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PREFACE 

This manual describes the functions and use of the Scientific Subroutine Library II (SSL II), 

SSL II can be used for various systems ranging from personal computers to vector computers.  

The interface between a user-created program and SSL II is always the same regardless of the 

system type.  Therefore, this manual can be used for all systems that use SSL II. When using 

SSL II for the first time, the user should read “How to Use This Manual” first. 

 

  The contents of SSL II or this manual may be amended to keep up with the latest state of 

technology, that is, if the revised or added subroutines should functionally include or surpass 

some of the old subroutines, those old subroutines will be deleted in a time of allowance. 

 

Note: 

Some of the SSL II functions may be restricted in certain systems due to hardware 

restrictions.  These functions are in the SSL II Subroutine List in this manual. 
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SSL II SUBROUTINE LIST 
 
The SSL II functions are listed below.  Generally, a single-precision routine and a 
double-precision routine are available for each function.  The subroutine name column gives 
the names of single-precision routines.  Double-precision routine names start with a D, 
followed by the single-precision names.  If the use of a function is restricted due to 
hardware restrictions, it is indicated in the remarks column. 
The symbols that appear in the remarks column mean the following: 

#: Only the single-precision routine is available in all systems. 
 

A. Linear Algebra 

Storage mode conversion of matrices 

Subroutine name Item Page Remarks 
CGSM Storage mode conversion of matrices (real symmetric to real general) 264  
CSGM Storage mode conversion of matrices (real general to real symmetric) 290  
CGSBM Storage mode conversion of matrices (real general to real symmetric band) 263  
CSBGM Storage mode conversion of matrices (real symmetric band to real general) 287  
CSSBM Storage mode conversion of matrices (real symmetric to real symmetric band) 291  
CSBSM Storage mode conversion of matrices (real symmetric band to real symmetric) 289  

Matrix manipulation 

Subroutine name Item Page Remarks 
AGGM Addition of two matrices (real general + real general) 85  
SGGM Subtraction of two matrices (real general – real general) 563  
MGGM Multiplication of two matrices (real general by real general) 454  
MGSM Multiplication of two matrices (real general by real symmetric) 465  
ASSM Addition of two matrices (real symmetric + real symmetric) 131  
SSSM Subtraction of two matrices (real symmetric – real symmetric) 582  
MSSM Multiplication of two matrices (real symmetric by real symmetric) 477  
MSGM Multiplication of two matrices (real symmetric by real general) 476  
MAV Multiplication of a real matrix by a real vector 456  
MCV Multiplication of a complex matrix by a complex vector 460  
MSV Multiplication of a real symmetric matrix by a real vector 478  
MSBV Multiplication of a real symmetric band matrix and a real vector 474  
MBV Multiplication of a real band matrix and a real vector 458  

1 



Linear equations 

Subroutine name Item Page Remarks 
LAX A system of linear equations with a real general matrix (Crout’s method) 388  

LCX A system of linear equations with a complex general matrix (Crout’s method) 407  

LSX 
A system of linear equations with a positive-definite symmetric matrix (Modified 
Cholesky’s method) 

445  

LSIX 
A system of linear equations with a real indefinite symmetric matrix (Block diagonal 
pivoting method) 

438  

LSBX 
A system of linear equations with a positive-definite symmetric band matrix 
(Modified Cholesky’s method) 

433  

LSBIX 
A system of linear equations with a real indefinite symmetric band matrix (block 
diagonal pivoting method) 

431  

LBX1 
A system of linear equations with a real general band matrix (Gaussian elimination 
method) 

402  

LSTX 
A system of linear equations with a positive-definite symmetric tridiagonal matrix 
(Modified Cholesky’s method) 

442  

LTX 
A system of linear equations with a real tridiagonal matrix (Gaussian elimination 
method) 

449  

LAXR 
Iterative refinement of the solution to a system of linear equations with a real 
general matrix 

399  

LCXR 
Iterative refinament of the solution to a system of linear equations with a complex 
general matrix 

409  

LSXR 
Iterative refinement of the solution to a system of linear equations with a 
positive-definite symmetric matrix 

447  

LSIXR 
Iterative refinament of the solution to a system of linear equations with a real 
indefinite symmetric matrix 

440  

LSBXR 
Iterative refinament of the solution to a system of linear equations with a 
positive-definite symmetric band matrix 

435  

LBX1R 
Iterative refinement of the solution to a system of linear equations with a real 
general band matrix 

404  

Matrix inversion 

Subroutine name Item Page Remarks 
LUIV The inverse of a real general matrix decomposed into the factors L and U 452  

CLUIV The inverse of a complex general matrix decomposed into the factors L and U 279  

LDIV 
The inverse of a positive-definite symmetric matrix decomposed into the factors L, D and 
LT 

412  

Decomposition of matrices 

Subroutine name Item Page  Remarks 
ALU LU-decomposition of a real general matrix (Crout’s method) 98  

CLU LU-decomposition of a complex general matrix (Crout’s method) 277  

SLDL 
LDLT-decomposition of a positive-definite symmetric matrix (Modified Cholesky’s 
method) 

570  

SMDM 
MDMT-decomposition of a real indefinite symmetric matrix (Block diagonal pivoting 
method) 

572  

SBDL 
LDLT-decomposition of a positive-definite symmetric band matrix (Modified 
Cholesky’s method) 

553  

SBMDM 
MDMT-decomposition of a real indefinite symmetric band matrix (block diagonal 
pivoting method) 

555  

BLU1 LU-decomposition of a real general band matrix (Gaussian elimination method) 189  

2 



Solution of decomposed system 

Subroutine name Item Page Remarks 

LUX 
A system of linear equations with a real general matrix decomposed into the 
factors L and U 

454  

CLUX 
A system of linear equations with a complex general matrix decomposed into the 
factors L and U 

281  

LDLX 
A system of linear equations with a positive-definite symmetric matrix 
decomposed into the factors L, D and LT 

414  

MDMX 
A system of linear equations with a real indefinite symmetric matrix decomposed 
into the factors M, D and MT 

462  

BDLX 
A system of linear equations with a positive-definite symmetric band matrix 
decomposed into the factors L, D and LT 

136  

BMDMX 
A system of linear equations with a real indefinite symmetric band matrix 
decomposed into factors M, D, and MT 

192  

BLUX1 
A system of linear equations with a real general band matrix decomposed into the 
factors L and U 

186  

Least squares solution 

Subroutine name Item Page Remarks 
LAXL Least squares solution with a real matrix (Householder transformation) 390  
LAXLR Iterative refinement of the least squares solution with a real matrix 397  

LAXLM 
Least squares minimal norm solution with a real matrix (Singular value 
decomposition method) 

393  

GINV Generalized Inverse of a real matrix (Singular value decomposition method) 341  
ASVD1 Singular value decomposition of a real matrix (Householder and QR methods) 132  

B. Eigenvalues and Eigenvectors 

Eigenvalues and eigenvectors 

Subroutine name Item Page Remarks 
EIG1 Eigenvalues and corresponding eigenvectors of a real matrix (double QR method) 298  
CEIG2 Eigenvalues and corresponding eigenvectors of a complex matrix (QR method) 242  

SEIG1 
Eigenvalues and corresponding eigenvectors of a real symmetric matrix (QL 
method) 

558  

SEIG2 
Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix 
(Bisection method, inverse iteration method) 

560  

HEIG2 
Eigenvalues and corresponding eigenvectors of an Hermition matrix (Householder 
method, bisection method, and inverse iteration method) 

356  

BSEG 
Eigenvalues and eigenvectors of a real symmetric band matrix 
(Rutishauser-Schwarz method, bisection method and inverse iteration method) 

206  

BSEGJ Eigenvalues and eigenvectors of a real symmetric band matrix (Jennings method) 208  

TEIG1 
Eigenvalues and corresponding eigenvectors of a real symmetric tridiagonal 
matrix (QL method) 

583  

TEIG2 
Selected eigenvalues and corresponding eigenvectors of a real symmetric 
tridiagonal matrix (Bisection method, inverse iteration method) 

585  

GSEG2 
Eigenvalues and corresponding eigenvectors of a real symmetric generalized 
matrix system Ax = λ Bx (Bisection method, inverse iteration method) 

347  

GBSEG 
Eigenvalues and corresponding eigenvectors of a real symmetric band 
generalized eigenproblem (Jennings method) 

335  
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Eigenvalues 

Subroutine name Item Page Remarks 
HSQR Eigenvalues of a real Hessenberg matrix (double QR method) 361  
CHSQR Eigenvalues of a complex Hessenberg matrix (QR method) 270  
TRQL Eigenvalues of a real symmetric tridiagonal matrix (QL method) 598  
BSCT1 Selected eigenvalues of a real symmetric tridiagonal matrix (Bisection method) 198  

Eigenvectors 

Subroutine name Item Page Remarks 
HVEC Eigenvectors of a real Hessenberg matrix (Inverse iteration method) 363  
CHVEC Eigenvectors of a complex Hessenberg matrix (Inverse iteration method) 272  
BSVEC Eigenvectors of a real symmetric band matrix (Inverse iteration method) 218  

Others 

Subroutine name Item Page Remarks 
BLNC Balancing of a real matrix 184  
CBLNC Balancing of a complex matrix 239  
HES1 Reduction of a real matrix to a real Hessenberg matrix (Householder method) 358  

CHES2 
Reduction of a complex matrix to a complex Hessenberg matrix (Stabilized 
elementary transformation) 

268  

TRID1 
Reduction of a real symmetric matrix to a real symmetric tridiagonal matrix 
(Householder method) 

596  

TRIDH 
Reduction of an Hermition matrix to a real symmetric tridiagonal matrix 
(Householder method and diagonal unitary transformation) 

593  

BTRID 
Reduction of a real symmetric band matrix to a tridiagonal matrix 
(Rutishauser-Schwarz method) 

221  

HBK1 
Back transformation and normalization of the eigenvectors of a real Hessenberg 
matrix 

354  

CHBK2 
Back transformation of the eigenvectors of a complex Hessenberg matrix to the 
eigenvectors of a complex matrix 

266  

TRBK 
Back transformation of the eigenvectors of a tridiagonal matrix to the eigenvectors 
of a real symmetric matrix 

589  

TRBKH 
Back transformation of eigenvectors of a tridiagonal matrix to the eigenvectors of an 
Hermition matrix 

591  

NRML Normalization of eigenvectors 498  
CNRML Normalization of eigenvectors of a complex matrix 283  
GSCHL Reduction of a real symmetric matrix system Ax = λ Bx to a standard form 345  

GSBK 
Back transformation of the eigenvectors of the standard form the eigenvectors of 
the real symmetric generalized matrix system 

343  
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C. Nonlinear Equations 

Subroutine name Item Page Remarks 
RQDR Zeros of a quadratic with real coefficients 552  
CQDR Zeros of a quadratic with complex coefficients 286  
LOWP Zeros of a low degree polynomial with real coefficients (fifth degree or lower) 423  
RJETR Zeros of a polynomial with real coefficients (Jenkins-Traub method) 546  
CJART Zeros of a polynomial with complex coefficients (Jarratt method) 275  

TSD1 
Zero of a real function which changes sign in a given interval (derivative not 
required) 

604  

TSDM Zero of a real function (Muller’s method) 601  
CTSDM Zero of complex function (Muller’s method) 292  
NOLBR Solution of a system of nonlinear equations (Brent’s method) 487  

D. Extrema 

Subroutine name Item Page Remarks 

LMINF 
Minimization of function with a variable (quadratic interpolation using function values 
only) 

418  

LMING 
Minimization of function with a variable (cubic interpolation using function values and 
its derivatives) 

420  

MINF1 
Minimization of function with several variables (revised quasi-Newton method, uses 
function values only) 

466  

MING1 
Minimization of a function with several variables (Quasi-Newton method, using 
function values and its derivatives) 

470  

NOLF1 
Minimization of the sum of squares of functions with several variables (Revised 
Marquardt method, using function values only) 

490  

NOLG1 
Minimization of the sum of squares of functions (revised Marquardt method using 
function values and its derivatives) 

494  

LPRS1 Solution of a linear programming problem (Revised simplex method) 425  

NLPG1 Nonlinear programming (Powell’s method using function values and its derivatives) 482  

E. Interpolation and Approximation 

Interpolation 

Subroutine name Item Page Remarks 
AKLAG Aitken-Lagrange interpolation 89  
AKHER Aitkan-Hermite interpolation 86  
SPLV Cubic spline interpolation 579  
BIF1 B-spline interpolation (I) 156  
BIF2 B-spline interpolation (II) 158  
BIF3 B-spline interpolation (III) 160  
BIF4 B-spline interpolation (IV) 162  
BIFD1 B-spline two-dimensional interpolation (I-I) 151  
BIFD3 B-spline two-dimensional interpolation (III-III) 154  
AKMID Two-dimensional quasi-Hermite Interpolation 91  
INSPL Cubic spline interpolation coefficient calculation 377  
AKMIN Quasi-Hermite interpolation coefficient calculation 95  
BIC1 B-spline interpolation coefficient calculation (I) 143  
BIC2 B-spline interpolation coefficient calculation (II) 145  
BIC3 B-spline interpolation coefficient calculation (III) 147  
BIC4 B-spline interpolation coefficient calculation (IV) 149  
BICD1 B-spline two-dimensional interpolation coefficient calculation (I-I) 138  
BICD3 B-spline two-dimensional interpolation coefficient calculation (III-III) 141  
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Approximation 

Subroutine name Item Page Remarks 
LESQ1 Polynomial least squares approximation 416  

Smoothing 

Subroutine name Item Page Remarks 
SMLE1 Data smoothing by local least squares polynomials (equally spaced data points) 575  
SMLE2 Data smoothing by local least squares polynomials (unequally spaced data points) 577  
BSF1 B-spline smoothing 216  
BSC1 B-spline smoothing coefficient calculation 201  
BSC2 B-spline smoothing coefficient calculation (variable knots) 203  
BSFD1 B-spline two-dimensional smoothing 214  
BSCD2 B-spline two-dimensional smoothing coefficient calculation (variable knots) 194  

Series 

Subroutine name Item Page Remarks 

FCOSF 
Fourier Cosine series expansion of an even function (Function input, fast cosine 
transform) 

312  

ECOSP Evaluation of a cosine series 296  
FSINF Fourier sine series expansion of an odd function (Function input, fast sine transform) 324  
ESINP Evaluation of a sine series 302  
FCHEB Chabyshev series expansion of a real function (Function input, fast cosine transform) 306  
ECHEB Evaluation of a Chebyshev series 294  
GCHEB Differentiation of a Chebyshev series 339  
ICHEB Indefinite integral of a Chebyshev series 367  

 

6 



F. Transforms 

Subroutine name Item Page Remarks 
FCOST Discrete cosine transform (Trapezoidal rule, radix 2 FFT) 321  
FCOSM Discrete cosine transform (midpoint rule, radix 2 FFT) 318  
FSINT Discrete since transform (Trapezoidal rule, radix 2 FFT) 333  
FSINM Discrete sine transform (midpoint rule, radix 2 FFT) 330  
RFT Discrete real Fourier transform 543  
CFTM Multi-variate discrete complex Fourier transform (mixed radix FFT) 250  
CFT Multi-variate discrete complex Fourier transform (radix 8 and 2 FFT) 247  
CFTN Discrete complex Fourier transforms (radix 8 and 2 FFT, reverse binary order output) 254  
CFTR Discrete complex Fourier transforms (radix 8 and 2 FFT, reverse binary order input) 259  
PNR Permutation of data (reverse binary transformation) 522  
LAPS1 Inversion of Laplace transform of a rational function (regular in the right-half plane) 379  
LAPS2 Inversion of Laplace transform of a general rational function 381  
LAPS3 Inversion of Laplace transform of a general function 383  
HRWIZ Judgment on Hurwiz polynomials 360  

G. Numerical Differentiation and Quadrature 

Numerical Differentiation 

Subroutine name Item Page Remarks 
SPLV Cubic spline differentiation 579  
BIF1 
BIF2 
BIF3 
BIF4 

Differentiation (Unequally spaced discrete points, B-spline Interpolation) 156 
158 
160 
162 

 

BSF1 Differentiation by B-spline least squares fit (Fixed knots) 216  
BIFD1 
BIFD3 

Two-dimensional differentiation (unequally spaced lattice points. 
B-spline two-dimensional interpolation) 

151 
154 

 

BSFD1 Two-dimensional differentiation by B-spline least squares fit 214  
GCHEB Differentiation of a Chebyshev series 339  
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Numerical Quadrature 

Subroutine name Item Page Remarks 
SIMP1 Integration of a tabulated function by Simpson’s rule (equally spaced) 564  
TRAP Integration of a tabulated function by trapezoidal rule (unequally spaced) 588  
BIF1 
BIF2 
BIF3 
BIF4 

 
Intergration of a tabulated function by B-spline interpolation (unequally spaced 
discrete points, B-spline interpolation) 

156 
158 
160 
162 

 

BSF1 
Smoothing differentiation and integration of a tabulated function by B-spline least 
squares fit (fixed knots) 

216  

BIFD1 
BIFD3 

Integration of a two-dimensional tabulated function (unequally spaced lattice points, 
B-spline two-dimensional interpolation) 

151 
154 

 

BSFD1 Two-dimensional integration of a tabulated function by B-spline interpolation 214  
SIMP2 Integration of a function by adaptive Simpson’s rule 565  
AQN9 Integration of a function by adaptive Newton-Cotes 9-point rule 126  
AQC8 Integration of a function by a modified Clenshaw-Curtis rule 100  
AQE Integration of a function by double exponential formula 106  
AQEH Integration of a function over the semi-infinite interval by double exponential formula 110  
AQEI Integration of a function over the infinite interval by double exponential formula 112  
AQMC8 Multiple integration of a function by a modified Clenshaw-Curtis integration rule 115  
AQME Multiple integration of a function by double exponential formula 121  

H. Differential equations 

Subroutine name Item Page Remarks 
RKG A system of first order ordinary differential equations (Runge-Kutta method) 550  

HAMNG A system of first order ordinary differential equations (Hamming method) 350  

ODRK1 A system of first order ordinary differential equations (Runge-Kutta-Verner method) 518  

ODAM A system of first order ordinary differential equations (Adams method) 500  

ODGE A stiff system of first order ordinary differential equations (Gear’s method) 509  
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I. Special Functions 

Subroutine name Item Page Remarks 
CELI1 Complete elliptic Integral of the first kind K(x) 244  
CELI2 Complete elliptic integral of the second kind E(x) 245  

EXPI )(,)( xExE ii  integral  lExponentia  304  

SINI Sine integral Si (x) 569  
COSI Cosine integral Ci (x) 285  
SFRI Sine Fresnel integral S(x) 562  
CFRI Cosine Fresnel integral C(x) 246  
IGAM1 Incomplete Gamma function of the first kind γ (ν , x) 372  
IGAM2 Incomplete Gamma function of the second kind Γ (ν , x) 373  
IERF Inverse error function erf -1(x) 369  
IERFC Inverse complimented error function erfc-1(x) 370  
BJ0 Zero-order Bessel function of the first kind J0(x) 173  
BJ1 First-order Bessel function of the first kind J1(x) 175  
BY0 Zero-order Bessel function of the second kind Y0(x) 228  
BY1 First-order Bessel function of the second kind Y1(x) 230  
BI0 Modified Zero-order Bessel function of the first kind I0(x) 167  

BI1 Modified First-order Bessel function of the first kind I1(x) 168  

BK0 Modified Zero-order Bessel function of the second kind K0(x) 182  
BK1 Modified First-order Bessel function of the second kind K1(x) 183  
BJN Nth-order Bessel function of the first kind Jn (x) 169  
BYN Nth-order Bessel function of the second kind Yn (x) 223  
BIN Modified Nth-order Bessel function of the first kind In (x) 164  
BKN Modified Nth-order Bessel function of the second kind Kn (x) 177  
CBIN Modified Nth-order Bessel function of the first kind In (z) with complex variable 232  
CBKN Modified Nth-order Bessel function of the second kind Kn (z) with complex variable 236  
CBJN Integer order Bessel function of the first kind with complex variable Jn (z) 233  
CBYN Integer order Bessel function of the second kind with complex variable Yn (z) 241  
BJR Real-order Bessel function of the first kind Jν (x) 171  
BYR Real-order Bessel function of the second kind Yν (x) 224  
BIR Modified real-order Bessel function of the first kind Iν (x) 166  
BKR Real order modified Bessel function of the second kind Kν (x) 178  
CBJR Real-order Bessel function of the first kind with a complex variable Jν (z) 234  
NDF Normal distribution function φ (x) 480  
NDFC Complementary normal distribution function ψ (x) 481  
INDF Inverse normal distribution function φ -1(x) 375  
INDFC Inverse complementary normal distribution function ψ -1(x) 376  
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J. Pseudo Random Numbers 

Subroutine name Item Page Remarks 
RANU2 Uniform (0, 1) pseudo random numbers 533 # 
RANU3 Shuffled uniform (0, 1) pseudo random numbers 536 # 
RANN1 Fast normal pseudo random numbers 528 # 
RANN2 Normal pseudo random numbers 530 # 
RANE2 Exponential pseudo random numbers 527 # 
RANP2 Poisson pseudo random integers 531 # 
RANB2 Binominal pseudo random numbers 525 # 
RATF1 Frequency test for uniform (0, 1) pseudo random numbers 538 # 
RATR1 Run test of up-and-down for uniform (0, 1) pseudo random numbers 540 # 
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HOW TO USE THIS MANUAL 

This section describes the logical organization of this 
manual, and the way in which the user can quickly and 
accurately get informations necessary to him from the 
manual. 
  This manual consists of two parts.  Part I describes an 
outline of SSL II. Part II describes usage of SSL II 
subroutines. 
  Part I consists of twelve chapters. 
  Chapter 2 describes the general rules which apply to 
each SSL II subroutine.  It is suggested that the user 
read this chapter first. 
  Chapters 3 through 12 are concerned with certain 
fields of numerical computation, and were edited as 
independently as possible for easy reference.  At the 
beginning of every chapter, the section “OUTLINE” is 
given, which describes the classification of available 
subroutines in the chapter, and how to select subroutines 
suitable for a certain purpose.  The user should read the 
section at least once. 
As mentioned above, there is no confusing or difficult 
relation between the chapters: it is quite simple as shown 
in the following diagram. 

Chapter 12

Chapter 3

Chapter 4

Chapter 5Chapter 2Chapter 1

 
 
  Each chapter from chapter 3 on has several sections, 
the first of which is the section “OUTLINE” that, as 
noted previously, introduces the following sections. 
  As the diagram shows, if the user wants to obtain 
eigenvalues, for example, of a certain matrix, he should 
first read Chapter 2, then jump to Chapter 4, where he 
can select subroutines suitable for his purposes. 
  Part II describes how to use SSL II subroutines.  The 
subroutines are listed in alphabetical order. 
  When describing an individual subroutine, the 
following contents associated with the subroutine are 
shown: 
• Function 
• Parameters 
• Comments on use 
• Method 
  and what we intend to describe under each title above 
are as follows: 

Function 
Describes explanation of the functions. 
 
Parameters 
Describes variables and arrays used for transmitting 
information into or from the subroutine.  Generally, 
parameter names, which are commonly used in SSL II, 
are those habitually used so far in many libraries. 
 
Comments on use 
This consists of the following three parts. 
• Subprograms used 

If other SSL II subroutines are used internally by the 
subroutine, they are listed under “SSL II”.  Also, if 
FORTRAN intrinsic functions or basic external 
functions are used, they are listed under “FORTRAN 
basic functions”. 

• Notes 
Discusses various considerations that the user should 
be aware of when using the subroutine. 

• Example 
An example of the use of the subroutine is shown.  
For clarity and ease of understanding, any applications 
to a certain field of engineering or physical  science 
have not been described.  In case other subroutines 
must be used as well as the subroutine to obtain a 
mathematical solution, the example has been designed 
to show how other subroutines are involved.  This is 
especially true in the chapters concerning linear 
equations or eigenvalues etc.  Conditions assumed in 
an example are mentioned at the beginning of the 
example. 

 
Method 
The method used by the subroutine is outlined.  Since 
this is a usage manual, only practical aspects of the 
algorithm or computational procedures are described.   
References on which the implementation is based and 
those which are important in theory, are listed in 
Appendix D “References”, so refer to them for further 
information or details beyond the scope of the “Method” 
section. 
  In this manual, included are the SSL II Subroutine list 
and four appendices.  In the SSL II Subroutine list, SSL 
II Subroutines are arranged in the order of fields and then 
in the order of their classification codes.  This list can 
be used for quick reference of subroutines. 
 
Appendix A explains the functions of the auxiliary 
subroutines and Appendix B contains the three lists, 
which are concerned respectively with 
• General subroutines 
• Slave subroutines 
• Auxiliary subroutines 
 
General subroutines is an alphabetical listing of all 
subroutines.  In the list, if a certain entry uses other 
subroutines, they are shown on the right.  Slave 
subroutines is an alphabetical listing of slave subroutines 
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(as for the definition of them, see Section 2.1), and in the 
list, general subroutines which use the slave subroutine 
are shown on the right.  Auxiliary subroutines is a listing 
of auxiliary subroutines, and it is also alphabetical.  
Appendix C explains the subroutine names in order of 
classification code.  This list can be used for quick 
reference of subroutines by classification code.  

Appendix D lists the documents referred for SSL II 
development and/or logically important theory.  
Although no preliminary knowledge except the ability to 
understand FORTRAN is required to use this manual.  
Mathematical symbols used in this manual are listed 
below.  We expect that the user has same interest in, or 
some familiarity with numerical analysis. 

Mathematical symbol table 

Symbol Example Meaning Remarks 
T AT Transposed matrix of matrix A  
 xT Transposed vector of column vector x  
 x = (x1 ,..., xn)T Column vector Refer to the symbol (  ). 
-1 A-1 Inverse of matrix A  
* A* Conjugate transposed matrix of matrix A  
 x* Conjugate transposed vector of column vector x  
 z* Conjugate complex number of complex number z ibaz +=  

ibaz −=*  
*zz =  

 z    
 















  

















=

nnn

n

aa

aa
aaa

1

2221

11211

A  

A is an n × n matrix whose elements are aij.  

(  ) 
 

x = (x1 ,..., xn)T x is an n-dimensional column vector whose elements are 
xi. 

 

 A = (aij) Elements of matrix A are defined as aij.  
 x = (xi) Elements of column vector x are defined as xi.  

diag A = diag(aii) Matrix A is a diagonal matrix whose elements are aii.  
I  Unit matrix  

det det(A) Determinant of matrix A  
rank rank(A) Rank of matrix A  
||  || ||x|| Norm of vector x 

For n-dimensional vector x , x = (xj) : 

∑
=

=
n

i
ix

1
1 |||||| x  : Uniform norm 

∑
=

=
n

i
ix

1

2
2 |||||| x  : Euclidean norm 

||xi
i

max|||| =∞x  : Infinity norm 

max,, symbols Refer to ∑  

 

 A  Norm of matrix A 
For a matrix  A = (aij) of order n: 









∑

=∞
=

n

j
iji

a
1

maxA  : Infinity norm 

 

( , ) (x, y) Inner product of vectors x and y When x and y are complex vectors,  
yxyx T),( =  

 
[ , ] 

(a, b) Open interval  
[a, b] Closed interval  

>> a >> b a is much greater than b.  
≠ a ≠ b a is not equal to b.  
≈ f (x) ≈ P(x) f (x) is approximately equal to P(x).  
≡ f (x) ≡ f ′ (x) / f (x) f (x) is defined as f ′ (x) / f (x).  
{  } {xi} Sequence of numbers  
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Symbol Example Meaning Remarks 

∑  ∑
=

n

mi
ix
 Summation (xm ,..., xn) Sum cannot be given if n < m 

If  ∑
≠
=

n

li
mi

ix  summation excludes xl. 

 
 

∑ +
i

jix 2  Summation with respect to i  

y′,  f ′(x)  
dx

xdf
xf

dx

dy
y

)(
)(, =′=′  For n-order derivative: 

f (n) (x) = n

n

dx
xfd )(  

 z  Absolute value of z If  z = a + ib 

  22 baz +=  

max  max(x1 , ..., xn)  The maximum value of (x1, ..., xn)  
 
min i

i
xmax   

The minimum value of (x1, ..., xn) 
 
 

 min(x1 , ..., xn)  
 
sign i

i
xmin   

Sign of  x 
 
When x is positive, 1. 
When x is negative, -1. sign(x)  

log log x Natural logarithm of x  
Re Re(z) Real part of complex number z  
Im Im(z) Imaginary part of complex number z  
arg Arg z Argument of complex number z  

ijδ   Kronecker’s delta  

γ   Euler’s constant  
π   Ratio of the circumference of the circle to its diameter  
 i z = a + ib Imaginary unit 1−=i  
P.V. 

∫ ∞−

x t

dt
t

e P.V.  
Principal value of an integral  

 ⋅⋅⋅+++
2

2

1

1
0 b

a
b
a

b  Continued fraction  

∈  x ∈ X Element x is contained in set X.  
{ | } { })(xxx ϕ=  All elements of set x satisfy the equation.  

C k [ ]baCxf k ,)( ∈  
f (x) and up to k-th derivatives are continuous in the 
interval [a , b]. 

 

 
Note: This table defines how each symbol is used in this guide.  A symbol may have a different meaning elsewhere.  Commonly used 

symbols, such as + and – , were not included in the list. 
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CHAPTER 1 
SSL II OUTLINE 

1.1 BACKGROUND OF DEVELOPMENT 

Many years have passed since SSL (Scientific Subroutine 
Library) was first developed.  Due to advancements in 
numerical calculation techniques and to increased power 
of computers, SSL has been updated and new functions 
have been added on many occasions.  However, users 
have further requested the followings: 
• Better balance of the functions and uses of individual 

subroutines 
• That addition of new functions not adversely affect the 

organization of the system 
• Better documentation of various functions and their 

uses 
 
  SSLII was developed with these requirements in mind. 

1.2 DEVELOPMENT OBJECTIVES 

Systematizing 
It is important for a library to enable the user to quickly 
identify subroutines which will suit his purposes. 
SSLII is organized with emphasis on the following 
points: 
• We classify numerical computations as follows: 

A Linear algebra 
B Eigenvalues and eigenvectors 
C Nonlinear equations 
D Extrema 
E Interpolations and approximations 
F Transforms 
G Numerical differentiation and quadrature 
H Differential equations 
I Special functions 
J Pseudo random numbers 

 
  These categories are further subdivided for each branch. 
The library is made in a hierarchy organization.  The 
organization allows easier identifying the locations of 
individual subroutines. 
• Some branches have subdivided functions.  We present 

not only general purpose-oriented subroutines but also 
those which perform as components of the former, so 
that the user can use the components when he wishes to 
analize the sequence of the computational procedures. 

 
Performance improvement 
Through algorithmic and programming revisions, 
improvements have been made both in accuracy and 
speed. 
• The algorithmic methods which are stable and precise 

are newly adopted.  Some of the standard methods used 
in the past are neglected. 

• In programming, importance is attached to reducing 
execution time.  Thus, the subroutines, are written in 
FORTRAN to enjoy the optimization of the compiler. 
  SSLII improves the locality of the virtual storage 
system program, but does not decrease the efficiency of 
a computer without virtual storage. 

 
Improvement of reliability 
In most cases, single and double precision routines are 
generated from the same source program. 
 
Maintenance of compatibility 
Nowadays, developed softwares are easily transferred 
between different type systems.  The SSL II subroutines 
are structured to maintain compatibility.  A few auxiliary 
subroutines which are dependent of the system are 
created. 

1.3 FEATURES 

• SSL II is a collection of subroutines written in 
FORTRAN and desired subroutines are called in user 
programs using the CALL statement. 

• All subroutines are written without input statements, 
user data is assumed to be in main storage. 

• Data size is defined with subroutine parameters.  No 
restrictions are applied to data size within subroutines. 

• To save storage space for linear and eigenvalue-
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eigenvector calculus, symmetric and band matrices are 
stored in a compressed mode (see Section 2.8 “Data 
Storage Methods”). 

• All subroutines have an output parameter which 
indicates status after execution.  A code giving the state 
of the processing is returned with this parameter (refer 
to Section 2.6 “Return Conditions of Processing”). 
Subroutines will always return control to the calling 
program.  The user can check the contents of this 
parameter to determine proper processing. 

• If specified, the condition messages are output (refer to 
section 2.6 “return conditions of processing”). 

1.4 SYSTEM THAT CAN USE SSL II 

If the FORTRAN compilers can be used on the user’s 
system, SSL II can also be used regardless of the system 
configuration.  But, the storage size depends on the 
number and size of SSL II subroutines, the size of the 
user program, and the size of the data. 
Although, as shown above, SSL II subroutines are usually 
called by FORTRAN programs, they can also be called 
by programs written in ALGOL, PL/1, COBOL, etc., if 
the system permits. 
When the user wishes to do that, refer to the section in 
FORTRAN (or another compiler) User’s Guide which 
describes the interlanguage linkage. 
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CHAPTER 2 
GENERAL RULES 

2.1 TYPES OF SUBROUTINES 

There are three types of SSL II subroutines, as shown in 
Table 2.1. 

Table 2.1  Types of subroutines 

Subroutine 
type 

Subprogram 
division 

Use 

General 
subroutine 

Subroutine 
subprogram 

Used by the user. 

Slave 
subroutine 

Subroutine 
subprogram 
of function 
subprogram 

Called by general subroutines 
and cannot be called directly 
by the user. 

Auxiliary 
subroutine 

 Support general subroutines 
and slave subroutines. 

 
The general subroutines in Table 2.1 are further divided, 
as shown in Table 2.2, into two levels according to the 
function.  This division occurs when, in order to performs 
a particular function, a routine is internally subdivided 
into elementary functions. 

Table 2.2  Subroutine levels 

Level Function 
Standard 
routine 

A single unified function is performed, for 
instance, when solving a system of linear 
equations. 

Component 
routine 

An elementary function is performed, for 
instance, for triangular factoring of a coefficient 
matrix.  Several component routines are grouped 
to make a standard routine. 

2.2 CLASSIFICATION CODES 

Each of SSL II general subroutines has the eleven 
character classification codes according to the 
conventions in Fig. 2.1. 

2.3 SUBROUTINE NAMES 

Each of SSL II subroutines has the inherent subroutine 
name according to the subroutine type on following 
conventions. 
 
General subroutine names 
Names begin with S or D depending on the working 
precision, as shown in Fig. 2.2. 
 
Slave subroutine names 
• For subroutine subprograms or real function 

subprograms 
Names begin with the working precision identifier 
which is same as in general subroutines followed by a 
letter ‘U’ as shown in Fig. 2.3. 

• For complex function subprograms 
Names begin with letter ‘Z’.  The other positions are 
similar to those shown above.  See Fig. 2.4. 

 
Auxiliary subroutines 
Auxiliary subroutines are appropriately named according 
to their functions, see Appendix A for details. 

2.4 PARAMETERS 

Transmission of data between SSL II subroutines and 
user programs is performed only through parameters.  
This section describes the types of SSL II parameters, 
their order, and precautions. 
 
Usage of parameters 
• Input/output parameters 

These parameters are used for supplying values to the 
subroutine on input, and the resultant values are 
returned in the same areas on output. 

 
• Input parameters 

These parameters are used for only supplying values to 
the subroutine on input.  The values are unchanged on 
output.  If values are changed by subroutine, it is 
described as “The contents of 
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[S]…Single precision(normally S is omitted)
 D …Double precision

1 alphabetic letter:
This letter identifies the working precision.

This alphanumeric string of up to 5 characters
identifies the function of the subroutines.
The last character, if numeric, groups subroutines
with related functions.

 
Fig. 2.2  General subroutine names 

U

An alphanumeric string of up to 4 characters:
Corresponds to that of general subroutine.

Fixed
1 alphabetic letter:
Identifies the working precision.  

Fig. 2.3  Subroutine names of slave subroutines (1) 

Z U

An alphanumeric string
of up to 3 characters.Fixed

1 alphabetic letter:
Identifies the working precision.

Fixed  
Fig. 2.4  Subroutine names of slave subroutines (2) 

parameter are altered on output” in parameter description. 
 
• Output parameters 

The resultant values are returned on output. 
 
• Work parameters 

These are used as work areas.  In general, the contents 
of these parameters are meaningless on output. 

 
  In addition, parameters can be also classified as 
follows: 
 
• Main parameters 

These parameters contain the data which is used as the 
object of numerical calculations (for example, the 
elements of matrices). 

 
• Control parameters 

These parameters contain data which is not used as the 
object of numerical calculations (for example, the order 
of matrices, decision values, etc.). 

 
Order of parameter 
Generally, parameters are ordered according to their kind 
as shown in Fig. 2.5.

2 digits: Minor classification and appending
classification

3 digits: Subroutine number
Serial number assigned under
the same classification

1…Standard routine
2…Component routine

Alphabetic letter + 1 digit: Major classification

1 digit: Middle classification

A Linear algebra
B Eigenvalues and eigenvectors
C Non-linear equations
D Extrema
E Interpolation and approximation
F Transforms
G Numerical differentiation and quadrature
H Differential equations
I Special functions
J Pseudo random numbers

1 digit: Subroutine level

1      2      3     4      5      6      7      8     9     10    11

 
Fig. 2.1  Classification code layout 
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Work parameters

Output parameters
Input parameters

Input/output parameters

ICON)( , , , , , , ,,

 
Note: 
The unshaded blocks indicate main parameters: the shaded 
blocks indicate control parameters.  The ICON parameter 
indicates the return conditions of processing. 

Fig. 2.5  Parameter ordering 

Some control parameters cannot conform to Fig. 2.5 (for 
instance, adjustable dimension of array), therefore the 
explanation of each subroutine gives the actual ordering. 
 
Handling of parameters 
• Type of parameter 

Type of parameter conforms to the ‘implicit typing’ 
convention of FORTRAN except parameters that begin 
with the letter ‘Z’.  For instance, A is a 4 byte real 
number (8 byte real number in double precision 
subroutines) and IA is a standard-byte-length integer.  
When complex data is handled with complex variables, 
Z is the first letter of the parameter.  ZA is an 8-byte 
complex number (16-byte complex number in double 
precision subroutines). 

 
• External procedure name 

When external procedure names are specified for 
parameters, those names must be declared with an 

EXTERNAL statement in the user program which calls 
the SSL II subroutines. 

 
• Status after execution 

SSL II subroutines have a parameter named ICON 
which indicates the return conditions of processing.  
See Section 2.6. 

2.5 DEFINITIONS 

Matrix classifications 
Matrices handled by SSL II are classified as shown in 
Table 2.3. 
 
Table 2.3  Matrix classification 

Factors Classifications 
Structure • Dense matrix 

• Band matrix 
Form • Symmetric matrix 

• Unsymmetric matrix 
Type • Real matrix 

• Complex matrix 
Character • Positive definite 

• Non singular 
• Singular 

 
Portion names of matrix 
In SSL II, the portion names of matrix are defined as 
shown in Fig. 2.6.  The portion names are usually used 
for collective reference of matrix elements. 
Where, the elements of the matrix are referred to as aij. 
 

 

A=

(*) Sometimes called diagonal line

Upper band width h2
Lower band width h1

Upper band portion
{Upper band elements | aij ∈  A, i+h2 ≥ j ≥ i+1}
Lower band portion
{Upper band elements | aij ∈  A, j+h1 ≥ i ≥ j+1}

Upper triangular portion
{Upper triangular elements |aij ∈  A , j ≥ i+1}

Lower triangular portion
{Lower triangular elements | aij ∈  A, i ≥ j+1}

Second super-diagonal portion (*)
{Second super-diagonal elements | aij ∈  A, j=i+2}
(First) super-diagonal portion(*)
{(First) super-diagonal elements | aij ∈  A, j=i+1}
(Main) diagonal portion (*)
{(Main) diagonal elements | aij ∈  A, i=j}
(First)sub-diagonal portion
{(First) sub-diagonal elements | aij ∈  A, i=j+1}
Second sub-diagonal portion(*)
{Second sub-diagonal elements | aij ∈  A, i=j+2}

 

Fig. 2.6  Portion names of matrix 
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Matrix definition and naming 
Matrices handled by SSL II have special names 
depending on their construction. 
 
