0) INEIG=INEIG+1 
   40 WRITE(6,620) IPEIG,INEIG 
      STOP 
  500 FORMAT(I3) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1' 
     *  /6X,'CLASSIFICATION OF EIGENVALUE' 
     *  /6X,'ORDER OF MATRIX=',I4) 
  610 FORMAT(' ',5X,'ICON OF SMDM=',I6) 
  620 FORMAT(' ',5X,'POSITIVE EIGENVALUE=', 
     *  I4/6X,'NEGATIVE EIGENVALUE=',I4) 
      END 

The subroutine PSM that is used in this example is 
used only to print a real symmetric matrix. Its program is 
described in the example for the subroutine MGSM. 
 
Method 
• Block diagonal pivoting method 

A positive-definite symmetric matrix A can be 
decomposed as shown in Eq. (4.1) using the modified 
Cholesky method, 

T
111 MDMA =  (4.1) 

where M1 is a unit lower triangular matrix and D1 is a 
diagonal matrix. A real symmetric matrix A is not 
always decomposed as above. It may be unstable in the 
sense that there is no bound on the element growth in 
decomposition process. Rewrite Eq. (4.1) into the form 
of Eq. (4.2) to overcome this complexity. 

PAP T = MDM T (4.2) 

The method to decompose the matrix into Eq. (4.2) is 
called the block diagonal pivoting method, where P is a 
permutation matrix that exchanges row of the matrix 
based on the pivoting, M is a unit lower triangular matrix, 
and D is a symmetric block diagonal matrix consisting of 
symmetric blocks at most of order 2. 
This subroutine, when the real symmetric matrix A is 
given, obtains the matrices P, D and M, all of which 
satisfy Eqs. (4.3) and (4.4) by using the block diagonal 
pivoting method. 

MSPAP =T  (4.3) 
TDMS =  (4.4) 

• Procedure performed in this subroutine 
At the k-th step ( k = 1, ..., n) of the decomposition in 
this subroutine, the k-th column of the matrices M, S 
and D are each obtained in the following computations 
(in which the elements not defined explicitly are all 
zeros). If a 2 × 2 pivot is chosen, the ( k + 1 )-th 
column is also obtained. For better understanding of 
the following explanation, n-dimensional  vectors   Q 
and R are introduced. The elements of the matrices and 
vectors are A = (aij), M = (mij), D= (dij), S=(sij), Q= (qi), 
R =( ri). 

 
 



SMDM 

574 

(a) 

nkismaq

ki
mdmdmds

k

l
lkiliki

ikiikiiiikiiik

,...,,

1,...,1
1

1

1,1,1,1,

=−=

−=

++=

∑
−

=

++−−  

(b) i
nik

j qq max
≤<

==λ  

If kk qq ,αλ≥  is chosen as a 1 × 1 pivot. 

nkiqqm
qd

kiik

kkk

,...,1, +==
=

 

Go to step (g). Where a good value of α is 
(1+ 17 )/8. 
(See the reference items.) 
 

(c) The (k + 1)st rows (and columns) of matrices M and 
A are exchanged with the j -th rows (and columns) 
and also qk+1 is exchanged with qj. 

nkismar

ki
mdmdmds

k

l
klilkii

ikiiikiiikiiki

,...,1,

1,...,1
1

1
1,1,

1,11,,11,11,1,

+=−=

−=

++=

∑
−

=
++

++++−+−+

 

(d) If σ kk qq ,2αλ≥  is chosen as a 1 × 1 pivot 

nkiqqm
qd

kiik

kkk

,...,1, +==
=

 

Go to step (g). 

(e) max=σ ( i
nk

r
i

max,
1 ≤+

λ ) 

If |rk+1| 2>ασ, rk+1 is chosen as a 1 × 1 pivot.  
The k-th row (and columns) of matrices M and A 
are exchanged with the (k + 1)-th row (and 
columns), respectively. 

nkirrm
rqm

rd

kiik

kkkk

kkk

,...,2,1

11,1

1

+==

=
=

+

+++

+

 

Go to step (g). 
 

(f) det 






++

+

11

1

kk

kk

rq
qq

)( 111 +++ −= kkkk qqrq is chosen as 

a 2 × 2 pivot. 
As a 2 × 2 pivot 

( ) ( )
( ) ( )

nki

qqrqqqqrm
qqrqqrAqm

rd
qdd

qd

kkkkkikiki

kkkkkikiik

kkk

kkkkk

kkk

,...,2
11111,

11111

11,1

1,11,

+=




−−=
−−=

=

==
=

+++++

+++++

+++

+++

 

(g) The next computational step is defined as the (k + 
l)-th step if the k-th step pivot is 1 × 1 and as the (k 
+2)-th step if 2 × 2. Go to step (a).  
  This algorithm takes into consideration whether or 
not the elements of the matrix D are zeros when 
calculating sik and/or si,k+1.  If the k-th step execution 
has terminated at either step (d) or (e), the values of 
si,k+1, (i =1, ..., k) and qi (i = k + l, ..., n) at the (k + 
1)-th step have already been calculated except for 
one more multiplication and addition yet to be 
performed. 

 
Precision of the inner products in this subroutine has 

been raised to minimize the effect of rounding errors. For 
further information, see References [9] and [10]. 



SMLE1 

575 

E31-11-0101 SMLE1, DSMLE1 

Data smoothing by local least squares polynomials 
(equally spaced data points) 
CALL SMLE1 (Y, N, M, L, F, ICON) 

 
Function 
Given a set of observed data at equally spaced points, this 
subroutine produces the smoothed values based on 
polynomial local least squares fit. 

Each of the data is smoothed by fitting least squares 
polynomial of specified degree, not over all the data, but 
over a subrange of specified data points centered at the 
point to be smoothed. This process is applied to all the 
observed values. A limitation exists concerning m and l. 
 
Table SMLE1-1  Limitation of m and l 

Degree 
(m) 

Number of observed values (l) 

 3 
 5 
 5 
 7 

 
Parameters 
Y..... Input. Observed data yi 

One-dimensional array of size n. 
N.... Input. Number (n) of observed data. 
M.... Input. Degree (m) of local least squares 

polynomials. 
L..... Input. Number (l) of observed data to which a 

least squares polynomials is fit. 
F.... Output. Smoothed values. 

One-dimensional array of size n. 
ICON. Output. Condition code.  See Table SMLE1-2. 
 
Table SMLE 1-2  Condition codes 

Code Meaning processing 
        0 No error  
30000 (1)  m ≠ 1 and m ≠ 3 

(2)  When m = 1,  
 l ≠ 3 and l ≠ 5  
When m = 3,  
 l ≠ 5 and l ≠ 7 

(3)  n < l 

Aborted 

 

Comments on use 
• Called subprograms 

SSL II ..... MGSSL 
FORTRAN basic function ..... none 
 

• Notes 
This subroutine presupposes that the original function 
cannot be approximated by single polynomial, but can 
be approximated locally by a certain degree of 
polynomial. 
The choice of m and l should be done carefully after 
considering the scientific information of the observed 
data and the experience of the user. 

Note that the extent of smoothing increases as l 
increases, but decreases as m increases. 

It is possible to repeat calling this subroutine, that is, 
to apply them m-th degree least squares polynomial 
relevant to l points to smoothed values. But if it is 
repeated too many time, its result tends to approach to 
the one which is produced by applying the m-th degree 
least squares polynomial to overall observed data. So, 
when it is repeated, the user decides when to stop it. 

If the user wants to apply smoothing formulas with m 
and l other than those prepared here, subroutine 
SMLE2 is recommended to use. 

 
• Example 

At equally spaced data points, the number (n) of 
observed data, observed data yi, the degree (m) of local 
least squares approximation and the number (l) of 
observed data which is used in the polynomial are input 
and each observed data is smoothed. (n ≤ 20) 

 
C     **EXAMPLE** 
      DIMENSION Y(20),F(20) 
      READ(5,500) N,M,L 
      READ(5,510) (Y(I),I=1,N) 
      CALL SMLE1(Y,N,M,L,F,ICON) 
      WRITE(6,600) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,620) M,L 
      WRITE(6,630) (I,Y(I),F(I),I=1,N) 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(5F10.0) 
  600 FORMAT('1'////26X, 
     *'**** SMOOTHING BY SMLE1 ****') 
  610 FORMAT('0',37X,'ICON=',I5) 
  620 FORMAT('0',20X,'DEGREE OF ', 
     *'POLYNOMIAL =',I2/ 
     *' ',23X,'POINT OF SUBRANGE =',I2/ 
     *'0',17X,'NO.',10X,'OBSERVED VALUES', 
     *10X,'SMOOTHED VALUES') 
  630 FORMAT(' ',16X,I4,10X,F15.7,10X,F15.7) 
      END 
 

1 

3 



SMLE1 

576 

Method 
This subroutine smoothes n given observed data by 
fitting m-th degree local least squares polynomials 
relevant to l data points instead of fitting a single least 
squares polynomial over all the data. 
  Namely, an observed data yk is smoothed by fitting    m-
th degree least squares polynomial relevant to l (= 2r +1) 
observed data yk-r, ..., yk-l, yk, yk+l, ...,  yk+r and evaluating it 
at k. 
 
Suppose, 

rkirk,kis,yis +≤≤−−==ηηηη  

(See Fig. SMLE1-1) 

rr

rkkkkrk yyyyy

ηηηηη ...,,,,...,,

...,,,,...,,

101

11

−−

++−−

↓↓↓↓↓  

Fig. SMLEI-1  Correspondence between omeωωωωk and fσσσσ 

The m-th degree least squares polynomial relevant to 
these ηs is expressed as follows: 

( ) ( ) ( )[ ]
( ) ( ) ( ) ( )∑∑

−= = 











⋅
−++

+=
r

rt

m

j
tjjm rsPrtP

jrjr
rjsy

0

2
2,2,

!2!12
!212 η

 (4.1) 

where 

( ) ( ) ( )( )

( )
( )( )

( )( )∑
=

+ ++−=
j

k
k

kk
kj

j r
r

k
kjrP

0
2

2

2!
12, ξξ  (4.2) 

( )( ) ( )( ) ( )121 +−⋅⋅⋅⋅−−= kk ξξξξξ  

(4.1) is called a m-th degree smoothing formula 
relevant to l points. This formula can be derived from the 
least squares polynomial which was described at the 
"Method" of subroutine LESQ1 in case w(xi) an abscissas 
are equally spaced. 

yk is smoothed by (4.3). 

( ) ( ) ( )[ ]
( ) ( ) ( ) ( )∑∑

−= = 











⋅
−++

+=
r

rt

m

j
tjjm rPrtP

jrjr
rjy

0

2
2,02,

!2!12
!2120 η

 (4.3) 

When yk is either among y1, ..., yr or among yn-r+1, ..., yn, 
yk does not have r observed data equally on both sides 
and can not be smoothed by my  (0).  In case of y1, ..., yr, 
the smoothing is done by my (−r), ..., my (−1) and in case 
of yn-r+1, ..., yn, by my  (1), ..., my  (r). 

And in (4.1) the coefficient of m in l is the same as that 
of m= l in l = 3:(r = 1). 

Smoothing formulas with m and l used in this 
subroutine are show below. 

The smoothing formula concerning m = 1 and l = 3: (r= 
1) 

y1 1 0 11 1
6

2( ) (5 )− = + −−η η η  

y1 1 0 10 1
3

( ) ( )= + +−η η η  

................................................................................. 

The smoothing formula concerning m = 2 and l = 5; (r = 
2) 

)(
5
1)0(

)23(4
10
1)1(

)2(3
5
1)2(

210121

10121

20121

ηηηηη

ηηηη

ηηηη

++++=

+++=−

−++=−

−−

−−

−−

y

y

y

 

................................................................................. 

The smoothing formula concerning m = 3 and l = 5; (r= 2) 

)31217123(
35
1)0(

)281227(2
35
1)1(

)464(69
70
1)2(

210123

210123

210123

ηηηηη

ηηηηη

ηηηηη

−+++−=

+−++=−

−+−+=−

−−

−−

−−

y

y

y

 
................................................................................. 

The smoothing formula concerning m = 3 and l = 7; (r= 3) 

)2367632(
21
1)0(

)+421219164(
42
1)1(

)4+7461619(8
42
1)2(

)24448(39
42
1)3(

32101233

32101233

32101233

32101233

ηηηηηηη

ηηηηηηη

ηηηηηηη

ηηηηηηη

−+++++−=

−++++−=−

−−+++=−

−++−−+=−

−−−

−−−

−−−

−−−

y

y

y

y

................................................................................. 

For details, see Reference [46] pp.228 to 254, [51] 
pp.314 to 363. 
 



SMLE2 

577 

E31-21-0101 SMLE2, DSMLE2 

Data smoothing by local least squares polynomials 
(unequally spaced data points) 
CALL SMLE2 (X, Y, N, M, L, W, F, VW, ICON) 

 
Function 
Given a set of observed data at x1, x2, ..., xn (x1 < x2 < ... < 
xn) and corresponding weights w(xi), i = 1, 2, ..., n, this 
subroutine produces the smoothed values based on 
polynomial local least squares fit. 

Each of the data is smoothed by fitting least squares 
polynomial of specified degree m, not over all the data, 
but over a subrange of specified l data points centered at 
the point to be smoothed. 

Where n ≥ l, w(xi) ≥ 0 (i= 1, ..., n), l ≥ m+ 2, m ≥ 1 and 
l must be an odd integer. 
 
Parameters 
X.... Input. Discrete points xi. 

One-dimensional array of size n. 
Y.... Input. Observed values yi. 

One-dimensional array of size n. 
N....     Input. Number (n) of observed values. 
M.... Input. Degree (m) of local least squares a 

polynomials. 
L..... Input.  Number (l) of observed data to which 

least squares polynomial is fit. 
W..... Input. Weight functions w(xi). 

Normally w(xi) = 1. 
One-dimensional array of size n. 

F .. .. Output. Smoothed values. 
One-dimensional array of size n. 

VW... Working area. 
One-dimensional array of size 2l. 

ICON.. Output.  Condition code.  See Table SMLE2-1. 
 
Table SMLE2-2  Condition codes 

Code Meaning processing 
       0 No error  
30000 One of the following 

happened:  
(1) x1 < x2 < ... < xn-1 < xn is 

not satisfied. 
(2) n < 1 
(3) m < 1 or m+2 > 1 
(4) Some of m (xi) are 

negative. 
(5) 1 is even. 

Bypassed 

 
Comments on use 
• subprograms used 

SSL II... MGSSL 
FORTRAN basic function ... None 

• Notes 
This subroutine presupposes that the original function cannot 
be approximated by single polynomial. but can be 
approximated locally by a certain degree of polynomial. 
The choice of m and l should be done carefully after 
considering the scientific information of the observed 
data and the experience of the user. 
Note that the extent of smoothing increases as l 
increases, but decreases as m increases. 
It is possible to repeat calling this subroutine, that is, to apply 
the m-th degree least squares polynomial relevant to l points 
to smoothed values. But if it is repeated too many times, its 
result tends to approach to the one which is produced by 
applying the m-th degree least squares polynomial to overall 
observed data. So, when it is repeated, the user decides when 
to stop it. 

This subroutine can be used in the case data points 
are not equally spaced. But it takes more processing 
time than the subroutine SMLE1. 

 
• Example 

Number (n) of discrete points, discrete points xi, 
observed values yi, degree m of local least squares 
polynomial and number of observed values l are given 
to smooth the observed values. 

( ) ( )nixwmn i ,...,1,1,17,20 ==≤≤  

C     **EXAMPLE** 
      DIMENSION X(20),Y(20),W(20), 
     *          F(20),VW(40) 
      READ(5,500) N,M,L 
      READ(5,510) (X(I),I=1,N) 
      READ(5,510) (Y(I),I=1,N) 
      DO 10 I=1,N 
   10 W(I)=1.0 
      CALL SMLE2 (X,Y,N,M,L,W,F,VW,ICON) 
      WRITE(6,600) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,620) M,L 
      WRITE(6,630) (X(I),Y(I),F(I),I=1,N) 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(5F10.0) 
  600 FORMAT('1'////26X, 
     *'**** SMOOTHING BY SMLE2 ****') 
  610 FORMAT('0',37X,'ICON=',I5) 
  620 FORMAT('0',20X,'DEGREE OF ', 
     *'POLYNOMIAL =',I2/ 
     *' ',23X,'POINT OF SUBRANGE =',I2/ 
     *'0',11X,'ABSCISSA',11X,'OBSERVED ', 
     *'VALUES',10X,'SMOOTHED VALUES') 
  630 FORMAT(' ',10X,F10.0,10X,F15.7,10X, 
     *F15.7) 
      END 
 
Method 
This subroutine smoothes n given observed data at 
unequally spaced points x1, x2, ..., xn by fitting m-th 
degree local least squares polynomials relevant to l 



SMLE2 

578 

points, instead of fitting a single least squares 
polynomial over all the data. 

Namely and observed data yk is smoothed by fitting 
m-th degree least squares polynomial relevant to 
l(=2r+1) observed data yk-r, ..., yk-1, yk, yk+1, ..., yk+r and 
by evaluating it at x = xk. 

Suppose, 

kisxy isis −=== ,, ξη  
k r i k r− ≤ ≤ +  

(See Fig. SMLE2-l) 
The m-th degree least squares polynomial relevant to 
these ηs is expressed as follows: 

( )
( ) ( )

( ) ( )[ ]
( )∑

∑

∑
=

−=

−=





















=
m

j
sjr

rt
tjt

r

rt
tjtt

sm P
pw

pw
y

0 2
ξ

ξξ

ξηξ
ξ  (4.1) 

where 

( ) ( ) ( ) ( )sjjsjjssj PPP ξβξαξξ 111 −++ −−=  

( ) ( ) 0,1 10 == − ss PP ξξ  
,...2,1,0=j  

( ) ( )[ ] ( ) ( )[ ]∑∑
−=−=

+ =
r

rt
tjt

r

rt
tjttj PwPw 22

1 / ξξξξξα  

,...2,1,0=j  

( ) ( )[ ] ( ) ( )[ ]∑∑
−=

−
−=

=
r

rt
tjt

r

rt
tjtj PwPw 2

1
2 ξξξξβ

 
,...2,1=j  (4.2) 

As for (4.1) refer to “Method” of the subroutine 
LESQ1. 
Then yk is smoothed by (4.3). 

( )
( ) ( )

( ) ( )[ ]
( )∑

∑

∑
=

−=

−=





















=
m

j
jr

rt
tjt

r

rt
tjtt

m P
Pw

Pw
y

0
0

2
0 ξ

ξξ

ξηξ
ξ  (4.3) 

When yk is either among y1, ..., yr among yn-r+1, ..., yn, 
yk does not have r observed data equally on both sides 
and can not be smoothed by my (ξ0).  In case of y1, ..., 
yr the smoothing is done by my (ξ1), ..., my (ξr) 
respectively and in case of yn-r+1, ..., yn at my (ξ-r), ..., 

my (ξ-r) respectively. 
 
For details, see reference [46] pp.228 to 254 and [51] 

pp.314 to 363. 

yk-r.......yk-1

y

x

yk

yk+1.......yk+r

 0     xk-r ...... xk-1 xk   xk+1 ...... xk+r

η

ξ

η-r ......... η-1

η0
η1 .......... ηr

 0       ξ-r ........ ξ-1 ξ0      ξ1 ......... ξ r  
Fig. SMLE2-1  (xi,  yi) and (ηs,  ξs) 



SPLV 

579 

E11-21-0101 SPLV, DSPLV 

Cubic spline interpolation, differentiation 
CALL SPLV (X, Y, N, ISW, DY, V, M, DV, K, 
VW, ICON) 

 
Function 
Given discrete points x1, x2, ..., xn ( x1 < x2 < ... < xn) and 
function values yi = f( xi), i = 1, 2, ..., n this subroutine 
obtains interpolated values, and 1st and 2nd order 
derivatives at x = vi, i = 1, 2, ..., m using a cubic spline 
interpolating function. 

1,,...,,,3 211 ≥≤≤≥ mxvvvxn nm  

The boundary conditions for derivatives at both ends 
of discrete points (x = x1, x = xn) may be specified. 
 
Parameters 
X..... Input. Discrete points xi. 

X is a one-dimensional array of size n. 
Y..... Input. Function values yi. 

Y is a one-dimensional array of size n. 
N..... Input. Number of discrete points n. 
ISW... Input Control information. 

ISW is a one-dimensional array of size 2, and 
denotes the type of boundary conditions. Both 
ISW (1) and ISW (2) must be any one of 1, 2, 
3, or 4.  Accordingly, derivatives must be 
input to DY (1) and DY (2). Details are given 
below. 
How to specify boundary conditions: 
When ISW(1)=1, DY(1)=f" (x1) 

=2, DY(1) = f' (x1)  
=3, DY(1)=f" (x1) / f"(x2) 
=4, DY(1) need not be input. 

When ISW(2)=1, DY(2)=f" (xn) 
=2, DY(2) = f' (xn) 
=3, DY(2) =f′′(xn) /f"(xn-1) 
=4, DY(2) need not be input. 

When ISW(1) = 4 (or ISW(2)=4), f' (x1) 
(or f' (xn)) is approximated using a cubic (or 
quadratic, when n=3) interpolating polynomial 
and the resultant value taken as a boundary 
condition. 

DY.... Input. Derivatives at both end points. DY is a 
one-dimensional array of size 2. (See 
parameter ISW.) 

V..... Input. Points at which interpolated values are 
to be obtained, vi, i = 1,..., m 
V is a one-dimensional array of size m. 

M..... Input. Number of points m at which 
interpolated values are to be obtained. 

DV.... Output. Interpolated value, and derivatives of 

order 1 and 2 at vi. 
Two-dimensional array of DV (K,3) 
For I = 1,2, ..., M, interpolated value, and 
derivatives of order 1 and 2 at V(I) are 
returned respectively in DV (I,1), DV (I,2) 
and DV (I,3). 

K..... Input. Adjustable dimension of array DV (≥ 
M). 

VW...... Work area. VW is a one-dimensional array of 
size 2n. 

ICON.. Output. Condition code. See Table SPLV-1. 
 
Table SPLV-1  Condition codes 

Code Meaning Processing 
        0 No error  
30000 1 N<3 

2 xi ≥ xi+1 
  3 ISW (1) or ISW (2) is 
   not equal to 1.2, 3 or 4 
4 M < 1 
5 vi < x1 or xn < vi 
6 K < M  

Aborted 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, USPL 
FORTRAN basic function... None 
 

• Notes 
When the derivatives at both ends are unknown, "4" 
may be specified for both ISW(1) and ISW(2). 
 

• Example 
Discrete point xi, function value yi, i = 1, 2, ..., n, and 
boundary conditions ISW(1), DY(1), ISW(2), and 
DY(2) are input, and the interpolated values, first-
order derivatives and second-order derivatives at 
points: 

( ) 1,...,1,2/
,...,1,

12

12

−=+=
==

+

−

nixxv
nixv

iii

ii  

are determined n ≤10. 
 
C     **EXAMPLE** 
      DIMENSION X(10),Y(10),ISW(2),DY(2), 
     *V(50),DV(50,3),VW(20) 
      READ(5,500) N 
      READ(5,510) (X(I),Y(I),I=1,N) 
      WRITE(6,600) (I,X(I),Y(I),I=1,N) 
      READ(5,520) (ISW(I),DY(I),I=1,2) 
      WRITE(6,610) (ISW(I),DY(I),I=1,2) 
      N1=N-1 
      DO 10 I=1,N1 
      V(2*I-1)=X(I) 
   10 V(2*I)=0.5*(X(I)+X(I+1)) 
      M=2*N-1 
      V(M)=X(N) 
 



SPLV 

580 

      CALL SPLV(X,Y,N,ISW,DY,V,M,DV,50, 
     *VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,630) (I,V(I),(DV(I,J),J=1,3), 
     *I=1,M) 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(2F10.0) 
  520 FORMAT(I5,F10.0) 
  600 FORMAT('1'//10X,'INPUT DATA'// 
     *20X,'NO.',10X,'X',17X,'Y'// 
     *(20X,I3,3X,E15.7,3X,E15.7)) 
  610 FORMAT(/10X,'BOUNDARY COND.'/ 
     *20X,'ISW(1)=',I3,',DY(1)=',E15.7/ 
     *20X,'ISW(2)=',I3,',DY(2)=',E15.7/) 
  620 FORMAT(10X,'RESULTS'/20X,'ICON=',I5/) 
  630 FORMAT(20X,'NO.',10X,'V',17X,'Y(V)', 
     *'Y''(V)',13X,'Y''''(V)'// 
     *(20X,I3,4(3X,E15.7))) 
      END 
 
Method 
Given discrete points x1, x2, ..., xn ( x1 < x2 < ... < xn) and 
function values yi = f(xi), i = 1, 2, ..., n , the interpolated 
values and the 1st and 2nd order derivatives at any point 
v in [x1, xn] are determined using a cubic interpolating 
spline. 
Here, a cubic interpolating spline is an interpolating 
function S (x) defined in interval [x1, xn] and it satisfies 
the following conditions: 
• S(x) is an polynomial of degree three at most in each 

interval [xi, xi+1], i= 1,..., n - 1 
S(x) and its derivatives of up to order 2 are continuous 
on the interval [x1, xn] 
That is, S(x) ∈  C2 [x1, xn] 

• S(xi) = yi, i = 1, 2, ..., n 
Here, S(x) is determined. For the convenience of 
explanation, S (x) is sectionally expressed by (4.1). 

( ) ( )
( ) ( ) ( )

1,...,1,                
       

1

32

−=≤≤
−+−+−+=

=

+ nixxx
xxexxdxxcy

xSxS

ii

iiiiiii

i

 
(4.1)

 

The above three conditions are represented using Si(x) 
as follows: 

( )
( )
( ) ( )
( ) ( ) 










−=′′=′′
−=′=′

==
−==

−

−

−

1,...,2,
1,...,2,

,...,2,
1,...,1,

1

1

1

nixSxS
nixSxS
niyxS
niyxS

iiii

iiii

iii

iii

 (4.2) 

Accordingly, coefficients ci, di and ei in (4.1) are 
determined by the conditions of (4.2). These coefficients 
are given in (4.3). 

When 

( )

( ) 

















′′=′′
−=

′′−′′
=

′′=

′′+′′−−=

−=

+

+

+
+

ii

iii

i

ii
i

ii

ii
i

i

ii
i

xSy
xxh

h
yye

yd

yyh
h

yyc

ni

               
     Where

6
        

2/        

2
6

        

1,...,1For 

1

1

1
1

 (4.3) 

′′yi  satisfies the three-term relation of (4.4) according to 
the third condition in (4.2). 

( )

1,...,2,       

6      

2

1

11

1111

−=






 −−−=

′′+′′++′′

−

−+

+−−−

ni
h

yy
h

yy

yhyhhyh

i

ii

i

ii

iiiiiii

 (4.4) 

Therefore, ci, di and ei in (4.3) may be determined by 
solving ′′yi   from (4.4).  In (4.4), only (n - 2) equations 
are available for n unknows ′′yi , so that two more 
equations for ′′yi are required to solve (4.4) uniquely.  
This subroutine allows the user to assign such equations 
as boundary conditions. 
 
How to specify boundary conditions 
Assumption is made that equations in the following forms 
(4.5) and (4.6) are given as boundary conditions for 
solving (4.4). 

12111 dyy =′′+′′ µλ  (4.5) 

nnnnn dyy =′′+′′ − µλ 1  (4.6) 

These constants λ1, µ1, d1, λn, µn and dn can be specified 
arbitrarily. In this subroutine, however, the following 
assumptions are made: 
(a) (ISW(1) = 1, DY(1) =f"(x1) specifying f''(x1)). 

Then, (4.5) is reduced to y1" = f'' (x1). 
(b) (ISW(2) =2, DY(1) = f''(x1) specifying f''(x1)). The 

equation corresponding to (4.5) is generated in the 
following manner: Since the derivative ′S1  (x1) as 
determined by (4.1) and (4.3) is expressed by: 

( ) 




 ′′+′′

−
−

=′
6

2 21
1

1

12
11

yyh
h

yyxS  

so, by setting  ′S1  (x1) = f'(x1), 

( )





′−

−
=′′+′′ 1

1

12

1
21

62 xf
h

yy
h

yy  is oftained. 



SPLV 

581 

(c)  (ISW(1) =3,DY (1)=, f"( x1)/f"( x2)) specifying 
f"( x1)/f"( x2) 
By letting ( ) ( )2121 // xfxfyy ′′′′=′′′′  (4.5) can be 
written as 

( ) ( )( ) 0/ 2211 =′′′′′′−′′ yxfxfy  

(d) f'(x1) is approximated using an interpolating 
polynomial (ISW(1) =4, there is no need to input 
DY(1)). f'(xn) is approximated by an interpolating 
polynomial using four points of x1,  x2, x3, and x4, then 
the case (b) is applied. (However, when only three 
discrete points are available, f(x1) is approximated 
using the three points.) 
The abovedescribed four steps describe the procedure 
for assigning an equation corresponding to (4.5).  The 
procedure for assigning an equation corresponding to 
(4.6) is based on a similar idea. 

(e) (ISW(2) = 1, DY(2) = f '' (xn)) specifying f '' (xn) 
(f) (ISW(2) = 2, DY(2) = f ' (xn)) specifying f ' (xn) In this 

situation, (4.6) can be written as 

( ) 




 −
−′=′′+′′

−

−

−
−

1

1

1
1

62
n

nn
n

n
nn h

yyxf
h

yy  

(g) (ISW(2) = 3, DY (2) = f ' (xn)/f ' (xn-1) specifying f'(xn) 
(h) (f) is fitted by approximating f ' (xn) 

(There is no need to input ISW(2) = 4, DY(2).) 
 

(a)through (d) and through (h) can be specified 
combined with each other. 
For example, (a) and (e), (a) and (g) or (b) and (h) might 
be specified. 
 
Interpolated value calculation 
The interpolated value, the derivative of order 1 and 2 at 
any point v in interval [x1, xn] are determined by 
evaluating Si(x) and ′Si (x), ′Si (x) which are defined on 
interval [xi, xi+1] satisfying the condition xi ≤ v < xi+1  For 
further information, see Reference [48]. 
 

 



SSSM 

582 

A21-12-0201 SSSM, DSSSM 

Subtraction of two matrices (real symmetric matrix) 
CALL SSSM (A, B, C, N, ICON) 

 
Function 
These subroutines perform subtraction of n × n real 
symmetric matrices A and B 

C = A − B 
where C is an n × n real symmetric matrix. n ≥ 1. 
 
Parameters 
A..... Input.  Matrix A, in the compressed mode, 

one-dimensional array of size n (n+1)/2. 
B..... Input.  Matrix B, in the compressed mode, 

one-dimensional array of size n (n +1)/2. (See 
Notes.) 

C..... Output. Matrix C, in the compressed mode, 
one-dimensional array of size n (n +1)/2. (See 
Notes.) 

N..... Input. The order n of matrices A, B and C. 
ICON .. Output. Condition codes. 

See Table SSSM-1. 
 
Table SSSM-1  Condition codes 

Code Meaning processing 
        0 No error  
30000 n < 1 Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II... MGSSL 
FORTRAN basic function... None 

• Notes 
Saving the storage area: 
When the contents of array A or B are not required. 

 Save the area as follows: 
− When the contents of array A are not needed. 

CALL SSSM (A, B, A, N, ICON) 
− When the contents of array B is not needed. 

CALL SSSM (A, B, B, N, ICON) 
In the above two cases, matrix C is stored in array A 

or B. 
 
• Example 

The following shows an example of obtaining the 
subtraction f matrix B from matrix A. Here, n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(5050),C(5050) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
   10 READ(5,100) N 
      IF(N.EQ.0) STOP 
      WRITE(6,150) 
      NT=N*(N+1)/2 
      READ(5,200) (A(I),I=1,NT) 
      READ(5,200) (B(I),I=1,NT) 
      CALL SSSM(A,B,C,N,ICON) 
      IF(ICON.NE.0) GOTO 10 
      CALL PSM(IA,1,A,N) 
      CALL PSM(IB,1,B,N) 
      CALL PSM(IC,1,C,N) 
      GOTO 10 
  100 FORMAT(I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** MATRIX SUBTRACTION **') 
      END 

 
Subroutine PSM in the example is for printing the 

real symmetric matrix. This program is shown in the 
example for subroutine MGSM. 

 
 



TEIG1 

583 

B21-21-0602 TEIG1, DTEIG1 

Eigenvalues and corresponding eigenvectors of a real 
symmetric tridiagonal matrix (QL method) 
CALL TEIG1 (D, SD, N, E, EV, K, M, ICON) 

 
Function 
All eigenvalues and corresponding eigenvectors of n-
order real symmetric tridiagonal matrix T are determined 
using the QL method. The eigenvectors are normalized 
such that ||x||2=1.n≥1. 
 
Parameters 
D..... Input.  Diagonal elements of real symmetric 

tridiagonal matrix T. 
D is a one-dimensional array of size n.  The 
contents of D are altered on output. 

SD.... Input.  Subdiagonal elements of tridiagonal 
matrix T. The subdiagonal elements are stored 
in SD (2) to SD (N).  The contents of SD are 
altered on output. 

N..... Input. Order n of tridiagonal matrix T. 
E..... Output.  Eigenvalues. 

E is a one-dimensional array of size n. 
EV.... Output. Eigenvectors. 

Eigenvectors are stored in columns of EV.  
EV(K,N) is a two-dimensional array. 

K..... Input. Adjustable dimension of array EV. 
M..... Output.  Number of eigenvalues/eigenvectors 

that were determined. 
ICON .. Output.  Condition code.  See Table TEIG1-1. 
 
Comments on use 
• Subprogram used 

SSL II ..... AMACH and MGSSL 
FORTRAN basic functions .. ABS, SIGN, and SQRT 
 

• Notes 
Eigenvalues and corresponding eigenvectors are stored 
in the order that eigenvalues are determined. 

 
Table TEIG1-1  Condition code 

Code Meaning processing 
        0 No error  
10000 N=1 E(1) = D(1), 

EV(1,1)=1.0 
15000 Some eigenvalues/eingenvect-

ors could not be determined. 
M is set to the 
number of 
eigenvalues/eigen
-vector that were 
determined. 

20000 None of the 
eigenvalues/eigenvectors 
could be determined. 

M = 0 

30000 N < 1 or K < n Bypassed 
 
 

Parameter M is set to n when ICON=0: parameter M is 
set to the number of eigenvalues/eigenvectors that were 
determined when ICON = 15000. 

This routine is used for real symmetric tridiagonal 
matrices. For determining all eigenvalues and 
corresponding eigenvectors of a real symmetric matrix, 
subroutine SEIG1 should be used. 

For determining all eigenvalues of a real symmetric 
tridiagonal matrix, subroutine TRQL should be used: 
 
• Example 

All eigenvalues and corresponding eigenvectors of n-
order real symmetric tridiagonal matrix T are 
determined.  n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION D(100),SD(100), 
     *          EV(100,100),E(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) (D(I),SD(I),I=1,N) 
      WRITE(6,600) N,(I,D(I),SD(I),I=1,N) 
      CALL TEIG1(D,SD,N,E,EV,100,M,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL SEPRT(E,EV,100,N,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(2E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX',5X, 
     * 'ORDER=',I3/'0',20X,'***DIAGONAL***', 
     * 5X,'**SUBDIAGONAL*'//(13X,I3,5X, 
     * 2(E14.7,5X))) 
  610 FORMAT('0',20X,'ICON=',I5) 
      END 
 

In this example, subroutine SEPRT is used to print 
eigenvalues and corresponding eigenvectors of real 
symmetric matrices. For details see the example in 
section SEIG1. 

 
Method 
All eigenvalues and corresponding eigenvectors of n-
order real symmetric tridiagonal matrix T are determined 
using the QL method. 

The QL method used to determine eigenvalues is 
explained in the SEIG1 section, the QL method of 
determining eigenvectors will be explained. In the 
orthogonal similarity transformation of (4.1), orthogonal 
matrix Q reduces T to diagonal matrix D. The column 
vectors of Q are the eigenvectors of T. 

D=QTTQ (4.1) 

By repeatedly executing the orthogonal similarity 
transformation in (4.2), the QL method reduces T to D, 
and obtains all eigenvalues as the diagonal elements of D. 
 



TEIG1 

584 

,...3,2,1,T
1 ==+ sssss QTQT  (4.2) 

Qs is the orthogonal matrix obtained by QL 
decomposition of 

( ) ssss k LQIT =−  (4.3) 

Where ks is the origin shift and Ls is a lower triangular 
matrix.  If T converges to a diagonal matrix on the m-th 
iteration from (4.2). 

mmmm QQQQTQQQQD 1211
T
1

T
2

T
1

T
−− ⋅⋅⋅⋅⋅⋅=  (4.4) 

Where Tl = T 
From (4.1) and (4.4), eigenvectors are obtained as the 

column vectors of 

mm QQQQQ 121 −⋅⋅⋅=  (4.5) 

If ( )1−sQ  is defined as 

( )
121

1
−

− ⋅⋅⋅= s
s QQQQ  (4.6) 

The product ( )Q s  of transformation matrices up to the 
s-th iteration is 
 

( ) ( )
s

ss QQQ 1−=  (4.7) 

Qs of (4.7) is calculated in the QL method as 

( ) ( ) ( ) ( )sss
n

s
ns 1221 PPPPQ ⋅⋅⋅= −−  (4.8) 

If (4.7) is substituted in (4.8). 

( ) ( ) ( ) ( ) ( ) ( )sss
n

s
n

ss
1221

1 PPPPQQ ⋅⋅⋅= −−
−  (4.9) 

After all Q can be determined by repeating (4.9) for s = 
1, 2, ..., m. 

In the QL method, if an eigenvalue does not converge 
after 30 iterations, processing is terminated.  However, 
the M eigenvalues and eigenvectors that were determined 
till then can still be used. 

Since matrix Q is orthogonal, the eigenvectors obtained 
in the above method are normalized such that ||x||2=1. 

For further information see References [12], [13] pp. 
227-248 and [16] pp. 177-206. 
 



TEIG2 

585 

B21-21-0702 TEIG2, DTEIG2 

Selected eigenvalues and corresponding eigenvectors of 
a real symmetric tridiagonal matrix (bisection, method, 
inverse iteration method) 
CALL TEIG2 (D, SD, N, M, E, EV, K, VW, ICON)

 
Function 
The m largest or m smallest eigenvalues and 
corresponding eigenvectors are determined from n-order 
real symmetric tridiagonal matrix T.  The eigenvalues are 
determined using the bisection method, and the 
corresponding eigenvectors are determined using the 
inverse iteration method. The eigenvectors are 
normalized such that ||x||2=1.  1≤m≤n. 
 
Parameters 
D..... Input.  Diagonal elements of real symmetric 

tridiagonal matrix T. 
D is a one-dimensional array of size n. 

SD.... Input. Subdiagonal elements of real symmetric 
tridiagonal matrix T. 
SD is a one-dimensional array of size n. 
The subdiagonal elements are stored in SD(2) 
to SD(N). 

N.... Input. Order n of tridiagonal matrix T. 
M.... Input.   

M = + m ... The m largest eigenvalues desired. 
M = - m .... The m smallest eigenvalues 
desired. 

E..... Output. Eigenvalues. 
E is a one- dimensional array of size m. 

EV..... Output. Eigenvectors. 
 Eigenvectors are stored in columns of EV. EV 

(K, m) is a two-dimensional array. 
K..... Input.  Adjustable dimension of array EV. 
VW...... Work area.  VW is a one-dimensional array of 

size 5n. 
ICON .. Output.  Condition code. 

See Table TEIG2-1. 
 
Table TEIG2-1  Condition codes 

Code Meaning Processing 
        0 No error  
10000 N=1 E(1)=D(1),  

EV (1, 1) = 1.0 
15000 After determining m 

eigenvalues, all of their 
corresponding eigenvectors 
could not be determined. 

The eigenvectors 
that could not be 
obtained become 
zero vectors. 

20000 None of the eigenvectors 
could be determined. 

All of the 
eigenvectors 
become zero 
vectors. 

30000 M = 0, N < |M| or K < N Bypassed 
 

Comments 
• Subprograms used 

SSL II ... AMACH, MGSSL, and UTEG2 
FORTRAN basic functions ... ABS, AMAX1 and 
IABS 

 
• Notes 

This subroutine is used for real symmetric tridiagonal 
matrices. When determining m  
eigenvalues/eigenvectors of a real symmetric matrix, 
subroutine SEIG2 should be used instead. 

When determining m eigenvalues of a tridiagonal 
matrix without their corresponding eigenvectors, 
subroutine BSCT1 should be used. 
 

• Example 
The m largest or m smallest eigenvalues of an n-order 
real symmetric tridiagonal matrix are determined, then 
the corresponding eigenvectors are determined. n ≤ 
100, m ≤ 10. 

 
C     **EXAMPLE** 
      DIMENSION D(100),SD(100),E(10), 
     *          EV(100,10),VW(500) 
   10 CONTINUE 
      READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      READ(5,510) (D(I),SD(I),I=1,N) 
      WRITE(6,600) N,M,(I,D(I),SD(I),I=1,N) 
      CALL TEIG2(D,SD,N,M,E,EV,100,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) GO TO 10 
      MM=IABS(M) 
      CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(2E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX',5X, 
     *'N=',I3,'M=',I3/'0',20X, 
     *'***DIAGONAL***','**SUBDIAGONAL*'// 
     *(13X,I3,5X,2(E14.7,5X))) 
  610 FORMAT('0',20X,'ICON=',I5) 
      END 
 

In this example, subroutine SEPRT is used to print 
eigenvalues and corresponding eigenvectors of real 
symmetric matrices.  For details, see the example in 
section SEIG1. 
 
Method 
The m largest or m smallest eigenvalues and 
corresponding eigenvectors of an n-order real symmetric 
tridiagonal matrix are determined. 

The m eigenvalues are determined using the bisection 
method and corresponding eigenvectors are determined 
using the inverse iteration method. 

Refer to the section BSCT1 for a description of the 
bisection method. The inverse iteration method is 
discussed below.  Let the eigenvalues of tridiagonal 



TEIG2 

586 

matrix T are 

nλλλλ >⋅⋅⋅⋅>> 321  (4.1) 

When µj is obtained as an approximation for λj using 
the bisection method, consider the  determination of 
corresponding eigenvectors using the inverse iteration 
method. 

In the inverse iteration method (4.2) is iteratively 
solved.  When convergence condition has been satisfied, 
xr is considered to be an eigenvector. 

( ) ,...2,1,1 ==− − rrrj xxIT µ  (4.2) 

(x0 is an appropriate initial vector) 
Let the eigenvectors which correspond to the 

eigenvalues λ1, λ2, ...,λn be u1, u2, ...,un and the 
appropriate initial vector x0 can be represented as a linear 
combination: 

∑
=

=
n

i
ii

1
0 ux α  (4.3) 

From (4.2) and (4.3), xr is written as 

( ) ( ) ( )


















−−+
−

= ∑
≠
=

n

ji
i

r
ji

r
jjiijjr

jj
r

1

/1 µλµλαα
µλ

uux

 (4.4) 

Since in general ( ) ( ) 0.1/ <<−− jijj µλµλ , if αj ≠ 0 

in (4.4), as r grows greater, xr tends rapidly to αjuj. 
The system of linear equations of (4.2) are solved using 

(4.5) after decomposition of (T − µjI) lower triangular 
matrix L and upper triangular matrix U. 

1−= rr PxLUx  (4.5) 

(P is a permutation matrix used for pivoting.) (4.5) can 
be solved as follows 

11 −− = rr PxLy     (forward substitution) (4.6) 

1−= rr yUx         (backward substitution) (4.7) 

Since any vector can be used for initial vector x0.   x0 
may be given such that y0 of (4.8) has a form such as y0 = 
(1, 1, ... 1)T. 

0
1

0 PxLy −=  (4.8) 

Therefore, in the first iteration the forward substitution 
of (4.6) can be omitted, and by repeating forward 
substitution and backward substitution for the second and 
following iterations, eigenvectors can be determined. 
• The initial vector and convergence criterion used in the 

inverse iteration method. In this routine, the following 
is used for the initial vector; 

( )T0 ,, TTTy ununun ⋅⋅⋅⋅⋅⋅=  (4.9) 

where u is the unit round-off 

( )
( ) 0, 01

1
1

==

+= ∑
=

−

tt

tt

ij

n

i
iiii

T

T  

At each iteration, xr-1 is normalized such that 

2011 yx =−r  (4.10) 

When xr satisfies 

11 ≥rx  (4.11) 

xr is accepted as an eigenvector. (4.11) can be 
discussed as follows.  From (4.2), by normalization of xr 
(4.12) is obtained 

( ) 111 // rrrrj xxxxIT −=−µ  (4.12) 

The right hand side of (4.12); 
11 / rr xx −  corresponds to 

the residual vector. When the norm of this residual vector 
satisfies. 

20111 / yxx ≤− rr
 (4.13) 

In other words, when this residual vector is considered 
zero vector, xr can be considered to have converged to an 
eigenvector. From (4.10), (4.13) becomes (4.11). In this 
routine, when five iterations are performed and x5 does 
not satisfy (4.11) ICON is set to 15000 to indicate that 
the eigenvector was not determined, and the elements of 
the corresponding column in EV is set to zero. 
 