• Upper triangular matrix 

The upper triangular matrix is defined as 

ijaij <= ,0  (2.1) 

  Namely, the elements of the lower triangular portion are 
zero. 
 
• Unit upper triangular matrix 

The unit upper triangular matrix is defined as 





<
=

=
ij
ij

aij ,0
,1

 (2.2) 

  Namely, this matrix is the same as an upper triangular 
matrix whose diagonal elements are all 1. 
 
• Lower triangular matrix 

The lower triangular matrix is defined as 

ijaij >= ,0  (2.3) 

  Namely, the elements of the upper triangular portion are 
zero. 
 
• Unit lower triangular matrix 

The unit lower triangular matrix is defined as  





>
=

=
ij
ij

aij ,0
,1

 (2.4) 

  This matrix is the same as a lower triangular matrix 
whose diagonal elements are all 1. 
 
• Diagonal matrix 

The diagonal matrix is defined as 

ijaij ≠= ,0  (2.5) 

  Namely, all of the elements of the lower and the upper 
triangular portions are zero. 
 
• Tridiagonal matrix 

The tridiagonal matrix is defined as 





+>
−<

=
1,0
1,0

ij
ij

aij  (2.6) 

  Namely, all of the elements except for ones of the upper 
and lower sub-diagonal and main-diagonal portions are 
zero. 

• Block diagonal matrix 
Considering an ji nn ×  matrix Aij (i.e. a block) within 

an nn×  matrix A, where n n ni j=∑ =∑ , then the block 
diagonal matrix is defined as 

jiij ≠= ,0A  (2.7) 

  In other words, all the blocks are on the diagonal line so 
that the block diagonal matrix is represented by a direct 
sum of those blocks. 
 
• Hessenberg matrix 

The Hessenberg matrix is defined as 

1,0 −<= ijaij  (2.8) 

  Namely, all of the elements except for ones of the upper 
triangular, the main-diagonal and the lower sub-diagonal 
portions are zero. 
 
• Symmetric band matrix 

The symmetric band matrix whose both upper and 
lower band widths are h is defined as 







≤−

>−
=

hjia

hji
a

ji
ij ,

,0
 (2.9) 

  Namely, all of the elements except for ones of the 
diagonal, upper and lower band portions are zero. 
 
• Band matrix 

The band matrix whose upper band width is h1, and 
lower band width is h2 is defined as 





+>
+>

=
1

2

,0
,0

hji
hij

aij  (2.10) 

  Namely, all of the elements except for ones of the 
diagonal, the upper and lower band portions are zero. 
 
• Upper band matrix 

The upper band matrix whose upper band width is h is 
defined as 





<

+>
=

ij

hij
aij ,0

,0
 (2.11) 

  Namely, all of the elements except for ones of the 
diagonal and upper band portions are zero. 
 
• Unit upper band matrix 
The unit upper band matrix whose upper band width is h 
is defined as 
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<
+>

=
=

ij
hij

ij
aij

,0
,0
,1

 (2.12) 

  This matrix is the same as an upper band matrix whose 
diagonal elements are all 1. 
 
• Lower band matrix 

The lower band matrix whose lower band width is h is 
defined as 





>
−<

=
ij

hij
aij ,0

,0
 (2.13) 

  Namely, all of the elements except for ones of the 
diagonal and lower band portions are zero. 
 
• Unit lower ban matrix 

The unit lower band matrix whose lower band width is 
h is defined as 








>
−<

=
=

ij
hij

ij
aij

,0
,0
,1

 (2.14) 

  Namely, this matrix is the same as a lower band matrix 
whose diagonal elements are all 1. 
 
• Hermitian matrix 

The hermitian matrix is defined as 

*
ijji aa =  (2.15) 

  Namely, this matrix equals its conjugate transpose 
matrix. 

2.6 RETURN CONDITIONS OF PRO-
CESSING 

The SSL II subroutines have a parameter called ICON 
which indicates the conditions of processing.  The 
subroutine returns control with a condition code set in 
ICON.  The values of the condition code should be tested 
before using the results. 
 
Condition codes 
The code value is a positive integer values that ranges 
from 0 to 30000.  The code values are classified as 
shown in Table 2.4. 
  Each subroutine has appropriate codes that are 
described in the condition code table given in the section 
where each subroutine description is. 

Table 2.4  Condition codes 

Code Meaning Integrity of the 
result 

Status 

0 Processing has 
ended normally. 

1 ~ 
9999 

Processing has 
ended normally.  
Auxiliary 
information was 
given. 

The results 
are correct. 

Normal 

10000 
~ 
19999 

Restrictions were 
employed during 
execution in order 
to complete the 
processing. 

The results 
are correct 
on the 
restrictions. 

Caution 

20000 
~ 
29999 

Processing was 
aborted due to 
abnormal 
conditions which 
had occurred 
during processing. 

The results 
are not 
correct. 

Abnorma
l 

30000 Processing was 
aborted due to 
invalid input 
parameters. 

  

 
Comments about condition codes 
• Processing control by code testing 

The condition code had better be tested in the user’s 
program immediately after the statement which calls 
the SSL II subroutine.  Then, the processing should be 
controlled depending on whether the results are correct 
or not. 

 
   : 
CALL LSX (A, N, B, EPSZ, ISW, ICON) 
IF (ICON. GE. 20000) STOP 
   : 

 
• Output of condition messages 

The SSL II subroutines have a function to output 
condition messages.  Normally, these messages are not 
output.  When the user uses message output control 
routine MGSET (SSL II auxiliary subroutine) messages 
are automatically output. 

2.7 ARRAY 

SSL II uses arrays to process vectors or matrices.  This 
section describes the arrays used as parameters and their 
handling. 
  Adjustable arrays, whose sizes are declared in an array 
declaration in the program, are used by SSL II.  The user 
may prepare arrays the size of which are determined 
corresponding to the size of the data processed in the user 
program. 
 
One-dimensional arrays 
When the user stores n (= N) - dimensional vector b 
( =(b1, ...., bn)T) in a one-dimensional array B of size N, 
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as shown below, various ways are possible.  In examples 
below, an attention should be paid to the parameter B 
used in calling the subroutine LAX, which solves systems 
of linear equations (n ≤ 10 is assumed). 
• A general example 

The following describes the case in which a constant 
vector b is stored in a one-dimensional array B of size 
10, as B(1) = b1, B(2) = b2, ... 

 
DIMENSION B(10) 
   : 
CALL LAX ( ... , N, B, ... ) 
   : 

 
• An application example 

The following describes the case in which a constant 
vector b is stored in the I-th column of a two-
dimensional array C (10, 10), such that C (1, I) = b1, C 
(2, I) = b2, ..... 

 
DIMENSION C(10, 10) 
   : 
CALL LAX ( ... , N, C(1, I), ... ) 
   : 

 
  As shown in the above example, in parameter B, if a 
leading element (leading address) of one array in which 
the data is stored consecutively is specified it is not 
constrained to a one-dimensional array of size N.  
Therefore, if vector b is stored in I-th row of array C as 
C(I, 1) = b1 C (I, 2) = b2... it is impossible to call as 
follows. 
 

   : 
CALL LAX ( ... , N, C(I, 1), ... ) 
   : 

 
Two-dimensional arrays 
Consider an n × n real matrix A (=(aij)) being stored in a 
two-dimensional array A (K, N).  Note that in handling 
two dimensional arrays in SSL II subroutines, adjustable 
dimension K is required as an input parameter in addition 
to the array A and the order N.  The adjustable dimension 
used by SSL II means the number of rows K of two-
dimensional array A declared in the user program.  An 
example using a two-dimensional array along with an 
adjustable dimension K is shown next.  The key points of 
the example are parameters A and K of the subroutine 
LAX.  (Here n ≤ 10). 
  The following describes the case in which coefficient 
matrix is stored in a two-dimensional array A (10, 10) as 
shown in Fig. 2.7, as A (1, 1) = a11, A (2, 1) = a21, ...., A 
(1, 2) = a 12 .... 

DIMENSION A (10, 10) 
   : 
K = 10 
CALL LAX (A, K, N, ... ) 
   : 

 
  In this case, regardless of the value of N, the adjustable 
dimension must be given as K = 10. 
 

The n × n coefficient matrix is
stored in this region which
becomes the object of the
processing of the SSL II
subroutine.

This is declared in the user
program as a two-dimensional
array A (10,10).

10
Adjustable
dimension

N

 
Fig. 2.7  Example of a two-dimensional adjustable array 

  When equations of different order are to be solved, if 
the largest order is NMAX, then a two-dimensional array 
A (NMAX, NMAX) should be declared in the user 
program.  That array can then be used to solve all of the 
sets of equations.  In this case, the value of NMAX must 
always be specified as the adjustable dimension. 

2.8 DATA STORAGE 

This section describes data storage modes for matrices or 
vectors. 
 
Matrices 
The methods for storing matrices depend on structure and 
form of the matrices.  All elements of unsymmetric dense 
matrices, called general matrices, are stored in two-
dimensional arrays.  For all other matrices, only 
necessary elements can be stored in a one-dimensional 
array.  The former storage method is called “general 
mode,” the latter “compressed mode.”  Detailed 
definition of storage modes are as follows. 
 
• General mode 

General mode is shown in Fig. 2.8. 
 
• Compressed mode for symmetric matrix 

As shown in Fig. 2.9, the elements of the diagonal and 
the lower triangular portions of the symmetric dense 
matrix A are stored row by row in the one-dimensional 
array A. 

 
• Compressed mode for Hermitian matrix 

The elements of the diagonal and the lower triangular 
portions of the Hermitian matrix A are stored in a two-
dimensional array A as shown in Fig. 2.10. 
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A

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

=























11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

NOTE: · Correspondence aij → A (I,J)
· K is the adjustable dimension

K

5

L

Two-demensional array A(K,L)

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

 
Fig. 2.8  Storage of unsymmetric dense matrices 
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11

21 21 22

31 31 32 32 33

41 41 42 42 43 43 44

51 51 52 52 53 53 54 54 55

Note: Correspondence aij → A(I,J)(i ≥ j)
bij → A(J,I)(i > j)

Two-demensional array A(K,L)

L

K

5

a11 b21 b31 b41 b51

a21 a22 b32 b42 b52

a31 a32 a33 b43 b53

a41 a42 a43 a44 b54

a51 a52 a53 a54 a55

 
Fig. 2.10  Storage of Hermitian matrices
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Fig. 2.9  Storage of symmetric dense matrices 

• Compressed mode for symmetric band matrix  
The elements of the diagonal and the lower band 
portions of a symmetric band matrix A are stored row 
by row in a one-dimensional array A as shown in Fig. 
2.11. 

• Compressed mode for band matrix 
The elements of the diagonal and the upper and lower 
band portions of an unsymmetric band matrix A are 
stored row by row in a one-dimensional array A as 
shown in Fig. 2.12. 
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+−→≤

h

n

hhhn

hhJhIAahj

JIIAah+i

ij

ij

One dimensional
array A of size NT

NT

Fig. 2.11  Storage of symmetric band matrices 
 
Vectors 
Vector is stored as shown in Fig. 2.13. 
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Note:
· NT =nh

h =min(h1+h2+1,n)

where h2: Upper band width
h1: Lower band width
n : Order of metrix

· * Indicates an arbitrary value a54

a55

a45
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One dimensinal array A of size NT
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*
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a a
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Fig. 2.12  Storage of unsymmetric band matrices
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Fig. 2.13  Storage of vectors 

Coefficients of polynomial equations 
The general form of polynomial equation is shown in 
(2.16) 

0.... 1
1

10 =++++ −
−

nn
nn axaxaxa  (2.16) 

  Regarding the coefficients as the elements of a vector, 
the vector is stored as shown in Fig. 2.14. 
 
Coefficients of approximating polynomials 
The general form of approximating polynomial is shown 
in (2.17). 

( ) n
nn xcxcxccxP ++++= ....2

210  (2.17) 

  Regarding the coefficients as the elements of a vector, 
the vector is stored as shown in Fig. 2.15. 

One dimensional array A of size n+1
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Fig. 2.14  Storage of the coefficients of polynomial equations 

One dimensional array A of size n+1
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Fig. 2.15  Storage of the coefficients of approximating polynomials 
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2.9 UNIT ROUND OFF 

SSL II subroutines frequently use the unit round off. 
The unit round off is a basic concept in error analysis 

for floating point arithmetic. 
 
Definition 
The unit round off of floating-point arithmetic are 

defined as follows: 
 
u = M1-L / 2, for (correctly) rounded arithmetic 
u = M1-L, for chopped arithmetic, 
 
where M is the base for a floating-point number system, 

and L is the number of digits used to hold the mantissa. 
 
In SSL II, the unit round off is used for convergence 

criterion or testing loss of significant figures. 
Error analysis for floating point arithmetic is covered in 

the following references: 
 
[1] Yamashita, S. 

On the Error Estimation in Floating-point 
Arithmetic 
Information Processing in Japan Vol. 15, PP.935-
939, 1974 

[2] Wilkinson, J.H. 
Rounding Errors in Algebraic Process 
Her Britannic Majesty’s Stationery Office, 
London 1963 

 

2.10 ACCUMULATION OF SUMS 

Accumulation of sums is often used in numerical 
calculations.  For instance, it occurs in solving a system 
of linear equations as sum of products, and in 
calculations of various vector operations. 
  On the theory of error analysis for floating point 
arithmetic, in order to preserve the significant figures 
during the operation, it is important that accumulation of 
sums must be computed as exactly as possible. 
  As a rule, in SSL II the higher precision accumulation is 
used to reduce the effect of round off errors. 

2.11 Computer Constants 

This manual uses symbols to express computer hardware 
constants.  The symbols are defined as follows: 
•  flmax: Positive maximum value for the floating-point 

number system 
(See AFMAX in Appendix A.) 

•  flmin: Positive minimum value for the floating-point 
number system 
(See AFMIN in Appendix A.) 

•  tmax: Upper limit of an argument for a trigonometric 
function (sin and cos) 

 
Upper limit of argument Application 
Single 
precision 

8.23 x 105 FACOM M series 
FACOM S series 

Double 
precision 

3.53 × 1015 SX/G 100/200 series 
FM series 
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CHAPTER 3 
LINEAR ALGEBRA 

3.1 OUTLINE 

Operations of linear algebra are classified as in Table 3.1 
depending on the structure of the coefficient matrix and 
related problems. 
 
Table 3.1  Classification of operation for linear equations 

Structures Problem Item 
Conversion of matrix storage mode 3.2 

Matrix manipulation 3.3 
Systems of linear equations  
Matrix inversion 

3.4 
Dense 
matrix 

Least squares solution 3.5 
Matrix manipulation 3.3 Band 

matrix Systems of linear 
equations 

Direct method 3.4 

 
  This classification allows selecting the most suitable 
solution method according to the structure and form of 
the matrices when solving system of linear equations.  
The method of storing band matrix elements in memory 
is especially important.  It is therefore important when 
performing linear equations to first determine the 
structure of the matrices. 

3.2   MATRIX STORAGE MODE 
CONVERSION 

In mode conversion the storage mode of a matrix is 
converted as follows: 

Real general matrix

Real symmetric matrix Real symmetric band matrix

 
  The method to store the elements of a matrix depends 
on the structure and form of the matrix. 
For example, when storing the elements of a real 
symmetric matrix, only elements on the diagonal and 
lower triangle portion are stored.  (See Section 2.8). 
  Therefore, to solve systems of linear equations, SSL II 
provides various subroutines to handle different matrices.  
The mode conversion is required when the subroutine 
assumes a particular storage mode. The mode conversion 
subroutines shown in Table 3.2 are provided for this 
purpose. 

3.3   MATRIX MANIPULATION 

In manipulating matrices, the following basic 
manipulations are performed. 

 

Table 3.2  Mode conversion subroutines 

After 
conversion 

Before 
conversion 

General mode 
Compressed mode 

for symmetric 
matrices 

Compressed mode 
for symmetric 
band matrices 

General mode  CGSM  
(A11-10-0101) 

CGSBM 
 (A11-40-0101) 

Compressed mode for 
symmetric matrices 

CSGM 
(A11-10-201) 

 CSSBM 
(A11-50-0101) 

Compressed mode for 
symmetric band matrices 

CSBGM 
 (A11-40-0201) 

CSBSM 
 (A11-50-0201) 
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Table 3.3  Subroutines for matrix manipulation 

 
A 

B or x Real general 
matrix 

Real symmetric 
matrix 

Vector 

Real general matrix Addition AGGM  
(A21-11-0101) 

  

 Subtraction SGGM 
 (A21-11-0301) 

  

 Multiplication MGGM 
 (A21-11-0301) 

MGSM 
 (A21-11-0401) 

MAV 
(A21-13-0101) 

Complex general matrix Multiplication   MCV 
 (A21-15-0101) 

Real symmetric matrix Addition  ASSM 
 (A21-12-0101) 

 

 Subtraction  SSSM 
 (A21-12-0201) 

 

 Multiplication MSGM 
 (A21-12-0401) 

MSSM 
 (A21-12-0301) 

MSV 
 (A21-14-0101) 

Real general band matrix Multiplication   MBV 
 (A51-11-0101) 

Real symmetric band matrix Multiplication   MSBV 
(A51-14-0101) 

 
• Addition/Subtraction of two matrices A ± B 
• Multiplication of a matrix by a vector Ax 
• Multiplication of two matrices AB 
 
SSL II provides the subroutines for matrix manipulation, 
as listed in Table 3.3. 
 
Comments on use 
 
These subroutines for multiplication of matrix by 

vector are designed to obtain the residual vector as well, 
so that the subroutines can be used for iterative methods 
for linear equations. 

3.4 LINEAR EQUATIONS AND 
MATRIX INVERSION (DIRECT METHOD) 

This section describes the subroutines that is used to 
solve the following problems. 
• Solve systems of linear equations 

Ax = b 

A is an n × n matrix, x and b are n-dimensional 
vectors. 

• Obtain the inverse of a matrix A. 
• Obtain the determinant of a matrix A. 
 
In order to solve the above problems, SSL II provides 

the following basic subroutines ( here we call them 
component subroutines) for each matrix structure. 

 
(a) Numeric decomposition of a coefficient matrix 
(b) Solving based on the decomposed coefficient matrix 
(c) Iterative refinement of the initial solution 
(d) Matrix inversion based on the decomposed matrix 
 
  Combinations of the subroutines ensure that systems of 
linear equations, inverse matrices, and the determinants 
can be obtained. 
 
• Linear equations 

The solution of the equations can be obtained by 
calling the component routines consecutively as 
follows: 

 
   : 
CALL Component routine from (a) 
CALL Component routine from (b) 
   : 

 
• Matrix inversion 

The inverse can be obtained by calling the above 
components routines serially as follows: 

 
   : 
CALL Component routine from (a) 
CALL Component routine from (b) 
   : 

 
The inverse of band matrices generally result in dense 
matrices so that to obtain such the inverse is not 
beneficial.  That is why those component routines for 
the inverse are not prepared in SSL II. 
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• Determinants 
There is no component routine which computes the 
values of determinant.  However, the values can be 
obtained from the elements resulting from 
decomposion (a). 

 
  Though any problem can be solved by properly 
combining these component routines, SSL II also has 
routines, called standard routines, in which component 
routines are called internally. It is recommended that the 
user calls these standard routines. 
  Table 3.4 lists the standard routines and component 
routines. 
 
Comments on uses 
• Iterative refinement of a solution 

In order to refine the accuracy of solution obtained by 
standard routines, component routines (c) should be 
successively called regarding the solution as the initial 
approximation.  In addition, the component routine (c) 
serves to estimate the accuracy of the initial 
approximation. 

 
• Matrix inversion 

Usually, it is not advisable to invert a matrix when 
solving a system of linear equations. 

Ax = b (3.1) 

  That is, in solving equations (3.1), the solution should 
not be obtained by calculating the inverse A-1 and then 
multiplying b by A-1 from the left side as shown in (3.2). 

x = A-1 b (3.2) 

  Instead, it is advisable to compute the LU-
decomposition of A and then perform the operations 
(forward and backward substitutions) shown in (3.3). 

yUx
bLy

=
=

 (3.3) 

  Higher operating speed and accuracy can be attained 
by using method (3.3).  The approximate number of 
multiplications involved in the two methods (3.2) and 
(3.3) are compared in (3.4). 

3(3.3)For 

(3.2)For 
3

23

/n

nn +
 (3.4) 

Therefore, matrix inversion should only be performed 
when absolutely necessary. 
 

 
• Equations with identical coefficient matrices 

When solving a number of systems of linear equations 
as in (3.5) where the coefficient matrices are the 
identical and the constant vectors are the different, 











=

=
=

mm bAx

bAx
bAx

:
22

11

 (3.5) 

  it is not advisable to decompose the coefficient A for 
each equation.  After decomposing A when solving the 
first equation, only the forward and backward 
substitution shown in (3.3) should be performed for 
solving the other equations.  In standard routines, a 
parameter ISW is provided for the user to control 
whether or not the equations is the first one to solve with 
the coefficient matrix. 
 
Notes and internal processing 
When using subroutines, the following should be noted 
from the viewpoint of internal processing. 
 
• Crout’s method, modified Cholesky’s method 

In SSL II, the Crout’s method is used for decomposing a 
general matrix.  Generally the Gaussian elimination and 
the Crout’s method are known for decomposing (as in 
(3.6)) general matrices. 

A = LU (3.6) 

  where:  L is a lower triangular matrix and U is an upper 
triangular matrix. 
 
  The two methods require the different calculation order, 
that is, the former is that intermediate values are 
calculated during decomposition and all elements are 
available only after decomposition.  The latter is that 
each element is available during decomposition.  
Numerically the latter involves inner products for two 
vecters, so if that calculations can be performed 
precisely, the final decomposed matrices are more 
accurate than the former. 
  Also, the data reference order in the Crout’s method is 
more localized during the decomposition process than in 
the Gaussian method.  Therefore, in SSL II, the Crout’s 
method is used, and the inner products are carried out 
minimizing the effect of rounding errors. 
  On the other hand, the modified Cholesky method is 
used for positive-definite symmetric matrices, that is, the 
decomposition shown in (3.7) is done. 
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Table 3.4  Standard and component routines 

 Standard routines Component routines 
Problem Basic 

functions 
Types 
of matrix 

Systems of 
linear equations (a) (b) (c) (d) 

Real general matrix LAX 
(A22-11-0101) 

ALU 
(A22-11-0202) 

LUX 
(A22-11-0302) 

LAXR 
(A32-11-0401) 

LUIV 
(A22-11-0602) 

Complex general 
matrix 

LCX 
(A22-15-0101) 

CLU 
(A22-15-0202) 

CLUX 
(A22-15-0302) 

LCXR 
(A22-15-0401) 

CLUIV 
(A22-15-0602) 

Real symmetric 
matrix 

LSIX 
(A22-21-0101) 

SMDM 
(A22-21-0202) 

MDMX 
(A22-21-0302) 

LSIXR 
(A22-21-0401) 

 

Real positive-
definite symmetric 
matrix 

LSX 
(A22-51-0101) 

SLDL 
(A22-51-0202) 

LDLX 
(A22-51-0302) 

LSXR 
(A22-51-0401) 

LDIV 
(A22-51-0702) 

Real general band 
matrix 

Real tridiagonal
matrix







 

LBX1 
(A52-11-0101) 

LTX
(A52 - 11- 0501)







 

BLU1 
(A52-11-0202) 

BLUX1 
(A52-11-0302) 

LBX1R 
(A52-11-0401) 

 

Real symmetric 
band matrix 

LSBIX 
(A52-21-0101) 

SBMDM 
(A52-21-0202) 

BMDMX 
(A52-21-0302) 

  

Real positive-
definite symmetric 
band matrix  

Positive - definite
symmetric
tridiagonal matrix












 

LSBX 
(A52-31-0101) 

 
LSTX 

(A52-31-0501) 

SBDL 
(A52-31-0202) 

BDLX 
(A52-31-0302) 

LSBXR 
(A52-31-0401) 

 

 
A = LDLT (3.7) 

  where:  L is a lower triangular matrix and D is a 
diagonal matrix. 
 
Matrices are decomposed as shown in Table 3.5. 
 
Table 3.5  Decomposed matrices 

Kinds of matrices Contents of decomposed matrices 
General matrices PA = LU 

L: Lower triangular matrix 
U: Unit upper triangular matrix 
P is a permutation matrix. 

Positive-definite 
symmetric 
matrices 

A = LDLT 
L: Unit lower triangular matrix 
D: Diagonal matrix 
To minimize calculation, the 
diagonal matrix is given as D-1 

 
• Pivoting and scaling 

Let us take a look at decomposition of the non-
singular matrix given by (3.6). 

A =










0 0 10
2 0 0 0
. .
. .

 (3.8) 

  In this state, LU decomposition is impossible.  And also 
in the case of (3.9) 

A =










0 0001 10
10 10

. .
. .

 (3.9) 

  Decomposing by floating point arithmetic with the only 
three working digits (in decimal) will cause unstable 

solutions.  These unfavorable conditions can frequently 
occur when the condition of a matrix is not proper.  This 
can be avoided by pivoting, which selects the element 
with the maximum absolute value for the pivot. 
  In the case of (3.9), problems can be avoided by 
exchanging the first row with the second row. 
  In order to perform pivoting, the method used to select 
the maximum absolute value must be unique.  By 
multiplying all of the elements of a row by a large enough 
constant, any absolute value of non-zero element in the 
row can be made larger than those of elements in the 
other rows. 
  Therefore, it is just as important to equilibrate the rows 
and columns as it is to validly determine a pivot element 
of the maximum size in pivoting.  SSL II uses partial 
pivoting with row equilibration. 
  The row equilibration is performed by scaling so that 
the maximum absolute value of each row of the matrix 
becomes 1.  However, actually the values of the elements 
are not changed in scaling; the scaling factor is used 
when selecting the pivot. 
  Since row exchanges are performed in pivoting, the 
history data is stored as the transposition vector.  The 
matrix decomposition which accompanies this partial 
pivoting can be expressed as; 

PA = LU (3.10) 

  Where P is the permutation matrix which performs row 
exchanges. 
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• Transposition vectors 
As mentioned above, row exchange with pivoting is 
indicated by the permutation matrix P of (3.10) in SSL 
II.  This permutation matrix P is not stored directly, but 
is handled as a transposition vector.  In other words, in 
the j-th stage (j = 1, ... , n) of decomposition, if the i-th 
row (i ≥ j) is selected as the j-th pivotal row, the i-th 
row and the j-th row of the matrix in the decomposition 
process are exchanged and the j-th element of the 
transposition vector is set to i. 

 
• How to test the zero or relatively zero pivot  

In the decomposition process, if the zero or relatively 
zero pivot is detected, the matrix can be considered to 
be singular.  In such a case, proceeding the calculation 
might fail to obtain the accurate result.  In SSL II, 
parameter EPSZ is used in such a case to determine 
whether to continue or discontinue processing.  In other 
words, when EPSZ is set to 10-s and, if a loss of over s 
significant digits occurred, the pivot might be 
considered to be relatively zero. 

 
• Iterative refinement of a solution 

To solve a system of linear equations numerically 
means to obtain only an approximate solution to: 

Ax = b (3.11) 

  SSL II provides a subroutine to refine the accuracy of 
the obtained approximate solution. 
  SSL II repeats the following calculations until a certain 
convergence criterion is satisfied. 

)()( ss Axbr −=  (3.12) 
)()( ss rAd =  (3.13) 

)()()1( sss dxx +=+  (3.14) 

where s = 1, 2, ... and x(1) the initial solution obtained 
from (3.11). 
  The x(2) could become the exact solution of (3.11) if all 
the computations from (3.12) through (3.14) were carried 
out exactly, as can be seen by the following. 

( ) ( ) ( )( ) ( ) ( )Ax A x d Ax r b2 1 1 1 1= + = + =  

  Actually, however, rounding errors will be generated in 
the computation of Eqs. (3.12), (3.13) and (3.14). 
  If we assume that rounding errors occur only when the 
correction d(s) is computed in Eq. (3.13), d(s) can be 
regarded to be the exact solution of the following 
equation 

( ) )()( ss rdEA =+  (3.15) 

where E is an error matrix. 

From Eqs. (3.12), (3.14) and (3.15), the following 
relationships can be obtained. 

( )[ ] ( )xxAEAIxx −+−=− −+ )1(1)1( ss  (3.16) 

( )[ ] )1(1)1(
rEAAIr

ss −+
+−=  (3.17) 

  As can be seen from Eqs. (3.16) and (3.17), if the 
following conditions are satisfied, x (s+1) and r (s+1) 
converge to the solutions X and 0, respectively, as s→∞. 

( ) ( ) 1, 11 <+−+−
∞

−

∞

− EAAIAEAI  

In other words, if the following condition is satisfied, an 
refined solution can be obtained. 

2/11 <⋅
∞

−
∞ AE  (3.18) 

  This method described above is called the iterative 
refinement of a solution 
  The SSL II repeats the computation until when the 
solution can be refined by no more than one binary digit. 
  This method will not work if the matrix A conditions are 
poor. 

∞
−1A  may become large, so that no refined 

solution will be obtained. 
 
• Accuracy estimation for approximate solution 

Suppose e(1) (= x(1) – x) is an error generated when the 
approximate solution x(1) is computed to solve a linear 
equations.  The relative error is represented by 

∞∞
)1()1( / xe . 

From the relationship between d(1) and e(1), and (3.12), 
(3.15), we obtain Eq.(3.19). 

( ) ( ) ( ) )1(11)1(1)1( eEAIAxbEAd
−−− +=−+=  (3.19) 

  If the iterative method satisfies the condition (3.18) and 
converges, 

∞
)1(d  is assumed to be almost equal to 

∞
)1(e .  Consequently, a relative error for an 

approximate solution can be estimated by 
∞

)1(d / 
∞

)1(x . 

3.5 LEAST SQUARES SOLUTION 

Here, the following problems are handled: 
• Least squares solution 
• Least squares minimal norm solution 
• Generalized inverse 
• Singular value decomposition 
  SSL II provides the subroutines for the above functions 
as listed in Table 3.6. 
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Table 3.6  Subroutines for m × n matrices 

 Kinds of matrix 
Function 

 
Real matrix 

Least squares solution LAXL 
(A25-11-0101) 

Iterative refinement of the 
least squares solution 

LAXLR 
(A25-11-0401) 

Least squares minimal 
norm solution 

LAXLM 
(A25-21-0101) 

Generalized inverse GINV 
(A25-31-0101) 

Singular value 
decomposition 

ASVD1 
(A25-31-0201) 

 
• Least squares solution 

The least squares solution means the solution x~  which 
minimizes 2bAx − , where A is an m × n matrix (m ≥ 

n, rank (A) = n), x is an n-dimensional vector and b is 
an m-dimensional vector. 
  SSL II has two subroutines which perform the 
following functions. 
− Obtaining the least squares solution 
− Iterative refinement of the least squares solution 

 
• Least squares minimal norm solution 

The least squares minimal norm solution means the 
solution x+ which minimizes 2x  within the set of x 

where 2bAx −  has been minimized, where A is an m 

× n matrix, x is an n-dimensional vector and b is an m-
dimensional vector. 

• Generalized inverse 
When n × m matrix X satisfies the following equations 
in (3.20) for a given m × n matrix A, it is called a 
Moor-Penrose generalized inverse of the matrix A. 

( )
( ) 












=

=

=
=

XAXA

AXAX

XXAX
AAXA

T

T  (3.20) 

  The generalized inverse always exists uniquely.  The 
generalized inverse X of a matrix A is denoted by A+ 
  SSL II calculates the generalized inverse as above. 
  SSL II can handle any m × n matrices where: 
 

− m is larger than n 
− m is equal to n 
− m is smaller than n 

 
• Singular value decomposition 

Singular value decomposition is obtained by 
decomposing a real matrix A of m × n as shown in 
(3.21). 

 A = U0ΣΣΣΣ0V T (3.21) 

  Here U0 and V are orthogonal matrices of m × m and n × 
n respectively, ΣΣΣΣ    0 is an m × n diagonal matrix where 
ΣΣΣΣ 0=diag(σ i) and σ i ≥ 0.  The σ i are called singular 
values of a real matrix A.  Suppose m ≥ n in real matrix A 
with matrix m × n.  Since ΣΣΣΣ 0 is an m × n diagonal matrix, 
the first n columns of U0 are used for U0ΣΣΣΣ 0V T in (3.21).  
That is, U0 may be considered as an n × n matrix.  Let U 
be this matrix, and let ΣΣΣΣ  be an n × n matrix consisting of 
matrix ΣΣΣΣ 0 without the zero part, (m-n) × n, of ΣΣΣΣ    0.  When 
using matrices U and ΣΣΣΣ , if m is far larger than n, the 
storage space can be reduced.  So matrices U and ΣΣΣΣ  are 
more convenient than U0 and ΣΣΣΣ 0 in practice.  The same 
discussion holds when m < n, in which case only the first 
m raws of V T are used and therefore V T can be 
considered as m × n matrix. 
  Considering above ideas SSL II performs the following 
singular value decomposition. 

A = UΣΣΣΣ V T (3.22) 

where: l = min (m, n) is assumed and U is an m × l matrix, 
ΣΣΣΣ  is an l × l diagonal matrix where 
ΣΣΣΣ  = diag (σ i), and σ i ≥ 0, and V is an n × l matrix. 
When l = n (m ≥ n), 

nIVVVVUU === TTT  

when  l = m ( m < n ), 

mIVVUUUU === TTT  

Matrices U, V and ΣΣΣΣ  which are obtained by computing 
singular values of matrix A are used and described as 
follows; 
  (For details, refer to reference [86],) 
–  Singular values σ i, i = 1, 2, ... , l are the positive 
square roots of the largest l eigenvalues of matrices ATA 
and AAT.  The i-th column of matrix V is the eigenvector 
of matrix ATA corresponding to eigenvalue σ i

2.  The i-th 
column of matrix U is the eigenvector of matrix AAT 
corresponding to eigenvalue σ i

2.  This can be seen by 
multiplying AT = VΣΣΣΣ U T from the right and left sides of 
(3.22) and apply U TU = V TV = Il as follows: 

  ATAV = VΣΣΣΣ 2 (3.23) 
  AATU = UΣΣΣΣ 2 (3.24) 

– Condition number of matrix A 
If σ i > 0, i = 1, 2, ..., l, then condition number of matrix 
A is given as follows; 

  cond(A) = σ 1 / σ l (3.25) 

– Rank of matrix A 
If σ r > 0, and σ r+1 = ... = σ l = 0, then the rank of A is 
given as follows:
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rank (A) = r (3.26) 

– Basic solution of homogeneous linear equations Ax = 0 
and AT y = 0 
The set of non-trivial linearly independent solutions of 
Ax = 0 and AT y = 0 is the set of those columns of 
matrices V and U, respectively, corresponding to 
singular values σ i = 0.  This can be easily seen from 
equations AV = UΣΣΣΣ  and  ATU = VΣΣΣΣ . 

– Least squares minimal norm solution of Ax = b. 
  The solution x is represented by using singular value 
decomposition of A ; 

  x = VΣΣΣΣ +U Tb (3.27) 

where diagonal matrix ΣΣΣΣ + is defined as follows: 

  ),...,,diag( 21
++++ σσσ=Σ l  (3.28) 

  




=σ
>σσ

=σ+

0  ,       0
0  , /1

i

ii
i  (3.29) 

For details, refer to “Method” of subroutine LAXLM. 
 
– Generalized inverse of a matrix 

Generalized inverse A+ of A is given after decomposing 
A into singular value as follows; 

  A+ = VΣΣΣΣ +U T (3.30) 

Comments on uses 
– Systems of linear equations and the rank of coefficient 

matrices 
Solving the systems of linear equations (Ax = b) with 
an m × n matrix as coefficient, the least squares 
minimal norm solution can be obtained regardless of 
the number of columns or rows, or ranks of coefficient 
matrix A.  That is, the least squares minimal norm 
solution can be applied to any type of equations.  
However, this solution requires a great amount of 
calculation for each process.  If the coefficient matrix is 
rectangular and number of rows is larger than that of 
columns and the rank is full (full rank, rank(A) = n), 
you should use the subroutine for least squares solution 
because of less calculation.  In this case, the least 
squares solution is logically as least squares minimal 
norm solution. 

 
• Least squares minimal norm solution and generalized 

inverse 
The solution of linear equations Ax = b with m × n 
matrix A (m ≥ n or m < n, rank(A) ≠ 0) is not uniquely 
obtained.  However, the least squares minimal norm 
solution always exists uniquely. 
This solution can be calculated by x = A+ b after 
generalized inverse A+ of coefficient matrix A is 
obtained.  This requires a great amount of calculation.  
It is advisable to use the subroutine for the least 

squares minimal norm solution, for the sake of high 
speed processing.  This subroutine provides parameter 
ISW by which the user can specify to solve the 
equations with the same coefficient matrix with less 
calculation or to solve the single equation with 
efficiency. 

 
• Equations with the identical coefficient matrix 

The least squares solution or least squares minimal 
norm solution of a system of linear equations can be 
obtained in the following procedures; 
− Decomposition of coefficient matrices 

For the least squares solution a matrix A is 
decomposed into triangular matrices , and for the 
least squares minimal norm solution A is 
decomposed into singular values 

− Obtaining solution 
Backward substitution and multiplication of matrices 
or vectors are performed for the least-squares 
solution and the least squares minimal norm solution, 
respectively. 

  When obtaining the least squares solution or least 
squares minimal norm solution of a number of systems 
with the identical coefficient matrices, it is not advisable 
to repeat the decomposition for each system. 

mm bAx

bAx
bAx

=

=
=

:
22

11

 

  In this case, the matrix needs to be decomposed only 
once for the first equations, and the decomposed form 
can be used for subsequent systems , thereby reducing the 
amount of calculation. 
  SSL II provides parameter ISW which can controls 
whether matrix A is decomposed or not. 
 
• Obtaining singular values 

The singular value will be obtained by singular value 
decomposition as shown in (3.31): 

A = UΣΣΣΣ V T (3.31) 

  As shown in (3.31), matrices U and V are involved 
along with matrix ΣΣΣΣ  which consists of singular values.  
Since singular value decomposition requires a great 
amount of calculation, the user need not to calculate U 
and V when they are no use.  SSL II provides parameter 
ISW to control whether matrices U or V should be 
obtained.  SSL II can handle any type of m × n matrices 
(m > n, m = n, m < n). 
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CHAPTER 4 
EIGENVALUES AND EIGENVECTORS 

4.1 OUTLINE 

Eigenvalue problems can be organized as show in Table 
4.1 according to the type of problem (Ax =λx, Ax =λBx) 
and the shape (dense, band), type (real, complex), and 
form (symmetric, unsymmetric) of the matrices.  The 
reader should refer to the appropriate section specified 
in the table. 
 
Table 4.1   Organization of eigenvalue problem 

 
Shape of 

matrix 

 
Type of 
problem 

 
Matrix type and form 

Expla-
nation 
section 

Dense 
matrix 

Ax =λx Real matrix 
Complex matrix 
Real symmetric matrix 
Hermitian matrix 

4.2 
4.3 
4.4 
4.5 

 Ax =λBx Real symmetric matrix 4.7 
Band 
matrix 

Ax =λx Real symmetric band 
matrix 

4.6 

 Ax =λBx Real symmetric band 
matrix 

4.8 

 
Note: 
Refer to the section on a real symmetric matrix concerning a 
real symmetric tridiagonal matrix. 

4.2 EIGENVALUES AND 
EIGENVECTORS OF A REAL MATRIX 

  A standard sequenses of procedures are shown here 
when SSL II routines are used to solve the eigenvalue 
problems. 
  SSL II provides the following: 
− Standard routines by which the entire procedures for 

obtaining eigenvalues and eigenvectors of real 
matrices may be performed at one time. 

− Component routines performing component functions. 
  For details, see Table 4.2. 
User problems are classified as follows : 
• Obtaining all eigenvalues 
• Obtaining all eigenvalues and corresponding 

eigenvectors (or selected eigenvectors) 
  In the first and second items that follow, the use of 
component routines and standard routines is explained 
by describing their procedures.  Further comments on 
processing are in the third item. 
  When obtaining eigenvalues and eigenvectors of a real 
matrix, the choice of calling the various component 
routines or calling the standard routine is up to the user.  
However, the standard routine, which is easier to use, is 
recommended to be called. 

Table 4.2  Subroutines used for standard eigenproblem of a real matrix 

Level Function Subroutine name 

Standard routines Eigenvalues and eigenvectors of a real matrix 
EIG1 

(B21-11-0101) 

Balancing of a real matrix 
BLNC 

(B21-11-0202) 

Reduction of a real matrix to a Hessenberg matrix 
HES1 

(B21-11-0302) 

Obtaining the eigenvalues of a real Hessenberg 
matrix 

HSQR 
(B21-11-0402) 

Obtaining the eigenvectors of a real Hessenberg 
matrix 

HVEC 
(B21-11-0502) 

Back transformation to and normalization of the 
eigenvectors of a real matrix 

HBK1 
(B21-11-0602) 

Component 
routines 

Normalization of the eigenvectors of a real matrix 
NRML 

(B21-11-0702) 
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  In addition, obtaining the eigenvectors corresponding to 
specified eigenvalues can only be done by calling a series 
of component routines. 
 
Obtaining all eigenvalues 
In the following programs, all eigenvalues of the real 
matrix A are obtained through the use of the component 
routines shown in steps 1), 2), 3). 
 

   : 
CALL BLNC (A, K, N, DV, ICON) 1) 
IF (ICON .EQ. 30000) GO TO 1000 
CALL HES1 (A, K, N, PV, ICON) 2) 
CALL HSQR (A, K, N, ER, EI, M,ICON) 
  3) 
IF (ICON .EQ. 20000) GO TO 2000 
   : 

 
1) A is balanced, if balancing is not necessary, this step 

is omitted. 
2) Using the Householder method, A is reduced to a 

Hessenberg matrix. 
3) By calculating the eigenvalues of the Hessenberg 

matrix using the double QR method, the eigenvalues 
of A are obtained. 

 
Obtaining all eigenvalues and corresponding 
eigenvectors (or selected eigenvectors) 
All eigenvalues and corresponding eigenvectors of real 
matrix A can be obtained by calling the component 
routines shown in 1) to 5) or by calling the standard 
routine shown in 6). 
 

   : 
CALL BLNC (A, K, N, DV, ICON) 1) 
IF (ICON .EQ. 30000) GO TO 1000 
CALL HES1 (A, K, N, PV, ICON) 2) 
DO 10 I = 1, N 
DO 10 J = 1, N 
AW (J, I) = A (J, I) 

10 CONTINUE 
CALL HSQR (A, K, N, ER, EI, M,ICON) 
  3) 
IF (ICON .GE. 20000) GO TO 2000 
DO 20 I = 1, M 
IND (I) = 1 

20 CONTINUE 
CALL HVEC (AW, K, N, ER, EI, IND, 

*M, EV, MK, VW, ICON) 4) 
IF (ICON .GE. 20000) GO TO 3000 
CALL HBK1 (EV, K, N, IND, M, A, PV,  

* DV, ICON)  5) 
   : 

 
or standard routine. 
 

   : 
CALL EIG1 (A, K, N, MODE, ER, EI, EV, VW, ICON) 6) 
IF(ICON .GE. 20000) GO TO 1000 
   : 

 
1), 2), and 3) were explained in the preceding example 

“Obtaining all eigenvalues”.  However since 3) 
destroys parameter A, A must be stored in array AW 
after 2) so that contents of A before 3) can be used in 
4). 

4) The eigenvectors corresponding to the eigenvalues 
are obtained using the inverse iteration method.  The 
parameter IND is an index vector which indicates the 
eigenvalues from which eigenvectors are to be 
obtained.  The user can select eigenvectors using this 
parameter. 

5) Back transformation of the eigenvectors obtained in 
4) is performed.  The transformed eigenvectors are 
normalized at the same time. 
  From the processing of 1) and 2), the eigenvectors of 
4) are not the eigenvectors of real matrix A.  The 
eigenvectors of A are obtained by performing the 
post-processing corresponding to 1) and 2). 
  Each column (i.e., each eigenvector) of parameter 
EV is normalized such that its Euclidean norm is 1. 

6) When obtaining all eigenvalues and corresponding 
eigenvectors of a real matrix, the functions of 1) to 5) 
can be performed by calling this standard routine, 
however, instead of using the inverse iteration method, 
all eigenvectors are obtained at a time by multiplying 
all the transformation matrices obtained successively.  
This calculation will not work if even one eigenvalue 
is missing. 
However, if eigenvalues are close roots or multiple 
roots, eigenvectors can be determined more 
accurately using this method than the inverse iteration 
method.  The standard routine 6) does not always 
perform the process in step 1).  The parameter MODE 
can be used to specify whether step 1) is performed or 
not. 

 
Balancing of matrices 
Errors on calculating eigenvalues and eigenvectors can be 
reduced by reducing the norm of real matrix A.  Routine 
1) is used for this purpose.  By diagonal similarity 
transformation the absolute sum of row i and that of 
column i in A is made equal (this is called balancing). 
  Symmetric matrices and Hermitian matrices are already 
balanced. Since this method is especially effective when 
magnitudes of elements in A differ greatly, balancing 
should be done. Except in certain cases (i.e. when the 
number of the order of A is small), balancing should not 
take more than 10% of the total processing time. 

4.3 EIGENVALUES AND 
EIGENVECTORS OF A COMPLEX 
MATRIX 

An example will be used to show how the various SSL II 
subroutines obtain eigenvalues and eigenvectors of a 
complex matrix. 
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Table 4.3  Subroutines used for standard eigenproblem of a complex matrix 

Level Function Subroutine name 

Standard routine Eigenvalues and eigenvectors of a complex matrix CEIG2  
(B21-15-0101) 

 Balancing of a complex matrix CBLNC 
(B21-15-0202) 

 Reduction of a complex matrix to a complex 
Hessenberg matrix 

CHES2 
(B21-15-0302) 

 
Component 
routine 

Obtaining the eigenvalues of a complex Hessenberg 
matrix 

CHSQR 
(B21-15-0402) 

 Obtaining the eigenvectors of a complex Hessenberg 
matrix 

CHVEC 
(B21-15-0502) 

 Back transformation to the eigenvectors of a complex 
matrix 

CHBK2 
(B21-15-0602) 

 Normalization of the eigenvectors of a complex matrix CNRML 
(B21-15-0702) 

 
SSL II provides the following: 
− Standard routines by which the entire procedures for 

obtaining eigenvalues and eigenvectors of complex 
matrices may be performed at one time. 

− Component routines performing component functions  
  For details, see Table 4.3 
User problems are classified as follows: 
• Obtaining all eigenvalues 
• Obtaining all eigenvalues and corresponding 

eigenvectors (or selected eigenvectors) 
  In the first and second items that follow, the use of 
component routines and standard routines are explained 
by describing their procedures. 
  When obtaining all eigenvalues and corresponding 
eigenvectors whether the standard routines only or the 
various corresponding component routines are used is up 
to the user.  However it is recommended to call the 
former for its easy handling. 
 
Obtaining all eigenvalues 
In the following programs, all eigenvalues of the complex 
matrix A are obtained through the use of the component 
routines shown in steps 1), 2), and 3). 
 

CALL CBLNC (ZA, K, N, DV, ICON) 1) 
IF (ICON. EQ. 30000) GO TO 1000 
CALL CHES2 (ZA, K, N, IP, ICON) 2) 
CALL CHSQR (ZA, K, N, ZE, M, ICON) 3) 
IF (ICON. GE. 15000) GO TO 2000 

 
1) A is balanced.  If balancing is not necessary, this step 

is omitted. 
2) Using the stabilized elementary transformation, A is 

reduced to a complex Hessenberg matrix. 
3) By calculating the eigenvalues of the complex 

Hessenberg matrix using the complex QR method, the 
eigenvalues of A are obtained. 

 
Obtaining all eigenvalues and the corresponding 
eigenvectors (or selected eigenvectors) 
All eigenvalues and the corresponding eigenvectors of a 
complex matrix A can be obtained by calling the 
component routines shown in 1) to 6) or by calling the 
standard routine shown in 7). 

 

   : 
CALL CBLNC (ZA, K, N, DV, ICON) 1) 
IF (ICON. EQ. 30000) GO TO 1000 
CALL CHES2 (ZA, K, N, IP, ICON) 2) 
DO 10 J = 1, N 
DO 10 I = 1, N 
ZAW (I, J) = ZA (I, J) 

10 CONTINUE 
CALL CHSQR (ZA, K, N, ZE, M, ICON) 3) 
IF (ICON. GE. 15000) GO TO 2000 
DO 20 I = 1, M 
IND (I) = 1 

20 CONTINUE 
CALL CHVEC (ZAW, K, N, ZE, IND, 

*  M, ZEV, ZW, ICON) 4) 
IF (ICON. GE. 15000) GO TO 3000 
CALL CHBK2 (ZEV, K, N, IND, M, ZP, 

*  IP, DV, ICON) 5) 
CALL CNRML (ZEV, K, N, IND, M, 1,  

* ICON)  6) 
 
or standard routine 
 

   : 
CALL CEIG2 (ZA, K, N, MODE, ZE, 

*ZEV, VW, IVW, ICON) 7) 
IF (ICON. GE. 20000) GO TO 1000 
   : 

 
1), 2), and 3) were explained in the preceding example 

“Obtaining all eigenvalues”.  However since 3) 
destroys parameter ZA, ZA must be stored in array 
ZAW after 2) so that contents of ZA before 3) can be 
used in 4) and the subsequent routines. 

4) The eigenvectors of the complex Hessenberg matrix 
corresponding to the eigenvalues are obtained using 
the inverse iteration method.  The parameter IND is 
an index vector which indicates the eigenvalues from 
which eigenvectors are to be obtained.  The user can 
select eigenvectors using this parameter. 

5) Back transformation of the eigenvectors obtained in 
4) is performed to obtain the eigenvectors of A. 

6) The eigenvectors transformed in 5) are normalized.  
When normalizing the eigenvectors (set norm to 1), 
the user can select whether an Euclidean or infinity 
norm should be used.  Here the former is applied for 
normalization. 

7) When obtaining all eigenvalues and corresponding 
eigenvectors of a complex matrix, the functions of 1) 
through 6) can be performed by calling this standard 
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routine, however, instead of using the inverse iteration 
method, all eigenvectors are obtained at one time by 
multiplying all the obtained transformation matrices.  
This calculation will not work if even one of the 
eigenvalues is missing.  The parameter MODE can be 
used to specify whether the matrix is to be balanced 
or not. 

4.4 EIGENVALUES AND 
EIGENVECTORS OF A REAL 
SYMMETRIC MATRIX 

An example will be used here to show how the various 
SSL II subroutines are used to obtain eigenvalues and 
eigenvectors of a real symmetric matrix. 
  SSL II provides the followings: 
− Standard routines by which the entire procedures for 

obtaining eigenvalues and eigenvectors of a real 
symmetric matrix may be performed at one time. 

− Component routines decomposed by functions. 
  For details, see Table 4.4. 
 
The problems can be classified as follows: 
• Obtaining all eigenvalues. 

• Obtaining selected eigenvalues. 
• Obtaining all eigenvalues and corresponding 

eigenvectors. 
• Obtaining selected eigenvalues and corresponding 

eigenvectors. 
 
  In the above order, the first four items below explain the 
use of component routines and standard routines.  The 
last two items provide additional information. 
  The choice of calling individual component routines or 
of calling a single standard routine for obtaining all 
eigenvalues and corresponding eigenvectors or selected 
eigenvalues and corresponding eigenvectors is up to the 
user.  Normally, standard routines which are easier to use, 
are selected.  Component routines TEIG1 or TEIG2 
should be used if the real symmetric matrix is originally 
tridiagonal. 
  SSL II handles the real symmetric matrix in symmetric 
matrix compressed mode (For details, refer to Section 
2.8). 
 
Obtaining all eigenvalues 
All eigenvalues of a real symmetric matrix A can be 
obtained as shown below 1) and 2).  A is handled in the 
compressed storage mode, i.e., as a one-dimensional 
array, for a real symmetric matrix. 
 

   : 
CALL TRID1 (A, N, D, SD, ICON) 1) 
IF (ICON .EQ. 30000) GO TO 1000 
CALL TRQL (D, SD, N, E, M, ICON) 2) 
   : 

 
1) A is reduced to a tridiagonal matrix using the 

Householder method.  Omit this step if A is already a 
tridiagonal matrix. 

2) Using the QL method, the eigenvalues of A i.e. all the 
eigenvalues of the tridiagonal matrix are obtained. 

 
Table 4.4  Subroutines used for standard eigenproblem of a real symmetric matrix 

Level Function Subroutine name 
  SEIG1 

(B21-21-0101) 
  SEIG2 

(B21-21-0201) 
 Reduction of a real symmetric matrix to a real 

symmetric tridiagonal matrix 
TRID1 

(B21-21-0302) 
  TRQL 

(B21-21-0402) 
 
Component 
routines 

 BSCT1 
(B21-21-0502) 

  TEIG1 
(B21-21-0602) 

  TEIG2 
(B21-21-0702) 

 Back transformation to the eigenvectors of a real 
symmetric matrix 

TRBK 
(B21-21-0802) 

 

Standard routine Eigenvalues and eigenvectors of a real symmetric 
matrix 

 

 Obtaining eigenvalues of a real symmetric tridiagonal 
matrix 

 

 Obtaining eigenvalues and eigenvectors of a real 
symmetric tridiagonal matrix 
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Obtaining selected eigenvalues 
Selected eigenvalues of real symmetric matrix A can be 
obtained as shown: 
 

   : 
CALL TRID1 (A, N, D, SD, ICON) 1) 
IF (ICON.EQ. 30000) GO TO 1000 
CALL BSCT1 (D, SD, N, M, EPST, E,  

* VW, ICON)  2) 
   : 

 
1) Same as step 1) in the first item “Obtaining all 

eigenvalues”. 
2) The eigenvalues of the tridiagonal matrix are obtained 

using the Bisection method.  Using the parameter M, 
the user specifies the number of eigenvalues to be 
determined by starting from the largest eigenvalue or 
starting from the smallest eigenvalue. 
  If n/4 or more eigenvalues are to be determined for 
A, it is faster to use the procedure explained in item 
“Obtaining all eigenvalues”. 

 
Obtaining all eigenvalues and corresponding 
eigenvectors 
All eigenvalues and corresponding eigenvectors of real 
symmetric matrix A can be obtained by using 1) to 3) or 
by using step 4). 
 

   : 
CALL TRID1(A,N,D,SD,ICON) 1) 
IF(ICON .EQ. 30000)GO TO 1000 
CALL TEIG1(D,SD,N,E,EV,K,M,ICON) 2) 
IF(ICON .GE. 20000)GO TO 2000 
CALL TRBK(EV,K,N,M,A,ICON) 3) 
   : 

 
or standard routine 
 

   : 
CALL SEIG1(A,N,E,EV,K,M,VW,ICON) 4) 
IF(ICON .GE. 20000)GO TO 1000 
   : 

 
1) Same as step 1) in item “Obtaining all eigenvalues”. 
2) All eigenvalues and corresponding eigenvectors of the 

real symmetric tridiagonal matrix can be obtained by 
the QL method and by multiplying each of the 
transformation matrices obtained by the QL method. 
Each eigenvector is normalized such that the 
Euclidean norm is 1. 

3) From step 1), the eigenvectors in 2) are not those of 
real symmetric matrix A.  Therefore the back 
transformation in 1) is performed to obtain the 
eigenvectors of real symmetric matrix A. 

4) All processing of 1) to 3) is performed. 
 
Obtaining selected eigenvalues and corresponding 
eigenvectors 
Selected eigenvalues and corresponding eigenvectors of 

a real symmetric matrix A can be obtained either by 1) to 
3) or by 4). 
 

   : 
CALL TRID1 (A,N,D,SD,ICON) 1) 
IF(ICON .EQ. 30000)GO TO 1000 
CALL TEIG2(D,SD,N,M,E,EV,K,VW,ICON) 
  2) 
IF(ICON .GE. 20000)GO TO 2000 
CALL TRBK(EV,K,N,M,A,ICON) 3) 
   : 

 
or standard routine 
 

   : 
CALL SEIG2(A,N,M,E,EV,K,VW,ICON)  4) 
IF(ICON .GE. 20000)GO TO 1000 
   : 

 
1) Same as step 1) in item “Obtaining all eigenvalues” 
2) Selected eigenvalues and corresponding eigenvectors 

of a tridiagonal matrix are determined using the 
Bisection method and the Inverse Iteration method.  If 
the eigenvalues are close, it is not always true that the 
eigenvectors obtained using the Inverse Iteration are 
orthogonal.  Therefore in 2), the eigenvectors of close 
eigenvalues are corrected to orthogonalize to those 
which have already been obtained.  The obtained 
eigenvectors are normalized such that each Euclidean 
norm is 1. 

3) From processing 1), the eigenvectors of 2) are not 
those of a real symmetric matrix A.  Therefore the 
eigenvectors of a real symmetric matrix A are 
obtained by performing back transformation 
corresponding to 1). 

4) This subroutine process steps 1) to 3). 
 
QL method 
1) Comparison with the QR method 

The QL method used in 2) of the first and third 
paragraphs is basically the same as the QR method 
used to determine the eigenvalues of a real matrix.  
However, while the QR method determines 
eigenvalues from the lower right corner of matrices, 
the QL method determines eigenvalues from the 
upper left.  The choice of these methods is based on 
how the data in the matrix is organized.  The QR 
method is ideal when the magnitude of the matrix 
element is “graded decreasingly”, i.e., decreases from 
the upper left to the lower right.  If the magnitude of 
the matrix element is graded increasingly, the QL 
method is better.  Normally, in tridiagonal matrix 
output by TRID1 in 1) of the first paragraph and 2) of 
the second paragraph, the magnitude of the element 
tends to be graded increasingly.  For this reason, the 
QL method is used following TRID1 as in 2) of the 
first and third paragraphs. 

2) Implicit origin shift of the QL method 
There are explicit and implicit QL methods.  The 
difference between the two methods is whether origin 
shift for improving the rate of convergence when 
determining eigenvalues is performed explicitly or 
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implicitly.  (See subroutine TRQL.)  The explicit QL 
method is suitable when the magnitude of the matrix 
element is graded increasingly. 
  However, when the magnitude is graded decreasing, 
the precision of the smaller eigenvalues is affected. 
  For this reason, the implicit QL method is used in 2) 
of the first and third paragraphs. 

 
Direct sum of submatrices 
When a matrix is a direct sum of submatrices, the 
processing speed and precision in determining 
eigenvalues and eigenvectors increase if eigenvalues and 
eigenvectors are obtained from each of the submatrices.  
In each 2) of the first four paragraphs, a tridiagonal 
matrix is split into submatrices according to (4.1), and 
then the eigenvalues and eigenvectors are determined. 

),...,3,2()( 1 nibbuc iii =+≤ −  (4.1) 

u is the unit round off; ci, bi are as shown in Fig. 4.1. 
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Note:  Element ci is regarded to be zero according to (4.1). 

Fig. 4.1  Example in which a tridiagonal matrix is the direct sum of 
two submatrices 

4.5 EIGENVALUES AND 
EIGENVECTORS OF A HERMITIAN 
MATRIX 

The use of SSL II subroutines for obtaining eigenvalues 
and eigenvectors is briefly explained using standard 
examples. 
  The sequence to obtain eigenvalues and eigenvectors of 
a Hermitian matrix consists of the following four steps: 
1) Reduction of a Hermitian matrix to real symmetric 

tridiagonal matrix. 
2) Obtaining eigenvalues of the real symmetric 

tridiagonal matrix. 
3) Obtaining eigenvectors of the real symmetric 

tridiagonal matrix. 
4) Back transformation of the eigenvectors of the real 

symmetric tridiagonal matrix to form the eigenvectors 
of the Hermitian matrix. 

 
  SSL II provides component routines corresponding to 
steps 1) through 4), and a standard routine to do all the 
steps at one time. (See Table 4.5.) 
  The problems of an Hermite matrix is classified into the 
following categories: 
• Obtaining all eigenvalues 
• Obtaining selected eigenvalues 
• Obtaining all eigenvalues and corresponding 

eigenvectors 
• Obtaining selected eigenvalues and corresponding 

eigenvectors 
 
  In the following four paragraphs, the use of component 
routines and standard routine will be described for each 
objective category. 
  It is up to the user whether he uses the standard routine 
or each component routine to obtain all or selected 
eigenvalues and corresponding eigenvectors.  Normally, 
using the standard routine is recommended since it is 
easier to use. 
  SSL II handles the Hermitian matrix in the compressed 

 
Table 4.5  Subroutines used for standard eigenproblems of a Hermitian matrix 

Level Function Subroutine name 

Standard routine Obtaining eigenvalues and eigenvectors of a 
Hermitian matrix 

HEIG2 
(B21-25-0201) 

 Reduction of a Hermitian matrix to a real symmetric 
tridiagonal matrix 

TRIDH 
(B21-25-0302) 

  TRQL 
(B21-21-0402) 

 
Component 
routines 

 BSCT1 
(B21-21-0502) 

  TEIG1 
(B21-21-0602) 

  TEIG2 
(B21-21-0702) 

 Back transformation to the eigenvectors of a 
Hermitian matrix 

TRBKH 
(B21-25-0402) 

 

 Obtaining eigenvalues of a real symmetric tridiagonal 
matrix 

 

 Obtaining eigenvalues and eigenvectors of a real 
symmetric tridiagonal matrix 
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storage mode. (For details, see Section 2.8) 
 
Obtaining all eigenvalues 
All eigenvalues of a Hermitian matrix A can be obtained 
in steps 1) and 2) below. 
 

   : 
CALL TRIDH(A,K,N,D,SD,V,ICON) 1) 
IF(ICON .EQ. 30000)GO TO 1000 
CALL TRQL(D,SD,N,E,M,ICON) 2) 
   : 

 
1) A Hermitian matrix A is reduced to a real symmetric 

tridiagonal matrix using the Householder method. 
2) All eigenvalues of the real symmetric tridiagonal 

matrix are obtained using the QL method. 
 
Obtaining selected eigenvalues 
By using steps 1) and 2) below, the largest (or smallest) 
m eigenvalues of a matrix A can be obtained. 
 

   : 
CALL TRIDH(A,K,N,D,SD,V,ICON) 1) 
IF(ICON .EQ. 30000)GO TO 1000 
CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 2) 
   : 

 
1) A Hermitian metrics A is reduced to a real symmetric 

tridiagonal matrix by the Householder method. 
2) The largest (or smallest) m eigenvalues of the real 

symmetric tridiagonal matrix are obtained using the 
bisection method. 

 
  When obtaining more than n/4 eigenvalues of A of order 
n, it is generally faster to use subroutines TRIDH and 
TRQL as described in “Obtaining all eigenvalues”. 
 
Obtaining all eigenvalues and corresponding 
eigenvectors 
All eigenvalues and corresponding eigenvectors can be 
obtained either by using steps 1) through 3)or by using 
step 4), (see below). 
 

   : 
CALL TRIDH(A,K,N,D,SD,V,ICON) 1) 
IF(ICON .EQ. 30000)GO TO 1000 
CALL TEIG1(D,SD,N,E,EV,K,M,ICON) 2) 
IF(ICON .GE. 20000)GO TO 2000 
CALL TRBKH(EV,EVI,K,N,M,P,V,ICON) 3) 
IF(ICON .EQ. 30000)GO TO 3000 
   : 

 
or standard routine 
 

   : 
CALL HEIG2(A,K,N,N,E,EVR,EVI,VW, 

*ICON)  4) 
IF(ICON .GE. 20000)GO TO 1000 
   : 

1) A Hermitian matrix A is reduced to a real symmetric 
tridiagonal matrix 

2) Eigenvalues of the real symmetric tridiagonal matrix 
(i.e., eigenvalues of A) and corresponding 
eigenvectors are obtained using the QL method. 

3) The Eigenvectors obtained in 2) are transformed to 
the eigenvectors of A. 

4) The standard routine HEIG2 can perform all the 
above steps 1) through 3).  In this case, the fourth 
parameter N of HEIG2 indicates to obtain the largest 
n eigenvalues. 

 
Obtaining selected eigenvalues and corresponding 
eigenvectors 
A selected number of eigenvalues (m) and corresponding 
eigenvectors of a Hermitian matrix can be obtained either 
by using steps 1) through 3)or by using step 4), (see 
below). 
 

   : 
CALL TRIDH(A,K,N,D,SD,V,ICON) 1) 
IF(ICON .EQ. 30000)GO TO 1000 
CALL TEIG2(D,SD,N,M,E,EV,K,VW,ICON) 2) 
IF(ICON .GE. 20000)GO TO 2000 
CALL TRBKH(EV,EVI,K,N,M,P,V,ICON) 3) 
IF(ICON .EQ. 30000)GO TO 3000 
   : 

 
or standard routine 
 

   : 
CALL HEIG2(A,K,N,M,E,EVR,EVI,VW,ICON) 4) 
IF(ICON .GE. 20000)GO TO 1000 
   : 

 
1) A Hermitian matrix A is reduced to a real symmetric 

tridiagonal matrix. 
2) The largest (or smallest) m eigenvalues and 

corresponding eigenvectors of the real symmetric 
tridiagonal matrix are obtained using the bisection 
method and the inverse iteration method. 

3) Back transformation of the eigenvectors obtained in 
2) are performed. 

4) The standard routine HEIG2 can perform all the 
above steps 1) through 3). 

4.6 EIGENVALUES AND 
EIGENVECTORS OF A REAL 
SYMMETRIC BAND MATRIX 

Subroutines BSEG, BTRID, BSVEC and BSEGJ are 
provided for obtaining eigenvalues and eigenvectors of a 
real symmetric band matrix. 
  These subroutines are suitable for large matrices, for 
example, matrices of the order n > 100 and h/n < 1/6, 
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where h is the band-width.  Subroutine BSEGJ, which 
uses the Jennings method, is effective for obtaining less 
than n/10 eigenvalues.  Obtaining of all eigenvalues and 
corresponding eigenvectors of a real symmetric band 
matrix is not required in most cases and therefore only 
standard routines for some eigenvalues and 
corresponding eigenvectors are provided. 
Subroutines BSEG and BSEGJ are standard routines and 
BTRID and BSVEC are component routines of BSEG 
(see Table 4.6).  Examples of the use of these subroutines 
are given below.  SSL II handles the real symmetric band 
matrix in compressed mode (see Section 2.8). 
 
Obtaining selected eigenvalues 
• Using standard routines 
 

   : 
CALL BSEG(A,N,NH,M,0,EPST,E,EV,K, 

* VW,ICON)  1) 
IF(ICON.GE.20000)GO TO 1000 
   : 

 
1) The largest (or smallest) m eigenvalues of a real 

symmetric band matrix A of order n and bandwidth h 
are obtained.  The fifth parameter, 0 indicates that no 
eigenvectors are required. 

 
• Using component routines 
 

   : 
CALL BTRID(A,N,NH,D,SD,ICON) 1) 
IF(ICON.EQ.30000) GO TO 1000 
CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 2) 
 
IF(ICON.EQ.30000) GO TO 2000 
   : 

 
1) Real symmetric band matrix A or order n and 

bandwidth h is reduced to the real symmetric 
tridiagonal matrix T by using the Rutishauser-
Schwarz method. 

2) The largest (or smallest) m eigenvalues of T are 
obtained. 

Obtaining all eigenvalues 
• Using the standard routine 

All the eigenvalues can be obtained by specifying N as 
the fourth parameter in the example of BSEG used to 
obtain some eigenvalues.  However, the following 
component routines are recommended instead. 

 
• Using component routines 
 

   : 
CALL BTRID(A,N,NH,D,SD,ICON) 1) 
IF(ICON.EQ.30000) GO TO 1000 
CALL TRQL(D,SD,N,E,M,ICON) 2) 
   : 

 
1) Real symmetric band matrix A of order n and 

bandwidth h is reduced to the real symmetric 
tridiagonal matrix T by using the Rutishauser-
Schwarz method. 

2) All eigenvalues of T are obtained by using the QL 
method. 

 
Obtaining selected eigenvalues and corresponding 
eigenvectors 
• Using standard routines 

The following two standard routines are provided. 
 

   : 
CALL BSEG(A,N,NH,M,NV,EPST,E,EV,K, 

* VW,ICON)  1) 
IF(ICON.GE.20000)GO TO 1000 
   : 
CALL BSEGJ(A,N,NH,M,EPST,LM,E,EV,K, 

* IT,VW,ICON) 1)’ 
IF(ICON.GE.20000)GO TO 1000 
   : 

 
  The subroutine indicated by 1) obtains eigenvalues by 
using the Rutishauser-Schwarz method, the bisection 
method and the inverse iteration method consecutively.  
The subroutine indicated by 1)’ obtains both eigenvalues 
and eigenvectors by using the Jennings method based on 
a simultaneous iteration. 

 
Table 4.6  Subroutines used for standard eigenproblem of a real symmetric band matrix 

Level Function Subroutine name 
  BSEG 

(B51-21-0201) 
  BSEGJ 

(B51-21-1001) 
 Reduction of a real symmetric band matrix to a 

tridiagonal matrix 
BTRID 

(B51-21-0302) 
  TRQL 

(B21-21-0402) 
  BSCT1 

(B21-21-0502) 
 Obtaining eigenvectors of a real symmetric band 

matrix 

BSVEC 
(B51-21-0402) 

 

Standard routine Obtaining eigenvalues and eigenvectors of a real 
symmetric band matrix 

 

Component routine Obtaining eigenvalues of a real symmetric tridiagonal 
matrix 
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Further, 1) obtains the largest (or smallest) eigenvalue 
and 1)’ obtains the largest (or smallest) absolute value of 
eigenvalues.  The subroutine indicated by 1)’ is only 
recommended where a very small number of eigenvalues 
and eigenvectors (no more than n/10) compared to the 
matrix order n are to be obtained. 
1) The m eigenvalues and nv, number of eigenvectors of 

a real symmetric band matrix A of order n and 
bandwidth h are obtained. 

1)’ Eigenvectors of A as described above are obtained 
based on the m initial eigenvectors given.  At the 
same time, the corresponding eigenvalues can be also 
obtained.  Care needs to be taken when giving initial 
eigenvectors to EV and upper limit for the number of 
iterations to LM. 

 
• Using component routines 

The following subroutines are called consecutively to 
achieve the same effect as executing subroutine BSEG. 

 
   : 
NN = (NH + 1)∗ (N + N -NH)/2 
DO 10 I = 1, NN 

10 AW (I) = A (I) 
CALL BTRID(A,N,NH,D,SD,ICON) 1) 
IF(ICON.EQ.30000) GOTO 1000 
CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 
  2) 
IF(ICON.EQ.30000) GO TO 2000 
CALL BSVEC(AW,N,NH,NV,E,EV,K,VW, 

*ICON)  3) 
IF(ICON.GE.20000) GO TO 3000 
   : 

 
1) 2) These are the same paths taken when obtaining 

selected eigenvalues.  Since BTRID destroys the 
contents of parameter A, they need to be stored in 
array AW for step 3). 

3) The eigenvectors corresponding to the first nv 
eigenvalues of the m eigenvalues given by 2) are 
obtained by using the inverse iteration method. 

 
Obtaining all eigenvalues and corresponding 
eigenvectors 
• Using standard routines 

By specifying N for the fourth and fifth parameters of 
the subroutine BSEG shown earlier in the example on 
obtaining selected eigenvalues and their corresponding 
eigenvectors, all eigenvalues and corresponding 
eigenvectors can be obtained.  If a solution is desired 
more quickly, the following path using component 
routines is recommended. 

• Using component routines 
 

   : 
NN=(N+1)∗ (N+N–NH)/2 
DO 10 I=1,NN 

10 AW(I)=A(I) 
N1 = NN+1 
N2 = N1 + N 
CALL BTRID(A,N,NH,VW(N1),VW(N2), 

*ICON)  1) 
IF(ICON.EQ.30000) GO TO 1000 
CALL TRQL(VW(N1),VW(N2),N,E,M,ICON) 
     2) 
IF(ICON.GE.15000) GO TO 2000 
CALL BSVEC(AW,N,NH,N,E,EV,K,VW, 

*ICON)  3) 
IF(ICON.GE.20000) GO TO 3000 
   : 

 
1) 2) These are the same as the component routines used 

when obtaining all of the eigenvalues.  Since 
subroutine BTRID destroys the contents of parameter 
A, they need to stored in array AW for step 3). 

3) The eigenvectors corresponding to all eigenvalues 
given in step 2) are obtained by using the inverse 
iteration method. 

4.7 EIGENVALUES AND 
EIGENVECTORS OF A REAL SYMMETRIC 
GENERALIZED EIGENPROBLEM 

When obtaining eigenvalues and eigenvectors of Ax=λBx 
(A: symmetric matrix and B: positive definite symmetric 
matrix), how each SSL II subroutine is used is briefly 
explained using standard examples. 
The sequence to obtain eigenvalues and eigenvectors of a 
real symmetric matrix consists of the following six steps: 
1) Reduction of the generalized eigenvalue problem 

(Ax=λBx) to the standard eigenvalue problem of a 
real symmetric matrix (Sy=λy) 

2) Reduction of the real symmetric matrix S to a real 
symmetric tridiagonal matrix T(Sy =λy →→→→ Ty ′=λy ′). 

3) Obtaining eigenvalue λ of the real symmetric 
tridiagonal matrix T. 

4) Obtaining eigenvector y ′ of the real symmetric 
tridiagonal matrix T. 

5) Back transformation of eigenvector y ′ of the real 
symmetric tridiagonal matrix T to eigenvector y of the 
real symmetric matrix S. 

6) Back transformation of eigenvector y of the real 
symmetric matrix S to eigenvector x of the 
generalized eigenproblem. 

 
  SSL II provides component routines corresponding to 
these steps and a standard routine to do all the steps at 
one time.  (See Table 4.7.) 
  Practically, in this section, user’s generalized 
eigenproblems of a real symmetric matrix are classified 
into the following categories: 
• Obtaining all eigenvalues 
• Obtaining selected eigenvalues 
• Obtaining all eigenvalues and corresponding 

eigenvectors 
• Obtaining selected eigenvalues and corresponding 

eigenvectors 
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Table 4.7  Subroutines used for generalized eigenproblems of a real symmetric matrix 

Level Function Subroutine name 

Standard routine Obtaining general eigenvalue and eigenvector of a 
real symmetric matrix 

GSEG2 
(B22-21-0201) 

 Reduction of the generalized eigenproblem to the 
standard eigenproblem 

GSCHL 
(B22-21-0302) 

 Reduction of a real symmetric matrix to a real 
symmetric tridiagonal matrix 

TRID1 
(B21-21-0302) 

  TRQL 
(B21-21-0402) 

  BSCT1 
(B21-21-0502) 

  TEIG1 
(B21-21-0602) 

  TEIG2 
(B21-21-0702) 

 Back transformation to eigenvectors of a real 
symmetric matrix 

TRBK 
(B21-21-0802) 

 Back transformation to generalized eigenvectors GSBK 
(B22-21-0402) 

 
 
  In the following paragraphs, the use of component 
routines and standard routine will be described.  It is up 
to the user whether he successively calls the component 
routines one after another or uses the standard routine to 
obtain all or selected eigenvalues and eigenvectors.  
Normally, using the latter routine is recommended since 
that method is easier to use. 
  SSL II handles the real symmetric matrix in the 
compressed storage mode (see Section 2.8). 
 
Obtaining all eigenvalues 
All the eigenvalues can be obtained from the steps 1), 2), 
and 3) below. 
 

   : 
CALL GSCHL(A,B,N,EPSZ,ICON) 1) 
IF(ICON.GE.20000) GO TO 1000 
CALL TRID1(A,N,D,SD,ICON) 2) 
CALL TRQL(D,SD,N,E,M,ICON) 3) 
   : 

 
1) The generalized eigenproblem (Ax = λBx) is reduced 

to the standard eigenproblem (Sy = λy) 
2) The real symmetric matrix S is reduced to a real 

symmetric tridiagonal matrix using the Householder 
method. 

3) All the eigenvalues of the real symmetric tridiagonal 
matrix are obtained using the QL method. 

 
Obtaining selected eigenvalues 
From the following steps 1), 2), and 3), the largest (or 
smallest) m eigenvalues can be obtained. 

   : 
CALL GSCHL(A,B,N,EPSZ,ICON) 1) 
IF(ICON.GE.20000) GO TO 1000 
CALL TRID1(A,N,D,SD,ICON) 2) 
CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 
  3) 
   : 

 
1), 2) Same as step 1) and 2) in “Obtaining all 

eigenvalues”. 
3) The largest (or smallest) m eigenvalues of the real 

symmetric tridiagonal matrix are obtained using the 
bisection method. 

 
  When obtaining more than n/4 eigenvalues of A, it is 
generally faster to use the example shown in “Obtaining 
all eigenvalues”. 
 
Obtaining all eigenvalues and corresponding 
eigenvectors 
From either steps 1) through 5), or from step 6), all of the 
eigenvalues and their corresponding eigenvectors can be 
obtained. 
 

   : 
CALL GSCHL(A,B,N,EPSZ,ICON) 1) 
IF(ICON.GE.20000) GO TO 1000 
CALL TRID1(A,N,D,SD,ICON) 2) 
CALL TEIG1(D,SD,N,E,EV,K,M,ICON)  3) 
IF(ICON.GE.20000)GO TO 3000 
CALL TRBK(EV,K,N,M,A,ICON) 4) 
CALL GSBK(EV,K,N,M,B,ICON) 5) 
   : 

 
or standard routine 

Component routine Obtaining eigenvalues of a real symmetric tridiagonal 
matrix 

 

 Obtaining eigenvalues and eigenvectors of a real 
symmetric tridiagonal matrix 
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   : 
CALL GSEG2(A,B,N,N,EPSZ,EPST,E,EV,K, 

* VW,ICON)  6) 
IF(ICON.GE.20000) GO TO 1000 
   : 

 
1), 2) Same as step 1), 2) in “Obtaining all eigenvalues”. 
3) All engenvalues and corresponding eigenvectors of 

the real symmetric tridiagonal matrix are obtained by 
the QL method. 

4) The eigenvectors of the real symmetric tridiagonal 
matrix are back-transformed to the eigenvectors of the 
real symmetric matrix S 

5) The eigenvectors of the real symmetric matrix S are 
back-transformed to the eigenvectors of Ax=λBx. 

6) The standard routine GSEG2 can perform steps 1) 
through 5) at a time.  In this case, the fourth 
parameter N of GSEG2 indicates to obtain the largest 
n number of eigenvalues. 

 
Obtaining selected eigenvalues and corresponding 
eigenvectors 
From either steps 1) through 5), or from step 6), m 
number of eigenvalues and their corresponding 
eigenvectors can be obtained. 
 

   : 
CALL GSCHL(A,B,N,EPSZ,ICON) 1) 
IF(ICON.GE.20000) GO TO 1000 
CALL TRID1(A,N,D,SD,ICON) 2) 
IF(ICON.EQ.3000) GO TO 2000 
CALL TEIG2(D,SD,N,M,E,EV,K,VW,ICON) 3) 
IF(ICON.GE.20000) GO TO 3000 
CALL TRBK(EV,K,N,M,A,ICON) 4) 
CALL GSBK(EV,K,N,M,B,ICON) 5) 
   : 

 
or standard routine 
 

   : 
CALL GSEG2(A,B,N,M,EPSZ,EPST,E,EV,K, 

* VW,ICON)  6) 
IF(ICON.GE.20000) GO TO 1000 
   : 

 

1), 2) Same as step 1), 2) in “Obtaining all eigenvalues”. 
3) The largest (or smallest) m eigenvalues of the real 

symmetric tridiagonal matrix and the corresponding 
eigenvectors are obtained using the bisection and 
inverse iteration methods. 

4), 5) Same as step 4), 5) in above paragraphs. 
6) The standard routine GSEG2 can perform steps 1) 

through 5) at a time. 