• Orthogonalization of eigenvectors 

The eigenvectors of a real symmetric tridiagonal matrix 
should be orthogonal. However, a disadvantage of the 
inverse iteration method is that eigenvectors 
corresponding to close eigenvalues may not be 
satisfactorily orthogonal. Therefore to insure 
orthogonal eigenvectors,this routine performs the 
following processing. 

When the eigenvalue µ i is being determined, µ i and 
the previously computed eigenvalue µ i-l are tested to 
see whether they satisfy. 

Tii
3

1 10−
− ≤− µµ  (4.15) 

If (4.15) is satisfied, the approximate eigenvector xi 
obtained from µi is made orthogonal to the eigenvector xi-

l obtained from µi-l so as to satisfy 

( ) 01 =−ii ,xx  (4.16) 

Similarly, if several consecutive eigenvalues satisfy 
(4.15), they are handled as a group, and their 
corresponding eigenvectors orthogoalized. 



TEIG2 

587 

• Direct sum of submatrices 
If T splits a sum of m submatrices T1, T2, ..., Tm, the 
eigenvalues and corresponding eigenvectors of T are 
respectively, the diagonal elements of D and the 
column vectors of Q shown in (4.17). 







































=





















=

m

m

Q

Q
Q

Q

D

D
D

D

0

0
0

0

2

1

2

1

 (4.17) 

Where D and Q satisfy 

TQQD T=  (4.18) 

From (4.17) and (4.18) the following are obtained; 















=

=

=

mmmm QTQD

QTQD

QTQD

T

22
T
22

11
T
11

:
:  (4.19) 

Thus, the eigenvalues and corresponding eigenvectors 
of T can be obtained by determining the eigenvalues and 
corresponding eigenvectors of each submatrix.  For more 
information, see references [12] and [13] pp. 4l8-439. 
 



TRAP 

588 

G21-21-0101 TRAP, DTRAP 

Integration of a tabulated function by trapezoidal rule 
(unequally spaced) 
CALL TRAP (X, Y, N, S, ICON) 

 
Function 
Given unequally spaced at points x1, x2, ..., xn (x1 < x2< ...< 
xn) and corresponding function values yi=f(xi), i=1, 2, ..., 
n, this subroutine obtains 

( )∫= nx

x
dxxfS

1
,   n ≥ 2 

using the trapezoidal rule. 
 
Parameters 
X ..... Input. Discrete points xi 

One-dimensional array of size n. 
Y..... Input. Function values yi 

One-dimensional array of size n. 
N....... Input. Number of discrete points n. 
S..... Output. Integral S. 
ICON... Output. Condition code. 

See Table TRAP-1. 
 
Table TRAP-1  Condition codes 

Code Meaning Processing 
        0 No error  
30000 n < 2 or xi ≥ xi+1 S is set to 0.0. 

 
Comments on use 
• Subprograms used 

SSL II ..... MGSSL 
FORTRAN basic function ... none 

• Notes 
Even when discrete points xi are equally spaced, this 
subroutine can be used, however, it is preferable to use 
Simpson's rule (subroutine SIMP1). 
 

• Example 
Discrete points xi and function values yi are input, and 
the integral S is determined. 

 
C     **EXAMPLE** 
      DIMENSION X(20),Y(20) 
      READ(5,500) N 
      READ(5,510) (X(I),Y(I),I=1,N) 
      CALL TRAP(X,Y,N,S,ICON) 
      WRITE(6,600) ICON,S 
      STOP 
  500 FORMAT(I2) 
  510 FORMAT(2F10.0) 
  600 FORMAT(10X,'ILL CONDITION =',I5 
     * /10X,'INTEGRAL VALUE =',E15.7) 
      END 
 
Method 
The integral is approximated, in this subroutine, by 
trapezoidal rule: 

( )
2
1

1

≈∫
nx

x
dxxf { ( ) ( ) ( )( )++− 2112 xfxfxx  

( ) ( ) ( )( ) ( )13223 −−+⋅⋅⋅++− nn xxxfxfxx  

( ) ( )( )1−+ nn xfxf } = 1
2

{ ( ) ( )112 xfxx −  

( ) ( )+−+ 213 xfxx  
( ) ( ) ( ) ( )nnnnnn xfxxxfxx 112 −−− −+−+⋅⋅⋅ } (4.1) 

For further information, refer to [46] pp. 114-121. 



TRBK 

589 

B21-21-0802 TRBK, DTRBK 

Back transformation of the eigenvectors or a tridiagonal 
matrix to the eigenvectors of a real symmetric matrix 
CALL TRBK (EV, K, N, M, P, ICON) 

 
Function 
Back transformation is applied to m eigenvectors of n-
order real symmetric tridiagonal matrix T to form 
eigenvectors of real symmetric matrix A. T must have 
been obtained by the Householder reduction of A. 
 1 ≤ m ≤ n. 
 
Parameters 
EV..... Input. m eigenvectors of real symmetric 

tridiagonal matrix T.  EV(K, m) is a two 
dimensional array. 
Output. Eigenvectors of real symmetric matrix 
A. 

K..... Input.  Adjustable dimension of array EV  
( ≥ n) 

N.... Input.  Order n of the real symmetric 
tridiagonal matrix. 

M..... Input.  Number |M| of eigenvectors. 
(See  “Comments on use".) 

P..... Input. Transformation matrix obtained by the 
Householder's reduction  
(See  “Comments on use".) 
P is a one-dimensional array of size  
n( n +1)/2. 

ICON... Output.  Condition code.  See Table TRBK-1. 
 
Table TRBK-l  Condition codes 

Code Meaning Processing 
        0 No error  
10000 N = 1 EV (1, 1) = 1.0 
30000 N < |M|,  K < N, or M = 0 Bypassed 

 
Comments on use 
• Subprograms used 

SSL II... MGSSL 
FORTRAN basic function... IABS 

 
• Notes 

This subroutine is called usually after subroutine 
TRID1. 
Parameter A provided by TRID1 can be used as input 
parameter P of this subroutine.  For detailed 
information about array P refer to subroutine TRID1. 
The eigenvectors are normalized when ||x||2 =1, and if 
parameter M is negative, the absolute value is used. 
 

• Example 
TRID1 is first used to reduce an n-order real 
symmetric matrix to a tridiagonal matrix, then TEIG2 

is used to obtain the eigenvalues and corresponding 
eigenvectors from the tridiagonal matrix, and finally 
this subroutine is used to back transform the resultant 
eigenvectors to form the eigenvectors of the real 
symmetric matrix.  n  ≤ l00. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),D(100),SD(100), 
     *          E(100),EV(100,100),VW(500) 
   10 READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N,M 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      CALL TRID1(A,N,D,SD,ICON) 
      IF(ICON.EQ.30000) GOTO 10 
      CALL TEIG2(D,SD,N,M,E,EV,100,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GOTO 10 
      CALL TRBK(EV,100,N,M,A,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GOTO 10 
      MM=IABS(M) 
      CALL SEPRT(E,EV,100,N,MM) 
      GOTO 10 
  500 FORMAT(2I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX' 
     * //11X,'** ORDER =',I5,10X,'** M =', 
     * I3/) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT(/11X,'** CONDITION CODE =',I5/) 
      END 
 

In this example, subroutine SEPRT is used to print the 
eigenvalues and corresponding eigenvectors of real 
symmetric matrices. For details see the example in 
section SEIG1. 
 
Method 
m eigenvectors of n-order real symmetric tridiagonal 
matrix T are back transformed to obtain the eigenvectors 
of real symmetrical matrix A. The reduction of A to T is 
performed using the Householder method which 
performs n-2 orthogonal similarity transformations 
shown in (4.1). 

221
T

1
T

2
T

2 −− ⋅⋅⋅⋅⋅⋅= nn PPAPPPPT  (4.1) 

For more details, refer to "Method" for subroutine 
TRID1. 

Let the eigenvalues and corresponding eigenvectors of 
T be λ and y respectively, then 

yTy λ=  (4.2) 

If (4.1) is substituted in (4,2), then 
 



TRBK 

590 

yyPPAPPPP λ=⋅⋅⋅⋅⋅⋅ −− 221
T

1
T

2
T

2 nn  (4.3) 

If both sides of (4.3) are pre-multiplied by P1P2...Pn-2. 

yPPPyPPAP 221221 −− ⋅⋅⋅=⋅⋅⋅ nn λ  (4.4) 

The eigenvectors x of A are then obtained as 

yPPPx 221 −⋅⋅⋅= n  (4.5) 

(4.5) is calculated as shown in (4.6) by setting y = xn-1 

(where x = x1). 

( ) 1,2,,2,/ 1
T

1

1

⋅⋅⋅−=−=

=

++

+

nkh kkkkk

kkk

xuux

xPx
 (4.6) 

Since the eigenvectors x are obtained from (4.5), 
||x||2=1.  For further information reference [13] pp. 
212-226. 



TRBKH 

591 

B21-25-0402 TRBKH, DTRBKH 

Back transformation of the eigenvectors of a tridiagonal 
matrix to the eigenvectors of a Hermitian matrix. 
CALL TRBKH (EVR, EVI, K, N, M, P, PV, ICON)

 
Functions 
m number of eigenvectors y of n order real symmetric 
tridiagonal matrix T is back transformed to the 
eigenvectors x of Hermitian matrix A. 

yPVx *=  

where P and V are transformation matrices when 
transformed from A to T by the Householder's reduction 
and diagonal unitary transformation, respectively,  
and  1 ≤ m ≤ n. 
 
Parameters 
EVR... Input. m eigenvectors y of n order real 

symmetric tridiagonal matrix T. 
Output.  Real part of eigenvector x of n order 
Hermitian matrix A. Two dimensional array, 
EVR (K, m) (See "Comments on use"). 

EVI..... Output. Imaginary part of eigenvector x of n 
order Hermitian matrix A. Two dimensional 
array, EVI (K, m)  (See "Comments on use"). 

K..... Input.  Adjustable dimension of arrays EVR 
and EVI. (≥ n) 

N..... Input. Order n of the real symmetric 
tridiagonal matrix. 

M.... Input. The number |M| of eigenvectors. (See 
"Comments on use"). 

P..... Input. Transformation vector T obtained by 
the Householder's reduction from A to T. In 
the compressed storage mode for a Hermitian 
matrix.  Two dimensional array, P (K, N).  
(See "Comments on use"). 

PV... Input. Transformation matrix V obtained by 
diagonal unitary transformation from A to T.  
One dimensional array of size 2 n. (See 
"Comments on use"). 

ICON.... Output.  Condition code.  See Table  
TRBKH-1. 

 
Table TRBKH-1  Condition codes 

Code Meaning Processing 
        0 No error  
10000 N = 1 EV(1, 1) = 1.0 
30000 N < |M|, K < N or M = 0 Bypassed 

 

Comments on use 
• subprograms used 

SSL II ... MGSSL 
FORTRAN basic function.... IABS 
 

• Notes 
This subroutine is for a Hermitian matrix and not to 

be applied to a general complex matrix. 
Note that array P does not directly represent 

transformation matrix P for reduction of A to T. 
This subroutine, TRBKH, is normally used together 
with subroutine TRIDH.  Consequently the contents of 
A and PV output by subroutine TRIDH can be used as 
the contents of parameters P and PV in this subroutine. 
The contents of array P and PV are explained on 
"Method" for subroutine TRIDH. 
If input eigenvector y is normalized such as ||y||2 = 1,  
then output eigenvector x is normalized as ||x||2 = 1. 
The l-th element of the eigenvector that corresponds to 
the j-th eigenvalue is represented by EVR (L, J) + i･
EVI (L, J), where i= − 1  
When parameter M is negative, its absolute value is 
taken and used. 
 

• Example 
An n order Hermitian matrix is reduced to a real 
symmetric tridiagonal matrix using subroutine TRIDH, 
and m number of eigenvalues and eigenvectors are 
obtained using TEIG2. 
Lastly by this subroutine, TRBKH, the eigenvectors of 
the real symmetric tridiagonal matrix are back 
transformed to the eigenvectors of the Hermitian 
matrix.  n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),D(100),SD(100), 
     * V(200),EVR(100,100),EVI(100,100), 
     * VW(500),E(100) 
   10 CONTINUE 
      READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,M 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL TRIDH(A,100,N,D,SD,V,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      CALL TEIG2(D,SD,N,M,E,EVR,100,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL TRBKH(EVR,EVI,100,N,M,A,V,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      MM=IABS(M) 
      CALL HEPRT(E,EVR,EVI,100,N,MM) 
      GO TO 10 
 



TRBKH 

592 

  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'///40X,'**ORIGINAL ', 
     * 'MATRIX**',5X,'N=',I3,5X,'M=',I3//) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     * E14.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 

Subroutine HEPRT in this example is used to print 
eigenvalue and eigenvectors of a Hermitian matrix. For 
its details, refer to the example for subroutine HEIG2. 
 
Method 
The m number of eigenvectors of n order real symmetric 
tridiagonal matrix T are back transformed to the 
eigenvectors of Hermitian matrix A. Reduction of A to T 
is done by the Householder method and diagonal unitary 
transformation as shown in the eq. (4.1). 

( )VPPAPPPPVT 221
*

1
*
2

*
2

*
−− ⋅⋅⋅⋅⋅⋅= nn  (4.1) 

where P = I − uk uk
∗/hk is a diagonal unitary matrix.  

For detailed information, refer to subroutine TRIDH. 
Letting λ and y be eigenvalue and eigenvector 

respectively of T, then eq. (4.2) is established. 

Ty y= λ  (4.2) 

Substituting eq. (4.1) into (4.2), 

yVyPPAPPPPV λ=⋅⋅⋅⋅⋅⋅ −− 221
*

1
*
2

*
2

*
nn  (4.3) 

Premultiplying P1 P2 ... Pn-2 V to both sides of eq. (4.3) 

VyPPPVyPPAP 221221 −− ⋅⋅⋅=⋅⋅⋅ nn λ  (4.4) 

Therefore eigenvector x of A is obtained such that 

VyPPPx 221 −⋅⋅⋅= n  (4.5) 

The calculation of eq. (4.5) is carried out in the 
sequence shown in eqs. (4.6) and (4.7) 

Vy=z  (4.6) 

kk
*
kkkk /hzzz 11 ++ −= uu  (4.7) 

1,2,...,2−= nk  

where z= zn-1 and x=z1. 
Thus obtained eigenvector x (= z1) is normalized as ||x||2 
= 1 if ||y||2 = 1 in eq. (4.5). Refer to subroutine TRIDH 
for the Householder method and diagonal unitary 
transformation. 
For details, see Reference [17]. 



TRIDH 

593 

B21-25-0302 TRIDH, DTRIDH 

Reduction of a Hermitian matrix to a real symmetric 
tridiagonal matrix (Householder method, and diagonal 
unitary transformation). 
CALL TRIDH (A, K, N, D, SD, PV, ICON) 

 
Function 
An n-order Hermitian matrix A is reduced first to a 
Hermitian tridiagonal matrix H, 

APPH *=  (1.1) 

by the Householder method, then it is further reduced to a 
real symmetric tridiagonal matrix T by diagonal unitary 
transformation. 

HVVT *=  (1.2) 

where P and V are transformation matrices, and n≥1. 
 
Parameters 
A..... Input.  Hermitian matrix A. 

Output. Transformation matrix P. (Refer to Fig. 
TRIDH-1).  In the compressed storage mode 
for Hermitian matrices.  (See "Comments on 
use"). Two dimensional arrays of size A (K, 
N). 

K..... Input. Adjustable dimension of the array A (≥ 
n) 

N..... Input. Order n of the Hermitian matrix. 
D..... Output.  Main diagonal elements of real 

symmetric tridiagonal matrix T. (See Fig. 
TRIDH-2). One dimensional array of size n. 

SD.... Output.  Subdiagonal elements of real 
symmetric tridiagonal matrix T. (Refer to   Fig. 
TRIDH-2). One dimensional array of size n.  
The outputs are stored into SD (2) to SD (N) 
and SD (1) is set to zero. 

PV..... Output. Transformation vector V (Refer to Fig. 
TRIDH-3).  One dimensional array   of size 2 
n. 

ICON.. Output.  Condition code.  See Table TRIDH-1. 
 
Table TRIDH-1  Condition codes 

Code Meaning Processing 
 0 No error  
 10000 N=1 Reduction is not 

performed. 
 30000 K < N or N < 1 Bypassed 

Re( )

(1 / )

( )a32
3

3 3• + σ τ

× ×

××

h1

1
2

h2

1
2

h3

1
2

Re( )(a53
1)Re( )(a52

1)

Re( )( )a42
2

Re( )(a51
1)

Re( )( )a41
2

Re( )( )a31
3

Re( )

( / )

( )a43
2

2 21• + σ τ

Im( )

( / )

( )a32
2

3 31• + σ τ

Im( )

( / )

( )a43
2

2 21• + σ τ

Re( )

( / )

(a54
1)

1 11• + σ τ

Im( )( )a42
2

Im( )( )a31
3 Im( )( )a41

2

Im( )(a53
1)

Im( )(a52
1)

Im( )(a51
1)

Im( )

( / )

(a54
1)

1 11• + σ τ

 
Note: The symbol “×” indicates a work area.  This is for  n=5 

Refer to eq. (4.11) or (4.13) to hk. 

Fig. TRIDH-l  Elements of the array A after reduction 

0

0

0

0

0

0

| h12 |

| h21 |

| h11 |

h22 | h23 |

| h32 | h33

| hn−1 n |

| hn n−1 | hnn

0 | hn n−1 ||hn−1 n−2|

hnnhn−1 n−1

| h32 |

h33

| h21 |

h22h11

nn−132

Array SD

Array D

1

 
Fig. TRIDH-2 Correspondence between real symmetric tridiagonal 
matrix T and arrays D and SD 

0

Im(v1)Re(v1)

2n2n−1432

Array PV

vn

v2

v1

0

0 0

0

00

1

Im(v2)Re(v2) Im(vn)Re(vn)

 
Fig. TRIDH-3  Correspondence  between transformation matrix V and 
Array PV 



TRIDH 

594 

Comments on use 
• Subprograms used 

SSL II ... AMACH, BSUM, and MGSSL 
FORTRAN basic functions... ABS and SQRT 
 

• Notes 
This subroutine is used for a Hermitian matrix, and not 
for a general complex matrix. 

Output arrays A and PV will be needed to obtain 
eigenvectors of the Hermitian matrix A. These A and 
PV correspond respectively to P and PV in subroutine 
TRBKH which is used to obtain eigenvectors of the 
Hermitian matrix. 

The accuracy of the eigenvalues is determined when 
tridiagonalization is made. Consequently, the 
tridiagonal matrix must be obtained as accurately as 
possible, and this subroutine takes this into account. 
However, when there are both very large and small 
eigenvalues, the smaller eigenvalues tend to be more 
affected by the transformation compared to the larger 
ones. Therefore, in this situation, it may be difficult to 
obtain the small eigenvalues with good accuracy. 

 
• Example 

An n-order Hermitian matrix is reduced to a real 
symmetric tridiagonal matrix, then by subroutine 
TRQL, its eigenvalues are computed for n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),D(100),SD(100), 
     *V(200),E(100) 
   10 CONTINUE 
      READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,M 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL TRIDH(A,100,N,D,SD,V,ICON) 
      WRITE(6,620) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,640) 
      WRITE(6,650) (I,D(I),SD(1),I=1,N) 
      CALL TRQL(D,SD,N,E,M,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,660) 
      WRITE(6,670) (I,E(I),I=1,M) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1'///,40X,'**ORIGINAL ', 
     *'MATRIX**',5X,'N=',I3,5X,'M=',I3//) 
  610 FORMAT(4(5X,'A(',I3,',',I3,')=', 
     *E14.7)) 
  620 FORMAT('0'//,11X,'**TRIDIAGONAL ', 
     *'MATRIX**') 
  630 FORMAT('0',20X,'ICON=',I5) 
  640 FORMAT('0',//1X,3('NO.',5X,'DIAGONAL', 
     *7X,'SUBDIAGONAL',2X),//) 
  650 FORMAT(1X,3(I3,2E17.7)) 
 

  660 FORMAT('1'///,5X,'**EIGENVALUES**'/) 
  670 FORMAT(1X,4('E(',I3,')=',E17.7)) 
      END 
 
Method 
The reduction of an n-order Hermitian matrix A to a real 
symmetric tridiagonal matrix T is done in two steps 
shown in eqs. (4.1) and (4.2). 
• The n-order Hermitian matrix A is reduced to an n-

order Hermitian tridiagonal matrix H by the 
Householder method. This is performed through n-2 
iteration of the unitary similarity transformation. 

2,...,2,1,*
1 −==+ nkkkkk PAPA  (4.1) 

where A A1 =  

This is the same equation as that of the orthogonal 
similarity transformation for a real symmetric matrix 
except that Pk

T is replaced by Pk
* (Refer to TRID1 for 

the Householder method of real symmetric matrix). 
The resultant matrix An-1 in those transformations 
becomes a Hermitian tridiagonal matrix H. 

• The Hermitian tridiagonal matrix H obtained in eq. 
(4.1) is further reduced to an n-order real symmetric 
tridiagonal matrix T by the diagonal unitary similarity 
transformation (4.2). 

HVVT *=          where 1−= nAH  (4.2) 
V =diag(vj) (4.3) 

Let H = (hij) and 

v1 = 1  

njh/vhv jjjjjj ,...,2,111 == −−−  (4.4) 

Then from transformation (4.2), each element tij of T is 
given as a real number as follows: 

hvhvt jjj
*
jjj ==  (4.5) 

( )
1

11111

111

−

−−−−−

−−−

=

=

=

jj

jjjjj
*
j

*
jj

jjj
*
jjj

h

vhh/vh

vhvt

 (4.6) 

That is, if the absolute value of hjj-1 is taken in the 
course of obtaining subdiagonal elements of H, it will 
directly become subdiagonal element of T. 

 
After above two transformations, takes the form shown 

in Fig.  TRIDH-2. Now, the transformation process for 
the eqs. (4.1) and (4.2) is explained.  The k-th step 
transformation, for Ak = ( ( )ai

k ), is represented by 

( ) ( ) ( ) 2
1

2
2

2
1

k
ll

k
l

k
lk aaa −+⋅⋅⋅++=σ  (4.7) 



TRIDH 

595 

where, l = n − k + 1 

2
1

1 kllt σ=−  (4.8) 

Here, if ( ) 01 ≠−
k

lla  

( ) 2
1

2
1 





= − k

k
llk a στ  (4.9) 

( ) ( ) ( ) ( )( )0,...,0,1,,..., 121
*

kk
*k

ll
*k

ll
*k

lk /aaa τσ+= −−u  (4.10) 

kkkh τσ +=  (4.11) 

or if ( ) 01 =−
k

lla .  eqs. (4.10) and (4.11) are represented 

by 

( ) ( ) 


= − 0,...,0,,..., 2
1*

2
*

1
*

k
k

ll
k

lk aa σu  (4.12) 

kkh σ=  (4.13) 

and transformation matrix Pk is constituted as follows in 
eq.(4.14). 

k
*
kkk h/uuIP −=  (4.14) 

kkkk PAPA *
1 =+  (4.15) 

( )1−= k
llll at  (4.16) 

By eq.(4.15), elements ( ) ( )k
ll

k
l aa 21 ,..., − of the Hermitian 

matrix A are eliminated.  In the actual transformation, the 
following considerations are taken. 