4.8 EIGENVALUES AND 
EIGENVECTORS OF A REAL 
SYMMETRIC BAND GENERALIZED 
EIGENPROBLEM 

SSL II provides subroutines as shown in Fig. 4.8 to 
obtain eigenvalues and eigenvectors of Ax=λBx(A: 
symmetric band matrix and B: positive definite 
symmetric band matrix).  These are used for a large 
matrix of order n with h/n < 1/6, where h is the 
bandwidth.  Subroutine GBSEG, which uses the Jennings 
method, is effective when obtaining less than n /10 
eigenvalues and eigenvectors.  Since subroutine GBSEG 
obtains the specified m eigenvalues and eigenvectors at 
one time, if it terminates abnormally, no eigenvalues and 
eigenvectors will be obtained. 
  An example of the use of this routine is shown below. 
  SSL II handles the real symmetric band matrix in 
compressed storage mode (see Section 2.8). 
 
Obtaining selected eigenvalues and eigenvectors 
 

   : 
CALL GBSEG(A,B,N,NH,M,EPSZ,EPST, 

* LM,E,EV,K,IT,VW,ICON) 1) 
IF(ICON.GE.20000) GO TO 1000 
   : 

 
The eigenvalues and eigenvectors are obtained by using 
the Jennings method of simultaneous iteration method. 
Parameter M is used to specify the largest (or smallest) m 
eigenvalues and eigenvectors to be obtained. 

 
Table 4.8  Subroutines used for generalized eigenproblem of a real symmetric band matrix 

Level Function Subroutine name 

Standard routine Obtaining eigenvalues and eigenvectors of a real 
band generalized eigenproblem 

GBSEG 
(B52-11-0101) 
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CHAPTER 5 
NONLINEAR EQUATIONS 

5.1 OUTLINE 

This chapter is concerned with the following types of 
problems. 
• Roots of non-linear equations: Determining the roots of 

polynomial equation, transcendental equations, and 
systems of nonlinear equations (simultaneous nonlinear 
equations). 

5.2 POLYNOMIAL EQUATIONS 

The subroutines shown in Table 5.1 are used for these 
types of problems. 
  When solving real polynomial equations of fifth degree 
or lower, LOWP can be used.  When solving only 
quadratic equations, RQDR should be used. 
 
General conventions and comments concerning 
polynomial equations 
The general form for polynomial equations is 

0,0... 0
1

10 ≠=+++ − aaxaxa n
nn  (5.1) 

where ai (i = 0, 1, ... , n) is real or complex. 
  If ai is real, (5.1) is called a real polynomial equation.  If 
ai is complex, (5.1) is called a complex polynomial 
equation, and z is used in place of x. 

  Unless specified otherwise, subroutines which solve 
polynomial equations try to obtain all of the roots.  
Methods and their use are covered in this section. 
Algebraic and iterative methods are available for solving 
polynomial equations.  Algebraic methods use the 
formulas to obtain the roots of equations whose degree is 
four or less.  Iterative methods may be used for equations 
of any degree.  In iterative methods, an approximate 
solution has been obtained.  For most iterative methods, 
roots are determined one at a time; after a particular root 
has been obtained, it is eliminated from the equation to 
create a lower degree equation, and the next root is 
determined. 
  Neither algebraic methods nor iterative methods are 
“better” since each has merits and demerits. 
 
• Demerits of algebraic methods 

Underflow or overflow situations can develop during 
the calculations process when there are extremely large 
variations in size among the coefficients of (5.1). 

 
• Demerits of iterative methods 

Choosing an appropriate initial approximation presents 
problems.  If initial values are incorrectly chosen, 
convergence may not occur no matter how many 
iterations are done, so if there is no  

 

 
Table 5.1  Polynomial equation subroutines 

Objective Subroutine 
name 

Method Notes 

Real quadratic equations RQDR 
(C21-11-0101) Root formula  

Complex quadratic equations CQDR 
(C21-15-0101) Root  formula  

Real low degree equations LOWP 
(C21-41-0101) 

Algebraic method and iterative 
method are used together. Fifth degree or lower 

Real high degree polynomial 
equations 

RJETR 
(C22-11-0111) Jenkins-Traub method  

Complex high degree 
polynomial equations 

CJART 
(C22-15-0101) Jaratt method  
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convergence, it is assumed that the wrong initial value 
was chosen.  It is possible that some roots can be 
determined while others can not. 
Convergence must be checked for with each iteration, 
resulting in calculation problem. 

 
  In order to avoid the demerits of algebraic methods, 
SSL II uses iterative methods except when solving 
quadratic equations.  The convergence criterion method 
in SSL II is described in this section. 
  When iteratively solving an polynomial equation: 

0)(
0

=≡ ∑
=

−
n

k

kn
k xaxf  

if the calculated value of f (x) is within the range of 
rounding error, it is meaningless to make the value any 
smaller.  Let the upper limit for rounding errors for 
solving f (x) be ε (x), then 
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  where u is the round-off unit. 
  Thus, when x satisfies 
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  there is no way to determine if x is the exact root. 
Therefore, when 
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  is satisfied, convergence is judged to have occurred, and 
the solution is used as one of the roots. (For further 
information on equation (5.2), see reference [23].). 
  As for the precision of roots, with both algebraic and 
iterative methods, when calculating with a fixed number 
of digits, it is possible for certain roots to be determined 
with higher precision than others. 
  Generally, multiple roots and neighboring roots tend to 
be less precise than the other roots.  If neighboring roots 
are among the solutions of an algebraic equation, the user 
can assume that those roots are not as precise as the rest. 
 

5.3 TRANSCENDENTAL EQUATIONS 

Transcendental equation can be represented as 

f (x) = 0 (5.5) 

  If  f (x) is a real function, the equation is called a real 
transcendental equation.  If  f (x) is a complex function, 
the equation is called a complex transcendental equation, 
and z is used in place of x. 
  The objective of subroutines which solve trans-
cendental equations is to obtain only one root of  f (x) 
within a specified range or near a specified point. 
  Table 5.2 lists subroutines used for transcendental 
equations. 
  Iterative methods are used to solve transcendental 
equations.  The speed of convergence in these methods 
depends mainly on how narrow the specified range is or 
how close a root is to the specified point.  Since the 
method used for determining convergence differs among 
the various subroutines, the descriptions of each should 
be studied. 

5.4 NONLINEAR SIMULTANEOUS 
EQUATIONS 

Nonlinear simultaneous equations are given as: 

f (x) = 0 (5.6) 

where  f (x) = (f1(x), f2(x),..., fn(x))T and 0 is an n-
dimensional zero vector.  Nonlinear simultaneous 
equations are solved by iterative methods in which the 
user must gives an initial vector x0 and it is improved 
repeatedly until the final solution for (3.1) is obtained 
within a required accuracy.  Table 5.3 lists subroutines 
used for nonlinear simultaneous equations.  The best 
known method among iterative methods is Newton 
method, expressed as: 

Table 5.2  Transcendental equation subroutines 

Objective Subroutine 
name 

Method Notes 

 
 
Real transcendental equation 

TSD1 
(C23-11-0101) 

Bisection method, linear 
interpolation method and 
inverse second order 
interpolation method are all 
used. 

Derivatives are not 
needed. 

 TSDM 
(C23-11-0111) 

Muller’s method No derivatives 
needed.  Initial values 
specified. 

Zeros of a complex function CTSDM 
(C23-15-0101) 

Muller’s method No derivatives 
needed.  Initial values 
specified. 
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Table 5.3  Nonlinear simultaneous equation subroutines 

Objective Subroutine 
name 

Method Notes 

Non-linear simultaneous 
equations 

NOLBR 
(C24-11-0101) Brent’s method Derivatives are not 

needed. 
 
 

xi+1 = xi – Ji
-1f (xi), i = 0, 1, ... (5.7) 

where Ji is the Jacobian matrix of f(x) for x = xi, which 
means: 
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  The Newton method is theoretically ideal, that is, its 
order of convergence is quadratic and calculations are 
simple. However, this method develops several 
calculation problems when it manipulates complex (or 
larger) systems of nonlinear equations.  The major 
reasons are: 
• It is often difficult to obtain the coefficients ∂fi  / ∂xj in 

(5.8), (i.e., partial derivatives cannot be calculated 
because of the complexity of equations). 

• The number of calculations for all elements in (5.8) are 
too large. 

• Since a system of linear equations with coefficient 
matrix Ji must be solved for each iteration, calculation 
time is long. 

 
  If the above problems are solved and the order of 
convergence is kept quadratic, this method provides short 
processing time as well as ease of handling. 
  The following are examples of the above problems and 
their solutions.  The first problem ∂fi / ∂xj can be 
approximated with the difference, i.e., by selecting an 
appropriate value for h, we can obtain 

h
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  For the second and third problems, instead of directly 
calculating the Jacobian matrix, a pseudo Jacobian matrix 
(which need not calculate all the elements) is used to 
solve the simultaneous equations.  All of the above means 
are adopted in SSL II.  Several notes on the use of 
subroutines for nonlinear simultaneous equations follow. 
  The user must provide the function subprograms to 
calculate a series of functions which define equations.  
These function subprograms should be provided taking 
the following points into consideration in order to use 
subroutines effectively and to obtain precise solution. 
• Loss of digit should be avoided in calculating functions.  

This is especially important because values of functions 
are used in subroutines to evaluate derivatives. 

• The magnitude of elements such as those of variable 
vector x or of function vector f (x) should be balanced.  
Since, if unbalanced the larger elements often mask the 
smaller elements during calculations.  SSL II routines 
have the function of checking variance in the largest 
element to detect convergence.  In addition, the 
accuracy of a solution vector depends upon the 
tolerance given by the user.  Generally, the smaller the 
tolerance for convergence, the higher the accuracy for 
the solution vector. 
  However, because of the round-off errors, there is a 
limit to the accuracy improvement.  The next problem 
is how to select initial value x0.  It should be selected 
by the user depending upon the characteristics of the 
problem to be solved with the equations.  If such 
information is not available, the user may apply the cut-
and-try method by arbitrarily selecting the initial value 
and repeating calculations until a final solution is 
obtained. 
  Finally, due to the characteristics of equations, some 
equations can not be solved by single precision 
subroutines, but may be solved by double precision 
subroutines.  Because double precision subroutines are 
more versatile, they are recommended for the user’s 
needs. 
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CHAPTER 6 
EXTREMA 

6.1 OUTLINE 

The following problems are considered in this chapter: 
• Unconstrained minimization of single variable function 
• Unconstrained minimization of multivariable function 
• Unconstrained minimization of sum of squares of 

functions (Nonlinear least squares solution). 
• Linear programming 
• Nonlinear programming (Constrained minimization of 

multivariable function) 

6.2 MINIMIZATION OF FUNCTION 
WITH A SINGLE VARIABLE 

Given a single variable function f (x), the local minimum 
point x* and the function value f (x*) are obtained in 
interval [a, b]. 
 
Subroutines 
Table 6.1-A gives subroutines applicable depending on 
whether the user can define a derivative g(x) analytically 
in addition to function f (x). 
 
Table 6.1-A Subroutines for unconstrained minimization of a  function 

with single variable 

Analytical definition Subroutine 
name 

Notes 

f (x) LMINF 
(D11-30-0101) 

Quadratic inter-
polation 

f (x), g(x) LMING 
(D11-40-0101) 

Cubic inter-
polation 

 
Comments on use 
Interval [a, b] 
In the SSL II, only one minimum point of f (x) is obtained 
within the error tolerance assuming that the  
– f (x) is unimodal in interval [a, b].  If there are several 
minimum points in interval [a, b], it is not guaranteed to 
which minimum point the resultant value is converged. 
  This means that it is desirable to specify values for end 
points a and b of an interval including minimum point x* 
to be close to x*. 

6.3 UNCONSTRAINED MINIMIZATION 
OF MULTIVARIABLE FUNCTION 

Given a real function f (x) of n variables and an initial 
vector x0, the vector (local minimum) x* which minize the 
function f (x) is obtained together with its function value   
f (x*), where x = (x1, x2, ... , xn)T. 
Minimizing a function means to obtain a minimum point 
x*, starting with an arbitrary initial vector x0, and 
continuing iteration under the following relationship, 

f (xk+1) < f (xk), k = 0, 1, ... (6.1) 
xk : Iteration vector 

  The iteration vector is modified based on the direction 
in which the function f (x) decreases in the region of xk by 
using not only the value of f (x) but also the gradient 
vector g and the Hessian matrix B normally. 
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Formula based on Newton method 
If the function f (x) is quadratic and is concave, the global 
minimum point x* should be able to be obtained 
theoretically within at most n iterations by using iterative 
formula of the Newton method. 
A function can be expressed approximately as quadratic 
in the region of the local minimum point x*.  That is, 



GENERAL DESCRIPTION 

50 

)()(
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1)()( *T** xxBxxxx −−+≈ ff  (6.3) 

  Therefore, if the Hessian matrix B is positive definite, 
the iterative formula based on the Newton method which 
is applied to the quadratic function will be a good 
iterative formula for any function in general as shown in 
Eq. (6.3).  Now let gk be a gradient vector at an arbitrary 
point xk in the region of the local minimum point x*, then 
the basic iterative formula of Newton method is obtained 
by Eq. (6.3) as follows: 

kkk gBxx 1
1

−
+ −=  (6.4) 

The SSL II, based on Eq. (6.4), introduces two types of 
iterative formulae. 
 
Revised quasi-Newton method 
Iterative formula 
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, where Bk is an approximate matrix to the Hessian matrix 
and is improved by the matrix Ek of rank two during the 
iteration process. 
  pk is a searching vector which defines the direction in 
which the function value decreases locally.α k is a 
constant by which f (xk+1) is locally minimized (linear 
search). 
  These formulae can be used when the user cannot define 
the Hessian matrix analytically. 
 
Quasi-Newton method 
Iterative formula 
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, where Hk is an approximate matrix to inverse matrix B-1 of 
the Hessian matrix and is improved by the matrix Fk of 
rank 2 during the iterative process. 
  pk is a searching vector which defines the direction in 
which the function value decrease locally.  α k is a 
constant by which f (xk+1) is locally minimized (linear 
search). 
 
Subroutines 
The subroutines are provided as shown in Table 6.1 
depending on whether or not the user can analytically 
define a gradient vector g in addition to the function f (x). 

Table 6.1  Subroutines for unconstrained minimization of a function 
with several variables 

Analytical 
definition Subroutine name Notes 

f (x) MINF1 
(D11-10-0101) 

Revised quasi-
Newton method 

f (x), g(x) MING1 
(D11-20-0101) 

Quasi-Newton 
method 

 
Comments on use 
• Giving an initial vector x0 

Choose the initial vector x0 as close to the expected 
local minimum x* as possible. 
When the function f (x) has more than one local 
minimum point, if the initial vector is not given 
appropriately, the method used may not converge to the 
expected minimum point x*.  Normally, x0 should be 
set according to the physical information of the 
function f (x). 

 
• Function calculation program 

Efficient coding of the function programs to calculate 
the function f (x), the gradient vector g is desirable.  
The number of evaluations for each function made by 
the SSL II subroutine depends on the method used or 
its initial vector.  In general, it takes a majority in the 
total processing and takes effect on efficiency. 
  In case that the subroutine is given only the function   
f (x), the gradient vector g is usually approximated by 
using difference.  Therefore an efficient coding to 
reduce the effect of round-off errors should be 
considered, also. 
  When defining function f (x), it should be scaled well 
so as to balance the variable x as much as possible. 

 
• Convergence criterion and accuracy of minimum value 

f (x*) 
In an algorithm for minimization, the gradient vector 
g(x*) of the function f (x) at the local minimum point x* 
is assumed to satisfy 

g(x*) = 0 (6.6) 

  , that is, the iterative formula approximates the function 
f (x) as a quadratic function in the region of the local 
minimum point x* as follows. 

xBxxxx δδδ T*
2
1)()( +≈+ *ff  (6.7) 

  Eq. (6.7) indicates that when f (x) is scaled appropriately, 
if x is changed by ε, function f (x) changes by ε 2. 
In SSL II, if 

( ) ε⋅≤− ∞∞+ kkk xxx ,0.1max1  (6.8) 
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, where ε  is a convergence criterion, is satisfied for the 
iteration vector xk, then xk+1 is taken as the local 
minimum point x*.  Therefore, if the minimum value        
f (x*) is to be obtained as accurate as the rounding error, 
the convergence criterion ε  should be given as follows: 

u=ε  where u is the unit round off. 

The SSL II uses u⋅2  for a standard convergence 
criterion. 

6.4 UNCONSTRAINED MINIMIZATION 
OF SUM OF SQUARES OF FUNCTIONS 
(NONLINEAR LEAST SQUARES SOLU-
TION) 

Given m real functions f1 (x), f2 (x), ... , fm (x) of n 
variables and an initial vector x0, the vector (local 
minimum) x* which minimize the following functions is 
obtained together with its function value F(x*), where, x 
is the vector of x = (x1, x2 , ... , xn)T and m ≥ n. 
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If all the functions fi (x) are linear, it is a linear least 
squares solution problem.  For detailed information on its 
solution, refer to Section 3.5.  (For example subroutine 
LAXL).  If all the functions fi (x) are nonlinear, the 
subroutines explained in this section may be used.  When 
the approximate vector xk of x* is varied by ∆∆∆∆x, F(xk + 
∆∆∆∆x) is approximated as shown in (6.10). 
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, where | F(xk) | is assumed to be sufficiently small.  And,  
f (x) equals to (f1 (x), f2 (x),..., fm (x))T and Jk is a 
Jacobian matrix of f (x) at vector xk. 
  ∆∆∆∆xk which minimize this F(xk + ∆∆∆∆xk) can be obtained as 
the solution of the system of linear equations (6.11) 
derived by differentiating the right side of (6.10). 

)(TT
kkkkk xfJxJJ −=∆∆∆∆  (6.11) 

The equation shown in (6.11) is called a normal equation.  
The iterative method based on the ∆∆∆∆xk is called the 
Newton-Gauss method.  In the Newton-Gauss method 
function value F(x) decrease along direction ∆∆∆∆xk, 
however, ∆∆∆∆xk itself may diverge. 
The gradient vector ∇∇∇∇ F(xk) at xk of F(x) is given by 

)(2)( T
kkkF xfJx =∇∇∇∇  (6.12) 

  −∇∇∇∇ F(xk) is the steepest descent direction of F(x) at xk. 
The following is the method of steepest descent. 

)( kk F xx ∇∇∇∇−=∆  (6.13) 

  ∆∆∆∆xk guarantees the reduction of F(x).  However if 
iteration is repeated, it proceeds in a zigzag fashion. 
 
Formula based on the Levenberg-Marquardt method 
Levenberg, Marquardt, and Morrison proposed to 
determine ∆∆∆∆xk by the following equations combining the 
ideas of the methods of Newton-Gauss and steepest 
descendent. 

)(}{ T2T
kkkkkk v xfJxIJJ −=+ ∆∆∆∆  (6.14) 

  where vk is a positive integer (called Marquardt number). 
  ∆∆∆∆xk obtained in (6.14) depends on the value of vk that is, 
the direction of ∆∆∆∆xk is that of the Newton-gauss method if 
vk → 0: if vk → ∞, it is that of steepest descendent. 
  SSL II uses iterative formula based on (6.14).  It does 
not directly solve the equation in (6.14) but it obtains the 
solution of the following equation, which is equivalent to 
(6.14), by the least squares method (Householder 
method) to maintain numerical stability. 
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  The value vk is determined adaptively during iteration. 
 
Subroutines 
The subroutines are provided as shown in Table 6.2 
depending on whether or not the user can analytically 
define a Jacobian matrix J in addition to the function      
f1 (x), f2 (x), ... , fm (x). 
 
Table 6.2  Subroutines for unconstrained minimization of sum of 
squares of functions 

Analytical 
definition Subroutine 

name 
Notes 

f1(x), f2(x),... 
, fm(x) 

NOLF1 
(D15-10-0101) 

Revised 
Marquardt Method 

f1(x), f2(x),... 
, fm(x), J 

NOLG1 
(D15-20-0101) 

Revised 
Marquardt Method 
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Comments on use 
• Giving an initial vector x0 

Choose the initial vector x0 as close to the expected 
local minimum point x* as possible.  When the function 
F(x) has more than one local minimum point, if the 
initial vector is not given appropriately, the method 
used may not converge to the expected minimum point 
x*. 
  The user should set x0 after checking the feature of the 
problem for which this subroutine is to be used. 

 
• Function calculation program 

Efficient coding of the function programs to calculate 
the function {fi (x)} value of Jacobian matrix J is 
desirable.  The number of evaluations for each function 
made by the SSL II subroutine depends on the method 
used or its initial vector.  In general, it takes a majority 
of the total processing and has an effect on the 
efficiency. 
  When that subroutine is given only the function 
{fi(x)} Jacobian matrix J is usually approximated by 
using differences.  Therefore, an efficient coding to 
reduce the effect of round-off errors should also be 
considered. 

 
• Convergence criterion and accuracy of minimum value 

F(x*) 
In an algorithm for minimization, F(x) at the local 
minimum point x* is assumed to satisfy 

0)(2)( T* == *F xfJx∇∇∇∇  (6.16) 

that is, the iterative formula approximates the function 
F(x) as a quadratic function in the region of the local 
minimum point x* as follows: 

xJJxxxx δδδ TT** )()( +≈+ FF  (6.17) 

  Eq. (6.17) indicates that when F(x) is scaled 
appropriately, if x is changed by ε, function F(x) changes 
by ε 2. 
  In SSL II, if 
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, where ε  is a convergence criterion, 
is satisfied for the iteration vector xk, then xk+1 is taken as 
the local minimum point x*.  Therefore, if the minimum 
value F(x) is to be obtained as accurately as the 
rounding-error, the convergence criterion should be given 
as follows: 

u≈ε  

, where u is the unit round-off. 
The SSL II uses u⋅2  for a standard convergence 
criterion. 

6.5 LINEAR PROGRAMMING 

Linear programming is defined as  the problem where a 
linear function with multiple variables is minimized ( or 
maximized ) under those constraints on the variables 
which are represented as some linear equations and 
inequality relations. 
The following is a standard linear programming 

problem: 
“Minimize the following linear objective function”: 

z = cT x + c0 

subject to 

dAx =  (6.19) 
0x ≥  (6.20) 

, where A is an m × n coefficient matrix and the rank of A 
is: 

rank(A) = m ≤ n 

where, x = (x1, x2, ... , xn)T is a variable vector, 
d = (d1, d2, ... , dm)T is a constant vector, 
c = (c1, c2, ... , cn)T is a coefficient vector, 
and  
c0 is a constant term. 

Let aj denote the j-th column of A.  If m columns of A, ak1
, 

ak2
, ... , akm, are linearly independent, a group of the 

corresponding variables (xk1, xk2
, ... , xkm) are called the 

base. xki is called a (i-th) base variable.  If a basic solution 
satisfies (6.20) as well , it is called a feasible basic 
solution. It is proved that if there exist feasible basic 
solutions and there exist the optimal solution to minimize 
the objective function, then the optimal solution exist in 
the set of feasible basic solutions (principle of Linear 
Programming). 
 
• Simplex method 

The optimal solution is calculated by starting from a 
basic feasible solution, exchanging base variables one 
by one and obtaining a next basic feasible solution 
consecutively, making z smaller and smaller. 
 

• Revised simplex method 
Using iterative calculation of the simplex method, 
coefficients and constant terms required for 
determining the basic variables to be changed are 
calculated from the matrix inversion of the basic matrix, 
B = [ak1

, ak2
, ... , akm

], the original coefficient 
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A, c, and constant term d. 
  SSL II provides subroutine LPRS1 using this revised 
simplex method.  If the constrained condition contains 
inequalities, new variables are introduced to change 
into equalities. 
  For example, 

  a11x1 + a12 x2 + ... + a1n x n ≤ d1 

  is changed into 

  a11x1 + a12 x2 + ... + a1n xn + xn+1 =d1,  xn+1 ≥ 0  

and,  

  a21x1 + a22 x2 + ... + a2n x n ≥d2 

  is changed into 

a21x1 + a22 x2 + ... + a2n x n – xn+2 =d2,   xn+2 ≥ 0 

Non-negative variables such as xn+1 or xn+2 which are 
added to change an inequality into an equality are 
called slack variables. 
  Maximization is performed by multiplying the 
objective function by -1 instead. 
  Subroutine LPRS1 performs these processes and thus 
enables the solution of problems containing inequalities 
or to maximize the problem. 

  The algorithm is divided into two stages as follows. 
• At the first stage, obtain the basic feasible solution 
• At the second stage, obtain the optimal solution 
This is called the two-stage method.  At the first stage the 
optimal solution is obtained for the following problem. 
  “Minimize the following equation”. 
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subject to 

Ax + A(a) x(a) = d , 
   x ≥ 0,  x(a) ≥ 0 

where x(a) is an m-dimensional vector of x(a) = (x1
(a), 

x2
(a), ..., xm

(a))T 
A(a) is an m-order diagonal matrix of A(a) = (aij

(a)) 
where, when di ≥ 0, aii

(a) = 1 
 when di < 0, aii

(a) = -1 
  xi

(a) is called an artificial variable.  When the optimal 
solution is obtained, if z1 is larger than zero (z1 > 0), no x 
will satisfy the conditions in (6.19) and (6.20). 
  If z1 is equivalent to zero (z1 = 0), that is x(a) = 0, the 
basic feasible solution of the given problem has been 
obtained, and so we proceed to the second stage.  But if 

rank(A) < m 

but when there exists x satisfying (6.19), we can put 

r = rank(A) 

, then (m-r) equations in (6.19) turn out to be useless. 
  The optimal solution obtained at the first stage results in 
the basic feasible solution excepting the useless 
conditional equations.  There remain (m-r) number of 
artificial variables in basic variables.  The conditional 
equations corresponding to these artificial variables (i-th 
basic variable corresponds to the i-th conditional 
equation) are useless. 
 
Comments on use 
• Coefficient relative zero criterion 

Subroutine LPRS1 performs the relative zero criterion 
in which if the absolute value of the elements during 
iterative process becomes small, LPRS1 assumes it as 
zero. Parameter EPSZ is used to specify the value of 
relative zero criterion. 
  Suppose the following extended coefficient matrix 
consisting of coefficient matrix A, constant vector d, 
coefficient vector c and constant term c0. 

  








0cc
dA

 

Let the absolute maximum element of this matrix be 
amax.  Then if the absolute value of a coefficient vector 
and constant term obtained by iteration is smaller than 
amax･EPSZ, it is assumed to be zero. 
  If EPSZ does not give an appropriate value, although 
the feasible solution is obtained z1 may be larger than 
zero when the optimal solution is obtained at the first 
stage.  Furthermore, the optimal solution at the first 
stage may have to be obtained before iteration. 
  To keep accurate precision, you should multiply an 
appropriate constant to each row or column to enable 
the ratio of the maximum and minimum absolutes of 
the extended coefficient matrix elements. 

 
• Number of iterations 

LPRS1 exchanges basic variables so that the same 
basic feasible solution does not appear twice.  It can 
check whether the optimal solution can be obtained in a 
certain number of iterations or not.  It also can 
terminate in the middle of processing.  Parameter 
IMAX is used to specify the number of iterations. 
If the iteration terminates as specified by parameter 

IMAX, LPRS1 can continue calculation when the 
feasible basic solution has been obtained  
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(that is, at the second stage). 

6.6 NONLINEAR PROGRAMMING 
(CONSTRAINED MINIMIZATION OF 
MULTIVARIABLE FUNCTION) 

Given an n-variable real function f (x) and the initial 
vector x0, the local minimum point and the function value 
f (x*) are obtained subject to following constraints: 

ci(x) = 0,  i = 1, 2, ... , m1 (6.21) 
ci(x) ≥ 0,  i = m1 + 1, ... , m1 + m2 (6.22) 

  Where x is vector as (x1, x2, ... , xn)T and m1 and m2 are 
the numbers of equality constraints and unequality 
constraints respectively. 
  The algorithm for this problem is derived from that for 
unconstrained minimization explained in section 6.3 by 

adding certain procedures for constraints of (6.21), (6.22).  
That is, the algorithm minimizes f (x) by using the 
quatratic approximation for f (x) at approximate point xk: 

Byygyxx TT

2
1)()( ++≈ kkff  (6.23) 

where  y = x – xk  and B is a Hessian matrix, under the 
constraints of (6.21), (6.22) at the same point xk as 
follows: 

1
T ,...,2,1,0)()( micc kiki ==+ xyx ∇∇∇∇  (6.24) 
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  Where ∇∇∇∇ ci is a gradient vector of ci 
This is a quadratic programming with respect to y. 
  The SSL II supplies the NLPG1 that gives minimum 
point by solving quadratic programming successively 
during iteration. 
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CHAPTER 7 
INTERPOLATION AND APPROXIMATION 

7.1 OUTLINE 

This chapter is concerned with the following types of 
problems. 
 
• Interpolation 

Given discrete points x1 < x2 < ...< xn and their 
corresponding function values yi = f (xi), i = 1, ... , n (in 
some cases y′ i = f  ′(xi) is given), an approximation to    
f (x) (hereafter called interpolating function) is 
determined such that it passes through the given points; 
or, that the interpolating function is used to determine 
an approximate value (hereafter called interpolated 
value) to f (x) at a point x = v other than xi. 

 
• Least-squares approximation 

Given discrete points x1 < x2 < ... < xn and their 
corresponding observed values yi, i = 1, ... , n the 
approximation )(xmy  that minimizes 

  0)()}({)( ,2

1
≥−∑

=
iimi

n

i
i xwxyyxw  

is determined; w(x) is a weight function, and )(xmy  is 
a polynomial of degree m. 
In this type of problem yi is observed data. This method 
is used when the observation error varies among the 
data. 

 
• Smoothing 

Given discrete points x1, x2, ... , xn and their 
corresponding observed values yi, i = 1, 2, ... , n a new 
series of points { iy~ } which approximates the  real 
function is obtained by smoothing out the observation 
errors contained in the observed value {yi}.  Hereafter, 
this processing is referred to as smoothing. iy~ ( or 
{ iy~ })is called the smoothed value for yi (or {yi}), 
y yi i− ~  shows the extent of smoothing, and the 

polynomial used for smoothing is called the smoothing 
polynomial. 
 

• Series 

When a smooth function f (x) defined on a finite 
interval is expensive to evaluate, or its derivatives or 
integrals can not be obtained analytically, it is 
suggested f (x) be expanded to the Chebyshev series. 
  The features of Chebyshev series expansion are 
described below. 
− Good convergence 
− Easy to differentiate and integrate term by term 
− Effective evaluation owing to fast Fourier 

transformation, leading to numerical stability. 
  Obtain the item number of n and the coefficient 
number of Chebyshev expansion depending upon the 
required precision.  Then obtain the derivative and 
indefinite integral of f (x) by differentiating and 
integrating each item of the obtained series in forms of 
series. The derivative value, differential coefficient and 
definite integral can be obtained by summing these 
series.  If the function f (x) is a smooth periodic 
function, it can be expanded to triangular series.  Here 
the even function and odd function is expanded to the 
cosine series and the sine series depending upon the 
required precision. 

  In the field of interpolation or smoothing in this chapter, 
and also in that of numerical differentiation or quadrature 
of a tabulated function, very powerful functions, what is 
called spline functions, are used.  So, the definition and 
the representations of the functions are described below. 
 
Spline function 
(1) Definition 

Suppose that discrete points x0 ..., xn divide the range [a, 
b] into intervals such that 

  a = x0 < x1 < ...< xn = b (7.1) 

Then, a function S(x) which satisfies the following 
conditions: 

a. D kS(x) = 0 for each interval (xi, xi+1) 
b. [ ]baCxS k ,)( 2−∈  (7.2) 

, where D ≡ d / dx 
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is defined as the spline function of degree (k -1) and 
the discrete points are called knots. 
  As shown in (7.2), S(x) is a polynomial of degree (k -
1) which is separately defined for each interval (xi, xi+1) 
and whose derivatives of up to degree (k -2) are 
continuous over the range [a, b]. 

 
(2) Representation-1 of spline functions 

Let aj, j = 0, 1, ... , k -1 and bi, i = 1, 2, ... , n -1 be 
arbitrary constants, then a spline function is expressed 
as 















−=

−+=

∑

∑

−

=

−
+

−

=

j
k

j
j

k
i

n

i
i

xxaxp

xxbxpxS

)()(

,where

)()()(

0

1

0

1
1

1

 (7.3) 

The function ( )x xi
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−1  is defined as 
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  The following illustration proves that (7.3) satisfies 
(7.2).  Suppose that x is moved from x0 to the right in 
(7.3). 
For x0 ≤ x < x1, S(x) = p(x), so S(x) is a polynomial of 
degree (k-1). 
For x1 ≤ x < x2, S(x) = p(x) + b1(x – x1)k-1, so S(x) is a 
polynomial of degree (k -1). 
In general, for xi ≤ x<xi+1 
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  So, it is found that S(x) is a polynomial of degree (k-
1) which is separately defined for each interval. 
  From equation (7.3) we obtain 
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  The l-th derivatives from the left and the right of S(x) 
at xi, are 
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  For l = 0, 1, ... , k -2, the righthand side is zero, so 
that 

)(lim)(lim )(

0

)(

0
εε

εε
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→→
i

l
i

l xSxS  (7.6) 

  (7.5) shows the S(l)(x) is continuous at x = xi . 
  When l = k -1 the righthand side becomes  
(k - 1) (k - 2) ...1･bi . 
  Since generally bi≠0 
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  (7.7) shows that the (k -1)th derivative of S(x) 
becomes discontinuous at x = xi.  Even in this case, if bi, 
i = 1, 2, ... , n -1 are all zero, the (k -1)th derivative of 
S(x) becomes continuous.  Then, from (7.3), it can be 
found that S(x) = p(x) over the range [a, b].  This 
means that S(x) is virtually equal to the power series 
expanded at x = x0.  Therefore, it can be said that an 
arbitrary polynomial of degree (k -1) defined on [a, b] 
is a special form of the spline function.  Equation (7.3) 
is referred to as the expression of spline function by the 
truncated power function, it is in general numerically 
unstable because (x - xi)k-1 tends to assume a large 
absolute value. 
 

(3) Representation-2 of spline functions 
(introduction of B-splines) 

In contrast with the representation(7.3), the 
representation by B-splines, which are defined below, 
can avoid numerical difficulties. 
Let a series of points {tr} shown in Fig. 7.1 be defined 
as 

121

1100121

−+++

−+−+−

≤⋅⋅⋅≤≤≤=<
⋅⋅⋅<=<=≤≤⋅⋅⋅≤≤

knnnnn

kk

tttxt
xtxtttt

 (7.8) 

  And define gk (t; x) as a function of t with parameter x. 
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See Fig. 7.2. 
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xn-1 xnx2x1x0

tn+k-1tn tn+1tn-1t2t1t0t-1t-k+1

 
Fig. 7.1  A series of points 

t
x

gk(t ;x)

xixi-1 xi+2xi+1

ti+2ti+1titi-1  
Fig. 7.2  gk (t; x) 

  Then, the k th order divided difference of gk (t ; x) with 
respect to t = tj, tj+1, ... , tj+k multiplied by a constant: 

];,,,[)()( 1, xtttgttxN kjjjkjkjkj +++ ⋅⋅⋅−=  (7.10) 

is called the normalized B-spline (or simply B-spline) of 
degree (k -1). 
  The characteristics of B-spline Nj,k (x) are as follows.  
Now, suppose that the position of x is moved with tj, 
tj+1, ..., tj+k fixed.  When x ≤ tj since Nj,k(x) includes the k 
th order divided difference of a polynomial of degree (k-
1) with respect to t, it becomes zero.  When tj+k ≤ x, Njk(x) 
is zero because it includes the k th order divided 
difference of a function which is identically zero.  When 
tj < x < tj+k, Nj,k(x) ≠ 0.  In short, 
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(actually, when tj < x < tj+k, 0 < Nj,k(x) ≤ 1)  
Next, suppose that j is moved with x fixed.  Here, let ti = 
xi < x < xi+1 = ti+1. 
Then, in the same way as above, we can obtain 
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The characteristics (7.11) and (7.12) are referred to as the 
locality of B-spline functions. 
From (7.10), B-spline Nj,k(x) can be written as 
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Therefore, Nj,k(x) is a polynomial of degree (k-1) defined 
separately for each interval (xi, xi+1) and its derivatives of 
up to degree k-2 are continuous.  Based on this 
characteristic of Nj,k(x), it is proved that an arbitrary 

spline function S(x) satisfying equation (7.2) can be 
represented as 
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  where cj, j = -k + 1, -k + 2, ... , n -1 are constants 
 
(4) Calculating spline functions 

Given a (k – 1)-th degree spline function, 
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  the method of calculating its function value, 
derivatives and integral 

∫
x

x
dyyS

0
)(  

at the point x ∈  [xi, xi+1) is described hereafter. 
− Calculating the function value 

The value of S(x) at x ∈  [xi, xi+1) can be obtained by 
calculating Nj,k(x).  In fact, because of locality (7.12) 
of Nj,k(x), only non-zero elements have to be 
calculated. 
Nj,k(x) is calculated based on the following 
recurrence equation 
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 (7.17) 

By applying s = 2, 3, ....., k, r = i – s + 1, i – s + 2, ..., 
i to Eqs. (7.16) and (7.17), all of the Nr,s(x) given in 
Fig. 7.3 can be calculated, and the values in the 
rightmost column are used for calculating the S(x). 
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Fig. 7.3  Calculating Nr.s(x) at x∈ [xi,xi+1) 
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− Calculating derivatives and integral  
From 
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S(l)(x) can be obtained by calculating Nj,k
(l)(x). 

From Eq. (7.9) 
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so Nj,k
(l)(x) is the divided difference of order k at t = tj, 

tj+1, ..., tj+k of Eq. (7.19). 
  Now let 
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and let Dj,k(x) be the divided difference of order k 
at t = tj, tj+1,…, tj+k, i.e., 
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  This Dj,k(x) can be calculated by the following 
recurrence equations.  For x ∈  [xi, xi+1), 
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 (7.21) 
  and if s = 2, 3, ... , k, and r = i - s + 1, i - s + 2, ... , i are 
applied, Dj,k for i - k + 1 ≤ j ≤ i, can be obtained.  The 
objective Nj,k

(l)(x) can be obtained as follows: 
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  and S(l)(x) can then be obtained by using this equation.  
Next, the integral is expressed as 
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  so it can be obtained by calculating ∫
x

x kj dyyN
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)(,  

Integration of. Nj,k(x) can be carried out by exchanging 
the sequence of the integration calculation with the 
calculation of divided difference included in Nj,k(x).   
 
First, from Eq. (7.9), the indefinite integral of gk(t ; x) can 
be expressed by 

k
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k
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  where an integration constant is omitted.  Letting  
ek(t; x) = (t – x)k

+ and its divided difference of order k 
represent 

Ij,k(x) = ek[tj, tj+1, ... , tj+k ; x] (7.23) 

  then the Ij,k(x) satisfies the following recurrence 
equation. 
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  where x ∈  [xi, xi+1). 
If equation (7.24) is applied for s = 2, 3, ..., k and r = i – s 
+ 1, i – s + 2, ..., i then a series of Ij,k (x) are obtained as 
shown in the rightmost column in Fig. 7.4. 
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Fig. 7.4  Calculation Ir,s(x) at x ∈∈∈∈  [xi, xi+1) 

The integration of Nj,k(y) is represented by 
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Therefore from Eq. (7.22), 

( )[ ]

( ) ( )

( )






−+







−−−=

−−==

∑

∑∑

∑∫

=
+

+
+−=

+
+−=

+

−

+−=

i

j
jkjj

kjjkj

i

kij
jkjjkj

kj
j

kjkjjkj

n

kj
j

x

x

ttc

xIttcxIttc
k

xIxIttc
k

dyySI

1

,
1

0,

0

1

,0,

1

10

)()(1

)()(1)(

 (7.25) 



INTERPOLATION AND APPROXIMATION 

59 

  The coefficients cj in Equation (7.15) has been so far 
assumed to be known in the calculation procedures for 
function values, derivatives, and integral values of the 
spline function S(x). cj can be determined from the 
interpolation condition if S(x) is an interpolation function, 
or from least squares approximation if S(x) is a 
smoothing function.  In the case of interpolation, for 
example, since n + k – 1 coefficients cj (– k + 1 ≤ j ≤ n – 
1) are involved in equation (7.15), cj will be determined 
by assigning n + k – 1 interpolation conditions to 
Equation (7.15).  If function values are given at n + 1 
points (x = x0, x1, ...., xn ) in Fig. 7.1 function values must 
be assigned at additional (n + k – 1) – (n + 1) = k – 2 
points or k – 2 other conditions (such as those on the 
derivatives) of S(x) must be provided in order to 
determine n + k – 1 coefficients cj.  Further information is 
available in 7.2 “Interpolation.” 
  The SSL II applies the spline function of Eq. (7.15) to 
smoothing, interpolation, numerical differentiation, 
quadrature, and least squares approximation. 
 
(5) Definition, representation and calculation 

method of bivariate spline function 
The bivariate spline function can be defined as an 
extension of the one with a single variable described 
earlier. 
Consider a closed region R = {(x,y) | a ≤ x ≤ b,  c ≤ y ≤ 
d} on the x – y plane and points (xi, yj), where 0 ≤ i ≤ m 
and 0 ≤ j ≤ n according to the division(7.26) 

a = x0 < x1 < ･･･ < xm = b 
c = y0 < y1 < ･･･ < yn = d (7.26) 

  Denoting Dx=∂/∂x and Dy=∂/∂y, the function S(x, y) 
which satisfies 
a. Dx

k S(x,y) = Dy
k S(x,y) = 0 for each of the open 

regions 

{ }11, ,),( ++ <<<<= jjiiji yyyxxxyxR  (7.27) 

b. ][),( 2,2 RCyxS kk −−∈  
 
  is called a bivariate spline function of fual degree k – 1. 
(7.27) a. shows that S(x,y) is a polynomial in x and y on 
each of Rij and is at most (k – 1)-th degree with repeat to 
both of x and y.  Further, b. shows that on the entire R 
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  exists and is continuous when λ = 0, 1, .., k−2 and µ = 0, 
1, ..., k−2. 
If a series of points are taken as follows 

s-k+1≤s-k+2≤･･･≤s-1≤s0=x0<s1=x1<･･･< 
                    <sm=xm≤sm+1≤･･･≤sm+k-1 

t-k+1≤t-k+2≤･･･≤t-1≤t0=y0<t1=y1<･･･< 
                    <tn=yn≤tn+1≤･･･≤tn+k-1 

  the B-splines of in x and y directions are defined in the 
same way as the B-spline with a single variable. 

Nα ,k(x) = (sα+k−sα) gk[sα, sα+1, ..., sα+k ; x] 
Nβ ,k(y) = (tβ+k−tβ) gk[tβ, tβ+1, ..., tβ+k ; y] 

  Then the bivariate spline function of dual degree k – 1 
defined above can be represented in the form 
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  where, cα,β sare an arbitrary constants. 
The calculation of function values, partial derivatives and 
indefinite integral of S (x,y) can be done by simply 
applying to it the calculation for a single variable, if using 
the expression (7.28).  First of all, for λ ≥ 0 and µ ≥ 0, 
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  Therefore, the calculation of the function values and 
partial derivatives are accomplished by separately 
calculating N xkα

λ
,

( ) ( ) , and N ykβ
µ
,

( ) ( )  which can be done by 
applying the previously described method for a single 
variable. 
  Next, consider the value which is obtained by 
differentiating S(x,y) µ times with respect to y and then 
by integrating with respect to x, namely 

dx
y

yxSyxS
x

x µ

µ
µ

∂
∂ ),(),(

0

),1( ∫=−  (7.30) 

  This value is unchanged even when the order of 
differentiation and integration is reversed.  Rewriting the 
right-hand side of Eq. (7.30) by using Eq. (7.28), we 
obtain 
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  This is similar to Eq. (7.23) given previously.  
Therefore, calculation of Eq. (7.31) is performed first by 
calculating cα and then by calculating the integral by 
using the method for a single variable. 
  In addition S(−1,µ)(x,y), 
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  can be calculated by applying the method for calculating 
derivatives and integrals for a single variable each for x 
and y separately. 

7.2 INTERPOLATION 

The general procedure of interpolation is first to obtain 
an approximate function; ex., polynomial, piecewise 
polynomial, etc. which fits given sample points (xi,yi), 
then to evaluate that function. 
  When polynomials are used for approximation, they are 
called Lagrange interpolating polynomials or Hermite 
interpolating polynomials (using derivatives as well as 
function values).  The Aitken-Lagrange interpolation and 
Aitken-Hermite interpolation methods used in SSL II 
belong to this.  As a characteristic, they find the most 
suitable interpolated values by increasing iteratively the 
degree of interpolating polynomials. 
  While, piecewise polynomials are used for the 
approximate function when a single polynomial are 
difficult to apply.  SSL II provides quasi-Hermite 
interpolation and spline interpolation methods. 
  Interpolating splines are defined as functions which 
satisfies the interpolating condition; i.e fits the given 
points.  Interpolating splines are not uniquely determined: 
they can vary with some additional conditions.  In SSL II, 
four types of spline interpolation are available.  As for 
the representation of splines, we mainly use B-spline 
representain because of its numerical stability. 
 
Interpolation by B-spline 
Subroutines using B-spline are divided into two types 
according to their objectives. 
(1) Subroutines by which interpolated values (or 

derivatives, integrals) are obtained 
(2) Subroutines by which interpolating splines are 

obtained. 
 
  Since subroutines in (1) use interpolating splines, 
subroutines in (2) must be called first. 
  SSL II provides various interpolating splines using B-
spline. Let discrete points be xi, i = 1, 2, ..., n, then four 
types of B-spline interpolating function of degree m 
(=2l−1, l≥2) are available depending on the 
presence/absence or the contents of boundary conditions. 
 

Type I ............ S(j)(x1), S(j)(xn), j = 1, 2, ..., l – 1 are 
specified by the user. 

Type II ........... S(j)(x1), S(j)(xn), j = l, l+1, ... , 2l -2 are 
specified by the user. 

Type III .......... No boundary conditions. 
Type IV .......... S(j)(x1) = S(j)(xn), j = 0, 1, ... , 2l -2 are 

satisfied.  This type is suitable to 
interpolate periodic functions. 

 
  Selection of the above four types depends upon the 
quantity of information on the original function available 
to the user. 
  Typically, subroutines of type III (No boundary 
conditions) can be used. 
  Bivariate spline function S(x,y) shown in (7.28) is used 
as an interpolation for a two-dimensional interpolation.  
In this case, different types could be used independently 
for each direction x and y.  However, SSL II provides the 
interpolation using only type I or III in both directions of 
x and y. 
  It will be a problem how the degree of spline should be 
selected.  Usually m is selected as 3 to 5, but when using 
double precision subroutines, if the original function does 
not change abruptly, m may take a higher value. 
  However, m should not exceed 15 because it may cause 
another problem. 
  Table 7.1  lists interpolation subroutines. 
 
Quasi-Hermite interpolation 
This is an interpolation by using piecewise polynomials 
similar to the spline interpolation.  The only difference 
between the two is that quais-Hermite interpolation does 
not so strictly require continuity of higher degree 
derivatives as the spline interpolation does. 
  A characteristic of quasi-Hermite interpolation is that no 
wiggle appear between discrete points.  Therefore it is 
suitable for curve fitting or surface fitting to the accuracy 
of a hand-drawn curve by a trained draftsman. 
  However, if very accurate interpolated values, 
derivatives or integrals are to be obtained, the B-spline 
interpolation should be used. 

7.3 APPROXIMATION 

This includes least-squares approximation polynomials as 
listed in Table 7.2.  The least squares approximation 
using B-spline is treated in “Smoothing”. 

7.4 SMOOTHING 

Table 7.3 lists subroutines used for smoothing. 
  Subroutines SMLE1 and SMLE2 apply local least-
squares approximation for each discrete point instead  
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Table 7.1  Interpolation subroutines 

Objective Subroutine 
name 

Method Notes 

 AKLAG 
(E11-11-0101) Aitken-Lagrange 

interpolation 

Derivatives not 
needed. 

 AKHER 
(E11-11-0201) Aitken-Hermite interpolation Derivatives 

needed 
 SPLV 

(E11-21-0101) Cubic spline interpolation  

 BIF1 
(E11-31-0101) B-spline interpolation (I) Type I 

 BIF2 
(E11-31-0201 B-spline interpolation (II) Type II 

Interpolated value BIF3 
(E11-31-0301 B-spline interpolation (III) Type III 

 BIF4 
(E11-31-0401 B-spline interpolation (IV) Type IV 

 BIFD1 
(E11-32-1101) 

B-spline two-dimensional 
interpolation(I-I) Type I-I 

 BIFD3 
(E11-32-3301) 

B-spline two-dimensional 
interpolation (III-III) Type III-III 

 AKMID 
(E11-42-0101) 

Two-dimensional quasi-
Hermite interpolation 

 

  
INSPL 

(E12-21-0101) 

 
Cubic spline interpolation 

Two derivatives of 
the second order 
at both ends are 
needed 

 AKMIN 
(E12-21-0201) Quasi-Hermite interpolation  

 BIC1 
(E12-31-0102) B-spline interpolation (I) Type I 

Interpolating 
function 

BIC2 
(E12-31-0202) B-spline interpolation (II) Type II 

 BIC3 
(E12-31-0302) B-spline interpolation (III) Type III 

 BIC4 
(E12-31-0402) B-spline interpolation (IV) Type IV 

 BICD1 
(E11-32-1102) 

B-spline two-dimensional 
interpolation (I-I) Type I-I 

 BICD3 
(E12-32-3302) 

B-spline two-dimensional 
interpolation (III-III) Type III-III 

 
Table 7.2  Approximation subroutine 

Objective Subroutine name Method Notes 
Least squares approxi-
mation polynomials 

LESQ1 
(E21-20-0101) 

Discrete point 
polynomial 

The degree of the polynomial is 
determined within the subroutine. 

 
of applying the identical least-squares approximation 
over the observed values.  However, it is advisable for 
the user to use B-spline subroutines for general purpose.  
In B-spline smoothing, spline functions shown in (7.14) 
and (7.28) are used for the one-dimensional smoothing 
and two-dimensional smoothing respectively.  
Coefficients cj or cα,β are determined by the least squares 
method. The smoothed value is obtained by evaluating 
the obtained smoothing function.  SSL II provides 
subroutines for evaluating the smoothing functions. 

  There are two types of subroutines to obtain B-spline 
smoothing functions depending upon how to determine 
knots. 
  They are: 
• The user specifies knots (fixed knots) 
• Subroutines determine knots adaptively (variable 

knots) 
  The former requires experience on how to specify knots.  
Usually the latter subroutines are recommendable. 
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7.5 SERIES 

SSL II provides subroutines shown in Table 7.4 for 
Chebyshev series expansion, evaluation of it, derivatives 
and indefinite integral. 

 

  Table 7.5 lists subroutines used for cosine series 
expansion, sine series expansion and their evaluation, 
which are for periodic functions. 

 
Table 7.3  Smoothing subroutines 

Objective Subroutine name Method Notes 
 SMLE1 

(E31-11-0101) 
Local least-squares 
approximation polynomials Equally spaced discrete points 

 SMLE2 
(E31-21-0101) 

Local least-squares 
approximation polynomials Unequally spaced discrete 

points 
 BSF1 

(E31-31-0101) B-spline smoothing Unequally spaced discrete 
points 

 BSFD1 
(E31-32-0101) 

B-spline two-dimensional 
smoothing Unequally spaced lattice points 

 BSC1 
(E32-31-0102) B-spline smoothing (fixed nodes)  

Smoothing 
function 

BSC2 
(E32-31-0202) B-spline smoothing (added 

nodes) 
 

 BSCD2 
(E32-32-0202) 

B-spline two-dimensional 
smoothing (added nodes) Unequally spaced lattice points 

 
Table 7.4  Chebyshev series subroutines 

Objective Subroutine name Method Notes 
Series 
expansion 

FCHEB 
(E51-30-0101) Fast cosine transformation Number of terms is 

(Power of 2) + 1. 
Evaluation of 
series 

ECHEB 
(E51-30-0201) Backward recurrence equation  

Derivatives of 
series 

GCHEB 
(E51-30-0301) 

Differention formula for 
Chebyshev polynomials 

 

Indefinite 
inte-gral of 
series 

ICHEB 
(E51-30-0401) 

Integral formula for Chebyshev 
polynomials 

 

 
Table 7.5  Cosine or sine series subroutines 

Objective Subroutine name Method Notes 
Cosine series 
expansion 

FCOSF 
(E51-10-0101) Fast cosine transformation Even functions 

Cosine series 
evaluation 

ECOSP 
(E51-10-0201) Backward recurrence equation Even functions 

sine series 
expansion 

FSINF 
(E51-20-0101) Fast sine transformation Odd functions 

sine series 
evaluation 

ESINP 
(E51-20-0201) Backward recurrence equation Odd functions 

 

Smoothed 
value 

   

   Unequally spaced discrete 
points 
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CHAPTER 8 
TRANSFORMS 

8.1 OUTLINE 

This chapter is concerned with discrete Fourier 
transforms and Laplace transforms. 
 
For a discrete Fourier transform, subroutines are 
provided for each of the characteristics of data types. 
• Real or complex data, and 
• For real data, even or odd function 

8.2 DISCRETE REAL FOURIER 
TRANSFORMS 

When handling real data, subroutines are provided to 
perform the transform (8.1) and the inverse 
transform(8.2) 
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where ak and bk are called discrete Fourier coefficients. 
  If we consider the integrals, 
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which define Fourier coefficients of a real valued 
function x(t) with period 2π, the transfomrs (8.1) can be 
derived by representing the function x(t) by n points 

1,...,1,0,2 −=




= njj

n
xx j

π , in the closed interval 

[0,2π] and by applying the trapezoidal rule.  Particularly, 
if x(t) is the (n/2 – 1)th order trigonometric polynomial, 
the transforms (8.1) are the exact numerical integral 
formula of the integrals (8.3).  In other words, the 
discrete Fourier coefficients are identical to the analytical 
Fourier coefficients. 
  If x(t) is an even or odd function, the discrete cosine and 
sine transforms are provided by using their characteristics. 

8.3 DISCRETE COSINE 
TRANSFORMS 

For an even function x(t), subroutines are provided to 
perform the two types of transform.  One of the 
transforms uses the points including end points of the 
closed interval[0,π], and the other transform does not 
include the end points. 
 
• Discrete cosine transform (Trapezoidal rule)  

Representing an even function x(t) by 




= j

n
xx j

π , 

j=0, 1, ..., n in the closed interval [0,π] the transform 
(8.4) and the inverse transform (8.5) are performed. 
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where Σ″ denotes both the first and the last terms of the 
sum are taken with factor 1/2.  The transform (8.4) can 
be derived by representing an even function x(t) by 

njj
n

xx j ,...,1,0, =




= π

 in the closed interval 

[0,π] and by applying the trapezoidal rule to  

  ∫
π

π 0
cos)(2 dtkttx  (8.6) 
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which defining the Fourier coefficient of x(t). 
 
• Discrete cosine transform (midpoint rule) 

Representing an even function x(t) by =+ 2/1jx  
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2
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n
x π  in the open interval (0,π) , 

the transform (8.7) and the inverse transform (8.8) are 
performed. 
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  where Σ′ denotes the sum of terms except for the first 
term which is multiplied by 1/2. 
The transform (8.7) can be derived by applying a 
midpoint rule with n terms to the integral (8.6). 

8.4 DISCRETE SINE TRANSFORMS 

If the function x(t) is an odd function, subroutines are 
provided to perform the two types of transforms.  Similar 
to the discrete cosine transform, one of the transforms is 
performed based on the trapezoidal rule, and the other on 
the midpoint rule. 
 
• Discrete sine transform (Trapezoidal rule) 

Representing an odd function x(t) by x j = ,




 j

n
x π  j=1, 

2, ..., n-1, in the closed interval [0,π] the transform 
(8.9) and the inverse transform (8.10) are performed. 
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  The transform (8.9) can be derived by representing 

the odd function x(t) by ,
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π  j=1, 2, ..., n-1, in 

the closed interval [0,π] and by applying the 
trapezoidal rule to the integral  
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which defining Fourier coefficients of x(t). 
 

• Discrete sine transform (midpoint rule) 

Representing an odd function x(t) by x j+ =1 2/  
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(0,π) the transform (8.12) and the inverse transform 
(8.13) are performed. 
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  The transform (8.12) can be derived by applying the 
midpoint rule with n terms to the integral (8.11). 

8.5 DISCRETE COMPLEX FOURIER 
TRANSFORMS 

For complex data, subroutines are provided to perform 
the transforms corresponding to the transform (8.14) and 
the inverse transform (8.15) 
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  Transform (8.14) can be derived by representing the 
complex valued function x(t) with period 2π by 

,,...,1,0,2 njj
n
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= π  in the closed interval [0,2π] 

and by applying the trapezoidal rule to the integral 
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  which defines Fourier coefficients of x(t). 
  The discrete type Fourier transforms described above 
are all performed by using the Fast Fourier Transform 
(FFT). 
  When transforms are performed by using the FFT, the 
internal processings are divided as follows: 
(a) Transforms are performed by repeating elementary 

transforms of the small dimension in place. 
(b) Arranging the data in the normal order. 
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  Subroutines (component routines) are provided for each 
of the above processings. 
  The Fourier transform can be performed by using both 
subroutines for (a) and (b) above.  Another subroutine 
(standard subroutine) which combines these subroutines 
is also provided and should usually be used. 
  The amount of data should be expressed by number to 
the power of 2 in taking the processing speed into 
consideration.  However, for the complex Fourier  
transform, the following points are also considered: 
• The amount of data can be expressed by either power 

of 2 or product of the powers of the prime numbers. 
• Multi-variate transform can also be accomplished. 
 
  Table 8.1 lists the subroutines for each data charac-
teristic. 
 
Comments on use 
• Number of Sample points 

The number of sample points, n, of transformed data is 
defined differently depending on the (data) 
characteristic of the function x(t).  That is, n is 
− the number of sample points taken in the half period 

interval, (0,π), or [0,π], for the cosine and sine 
transforms, or 

− the number of sample points taken in the full period 
interval, [0,2π], for the real and complex trans-forms. 

• Real transform against cosine and sine transforms  
If the function x(t) is an ordinary real function, the 
subroutine for a real transform can be used, but if it is 
known in advance that the x(t) is either an even or odd 
function, the subroutine for cosine and sine transforms 
should be used.  (The processing speed is about half as 
fast as for a real transform.)  

• Fourier coefficients in real and complex transforms 
The following relationships exist between the Fourier 
coefficients {ak} and {bk} used in a real transform 
(including cosine and sine transforms) and the Fourier 
coefficient {αk} used in a complex transform. 
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  where n denotes equally spaced points in a period [0,2π].  
Based on the above relationships, users can use both 
subroutines for real and complex transforms when 
necessary.  In this case, however, attention must be paid 
to scaling and data sequence. 
 
• Trigonometric functions 

For cosine and sine transforms, the necessary 
trigonometric function table for transforms is provided 
in the subroutine for better processing efficiency.  The 
function table is output in the parameter TAB which 
can be used again for successive transforms. 
For each transform, two subroutines are provided based 
on the trapezoidal rule and the midpoint rule. For the 
former, the size of the trigonometric function table is 
smaller and therefore more efficient. 
 

• Scaling 
Scaling of the resultant values is left to the user. 

 

 
Table 8.1  Subroutines for discrete Fourier transform 

   Subroutine name 
Type of transform Amount of data Standard routine Component routine 

    (a) (b) 
Cosine Trapezoidal rule (Power of 2) + 1 FCOST 

(F11-11-0101) 
  

 Midpoint rule Power of 2 FCOSM 
(F11-11-0201) 

  

Sine Trapezoidal rule  FSINT 
(F11-21-0101) 

  

 Midpoint rule  FSINM 
(F11-21-0201) 

  

Real   transform  RFT 
(F11-31-0101) 

  

Complex transform  CFT 
(F12-15-0101) 

CFTN 
(F12-15-0202) 

PNR 
(F12-15-0402) 

    CFTR 
(F12-15-0302) 

 

  Product of power 
of prime numbers 

CFTM 
(F12-11-0101) 

  

Note: 
(a) and (b) given in the table are described in Section 8.5. 
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8.6 LAPLACE TRANSFORM 

The Laplace transform of f(t) and its inverse are defined 
respectively as: 
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dtetfsF st  (8.18) 
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  where γ > γ0, γ0 (: abscissa of convergence) and 
i = −1 . 
  In these transforms, f(t) is called the original function 
and F(s) the image function.  Assume the following 
conditions about F(s). 
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  where Re [ • ] denotes the real part of [ • ] and F*(s) the 
conjugate of F(s).  Condition 1) is always satisfied, 
condition 2) is satisfied unless f(t) is a distribution and 
condition 3) is satisfied when f(t) is a real function.  The 
subroutines prepared perform the numerical 
transformation of expression (8.19).  The outline of the 
method is described below. 
 
Formula for numerical transformation 
Assume γ0 ≤ 0 for simplicity, that is F(s) is regular in the 
domain of Re(s) > 0, and the integral (8.19) exists for an 
arbitrary real value γ greater than 0. Since 
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est in (8.19) is approximated as follows using an 
appropriate value for σ0: 

( ) ( )[ ]stestEec −≡ 00 cosh2, 0 σσ σ  

  Function Eec(st,σ0) is characterized as follows:  
There are an infinite number of poles on the line 
expressed by Re(s)=σ0/t.  Figure 8.1 shows locations of 
the poles. This can be explicitly represented as: 

( ) ( )
( )[ ]∑

∞

−∞= −+−
−=

n

n

ec tnis
i

t
estE

πσ
σ

σ

5.0
1

2
,

0
0

0

 

  Then, f(t,σ0) which denotes an approximation of the 
original function f(t) is: 
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where γ0 < γ < σ0/t is assumed. 

  It follows that the integral of the right-hand side can be 
expanded in terms of integrals around the poles of 
Eec(st,σ0). 

Real axis

Re(s)=γ

Imaginary axis

 
Fig. 8.1   Poles of Eec(st,σ0) 

  Since F(s) is regular in the domain of Re(s) > 0, the 
following is obtained according to Cauchy’s integral 
formula: 
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where Im [ • ] denotes the imaginary part of [ • ].  If γ0 > 
0 the condition γ0 < γ < σ0/t cannot be satisfied for a 
certain value of t(0 < t < ∞).  This means γ0 ≤ 0 is 
necessary for (8.22) to be used for 0 < t < ∞. 
  Function f(t,σ0) gives an approximation to function f(t) 
and is expressed as follows according to the error 
analysis in reference [98]: 

( ) ( ) ( ) ( ) ⋅⋅⋅−⋅+⋅−= −− tfetfetftf 53, 00 42
0

σσσ  
 (8.23) 

  This means that function f(t,σ0) gives a good 
approximation to f(t) when σ0 >> 1.  Moreover, (8.23) can 
be used for estimating the approximation error. 
  For numerical calculation, the approximation can be 
obtained principally by truncating (8.22) up to an 
appropriate term; however, the direct summation is often 
not practical.  Euler transformation that can be generally 
applied in this case is incorporated in the subroutines.  
Define function Fn as follows: 

( ) ( )













 −+−≡

t
niFF n

n
πσ 5.0Im1 0  (8.24) 



TRANSFORMS 

67 

  Then, Euler transformation is applicable when the 
following condition is satisfied (reference [100]): 
1) For an integer k≥1, the sign of Fn alternates when n≥k

 (8.25) 
2) 1/2 ≤ | Fn+1/Fn | < 1  when  n ≥ k 
 
  When Fn satisfies these conditions, the series  
represented by (8.22) can be transformed as: 
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where Rp(k) is defined as: 
Rp(k) ≡ 2−P(DpFk+DpFk+1+DpFk+2+…) 

DpFk is the pth difference defined as 
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  In the subroutines, the following expression is 
employed: 
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where  N = k + p, 
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  Determination of values for σ0, k, and p is explained in 
each subroutine description. 
  The following has been proved for the truncation error 
of fN(t,σ0).  Suppose φ (n) ≡ Fn.  If the p th derivative of 
φ(x), φ (p) (x), is of constant sign for positive x and 
monotonously decreases with increase of x (for example, 
if F(s) is a rational function), the following will be 
satisfied: 
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where fN+1(t,σ0) stands for (8.28) with k + 1 instead of k.  
To calculate Dp+1Fk in the above formula, Fk+p+1 is 
required, in addition to the set {Fn; n = k, k+1, ...., k+p} 
to be used for calculation of fN(t,σ0); hence, one more 
evaluation of the function is needed.  To avoid that, the 
following expression is substituted for the truncation 
error of fN(t,σ0) in the subroutines; 
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In the subroutines, the truncation error is output in the 
form of the following relation error: 
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  Dp+1Fk-1 is a linear combination of Fk-1, Fk, ..., Fk+p, and 
the coefficients are equal to the binomial coefficients.  Ap, 
r can be calculated as the cumulative sum, as shown in 
(8.29).  Thus, these coefficients can easily be calculated 
by using Pascal’s triangle.  Figure 8.2 shows this 
calculation techniques (for p = 4) 

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

31 26 16 6 1

coefficients of
D5Fk-1

A4,r  
Fig. 8.2  Pascal’s triangle (for p=4) 

  Next, in the case of γ0>0, since F(s) is not regular in the 
domain of Re(s) > 0; the above technique cannot be 
directly applied.  Note, however, that the integral in 
(8.19) can be expressed as: 
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 where r>0, G(s)=F(s+r0) 
  (8.31) 
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  Since G(s) is regular in the domain of Re(s) > 0, g(t) can 
be calculated as explained above; then f(t) is obtained by 
multiplying g(t) by te 0γ  
 
Transformation of rational functions 
A rational function F(s) can be expressed as follows 
using polynomials Q(s) and P(s) each having real 
coefficients: 

F(s) = Q(s) / P(s) (8.32) 

  To determine whether γ0≤0 or γ0>0 , it is only necessary 
to check whether P(s) is a Hurwitz polynomial (that is, all 
zeros are on the left-half plane {s | Re(s)<0}.  The 
procedure used for the check is described below 
(reference [94]): 
  A polynomial P(s) of degree n with real coefficients is 
expressed as follows: 
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  The ratio of n(s) to m(s) is defined as: 

  )()()( snsmsW ≡  

  Then, W(s) is expanded into continued fraction as: 
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  If all of h1, h2, ... , are positive, P(s) is a Hurwitz 
polynomial.  If F(s) has singularities in the domain of 

Re(s) >0, the above procedure can be repeated increasing 
α( > 0) so that G(s)=F(s+α) is regular in the domain of 
Re(s) > 0.  The value of fN(t,σ0) is calculated by 
multiplying eαt by gN(t,σ0), the inverse of G(s). 
  When F(s) is an irrational function or a distribution, 
there is no practical method that tests if F(s) is regular in 
the domain of Re(s) > 0, therefore, the abscissa of 
convergence of a general function F(s) must be specified 
by the user. 
 
Choice of subroutines 
Table 8.2 shows subroutines for the inversion of Laplace 
transforms.  LAPS1 and LAPS2 are used for rational 
functions where LAPS1 for γ0 ≤ 0 and LAPS2 otherwise.  
HRWIZ judges the condition P(s), that is, examines if γ0 
> 0 in (8.32) is a Hurwitz polynomial; and if γ0 > 0 is 
detected, the approximated value of γ0 is calculated.  The 
condition γ0 > 0 means that the original function f(t) 
increases exponentially as t→∞ .  So, HRWIZ can be 
used for examining such a behavior.  Figure 8.3 shows a 
flowchart for choosing subroutines. 
 
Table 8.2  Laplace transform subroutines 

Function 
type Subroutine 

name 
Remarks 

 LAPS1 
(F20-01-0101) 

Rational functions regular 
in the right-half plane. 

Rational 
functions 

LAPS2 
(F20-02-0101) 

General rational functions. 

 HAWIZ 
(F20-02-0201) 

Judgment on Hurwitz 
polynomials. 

General 
functions 

LAPS3 
(F20-03-0101) 

Convergence coordinate γ0 
must be input. 
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Rational
function

γ 0 ≤0

γ 0 is required

Condition
γ 0 ≤0 is satisfied

HRWIZ

LAPS2

LAPS3

1

1

END

LAPS1

Inversion
required

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Inversion
required

 
Fig. 8.3  Flowchart for choosing Laplace transform subroutines. 
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CHAPTER 9 
NUMERICAL DIFFERENTIATION AND QUADRATURE 

9.1 OUTLINE 

This chapter describes the following types of problems. 
 
• Numerical differentiation: 
Given function values yi = f(xi), i = 1, ... n at discrete 
points x1, x2, ..., xn (x1 < x2 < ... < xn), the l - th order 
derivative f (l)(v), at x = v in the interval [x1, xn] is 
determined, where l ≥ 1. 
In addition two-dimensional differentiation is included.  
Also, given function f(x), the following derivative is 
expanded to Chebyshev series. 

( )( ) ( ) 1, ≥= ldxxfdxf lll  

• Numerical quadrature: 
Given function values yi = f(xi), i = 1, ..., n at discrete 
points x1, x2, ..., xn, the integral of f(x) over the interval 
[x1, xn] is determined.  Also, given function f(x), the 
integral 

∫=
b
a

dxxfS )(  

is determined within a required accuracy.  Multiple 
integrals are also included. 

9.2 NUMERICAL DIFFERENTIATION 

When performing numerical differentiation, SSL II 
divides problems into the following two types: 
 
Discrete point input 
In numerical differentiation, an appropriate interpolation 
function is first obtained to fit the given sample point 
(xi,yi) where i = 1, 2, ..., n, then it is differentiated. 
  Among several functions available, SSL II exclusively 
uses the spline function and we preferably use its B-
spline representations. 
  See Chapter 7 as for the spline function and B-spline 
representations. 

Function input 
Given function f(x) and domain [a, b], f(x) is expanded to 
Chebyshev series within a required accuracy.  That is, it 
is approximated by the following functions: 
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  Then by differentiating term by term. 

( )( ) ( )∑
−−

=







−
+−≈

1

0

2ln

k
k

ll

ab
abxTcxf

k
 

  the derivatives are expanded to Chebyshev series.  The 
derivative values are obtained by evaluating f (l)(v) at 
point x = v in the interval in which the function is defined, 
that is, by summing Chebyshev series. 
  Table 9.1 lists subroutines used for numerical 
differentiation. 

9.3 NUMERICAL QUADRATURE 

Numerical Quadrature is divided into the following two 
types. 
 
Integration of a tabulated function 
Given function values yi = f(xi), i = 1, ..., n at discrete 
points x1 < x2< .... <xn, the definite integral: 

∫= nx

x
dxxfS

1
)(  (9.1) 

is approximated using only the given function values yi.  
The bounds of error of the approximated value can not be 
calculated.  Different subroutines are used depending on 
whether or not the discrete points are equally spaced. 
 
Integration of a function 
Given a function f(x) and the interval of integration 
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Table 9.1  Subroutine used for numerical differentiation 

Objective Subroutine name Method Remarks 
Derivative 
value 

SPLV 
(E11-21-0101) Cubic spline interpolation Discrete point input 

 BIF1 
(E11-31-0101) B-spline interpolation (I)  

 BIF2 
(E11-31-0201) B-spline interpolation (II)  

 BIF3 
(E11-31-0301) B-spline interpolation (III)  

 BIF4 
(E11-31-0401) B-spline interpolation (IV)  

 BSF1 
(E31-31-0101) B-spline smoothing  

 BIFD1 
(E11-32-1101) 

B-spline 2-dimensional 
interpolation (I-I) 

Discrete point input 2-
dimensional 

 BIFD3 
(E11-32-3301) 

B-spline 2-dimensional 
interpolation (III-III) 

 

 BSFD1 
(E31-32-0101) 

B-spline 2-dimensional 
smoothing 

 

 FCHEB 
(E51-30-0101) Fast cosine transformation Function input, Chebyshev 

series expansion 
 GCHEB 

(E51-30-0301) 
Backward recurrence 
equation Chebyshev series 

derivative 
 ECHEB 

(E51-30-0201) 
Backward recurrence 
equation Summing Chebyshev 

series 
 
 
[a, b], the definite integral: 

S = fa
b

∫  (x) dx  (9.2) 

is calculated within a required accuracy.  Different 
subroutines are used according to the form, 
characteristics, and the interval of integration of f(x). 

Besides (1. 2), the following types of integrals are 
calculated. 
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  Subroutines used for numerical quadrature are shown in 
Table 9.2. 
 
General conventions and comments on numerical 
quadrature 
The subroutines used for numerical quadrature are 
classified primarily by the following characteristics. 
• Dimensions of the variable of integration: 1 dimension 

or 2 
• Interval of integration: finite interval, infinite interval, 

or semi-infinite interval. 

  Titles of the subroutines are based on that classification, 
so we say, for example: 
• 1-dimensional finite interval integration 
• 1-dimensional infinite interval integration 
 
  If a subroutine is characterized by other aspects or by its 
method, they are included in parentheses: 
• 1-dimensional finite interval integration (unequally 

spaced discrete point input, trapezoidal rule) 
• 1-dimensional finite interval integration (function input, 

adaptive Simpson’s rule) 
 
  Numerical integration methods differ depending on 
whether a tabulated function or a continuous function is 
given.  For a tabulated function, since integration is 
performed using just the function values yi = f(xi), i = 
1, ...n it is difficult to obtain an approximation with high 
accuracy.  On the other hand, if a function is given, 
function values in general can be calculated anywhere 
(except for singular cases), thus the integral can be 
obtained to a desired precision by calculating a sufficient 
number of function values. Also, the bounds of error can 
be estimated. 
 
Integrals of one-dimensional functions over finite 
interval 
The following notes apply to the subroutines which 
compute ( )f x dx

a
b

∫  

Derivative 
function and 
derivative 
value 
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Table 9.2  Numerical quadrature subroutines 

Objective Subroutine 
name 

Method Remarks 

1-dimensional finite 
interval 
(equally spaced) 

SIMP1 
(G21-11-0101) 

 
Simpson’s rule 

 

 TRAP 
(G21-21-0101) Trapezoidal rule  

 BIF1 
(E11-31-0101) B-spline interpolation (I)  

 BIF2 
(E11-31-0201) B-spline interpolation (II)  

 BIF3 
(E11-31-0301) B-spline interpolation (III)  

 BIF4 
(E11-31-0401) B-spline interpolation (IV)  

 BSF1 
(E31-31-0101) B-spline smoothing  

 BIFD1 
(E11-32-1101) 

B-spline 2-dimensional 
interpolation (I-I) 

 

2-dimensional finite 
interval 

BIFD3 
(E11-32-3301) 

B-spline 2-dimensional 
interpolation (III-III) 

Discrete point input 2-
dimensional 

 BSFD1 
(E31-32-0101) 

B-spline 2-dimensional 
smoothing 

 

 SIMP2 
(G23-11-0101) Adaptive Simpson’s rule  

 AQN9 
(G23-11-0201) 

Adaptive Newton-Cotes 9 
point rule 

 

 AQC8 
(G23-11-0301) Clenshaw-Curtis integration  

 AQE 
(G23-11-0401) Double exponential formula  

1-dimensional semi-
infinite interval 

AQEH 
(G23-21-0101) Double exponential formula  

1-dimensional infinite 
interval 

AQEI 
(G23-31-0101) Double exponential formula  

Multi-dimensional 
finite region 

AQMC8 
(G24-13-0101) Clenshaw-Curtis quadrature  

Multi-dimensional 
region 

AQME 
(G24-13-0201) Double exponential formula  

 
 
• Automatic quadrature routines 

Four quadrature subroutines, SIMP2, AQN9, AQC8, 
and AQE are provided for the integration ( )f x dx

a
b

∫  , as 

shown in Table 9.2.  All these subroutines are 
automatic quadrature routines.  An automatic 
quadrature routine is a routine which calculates the 
integral to satisfy the desired accuracy when integrand 
f(x), integration interval [a, b], and a desired accuracy 
for the integral are given.  Automatic quadrature is the 
algorithm designed for this purpose. 
  Generally in automatic quadrature subroutines, an 
integral calculation starts with only several abscissas 
(where the integrand is evaluated), and next improves 
the integral by increasing the number of abscissas 
gradually until the desired accuracy is satisfied.  Then 
the calculation stops and the integral is output. 

  In recent years, many automatic quadrature 
subroutines have been developed all over the world.  
These subroutines have been tested and compared with 
each other many times for reliability (i.e., ability to 
satisfy the desired accuracy) and economy (i.e., less 
calculation) by many persons.  These efforts are well 
reflected in the SSL II subroutines. 

 
• Adaptive method 

This is most (popularly) used for integral calculation as 
a typical method of automatic integration.  This is not a 
specific integration formula (for example, Simpson’s 
rule, Newton-Cotes 9 point rule, or Gauss’ rule, etc.), 
but a method which controls the number of abscissas 
and their positions automatically in response to the 
behavior of integrand.  That is, it locates 

1-dimensional finite 
interval 
(unequally spaced) 

  Discrete point input 

1-dimensional finite 
interval 

   
 
Integration of a function 

   Multi-variate function 
input 
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abscissas densely where integrand changes rapidly, or 
sparsely where it changes gradually.  Subroutines 
SIMP2 and AQN9 use this method. 

 
• Subroutine selection 

As a preliminary for subroutine selection, Table 9.3 
shows several types of integrands from the viewpoint 
of actual use. 
It is necessary in subroutine selection to know which 
subroutine is suitable for the integrand.  The types of 
routines and functions are described below in 
conjunction with Table 9.3. 
 

Table 9.3  Integrand type 

Code Meaning Example 
Smooth Function with good 

convergent power series. 
∫

∫
−1

0

0 sin

dxe

,xdx
x

π

 

Peak Function with some high 
peaks and wiggles in the 
integration interval. )10( 62

1
1

−+

∫

x

/dx-
 

Oscilla-
tory 

Function with severe, short 
length wave oscillations. ∫

1
0 100sin xdxπ  

Singu-
lar 

Function with algebraic 
singularity (xα, −1 < α) or 
logarithmic singularity (log x). ∫

∫
1
0

1
0

log xdx

x/dx
 

Discon-
tinuous 

Function with discontinuities 
in the function value or its 
derivatives ∫

∫
π
0

1
0

cos

]2[

x|dx|

,dxx
 

 
SIMP2 .... Uses adaptive method based on Simpson’s 

rule.  This is the first adaptive method used in 
the SSL II, and is the oldest in the history of 
adaptive methods.  More useful adaptive 
methods are now available. That is, SIMP2 is 
inferior to the adaptive routine AQN9 in many 
respects. 

AQN9 .... Adaptive method based on Newton-Cotes’ 
9-point rule. This is the most superior adaptive 
method in the sense of reliability or economy.  
Since this subroutine is good at detecting local 
actions of integrand, it can be used for 
functions which have singular points such as a 
algebraic singularity, logarithmic singularity, 
or discontinuities in the integration interval, 
and in addition, peaks. 

AQC8 ... Since this routine is based on Chebyshev 

series expansion of a function, the better 
convergence property the integrand has the 
more effectively the routine can perform 
integration.  For example, it can be used for 
smooth functions and oscillatory functions but 
is not suitable for singular functions and peak 
type functions. 

AQE .....Method which extends the integration 
interval [a, b] to (-∞,∞) by variable 
transformation and uses the trapezoidal rule.  
In this processing, the transformation is 
selected so that the integrand after conversion 
will decay in a manner of a double exponential 
function (exp (-a⋅exp|x|), where a>0) when 
x→∞.  Due to this operation, the processing is 
still effective even if the function change 
rapidly near the end points of the original 
interval [a, b].  Especially for functions which 
have algebraic singularity or logarithmic 
singularity only at the end points, processing is 
more successful than any other subroutine, but 
not so successful for functions with interior 
singularities. 

 
  Table 9.4 summarizes these descriptions.  The 
subroutine marked by ‘   ’ is most suitable for 
corresponding type of function, and the subroutine 
marked by ‘   ’ should not be used for the type.  No mark 
indicates that the subroutine is not always suitable but 
can be used.  All these subroutines can satisfy the desired 
accuracy for the integral of smooth type.  However, 
AQC8 is best in the sense of economy, that is, the amount 
of calculation is the least among the three. 
  SSL II provides subroutines AQMC8 and AQME for up 
to three-dimensional integration.  They are automatic 
quadrature routines as shown below. 
AQMC8 .... Uses Clenshaw-Curtis quadrature for each 

dimension.  It can be used for a smooth and 
oscillatory functions.  However, it is not 
applicable to functions having singular points 
or peaked functions. 