− To avoid possible underflows and/or overflows in the 
computations shown in eqs. (4.7) to (4.14), each 
element on the right hand side of eq. (4.7) is scaled 
by 

( )( ) ( )( )( )∑
−

=

+
1

1

ImRe
l

j

k
lj

k
lj aa  (4.17) 

− Instead of using the transformation (4.15) after 
obtaining Pk Ak+1 is obtained as follows: 

kkkkkkkk hKh 2/,/ * puuAp ==  (4.18) 

kkkk K upq −=  (4.19) 

( ) ( )kkkkkkkk hh // **
1 uuIAuuIA −−=+  

**
kkkkk uqquA −−=  (4.20) 

− Transformation matrices Pk and V are needed when 
obtaining eigenvectors of the Hermitian matrix.  For 
that reason, uk in eq. (4.10) or (4.12) and square root 
of hk in eq. (4.11) or (4.13) are stored in the form in 
Fig. TRIDH-1. Diagonal elements vj of diagonal 
unitary matrix V are stored into one-dimensional 
array PV as shown in Fig. TRIDH-3. 

 
When input parameter N is 1, the diagonal elements of A 
are directly put into array D. For details, see References 
[13] pp.212-226 and [17]. 



TRID1 

596 

B21-21-0302 TRID1, DTRID1 

Reduction of a real symmetric matrix to a real symmetric 
tridiagonal matrix (Householder method) 
CALL TRID1 (A, N, D, SD, ICON) 

 
Function 
An n-order real symmetric matrix A is reduced to a real 
symmetric tridiagonal matrix T using the Householder 
method (orthogonal similarity transformation). 

APPT T=  (1.1) 

where P is the transformation matrix.  n ≥ 1. 
 
Parameters 
A..... Input. Real symmetric matrix A. 

Output. Transformation matrix P. 
Compressed storage mode for symmetric 
matrix. 
A is a one-dimensional array of size n(n+1)/2. 

N..... Input. Order n of real symmetric matrix A. 
D..... Output. Diagonal elements of tridiagonal 

matrix T.  D is a one-dimensional array of size 
n. 

SD..... Output.  Subdiagonal elements of tridiagonal 
matrix T. SD is a one-dimensional array of size 
n.  SD(2) − SD(N) is used; SD (1) is set to 0. 

ICON .. Output.  Condition code.  See Table TRID1-1. 
 
Table TRID1-1  Condition codes 

Code Meaning Processing 
 0 No error  
 10000 N=1 or N=2 Reduction is not 

performed. 
 30000 N < 1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, and MGSSL 
FORTRAN basic functions ... ABS, DSQRT, and 
SIGN 

 
• Notes 

Array A that is output is needed for determining the 
eigenvectors of real symmetric matrix A. 

The precision of eigenvalues is determined in the 
tridiagonal matrix reduction process. For that reason 
this subroutine has been implemented to calculate 
tridiagonal matrices with as high a degree of precision 
as possible. However, when very large and very small 
eigenvalues exist, the 

smaller eigenvalues tend to be affected more by the 
reduction process. In some case, it is very difficult to 
obtain small eigenvalues precisely. 
 

• Example 
After an n-order real symmetric matrix is reduced to a 
tridiagonal matrix, subroutine TRQL is used to 
compute the eigenvalues. n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),D(100), 
     *          SD(100),E(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      CALL TRID1(A,N,D,SD,ICON) 
      WRITE(6,620) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,640) (I,D(I),SD(I),I=1,N) 
      CALL TRQL(D,SD,N,E,M,ICON) 
      WRITE(6,650) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.20000) GO TO 10 
      WRITE(6,660) (I,E(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX'/ 
     *       11X,'** ORDER =',I5) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0'/11X,'** TRIDIAGONAL ', 
     *       'MATRIX') 
  630 FORMAT(11X,'** CONDITION CODE =',I5/) 
  640 FORMAT(5X,I5,2E16.7) 
  650 FORMAT('0'/11X,'** EIGENVALUES') 
  660 FORMAT(5X,'E(',I3,')=',E15.7) 
      END 
 
Method 
Reduction of an n-order real symmetric matrix A to a 
tridiagonal matrix is performed through n−2 iterations of 
the orthogonal similarity transformation 

2,...,2,1,T
1 −==+ nkkkkk PAPA  (4.1) 

  where A1 = A, Pk is an orthogonal transformation matrix. 
  The resultant matrix An-1 in above transformations 
becomes a real symmetric tridiagonal matrix. 
  The k-th transformation is performed according to the 
following procedure. Let Ak = ( )( )k

ija  



TRID1 

597 

 
( )( ) ( )( ) ( )( )21

2
2

2
1

k
ll

k
l

k
lk aaa −+⋅⋅⋅++=σ  (4.2) 

Where l = n − k + 1 

( ) ( ) ( ) 


 ±= −− 0,...,0,,,..., 2
1

121
T

k
k

ll
k

ll
k

lk aaa σu  (4.3) 

( ) 2
1

1 k
k

llkk ah σσ −±=  (4.4) 

kkkk h/TuuIP −=  (4.5) 

By applying in Pk in (4.5) to (4.l), ( )k
la 1  to ( )k

lla 2−  of Ak can 
be eliminated. The following considerations are applied 
during the actual transformation. 
• To avoid possible underflow and overflow in the 

computations of (4.2) to (4.4), the elements on the right 

side are scaled by ( )∑
−

=

1

1

l

j

k
ija . 

• When determining T
ku  of (4.3), to prevent 

cancellation in the calculation of ( ) 2
1

1 k
k

kka σ±+  the sign 

of 2
1

kσ±  is taken to that of a ( )k
kka 1− . 

• Instead of determining Pk of transformation of (4.1), 
Ak+1 is determined as follows 

kkkkkkkk hKh 2/,/ T puuAp ==  (4.7) 

kkkk K upq −=  (4.8) 

( ) ( )
TT

TT
1 //

kkkkk

kkkkkkkk hh

uqquA

uuIAuuIA

−−=

−−=+  
(4.9) 

Transformation matrix Pk is required to determine the 
eigenvectors of the real symmetric matrix A, so the 
elements of uk of (4.3) and hk of (4.4) are stored as shown 
in Fig. TRID1-l.  

























±

±

±

××
×

11
)1(

54
)1(

53
)1(

52
)1(

51

22
)2(

43
)2(

42
)2(

41

33
)3(

32
)3(

31

2
1

2
1

2
1

haaaa

haaa

haa

σ

σ

σ  

(Note): × represents work area, n=5 

Fig. TRID1-1  Array A after Householder's reduction (A is in the 
compressed storage mode) 

When n= 2 or n=1 the diagonal elements and the 
subdiagonal elements are entered as is in arrays D and 
SD.  For further information see Reference [13] pp.212-
226. 



TRQL 

598 

B21-21-0402 TRQL, DTRQL 

Eigenvalues of a real symmetric tridiagonal matrix (QL 
method) 
CALL TRQL (D, SD,  N, E, M, ICON) 

 
Function 
All eigenvalues of an n-order real symmetric tridiagonal 
matrix T are determined using the QL method. n ≥ 1 
 
Parameters 
D..... Input.  Diagonal elements of tridiagonal matrix 

T. 
D is a one-dimensional array of size n. 
The contents of D are altered on output. 

SD.... Input.  Subdiagonal elements of tridiagonal 
matrix T. 
The elements must be be stored in SD(2) to 
SD (N). The contents of SD are altered on 
output. 

N...... Input. Order n of tridiagonal matrix. 
E..... Output. Eigenvalues 

E is a one-dimensional array of size n. 
M..... Output. Number of eigenvalues that were 

obtained. 
ICON.. Output. Condition code. See Table TRQL-1. 
 
Table TRQL-1  Condition codes 

Code Meaning Processing 
 0 No error  
 10000 N=1 E(1)=D(1) 
 15000 Some of the eigenvalues 

could not be determined. 
M is set to the 
number of 
eigenvalues that 
were determined.  
1 ≤ M < n. 

 20000 Eigenvalues could not be 
determined. 

M=0 

 30000 N < 1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH and MGSSL 
FORTRAN basic functions ... ABS, SQRT, and SIGN 

 
• Notes 

Parameter M is set to n when ICON =0 or to the 
number of eigenvalues that were obtained when ICON 
= 15000. 

This routine uses the QL method which is best suited 
for tridiagonal matrices in which the magnitude of the 
element is graded increasingly. 

This routine is used for tridiagonal matrices. When 
determining eigenvalues of a real symmetric matrix, 
first reduce that matrix to a tridiagonal matrix using 
subroutine TRID1, and then call this routine. 

When determining approximately n/4 or less 

eigenvalues of a tridiagonal matrix, it is faster to use 
subroutine BSCT1. 
  When eigenvectors of a tridiagonal matrix are also to 
be determined, TEIG1 should be used. 

 
• Example 

An n-order real symmetric matrix is reduced to a 
tridiagonal matrix using subroutine TRID1, then this 
routine is used to obtain the eigenvalues.  n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),D(100), 
     *          SD(100),E(100) 
   10 CONTINUE 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N 
      LST=0 
      DO 20 I=1,N 
      INT=LST+1 
      LST=LST+I 
      WRITE(6,610) I,(A(J),J=INT,LST) 
   20 CONTINUE 
      CALL TRID1(A,N,D,SD,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      CALL TRQL(D,SD,N,E,M,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,630) (I,E(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX',10X, 
     *       'N=',I3) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
  630 FORMAT('0',5X,'EIGENVALUE'// 
     *       (8X,4('E(',I3,')=',E15.7,3X))) 
      END 
 
Method 
All eigenvalues of n-order real symmetric tridiagonal 
matrix T are determined using the QL method.  Before 
explaining the QL method, the representation of the 
tridiagonal matrix and its eigenvalues will be defined. 

The tridiagonal matrix is represented as T and its 
eigenvalues as (λ1, λ2, ..., λn). All eigenvalues are 
assumed to be different. The diagonal elements of 
tridiagonal matrix T are represented as d1, d2,..., dn and 
the subdiagonal elements as e1, e2, ..., en.That is. 
 



TRQL 

599 

0

T=

0
en−1

en−1

e2

e2e1

e1

dn

d2

d1

 (4.1) 

To determine eigenvalues, the QL method uses the 
following three theorems. 
• If a tridiagonal matrix  T is a real symmetric matrix, 

such an orthogonal matrix  X that satisfies (4.2) exists. 

TXXD T=  (4.2) 

where D is a diagonal matrix and diagonal elements of 
D are all eigenvalues of T. 

 
• If T is non-singular, it can be uniquely decomposed 

into an orthogonal matrix Q and a lower triangular 
matrix  L whose diagonal elements are all positive, 

T QL=  (4.3) 

• Let real symmetric tridiagonal matrix  T be T1, and the 
matrix obtained after the s-th iteration be  Ts+1  
The following iterative calculation can be done: 

,...3,2,1, == ssss LQT  (4.4) 

ssss QTQT T
1 =+  (4.5) 

From the orthogonal similarity transformation of (4.5), 
Ts+1 becomes a real symmetric tridiagonal matrix.  
Furthermore, the Ts+1 is determined only the n-th column 
of Qs and when ∞S , Ts+1 converges to a diagonal matrix. 

By using the above three theorems, the QL method 
determines all eigenvalues. However, in the actual 
calculations of the QL method, (4.4) and (4.5) are 
calculated in parallel instead of first obtaining Qs in (4.4) 
and then determining Ts+1 of (4.5). 
  Since from (4.4) 

sss LTQ =T  (4.6) 

  Ts is transformed into a lower triangular matrix  Ls when 
premultiplied by QsT.  Therefore, if ( ) TP Ts

i  is the 
transformation matrix which eliminates the  i-th element 
of the (i+l)th column of Ts, T

sQ  can be represented as 

( ) ( ) ( )T
1

T
2

T
1

T s
n

ss
s −⋅⋅⋅= PPPQ  (4.7) 

Thus, (4.5) can be represented as 

( ) ( ) ( ) ( ) ( ) ( )sss
ns

s
n

Tss
s 121

T
12

T
11 PPPTPPPT ⋅⋅⋅⋅⋅⋅= −−+  (4.8) 

By successively calculating (4.8) from the inside to 
outside (4.4) and (4.5) can be executed in parallel. 
Normally, in order to improve the rate of convergence in 
the QL method. (Ts −−−− kI) origin-shifted by an appropriate 
constant k is used instead of Ts. 
Thus (4.4) becomes 

( ) ss LQIT =− ks  (4.9) 

and (4.5) becomes 

( ) ( ) ssss kk QITQIT −=−+
T

1  (4.10) 

Since (4.10) can also be written as 

( ) IQITQT kk ssss +−=+
T

1  (4.11) 

then, 

ssss QTQT T
1 =+  (4.12) 

Note that this Qs differs from the Qs of (4.5). That is, 
based on (4.9) if Qs is calculated as 

( ) sss k LITQ =−T  (4.13) 

Ts+1 can be obtained from (4.12).  The origin shift k is 
determined as follows:  Let an eigenvalue obtained on di 
in (4.1) be λi and rate of the convergence of λi, depends 
on the ratio: 

kk ii −− +1/ λλ  (4.14) 

k is determined by obtaining the eigenvalues of 2 × 2 
submatrix Bs showing (4.15) using the Jacobian method, 
and using the one obtained on ( )d i

s . 

( ) ( )
( ) ( ) 











=

+
s

i
s

i

s
i

s
i

s de
ed

1
B  (4.15) 

By this way, ( )ei
s  converges to 0 rapidly. 

If k is recalculated for each iteration of (4.12), the rate 
of convergence is further improved. Therefore, if (4.12) 
is calculated after recalculating k at every times, the 
accelerating of convergence can be performed. The ks is k 
calculated for the s-th iteration.  (4.12) is actually 
calculated in the form shown in (4.8), so the calculation 
of ( )Ts

iP  (i = n−1, ..., 2, 1) is described next. Since ( )Ts
iP  

makes elements (n−1, n) of (Ts − ksI) zero when post-
multiplied by (Ts − ksI), Pn-1 can be thought of as the 
following matrix: 



TRQL 

600 

( )





















=

−−

−−

−

−

11

11
0

1

01

T
1

nn

nn

SC
CS

s
nP  

where, 

( ) ( ){ }
( ){ } 2

1

2
1

2
1

2
11

2
1

2
1

−−−

−−

+−=

+−−=

nsnnn

nsnsnn

ekd/eS

ekd/kdC
 

If above ( )T
1

s
n−P  is used in the calculation of 

( ) ( )k
ns

s
ns 1

T
1

~
−−= PTPT  (4.16) 

~Ts  will have the following form: 

(n, n−2)

(n−2, n)
0

0 * *
 * * *

* * *

 * * * *
* * *
* * *

 
In this form, element (n − 2, n) and element (n ,n − 2) 

are appended to a tridiagonal matrix. 
Since above Ts is a symmetric matrix, it can be reduced 

to a tridiagonal matrix using the Givens method.  Let the 
transformation matrices used in the Givens method for 
reduction of Ts to a tridiagonal matrix be 

( ) ( ) ( )s
1

s
2

s
2s

~~~~ PPPQ ⋅⋅⋅= −n  (4.17) 

and with respect to the Ts to Ts+1 reduction, we obtain

ssss QTQT ~~~T
1 =+ (4.18)

 Therefore, from (4.19), (4.21) and (4.22), Ts+1 can be
calculated as

() () () () ()() ()

() ()s
1

s
2

s
2

s
1s

Ts
1

Ts
2

Ts
2

Ts
11s

~~

~~~~

PP

PPTPPPPT

⋅⋅⋅

⋅⋅⋅⋅⋅⋅= −−−−+ nnnn  
(4.19) 

  The computation process for this routine is shown next. 
Steps 1) to 6) are performed for i=1, 2, ..., n−1.  
1) Shift ks of origin is calculated according to: 

( ) ( )( ) ( )s
i

s
i

s
i eddf 2/1 −= +  

( ) ( ) 


 +±−= 12ff/edk s
i

s
is  (4.24) 

(Signs of ±Lf 2 +1 and f are made equal) 
2) Cn-1 and Sn-1 are determined ~Ts  is obtained. Then ~Ts  

is calculated from (4.16). 
3) ~Ts  is reduced to a tridiagonal matrix by Givens 

method. 
4) Steps 1) to 3) are repeated as s = s + 1 until one of the 

following conditions is satisfied. 
(a) ( ) ( )1,...,1,1 −+=+≤ + niijddue jjj  (4.20) 

where u is the unit round-off. 
(b)  s ≥ 30 

where s is number of iterations. 
5) When condition (a) is satisfied with j = i, this means 

that eigenvalue λi is determined.  When λn-1 is 
determined, then λn is determined automatically. 

6) When condition (b) is satisfied, λi is considered to be 
undertermined and ICON is set to 15000. The process 
is terminated. 

 
The following considerations have been made in order 

to diminish the execution time of this subroutine. 
1) If matrix T is a direct sum of submatrixes. steps 1) to 

6) above are applied to each submatrix in order to 
reduce operations.  When condition (4.20) is satisfied 
with j ≠ i, matrix T is split into submatrices. 

2) The above steps 2) to 3) are put together as (4.18) and 
are calculated as shown in (4.21). 

( )

( ) ( )

( )( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) 



















+−−=

−=

++=

===

+=

−=

===

+

+
+

+

++++

iinnj

eSdSCe

xdSdCd

eSCx/weS/wgC

egw

eSdCg

.S,.C.e

s
jj

s
jjj

s
j

j
s

jj
s

jj
s

j

s
jjjjj

s
jjjjj

s
jjj

s
jj

s
jjj

nn
s

n

,1,...,2,1

2,,

0101,00

21

2
1

21
1

2

22

1111

2
1

 (4.21) 

( ) ( )
i

s
i

s
i xdd 21

1
1 −= +

+
+  

For further information see references [12], [13] pp. 227-
248 and [16] pp.177-206. 

=sT~  



TSDM 

601 

C23-11-0111 TSDM, DTSDM 

Zero of a real function (Muller’s method) 
CALL TSDM(X, FUN, ISW, EPS, ETA, M, ICON) 

 
Function 
This subroutine finds a zero of a real function 

f(x) =0 

An initial approximation to the zero must be given. 
 
Parameters 
X..... Input.  Initial value of the root to be obtained. 

Output. Approximate root. 
FUN ... Input.  Function subprogram name which 

computes the function f(x). 
ISW... Input.  Control information. 

One of the convergence criteria for the root 
obtained is specified.  ISW must be either one 
of 1, 2, or 3. When ISW = 1, xi becomes the 
root if it satisfies the condition 

( ) :EPS≤ixf  
Convergence criteria I 
When ISW = 2, xi becomes the root if it 
satisfies the condition 

: ETA1 iii xxx ⋅≤− −  
Convergence criteria II 
When ISW = 3, xi becomes the root if either of 
the criteria described above are satisfied. See 
"Comments on use". 

EPS ... Input. The tolerance ( ≥ 0.0) used in the 
convergence criteria I. (See the parameter 
ISW.) 

ETA...... Input. The tolerance ( ≥ 0.0) used in the 
convergence criteria II. (See the parameter 
ISW.) 

M ..... Input. Upper limit of number of iterations to 
obtain the solution. See "Comments on use". 
Output.  Number of iterations actually tried. 

ICON.. Output. Condition code.  
See Table TSDM-1. 

 
Comments on use 
• Subprograms used 

(a) SSL II..... MGSSL, AMACH, AFMAX and 
AFMIN 

(b) FORTRAN basic functions .. ABS, EXP, SQRT 
and ALOG 

 
• Notes 

The function subprogram specified by the parameter 
FUN mut be defined as having only one argument for 
the variable x, and the program which calls this TSDM 
subroutine must have 

 

Table TSDM-1 Condition codes 

Code Meaning Processing 
1 The obtained approximate root 

satisfied the convergence 
criteria I. (See parameter 
ISW.) 

Normal end 

2 The obtained approximate root 
satisfied the convergence 
criteria II. (See parameter 
ISW.) 

Normal end 

10 Iterations were tried 
unconditionally m times. 
(M=−m) 

Normal end 

11 Although m iterations were 
specified (M=−m), before 
finishing all iterations,  
f(xj) = 0.0  
was satisfied, thereby the 
iteration was stopped and xj 
was set as the root. 

Normal end 

12 Although m iterations were 
specified (M=−m), before 
finishing all iterations,  
|xi-xi-1| ≤u･|xi| 
was satisfied, thereby the 
iteration was stopped and xj  
was set as the root. 

Normal end 

10000 The specified convergence 
criterion was not satisfied 
within the limit of iterations 
given. 

The last iteration 
is value Xi stored 
in X. 

20000 A difficulty occurred during 
computation. so Muller's 
method could not be 
continued.  See. (4) Method. 

Terminated 

30000 The input parameter had 
error(s). when M>0, either of 
the followings was found:  
 
1 ISW=1 and EPS < 0, or 
2 ISW=2 and ETA<0, or 
3 ISW=3, EPS<0 and 
ETA<0, or in other case, 
M=0 or ISW ≠ 1, 2, 3 was 
found. 

Bypassed 

 
EXTERNAL statement for that function subprogram. 
(See the example below.) 

This subroutine, even if ISW = 1 is given, stops the 
iteration with ICON = 2 whenever 

iii xuxx ⋅≤− −1  (u is the unit round off) 

is satisfied, and also stops the iteration with ICON = 1 
whenever f(xi) = 0.0 is satisfied even if ISW = 2 is given. 
  Iterations are repeated m times unconditionally, when M 
is set as M = −m (m > 0). However, if f(xi)= 0.0 or 

iii xuxx ⋅≤− −1  is satisfied before finishing m 
iterations, the iteration is stopped and the result is put out 
with ICON = 11 or ICON = 12. 



TSDM 

602 

• Example 
A root of f(x) = ex −1 is obtained with the initial value 
x0 = 1 given 

 
C     **EXAMPLE** 
      EXTERNAL FEXP 
      X=0.0 
      ISW=3 
      EPS=0.0 
      ETA=1.0E-6 
      M=100 
      CALL TSDM(X,FEXP,ISW,EPS,ETA,M, 
     *ICON) 
      WRITE(6,600) ICON,M,X 
      STOP 
  600 FORMAT(10X,'ICON=',I5/13X,'M=',I5/ 
     * 13X,'X=',E15.7) 
      END 
      FUNCTION FEXP(X) 
      FEXP=EXP(X)-1.0 
      RETURN 
      END 
 
Method 
The subroutine uses Muller's method. This uses an 
interpolating polynomial P (x) of degree two, by using 
three approximate values for a root and approximates  
f(x) near the root to be obtained. One of the roots for P(x) 
= 0 is taken as the next approximate root of  f(x). In this 
way iteration is continued.  This algorithm has the 
following features: 
a. Derivatives of f(x) are not required 
b. The function is evaluated only once at each iteration 
c. The order of convergence is 1.84 (for a single root). 
 
• Muller's method 

Let α be a root of f(x) and let three values xi-2, xi-1 and 
xi be approximations to the root (See later explanation 
for initial values x1 , x2 and x3).  According to Newton’s 
interpolation formula of degree two, f(x) is 
approximated by using the three values described 
above as follows: 

( ) [ ]( )iiii xxxxffxP −+= −1,  
[ ]( )( )121,, −−− −−+ iiiii xxxxxxxf  (4.1) 

where fi = f(xi), and [ ]1, −ii xxf  and [ ]21 ,, −− iii xxxf  
are the first and the second order divided differences of 
f(x), respectively, and are defined as follows: 

[ ]
1

1
1,

−

−
− −

−=
ii

ii
ii xx

ffxxf
 

[ ] [ ] [ ]
2

211
21

,,,,
−

−−−
−− −

−=
ii

iiii
iii xx

xxfxxfxxxf  (4.2) 

P (x) = 0 is then solved and the two roots are written as 

[ ]{ } 21
21

2 ,,4

2

−−−±
−=

iiii

i
i

xxxff

fxx
ωω  

[ ] ( ) [ ]2111 ,,, −−−− −+= iiiiiii xxxfxxxxfω  (4.3) 

    Of these two roots for P (x) = 0, the root corresponding 
to the larger absolute value of the denominator in the 
second term of Eq. (4.3) is chosen as the next iteration 
value xi+1. This means that xi+1 is a root closer to xi. In Eq. 
(4.1), if the term of x2 is null, i.e., if [ ]21,, −− iii xxxf  = 0, 
the following equation is used in place of using Eq. (4.3): 

[ ]1, −
−=

ii

i
i xxf

f
xx  

i
ii

ii
i f

ff
xx

x ⋅
−
−

−=
−

−

1

1  (4.4) 

This is the secant method. 
In Eq. (4.1) also, if both terms x and x2 are null, P(x) 
reduces to a constant and the algorithm fails. (See later 
explanation.) 
 
• Considerations of Algorithm 

− Initial values x1, x2 and x3 
The three initial values are set as follows: Let x be an 
initial value set by the user in the input parameter X. 
When x ≠ 0 
x1= 0.9x 
x2 = l.lx 
x3= x 
When x= 0, 
x1 = -1.0 
x2 = 1.0 
x3 = 0.0 

− When f(xi-2) = f(xi-1) = f(xi) 
This corresponds to the case in which both terms x 
and x2 in Eq. (4.1) are null, so Muller's method 
cannot be continued.  
The subroutine changes xi-2, xi-1, and xi and tries to 
get out of this situation by setting 

x′ i-2= (1+pn)xi-2 

x′ i-1= (1+pn)xi-1 

x′ i= (1+pn)xi 

where p=−u-1/10, u is the unit round off and n is the count 
of changes. Muller's method is continued by using x'i-2, 
x'i-1, and x'i . When more than five changes are performed 
the subroutine terminate unsuccessfully with ICON = 
20000. 



TSDM 

603 

• Convergence criteria 
The following two criteria are used. 
Criteria I. 
When the approximate root  xi satisfies f(xi) ≤ EPS, the 
xi is taken as the root. 
Criteria II. When the approximate root xi satisfies |xi 
−xi-1| ≤ ETA･|xi| 

the xi is taken as the root.  When the root is a multiple 
root or very close to another root, ETA must be set 
sufficiently large. If  0 ≤ ETA < u, the subroutine resets 
ETA = u.  For further details, see Reference [32]. 



TSD1 

604 

C23-11-0101 TSD1, DTSD1 

Zero of a real function which changes sign in a given 
interval (derivative not required) 
CALL TSD1 (AI, BI, FUN, EPST, X, ICON) 

 
Function 
Given two points a, b such that f(a) f(b) ≤ 0, a zero in  
[a, b] of the real transcendental equation 

f(x)=0 

is obtained.  The derivatives of f( x) are not required 
when determining the zero. The bisection method, linear 
interpolation method, and inverse quadratic interpolation 
method are used depending on the behavior of f( x) 
during the calculations. 
 
Parameters 
AI... Input. Lower limit a of the interval. 
BI..... Input. Upper limit b of the interval. 
FUN.... Input. The name of the function subprogram 

which calculates f( x) . In the program which 
calls this subroutine, the user must declare 
EXTERNAL and prepare the function 
subprogram. 

EPST... Input. The tolerance of absolute error (≥ 0.0) 
of the approximated root to be determined 
(See the notes) 

X..... Output. The approximated zero 
ICON... Output. Condition code. See Table TSD1-1. 
 
Table TSD1-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 F(a) f(b) > 0 or EPST < 0.0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ...  AMACH and MGSSL 
FORTRAN basic function... ABS 
 

• Notes 
FUN must be declared as EXTERNAL in the program 
from which this subroutine is called. 
  If there are several zeros in the interval [a, b] as 
shown in Fig. TSD1-l, it is uncertain which zero will be 
obtained. 

x
b

a

f(x)

0

y

 
Fig. TSD1-1 

The required accuracy of the root being determined is 
defined by parameter EPST. If the interval [a, b] does not 
include the origin, EPST=0.0 can be specified, and the 
subroutine will calculate as precise root as possible. 
 
• Example 

One root of f(x) = sin2(x) − 0.5 = 0 is calculated in the 
interval [0.0,1.5]. Notice that f(x) has different signs at 
both ends of the interval, and only one root exists in 
this interval. 

 
C     **EXAMPLE** 
      EXTERNAL FSIN 
      AI=0.0 
      BI=1.5 
      EPST=1.0E-6 
      CALL TSD1(AI,BI,FSIN,EPST,X,ICON) 
      WRITE(6,600) X,ICON 
      STOP 
  600 FORMAT(10X,E15.7,5X,I10) 
      END 
      FUNCTION FSIN(X) 
      FSIN=SIN(X)**2-0.5 
      RETURN 
      END 
 
Method 
With some modifications, this subroutine uses what is 
widely known as the Dekker algorithm. The iteration 
formula to be used at each iteration (bisection method, 
linear interpolation method, inverse quadrantic 
interpolation method) are determined by examining the 
behavior of f(x) . f(x) is a real function that is continuous 
in the interval [a, b], and f (a )f (b ) < 0 .  At the 
beginning of the algorithm, c is taken as a ; the general 
procedures used thereafter are as follows. 
• Procedure 1  If f(b) f(c) > 0, c is assumed to be the 

same as a. 
If f(b)f(c)<0 and |f(b)| > |f(c)|, b and c are interchanged 
and then a is assumed equal to c. In this manner, band c 
are determined such that 

f(b)f(c)<0 and |f(b)| ≤ |f(c)| 



TSD1 

605 

Variables a, b, and c have the following meanings: 
a... Current approximation to a root 
b... Previous b 
c... The opposing variable of b; a root lies between b 

and c. 
• Procedure 2 Let m = (c− b)/2 , as long as |m| < δ is not 

satisfied, one of the following (a), (b), or (c) is used to 
calculate the next approximation i and that value is 
assigned to b (as explained in detail later, δ is a 
function of b). 
(a) When |f(a)|≤|f(b)| 

The bisection method, i = (b + c) /2 is applied 
(b) When a = c 

The linear interpolation (4.1) is applied 

)(/)(1
)(/)()(

afbf
afbfbabi

−
−−=  

qpb /+=  (4.1) 

(c) When |f(b)| < |f(a)|≤|f(c)| 
The inverse quadratic interpolation method is 
applied 
Let fa = f(a), fb = f(b), fc = f(c), 
also r1=fa/fc, r2=fb/fc, r3=fb/fa,  
then  

qpb
rrr

rabrrrbcrb

ffffff
fffabfffbc

fbi
abcbca

cbcbaa
b

/
)1)(1)(1(

)1)(()()(

))()((
)()()()(

321

2211
3

+=









−−−

−−−−−
−=









−−−

−−−−−
−=

 (4.2) 

Procedure 1 and procedure 2 are then repeated. 
 
• Preventing overflow 

When using (4.1) and (4.2), the following is necessary 
to prevent overflow. That is, when 

mmbcqp
2
32

4
3

4
3/ ==−>  

which can be rewritten 

mqp 32 >  

is satisfied, the division p/q is not performed, instead the 
bisection method (described in (a)) is used. When |p/q|<δ, 
i is calculated as 

)sign( bcbi −+= δ  

to keep convergence from slowing down. 
 
• Convergence criterion 

When either (a) or (b) below is satisfied, convergence 
is judged to have occurred. Calculation is terminated, 
and current b is taken as the root. 
(a) f(b) = 0(This will happen when complete underflow 

occurs) 
(b) |m|<δ=2u|b|+ε/2 ε > 0  (4.3) 

 
Where u is the round-off unit and ε is the tolerance to the 

root (that corresponds to the parameter EPST of this routine).  
The righthand side of (4.3) has been derived experimentally. 
For more details see reference [3]. 

Let the exact root be x, the upper limit of the absolute 
error |b−x| somewhat larger than the righthand side of 
(4.3) because of the rounding error. The result can be 
expressed as 

|b−x|≤6u|x|+ε 

Care should be taken when specifying the value of 
parameter EPST.  If the interval [a, b] includes the origin, 
it is unwise to set EPST=0.0 since there is a possibility 
that the exact root is the origin.  Otherwise, EPST can be 
set to 0.0 without problems. 
 

For further information, see Reference [28]. 
 
 



606 

APPENDICES 
 



 

607 

APPENDIX A 
AUXILIARY SUBROUTINES 

A.1 OUTLINE 

Auxiliary subroutines internally supplement the functions 
of SSL II subroutines and slave subroutines. In Section 
2.9, for example, SSL II subroutines frequently call for 
the unit round off "u". Then, the auxiliary subroutine for 
"u" facilitates the use of "u" for various subroutines that 
require "u" in execution. 
  Thus, auxiliary subroutines are usually called from 
general or slave subroutines in SSL II. and have features 
as follows: 
 

Features of auxiliary subroutines  
• Some auxiliary subroutines are computer-dependent, 

(while SSL II subroutines and slave subroutines are 
computer-independent). 

• Some auxiliary subroutines have single and double 
precision parameters at the same time, (whereas these 
two are not combined in the SSL II general subroutines 
and slave subroutines). 

• There is no naming rule to apply to auxiliary 
subroutines, as with SSL II general subroutines and 
slave subroutines.(See Section 2.3).  

 

Table A.1 Auxiliary subroutines 

 Subroutine name   
 Single precision Double precision   

Unit round off AMACH DMACH M,F See A.2. 
Printing of condition message MGSSL  S See A.3. 
Control of message printing MGSET**  S See A.4. 
Product sum (Real vector) ASUM,BSUM DSUM,DBSUM S See A.5. 
Product sum (Complex 
vector) 

CSUM DCSUM S See A.6. 

Radix of the floating-point 
number system 

IRADIX  M,F See A.7. 

Positive max. value of the 
floating -point number system 

AFMAX DFMAX M,F See A.8. 

Positive min. value of the 
floating -point number system 

AFMIN DFMIN M,F  

* M: Computer dependent subprograms. 
F: Function subprograms. 
S: Subroutine subprograms. 

** MGSET is the sub-entry of MGSSL. 

 

Feature* Reference section Item 



AMACH 

608 

A.2 AMACH, DMACH 

Unit round off 
(Function subprogram) AMACH(EPS) 

 

Function 

The function value defines the unit round off u in 
normalized floating-point arithmetic. 
 
 u = M1-L/2(for (correctly) rounded arithmetic) 
 u = M1-L(for chopped arithmetic) 
 
 where M is the radix of the number system, and L the 
number of digits contained in the mantissa. 
 Table AMACH-1 lists the values for single and double 
precision arithmetic. 

Parameter 
EPS.. Input. EPS is specified as follows depending 

on the working precision. 
• Single precision:Single precision real 

variable or constant. 
• Double precision:Double precision real 

variable or constant. 
 
Example 
The unit round off for single and double precision 
arithmetic are obtained. 

 
C     **EXAMPLE** 
      REAL*4 AEPS 
      REAL*8 DEPS,DMACH 
      AEPS=AMACH(AEPS) 
      DEPS=DMACH(DEPS) 
      WRITE(6,600) AEPS,DEPS 
      STOP 
  600 FORMAT(10X,'AEPS=',E16.7, 
     *        5X,'DEPS=',D25.17) 
      END 
 

 
 
Table AMACH-1 Unit round off 

  AMACH DMACH  
Arithmetic method  Single precision Double precision  
Binary:M=2 Rounded arithmetic L=26  

u=1/2･2-25 
L=61  
u=1/2･2-60 

 

Hexadecimal:M=16 Chopped arithmetic L=6  
u=16-5 

L=14  
u=16-13 

FACOM M series 
FACOM S series 
SX/G 200 series 

Binary:M=2 Rounded arithmetic L=23  
u=1/2･2-22 

L=52  
u=1/2･2-51 

FM series  
SX/G series 

Application 



MGSSL 

609 

A.3 MGSSL 

Printing of condition messages 
CALL MGSSL(ICON,MCODE) 

 
Function 
This subroutine prints the condition messages for SSL II 
subroutines. 
 
Parameters 
ICOM.. Input. Condition code. 
MCODE..Input. Subroutine classification code. 

One dimensional array of size 6. 
All 11-digit classification code is specified in 
MCODE. 

Example:For classification code, A52-22-0101: 
DATA MCODE/2HA5,2H2-,2H22,2H-0,2H10,2H1/ 
 
Comments on use 
• Notes 

This subroutine is called by all SSL II general 
subroutines upon completion of the execution except 
by special function subroutines when normally ending 
with ICON=0. 

This subroutine does not usually print messages by itself. 
The printing message is controlled by subroutine 
MGSET, see MGSET. 
 
• Example 

The following example, taken on subroutine LAX, 
shows how this subroutine is called internally by SSL 
II general subroutines. 

 
C     **EXAMPLE** 
      SUBROUTINE LAX(A,K,N,B,EPSZ,ISW,IS, 
     *VW,IP,ICON) 
      DIMENSION A(K,N),B(N),VW(N),IP(N) 
      CHARACTER  MCODE(6)*4 
      DATA MCODE/'A2  ','2-  ','11  ', 
     *'-0  ','10  ','1   '/ 
      IF(ISW.EQ.1) GOTO 1000 
      IF(ISW.EQ.2) GOTO 1100 
      ICON=30000 
      GOTO 8000 
 1000 CALL ALU(A,K,N,EPSZ,IP,IS,VW,ICON) 
      IF(ICON.NE.0) GOTO 8000 
 1100 CALL LUX(B,A,K,N,1,IP,ICON) 
 8000 CALL MGSSL(ICON,MCODE) 
      RETURN 
      END 



MGSET 

610 

A.4 MGSET 

Control of message printing 
CALL MGSET(ISET,IFLE) 

 
Function 
This subroutine controls message printing for SSL II 
general subroutines. 
 
Parameters 
ISET.. Input. Output level.(See Table MGSET-1.) 
IFLE.. Input. File reference No. for output.(Data set 

identification No.) 
 
Table MGSET-1 Output level 

ISET Control function 
0 Output when the condition code is among 

0∼ 30000. 
1 Output when the condition code is among 

10000∼ 30000. 
2 Output when the condition code is among 

20000∼ 30000. 
3 Output when the condition code is 30000. 
-1 No condition message is output. 

 
Comments on use 
• Notes 

Printing of the condition messages: 
SSL II general subroutines call the auxiliary 
subroutine MGSSL to print condition message upon 
completion of the processing. Usually, auxiliary 
subroutine does not print messages, but messages can 
be printed by calling this subroutine in advance in the 
user's program. 
Extent of output control: 
Output control by this subroutine is retained until it is 
called again from the user's program.  Note that, when 
an SSL II subroutine called by user's program calls 
other SSL II subroutines, they are also under the 
output control. 
Termination of printing: 
The message printing previously called for can be 
terminated by calling this subroutine again with 
ISET= −1. 
File reference number: 
IFLE=6 is usually specified as the standard.  This 
subroutine is the sub-entry of the auxiliary subroutine 
MGSSL. 

• Example 
The example shows how MGSET is used in 
subroutine LSX to solve a system of linear equations 
with a positive symmetric matrix. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(100) 
      CALL MGSET(0,6) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,600) N 
      CALL LSX(A,N,B,0.0,1,ICON) 
      IF(ICON.GE.20000) GOTO 20 
      WRITE(6,610) (B(I),I=1,N) 
   20 CALL MGSET(-1,6) 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E16.8) 
  600 FORMAT('0',4X,'ORDER=',I5) 
  610 FORMAT(' ',4X,'SOLUTION VECTOR' 
     * /(5X,E15.7)) 
      END 
 
  Several sets of systems are solved successively in this 
example. Subroutine MGSET is called two times in the 
program:first it is called after the array statement to 
produce the message when the first system is solved then 
it is called at statement number "20" to terminate the 
message printing in the successive operations.Since 
subroutine LSX internally uses component routines 
(SLDL, LDLX), they are also under the output control. 
 

ORDER=3 
****SSL2(A22-51-0202) CONDITION 0**** 
****SSL2(A22-51-0302) CONDITION 0**** 
****SSL2(A22-51-0101) CONDITION 0**** 

SOLUTION VECTOR 
0.1352613E+01 
0.1111623E+00 
0.4999998E+01 
 
ORDER=4 
SOLUTION VECTOR 
0.5000001E+01 
0.3333330E-01 
0.1111110E+00 
0.2499998E+00 



ASUM(BSUM) 

611 

A.5 ASUM(BSUM), DSUM(DBSUM) 

Product sum (real vector) 
CALL ASUM (A, B, N, IA, IB, SUM) 

 
Function 
Given n-dimensional real vectors a and b, this 
subroutine computes the product sum µ. 

i

n

i
iba∑

=

=
1

µ  

where, aT=(a1, a2, ... , an), bT=(b1, b2, ... , bn) 
 
Parameters 
A.... Input. Vector a. One-dimensional array of 

size IA ･N. 
B.... Input. Vector b. One-dimensional array of 

size IB  ･N. 
N.... Input. Dimension n of vectors. 
IA... Input. An interval between consecutive 

elements of vector a (=0). 
Generally, it is set to 1.  Refer to Notes. 

IB... Input. An interval between consecutive 
elements of vector b (=0). Generally, it is est 
to 1.  
See Notes. 

SUM.. Output. Inner product µ . Refer to Notes. 
 
Comments on use 
• Notes 

The purpose of this subroutine: 
From the theory of error analysis on floatingpoint 
arithmetic, the calculation of product sum frequently 
used in numerical analyses requires high accuracy to 
maintain the needed number of significant digits. To 
do that, this subroutine enjoys an optimum method, 
which depends on the computer to be used. 
Data spacing in arrays A and B: 
Set IA=p when elements of vector a are to be stored in 
array A with spacing p . 
Likewise, set IB=q when elements of vector b are to 
be stored in array B with spacing q . 
If p, q<0 are must be taken in assigning arrays A and 
B(see Example). 
About BSUM: 
The functions of BSUM are equivalent to those of 
ASUM but BSUM computes the product sum µ in 
double precision. The comparison among ASUM, 
BSUM, DSUM and DBSUM is tabulated as follows: 

 
Subroutine 

name 
Use Difference in parameters 

ASUM  A,B and SUM:Single precision 
BSUM  A,B:                Single precision  

SUM:              Double precision 
DSUM  A,B,SUM:       Double precision 
DBSUM  A,B:              Double precision  

SUM:              Quadruple precision 
 
Note: 
DBSUM cannot be used if the FORTRAN system does not 
support the quadruple-precision operation function. 

• Example 
When n-dimensional real matrix A (=(aij)) is defined 
as a two-dimensional array A (K, N), the product sum 
µ in the m-th column and l-th row is calculated as 
shown below:  

∑
−

−+=
n

i
inlimaa

1
1µ  

K N

l

Array A

m

 
Where, n≤100 
 
C     **EXAMPLE** 
      DIMENSION A(100,100) 
      K=100 
      READ(5,100) N,((A(I,J),I=1,N),J=1,N) 
      READ(5,200) M,L 
      CALL ASUM(A(1,M),A(L,N),N,1,-K,SUM) 
      WRITE(6,150) M,L,SUM 
      STOP 
  100 FORMAT(I5/(4E15.7)) 
  200 FORMAT(2I5) 
  150 FORMAT('1'//10X,'M=',I5,5X,'L=',I5, 
     *5X,'SUM=',E16.7) 
      END 
 

 

Single 
precision 
routines 
Double 
precision 
routine 



CSUM 

612 

A.6 CSUM, DCSUM 

Product sum (Complex vector) 
CALL CSUM (ZA, ZB, N, IA, IB, ZSUM) 

 
Function 
Given n-dimensional complex vectors a and b this 
subroutine computes the product sum µ. 

∑
−

=
n

i
iiba

1

µ  

Where      aT=(a1, a2, ..., an), bT=(b1, b2, ...,bn) 
 
Parameters 
ZA... Input. Vector a. One-dimensional complex 

type array of size IA ･N. 
ZB... Input. Vector b. One-dimensional complex 

type array of size IB ･N. 
N.... Input. Dimension n of vectors. 
IA... Input. An interval between consecutive 

elements of vector a (≠0). 
Generally, it is set to 1. (See Notes.) 

IB... Input. An interval between consecutive 
elements of vector b (≠0). 
Generally, it is set to 1. (See Notes.) 

ZSUM. Output. Inner product µ . Complex type 
variable. 

 
Comments on use 
• Notes 

The purpose of this subroutine: 
From the theory of error analysis on floating-point 
arithmetic, the calculation of the product sum 
frequently used in numerical analysis requires high 
precision. This subroutine uses the most appropriate 
method depending on the computer used. 

Data interval of array ZA, ZB: 
Specify IA=p when elements of vector are to be stored 
in array ZA with the interval p. 
Similarly, specify IB=q when elements of vector b are 
to be stored in array ZB with the interval q. 
If p, q<0, assigning of arrays ZA and ZB should be 
done with sufficient care.  (See the example.) 