AQME ..... Uses double exponential formula for each 
dimension.  Since this subroutines has all 
formulas used in AQE, AQEH and AQEI, it 
can be used for any type of intervals (finite, 
semifinite or infinite interval) 

 
Table 9.4  Subroutine selection 

Function 
type 

 
Smooth 

 
Peak 

 
Oscillatory Singular   

Unknown* 
Subroutine    End point Interior   

AQN9  O   O O O 
AQC8 O ×××× O × × ×  
AQE    O × ×  

* Functions with unknown characteristics 

 

      Discon-
tinuous 
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and those combining these types. 
AQME can be used efficiently if the function has 

singular points on the boundary of a region.  However, it 

is not applicable to the function which has singular points 
in the region. 
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CHAPTER 10 
DIFFERENTIAL EQUATIONS 

10.1 OUTLINE 

This chapter describes the following types of problems. 
 
• Ordinary differential equations (initial value problems) 

Initial value problems of systems of first order oridnary 
differential equations are solved. 
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  Initial value problems of high order ordinary differential 
equations can be reduced to the form shown in (10.1).  
Namely, letting 

( ) ( )( ),,...,,,, 1−′′′= kk yyyyxfy  
( ) ( ) ( )( )0
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  Then, the high order equations can be reduced to and 
expressed as: 
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 (10.2) 

10.2 ORDINARY DIFFERENTIAL 
EQUATIONS 

To solve the initial value problem y′ = f(x, y), y(x0) = y0 
on the interval [x0, xe] means to obtain approximate 
solutions at discrete points  
 
x0 < x1 < x2 < ... <xe 
 
step by step as shown in Fig. 10.1. 

x
xex5x4x3x2x1x00

y0

y

 
Fig. 10.1  Approximate solutions of y' = f (x, y), y(x0) = y0 

Solution output 
In Fig. 10.1, solution output points x1, x2, x3, ... are either 
specified by the user or selected as a result of step size 
control by the subroutine.  The purpose of solving the 
differential equations is to obtain: 
(a) the solution y(xe) only at xe 
(b) the solutions at the points selected as a result of step-

size control by the subroutine.  In this case, the 
purpose is to know the behavior of solutions, and no 
restriction is necessary to the solution output points 
because the behaviour of the solutions is all that is 
needed 

(c) the solution at user-specified points {ξj} or at equally 
spaced points. 

 
  The SSL II ordinary differential equation subroutines 
provide two output methods (timing to return to the user 
program from the subroutine) corresponding to the 
purposes described above, as follows: 
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• Final value output 
When the solution y(xe) is obtained, return to the user 
program.  For the purpose of (c), set xe to ξi 
sequentially, where i = 1, 2, ..., and call the subroutine 
repeatedly. 
 

• Step output 
Under step-size control, return to the user program 
after one step integration.  The user program can call 
this subroutine repeatedly to accomplish (b) described 
above. 

 
  SSL II provides subroutines ODRK1, ODAM and 
ODGE which incorporate final value output and step 
output.  The user can select the manner of output by 
specifying a parameter. 
 
Stiff differential equations 
This section describes stiff differential equations, which 
appear in many applications, and presents definitions and 
examples. 
  The equations shown in (10.1) are expressed in the from 
of vectors as shown below. 

( ) ( ) 00,, yyyfy ==′ xx  (10.3) 
 
where 
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Suppose f(x, y) is linear, that is 

( ) ( )xx ΦΦΦΦ+= Ayyf ,  (10.4) 

  where, A is a constant coefficient matrix and )(xΦΦΦΦ  is an 
appropriate function vector.  Then, the solution for (10.3) 
can be expressed by using eigenvalues of A and the 
corresponding eigenvectors as follows: 

( ) ( )∑
=

+=
N

i
i

x
i xekx i

1
ΨΨΨΨuy λ  (10.5)  

 ki : constant 

  Let us assume the following conditions for λi and )(xΨΨΨΨ  
in (10.5): 
(a) Re(λi)<0, for i=1, 2, ..., N 
(b) )(xΨΨΨΨ  is smoother than any xieλ  (that is, it has good 

convergent power expansion). 
 
  Under these conditions, as x tends to infinity, the 
following can be seen. 

∑
=

→
N

i
i

x
i

iek
1

0uλ  (10.6) 

So, solution y(x) tends to )(xΨΨΨΨ .  After )(xΨΨΨΨ  has 
become dominant, the solution can be obtained by the 
approximate solution for )(xΨΨΨΨ .  The step sizes can be 
spaced rather roughly. 
  However, attempts to use methods such as Euler and 
classical Runge-Kutta encounter a phenomenon that errors 
introduced at a certain step increase from step to step. 
Therefore, when using these methods, the step sizes are 
substantially restricted.  The larger the value of  
max ( |Re(λi)| ) is, the smaller the step size must be. 
  Although solution y(x) can be approximated numerically by 
the smoothing function )(xΨΨΨΨ , the step sizes must be small 
for integration.  This causes an imbalance between two step 
sizes, one of which is enough to approximate the solution 
numerically, and the other is required for error protection. 
  If )(xΦΦΦΦ = 0, that is, )(xΨΨΨΨ = 0 in (10.3), solution y(x) 
becomes smaller.  Therefore, it is actually approximated by 
the term  ki  xieλ  ui  corresponding to the smallest | Re(λi) |.  
In this case, if max | Re(λi) | is large, the above mentioned 
difficulty occurs. 
  The stiff differential equation is defined as follows: 
 
• Definition 1 

When the following linear differential equation 

  ( )xΦΦΦΦ+=′ Ayy  (10.7) 

satisfies the following (10.8) and (10.9), 

Re(λi)<0,  i=1, 2, ... , N (10.8) 
( )( )
( )( )i

i

λ
λ

Remin
Remax

>>1 (10.9) 

they are called stiff differential equations.  The left side 
of the equation in (10.9) is called stiff ratio.  If this 
value is large, it is strongly stiff: otherwise, it is mildly 
stiff.  Actually, strong stiffness with stiff ratio of 
magnitude 106 is quite common. 
  An example of stiff linear differential equations is 
shown in (10.10).  Its solution is shown in (10.11) (See 
Fig. 10.2). 
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  Obviously, the following holds: when x → ∞ 
  y1 → 2e-x ,  y2 → −e-x 
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Fig. 10.2  Graph for the solution in (10.11)  
 

Suppose f(x, y) is nonlinear. 
The eigenvalue of the following Jacobian matrix 
determines stiffness. 

( )
y

yf
J

∂
∂ ,x

=  

where, the eigenvalues vary with x.  Then, definition 1 
is extended for nonlinear equations as follows. 

 
• Definition 2 

When the following nonlinear differential equation 

y′ = f(x, y) (10.12) 

satisfies the following (10.13) and (10.14) in a certain 
interval, it is said to be stiff in that interval. 

( )( ) Nixi ...,,2,1,0Re =<λ  (10.13) 
 x∈ I 

Ix
x
x

i

i ∈>> ,1
)  ))(Re( min(
)  ))(Re( max(

λ
λ

 (10.14) 

where λi(x) are the eigenvalues of J. 
  Whether the given equation is stiff or not can be 
checked to some extent in the following way: 

− When the equation is linear as shown in (10.7), the 
− stiffness can be checked directly by calculating the 

eigenvalues of A. 
− When the equation is nonlinear, subroutine ODAM 

can be used to check stiffness. ODAM uses the 
Adams method by which non-stiff equations can be 
solved.  ODAM notifies of stiffness via parameter 
ICON if the equation is stiff. 
  Subroutine ODGE can be used to solve stiff 
equations. 

 
Subroutine selection 
Table 10.1 lists subroutines used for differential 
equations. 
• ODGE for stiff equations 
• ODRK1 or ODAM for non-stiff equations 

ODRK1 is effective when the following conditions are 
satisfied: 
− The accuracy required for solution is not high. 
− When requesting output of the solution at specific 

points of independent variable x, the interval of 
points is  wide enough. 
  The user should use ODAM when any of these 
conditions is not satisfied. 

• Use ODAM at first when the equation is not recognized 
stiff. 
If ODAM indicated stiffness, then the user can shift to 
ODGE. 
 

 

Table 10.1  Ordinary differential equation subroutines 

Objective Subroutine name Method Comments 
 RKG 

(H11-20-0111) Runge-Kutta Gill method Fixed step size 

 HAMNG 
(H11-20-0121) Hamming method Variable step size 

Initial value 
problem 

ODRK1 
(H11-20-0131) Rung-Kutta-Verner 

method 
Variable step size 

 ODAM 
(H11-20-0141) Adams method Variable step size, variable order 

 ODGE 
(H11-20-0151) Gear method Variable step size, variable order 

(Stiff equations) 
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CHAPTER 11 
SPECIAL FUNCTIONS 

11.1 OUTLINE 

The special functions of SSL II are functions not included 
in FORTRAN basic functions.  The special functions are 
basically classified depending upon whether the variables 
and functions are real or complex. 
 
 Real type (variable and function are both real) 
Special functions 
 Complex type (variable and function are both complex) 
 
The following properties are common in special function 
subroutines. 
 
Accuracy 
The balance between accuracy and speed is important 
and therefore taken into account when selecting 
calculation formulas.  In SSL II, calculation formulas 
have been selected such that the theoretical accuracies 
(accuracies in approximation) are guaranteed to be within 
about 8 correct decimal digits for single precision 
versions and 18 digits for double precision versions.  To 
insure the accuracy, in some single precision versions, the 
internal calculations are performed in double precision.  
However, since the accuracy of function values depends 
on the number of working digits available for calculation 
in the computer, the theoretical accuracy cannot always 
be assured. 
  The accuracy of the single precision subroutines has 
been sufficiently checked by comparing their results with 
those of double precision subroutines, and for double 
precision subroutines by comparing their results with 
those of extended precision subroutines which have much 
higher precision than double precision subroutines. 
 
Speed 
Special functions are designed with emphasis on accuracy 
first and speed second.  Though real type functions may 
be calculated with complex type function subroutines, 
separate subroutines are available with greater speed for 
real type calculations.  Separate 

subroutines, single precision and double precision 
subroutines have been prepared also for interrelated 
special functions.  For frequently used functions, both 
general and exclusive subroutines are available. 
 
ICON 
Special functions use FORTRAN basic functions, such as 
exponential functions and trigonometric functions.  If 
errors occur in these basic functions, such as overflow or 
underflow, detection of the real cause of problems will be 
delayed.  Therefore, to notice such troubles as early as 
possible, the detection is made before using basic 
functions in special function subroutines, and if detected, 
informations about them are returned in parameter ICON. 
 
Calling method 
Since various difficulties may occur in calculating special 
functions, subroutines for these functions have a 
parameter ICON to indicate how computations have 
finished.  Accordingly,special functions are implemented 
in SUBROUTINE form which are called by using the 
CALL statements, while it is said that these functions 
should be implemented in FUNCTION form as basic 
functions. 

11.2 ELLIPTIC INTEGRALS 

Elliptic integrals are classified into the types shown in 
Table 11.1. 
  A second order iteration method can be used to 
calculate complete elliptic integrals, however, it has the 
disadvantage that the speed changes according to the 
magnitude of variable.  In SSL II subroutines, an 
approximation formula is used so that a constant speed is 
maintained. 
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Table 11.1  Elliptic integral subroutines 

  
Item 

Mathema-
tical 

symbol 

Subroutine 
name 

Complete Complete 
elliptic integral 
of the first 
kind 

K (k) CELI1 
(I11-11-0101) 

 Complete 
elliptic integral 
of the second 
kind 

E (k) CELI2 
(I11-11-0201) 

11.3 EXPONENTIAL INTEGRAL 

Exponential integral is as shown in Table 11.2. 
 
Table 11.2  Subroutines for exponential integral 

Item  Mathematical symbol Subroutine name 
)( xEi − , x > 0 Exponential 

integral )(xEi   , x > 0 
EXPI 

(I11-31-0101) 

 
 
Since exponential integral is rather difficult to compute, 
various formulas are used for various range of variable. 

11.4 SINE AND COSINE INTEGRALS 

Sine and cosine integrals are listed in Table 11.3. 
 
Table 11.3  Subroutines for sine and cosine integrals 

Item Mathematical 
symbol 

Subroutine name 

Sine integral Si (x) SINI 
(I11-41-0101) 

Cosine integral Ci (x) COSI 
(I11-41-0201) 

11.5 FRESNEL INTEGRALS 

Fresnel integrals are shown in Table 11.4. 

11.6 GAMMA FUNCTIONS 

Gamma functions are provided as shown in Table 11.5. 

Table 11.4  Subroutines for Fresnel integrals 

Item Mathematical 
symbol 

Subroutine 
name 

Sine Fresnel 
integral 

S (x) SFRI 
(I11-51-0101) 

Cosine Fresnel 
integral 

C (x) CFRI 
(I11-51-0201) 

 
 
Table 11.5  Subroutines for gamma functions 

Item Mathematical 
symbol 

Subroutine 
name 

Incomplete 
gamma 
function of first 
kind 

γ (ν,x) IGAM1 
(I11-61-0101) 

Incomplete 
gamma 
function of 
second kind 

Γ (ν,x) IGAM2 
(I11-61-0201) 

 
 
Between the complete Gamma function Γ(ν) and the first 
and the second kind incomplete Gamma functions the 
relationship 

( ) ( ) ( )Γ Γv v x v x= +γ , ,  

holds. 
  As for Γ(ν), the corresponding FORTRAN basic 
external function should be used. 

11.7 ERROR FUNCTIONS 

Error functions are provided as shown in Table 11.6. 
 
Table 11.6  Subroutines for error functions 

Item Mathematical 
symbol 

Subroutine 
name 

Inverse error 
function 

erf-1 (x) IERF 
(I11-71-0301) 

Inverse comple-
mentary error 
function 

erfc-1 (x) IERFC 
(I11-71-0401) 

 
 
  Between inverse error function and inverse 
complementary error function, the relationship 

erf -1 (x) = erfc-1 (1 – x) 

holds.  Each is evaluated by using either function which 
is appropriate for that range of x. 
  As for erf(x) and erfc(x), the corresponding FORTRAN 
basic external function used. 
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11.8 BESSEL FUNCTIONS 

Bessel functions are classified into various types as 
shown in Table 11.7, and they are frequently used by the 
user.  Since zero-order and first-order Bessel functions 
are used quite often, exclusive subroutines used for them 
which are quite fast, are provided. 
 
Table 11.7  Subroutines for Bessel functions with real variable 

Item Mathematica
l symbol 

Subroutine 
name 

First 
kind 

Zero-order 
Bessel function 

J0 (x) BJ0 
(I11-81-0201) 

 First-order 
Bessel function 

J1 (x) BJ1 
(I11-81-0301) 

 Integer order 
Bessel function 

Jn (x) BJN 
(I11-81-1001) 

 Real-order 
Bessel function 

Jv (x)  
(v ≥ 0.0) 

BJR 
(I11-83-0101) 

 Zero order 
modified 
Bessel function 

I0 (x) BI0 
(I11-81-0601) 

 First order 
modified 
Bessel function 

I1 (x) BI1 
(I11-81-0701) 

 Integer order 
modified 
Bessel function 

In (x) BIN 
(I11-81-0701) 

 Real order 
modified 
Bessel function 

Iv (x)  
(v ≥ 0.0) 

BIR 
(I11-83-0301) 

Secon
d kind 

Zero-order 
Bessel function 

Y0 (x) BY0 
(I11-81-0401) 

 First-order 
Bessel function 

Y1 (x) BY1 
(I11-81-0501) 

 Integer order 
Bessel function 

Yn (x) BYN 
(I11-81-1101) 

 Real order 
Bessel function 

Yv (x) 
(ν ≥ 0.0) 

BYR 
(I11-83-0201) 

 Zero order 
modified 
Bessel function 

K0 (x) BK0 
(I11-81-0801) 

 First order 
modified 
Bessel function 

K1 (x) BK1 
(I11-81-0901) 

 Integer order 
modified 
Bessel function 

Kn (x) BKN 
(I11-81-1301) 

 Real order 
modified 
Bessel function 

Kv (x)  BKR 
(I11-83-0401) 

Table 11.8  Bessel function subroutines for complex variables 

Item Mathematica
l symbol 

Subroutine 
name 

First 
kind 

Integer order 
Bessel function 

Jn(z) CBJN 
(I11-82-1301) 

 Real order 
Bessel function 

Jv (z) 
(v ≥ 0.0) 

CBJR 
(I11-84-0101) 

 Integer order 
modified 
Bessel function 

In (z) CBIN 
(I11-82-1101) 

Secon
d kind 

Integer order 
Bessel function 

Yn (z) CBYN 
(I11-82-1401) 

 Integer order 
modified 
Bessel function  

Kn (z) CBKN 
(I11-82-1201) 

11.9 NORMAL DISTRIBUTION 
FUNCTIONS 

Table 11.9 lists subroutines used for normal distribution 
functions. 
 
Table 11.9  Normal distribution function subroutines 

Item Mathematica
l symbol 

Subroutine 
name 

Normal distribution 
function 

φ (x) NDF 
(I11-91-0101) 

Complementary normal 
distribution function 

ψ (x) NDFC 
(I11-91-0201) 

Inverse normal distribution 
function 

φ-1 (x) INDF 
(I11-91-0301) 

Inverse complementary 
normal distribution 

ψ-1 (x) INDFC 
(I11-91-0401) 
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CHAPTER 12 
PSEUDO RANDOM NUMBERS 

12.1 OUTLINE 

This chapter deals with generation of pseudo-random 
(real or integer) numbers with various probability 
distribution functions, and with the test of random 
numbers. 

12.2 PSEUDO RANDOM GENERATION 

Random numbers with any given probability distribution 
can be obtained by transformation of the uniform (0, 1) 
pseudo-random numbers.  That is, in generation of 
required pseudo random numbers let  g(x) be the 
probability density function of the distribution.  Then, the 
pseudo-random numbers y are obtained by the inverse 

function (12.1) of ∫=
y

dxxgyF
0

)()(  

y =F -1(u) (12.1) 

where: 
y is the required pseudo random number, F(y) is the 
cumulative distribution function of g(x) and u is uniform 
pseudo random number. 
  Pseudo-random numbers with discrete distribution are 
slightly more complicated by intermediate calculations.  
For example subroutine RANP2 first generates a table of 
cumulative Poisson distribution and a reference table 
which refers efficiently for a generated uniform (0, 1) 
number and then produces Poisson pseudo-random 
integers. 
  Table 12.1 shows a list of subroutines prepared for SSL 
II.  These subroutines provide a parameter to be used as a 
starting value to control random number generation.  
(Usually, only one setting of the parameter will suffice to 
yield a sequence of random numbers.) 

Table 12.1  List of subroutines for pseudo random number generation 

Type Subroutine 
name 

Uniform (0, 1) pseudo random 
numbers 

RANU2 
(J11-10-0101) 

Shuffled uniform (0, 1) pseudo 
random numbers 

RANU3 
(J11-10-0201) 

Exponential pseudo random numbers RANE2 
(J11-30-0101) 

Fast normal pseudo random numbers RANN1 
(J11-20-0301) 

Normal pseudo random numbers RANN2 
(J11-20-0101) 

Poisson pseudo random integers RANP2 
(J12-10-0101) 

Binomial pseudo random numbers RANB2 
(J12-20-0101) 

12.3 PSEUDO RANDOM TESTING 

When using pseudo random numbers, the features of the 
random numbers must be fully recognized.  That is, the 
random numbers generated arithmetically by a computer 
must be tested whether or not they can be assumed as 
“realized values of the sequence of each probability 
variable depending upon specific probability 
distribution”. 
  SSL II generates pseudo random numbers with various 
probability distribution by giving appropriate 
transformation to the uniform (0, 1) pseudo random 
number.  SSL II provides parameter IX to give the 
starting value for pseudo random number generation.  
This enables easier generation of some different random 
numbers.  Generally to give the starting value, parameter 
IX is specified as zero.  The results of testing the pseudo 
random numbers are described in comment on use for 
subroutines RANU2.  The features of pseudo random 
numbers depend on the value of parameter IX. SSL II 
provides subroutines which are used to test the generated 
pseudo random numbers as shown in Table 12.2. 
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Table 12.2  Pseudo random number testing subroutines 

Item subroutine name Notes 
Frequency test RATF1 

(J21-10-0101) 
Testing of 
probability unity 

Runs test of 
up-and-down 

RATR1 
(J21-10-0201) 

Testing of 
randomness 

 
Test of statistical hypothesis 
The test of statistical hypothesis is used to determine 
whether a certain hypothesis is accepted or rejected by 
the realized value of the amount of statistics obtained by 
random sampling. 
  Whether or not one of the dice is normal can be checked 
by throwing it for several times and checking the result. 
  Say, for example, that the same face came up five times 
in a row.  If the die is normal, that is, if the ratio of 
obtaining a particular roll is identical for each face,  the 
probability that the same face will come up five times in a 
row is (1/6)5 which is 1/7776.  This implies that if such 
testing is performed 7776 times repeatedly, the same 
combination is expected to come up once as an average.  
Therefore, if only 5 throws result in obtaining the same 
five numbers, the hypothesis that the die is normal, is 
assumed to be doubtful. 
  Suppose an event is tested under a certain hypothesis 
and occurs at less than the probability of α percent 
(generally 5 or 1 percent).  In this state, if the event 
occurs by one testing, it is rejected because it is doubtful; 
otherwise it is received.  This hypothesis has been tested 
whether or not it is accepted.  It is called null hypothesis, 
where the region in which the probability is less than α 
percent is called critical region.  The region is rejected or 
accepted according to a significance level. 
  When using this testing method, the hypothesis may be 
rejected despite the fact that it is true.  This is expressed 
by α percent which is the level of significance. 
 
Chi-square ( 2χ ) testing 
Suppose the significance level at α percent.  Also 
suppose the population is classified into l number of 
exclusive class c1, c2, ... , cl, where when selecting n 
number of them, the actually corresponding frequencies 
are f1, f2, ... , fl and the expected frequencies are based on 
null hypothesis F1, F2, ... , Fl  respectively. 

 

Class C1, C2, ..., Cl Total 
Actual frequency f1, f2, ..., fl n 
Expected frequency F1, F2, ..., Fl n 

 
 
  Then the ratio of the actual frequency for the expected 
frequency is expressed as follows: 

( )∑
=

−
=

l

i i

ii

F
Ff

1

2
2
0χ  (12.2) 

  The larger the difference between the actual frequency 
and the expected frequency is, the larger the value of χ 0

2 
becomes.  Whether or not the hypothesis is accepted or 
rejected depends upon the ratio.  The frequency varying 
for each n-size sampling is expressed by ~ , ~ , ... , ~f f f l1 2  – 
probability variables. 
The statistic is expressed as 

( )∑
=

−
=

l

i i

ii

F
Ff

1

2
2

~
χ  (12.3) 

  When expected frequency Fi is large enough, 2χ  is 
approximately distributed depending upon chi-square 
distribution of freedom l-1.  Obtain point 2

αχ  equivalent 
to significance level percent in chi-square distribution of 
freedom l-1 for the following testing. 
  When 2

αχ  < 2
0χ , the hypothesis is rejected. 

  When 2
αχ  ≥ 2

0χ , the hypothesis is accepted. 

  This is called chi-square ( 2χ ) testing.  The value of 
actual frequency and expected frequency depend upon 
the contents (frequency testing, run testing) of testing. 
 
Comments on use 
• Sample size 

The size of a sample must be large enough.  That is, the 
statistic in (12.3) is approximated to chi-square 
distribution of freedom l-1 for large n.  If n is small, the 
statistic cannot be sufficiently approximated and the 
test results may not be reliable.  The expected 
frequency should be 

  Fi > 10   ,  i=1, 2, ... , l (12.4) 

  If the conditions in (12.4) are not satisfied, freedom 
must be lower by combining several classes. 
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A21-11-0101  AGGM, DAGGM 

Addition of two real matrices 
CALL AGGM (A, KA, B, KB, C, KC, M, N, ICON) 

 
Function 
These subroutines perform addition of two m × n real 
general matrices A and B. 

C = A + B  

where C is an m × n real general matrix. m, n ≥ 1. 
 
Parameters 
A .... Input.  Matrix A, two-dimensional array,  

A (KA, N). 
KA .... Input.  The adjustable dimension of array A, (≥ 

M). 
B .... Input.  Matrix B, two-dimensional array  

B (KB, N). 
KB .... Input.  The adjustable dimension of array B, 

(≥M). 
C .... Output.  Matrix C, two-dimensional array  

C (KC, N).  (Refer to “Comment.”) 
KC .... Input.  The adjustable dimension of array C, (≥ 

M). 
M .... Input.  The number of rows m of matrices A, B, 

and C 
N .... Input.  The number of columns n of matrices A, 

B, and C. 
ICON. Input.  Condition codes.  Refer to Table 

AGGM-1. 
 
Table AGGM-1  Condition code 

Code Meaning Processing 
0 No error  

30000 M<1, N<1, KA<M, KB<M  
or KC<M 

Bypassed 

 

Comments on use 
• Subprograms used 

SSL II .....MGSSL 
FORTRAN basic function ... None 

 
• Notes 

Saving the storage area: 
If there is no need to keep the contents on the array A 
or B, more storage area can be saved by specifing 
parameters C and KC as follows; 
When the contents of array A are not needed: 

CALL AGGM (A, KA, B, KB, A, KA, M, N, ICON) 

When the contents of array B are not needed: 

CALL AGGM (A, KA, B, KB, B, KB, M, N, ICON) 

In this case, matrix C is stored in array A or B. 
 

• Example 
The following shows an example of obtaining the 
addition of matrices A and B.  Here, m, n ≤ 50. 
 

C     **EXAMPLE** 
      DIMENSION A(50,50),B(60,60),C(100,100) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
      DATA KA/50/,KB/60/,KC/100/ 
   10 READ(5,100) M,N 
      IF(M.EQ.0) STOP 
      WRITE(6,150) 
      READ(5,200) ((A(I,J),I=1,M),J=1,N) 
      READ(5,200) ((B(I,J),I=1,M),J=1,N) 
      CALL AGGM(A,KA,B,KB,C,KC,M,N,ICON) 
      IF(ICON.NE.0) GOTO 10 
      CALL PGM(IA,1,A,KA,M,N) 
      CALL PGM(IB,1,B,KB,M,N) 
      CALL PGM(IC,1,C,KC,M,N) 
      GOTO 10 
  100 FORMAT(2I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** MATRIX ADDITION **') 
      END 
 
  The subroutine PGM in the example is for printing a 
real matrix. this program is shown in the example for 
subroutine MGSM. 
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E11-11-0201  AKHER, DAKHER 

Aitken-Hermite interpolation 
CALL AKHER (X, Y, DY, N, V, M, EPS, F, VW, ICON) 

 
Function 
Given discrete points x1 < x2 < ... < xn, function values yi 
= f(xi), and first derivatives yi = f(xi), i = 1, ...., n this 
subroutine interpolates at a given point x = v using the 
Aitken-Hermite interpolation. 
n ≥ 1. 
 
Parameters 
X .... Input.  Discrete points xi. 

X is a one-dimensional array of size n. 
Y .... Input.  Function value yi. 

Y is a one-dimensional array of size n. 
DY .... Input.  First order derivatives y′ i. 

DY is a one-dimensional array of size n. 
N .... Input.  Number (n) of discrete points. 
V .... Input.  The point to be interpolated. 
M .... Input.  Number of discrete points to be used in 

the interpolation (≤ n). 
Output.  Number of discrete points actually 
used. 
(See the comments) 

EPS .... Input.  Threshold value. 
Output.  Absolute error of the interpolated 
value. 
(See the comments) 

F .... Output.  Interpolated value. 
VW .... Work area.  One-dimensional array of size 5n 
ICON .. Output.  Condition code. 

Refer to Table AKHER-1. 
 
Table AKHER-1  Condition codes. 

Code Meaning Processing 
0 No error  

10000 υ is equal to one of the 
discrete points xi. 

F is set to yi. 

30000 n < 1, M = 0, or xi ≥xi+1 F is set to 0.0. 
 
Comments 
• Subprogram used 

SSL II ... AFMAX, MGSSL 
FORTRAN basic functions ... ABS, and IABS 
 

• Notes 
Stopping criterion: 
Let’s consider the effect of the degree of interpolation 
on numerical behavior first.  Here, Zj denotes the 
interpolated value obtained by using j discrete points 
near x = v.  Discrete points are ordered according to 
their closeness to x = v.  The difference Dj is  

mjZZD jjj ,...,2,1 =−≡ −  

  where m is the maximum number of discrete points to 
be used.  Generally, as the order of an interpolation 
polynomial increases, |Dj| behaves as shown in Fig. 
AKHER-1. 

|Dj|

jml

 
Fig.  AKHER-1 

  In Fig. AKHER-1, l indicates that the truncation error 
and the calculation error of the approximation polynomial 
are both at the same level.  Usually, Zl is considered as 
numerically the optimum interpolated value. 

 
How to specify EPS: 
The following conditions are considered. 
Convergence is tested as described in “Stopping 
criterion”, but Dj exhibits various types of behavior 
depending on the tabulated function.  As shown in Fig. 
AKHER-2 in some cases vacillation can occur. 
|Dj|

js ml  
Fig.  AKHER-2 

  In this case, Zl instead of Zs should be used for the 
interpolated value.  Based on this philosophy the 
interpolated value to be output is determined as shown 
below.  When calculating D2, D3, ..., Dm, 

− If |Dj|>|EPS|, j=2, 3, ... , m 
  l is determined such that 

    ( )jjl DD min=  (3.1) 

and the parameters F, M, and EPS are set to the 
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value of Zl, l, |Dl| and  
− if |Dj| ≤ EPS occurs for a certain j, from then on, l is 

determined such that 

    1+≤ ll DD  (3.2) 

If (3.2) does not occur, l is set to m, and Zm, m and |Dm| 
are output.  If the user specifies EPS as 0.0, Zj 
corresponding the minimum |Dj| is output as the 
interpolated value. 
 
How to specify M: 
a) If it is known that in the neighbourhood of x = v the 

original function can be well approximated by 
polynomials of degree 2k-1 or less, it is natural to use 
a polynomial of the degree 2k-1 or less.  In this 
parameter M should be se specified equal to k. 

b) If the condition in a) is unknown, parameter N should 
be entered in parameter M. 

c) It is possible that the user wants an interpolated value 
which is obtained by using exactly m points without 
applying the stopping criterion.  In this case, the user 
can specify M equal to –m. 

 
• Example 

The values of the input parameters are read and the 
interpolated value F is determined n ≤ 30. 

 
C     **EXAMPLE** 
      DIMENSION X(30),Y(30),DY(30),VW(150) 
      READ(5,500) N,(X(I),Y(I),DY(I),I=1,N) 
      WRITE(6,600) (I,X(I),Y(I),DY(I),I=1,N) 
   10 READ(5,510) M,EPS,V 
      IF(M.GT.30) STOP 
      CALL AKHER(X,Y,DY,N,V,M,EPS,F,VW,ICON) 
      WRITE(6,610) ICON,M,V,F 
      IF(ICON.EQ.30000) STOP 
      GO TO 10 
  500 FORMAT(I2/(3F10.0)) 
  510 FORMAT(I2,2F10.0) 
  600 FORMAT(15X,I2,5X,3E20.8) 
  610 FORMAT(20X,'ICON =',I5,10X,'M =',I2/ 
     *      20X,'V          =',E20.8/ 
     *      20X,'COMPUTED VALUES =',E20.8) 
      END 
 
Method 
Let discrete point xi be rearranged as v1, v2, ...., vn 
according to their distance from v with the closest value 
being selected first, and correspondingly yi = f(vi) and  y′ i 
= f(vi) 
  The condition yi = f(vi) at point (vi) is symbolized here 
as (i, 1).  Now, let’s consider how to obtain the 
interpolated value which is based on the (2m-1) th degree 
interpolating polynomial that satisfies the 2m conditions 
(1,0), (1,1), (2,0), (2,1), ... , (m,0), (m,1).  (Hereafter, this 
value will be referred as the interpolated 

value which satisfies the conditions (i, 0), (i, 1), i = 1, ..., 
m 
  Before discussing general cases, an example in the case 
m = 2 is shown that determines an interpolated value 
which satisfies the four conditions (1,0), (1,1), (2,0), 
(2,1). 
 
• Procedure 1 

An interpolated value 

( ) ( )111'1,11
vvyyyvPA −′+≡≡  

which satisfies (1,0), (1,1) is determined.  An 
interpolated value 

( ) ( )222'2,23
vvyyyvPA −′+≡≡  

which satisfies(2,0), (2,1) is determined. 
 
• Procedure 2 

An interpolated value 

  ( ) ( )P v y y
y y
v v v vA2 1,2 1

1 2

1 2
1≡ ≡ +

−
−

−  

which satisfies conditions (1,0), (2,0) is determined. 
 
• Procedure 3 

An interpolated value 

  ( ) ( )vPyvP AA 12,1,14 ≡≡ ′  

               
( ) ( ) ( )1

21

21 vv
vv

vPvP AA −
−
−

+  

which satisfies conditions (1,0), (1,1), (2.0) is 
determined. 
An interpolated value 

( ) ( )vPyvP AA 22,2,15 ≡≡ ′  

              
( ) ( ) ( )1

21

32 vv
vv

vPvP AA −
−
−

+  

Which satisfies conditions (1,0), (2,0), (2,1) is 
determined. 
 

• Procedure 4 
An interpolated value 

  ( ) ( )vPyvP AA 42,2,1,16 ≡≡ ′′  

               
( ) ( ) ( )1

21

54 vv
vv

vPvP AA −
−
−

+  

which satisfies condition (1,0), (1,1), (2,0), (2,1) is 
determined. 
 
Then PA6(v) is the objective interpolated value.  For 
general cases, based on the following formulas 
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( )
( )mi

vvyyy iiiii

,...,1
',

=

−′+≡
 (4.1) 

( )

( )mi

vv
vv
yyyy i

ii

ii
iii

,...,1
1

1
1,

=

−
−
−

+≡
+

+
+  (4.2) 

  the same procedure as with m = 2 is followed.  See 
Fig.  AKHER-3. 

 
y1,1′ y1,1′ ,2 y1,1′ ,2,2′ y1,1′ ,2,2′ ,3 y1,1′ ,2,2′ ,3,3′ ⋅ y1,1′ ,2,2′ ,...,m,m′ 
y1,2 y1,2,2′  y1,2,2′ ,3 y1,2,2′ ,3,3′ ⋅ ⋅  
y2,2′ y2,2′ ,3 y2,2′ ,3,3′ ⋅ ⋅   
y2,3 y2,3,3′ ⋅ ⋅    
y3,3′ ⋅ ⋅     

⋅ ⋅      
ym,m′       

 
Fig. AKHER-3 For general cases 

For further information, see Reference [47]. 
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E11-11-0101  AKLAG, DAKLAG 

Aitken-Lagrange interpolation 
CALL AKLAG (X,Y, N, V, M, EPS, F, VW, ICON) 

 
Function 
Given discrete points x1 < x2 < ... < xn and their 
corresponding function values yi = f(xi), i = 1, ..., n, this 
subroutine interpolates at a given point x = v using the 
Aitken-Lagrange interpolation.  n ≥ 1 
 
Parameters 
X ... Input.  Discrete points xi. 

X is a one-dimensional array of size n. 
Y .... Input.  Function values yi. 

Y is a one-dimensional array of size n. 
N .... Input.  Number of discrete points n. 
V .... Input.  The point to be interpolated. 
M .... Input.  Number of discrete points to be used in 

the interpolation (≤ n). 
Output.  Number of discrete points actually 
used.   
(See the comments) 

EPS ... Input.  Threshold value. 
Output.  Absolute error of the interpolated 
value.   
(See the comments) 

F .... Output.  Interpolated value. 
VW .... Work area.  A one-dimensional array of size 

4n. 
ICON .... Output.  Condition code.  Refer to Table 

AKLAG-1. 
 
Comments on use 
• Subprograms used 

SSL II ... AFMAX, MGSSL 
FORTRAN basic functions ... ABS, and IABS 
 

Table AKLAG-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 v matched a discrete point 
xi. 

F is set to yi. 

30000 n < 1, M = 0 or xi ≥ xi+1 F is set to 0.0. 
 
• Notes 

Stopping criterion: 
Let’s consider the effect of the degree of interpolation 
on numerical behavior first.  Here, Zj denotes the 
interpolated value obtained by using j discrete points 
near x =v.  (Discrete points are selected such that the 
points closest to x = v are selected first.) 
The difference Dj is defined: 

mjZZD jjj ...,,2,1 =−≡ −  

  where m is the maximum number of discrete points to 
be used. Generally, as the degree of an interpolation 
polynomial increases, |Dj| behaves as shown in Fig. 
AKLAG-1 

|Dj|

jml

 
Fig. AKLAG-1 

  In Fig. AKLAG-1,l indicates that the truncation error 
and the calculation error of the approximation 
polynomial are both at the same level.  Zl is usually 
consided as the numerically optimum interpolated 
value. 
 
How to specify EPS: 
The following conditions are considered. 
Convergence is tested as described in “Stopping 
criterion”, but Dj exhibits various types of behavior 
depending on the tabulated function.  As shown in Fig. 
AKLAG-2, vacillation can occur in some cases. 
|Dj|

js ml  
Fig. AKLAG-2 

  In this case, Zl instead of Zs should be used for the 
interpolated value.  Based on this, the interpolated 
value to be output is determined as shown below.  
When calculating D2, D3, ...., Dm, 
− If |Dj| > |EPS| , j=2, 3, ..., m 

l is determined such that 

    ( )jjl DD min=  (3.1) 

− if |Dj| ≤ |EPS| occurs for a certain j, from then on l is 
determined such that 
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    1+≤ ll DD  (3.2) 

and Zl, l, Di are output. 
If (3.2) does not occur, l is set to m, and Zm, m, and 
|Dm| are output. 
If the user specifies EPS as 0.0 Zj corresponding the 
minimum |Dj| is output as the interpolated value. 

 
How to specify M: 
a) If it is known that in the neighbourhood of x = v the 

original function can be well approximated by 
polynomials of degree k or less, it is natural to use 
interpolating polynomials of degree k or less.  In 
this case parameter M should be specified equal to 
k + 1. 

b) If the condition in a) is unknown, parameter M 
should be the same as parameter N. 

c) It is possible that the user wants a interpolated value 
which is obtained by using exactly m points without 
applying the stopping criterion.  In this case, the 
user can specify M equal to –m. 

 
• Example 

The input parameters are read, and the interpolated 
value F is determined.  n ≤ 30 
 

C     **EXAMPLE** 
      DIMENSION X(30),Y(30),VW(120) 
      READ(5,500) N,(X(I),Y(I),I=1,N) 
      WRITE(6,600) (I,X(I),Y(I),I=1,N) 
   10 READ(5,510) M,EPS,V 
      IF(M.GT.30) STOP 
      CALL AKLAG(X,Y,N,V,M,EPS,F,VW,ICON) 
      WRITE(6,610) ICON,M,V,F 
      IF(ICON.EQ.30000) STOP 
      GO TO 10 
  500 FORMAT(I2/(2F10.0)) 
  510 FORMAT(I2,2F10.0) 
  600 FORMAT(23X,'ARGUMENT VALUES',15X, 
     *'FUNCTION VALUES'/(15X,I2,5X, 
     *E15.7,15X,E15.7)) 
  610 FORMAT(20X,'ICON =',I5,10X,'M =',I2/ 
     *       20X,'V         =',E15.7/ 
     *       20X,'COMPUTED VALUES =',E15.7) 
      END 
 

Method 
Let discrete points xi be rearranged as v1, v2, ..., vn 
according to their distance from v with the closest value 
being selected first, and corresponding yi = f(vi).  Usually, 
a subset of the sample points (vi, yi = f(vi); i = 1, ..., m) is 
used for interpolation as shown below.  The interpolated 
values of the Lagrangian interpolation polynomial of 
degree i which passes through the discrete points (v1, v1), 
(v2, v2), ..., (vi, yi), (vj, yj) are expressed here as y1, 2..., i,j 
(where j > i). 
The Aitken-Lagrange interpolation method is based on: 

( )vv
vv
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y

vvy
vvy

vv
y

i
ij
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i

jji

ii

ij
ji

−
−

−
+=

−
−

−
=

−

−

,1,...,2,1,...,2,1
,...,2,1

,1,...,2,1

,...,2,1
,,...,2,1

1

 

  As shown in Fig. AKLAG-3, calculation proceeds from 
the top to bottom of each column, starting at the first and 
ending at the mth column, row to the bottom row and 
from the left column to the right, such that y1.2, y1.3, y1.2.3, 
y1.4, y1.2.4, ... 
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Fig. AKLAG-3 

  The values y1, 2, ......, k on the diagonal line are inter-
polated values based on the Lagrangian interpolation 
formula which passes through the discrete points (vi, yi, i 
= 1, ..., k).  Then, y1, 2, ......, m is the final value. 
  For details, see Reference [46] pp.57-59. 
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E11-42-0101  AKMID, DAKMID 

Two-dimensional quasi-Hermite interpolation 
CALL AKMID (X, NX, Y, NY, FXY, K, ISW, VX, IX, 
VY, IY, F, VW, ICON) 

 
Function 
Given function values fij = f(xi, yj) at the node points (xi, 
yj), i = 1, 2, ..., nx, j = 1, 2, ..., ny(xl < x2 < ... < xnx, y1 < y2 
< ... < xny, an interpolated value at the point (P(vx, vy), is 
obtained by using the piecewise two-dimensional quasi-
Hermite interpolating function of dually degree 3.  See 
Fig. AKMID-1. 

P( vx , vy )

x
xnx3x2x1

y1

y2

y3

y

yny

x

 
Fig. AKMID-1  Point P in the area R={(x,y) | x1≤xnx, y1 ≤y≤yny} 

Parameters 
X .... Input.  Discrete points xj’ s in the x-direction. 

One-dimensional array of size nx. 
NX .... Input.  Number of xj’ s, nx 
Y …. Input.  Discrete points yj’s in the y-direction. 

One-dimensional array of size ny. 
NY .... Input.  Number of yj′ s, ny 
FXY .... Input.  Function value fij. 

Two-dimensional array as FXY (K, NY). 
 fij needs to be assigned to the element 
FXY(I,J). 

K .... Input.  Adjustable dimension for array FXY (K 
≥ NX). 

ISW .... Input.  ISW = 0 (INTEGER *4) must be 
assigned the first time the subroutine is called 
with the input data (xi, yj, fij) given.  When a 
series of interpolated values need to be 
obtained by calling the subroutine repeatedly, 
the ISW value must not be changed from the 
second time on. 
Output.  Information on (i,j) which satisfies xi 
≤ vx < xi+1 and yj ≤ vy < yj+1. 
When the user starts interpolation for the 
newly given data (xi, yj, fij), he needs to set the 

ISW to zero again. 
VX .... Input.  x-coordinate at the point P (vx, vy). 
IX .... Input.  The i which satisfies xi ≤ vx < xi+1. 

When vx = xnx, IX = nx – 1. 
  Output.  The i which satisfies xi ≤ vx < xi+1.  
See Note. 

VY .... Input.  y-coordinate at the point P(vx, vy). 
IY .... Input.  The j which satisfies yj ≤ vy < yj+1. 

When vy = yny, IY = ny – 1. 
Output.  The j which satisfies yj ≤ vy < yj+1 
See Note. 

F .... Output.  Interpolated value. 
VW .... Work area.  One-dimensional array of size 50. 

While the subroutine is called repeatedly with 
identical input data (xi, yj, fij), the contents of 
VW must not be altered. 

ICON ... Output.  Condition code.  See Table AKMID-1. 
 
Table AKMID-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Either X(IX)≤VX<X(IX+1) or 
Y(IY)≤VY<Y(IY+1) is not 
satisfied. 

IX or IY 
satisfying the 
relationship on 
the left is 
searched for in 
the subroutine 
and the 
processing is 
continued. 

30000 Either of the followings 
occurred: 
1 X(I) which satisfies   

X(I)≥X(I+1) exists 
2 Y(J) which satisfies  Y(J) 

≥ Y (J+1) exists 
3 NX<3 or NY < 3 
4 K< NX 
5 VX < X(1) or VX > X(NX) 
6 VY < Y(1) or VY > Y(NY) 
7 ISW specification is 

wrong. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... IABS, ABS, and MOD 

 
• Notes 

The interpolating function used in the subroutine and 
its first order derivative are continuous in the area 
R={(x,y) | xl ≤ x ≤ xnx , yl ≤ y ≤ yny}, but its second order 
and the higher order derivative of the function may not 
be continuous.  On the other hand, this interpolating 
function has a characteristic that irregular points or 
planes do not appear. 
  To obtain an interpolated value, derivative and 
integral value for a bivariate function, with accuracy 
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subroutines BIFD3 or BIFD1, which use an 
interpolation method by the spline function, should be 
used.  When obtaining more than one interpolated 
value with the identical input data (xi, yj, fij), the 
subroutine is more effective if it is called with its input 
points continuous in the same grid area.  (See 
“Example”.)  In this case parameters ISW and VW 
must not be altered. 
  The parameters IX and IY should satisfy X(IX) ≤ VX 
< X(IX +1) and Y(IY) ≤ VY < Y(IY+1), respectively.  
If not, IX and IY which satisfy these relationships are 
searched for to continue the processing. 
  The parameter error conditions accompanied with 
ICON = 30000 are listed in Table AKMID-1.  Of the 
error conditions, 1 to 4 are checked only when ISW = 0 
is specified, i.e., when the subroutine is called the first 
time with the input data (xi, yj, fij) given. 
 

• Example 
By inputting points (xi, yj) and their function values fij: i 
= 1, 2, ..., nx, j = 1, 2, ..., ny, interpolated values at 
points (vil, vjk), shown below are obtained. nx ≤ 121 and 
ny ≤ 101. 

vil = xi + (xi+1 − xi) × (l/4) 
 i = 1, 2, ..., nx –1,  l = 0, 1, 2, 3 
vjk = yj + (yj+1 – yj) × (k/2) 
 j = 1, 2, ..., ny – 1, k = 0, 1 

C     **EXAMPLE** 
      DIMENSION X(121),Y(101),FXY(121,101), 
     *          VW(50),XV(4),YV(2),FV(4,2) 
      READ(5,500) NX,NY 
      READ(5,510) (X(I),I=1,NX) 
      READ(5,510) (Y(J),J=1,NY) 
      READ(5,510) ((FXY(I,J),I=1,NX),J=1,NY) 
      WRITE(6,600) NX,NY 
      WRITE(6,610) (I,X(I),I=1,NX) 
      WRITE(6,620) (J,Y(J),J=1,NY) 
      WRITE(6,630) ((I,J,FXY(I,J),I=1,NX) 
     *             ,J=1,NY) 
      ISW=0 
      NX1=NX-1 
      NY1=NY-1 
      DO 40 I=1,NX1 
      HX=(X(I+1)-X(I))*0.25 
      DO 10 IV=1,4 
   10 XV(IV)=X(I)+HX*FLOAT(IV-1) 
      DO 40 J=1,NY1 
      HY=(Y(J+1)-Y(J))*0.5 
      DO 20 JV=1,2 
   20 YV(JV)=Y(J)+HY*FLOAT(JV-1) 
      DO 30 IV=1,4 
      DO 30 JV=1,2 
   30 CALL AKMID(X,NX,Y,NY,FXY,121,ISW, 
     *           XV(IV),I,YV(JV),J, 
     *           FV(IV,JV),VW,ICON) 
   40 WRITE(6,640) I,J,((IV,JV,FV(IV,JV), 
     *             IV=1,4),JV=1,2) 
      STOP 
 

  500 FORMAT(2I6) 
  510 FORMAT(6F12.0) 
  600 FORMAT('1'//10X,'INPUT DATA',3X, 
     *'NX=',I3,3X,'NY=',I3/) 
  610 FORMAT('0','X'/(6X,6(I6,E15.7))) 
  620 FORMAT('0','Y'/(6X,6(I6,E15.7))) 
  630 FORMAT('0','FXY'/(6X,5('(',2I4, 
     *E15.7,')'))) 
  640 FORMAT('0','APP.VALUE',2I5/(6X, 
     *5('(',2I4,E15.7,')'))) 
      END 
 
 
Method 
The subroutine obtains interpolated values based on the 
dual third degree two-dimensional quasi-Hermite 
interpolating function which is a direct extension of the 
one-dimensional quasi-Hermite interpolating function 
obtained by subroutine AKMIN. 
• Dual third degree two-dimensional quasi-Hermite 

interpolating function. 
The interpolation function S (x, y) described hereafter 
is defined in the area R = {(x,y)|xl ≤ x ≤xnx , yl ≤ y ≤ yny} 
and satisfies the following condition: 
(a) S (x, y) is polynomial at most of dually degree three 

within each partial region Ri,j = {(x,y)|xi ≤ x < xi+1, yj 
≤ y < yj+1}. 

(b) S (x,y) ∈ C1,1[R],  that is, the following values exist 
and are all continuous on R: 
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  It has been proved that the function S(x, y) exists 
uniquely and that it can be expressed, in partial region Rij, 
as follows: 
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  Eq. (4.1) requires function values and derivatives at the 
four points (xi, yj), (xi+1, yj), (xi, yj+1) and (xi+1, yj+1).  
Therefore, if the derivatives can be obtained (or 
approximated in some way) an interpolated value in the 
area Rij can be obtained by using Eq. (4.1).  The S(x, y) 
given in Eq. (4.1) which can be obtained by using 
approximated derivatives is called the dual thrid degree 
piecewise two-dimensional quasi-Hermite interpolating 
function. 
• Determination of derivatives ( )0,1

ijf , ( )1,0
ijf  and ( )1,1

ijf  at 
a node point 
This subroutine uses the Akima’s geometrical method 
to obtain these derivatives. 
It applies the method used by the one-dimensional 
quasi-Hermite interpolating function (in subroutine 
AKMIN) to that two-dimensional as follows: 
As a preparatory step the following quatities should be 
defined. 

ai = xi+1 – xi  ,  bj = yj+1 – yj 
cij = (fi+1,j – fij) /ai 
dij = (fi,j+1 – fij) /bj 
eij = (ci,j+1 – cij) /bj 
    = (di+1,j – dij) /ai (4.2) 

  For simplicity, consider a sequence of five points, x1, x2, 
x3, x4 and x5 in the x-direction and y1, y2, y3, y4, and y5 in 
the y-direction to obtain partial derivatives at the point 
(x3, y3).  Fig. AKMID-2 illustrates the needed c ’s, d ’s 
and e ’s. 
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Fig. AKMID-2  Determination of derivative at the point (x3, y3) 

  Assuming that the same method as for the one-
dimensional quasi-Hermite interpolating function is used, 

the first order partial derivatives both in x- and y-
directions are as follows: 
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  where 
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 f33
(1,0)  and f33

(0,1)  are expressed as weighted means about 
c and d, respectively. 
Based on the similar assumption, f33

(1,1) is determined as 
doubly weighted means of e in the directions of x and y 
as follows. 
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• Determination of derivatives on the boundary  
Assuming that this is similar to the one-dimensional 
quasi-Hermite interpolating function, the partial 
derivatives, fij

(0,1), fij
(1,0) and fij

(1.1); i = 1, 2, nx – 1, nx,   j 
= 1, 2, ny – 1, ny, on the boundary are obtained by 
calculating cij, dij and eij outside the area and after that 
by applying Eqs. (4.3) and (4.4) Fig. AKMID-3 
illustrates the situation for i = j = 1.  The points marked 
by “o” are those given by assuming the same method as 
for the one-dimensional quasi-Hermite interpolating 
function. 
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Fig. AKMID-3  Determination of derivatives on the boundary 

  The quatities, cij ’s, dij ’s and eij ’s outside the area can 
be obtained as follows: 
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c–11 = 3c11 – 2c21 
c01 = 2c11 – c21 
d1–1 = 3d11 – 2d12 
d10 = 2d11 – d12 (4.5) 
e01 = 2e11 – e21 
e00 = 2e01 – e02   (e02 = 2e12 – e22) 
e10 = 2e11 – e12 

  Thus, the partial derivatives at the point (x1, y1) can be 
obtained by applying Eqs. (4.3) and (4.4) after 
calculating the necessary c, d and e. 

• Calculation of interpolated values 
The interpolated value at the point (vx, vy) can be 
obtained by evaluating Six,iy(s, t) in Eq. (4.1) which is 
constructed by using the coordinate area numbers (ix, 
iy) to which the poit (xx, vy) belongs. The subroutine 
uses available partial derivatives, if any, obtained when 
called previously, and calculates the other needed 
derivatives, which are also stored in the work area and 
kept for later use. 
  For further details, see Reference [54]. 
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E12-21-0201  AKMIN, DAKMIN 

Quasi-Hermite interpolation coefficient calculation 
CALL AKMIN (X, Y, N, C, D, E, ICON) 

 
Function 
Given function values yi = f(x), i = 1, ..., n for discrete 
points x1, x2, ..., xn (x1 < x2 < ... < xn), this subroutine 
obtains the quasi-Hermite interpolating polynomial of 
degree 3, represented as (1.1) below. n ≥ 3 

( ) ( ) ( ) ( )
1...,,2,1,1

32

−=≤≤
−+−+−+=

+ nixxx
xxexxdxxcyxS

ii

iiiiiii  (1.1) 

Parameters 
X .... Input.  Discrete points xi. 

One-dimensional array of size n. 
Y .... Input.  Function values yi. 

One-dimensional array of size n. 
N .... Input.  Number n of discrete points. 
C .... Output.  Coefficient ci, in (1.1). 

One-dimensional array of size n – 1. 
D .... Output.  Coefficient di in (1.1). 

One-dimensional array of size n –1. 
E .... Output.  Coefficient ei in (1.1). 

One-dimensional array of size n – 1. 
ICON .... Output.  Condition code.  See Table AKMIN-

1. 
 
Table AKMIN-1 

Code Meaning Processing 
0 No error  

30000 n < 3 or xi ≥ xi+1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ....   MGSSL 
FORTRAN basic function ... ABS 
 

• Notes 
The interpolating function obtained by this subroutine 
is characterized by the absence of unnatural deviation, 
and thus produces curves close to those manually 
drawn. However, the derivatives of this function in 
interval (x1, xn) are continuous up to the first degree, 
but discontinuous above the second and higher degrees. 
  If f (x) is a quadratic polynomial and xi, i = 1, ..., n are 
given at equal intervals, then the resultant interpolating 
function represents f (x) itself, provided there are no 
calculation errors. 
  If interpolation should be required outside the interval 
(n < x1 or x > xn), the polynomials cor-

responding to i = 1 or i = n – 1 in (1.1) may be 
employed, though they does not yield good precision. 
 

• Example 
A quasi-Hermite interpolating polynomial is 
determined by inputting the number n of discrete 
points, discrete points xi and function values yi, i = 
1, ..., n, so that the interpolated value at a certain point 
x = v in a certain interval [xk, xk+1] is determined. n ≤ 
10. 

 
C     **EXAMPLE** 
      DIMENSION X(10),Y(10),C(9),D(9),E(9) 
      READ(5,500) N 
      READ(5,510) (X(I),Y(I),I=1,N) 
      CALL AKMIN(X,Y,N,C,D,E,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.NE.0) STOP 
      READ(5,500) K,V 
      XX=V-X(K) 
      YY=Y(K)+(C(K)+(D(K)+E(K)*XX)*XX)*XX 
      N1=N-1 
      WRITE(6,610) 
      WRITE(6,620) (I,C(I),I,D(I),I,E(I) 
     *             ,I=1,N1) 
      WRITE(6,630) K,V,YY 
      STOP 
  500 FORMAT(I5,F10.0) 
  510 FORMAT(2F10.0) 
  600 FORMAT('0',10X, 
     *'RESULTANT CONDITION',' CODE=',I5//) 
  610 FORMAT('0',10X, 
     *'RESULTANT COEFFICIENTS'//) 
  620 FORMAT(' ',15X,'C(',I2,')=',E15.7, 
     *5X,'D(',I2,')=',E15.7, 
     *5X,'E(',I2,')=',E15.7) 
  630 FORMAT('0',10X,2('*'),'RANGE',2('*'), 
     *5X,2('*'),'DESIRED POINT',2('*'), 
     *5X,2('*'),'INTERPOLATED VALUE', 
     *2('*')//13X,I2,2X,2(8X,E15.7)) 
      END 
 
Method 
Given function values yi = f (xi), i = 1, ..., n, for discrete 
points x1, x2, ..., xn (x1 < x2 < ....< xn), let’s consider the 
determination of the interpolating function represented in 
(1.1).  (1.1) represents a different cubic polynomial for 
each interval [xi, xi+1].  S (x) represented in (1.1) is 
piecewisely expressed as (4.1). 
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  Each Si(x) is determined by the following procedure: 
(a) The first order derivatives at two points xi and xi+1 are 

approximated. (They are taken as ti and ti+1). 
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(b) Si (x) is determined under the following four 
conditions: 
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  The interpolating function thus obtained is called a 
quasi-Hermite interpolating polynomial. 
  This subroutine features the geometric approximation 
method for first order derivatives in (a). 
  In that sense, the interpolating function is hereinafter 
called a “curve” and the first order derivative “the slope 
of the curve”. 
 
• Determination of the slope of a curve at each discrete 

point 
The slope of a curve at each discrete point is locally 
determined using five points; the discrete point itself 
and two on each side. 
Now let us determine the slope of the curve at point 3 
from the five consecutive points 1 through 5. (See Fig. 
AKMIN-1) 

2

1

C

A B

3
D

4

5

 
Fig. AKMIN-1 

  In Fig. AKMIN-1, the intersection of the extensions of 
segments 1 2 and 3 4 are taken as A and that the 
intersection of the extensions of segments 2 3 and 4 5 as 
B. 
  Also, the intersections of the tangent line at point 3 of 
the curve and segments 2 A and 4 B are taken as C and D, 
respectively. 
  The slopes of segments 1 2, 2 3, 3 4 and 4 5 are 

respectively designated as m1, m2, m3, and m4.  If the 
slope of the curve at point 3 is t, t is determined so that it 
will approach m2 when m1 approaches m2, or will 
approach m3 when m4 approaches m3.  One sufficient 
condition for satisfying this is given in (4.3.). 
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  (4.4) is derived from the relationship in (4.3) 
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t obtained from (4.4) has the following preferable 
characteristics: 
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  However, (4.4) has the following drawbacks: 
 
(d) when w2 = w3 = 0, t is undifinite 
(e) when 2341342 ,,, mtmmmmmm =≠≠=  

or (4.6) 
when 3234231 ,,, mtmmmmmm =≠≠=  

 
  This subroutine determines t based on (4.7), not on (4.4), 
to avoid these drawbacks. 

when m m1 2≠  or m m3 4≠  

1234

312234

mmmm
mmmmmm

t
−+−
−+−

=  (4.7) 

when m1 = m2 and m3 = m4 
 

  (4.7) satisfies the requirements of the characteristics 
(4.5) 
 
• Determination of slope at both end points  

At points located at both ends (x1, y1), (x2, y2), (xn–1, yn–

1), and (xn, yn), the following virtual discrete points are 
adopted to determine their slope. 
  Take the left end for example, the five points shown 
in Fig. AKMIN-2 are set so that the slope t1 of the 
curve at (x1, y1) can be determined. 
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y−1
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  x−1          x0                 x1           x2                x3  
Fig. AKMIN-2 

  The two points (x–1, y–1) and (x0, y0) are virtual points.  
x–1 and x0 are determined from (4.8). 

x3 – x1 = x2 – x0 = x1 − x–1 (4.8) 

  y-1 and y0 are assumed to be the values obtained by 
evaluating a quadratic polynomial passing (x1, x1), (x2, y2) 
and (x3, y3) at x–1 and x0. The five points satisfy the 
conditions of (4.9). 
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  If the slope of segments (x–1, y–1) and (x0,y0) is m1 and 
the slopes of the segments extending to the right are m2, 
m3, and m4, respectively, the following equations are 
obtained from (4.9): 

m2 = 2 m3 – m4, m1 = 3 m3 – 2 m4 (4.10) 

  The slope t1 at (x1, y1) is determined by applying these 
m1, m2, m3 and m4 to the method in a.  In the 
determination of t2 at point (x2, y2), the five points (x0, y0), 
(x1, y1), (x2, y2), (x3, y3) and (x4, x4) are used. 
  The slope tn-1, tn at right-end points (xn-1, yn-1) and (xn, 
yn) are similarly determined by assuming (xn+1, yn+1) and 
(xn+2, yn+2). 
 
• Determination of curves 

The coefficient of Si(x) in (4.1), as determined by the 
conditions of (4.2), is represented in (4.11). 
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For further information, see Reference [52]. 
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A22-11-0202  ALU, DALU 

LU-decomposition of a real general matrix (Crout’s method) 
CALL ALU (A, K, N, EPSZ, IP, IS, VW, ICON) 

 
Function 
An n × n nonsingular real matrix A is LU-decomposed 
using the Crout’s method. 

PA = LU (1.1) 

  P is the permutation matrix which performs the row 
exchanges required in partial pivoting, L is a lower 
triangular matrix, and U is a unit upper triangular matrix. 
n ≥ 1. 
 
Parameters 
A .... Input.  Matrix A 

Output.  Matrices L and U. 
Refer to Fig. ALU-1,  
A is a two-dimensional array, A (K, N). 

 

Diagonal and lower
triangular portions only

Arrary A

Upper triangular portion only

Lower triangular
matrix L

Unit upper triangular
matrix U

u1nu13

K
N

0

0

1

1
1

1 u12

un-1 n

u2n

ln1

l31

l21

l11

u23

ln2  lnn−1     lnn

ln−1n−1

l32

l22 l21 u23 u2n

u1nu13u12l11

l22

ln1 ln2  lnn−1          lnn

ln−1n−1 un−1 n

 
 
Fig.  ALU-1 Storage of the elements of L and U in array A 

K .... Input.  Adjustable dimension of array A ( ≥N) 
N .... Input.  Order n of matrix A 
EPSZ .. Input.  Tolerance for relative zero test of 

pivots in decomposition process of A ( ≥ 0.0) 
When EPSZ is 0.0, a standard value is used.  
(Refer to Notes.) 

IP .... Output.  The transposition vector which 
indicates the history of row exchanging that 
occurred in partial pivoting. 

IP is a one-dimensional array of size n.  (Refer 
to Notes.) 

IS ... Output.  Information for obtaining the 
determinant of matrix A.  If the n elements of 
the calculated diagonal of array A are 
multiplied by IS, the determinant is obtained. 

VW .... Work area.  VW is one-dimensional array of 
size n. 

ICON .... Output.  Condition code.  Refer to Table ALU-
1. 

 
Table ALU-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 Either all of the elements of 
some row were zero or the 
pivot became relatively 
zero.  It is highly probable 
that the matrix is singular. 

Discontinued 

30000 K<N, N<1 or EPSZ<0.0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II .... AMACH, MGSSL 
FORTRAN basic functions ... ABS 

 
• Notes 

If EPSZ is set to 10-s, this value has the following 
meaning.  In LU-decomposition, if the loss of over s 
significant digits occurred for the pivot, the LU-
decomposition should be discontinued with ICON = 
20000 regarding the pivot to be relatively zero.  Let u 
be the unit round-off, and the standard value of EPSZ 
is 16 u.  If the processing is to proceed at a low pivot 
value, EPSZ will be given the minimum value, but the 
result is not always guaranteed. 
  The transposition vector corresponds to the 
permutation matrix P of LU decomposition in partial 
pivoting.  In this subroutine, the elements of the array 
A are actually exchanged in partial pivoting.  In the J th 
stage (J = 1, ..., n) of decomposition, if the Ith row (I ≥ 
J) has been selected as the pivotal row the elements of 
the Ith row and the elements of the Jth row are 
exchanged.  Then, in order to record the history of this 
exchange, I is stored in IP (J). 
  A system of linear equations can be solved by calling 
subroutine LUX following this subroutine.  However, 
instead of these subroutines, subroutine LAX can be 
normally called to solve such equations in one step. 

 
• Example 

An n × n matrix is input and LU-decomposition is 
computed.  n ≤ 100. 
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C     **EXAMPLE** 
      DIMENSION A(100,100),VW(100),IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      CALL ALU(A,100,N,0.0,IP,IS,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GOTO 10 
      DET=IS 
      DO 20 I=1,N 
      DET=DET*A(I,I) 
   20 CONTINUE 
      WRITE(6,620) (I,IP(I),I=1,N) 
      WRITE(6,630) ((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      WRITE(6,640) DET 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(///10X,'** INPUT MATRIX **' 
     * /12X,'ORDER=',I5//(10X,4('(',I3,',', 
     * I3,')',E16.8))) 
  610 FORMAT('0',10X,'CONDITION CODE =',I5) 
  620 FORMAT('0',10X,'TRANSPOSITION VECTOR' 
     * /(10X,10('(',I3,')',I5))) 
  630 FORMAT('0',10X,'OUTPUT MATRICES' 
     * /(10X,4('(',I3,',',I3,')',E16.8))) 
  640 FORMAT('0',10X, 
     * 'DETERMINANT OF THE MATRIX =',E16.8) 
      END 
 
Method 
• Crout’s method 

Generally, in exchanging rows using partial pivoting, 
an n × n regular real matrix A can be decomposed into 
the product of a lower triangular matrix L and a unit 
upper triangular matrix U. 

PA = LU (4.1) 

  P is the permutation matrix which performs the row 
exchanging required in partial pivoting.  The Crout’s 
method is one method to obtain the elements of L and U.  
This subroutine obtains values in the jth column of L and 
jth column of U in the order (j = 1, ..., n) using the 
following equations. 

1,...,1,
1

1
−=





= ∑

−

=
− jilulu iiijij

i

k
kjika  (4.2) 

njiulau
j

k
kjikijij ,...,,

1

1

=−= ∑
−

=

 (4.3) 

  where, A = (aij), L = (lij) and U =(uij).  Actually using 
partial pivoting, rows are exchanged. 
  The Crount’s method is a variation of the Gaussian 
elimination method. 
Both perform the same calculation, but the calculation 
sequence is different.  With the Crout’s method, elements 
of L and U are calculated at the same time using 
equations (4.2) and (4.3).  By increasing the precision of 
the inner products in this step, the effects of rounding 
errors are minimized. 
 
• Partial pivoting 

When matrix A is given as 

A =










0 0 10
10 0 0
. .
. .

 

  Though the matrix is numerically stable, it can not be 
LU decomposed.  In this state, even if a matrix is 
numerically stable large errors would occur if LU 
decomposition were directly computed.  So in this 
subroutine, to avoid such errors partial pivoting with row 
equilibration is adopted for decomposition. 
  For more information, see References [1],[3], and [4]. 
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G23-11-0301  AQC8, DAQC8 

Integration of a function by a modified Clenshaw-Curtis 
rule 
CALL AQC8 (A, B, FUN, EPSA, EPSR, NMIN, NMAX, 
S, ERR, N, ICON) 

 
Function 
Given a function f(x) and constants a, b, εa and εr this 
subroutine obtains an approximation S which satisfies 

( ) ( ) 




 ⋅≤ ∫∫−

b
a dxxf

b
a dxxfS ra εε ,max  (1.1) 

by a modified Clenshaw-Curtis rule which increases a 
fixed number of abscissas at a time. 
 
Parameters 
A .... Input.  Lower limit a of the interval. 
B .... Input.  Upper limit b of the interval. 
FUN .. Input.  The name of the function subprogram 

which evaluates the integrand f(x) (see the 
example). 

EPSA .. Input.  The absolute error tolerance εa (≥ 0.0) 
for the integral. 

EPSR .. Input.  The relative error tolerance εr (≥ 0.0) 
for the integral. 

NMIN .. Input.  Lower limit on the number of function 
evaluation (≥ 0).  A proper value is 15. 

NMAX .. Input.  Upper limit on the number of function 
evaluations (NMAX ≥ NMIN) A proper value 
is 511.  (A higher value, if specified, is 
interpreted as 511.) 
(See “Comments on use”.) 

S ... Output.  An approximation (see “Comments on 
use”). 

ERR .... Output.  An estimate of the absolute error in 
the approximation. 

N .... Output.  The number of function evaluations 
actually performed. 

ICON .... Output.  Condition code.  See Table AQC8-1. 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, AMACH 
FORTRAN basic functions ... ABS, AMAX1, FLOAT, 
MAX0, MIN0, SQRT 
 

• Notes 
The function subprogram associated with parameter FUN 
must be defined as a subprogram whose argument is only 
the integration variable. 
Its function name must be declared as EXTERNAL in the 
calling program.  If the integrand includes auxiliary 
variables, they must be declared in the COMMON 
statement for the purpose of communicating 

Table AQC8-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The desired accuracy was 
not attained due to 
rounding-off errors. 

Approximation 
obtained so far 
is output in S.  
The accuracy 
is the 
maximum 
attainable. 

20000 The desired accuracy was 
not attained though the 
number of integrand 
evaluations has reached the 
upper limit. 

Processing 
stops.  S is the 
approximation 
obtained so 
far, but is not 
accurate. 

30000 One of the followings 
occurred. 
1 EPSA < 0.0 
2 EPSR < 0.0 
3 NMIN < 0 
4 NMAX < NMIN 

Processing 
stops. 

 
with the main program.  (See the example.) 
  When this subroutine is called many times, 511 
constants (Table of abscissas, weights for the integration 
formula) are determined only on the first call, and this 
computation is bypassed on subsequent calls.  Thus, the 
computation time is shortened. 
  This subroutine works most successfully when the 
integrand f(x) is a oscillatory type function.  For a smooth 
function, it is best in that it requires less evaluations of 
f(x) than subroutines AQN9 and AQE. 
  For a function which contains singularity points, 
subroutine AQE is suitable if the singularity points are 
only on the end point of the integration interval and 
subroutine AQN9 for a function whose singularity points 
are between end points, or for a peak type function. 
  Parameters NMIN and NMAX must be specified 
considering that this subroutine limits the number of 
evaluations of integrand f(x) as NMIN ≤ Number of 
evaluation times ≤ NMAX  
  This means that f(x) is evaluated at least NMIN times 
and not more than NMAX times regardless of the result 
of the convergence test.  When a value of S that satisfies 
the expression (1.1) within NMAX evaluations cannot be 
obtained, processing stops with ICON code 20000.  If the 
value of NMAX is less than 15, a default of 15 is used. 
 
Accuracy of the approximation  
S is obtained as follows.  This subroutine obtains S to 
satisfy the expression (1.1) when constants εa and εr are 
given.  Thus εr=0 means to obtain the approximation with 
its absolute error within εa,  Similarly, εa=0 means to 
obtain it with its relative error within εr.   
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  This purpose is sometimes obstructed by unexpected 
characteristics of the function or unexpected value of εa 
or εr. For example, when εa or εr is extremely small in 
comparison with arithmetic precision in function 
evaluation, the effect of round-off error becomes greater, 
so it is no use to continue the computation, even though 
the number of integrand evaluation has not reached the 
upper limit. In this case, processing stops with the code 
10000 in ICON. At this time, the accuracy of S becomes 
the attainable limit for computer used. The approximation 
sometimes does not converge within NMAX evaluations. 
In this case, S is an approximation obtained so far, and is 
not accurate and indicated by ICON code 20000. 
  To determine the accuracy of integration, this 
subroutine always puts out an estimate of absolute error 
in parameter ERR, as well as the approximation S. 
 
• Example 

Increasing the value of auxiliary variable p from 0.1 to 
0.9 with increment 0.1, this example computes the 
integral 

 
C     **EXAMPLE** 
      COMMON P 
      EXTERNAL FUN 
      A=-1.0 
      B=1.0 
      EPSA=1.0E-5 
      EPSR=1.0E-5 
      NMIN=15 
      NMAX=511 
      DO 10 I=1,10 
      P=FLOAT(I) 
      CALL AQC8(A,B,FUN,EPSA,EPSR,NMIN, 
     *     NMAX,S,ERR,N,ICON) 
   10 WRITE(6,600) P,ICON,S,ERR,N 
      STOP 
  600 FORMAT(' ',30X,'P=',F6.1,5X, 
     *'ICON=',I5,5X,'S=',E15.7,5X, 
     *'ERR=',E15.7,5X,'N=',I5) 
      END 
      FUNCTION FUN(X) 
      COMMON P 
      FUN=COS(P*X) 
      RETURN 
      END 
 
Method 
This subroutine uses an extended Clenshaw-Curtis 
integration method which increases a fixed number of 
abscissas (8 points) at a time. The original Clenshaw-
Curtis rule sometimes wastes abscissas because it 
increases them doubly even when the desired accuracy 
could be attained by adding only a few abscissas. 
  For the purpose of avoiding this as much as possible, 
this subroutine increases 8 points at a time. Moreover, the 
costs of computations is reduced by using the Fast 
Fourier Transform algorithm (FFT). 
 

• Clenshaw-Curtis integration which increases a fixed 
number of points at a time 
The given integral ( )f x dxa

b
∫  may be transformed by 

linear transformation: 

  x b a t a b
=

−
+

+
2 2

 

to 

  b a f b a t a b dt− − + +





−∫2 2 21

1  

  For simplicity, let's consider the integration(4.1) over 
the interval [-1,1] in what follows. 

( )dxI xf∫−= 1
1  (4.1) 

  The original Clenshaw-Curtis rule is as follows. By an 
interpolation polynomial (i.e., Chebyshev interpolation 
polynomial), whose interpolating points are the series of 
points (Fig. AQC8-1) made by projecting the series of 
points equally-sectioned on the unit half circle over the 
interval [-1,1], f(x) is approximated, and this is integrated 
term by term to obtain the integral approximation. The 
number of data points will increase doubly to meet the 
required accuracy. This method sometimes wasted data 
points. 
The method which increases a fixed number of data 
points at a time is explained next. First, based on Van der 
Corput series uniformly distributed on (0,1), the series of 
points {αj}(j=1,2,3,...) are made by the recurrence 
relation 

( )...,3,2,1

21,2,41 21221

=

+=== +

j
jjjj ααααα

  

  The series of points on a unit circle {exp(2πiαj)} is 
symmetric to the origin and unsymmetric to the real axis 
(Fig. AQC8-2). Since those points {xj=cos2παj } for 
j=1,2,3,...  form the Chebyshev Distribution on (-1,1), 
they are used as data points (Fig. AQC8-2). 
As shown in Fig. AQC8-2, seven points are used first as 
abscissas. After that, eight points are added at a time 
repeatedly. When the total amount of abscissas reaches 
2n-1, their locations match those of points which are 
made by projecting biseetional points placed on the unit 
half circle to the open interval(-1,1). Thus, they are 
regarded as a series of data points as used by the 
Clenshaw-Curtis rule on the open interval. 
  The descriptions for forming the interpolation 
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Fig. AQC8-1  Data points used by the original Clenshaw-Curtis rule 
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Fig. AQC8-2  Series of data points {xj} used by this subroutine 

polynomials are given next. From the characteristics of αj, 
the sequence {xj}( j=1,2,...,7) matches {cos πj / 8}.  
When N-th degree Chebyshev polynomial is expressed as 
TN (x)  x8k+j( j=0, 1, ..., 7) corresponds to eight roots of 
T8(x)−xk=0 (k=1,2,…).  Using these characteristics, seven 
points at firrst, eight points at each subsequent time, are 
added to make the series of interpolation polynomial 
Pl(x). In the expressions below, Po(x) is the interpolation 
which uses the first 7 points, and Pl(x) is the one which 
uses 8l+7 points as the result of adding 8 points l times. 
  With a change of variable x=cos θ, the expression 

( ) ( ) θθθ
π

dfdxI xf sincos
0

1
1 ∫== ∫−  

  is derived, and f (cosθ) is approximated by Pl (cosθ), i.e. 

( ) ( )f Plcos cosθ θ≈  

  Where, 
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  The notation Σ' on the right-hand side of (4.2) means to 
sum up the subsequent terms with the first term 
multiplied by 1/2. Coefficients. A-1,k and Ai,k of 
polynomial Pl(x) are determined by the interpolating 
conditions. First, using the first seven points of {cosπj / 
8}( j=1,2,...,7), A-l,k(k=1,2,...,7) is given as 

,
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                              (k = 1, 2, ... , 7) 

  Next, using Ai,k (-1 ≤ i ≤ l-1) which is known, Al,k (l ≥ 0) 
which appears in Pl+1(cosθ) are obtained. At this stage, 
added data points are roots of T8(x)-xl+1=0, that is, cos 
θj

l+1 ,(θj
l+1 =2π/8⋅( j+αl+1) ( j=0,1,2,...,7). So, the 

interpolating conditions at this stage, 
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  are used to determine Al,k.  To the left-hand side of (4.3) 
a cosine transformation including parameter αl+1 is 
applied. 

( ) 1
7
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l
j kaf θθθ   ,  (0 ≤ j ≤ 7) 
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  By regarding this as a system of linear equations with 
ak's being unknowns and by solving them we have 

( )∑
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+++=
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  In actual computations real FFT algorithm is used. Then, 
from (4.3), 
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 (0≤k≤7) 

  where, A-1,0=A-1,8=0. 
  From ω0(cos2πα1)=1 when l=0, the value A0,k is 
obtained easily. For l≥1, letting 

l=m+2n          (0 ≤ m < 2n) 

  and using the relation 

sin2παl+1⋅ω2
n
-1(cos2παl+1)=sin(2n+1παl+1)=1 

  Al,k can be computed as shown below. 
  Letting first: 
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 (4.4) 

  then computing each Bm-i - 1 sequentially by 

Bm-i = (Bm+1-i - A2
n

+i-1) / (cos2παl+1 - cos2πα2
n
+i) 

                          i=0,1,2,...,m (4.5) 

  And Al,k's are computed as 

Al,k=B0 

  Comparing this to that of Newton difference quotient 
formula, calculation in (4.4) and (4.5) are more stable 
because the number of divisions are reduced from  l+2  to  
m+2.  Using interpolation polynominal Pl+1(cosθ) 
computed so far, the integral approximation Il+1 is 
obtained by termwise integration. 
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  (Only terms with odd value of k are summed.)  
  where, the weight coefficient Wi,k is defined as 

( ) θθθθπ
ω dkW iki cos8sin8cos0, ∫=  (4.6) 

  and computed as follows. The weight coefficient W2
n
-1,k 

is obtained by: 
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  Using this W2
n
-l,k as a starting value, the required 

N(=2m×4) members of Wi,k(0 ≤ i ≤ 2m-1,k=1,3,5,7) are 
computed by the following recurrence formula: 

W2
n
-1+2 

n-j+1
⋅s+2 

n-j
 ,k=W2

n
-1+2 

n-j+1
⋅s, 2

n-j
⋅8+k 

         +W2
n
-1+2 

n-j+1
⋅s,2

n-j
⋅8-k 

         −2cos2πα2
j
+2s⋅W2

n
-1+2 

n-j+1
⋅s,k 

    , n=1,2,...,m − 1  ,  1 ≤ j ≤ n,  0 ≤ s < 2j-1-1, 
      0 ≤ k ≤ 2n-j⋅8 − 1(k is an odd number). (4.7) 

  To obtain these weight coefficients, N /2(log2N − 2)+4 
multiplications and divisions are required. 
 
• Computing procedures 
  Procedure 1 ... Initialization 
This procedure computes m=(a+b)/2, r =(b − a) /2, which 
are required to transform the integration interval [a,b] to 
[-1,1]. All the initializations required are performed here. 
 
  Procedure 2 ... Determination of abscissas and weights 
In this subroutine the number of abscissas is limited to 
511 (=29-1). Since points {xj}={cos2παj ( j=1,2,...,511) 
are distributed symmetrically to the origin, a table of only 
256(=28){cosπαj}( j=1,2,...,256) is needed. The table is 
generated by the recurrence formula. Also the weights 
{Wi,2k+1}(0 ≤ i ≤ 63, 0 ≤ k ≤ 3) are computed by the 
recurrence formula (4.7) and stored in a vector. This 
procedure is performed only on the first call to the 
subroutine, but bypassed on the subsequent calls. 
 