 
• Example 

When n-dimensional complex matrix A(=(aij)) is given 
as a two-dimensional array ZA (K, N), the following 
example computes the product sum u in the m-th 
column and the l-th row. 

∑
−

−+=
n

i
ilnim aa

1
1µ  

K N

l

Array ZA

m

 
 
C     **EXAMPLE** 
      DIMENSION ZA(100,100) 
      COMPLEX ZA,ZSUM 
      K=100 
      READ(5,100) N,((ZA(I,J),I=1,N),J=1,N) 
      READ(5,200) M,L 
      CALL CSUM(ZA(1,M),ZA(L,N),N,1,-K,ZSUM) 
      WRITE(6,150) M,L,ZSUM 
      STOP 
  100 FORMAT(I5/(4E15.7)) 
  200 FORMAT(2I5) 
  150 FORMAT('1'//10X,'M=',I5,5X,'L=',I5, 
     *5X,'CSUM=',2E16.7) 
      END 
 

 



IRADIX 

613 

A.7 IRADIX 

Radix of the floating-point number system 
(Function subprogram) IRADIX(RDX) 

 
Function 
The radix of the floating-point number system is set as 
an integer-type function value. 
See Table IRADIX-1. 
 
Table IRADIX-1 Radix for floating-point 

Arithmetic IRADIX Application 
Binary IRADIX=2 FM series  

SX/G 100 series 
Hexadecimal IRADIX=16 FACOM M series 

FACOM S series 
SX/G 200 series 

Parameter 
RDX... Input. Real variable, or a constant. Any real 

number can be specified as RDX. 
 
Example 
The radix of the number system can be obtained as 
follows. 
 
C     **EXAMPLE** 
      REAL*4 RDX 
      RDX=IRADIX(RDX) 
      WRITE(6,600) RDX 
  600 FORMAT(//10X,'RDX=',E15.7) 
      STOP 
      END 
 

 



AFMAX, AFMIN 

614 

A.8  AFMAX, DFMAX, AFMIN, DFMIN 

Positive max.  and min.  values of the floating-point num-
ber system. 
Maximum value AFMAX(X) 
Minimum value AFMIN(X) 

 
Function 
The positive maximum value flmax or minimum value 
flmin of the floating-point number system is set. 
See Table AFMAX-1. 
 
Parameter 
X.. Input. This specified according to the 

precision as: 
• Single precision:Single precision real 

variable or constant. 
• Double precison:Double precision real 

variable or constant. 

Example 
The maximum and minimum values for single and 
double precisions are obtained as follows: 
 
C     **EXAMPLE** 
      REAL*4 X0,X1,X2 
      REAL*8 Y0,Y1,Y2,DFMAX,DFMIN 
      X1=AFMAX(X0) 
      X2=AFMIN(X0) 
      Y1=DFMAX(Y0) 
      Y2=DFMIN(Y0) 
      WRITE(6,600) X1,X2,Y1,Y2 
      STOP 
  600 FORMAT(10X,'AFMAX=',E16.7/ 
     *10X,'AFMIN=',E16.7/ 
     *10X,'DFMAX=',D25.17/ 
     *10X,'DFMIN=',D25.17) 
      END 
 

 

 
 
 
Table AFMAX-1  Max, and min.  values for floating-point unmber system 

 Maximum values Minimum values  
Arithmetic Single precision 

AFMAX 
Double precision 

DFMAX 
Single precision 

AFMIN 
Double precision 

DFMIN 
Application 

Binary (1-2-26)･2255 (1-2-61)･2255 2-1
･2-256 2-1

･2-256  
Haxadecimal (1-16-6)･1663 (1-16-14)･1663 16-1

･16-64 16-1
･16-64 FACOM M series 

FACOM S series 
SX/G 200 series 

  (1-2-53)･21024  2-1
･2-1021 FM series 

  (1-2-56)･2252  2-1
･2-259 SX/G 100 series 

Binary (1-2-24)･2128 2-1
･2-125 



 

615 

APPENDIX B 
ALPHABETIC GUIDE FOR SUBROUTINES 

In this appendix,  subroutine name of SSL II are listed in 
alphabetical order. 
The subroutines are divided into three lists based on 
their uses. Only single precision subroutine names are 
included. 

B.1  GENERAL SUBROUTINES 

Table B.1 shows general subroutines. 



 

616 

Table B.1  General subroutines 

Subroutine 
name 

Classification 
code Subprogram used 

AGGM A21-11-0101  
AKHER E11-11-0201 AFMAX 
AKLAG E11-11-0101 AFMAX 
AKMID E11-42-0101  
AKMIN E12-21-0201  
ALU A22-11-0202 AMACH 
AQC8 G23-11-0301 AMACH 
AQE G23-11-0401 AMACH, AFMIN 
AQEH G23-21-0101 AMACH, AFMAX 
AQEI G23-31-0101 AMACH, AFMAX 
AQMC8 G24-13-0101 AMACH 
AQME G24-13-0201 AFMAX, AFMIN, UAQE1, 
  UAQE2, UAQE3, UFNIO, 
  UFN2O, UFN3O, UFN4O, 
  AMACH 
AQN9 G23-11-0201 AMACH 
ASSM A21-12-0101  
ASVD1 A25-31-0201 AMACH 
BDLX A52-31-0302  
BICD1 E12-32-1102 UBAS1, UCIO1,ULUI1, 
  UMIO1 
BICD3 E12-32-3302 UBAS1, UCIO3, ULUI3, 
  UMIO3 
BIC1 E12-31-0102 UBAS1, UCIO1,ULUI1, 
  UMIO1 
BIC2 E12-31-0202 UBAS1, UCIO2, ULUI1, 
  UMIO2 
BIC3 E12-31-0302 UBAS1, UCIO3, ULUI3, 
  UMIO3 
BIC4 E12-31-0402 UBAS4, UCIO4, ULUI4, 
  UMIO4, UPEP4 
BIFD1 E11-32-1101 UBAS1, UCAD1 
BIFD3 E11-32-3301 UBAS1, UCAD1 
BIF1 E11-31-0101 UBAS1, UCAR1 
BIF2 E11-31-0201 UBAS1, UCAR1 
BIF3 E11-31-0301 UBAS1, UCAR1 
BIF4 E11-31-0401 UBAS4, UCAR4, UPEP4 
BIN I11-81-1201 AMACH,BI0, BI1, AFMIN, 
  AFMAX, ULMAX 
BIR I11-83-0301 AFMIN, AMACH, ULMAX 
BI0 I11-81-0601 AFMAX, ULMAX 
BI1 I11-81-0701 AFMAX, ULMAX 
BJN I11-81-1001 AMACH, BJ0, BJ1, 

AFMIN, 
  UTLIM 
BJR I11-83-0101 AMACH, AFMIN, UTLIM 
BJ0 I11-81-0201 UTLIM 
BJ1 I11-81-0301 UTLIM 
BKN I11-81-1301 BK0, BK1, ULMAX 
BKR I11-83-0401 AMACH, AFMAX, ULMAX 
BK0 I11-81-0801 ULMAX 
BK1 I11-81-0901 ULMAX 
BLNC B21-11-0202 IRADIX 
BLUX1 A52-11-0302 ASUM 
BLU1 A52-11-0202 AMACH 
BMDMX A52-21-0302  
BSCD2 E32-32-0202 UBAS0, UCDB2, UPOB2,  
  UPCA2 UREO1 
BSCT1 B21-21-0502 AMACH 
BSC1 E32-31-0102 UBAR1, UCAO1, UCDB1, 
  UNCA1, UREO1 
BSC2 E32-31-0202 UBRS0, UCDB2, UPOB1, 
  UPCA1, UREO1, AFMAX 
BSEG B51-21-0201 AMACH,BSCT1, BSVEC, 
  BTRID 
BSEGJ B51-21-1001 AMACH, BDLX, MSBV, 
  SBDL, TEIG1, TRBK, 

Table  B.1 -continued 

Subroutine 
name 

Classification 
Code Subprogram used 

  TRID1, UCHLS, UESRT 
BSFD1 E31-32-0101 UBAS1, UCAR2 
BSF1 E31-31-0101 UBAS1, UCAR1 
BSVEC B51-21-0402 AMACH 
BTRID B51-21-0302 AMACH 
BYN I11-81-1101 BY0, BY1, UBJ0, UBJ1, 
  UTLIM 
BYR I11-83-0202 AMACH, AFMAX, UTLIM, 
  ULMAX 
BY0 I11-81-0401 UBJ0, UTLIM 
BY1 I11-81-0501 UBJ1, UTLIM 
CBIN I11-82-1101 AMACH, ULMAX 
CBJN I11-82-1301 AMACH, ULMAX 
CBJR I11-84-0101 AMACH, ULMAX 
CBKN I11-82-1201 CBIN, AMACH, ULMAX, 
  UTLIM 
CBLNC B21-15-0202 IRADIX 
CBYN I11-82-1401 CBIN, CBKN, AMACH, 
  ULMAX, UTLIM 
CEIG2 B21-15-0101 CBLNC, CHES2, CNRML,  
  AMACH, CSUM, IRADIX 
CELI1 I11-11-0101  
CELI2 I11-11-0201  
CFRI I11-51-0201 UTLIM 
CFT F12-15-0101 CFTN, PNR 
CFTM F12-11-0101 UCFTM 
CFTN F12-15-0202  
CFTR F12-15-0302  
CGSBM A11-40-0101  
CGSM A11-10-0101  
CHBK2 B21-15-0602  
CHES2 B21-15-0302 AMACH, CSUM 
CHSQR B21-15-0402 AMACH 
CHVEC B21-15-0502 AMACH, CSUM 
CJART C22-15-0101 AMACH, CQDR, UCJAR 
CLU A22-15-0202 AMACH, CSUM 
CLUIV A22-15-0602 CSUM 
CLUX A22-15-0302 CSUM 
CNRML B21-15-0702  
COSI I11-41-0201 UTLIM 
CQDR C21-15-0101  
CSBGM A11-40-0201  
CSBSM A11-50-0201  
CSGM A11-10-0201  
CSSBM A11-50-0101  
CTSDM C23-15-0101 AMACH, AFMAX, AFMIN 
ECHEB E51-30-0201  
ECOSP E51-10-0201  
EIGI B21-11-0101 AMACH, BLNC, HES1, 
  IRADIX 
ESINP E51-20-0201  
EXPI I11-31-0101 ULMAX, AFMAX 
FCHEB E51-30-0101 AMACH, UTABT, UCOSM 
FCOSF E51-10-0101 AMACH, UTABT, UCOSM, 
  UNIFC 
FCOSM F11-11-0201 UCOSM, UPNR2, UTABT 
FCOST F11-11-0101 UCOSM, UPNR2, UTABT 
FSINF E51-20-0101 AMACH, UTABT, USINM, 
  UNIFC 
FSINM F11-21-0201 USINM, UPNR2, UTABT 
FSINT F11-21-0101 USINM, UPNR2, UTABT 
GBSEG B52-11-0101 AMACH, MSBV, TRID1, 
  TEIG1, TRBK, UCHLS, 
  UBCHL, UBCLX, UESRT 
GCHEB E51-30-0301  
GINV A25-31-0101 ADVD1, AMACH 



ALPHABETIC GUIDE FOR SUBROUTINES 

617 

TableB.1-conteimued 

Subroutine 
name 

Classification
code 

Subprogram used 

GSBK B22-10-0402  
GSCHL B22-10-0302 AMACH, UCHLS 
GSEG2 B22-10-0201 AMACH, GSBK, GSCHL, 

TRBK, TRID1, UCHLS, 
UTEG2 

HAMNG H11-20-0121 AMACH, RKG 
HBK1 B21-11-0602 NRML 
HEIG2 B21-25-0201 AMACH, TEIG2, TRBKH, 

TRIDH, UTEG2 
HES1 B21-11-0302 AMACH 
HRWIZ F20-02-0201 AMACH 
HSQR B21-11-0402 AMACH 
HVEC B21-11-0502 AMACH 
ICHEB E51-30-0401  
IERF I11-71-0301 IERFC 
IERFC I11-71-0401 IERF 
IGAM1 I11-61-0101 AMACH, IGAM2, AFMAX, 

EXPI, ULMAX 
IGAM2 I11-61-0201 AMACH, EXPI, ULMAX, 

AFMAX 
INDF I11-91-0301 IERF, IERFC 
INDFC I11-91-0401 IERF, IERFC 
INSPL E12-21-0101  
LAPS1 F20-01-0101 AFMAX 
LAPS2 F20-02-0101 LAPS1, HRWIZ, AFMAX, 

AMACH 
LAPS3 F20-03-0101  
LAX A22-11-0101 ALU, AMACH, LUX 
LAXL A25-11-0101 AMACH, ULALB, ULACH 
LAXLM A25-21-0101 ADVD1, AMACH 
LAXLR A25-11-0401 AMACH, MAV, ULALB 
LAXR A22-11-0401 AMACH, LUX, MAV 
LBX1 A52-11-0101 AMACH, BLUX1, BLU1 
LBX1R A52-11-0401 AMACH, BLUX1, MVB 
LCX A22-15-0101 AMACH, CLUX, CLUX, 

CSUM 
LCXR A22-15-0401 AMACH, CLUX, CSUM, 

MCV 
LDIV A22-51-0702  
LDLX A22-51-0302  
LESQ1 E21-20-0101 AMACH 
LMINF D11-30-0101 AMACH 
LMING D11-40-0101 AMACH 
LOWP C21-41-0101 MAMCH, RQDR, UREDE, 

U3DEG 
LPRS1 D21-10-0101 ALU, LUIV, AMACH 
LSBIX A52-21-0101 SBMDM, BMDMX, 

AMACH 
LSBX A52-31-0101 AMACH, BDLX, SBDL 
LSBXR A52-31-0401 AMACH, BDLX, MSBV 
LSIX A22-21-0101 AMACH, MDMX, SMDM, 

USCHA 
LSIXR A22-21-0401 MDMX, MSV, AMACH 
LSTX A52-31-0501 AMACH 
LSX A22-51-0101 AMACH, LDLX, SLDL 
LSXR A22-51-0401 AMACH, LDLX, MSV 
LTX A52-11-0501 AMACH 
LUIV A22-11-0602  
LUX A22-11-0302  
MAV A21-13-0101  
MBV A51-11-0101  
MCV A21-15-0101  
MDMX A22-21-0302  
MGGM A21-11-0301  
MGSM A21-11-0401  
MINF1 D11-10-0101 AMACH, LDLX, UMLDL 

TableB.1-continued 

Subroutine 
name 

Classification
Code 

Subprogram used 

MING1 D11-20-0101 AMACH, AFMAX, MSV 
MSBV A51-14-0101  
MSGM A21-12-0401 CSGM, MGGM 
MSSM A21-12-0301 CSGM, MGSM 
MSV A21-14-0101  
NDF I11-91-0101  
NDFC I11-91-0201  
NLPG1 D31-20-0101 AMACH, UQP, UNLPG 
NOLBR C24-11-0101 AMACH 
NOLF1 D15-10-0101 AMACH 
NOLG1 D15-20-0101 AMACH 
NRML B21-11-0702  
ODAM H11-20-0141 AMACH, UDE, USTE1, 

UINT1 
ODGE H11-20-0151 AMACH, USDE,UINT2, 

USTE2, USETC, USETP, 
USOL, UADJU, UDEC 

ODRK1 H11-20-0131 AMACH, URKV, UVER 
PNR F12-15-0402  
RANB2 J12-20-0101  
RANE2 J11-30-0101 RANU2 
RANN1 J11-20-0301  
RANN2 J11-20-0101 RANU2 
RANP2 J12-10-0101 ULMAX 
RANU2 J11-10-0101  
RANU3 J11-10-0201 RANU2 
RATF1 J21-10-0101 UX2UP 
RATR1 J21-10-0201 UX2UP 
RFT F11-31-0101 CFTN, PNR, URFT 
RJETR C22-11-0101 AFMAX, AFMIN, AMACH, 

IRADIX, RQDR, UJET 
RKG H11-20-0111  
RQDR C21-11-0101 AMACH 
SBDL A52-31-0202 AMACH 
SBMDM A52-21-0202 AMACH 
SEIG1 B21-21-0101 AMACH,TEIG1, TRID1, 

TRBK 
SEIG2 B21-21-0201 AMACH, TEIG2, TRBK, 

TRID1, UTEG2 
SFRI I11-51-0101 UTLIM 
SGGM A21-11-0201  
SIMP1 G21-11-0101  
SIMP2 G23-11-0101 AMACH 
SINI I11-41-0101 UTLIM 
SLDL A22-51-0202 AMACH 
SMDM A22-21-0202 AMACH, USCHA 
SMLE1 E31-11-0101  
SMLE2 E31-21-0101  
SPLV E11-21-0101 USPL 
SSSM A21-12-0201  
TEIG1 B21-21-0602 AMACH 
TEIG2 B21-21-0702 AMACH, UTEG2 
TRAP G21-21-0101  
TRBK B21-21-0802  
TRBKH B21-25-0402  
TRIDH B21-25-0302 AMACH 
TRID1 B21-21-0302 AMACH 
TRQL B21-21-0402 AMACH 
TSDM C23-11-0111 AFMAX, AFMIN, AMACH 
TSD1 C23-11-0101 AMACH 

Note: 
In the "Subprograms used"column, any subroutine names (except 
MGSSL) which are called in each subroutine are listed. 



 

618 

B.2  SLAVE SUBROUTINES 

Table B.2 shows slave subroutines. 
 
TableB.2 Slave subroutines 

Subroutine 
name 

Calling subroutines Subroutine  
nama 

Calling subroutines 

UADJU ODGE  ULU14 BIC4 
UAQE1 AQME UMIO1 BICD1, BIC1 
UAQE2 AQME UMIO2 BIC2 
UAQE3 AQME UMIO3 BICD3, BIC3 
UBAR1 BSC1 UMIO4 BIC4 
UBAS0 BSCD2, BSC2 UMLDL MINF1 
UBAS1 BICD1, BICD3, BIC1, BIC2, BIC3, BIFD1, 

BIFD3, BIF1, BIF2, BIF3, BSF1,BSFD1 
UNCA1 
UNIFC 

BSC1 
FSINF, FCOSF 

UBAS4 BIC4, BIF4 UNLPG NLPG1 
UBCHL GBSEG UPCA1 BSC2 
UBCLX GBSEG UPCA2 BSCD2 
UBJ0 BY0 UPEP4 BIF4 
UBJ1 BY1 UPNR2 FCOSM, FCOST, FSINM, FSINT 
UCAD1 BIFD1, BIFD3 UPOB1 BSC2 
UCAO1 BSC1 UPOB2 BSCD2 
UCAR1 BIF1, BIF2, BIF3, BSF1 UQP NLPG1 
UCAR2 BSFD1 UREO1 BSC1, BSC2, BSCD2 
UCAR4 BIF4 UREDR LOWP 
UCDB1 BSC1 URFT RFT 
UCDB2 BSCD2, BSC2 URKV ODRK1 
UCFTM CFTM USCHA SMDM 
UCHLS BSEGJ, GBSEG, GSCHL, GSEG2 USINM FSINM, FSINT 
UCIO1 BICD1, BIC1 USOL ODGE 
UCIO2 BIC2 USPL SPLV 
UCIO3 BICD3, BIC3 USTE1 ODAM 
UCIO4 BIC4 USTE2 ODGE 
UCJAR CJART UTABT FCOSM, FCOST, FSINM, FSINT 
UCOSM FCOSM, FCOST UTEG2 GSEG2, TEIG2 
UDE 
UDEC 

ODAM 
ODGE 

UTLIM BJR, BJ0, BJ1, BYR,BY0, BY1 ,CBKN, 
CFRI, COSI, SFRI, SINI 

UESRT BSEGJ, GBSEG UVER ODRK1 
UFN10 AQME UX2UP RATF1, RATR1 
UFN20 AQME U3DEG LOWP 
UFN30 AQME   
UFN40 AQME   
UNT1 ODAM   
UNIT2 ODGE   
UJET RJETR   
ULALB LAXL, LAXLR   
ULALH LAXL   
ULUI1 BICD1, BIC1, BIC2   
ULMAX BIR, BI0, BI1, BKR, BK0, BK1, BYR, CBIN, 

CBJN, CBJR, CBKN, EXPI, IGAM2, RANP2 
  

ULU13 BICD3, BIC3   
 
Note: 
Each slave subroutine listed is called directly by the subroutine listed in its"Calling subroutines" colmn.



ALPHABETIC GUIDE FOR SUBROUTINES 

619 

B.3  AUXILIARY SUBROUTINES 

Table B.3 shows auxiliary subroutines. 
 
Tabale B.3 Auxiliary subroutines 

Auxiliary 
subroutine 

name 

 
Calling subroutines 

AMACH (Called by many general and slave 
subroutines.) 

MGSET (Called by the user of SSL II.) 
MGSSL (Called by all general subroutines.) 
IRADIX BLNC, CBLNC, RJETR 
ASUM  
BSUM  
CSUM GEIG2, CHES2, CHVEC, CLU, 

CLUX, CLUIV 
AFMAX AKHER, AKLAG, AQME, BI0, BI1, 

BKR, BYR, CTSDM, EXPI, IGAM2, 
MING1, RJETR, TSDU, UPOB1 

AFMIN AQE, AQME, BIN, BIR, BJN, BJR, 
CTSDM, RJETR, TSDM 

 
Note: 
Refer to Appendix A. 
MGSET is the sub-entry of MGSSL. 
Each auxiliary subroutine listed is called directly by the 
subroutine listed in its"Calling subroutines"column.



 

620 

APPENDIX C 
CLASSIFICATION CODES AND 
SUBROUTINES

Liner algebra 

Code Subroutine 
A11-10-0101 CGSM 
A11-10-0201 CSGM 
A11-40-0101 CGSBM 
A11-40-0201 CSBGM 
A11-50-0101 CSSBM 
A11-50-0201 CSBSM 
A21-11-0101 AGGM 
A21-11-0201 SGGM 
A21-11-0301 MGGM 
A21-11-0401 MGSM 
A21-12-0101 ASSM 
A21-12-0201 SSSM 
A21-12-0301 MSSM 
A21-12-0401 MSGM 
A21-13-0101 MAV 
A21-14-0101 MSV 
A21-15-0101 MCV 
A22-11-0101 LAX 
A22-11-0202 ALU 
A22-11-0302 LUX 
A22-11-0401 LAXR 
A22-11-0602 LUIV 
A22-15-0101 LCX 
A22-15-0202 CLU 
A22-15-0302 CLUX 
A22-15-0401 LCXR 
A22-15-0602 CLUIV 
A22-21-0101 LSIX 
A22-21-0202 SMDM 
A22-21-0302 MDMX 
A22-21-0401 LSIXR 
A22-51-0101 LSX 
A22-51-0202 SLDL 
A22-51-0302 LDLX 
A22-51-0401 LSXR 
A22-51-0702 LDIV 
A25-11-0101 LAXL 
A25-11-0401 LAXLR 
A25-21-0101 LAXLM 
A25-31-0110 GINV 
A25-31-0201 ASVD1 
A51-11-0101 MBV 
A51-14-0101 MSBV 
A52-11-0101 LBX1 
A52-11-0202 BLU1 
A52-11-0302 BLUX1 
A52-11-0401 LBX1R 
A52-11-0501 LTX 
A52-21-0101 LSBIX 

Linear algebra-continued 

Code Subroutine 
A52-21-0202 SBMDM 
A52-21-0302 BMDMX 
A52-31-0101 LSBX 
A52-31-0202 SBDL 
A52-31-0302 BDLX 
A52-31-0401 LSBXR 
A52-31-0501 LSTX 

 
 
 
 
Eigenvalues and eigenvectors 

Code Subroutine 
B21-11-0101 EIGI 
B21-11-0202 BLNC 
B21-11-0302 HES1 
B21-11-0402 HSQR 
B21-11-0502 HVEC 
B21-11-0602 HBK1 
B21-11-0702 NRML 
B21-15-0101 CEIG2 
B21-15-0202 CBLNC 
B21-15-0302 CHES2 
B21-15-0402 CHSQR 
B21-15-0502 CHVEC 
B21-15-0602 CHBK2 
B21-15-0702 CNRML 
B21-21-0101 SEIG1 
B21-21-0201 SEIG2 
B21-21-0302 TRID1 
B21-21-0402 TRQL 
B21-21-0502 BSCT1 
B21-21-0602 TEIG1 
B21-21-0702 TEIG2 
B21-21-0802 TRBK 
B21-25-0201 HEIG2 
B21-25-0302 TRIDH 
B21-25-0402 TRBKH 
B22-21-0201 GSEG2 
B22-21-0302 GSCHL 
B22-21-0402 GSBK 
B51-21-0201 BSEG 
B51-21-0302 BTRID 
B51-21-0402 BSVEC 
B51-21-0001 BSEGJ 
B52-11-0101 GBSEG 

Non-linear equations 

Code Subroutine 
C21-11-0101 RQDR 
C21-15-0101 CQDR 
C21-11-0101 LOWP 
C22-11-0111 RJETR 
C22-15-0101 CJART 
C23-11-0101 TSD1 
C23-11-0111 TSDM 
C23-15-0101 CTSDM 
C24-11-0101 NOLBR 

 
 
Extrema 

Code Subroutine 
D11-10-0101 MINF1 
D11-20-0101 MING1 
D11-30-0101 LMINF 
D11-40-0101 LMING 
D15-10-0101 NOLF1 
D15-20-0101 NOLG1 
D21-10-0101 LPRS1 
D31-20-0101 NLPG1 



CLASSIFICATION CODES AND SUBROUTINES 

621 

Interpolation and approximation 

Code Subroutine 
E11-11-0101 AKLAG 
E11-11-0201 AKHER 
E11-21-0101 SPLV 
E11-31-0101 BIF1 
E11-31-0201 BIF2 
E11-31-0301 BIF3 
E11-31-0401 BIF4 
E11-32-1101 BIFD1 
E11-32-3301 BIFD3 
E11-42-0101 AKMID 
E12-21-0101 INSPL 
E12-21-0201 AKMIN 
E12-31-0102 BIC1 
E12-31-0202 BIC2 
E12-31-0302 BIC3 
E12-31-0402 BIC4 
E12-32-1102 BICD1 
E12-32-3302 BICD3 
E21-20-0101 LESQ1 
E31-11-0101 SMLE1 
E31-21-0101 SMLE2 
E31-31-0101 BSF1 
E32-31-0102 BSC1 
E32-31-0202 BSC2 
E31-32-0101 BSFD1 
E32-32-0202 BSCD2 
E51-10-0101 FCOSF 
E51-10-0201 ECOSP 
E51-20-0101 FSINF 
E51-20-0201 ESINP 
E51-30-0101 FCHEB 
E51-30-0201 ECHEB 
E51-30-0301 GCHEB 
E51-30-0401 ICHEB 

 
Transforms 

Code Subroutine 
F11-11-0101 FCOST 
F11-11-0201 FCOSM 
F11-21-0101 FSINT 
F11-21-0201 FSINM 
F11-31-0101 RFT 
F12-11-0101 CFTM 
F12-15-0101 CFT 
F12-15-0202 CFTN 
F12-15-0302 CFTR 
F12-15-0402 PNR 
F20-01-0101 LAPS1 
F20-02-0101 LAPS2 
F20-02-0201 HRWIZ 
F20-03-0101 LAPS3 

Numerical differentiation and 
quadrature 

Code Subroutine 
G21-11-0101 SIMP1 
G21-21-0101 TRAP 
G23-11-0101 SIMP2 
G23-11-0201 AQN9 
G23-11-0301 AQC8 
G23-11-0401 AQE 
G23-21-0101 AQEH 
G23-31-0101 AQEI 
G24-13-0101 AQMC8 
G24-13-0201 AQME 

 
Differential equations 

Code Subroutine 
H11-20-0111 RKG 
H11-20-0121 HAMNG 
H11-20-0131 ODRK1 
H11-20-0141 ODAM 
H11-20-0151 ODGE 

 
Special functions 

Code Subroutine 
I11-11-0101 CELI1 
I11-11-0201 CELI2 
I11-31-0101 EXPI 
I11-41-0101 SINI 
I11-41-0201 COSI 
I11-51-0101 SFRI 
I11-51-0201 CFRI 
I11-61-0101 IGAM1 
I11-61-0201 IGAN2 
I11-71-0301 IFRF 
I11-71-0401 IERFC 
I11-81-0201 BJ0 
I11-81-0301 BJ1 
I11-81-0401 BY0 
I11-81-0501 BY1 
I11-81-0601 BI0 
I11-81-0701 BI1 
I11-81-0801 BK0 
I11-81-0901 BK1 
I11-81-1001 BJN 
I11-81-1101 BYN 
I11-81-1201 BIN 
I11-81-1301 BKN 
I11-82-1101 CBIN 
I11-82-1201 CBKN 
I11-82-1301 CBJN 
I11-82-1401 CBYN 
I11-83-0101 BJR 
I11-83-0201 BYR 
I11-83-0301 BJR 
I11-83-0401 BKR 
I11-84-0101 CBJR 
I11-91-0101 NDF 
I11-91-0201 NDFC 
I11-91-0301 INDF 
I11-91-0401 INDFC 

Pseudo random numbers 

Code Subroutine 
J11-10-0101 RANU2 
J11-10-0201 BANU3 
J11-20-0101 RANN2 
J11-20-0301 RANN1 
J11-30-0101 RANE2 
J12-10-0101 RANP2 
J12-20-0101 RANB2 
J21-10-0101 RATF1 
J21-10-0201 RATR1 



 

622 

APPENDIX D 
REFERENCES 

[1] Forsythe. G.E and Moler, C.B.Computer Solution of 
Linear Algebraic Systems,Prentice-Hall, Inc., 1967 

[2] Martin R.S.,Peters, G. and Wilkinson, J.H. Symmetric 
Decomposition of A Positive Definite Matrix. Linear 
Algebra, Handbook for Automatic Computation, Vol.2, 
pp.9-30, Springer-Verlag, Berlin-Heidelberg-New 
York,1971 

[3] Bowdler,H.J., Martin, R.S. and Wilkinson, J.H. 
Solution of Real and Complex Systems of Linear 
Equations, Linear Algebra, Handbook for Automatic 
Computation, Vol.2,pp.93-110,Springer-Verlag, Berlin-
Heidelberg-New York,1971 

[4] Parlett,B.N. and Wang,Y.The Influence of The 
Compiler on The Cost of Mathematical Software-in 
Particular on The Cost of Triangular Factorization, 
ACM Transactions on Mathematical 
Software,Vol.1,No.1,pp.35-46, March, 1975 

[5] Wilkinson, J.H. Rounding Errors in Algebraic Process, 
Her Britannic Majesty’s Stationary Office,London, 
1963 

[6] Peter Businger and Gene H. Golub. Linear Least 
Squares Solutions by Householder 
Transformatinos,Linear Algebra,Handbook for 
Automatic Computation,Vol.2,pp.111-118, Springer-
Verlag, Berlin-Heidelberg-New York,1971 

[7] Martin,R.S and Wilkinson,J.H. Symmetric 
Decomposition of Posive Definite. Band 
Matrices,Linear Algebra,Handbook for Automatic 
Computation,Vol.2,pp.50-56, Springer-Verlag, Berlin- 
Heidelberg-New York ,1971 

[8] Martin,R.S. and Wilkinson,J.H. Solution of Symmetric 
and Unsymmetric Band Equations and the Calculations 
of Eigenvectors of Band Matrices,Linear 
Algebra,Handbook for Automatic 
Computation,Vol.2,pp.70-92, Springer-Verlag, Berlin 
Heidelberg New York,1971 

[9] Bunch,J.R and Kaufman,L. Some Stable Methods for 
Calculation Inertia and Solving Symmetric.Linear 
Systems, Mathematics of Computation, 
Vol.13,No.137,January 1977,pp.163-179 

[10] Bunch,J.R. and Kaufman, L. Some Stable Methods for 
Calculation Inertia and Solving Symmertric Linear 
Systems,Univ. of Colorado Tech. Report 63, 
CU:CS:06375 

[11] Golub,G.H. and Reinsch,C. Singular Value 
Decomposition and Least Squares Solutions, Linear 
Algebre,Handbook for Automatic 
Computation,Vol.2,pp.134-151,Springer-Verlag,Berlin 
Heidelberg-New York, 1971 

[12] Wilkinson,J.H. The Algebraic Eigenvalue Problem, 
Clarendon Press, Oxford, 1965 

[13] Wilkinson,J.H.and Reinsch, C.Linear Algebra, 
Handbook for Automatic Computation,Vol.2,Springer-
Verlag, Berlin-Heidelberg-New York,1971 

[14] Smith,B.T., Boyle, 
J.M.,Garbow,B.S.,Ikebe,Y.,Kleme,V.C and Moler,C.B. 
Matrix Eigensystem Routine-EISPACK Guide 2nd edit. 
Lecture Note in Computer Science 6, Springer-
Verlag,Berlin-Heidelberg-New York,1976. 

[15] Ortega,J. The Givens-Householder Method for 
Symmetric Matrix, Mathematical Methods for Digital 
Computors,Vol.2, John wiley&Sons, New York-
London-Sydney,pp.94-115,1967 

[16] Togawa,H. 
Numerical calculations of matrices, chap.3, pp.146-210, 
Ohmsha Ltd., Tokyo, 1971 (Japanese only) 

[17] Mueller,D.J Householder’s Method for Complex 
Matrices and Eigensystems of Hermitian Matrices, 
Numer.Math.8,pp.72-92,1996 

[18] Jennings,A. Matrix Computation for Engineers and 
Scientists,J.Wiley, pp.301-310,1977 

[19] Togawa,H. 
Vibration analysis by using FEM, chap.4, pp.156-162, 
Saiensu-sha Co., 1970. (Japanese only) 



 

623 

[20] Brezinski, C. 
Acceleration de la Convergence en Analyse Numerique, 
Lecture Notes in Mathematics 584, Springer,  
pp.  136-159, 1977. 

[21] Wynn, P. 
Acceleration Techniques for Iterated Vectol and Matrix 
Problems, Mathematics of Computation, Vel.  16, 
pp.  301-322, 1962. 

[22] Yamashita,S. 
On the Error Estimation in Floating-point Arithmetic, 
Journal of Information Processing Society of Japan, 
Vol.15, No.12, pp.935-939, 1974 (Japanese only) 

[23] Yamashita,S. and Satake,S. 
On the calculation limit of roots of the algebraic 
equation, 
Journal of Information Processing Society of Japan, 
Vol.7, No.4, pp.197-201, 1966 (Japanese only) 

[24] Hirano,S. 
Error of the algebraic equation 
- from "Error in the Numerical Calculation", 
bit, extra number 12, pp.1364-1378, 1975 (Japanese 
only) 

[25] Kiyono,T. and Matsui,T. 
Solution of a low polynomial, 
"Information", Data Processing Center, Kyoto 
University, Vol.4, No.9, 
pp.9-32, 1971 (Japanese only) 

[26] Garside, G.R.,Jarratt,P. and Mack, C. A New Method 
for Solving Polynomial Equations,Computer Journal, 
Vol. 11,pp.87-90,1968 

[27] Ninomiya,I. 
GJM solution of a polynomial, 
IPSJ National Conference, p.33, 1969 (Japanese only) 

[28] Brent, Richard P. 
Algorithms for Minimization without Derivatives, 
Prentice-Hall, London-Sydney-ToKyo,  
pp.  47-60, 1973 

[29] Peters, G. and Wilkinson, J.H. Eigenvalues of Ax=λBx 
with Band Symmetric A and B, Comp. J. 12,pp.398-
404,1969 

[30] Jenkins, M. A. and Traub, J.F. A three-stage algorithm 
for real polynomials using quadratic iteration, SIAM J. 
Number. Anal., Vol.17,pp.545-566, 1970 

[31] Jenkins, M. A.Algorithm 493 Zeros of a real 
polynomial, ACM Transaction on Mathematical 
Software, Vol.1,No.2,pp.178-187,1975 

[32] Traub, J. F. The Solution of Transcendental Equations, 
Mathematical Methods for Digital Computers, Vol. 2, 
1967, pp. 171-184 

[33] Cosnard, M. Y. A Comparison of Four Methods for 
Solving Systems of Nonlinear Equations, Cornell 
University Computer Science Technical Report TR75-
248, 1975 

[34] Fletcher, R. Fortran subroutines for minimization by 
quasi-Newton methods, Report R7125 AERE, Harwell, 
England, 1972 

[35] Shanno, D. F. and Phua, K. H. Numerical comparison 
of several varible metric algorithms J. of Optimization 
Theory and Applications, Vol. 25, No. 4, 1978 

[36] Marquardt, D. W. An algorithm for least squares 
estimatron of nonlinear parameters, Siam J. Appl. 
Math., 11, pp. 431-441, 1963 

[37] Osborne, M. R. Nonlinear least squares-The Levenberg 
algorithm revisited, J. of the Australian Mathematical 
Vociety, 19, pp. 343-357, 1976 

[38] Moriguchi,S. 
Primer of Linear Programming. 
JUSE Press Ltd., 1957, remodeled,1973. (Japanese 
only) 

[39] Ono,K. 
Linear Programming on the calculation basis. 
JUSE Press Ltd., 1967, remodeled,1976. (Japanese 
only) 

[40] Tone,K. 
Mathematical Programming. 
Asakura Publishing, 1978. (Japanese only) 

[41] Kobayashi,T. 
Primer of Linear Programming. 
Sangyo Tosho, 1980. (Japanese only) 

[42] Kobayashi,T. 
Theory of Network. 
JUSE Press Ltd., 1976. (Japanese only) 

[43] Dantzig, G. 
Linear Programming and Extensions, Princeton 
University Press, 1963. 

[44] Simonnard, M. (translated by W. S. Jewell) Linear 
Programming, Prentice-Hall,1966. 

[45] Vande Panne, C. Linear Programming and Related 
Techniqes, North-Holland, 1971, 

[46] Ralston, A. A First Conrse In Numerical Analysis, Mc 
Graw-Hill, New York-Tronto-London, 1965. 

[47] Gershinsky, M. and Levine, D. A. Aitken-Hermite 
Interpolation, Journal of the ACM, Vol. 11, No. 3, 1964, 
pp. 352-356. 

[48] Greville, T. N. E. Spline Functon, Interpolation and 
Numerical Quadrature, Mathematical Methods for 
Digital Computers, Vol. 2, Johe Wiley & Sons, New 
York-London-Sydney, 1967, pp. 156-168. 

[49] Ahlberg, J. H., Nilson, E:N. and Walsh, J. L. The 
Theory of Splines and Their Applications. Academic 
Press, New York and London, 1967. 

[50] Hamming R. W. Numerical Methods for Scientists and 
Engineers, McGraw-Hill, New York-Tronto-London, 
1973 

[51] Hildebrand, F. B. Introduction to Numerical Analysis, 
sec, ed. McGraw-Hill, 1974. 

[52] Akima, H. A New Method of Interpolation and Smooth 
Curve Fitting Based on Local Procedure Journal of the 
ACM, Vol. 17, No. 4, 1970. pp. 589-602. 



 

624 

[53] Carl de Boor. 
On Calculating with B-splines,  
J.Approx.  Theory, Vol.6, 1972, pp.50-62. 

[54] Akima, H. 
Bivariate Interpolation and Smooth Surface Fitting 
Based on Local Procedures, Comm.  Of the ACM., 
Vol.17, No.1, 1974, pp.26-31 

[55] Singlton, R.C. 
On Computing the Fast Fourier Transform, 
Communications of The ACM,  
Vol.10, No.10, pp. 647-654, October, 1967 

[56] Singlton, R.C. 
An ALGOL Convolution Procedure Based On The Fast 
Fouier Tronsform, Communications of The ACM, 
Vol.12, No.3, pp.179-184, March, 1969 

[57] Singlton, R.C. 
An Algorithm for Computing The Mixed Radix Fast 
Fourier Transform,  
IEEE Transactions on Audio and Electroacoustics, 
Vol.AU-17, No.2, pp.93-103, June, 1969 

[58] Torii,T. 
Fast sine/cosine transforms and the application to the 
numerical quadrature. 
Journal of Information Processing Society of Japan, 
Vol.15, No.9, pp.670-679,1974 (Japanese only) 

[59] Torii,T. 
The subroutine package of Fourier transforms (Part 1,2). 
Nagoya University Computation Center News,  
Vol.10, No.2, 1979 (Japanese only) 

[60] Fox, L. and Parker, I.B. 
Chebyshev Polynomials in Numerical Analysis, Oxford 
University Press, 1972 

[61] Lyness, J.N. 
Notes on the Adaptive Simpson Quadrature Routine, 
Journal of the ACM, Vol.16, No.3, 1969, PP.483-495 

[62] Davis, P.J. and Rabinowitz,P. 
Methods of Numerical Intergration, Academic Press, 
1975 

[63] Kahaner, D.K. 
Comparison of numerical quadrature formulas. 
In “Mathematical Software” (Ed. J.R. Rice), Academic 
Press, 1971, pp.229-259 

[64] De Boor, C. 
CADRE:An algorithm for numerical quadrature. 
In “Mathematical Software” (Ed. J.R. Rice), Academic 
Press, 1971, pp.417-449 

[65] Clenshaw, C.W. and Curtis, A.R. 
A method for numerical integration on an automatic 
computer. 
Numer.Math.2, 1960, pp.197-205 

[66] Torii,T., Hasegawa,T., Ninomiya,I. 
The automatic integral method with the interpolation 
increasing sample points in arithmetic progression. 
Journal of Information Processing Society of Japan, 
Vol.19, No.3, 1978, pp.248-255 (Japanese only) 

[67] Takahashi, H. and Mori, M. 
Double Exponential Formulas for Numerical 
Integration.  Publications of R.I.M.S, Kyoto Univ. 9, 
1974, pp.721-741 

[68] Mori,M. 
Curves and curved surfaces. 
Kyoiku Shuppan, 1974 (Japanese only) 

[69] Romanelli, M.J. 
Runge-Kutta Methods for Solution of Ordinary 
Differential Equations, Mathematical Methods for 
Digital Computer, Vol.2, John Wiley & Sons,  
New York-London-Sydney, 1967, PP.110-120 

[70] Hamming, R.W. 
Stable Predictor Corrector Methods for Ordinary 
Differential Equations, Jouranl of the ACM, Vol.6, 
1956, PP.37-47 

[71] Shampine, L.F. and Gordon, M.K. 
Computer Solution of Ordinary Differential Equations, 
Freeman, 1975 

[72] Verner, J.H. 
Explicit Runge-Kutta methods with estimate of the 
local truncation error, SIAM J. Numer. Anal Vol.15, 
No.4, 1978 pp.772-790 

[73] Jackson, K.R., Enright, W.H. and Hull, T.E. 
A theoretical criterion for comparing Runge-Kutta 
formulas,SIAM J.Numer, Anal., Vol.15, No.3, 1978, 
pp.618-641  

[74] Gear, C.W. 
Numerical Initial Value Problems in Ordinary 
Differential Equations, Prentice-Hall, 1971 

[75] Lambert, J.D. 
Computational Methods in Ordinary Differential 
Equations, Wiley, 1973 

[76] Hindmarsh, A.C. and Byrne, G.D.  
EPISODE:An Effective Package for the Integration of 
Systems of Ordinary Differential Equations, UCID-
30112, Rev.1, Lawrence Livermore Laboratory, April 
1977 

[77] Byrne, G.D. and Hindmarsh, A.C. 
A Polyalgorithm for the Numerical Solution of 
Ordinary Differential Equations, ACM Transaction of 
Math. Soft., Vol.1, No.1, pp.71-96, March 1975. 

[78] Hart, J.F. 
Complete Elliptic Integrals, John Wiley & Sons, 
Computer Approximations, 1968. 

[79] Cody, W.J. and Thacher Jr, C.H. 
Rational Chebyshev Approximations for the 
Exponential Integral Ei, (x),  
Mathematics of Computation, Vol.22, pp.641-649, July 
1968. 

[80] Cody, W.J. and Thacher Jr, C.H. 
Chebyshev Approximations for the Expontial Integral  
Ei (x), Mathematics of Computation, Vol.23,  
pp.289-303, Apr. 1969. 

[81] Ninomiya,I. 
The calculation of Bessel Function by using the 
recurrence formula. 
Baifukan Co., Numerical calculation for the computer 
II, 
pp.103-120, 1967. (Japanese only) 



 

625 

[82] Uno,T. 
Bessel Function. 
Baifukan Co., Numerical calculation for the computer 
III, 
pp.166-186, 1972. (Japanese only) 

[83] Yoshida,T., Asano,M., Umeno,M. and Miki,S. 
Recurrence Techniques for the Calculation of Bessel 
Function In(z) 
with Complex Argument. 
Journal of Information Processing Society of Japan, 
Vol.14, No.1, pp.23-29, Jan.1973. (Japanese only) 

[84] Yoshida,T., Ninomiya,I. 
Computation of Bessel Function Kn(n) with Complex 
Argument by Using the τ-method. 
Journal of Information Processing Society of Japan, 
Vol.14, No.8, pp.569-575, Aug.1973. (Japanese only) 

[85] Moriguchi, Utagawa and Hitotsumatsu 
Iwanami Formulae of Mathematics III. 
Iwanami Shoten, Publishers, 1967. (Japanese only) 

[86] Forsythe,G.E. (Mori,M.'s translation) 
Numerical Calculation for Computers 
- the computer science researches book series No.41. 
Kagaku Gijutsu Shuppan, 1978. (Japanese only) 

[87] Streck, A.J. 
On the Calculation of the Inverse of Error Function, 
Mathematics of Computation, Vol.22, 1968. 

[88] Yoshida,T. and Ninomiya,I. 
Computation of Modified Bessel Function Kv(x) with 
Small Argument x. 
Transactions of Information Processing Society of 
Japan, 
Vol.21, No.3, pp.238-245, May.1980 (Japanese only) 

[89] Nayler, T.H. 
Computer Simulation Techiques, John Wiley & Sons, 
Inc., 1966, pp.43-67. 

[90] Algorithm 334, Normal Random Deviates, Comm. 
ACM, 11 (July 1968) , p.498. 

[91] Pike, M.C. 
Algorithm 267, Random Normal Deviate, Comm. ACM, 
8 (Oct. 1965), p.606. 

[92] Wakimoto,K. 
Knowledge of random numbers. Morikita Shuppan, 
1970. (Japanese only) 

[93] Miyatake,O. and Wakimoto,K. 
Random numbers and Monte Carlo method. Morikita 
Shuppan, 1978. (Japanese only) 

[94] Powell, M.J.D. 
A Fast Algorithm for Nonlinearly constranied 
Optimization Calculations.  
Proceedings of the 1977 Dundee Conference on 
Numerical Analysis, Lecture Notes in Mathematics, 
Springer-Verlag, 1978 

[95] Powell, M.J.D., et al. 
The Watchdog Technique for forcing Convergence in 
Algorithms for Constrained Optimization, Presented at 
the Tenth International Symposium on Mathematical 
Programming, Montreal, 1979 

[96] Ninomiya,I. 
Improvement of Adaptive Newton-Cotes Quadrature 
Methods. 
Journal of Information Processing Society of Japan, 
Vol.21, No.5, 1980, pp.504-512. (Japanese only) 

[97] Ninomiya, I. 
Improvements of Adaptive Newton-Cotes Quadrature 
Methods, Joumal of Information Processing, Vol.3, 
No.3, 1980, pp.162-170. 

[98] Hosono,T. 
Numerical Laplace transform.  Transactions A of IEEJ, 
Vol.99-A, No.10, Oct.,1979 (Japanese only) 

[99] Hosono,T. 
Basis of the linear black box. CORONA Publishing Co., 
1980. 
(Japanese only) 

[100] Bromwich, T.J.I’A. 
Introduction to the Theory of Infinite Series.  
Macmillan.1926 

[101] Hosono, T. 
Numerical inversion of Laplace transform and some 
applications to wave optics.  
International U.R.S.I-Symposium 1980 on 
Electromagnetic Waves, Munich, 1980. 



 

626 

CONTRIBUTORS AND THEIR WORKS 

Author Subroutine Item 
M. Tanaka ODRK1 A system of first order ordinary differential equations (Runge-Kutta-Verner method) 
I. Ninomiya CGSBM Storage mode conversion of matrices (real general to real symmetric band) 
 CSBGM Storage mode conversion of matrices (real symmetric band to real general) 
 CSSBM Storage mode conversion of matrices (real symmetric to real symmetric band) 
 CSBSM Storage mode conversion of matrics (real symmetric band to real symmetric) 
 LSBIX A system of linear equations with a real indefinite symmetric band matrix (Block 

diagonal pivoting method) 
 SBMDM MDMT decomposition of a real indefinite symmetric band matrix (Block diagonal 

pivoting method) 
 BMDMX A system of linear equations with real indefinite symmetirc band matrix 

decomposed into the factors M, D and MT 
 LAXLM Least squares minimal norm solution with a real matrix (Singular value 

decomposition  method) 
 ASVD1 Singular value decomposition of a real matrix (Householder method, QR method) 
 GINV Moore-Penrose generalized inverse of a real matrix (Singular value decomposition 

method) 
 CEIG2 Eigenvalues and corresponding eigenvectors of a complex matrix (QR method) 
 CBLNC Balancing of a complex matrix 
 CHES2 Reduction of a complex matrix to a complex 

Hessenberg matrix (Stabilized elementary similarity transformation method) 
 CHSQR Eigenvaluse of a complex Hessenberg matrix (QR method) 
 CHVEC Eigenvectors of a complex Hessenberg matrix (Inverse iteration method) 
 CHBK2 Back transformation of the eigenvectors of a complex Hessenberg matrix to those 

of a complex matrix 
 CNRML Normalization of eigenvectors of a complex matrix 
 BSEG Eigenvalues and corresponding eigenvectors of a real symmetric band matrix 

(Rutishauser-Shwarz method, bisection method and inverse iteration method) 
 BTRID Reduction of a rael symmetric band matrix to a tridiagonal matrix (Rutishauser-

Schwarz method) 
 BSVEC Eigenvectors of a rael symmetric band matrix (Inverse iteration method) 
 BSEGJ Eigenvalues and corresponding eigenvectors of a real symmetric band matrix 

(Jennings method) 
 GBSEG Eigenvalues and corresponding eigenvectors of a real symmetric band generalized 

eigenproblem Ax=λBX (Jennings method) 
 AQN9 Integration of a function by adaptive Newton-Cotes 9-point rule 
 IERF Inverse error function erf -1 (x) 
 IERFC Inverse complementary error function erfc-1 (x) 
 NDF Normal distribution function φ (x) 
 INDF Inverse normal distribution function φ  -1 (x) 
 NDFC Complementary normal distribution function ϕ (x) 
 INDFC Inverse complementary normal  distribution function ϕ  -1 (x) 
 RANNI Fast normal pseudo random numbers 
T. Torii FCOSF Fourier cosine series expansion of an even function (Function input, fast cosine 

transformation) 
 ECOSP Evaluation of a cosine series 
 FSINF Fourier sine series expansion of an odd functon (Function input, fast sine 

transformation) 
 ESINP Evaluation of a sine series 
 FCHEB Chebyshev series expansion of a real function 



 

627 

 
Author Subroutine Item 

T. Torii ECHEB Evaluation of a Chebyshev series 
 GCHEB Differentiation of a Chebyshev series 
 ICHEB Indefinite integral for Chebyshev series 
 FCOST Discrete consine transform (Trapezoidal rule, radix 2 FFT) 
 FCOSM Discrete cosine transform (midpoint rule, radix 2 FFT) 
 FSINT Discrete sine transform (Trapezoidal rule, radix 2 FFT) 
 FSINM Discrete sine transform (midpoint rule, radix 2 FFT) 
T. 
Hasegawa 

AQC8 Integration of a function by a modified Clenshaw-Curtis rule 

 AQMC8 Multiple integration of a function by a modified Clenshaw-Curtis rule 
K.Hatano BICD1 B-spline two-dimensional interpolation coefficient calculation (I -I) 
 BICD3 B-spline two-dimensional interpolation coefficient calculation (III-III) 
 BIC1 B-spline Interpolation coefficient calculation (I) 
 BIC2 B-spline interpolation coefficient calculation (II) 
 BIC3 B-spline interpolation coefficient calculation (III) 
 BIC4 B-spline interpolation coefficient calculation (IV) 
 BIFD1 B-spline two-dimensional interpolation, differentiation, and integration (I-I) 
 BIFD3 B-spline two-dimensional interpolation, differentiation, and integration (III-III) 
 BIF1 B-spline interpolation differentiation, and integration (I) 
 BIF2 B-spline interpolation differentiation, and integration (II) 
 BIF3 B-spline interpolation differentiation, and integration (III) 
 BIF4 B-spline interpolation differentiation, and integration (IV) 
 BSCD2 B-spline two-dimensional smoothing coefficient calculation variable knots 
 BSC1 B-spline smoothing coefficient calculation with fixed knots 
 BSC2 B-spline smoothing coefficient calculation variable knots 
 BSFD1 B-spline two-dimensional smoothing 
 BSF1 B-spline smoothing differentiation, and integration 
Y.Hatano AKMID Two-dimensional quasi-Hermite interpolation 
 AQE Integration of a function by double exponential formula 
 AQEH Integration of a function over the semi-infinite interval by double exponential formula 
 AQEI Integration of a function over the infinite interval by double exponential formula 
 AQME Multiple integration of a function by double exponential formula 
T.Yoshida CBIN Integer order modified Bessel function of the first  kind with a complex variable, In 

(z) 
 CBKN Integer order modified Bessel function of the second kind with a complex 

variable,Kn (z) 
 CBJN Integer order Bessel function of the first kind with a complex variable, Jn (z) 
 CBYN Integer order Bessel function of the second kind with a complex variable, Yn (z) 
 BJR Real order Bessel function of  the first kind, Jv (x) 
 BYR  Real-order Bessel function of  the second kind, Yv (x) 
 BIR Real order modified Bessel function of the first kind, Iv (x) 
 BKR Real order modified Bessel function of the second kind, Kv  (x) 
 CBJR Real order Bessel function of the first kind with a complex variable, Jv (z) 



 

628 

 
K.Tone LMINF Minimization of  function with a variable (Quadratic interpolation using function 

values only) 
 LMING Minimization  of function with a variable (Qubic interpolation using function values 

and its derivatives) 
 MING1 Minimization of a function with several variables (quasi-Newton method, using 

function values and its derivatives) 
 NOLF1 Minimization of the sum of squares of  functions with several variables (Revised 

Marquardt method, using function values only) 
 NOLG1 Minimization of the sum of squares of functions (Revised Marquardt  method 

using function values and its derivatives) 
 NLPG1 Nonlinear programming problem (Powell’s method using function values only) 

T. Kobayashi LPRS1 Solution of linear programming problem (Revised simplex menthod) 

T. Hosono LAPS1 Inversion of laplace transform of a rational function (analytic in the right half 
plane) 

 LAPS2 Inversion of laplace transform of a rational function 

 LAPS3 Inversion of laplace transform of a general function 

 HRWIZ Judgement on Hurwiz polynomials 

L.F. Shampine ODAM* A system of first order ordinary differntial equations (Adams method) 

A.C. Hindmarsh ODGE* A stiff system of first order ordinary differential equations (Gear’s method) 

 
* This program is based on that registered  in ANL-NESC in U.S.A. 

The original code is available direcly form the Center. 
 
NESC: National Energy Software Center  

Argonne National Laboratory  
9700 South Cass Avenue  
Argonne, IIIinois 60439  
U.S.A.  

 


	SSL II User’s Guide (Scientific Subroutine Library)
	PREFACE
	ACKNOWLEDGEMENTS
	CONTENTS
	SSL II SUBROUTINE LIST
	A. Linear Algebra
	Storage mode conversion of matrices
	Matrix manipulation
	Linear equations
	Matrix inversion
	Decomposition of matrices
	Solution of decomposed system
	Least squares solution

	B. Eigenvalues and Eigenvectors
	Eigenvalues and eigenvectors
	Eigenvalues
	Eigenvectors
	Others

	C. Nonlinear Equations
	D. Extrema
	E. Interpolation and Approximation
	Interpolation
	Approximation
	Smoothing
	Series

	F. Transforms
	G. Numerical Differentiation and Quadrature
	Numerical Differentiation
	Numerical Quadrature

	H. Differential equations
	I. Special Functions
	J. Pseudo Random Numbers

	HOW TO USE THIS MANUAL
	PART I GENERAL DESCRIPTION
	CHAPTER 1 SSL II OUTLINE
	1.1 BACKGROUND OF DEVELOPMENT
	1.2 DEVELOPMENT OBJECTIVES
	1.3 FEATURES
	1.4 SYSTEM THAT CAN USE SSL II

	CHAPTER 2 GENERAL RULES
	2.1 TYPES OF SUBROUTINES
	2.2 CLASSIFICATION CODES
	2.3 SUBROUTINE NAMES
	2.4 PARAMETERS
	2.5 DEFINITIONS
	2.6 RETURN CONDITIONS OF PROCESSING
	2.7 ARRAY
	2.8 DATA STORAGE
	2.9 UNIT ROUND OFF
	2.10 ACCUMULATION OF SUMS
	2.11 Computer Constants

	CHAPTER 3 LINEAR ALGEBRA
	3.1 OUTLINE
	3.2 MATRIX STORAGE MODE CONVERSION
	3.3 MATRIX MANIPULATION
	3.4 LINEAR EQUATIONS AND MATRIX INVERSION (DIRECT METHOD)
	3.5 LEAST SQUARES SOLUTION

	CHAPTER 4 EIGENVALUES AND EIGENVECTORS
	4.1 OUTLINE
	4.2 EIGENVALUES AND EIGENVECTORS OF A REAL MATRIX
	4.3 EIGENVALUES AND EIGENVECTORS OF A COMPLEX MATRIX
	4.4 EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX
	4.5 EIGENVALUES AND EIGENVECTORS OF AN HERMITIAN MATRIX
	4.6 EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRICBAND MATRIX
	4.7 EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC GENERALIZED EIGENPROBLEM
	4.8 EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC BAND GENERALIZED EIGENPROBLEM

	CHAPTER 5 NONLINEAR EQUATIONS
	5.1 OUTLINE
	5.2 POLYNOMIAL EQUATIONS
	5.3 TRANSCENDENTAL EQUATIONS
	5.4 NONLINEAR SIMULTANEOUS EQUATIONS

	CHAPTER 6 EXTREMA
	6.1 OUTLINE
	6.2 MINIMIZATION OF FUNCTION WITH A VARIABLE
	6.3 UNCONSTRAINED MINIMIZATION OF MULTIVARIABLE FUNCTION
	6.4 UNCONSTRAINED MINIMIZATION OF SUM OF SQUARES OF FUNCTIONS (NONLINEAR LEAST SQUARES SOLU-TION)
	6.5 LINEAR PROGRAMMING
	6.6 NONLINEAR PROGRAMMING (CONSTRAINED MINIMIZATION OF MULTIVARIABLE FUNCTION)

	CHAPTER 7 INTERPOLATION AND APPROXIMATION
	7.1 OUTLINE
	7.2 INTERPOLATION
	7.3 APPROXIMATION
	7.4 SMOOTHING
	7.5 SERIES

	CHAPTER 8 TRANSFORMS
	8.1 OUTLINE
	8.2 DISCRETE REAL FOURIER TRANSFORMS
	8.3 DISCRETE COSINE TRANSFORMS
	8.4 DISCRETE SINE TRANSFORMS
	8.5 DISCRETE COMPLEX FOURIER TRANSFORMS
	8.6 LAPLACE TRANSFORM

	CHAPTER 9 NUMERICAL DIFFERENTIATION AND QUADRATURE
	9.1 OUTLINE
	9.2 NUMERICAL DIFFERENTIATION
	9.3 NUMERICAL QUADRATURE

	CHAPTER 10 DIFFERENTIAL EQUATIONS
	10.1 OUTLINE
	10.2 ORDINARY DIFFERENTIAL EQUATIONS

	CHAPTER 11 SPECIAL FUNCTIONS
	11.1 OUTLINE
	11.2 ELLIPTIC INTEGRALS
	11.3 EXPONENTIAL INTEGRAL
	11.4 SINE AND COSINE INTEGRALS
	11.5 FRESNEL INTEGRALS
	11.6 GAMMA FUNCTIONS
	11.7 ERROR FUNCTIONS
	11.8 BESSEL FUNCTIONS
	11.9 NORMAL DISTRIBUTION FUNCTIONS

	CHAPTER 12 PSEUDO RANDOM NUMBERS
	12.1 OUTLINE
	12.2 PSEUDO RANDOM GENERATION
	12.3 PSEUDO RANDOM TESTING


	PART II USAGE OF SSL II SUBROUTINES
	AGGM, DAGGM
	AKHER, DAKHER
	AKLAG, DAKLAG
	AKMID, DAKMID
	AKMIN, DAKMIN
	ALU, DALU
	AQC8, DAQC8
	AQE, DAQE
	AQEH, DAQEH
	AQEI, DAQEI
	AQMC8, DAQMC8
	AQME, DAQME
	AQN9, DAQN9
	ASSM, DASSM
	ASVD1, DASVD1
	BDLX, DBDLX
	BICD1, DBICD1
	BICD3, DBICD3
	BIC1, DBIC1
	BIC2, DBIC2
	BIC3, DBIC3
	BIC4, DBIC4
	BIFD1, DBIFD1
	BIFD3, DBIFD3
	BIF1, DBIF1
	BIF2, DBIF2
	BIF3, DBIF3
	BIF4, DBIF4
	BIN, DBIN
	BIR, DBIR
	BI0, DBI0
	BI1, DBI1
	BJN, DBJN
	BJR, DBJR
	BJ0, DBJ0
	BJ1, DBJ1
	BKN, DBKN
	BKR, DBKR
	BK0, DBK0
	BK1, DBK1
	BLNC, DBLNC
	BLUX1, DBLUX1
	BLU1, DBLU1
	BMDMX, DBMDMX
	BSCD2, DBSCD2
	BSCT1, DBSCT1
	BSC1, DBSC1
	BSC2, DBSC2
	BSEG, DBSEG
	BSEGJ, DBSEGJ
	BSFD1, DBSFD1
	BSF1, DBSF1
	BSVEC, DESVEC
	BTRID, DBTRID
	BYN, DBYN
	BYR, DBYR
	BY0, DBY0
	BY1, DBY1
	CBIN, DCBIN
	CBJN, DCBJN
	CBJR, DCBJR
	CBKN, DCBKN
	CBLNC, DCBLNC
	CBYN, DCBYN
	CEIG2, DCEIG2
	CELI1, DCELI1
	CELI2, DCELI2
	CFRI, DCFRI
	CFT, DCFT
	CFTM, DCFTM
	CFTN, DCFTN
	CFTR, DCFTR
	CGSBM, DCGSBM
	CGSM, DCGSM
	CHBK2, DCHBK2
	CHES2, DCHES2
	CHSQR, DCHSQR
	CHVEC, DCHVEC
	CJART, DCJART
	CLU, DCLU
	CLUIV, DCLUIV
	CLUX, DCLUX
	CNRML, DCNRML
	COSI, DCOSI
	CQDR, DCQDR
	CSBGM, DCSBGM
	CSBSM, DCSBSM
	CSGM, DCSGM
	CSSBM, DCSSBM
	CTSDM, DCTSDM
	ECHEB, DECHEB
	ECOSP, DECOSP
	EIG1, DEIG1
	ESINP, DESINP
	EXPI, DEXPI
	FCHEB, DFCHEB
	FCOSF, DFCOSF
	FCOSM, DFCOSM
	FCOST, DFCOST
	FSINF, DFSINF
	FSINM, DFSINM
	FSINT, DFSINT
	GBSEG, DGBSEG
	GCHEB, DGCHEB
	GINV, DGINV
	GSBK, DSGBK
	GSCHL, DGSCHL
	GSEG2, DGSEG2
	HAMNG, DHAMNG
	HBK1, DHBK1
	HEIG2, DHEIG2
	HES1, DHES1
	HRWIZ, DHRWIZ
	HSQR, DHSOR
	HVEC, DHVEC
	ICHEB, DICHEB
	IERF, DIERF
	IERFC, DIERFC
	IGAM1, DIGAM1
	IGAM2, DIGAM2
	INDF, DINDF
	INDFC, DINDFC
	INSPL, DINSPL
	LAPS1, DLAPS1
	LAPS2, DLAPS2
	LAPS3, DLAPS3
	LAX, DLAX
	LAXL, DLAXL
	LAXLM, DLAXLM
	LAXLR, DLAXLR
	LAXR, DLAXR
	LBX1, DLBX1
	LBX1R, DLBX1R  
	LCX, DLCX
	LCXR, DLCXR
	LDIV, DLDIV
	LDLX, DLDLX
	LESQ1, DLESQ1
	LMINF, DLMINF
	LMING, DLMING
	LOWP, DLOWP
	LPRS1, DLPRS1
	LSBIX, DLSBIX
	LSBX, DLSBX
	LSBXR, DLSBXR
	LSIX, DLSIX
	LSIXR, DLSIXR
	LSTX, DLSTX
	LSX, DLSX
	LSXR, DLSXR
	LTX, DLTX
	LUIV, DLUIV
	LUX, DLUX
	MAV, DMAV
	MBV, DMBV
	MCV, DMCV
	MDMX, DMDMX
	MGGM, DMGGM
	MGSM, DMGSM
	MINF1, DMINF1
	MING1, DMING1
	MSBV, DMSBV
	MSGM, DMSGM
	MSSM, DMSSM
	MSV, DMSV
	NDF, DNDF
	NDFC, DNDFC
	NLPG1, DNLPG1
	NOLBR, DNOLBR
	NOLF1, DNOLF1
	NOLG1, DNOLG1
	NRML, DNRML
	ODAM, DODAM
	ODGE, DODGE
	ODRK1, DODRK1
	PNR, DPNR
	RANB2
	RANE2
	RANN1
	RANN2
	RANP2
	RANU2
	RANU3
	RATF1
	RATR1
	RFT, DRFT
	RJETR, DRJETR
	RKG, DRKG
	RQDR, DRQDR
	SBDL, DSBDL
	SBMDM, DSBMDM
	SEIG1, DSEIG1
	SEIG2, DSEIG2
	SFRI, DSFRI
	SGGM, DSGGM
	SIMP1, DSIMP1
	SIMP2, DSIMP2
	SINI, DSINI
	SLDL, DSLDL
	SMDM, DSMDM
	SMLE1, DSMLE1
	SMLE2, DSMLE2
	SPLV, DSPLV
	SSSM, DSSSM
	TEIG1, DTEIG1
	TEIG2, DTEIG2
	TRAP, DTRAP
	TRBK, DTRBK
	TRBKH, DTRBKH
	TRIDH, DTRIDH
	TRID1, DTRID1
	TRQL, DTRQL
	TSDM, DTSDM
	TSD1, DTSD1

	APPENDICES
	APPENDIX A AUXILIARY SUBROUTINES
	A.1 OUTLINE
	A.2 AMACH, DMACH
	A.3 MGSSL
	A.4 MGSET
	A.5 ASUM(BSUM), DSUM(DBSUM)
	A.6 CSUM, DCSUM
	A.7 IRADIX
	A.8 AFMAX, DFMAX, AFMIN, DFMIN

	APPENDIX B ALPHABETIC GUIDE FOR SUBROUTINES
	B.1 GENERAL SUBROUTINES
	B.2 SLAVE SUBROUTINES
	B.3 AUXILIARY SUBROUTINES

	APPENDIX C CLASSIFICATION CODES AND SUBROUTINES
	APPENDIX D REFERENCES

	CONTRIBUTORS AND THEIR WORKS