  Procedure 3 ... Integral approximation based on initial 7 
points Integral approximation I0 is obtained Integral 
approximation I0 is obtained by multiplying the weights 
determined in procedure 2 and A-1,2k+1(0 ≤ k ≤ 3), which 
are obtained by using real FFT algorithm to data points 
cosπ j/8( j=1,2,...,7). 
 
  Procedure 4 ... Trigonometric function evaluations 
Using data point table {cosπαj}, values of trigonometric 
functions cos2παl+1, sin2παl+1, sinπαl+1 to be required in 
procedure 5 are evaluated.  
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  Procedure 5 ... ak and Al,k 
After evaluating function values at the added 8 data 
points, a2k+1(0 ≤ k ≤ 3) are obtained by using real FFT to 
8 terms. And Al,2k+1(0 ≤ k ≤ 3) are obtained based on (4.4) 
- (4.6). 
 
  Procedure 6 ... Integration and convergence test 
Previous integral approximation Il(l ≥ 0) is added with 

∑
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0
12,12,

k
klkl WA  to obtain the updated integral 

approximation Il+1. Next, an estimate el+1 of truncation 
error in Il+1 is computed, and the convergence test is done 
to el+1 as well as to el. 
  After the convergence test for el the computation stops if 
both tests are successful, otherwise goes back to 
procedure 4 with l increased by 1. 
 
• Error estimation 

Letting Rl(x) denote the error when f(x) is 
approximated by an interpolation polynomial Pl(x) 
mentioned above it can be seen that 
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  The coefficient 2-(8l+7) is used in order to match the 
conventional error term expression with the divided 
difference. 
  Uk(x) is the k-th degree Chebyshev polynomial of the 
second kind defined as follows: 

Uk(x)=sin(k+1)θ / sinθ  ,  x=cosθ 

  Truncation error El for the approximation Il is expressed 
as 
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The divided difference can be expressed by the form of 
integration and also expanded to a Chebyshev series as 
follows: 
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  Figure AQC8-3 shows the integration path c, which is a 
simple closed curve. 

C1−1

 
Fig.  AQC8-3 

  Coefficient Cl,k is as follows: 
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  Uk
*(z) is the Chebyshev function of the second kind 

defined as follows: 
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If f(z) is a rational function having a poles at point zm 
where m=1,2,...M), the following is established: 
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Here, Resf(zm) is a residue at a point zm. 
  Under the following conditions, 

( ) 11, 2* >−+=∝ −
mmm

k
mmk zzrrzU  

as far as zm is not too close to the interval [− 1,1] on a 
real axis, 

kll CC ,1, >   ,  (k≥3) 

holds. 
  The truncation error can be estimated by 

( )E C W A A W el l l l l l l≈ ⋅ ≤ + ⋅ ≡− −, , , , ,1 1 1 7 1 5 1  

  Al−1,7
 and Al−1,5

 are used instead of Cl ,1
, the value of 

which cannot be really evaluated. 
  If zm is very close to [-1,1] or f (p)(x), derivative of order 
p(where p≥1) becomes discontinuous on [ − 1,1], the error 
estimation above is no longer valid. To cope with this 
situation, take the following procedures. If Ai,k decreases 
rapidly, the error for l2n-1 can be estimated well by 

1212 1−− −− nn II  
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  Therefore, if the following holds, 

121212 1 −−− −−> nnn IIe  

el is used as an error estimation in 2n-1 ≤ l ≤ 2n+1 − 1; 
otherwise the following is used instead. 

121212 11' −−− −−−≡ nnn eIIee ll  

• Convergence criterion 
As well as a truncation error, the integral 
approximation has a computation error. This subroutine 
estimates the upper bound ρ of the computation error 
as 

  ( ) ∞+= flu 1ρ  

  where u is the round-off unit, and f j∞
= max ( )f x j . 

This assumption is reasonable in actual use because 
abscissas form the Chebysev distribution and FFT is used. 
  Setting a tolerance for convergence test as  

( )τ ε ε ρ=
−









∫max a r f x dx, ,1

1  

If the following condition is satisfied, 

el+1( or e'l+1) < τ 

  Il+1 is output in parameter S as an approximation to the 
integral. 
In parameter ERR, el+1(ICON = 0) is put out if el+1 ≥ ρ, or 
ρ(ICON=10000) if el+1 < ρ. 

  I l  substitutes for ( )dxxf∫−
1
1  which is used in τ. 

  For the detailed description, see References [65] and 
[66]. 
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G23-11-0401  AQE,DAQE 

Integration of a function by double exponential formula 
CALL AQE (A,B,FUN,EPSA,EPSR,NMIN,NMAX,S, 
ERR,N,ICON) 

 
Function 
Given a function f(x) and constants a,b,εa,εr this 
subroutine obtains an approximation S that satisfies 

( ) ( ) 


 ⋅≤− ∫∫ dx,dxS b
a xf

b
a xf ra εεmax  (1.1) 

by Takahashi-Mori's double exponential formula. 
 
Parameters 
A .... Input. Lower limit a of the interval. 
B .... Input. Upper limit b of the interval 
FUN .... Input. The name of the function subprogram 

which evaluates the integrand f(x) (see the 
example). 

EPSA .. Input. The absolute error tolerance εa(≥0.0) for 
the integral. 

EPSR .. Input. The relative error tolerance εr(≥0.0) for 
the integral. 

NMIN .. Input. Lower limit on the number of function 
evaluations. A proper value is 20. 

NMAX .. Input. Upper limit on the number of function 
evaluations. 
(NMAX≥NMIN) 
A proper value is 641 (a higher value, if 
specified, is interpreted as 641). 

S .... Output. An approximation to the integral. (See 
"Comments on use" and "Notes".) 

ERR .. An estimate of the absolute error in the 
approximation. 

N .... Output. The number of function evaluations 
actually performed. 

ICON .. Output. Condition code. See Table AQE-1. 
 
Comments on use 
• Subprograms used 

SSL II... MGSSL, AMACH, AFMIN 
FORTRAN basic functions... MAX0, AMAX1,AMIN1, 
ABS, FLOAT, EXP, COSH, SINH 

 
• Notes 

The function subprogram associated with parameter 
FUN must be defined as a subprogram whose argument 
is only the integration variable. Its function name must 
be declared as EXTERNAL in a calling program. If the 
integrand includes auxiliary variables, they must be 
declared in the COMMON statement for the purpose of 
communicating with the calling program. 
  When this subroutine is called many times, 641 
constants (table of abscissas and weights for the  

Table AQE-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The desired accuracy is not 
attained due to rounding-off 
errors. 

Approximation 
obtained so far 
is output in S. 
The accuracy 
has reached 
the attainable 
limit. 

11000 
12000 
13000 

1,2,3 at the place of 1000 
mean that the function 
value increases steeply 
near the upper, lower, or 
both limits of the interval 
respectively 

Processing 
continues with 
a relaxed 
tolerance. 

20000 The desired accuracy is not 
attained though the number 
of integrand evaluation has 
reached the upper limit 

Processing 
stops. S is the 
approximation 
obtained so 
far, but is not 
accurate. 

21000 
22000 
23000 

After the occurrence of any 
even of code 11000 - 
13000, the number of 
integrand evaluations has 
reached the upper limit. 

 

25000 The table for abscissas(i.e. 
work area) has been 
exhausted. 

Processing 
stops. S is an 
approximation 
by using the 
smallest 
stepsize 
allowed in this 
subroutine. 

30000 One of the followings 
occurred: 
1 EPSA < 0.0 
2 EPSR < 0.0 
3 NMIN < 0 
4 NMAX < NMIN 

Processing 
stops. 

 
integration formula) are determined only on the first call, 
and this computation is bypassed on subsequent calls. 
Thus, the computation time is shortened. 
  This subroutine works most successfully when the 
integrand f (x) changes rapidly in the neighborhood of 
endpoints of the interval. Therefore, when f(x) has an 
algebraic or logarithmic singularity only at endpoint(s), 
the subroutine should be used with first priority. 
  When f(x) has interior singularities, the user can also use 
the subroutine provided that the subroutine is applied to 
each of subintervals into which the original interval is 
divided at the singularity points, or he can use subroutine 
AQN9 directly for the original interval. 
  Subroutine AQN9 is suitable also for peak type 
functions, and subroutine AQC8 for smooth functions or 
oscillatory functions. 
  This subroutine does not evaluate the function at both 
endpoints. A function value ( f(x) → ±∞) of infinity is 
allowed at the end points, but not allowed between them. 
Parameters NMIN and NMAX must be specified 
considering that this subroutine limits the number of 
evaluations of integrand f(x) as 
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NMIN ≤ Number of evaluations ≤ NMAX 

  This means that f(x) is evaluated at least NMIN times, 
but less than NMAX times, regardless of the result of the 
convergence test. When a value S that satisfies 
expression (1.1) is not obtained within NMAX 
evaluations, processing stops with ICON code 20000 - 
23000. 
  Accuracy of the integral approximation S. The 
subroutine tries to obtain an approximation S which 
hopely satisfies (1.1) when εa and εr are given. εa = 0 
means to obtain the approximation with its absolute error 
within εr.  Sumilarly, εa=0 means to obtain it with its 
relative error within εr.  This purpose is sometimes 
obstructed by unexpected characteristics of the function, 
or an unexpected value of εa or εr. For example, when εa 
or εr is extremely small in comparison with arithmetic 
precision in function evaluations, the effect of rounding-
off errors becomes greater, so it is no use to continue the 
computation even though the number of integrand 
evaluation has not reached the upper limit. 
In this case, the accuracy of S becomes the attainable 
limit for the computer used. The approximation 
sometimes does not converge within NMAX evaluations. 
In this case, S is an approximation obtained so far, and is 
not accurate. This is indicated by ICON within the code 
range 20000 - 23000. In addition, ICON is set to 25000 
when the approximation does not converge though the 
smallest step-size defined in this subroutine is used. 
To determine the accuracy of integration, this subroutine 
always puts out an estimate of its absolute error in 
parameter ERR, as well as the integral approximation S. 
  An alternative definition of function for avoiding 
numerical cancellation. 
  For example, the integrand in the following integral has 
singularities at end points of x = 1,3, 

( ) ( )∫
−−

= 3
1 13 4341 xxx

dxI  

and the function value diverges at that points. There, the 
integrand makes a great contribution to the integral. So, 
the function values near the end points must be accurately 
computed. Unfortunately, the function values cannot be 
accurately computed there since cancellation occurs in 
computing (3.0 - X) and (X-1.0). 
  This subroutine allows the user to describe the integrand 
in another form by variable transformation so that 
cancellation can be avoided. Parameters in subprograms 
are specified as follows: 

FUNCTION FUN(X) 
where, 

X... Input. One dimensional array of size 2. 
X(1) corresponds to integration variable x and 
X(2) is defined depending upon the value of 
integration variable x as follows: 

Letting AA = min(a,b), and BB = max(a,b), 
• when AA ≤ x <(AA+BB) / 2, X(2)=AA − x 
• when (AA+BB) / 2 ≤ x ≤ BB, X(2)=BB − x 

  In other words X(2) denotes the distance from either of 
the end points. The user can write his function using X(2) 
as follows: 

( )
( )( ) ( )
( )( ) ( )f x

f
f

=
− <
− ≥






AA X 2 when X 2
BB X 2 when X 2

0 0
0 0

.
.

 

The user can select either of X(1) or X(2) (See example). 
 
• Example 

Two integrals 

( ) ( )∫∫
−−

== 3
1 13

1
0 434121 ,

xxx

dx

x

dx II  

are computed. The integrand in I1 is defined in the 
function subprogram FUN1 and that in I3 is defined in 
FUN2 respectively. FUN2 uses the technique described 
in Note. 
 

C     **EXAMPLE** 
      EXTERNAL FUN1,FUN2 
      A=0.0 
      B=1.0 
      EPSA=1.0E-5 
      EPSR=0.0 
      NMIN=20 
      NMAX=641 
      CALL AQE(A,B,FUN1,EPSA,EPSR,NMIN, 
     *     NMAX,S1,ERR1,N1,ICON1) 
      A=1.0 
      B=3.0 
      CALL AQE(A,B,FUN2,EPSA,EPSR,NMIN, 
     *     NMAX,S2,ERR2,N2,ICON2) 
      WRITE(6,600) ICON1,S1,ERR1,N1, 
     *             ICON2,S2,ERR2,N2 
      STOP 
  600 FORMAT(' ',30X,'ICON1=',I5,5X, 
     *'S1=',E15.7,5X,'ERR1=',E15.7, 
     *5X,'N1=',I5// 
     *       ' ',30X,'ICON2=',I5,5X, 
     *'S2=',E15.7,5X,'ERR2=',E15.7, 
     *5X,'N2=',I5) 
      END 
 
      FUNCTION FUN1(X) 
      FUN1=0.0 
      IF(X.GT.0.0) FUN1=1.0/SQRT(X) 
      RETURN 
      END 
 
      FUNCTION FUN2(X) 
      DIMENSION X(2) 
      T=X(2) 
      IF(T.GE.0.0) GO TO 10 
      P=(1.0-T)*(2.0+T)**0.25*(-T)**0.75 
      GO TO 20 
   10 P=(3.0-T)*T**0.25*(2.0-T)**0.75 
   20 FUN2=0.0 
      IF(P.GT.0.0) FUN2=1.0/P 
      RETURN 
      END 
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Method 
This subroutine uses the automatic integration method 
based on Takahashi-Mori's double exponential formula. 
The principle of this method is given first, and next the 
computing procedures in this subroutine. 
 
• Double exponential formula 

The given integral ( )f xa
b

dx∫  may be transformed by 

using the linear transformation 
 

x b a t a b
=

−
+

+
2 2

 

  into 

b a f b a t a b dt− − + +



−∫2 2 21

1  

  For simplicity, let's consider the integration (4.1) over 
the finite interval [-1,1]. 

( )I f x dx= −∫ 1
1  (4.1) 

  On condition that f(x) is analytical in the open interval (-
1,1), it is allowed to have singularities at x=±1 such as 

(1 − x)α(1 + x)β  ,   −1 <α, β 

  By a variable transformation, 

x=φ (t) (4.2) 

   the interval [-1,1] is transformed to ( − ∞, ∞) and 
consequently the integral (4.1) is transformed to 

( ) dtttI f )()( φφ ′= ∫
∞
∞−  (4.3) 

  Remembering that the trapezoidal rule is best for 
integrals over the infinite interval, the following 
integration formula is obtained by applying that rule with 
step-size h to (4.3). 

( )( ) ( )∑
∞

−∞=

=
n

h nhnhfhI 'φφ  (4.4) 

  Based on an analysis on errors which arise in approximating 
the infinite sum above by the finite one, Takahashi and Mori 
showed the optimal transformation φ (t) with which the 
integrand in (4.3) will decay in a manner shown by (4.5) 
below as | t | increase (see Fig.AQE-1). 

( )( ) ( ) ( )f t t a t aφ φ' ,≈ − >exp exp 0  (4.5) 

h−2    −1
n=   n=    n=0   n=1  n=2

f (φ (t)) φ’(t)

Cancelation

t

 
Fig.  AQE-1  Trapezoid rule applied to f 

  As the transformation which enable the double 
exponential decay such as (4.5) to happen, this subroutine 
takes the following one. 

( ) ( )

( ) ( ) ( )

x t t

t t t

= =






=






φ

φ

tanh sinh

cosh cosh sinh2

3
2

3
2'

 (4.6) 

• Computing procedure 
 
  Procedure 1 ... Initialization 
To transform the finite interval [a, b] to [-1,1], determine 
the constant. 

r=(b − a)/2 

  All the initialization required are done in this procedure. 
 
  Procedure 2 ... Determines the upper and lower limits of 
the infinite summation used to approximate the infinite 
summation (4.4). A very approximate integral S' is 
obtained. 
 
  Procedure 3 ... By the summation of the finite number of 
products, approximations S(h), S(h/2), S(h/4)... for Ih, Ih/2, 
Ih/4,..., are computed by bisectioning the step-size, until it 
converges. 
 
  Procedure 4 ... Sets values in S, ERR and ICON. 
 
• Convergence criterion 

If a step-size h used in the equally spaced trapezoidal 
rule is sufficiently small, it is proved analytically that 
the error ∆∆∆∆Ih = I − Ih can be expressed 

∆ ∆I Ih h2

2≈  

  From this, letting ε denote the desired accuracy, 
∆Ih 2 ≤ ε requires ∆Ih ≤ ε 1 2 . 

Since | ∆∆∆∆Ih/2 | << || ∆∆∆∆Ih || numerically, 

( ) ( ) hhhhh IIIIIhShS ∆∆∆ ≈−=−≈− 222  
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  holds takes the form. Thus, if the convergence criterion 
takes the form 

( ) ( ) αεη =≤− 2hShS  

  α=1/2 is allowed theoretically. From experience, this 
subroutine uses the following values of α for security, 
where ε' = max(εa / |S'|, εr) (or ε' = εr when S' = 0) 
 
When  10-4  ≤ ε' α=1.0 
When  10-5  ≤ ε' <10-4 α=0.9 
When  10-10≤ ε' <10-5 α=0.8 
  ε' <10-10 α=0.75 
  As the desired accuracy ε, max(εa, εr⋅|S(h/2)|,) is used. 
 
• Determination of initial step-size and threshold 

The step-size is initialized to 0.5 such an integer n (n= 
±1, ...., ±10) as satisfies the condition. 

  ( )( ) ( )F f nh nh= ≤φ φ η' '  

continuously twice is searched for, where 

( )( )∞
−

∞= FFra
410,maxmin' εεη  

  When F > η ' even at n = ±10, the convergence 
tolerance ε' is replaced by F and procedure 3 is executed. 
• Detection of round-off error effect 

Letting eh = |S(h) − S(h/2)|, then if εh ≤ η  is satisfied, 
S(h/2) is put out in parameter S as an approximation to 
the integral and eh

1/α is put out in parameter ERR. 
However, when eh ≤ η but also any of the phenomena 
below occurs, it is regarded that the round-off error 
effect dominates over the truncation error effect, and 
processing stops with ICON=10000. 
Phenomenon1 eh/2 ≥ eh ≥ e2h 
Phenomenon 2 eh ≤ uα |S(h/2)|, where u is round-off 
unit. 

 
In this case, eh or u|S(h/2)| put out in parameter ERR 
correspondingly to Phenomenon 1 or 2 respectively. 
 
For details, see References [67] and [68]. 
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G23-21-10101 AQEH, DAQEH 

Integration of a function over the semi-infinite interval by 
double exponential formula 
CALL AQEH(FUN,EPSA,EPSR,NMIN,NMAX,S,ERR, 
N,ICON) 

 
Function 
Given a function f(x) and constants εa εr this subroutine 
obrains an approximation that satisfies (1.1) by using the 
Takahashi-Mori's double exponential formula 

( ) ( ) 


 ⋅≤− ∫∫
∞
∞−

∞
∞− dxdxS xfxf ra εε ,max  (1.1) 

Parameter 
FUN ... Input. The name of the function subprogram 

which evaluates the integrand f(x). (See the 
example.) 

EPSA .. Input. The absolute error tolerance εa(≥0.0) for 
the integral. 

EPSR .. Input. The relative error tolerance εr(≥0.0) for 
the integral. 

NMIN .. Input. Lower limit on the number of function 
evaluations (≥0.0). A proper value is 20. 

NMAX .. Input. Upper limit on the number of function 
evaluations (≥0). A proper value is 689 (a 
higher value, if specified, is interpreted to 689). 
(See "Comments on use" and "Notes".) 

S ..... Output. An approximation to the integral. (See 
"Comments on use" and "Notes".) 

ERR ... Output. An estimate of the absolute error in the 
approximation. 

N ..... Output. The number of function evaluations 
actually performed. 

ICON .. Output. Condition code. See Table AQEH-1. 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, AMACH, AFMAX 
FORTRAN Basic Functions ... AMIN1, ABS, AMAX1, 
FLOAT, SINH, COSH, EXP 

 
• Notes 

The function subprogram associated with parameter 
FUN must be defined as a subprogram whose argument 
is only the integration variable. Its function name must 
be declared as EXTERNAL in a calling program.  If 
the integrand in cludes auxiliary variables, they must be 
declared in the COMMON statement for the purpose of 
communicating with the calling program. 
  When this subroutine is called many times, 689 
constants (table of abscissas and weights for the 
integration formula) are determined only on the first 
call and this computation is bypassed on subse- 

Table AQEH-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The desired accuracy is not 
attained due to rounding-off 
errors. 

The 
approximation 
obtained so far 
is output in S. 
The accuracy 
has reached 
the attainable 
limit. 

11000 
12000 
13000 

1, 2, 3 at the place of 1000 
means respectively:  
1 Function value increases 

steeply near at x=0.  
2 Function value converges 

too late to 0 when X→∞ 
3 Both 1 and 2 occur. 

Processing 
continues with 
a relaxed 
tolerance. 

20000 The desired accuracy is not 
attained though the number 
of integrand evaluations has 
reached the upper limit. 

 

21000 
22000 
23000 

After the occurrence of any 
event of code 11000 - 
13000, the number of 
integrand evaluations 
reaches the upper limit. 

 

25000 The table for abscissas(i.e. 
work area) has been 
exhausted. 

Processing 
stops. S is an 
approximation 
by using the 
smallest step-
size allowed in 
this subroutine. 

30000 One of the followings 
occurred:  
1  EPSA < 0.0 
2  EPSR < 0.0 
3  NMIN < 0 
4  NMAX < NMIN 

Bypassed 

 
 

quent calls. Thus the computation time is shortened. 
  This subroutine works most successfully even for the 
integrand f(x) which converges relatively slowly to zero 
when x→+ ∞ , or f(x) to which Gauss-Laguerre's rule 
cannot be applied. 
When the integrand f(x) severely oscillates, highly 
accurate integral value may not be obtained. 
  This subroutine does not evaluate the function at the 
lower limit (origin). A function value is allowed to be 
infinite (f(x) → +∞) at the lower limit. Since function 
values at large values of x will be required, the function 
subprogram FUN needs to have a defence against 
overflows and underflows if the high accuracy is 
desired. 
  Parameters NMIN and NMAX must be specified 
considering that this subroutine limits the number of 
evaluations of integrand f(x) as 
  NMIN≤Number of evaluations≤NMAX 
This means that f(x) is evaluated at least NMIN times, 
but less than NMAX times, regardless of the result of 
the convergence test. When a value S that satisfies 
expression (1.1) is not obtained within NMAX 
evaluations, processing stops with ICON code 20000 - 
23000. When an extremely small NMAX is given, for 

  Processing 
stops. S is the 
approximation 
obtained so 
far, but is not 
accurate. 
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example NMAX=2, NMAX is automatically increased 
to a certain value which depends upon the behavior of 
f(x). 
 

Accuracy of the integral approximation S 
The subroutine tries to obtain an approximation S which 
satisfies (1.1) when εa and εr are given. When εr = 0, the 
approximation is obtained with its relative error within εr.  
This is sometimes obstructed by unexpected 
characteristics of the function or an unexpected value of 
εa or εr. For example, when εa or εr is extremely small 
compared to the arithmetic precision in function 
evaluations, the effect of the rounding-off errors becomes 
greater, so there is no use in continuing the computation 
even though the number of integrand evaluations has not 
reached the upper limit (NMAX). In this case, the 
accuracy of S becomes the attainable limit for the 
computer used. The approximation sometimes does not 
converge within NMAX evaluations. In this case, S is an 
approximation obtained up to that time and so is not 
accurate. This is indicated by ICON within the code 
range 20000 - 23000. In addition, ICON is set to 25000 
when the approximation does not converge though the x 
smallest step-size defined in this subroutine is used. 
  To determine the accuracy of integration, this 
subroutine always puts out an estimate of its absolute 
error in parameter ERR, as well as the integral 
approximation S. 
 
• Example 

The integral 

  0
∞

∫ e-xsin x dx 

is computed in the program below. 

C     **EXAMPLE** 
      EXTERNAL FUN 
      EPSA=1.0E-5 
      EPSR=0.0 
      NMIN=20 
      NMAX=689 
      CALL AQEH(FUN,EPSA,EPSR,NMIN,NMAX, 
     *S,ERR,N,ICON) 
      WRITE(6,600) ICON,S,ERR,N 
      STOP 
  600 FORMAT(' ',30X,'ICON=',I5,5X, 
     *'S=',E15.7,5X,'ERR=',E15.7, 
     *5X,'N=',I5) 
      END 
      FUNCTION FUN(X) 
      IF(X.GT.176.0)GO TO 10 
      FUN=EXP(-X)*SIN(X) 
      RETURN 
   10 FUN=0.0 
      RETURN 
      END 
 
Method 
This subroutine uses an automatic integration method 
based on Takahashi-Mori's double exponential formula. 
  For detailed information on this method, refer to the 
method of subroutine AQE. Here, the variable 
transformation applied to the integration variable is 

( )x t t= =




φ exp sinh

3
2

 

thus, to a weight function φ (t). 

( )φ' t t t= ⋅






3
2

3
2

cosh exp sinh  

is used. 
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G23-31-0101  AQEI, DAQEI 

Integration of a function over the infinite interval by dou-
ble exponential formula 
CALL AQEI(FUN, EPSA, EPSR, NMIN, NMAX, S, 
ERR, N, ICON) 

 
Function 
Given a function f(x) and constants εa, εr this subroutine 
obtains an approximation that satisfies 

( ) ( ) 


 ⋅≤− ∫∫
∞
∞−

∞
∞− dx,dxS xfxf ra εεmax  (1.1) 

by using Takahashi-Mori's double exponential formula. 
 
Parameters 
FUN ... Input. The name of the function subprogram 

which evaluates the integrand f(x) (see the 
example). 

EPSA .. Input. The absolute error tolerance εa(≥0.0) for 
the integral. 

EPSR .. Input. The relative error tolerance εr(≥0.0) for 
the integral. 

NMIN .. Input. Lower limit on the number of function 
evaluations (≥0). A proper value is 20. 

NMAX .. Input. Upper limit on the number of function 
evaluations (NMAX ≥ NMIN). A proper value 
is 645 (a higher value, if specified, is 
interpreted as 645). (See "Comments on use" 
and Notes.) 

S ..... Output. An approximation to the integral. (See 
"Comments on use" and "Notes".) 

ERR ... Output. An estimate of the absolute error in the 
approximation. 

N ..... Output. The number of function evaluations 
actually performed. 

ICON .. Output. Condition code. See Table AQEI-1. 
 

Table AQEI-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The desired accuracy is not 
attained due to rounding-off 
errors. 

The 
approximation 
obtained so far 
is put out in S. 
The accuracy 
has reached 
the attainable 
limit. 

11000 
12000 
13000 

1,2,3 at the place of 1000 
means that the function 
value converges too late to 
0 when x→−∞, x→∞, 
x→±∞,respectively. 

Processing 
continues with 
a relaxed 
tolerance. 

20000 The desired accuracy is not 
attained though the number 
of integrand evaluations has 
reached the upper limit. 

Processing 
stops. S is an 
approximation 
obtained so 
far, but is not 
accurate. 

21000 
22000 
23000 

After the occurrence of any 
event of codes 11000 - 
13000, the number of 
integrand evaluations 
reached the upper limit. 

 

25000 The table for abscissas(i.e. 
work area) has been 
exhausted. 

Processing 
stops. S is an 
approximation 
by the smallest 
step-size 
allowed in this 
subroutine. 

30000 One of the followings 
occurred.  
1  EPSA<0.0 
2  EPSR<0.0 
3  NMIN<0 
4  NMAX<NMIN 

Processing 
stops. 
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Comments on use 
• Subprograms used 

SSL II ... MGSSL, AMACH 
FORTRAN basic functions  ...  AMIN1, ABS, 
AMAX1, FLOAT, SINH, COSH, EXP 
 

• Notes 
The function subprogram associated with parameter 
FUN must be defined as a subprogram whose argument 
is only an integration variable. Its function name must 
be declared as EXTERNAL in a calling program. If 
this function includes auxiliary variables, they must be 
declared in the COMMON statement for the purpose of 
communicating with a main program. 
  When this subroutine is called many times, 645 
constants (tables of abscissas and weights for the 
integration formula) are determined only on the 

  
first call. This computation is bypassed on subsequent 
calls.  
  This subroutine works successfully even for integrand 
f(x) which converges relatively slowly to 0 when x→∞, 
or f(x) to which Gauss-Hermite's rule cannot be applied. 
The accuracy is sometimes reduced when |x| has a high 
peak near the origin or is oscillatory. 
  Since function values at large values of f(x) are 
required, the function subprogram FUN needs to have a 
defense against overflows and underflows if the desired 
accuracy is high. 

 
Parameters NMIN and NMAX 
This subroutine limits the number of evaluations of the 
integrand f(x) as follows: 

NMIN≤Number of evaluations≤NMAX 

  This means that f(x) is evaluated at least NMIN times 
but not more than NMAX times regardless of the result of 
the convergence test. When a value of S that satisfies 
(1.1) is not obtained within NMAX evaluations, 
processing stops with ICON code 20000 - 23000. Or 
when extremely small NMAX is given, for example 
NMAX=2, NMAX is increased automatically to a value 
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which is determined by the behavior of f(x). 
 
Accuracy of the integral approximation S 
This subroutine obtains a value of S that satisfies the 
expression (1.1) when constants εa and εr are given. εr=0 
means to obtain the approximation with its absolute error 
within εa. Similarly, εr=0 means to obtain it with its 
relative error within εr. This purpose is sometimes 
obstructed by unexpected characteristics of the function, 
or unexpected value of εr. For example, when εa or εr is 
extremely small in comparison with arithmetic precision 
in function evaluation, the effect of rounding-off errors 
becomes greater, so it is no use to continue the 
computation even though the number of integrand 
evaluations has not reached the upper limit. In this case, 
processing stops with ICON code 10000. At this time, the 
accuracy of S has reached the attainable limit for the 
computer used. The approximation sometimes does not 
converge within NMAX evaluations. In this case, S is the 
approximation obtained so far, and is not accurate. This 
is indicated by ICON within the code range 20000 - 
23000. In addition, ICON is set to 25000 when the 
approximation does not converge though the smallest 
step-size defined in this subroutine is used. To determine 
the accuracy of integration, this subroutine always puts 
out an estimate of its absolute error in parameter ERR, as 
well as the integral approximation S. 
 
• Example 

The integral 

dx
x∫

∞
∞− +− 2210

1  

is obtained in the program below. 
 

C     **EXAMPLE** 
      EXTERNAL FUN 
      EPSA=1.0E-5 
      EPSR=0.0 
      NMIN=20 
      NMAX=645 
      CALL AQEI(FUN,EPSA,EPSR,NMIN,NMAX, 
     *S,ERR,N,ICON) 
      WRITE(6,600) ICON,S,ERR,N 
      STOP 
  600 FORMAT(' ',30X,'ICON=',I5,5X, 
     *'S=',E15.7,5X,'ERR=',E15.7, 
     *5X,'N=',I5) 
      END 
      FUNCTION FUN(X) 
      IF(ABS(X).GT.1.0E+35) GO TO 10 
      IF(ABS(X).LT.1.0E-35) GO TO 20 
      FUN=1.0/(1.0E-2+X*X) 
      RETURN 
   10 FUN=0.0 
      RETURN 
   20 FUN=100.0 
      RETURN 
      END 
 
Method 
This subroutine uses the automatic integration method 
based on Takahashi-Mori's double exponential formula. 
  As for the principles and computing procedures of this 
method, refer to the descriptions under the heading 
Method of subroutine AQE. To add a description for 
subroutine AQEI, the variable transformation applied to 
the integration variable x is 

( )x t t= =




φ sinh sinh

3
2

 

thus, to a weight function φ '(t); 

( )φ' t t t= ⋅






3
2

3
2

cosh cosh sinh  

is used. 
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G24-13-0101  AQMC8, DAQMC8 

Multiple integration of a function by a modified 
Clenshaw-Curtis rule 
CALL AQMC8(M,LSUB,FUN,EPSA,EPSR,NMIN, 
NMAX,S,ERR,N,ICON) 

 
Function 
A multiple integral of dimension m(1 ≤ m ≤ 3) is defined 
here by 

( )mm xxxfI m

m
dxdxdx ,,, 21

2

2

1

1
21 ⋅⋅⋅⋅⋅⋅= ∫∫∫

ψ
ϕ

ψ
ϕ

ψ
ϕ

 (1.1) 

The upper limits and lower limits are given by 

ϕ 1=a (constant) ,  ψ1=b (constant) 
ϕ 2=ϕ 2 (x1) ,  ψ2=ψ2 (x1) 
     :         : 
ϕ m=ϕ m(x1,x2,...,xm-1) ,  ψm=ψm(x1,x2,...,xm-1) 

Then, this subroutine obtains an approximation S which 
satisfies 

( )I,maxIS ra εε≤−  (1.2) 

for εa, εr given by a modified Clenshaw-Curtis rule 
applied to each dimension. 
 
Parameters 
M ..... Input. Dimension m of the integral 
LSUB .. Input. The name of the subroutine sub-

program which evaluates the lower limit ϕ k 
and upper limit ψk. The form of the subroutine 
is as follows: 
SUBROUTINE LSUB(K,X,A,B) 
where, 
K ... Input. Index k of integration variable. 

1 ≤ k ≤ m. 
X ... Input. One-dimensional array of size (M-

1) which corresponds to X(1)=x1, 
X(2)=x2,...,X(M-1)=xm-1 

A ... Output. The value of the lower limit 
ϕ k(x1, x2, ..., xk-1) 

B ... Output. The value of the upper limit 
ψk(x1,x2,...,xk-1) 

FUN ... Input. The name of the function subprogram 
which evaluates the integrated 
f(x1,x2,...,xm) 
The form of the subroutine is as follows: 
FUNCTION FUN(X) 
Parameter X is a one-dimensional array of size 
M which corresponds to X(1)=x1, X(2)=x2, ..., 
X(M)=xm. 

EPSA ... Input. The absolute error tolerance εa (≥0.0) 
for the integral. 

EPSR ... Input.  The relative error tolerance εr(≥ 0.0) 
for the integral. 

NMIN ... Input. Lower limit (≥0) on the number of 
evaluations of the integrand function when 
integrating in each integral variable.  A proper 
value is 7. 

NMAX ... Input.  Upper limit (NMAX ≥ NMIN) on the 
number of evaluations of the integrand 
function when integrating in each integral 
variable.  A proper value is 511.  (When a 
value larger than 511 is specified the value is 
assumed to be 511.) (See Note.) 

S .... Output.  An approximation (See Note.) 
ERR ... Output.  An estimate of the absolute error in 

the approximation. 
N ... Output.  Total number of integrand evaluations 

actually performed.  It must be a 4-byte integer 
variable 

ICON .. Output.  Condition code.  See Table AQMC8-
1. 

 
Table AQMC8-1  Condition code 

Code Meaning Processing 
0 No error  

100 
1000 
1100 

10000 
10100 
11000 
11100 

When integrating the 
function in the 
direction of a certain 
coordinate axis, the 
requested accuracy in 
that direction could not 
be obtained because 
of round-off error.  The 
third place indicates 
that during integration 
in the direction of axis 
x3, the difficulty 
occurred for various 
pairs of (x1,x2).  The 
fourth place indicates 
that during integration 
in the direction of axis 
x2, the difficulty 
occurred for various 
values of x1.  The fifth 
place indicates that 
the difficulty occurred 
in the direction of axis 
x1. 

The obtained 
approximation is 
output to S.  When 
the condition code is 
in the range of 100 
through 1100, the 
accuracy satisfies 
the request or 
reaches the limit of 
arithmetic precition.  
When the condition 
code is in the range 
of 10000 through 
11100 the accuracy 
reaches the limit.  In 
either case, the error 
is output to ERR. 

200 
2000 
2200 

20000 
20200 
22000 
22200 

When integrating the 
function in the 
direction of a certain 
coordinate axis, the 
number of evaluation 
of the integrand 
function reached the 
upper limit, but the 
requested accuracy in 
the direction of the 
axsis could not be 
obtained.  The 
indication of the 
places is the same as 
condition codes 100 
through 11100. 

The obtained 
approximation is 
output to S.  When 
the condition code is 
in the range of 200 
through 2200, the 
required accuracy 
may be satisfied or 
not satisfied.  In 
either case, the error 
is output to ERR.  If 
a large value of 
NMAX is given, the 
precision may be 
modified (the limit of 
NMAX is 511). 
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Table AQMC8-1  - continued 

Code Meaning Processing 
300 

   
23300 

The events indicated in 
condition codes 100 
through 11100 and those 
of 200 through 22200 
occurred concurrently. 

The obtained 
approximation is 
output to S. The 
required 
accuracy may be 
satisfied or may 
not be satisfied. 
In either case, 
the error is output 
to ERR. 

30000 One of the following 
detected.  
 1  EPSA<0.0 
 2  EPSR<0.0 
 3  NMIN<0 
 4  NMAX<NMIN 
 5  M ≤ 0, or M ≥ 4 

Bypassed 

 
Comments on use 
• Subprogram used 

SSL II ... MGSSL, AMACH 
FORTRAN basic functions ... ABS, AMAX1, FLOAT, 
MAX0, MIN0, SQRT 

 
• Notes 

The function subprogram associated with parameter 
FUN must be defined as a subprogram whose argument 
is only the integration variable vector X. Its function 
name must be declared as EXTERNAL in a calling 
program. If the integrand includes an auxiliary variable, 
this must be declared in the COMMON statement for 
the purpose of communicating with the calling program 
(see the example). Also, the name of the subprogram 
associated with parameter LSUB must be declared as 
EXTERNAL in a calling program. 
  When this subroutine is called many times, 511 
constants (tables of abscissas and weights for the 
integration formula) are determined only on the first 
call and this computation is bypassed on subsequent 
calls, thus the computation time is shortened. 
  This subroutine works successfully not only for 
smooth integrands f(x1,x2,...,xm) but also for oscillatory 
ones. 
  This subroutine limits the number of evaluations ni 
where i=1,2,...,m in the direction of each coordinate 
axis of the integrand function in the range of: 
 NMIN≤ni≤NMAX 
This means that f (x1,x2,...,xm) is evaluated at least 
NMIN times, but not more than NMAX times, 
regardless of the result of the convergence test. If the 
approximation does not converge within NMAX times 
in the direction of a certain coordinate axis, the 
processing stops with ICON code 200 − 22200. The 
position of numeric character 2 indicates the type of 
axis x3, x2 or x1 corresponding to 100, 1000 or 10000 

respectively. When NMAX is specified as less than 
seven, seven is assumed. 

 
Accuracy of the integral approximation S 
This subroutine tries to obtain an approximation S which 
satisfies (1.2) when εa and εr are given. When εr=0, an 
approximation is obtained with an absolute error within 
εa. Similarly, when εa=0, an approximation is obtained 
with a relative error within εr. This is sometimes 
obstructed by an unexpected characteristic of the function 
or an unexpected value of εa or εr. For example, when εa 
or εr is extremely small compared to the arithmetic 
precision in function evaluations, the effect of the 
rounding-off errors becomes greater, so there is no use in 
continuing the computation even though the number of 
integrand evaluations has not reached the upper 
limit(NMAX). In this case, ICON is set to 100 - 11100. 
The position of numeric character 1 indicates the type of 
axis x3, x2 and x1 corresponding to 100, 1000 or 10000 
respectively. Generally speaking, even when ICON is set 
to 100 - 1100, that is the effect of round-off errors 
becomes greater on axis x3 and x2, this may not effect the 
total accuracy of integral S. It may satisfy the required 
accuracy. This should be checked depending on the error 
estimation ERR. 
  As mentioned above, an approximation may not 
converge within NMAX times. In this case, ICON is set 
to 200 - 22200, the position of the number 2 indicating 
the type of axis. When ICON is set to 200 - 22200, the 
obtained integral may satisfy the required accuracy. 
When the events indicated by condition codes 100 - 
11100 and 200 - 22200 occur, ICON is set to 300 - 
23300. 
  To determine the accuracy of the integration, this 
subroutine always outputs an estimate of its absolute 
error in parameter ERR, as well as the integral 
approximation S. 
 
• Example 

Increasing the value of auxiliary variable ρ from 1.0 to 
3.0 by 1.0 at a time, this example computes the integral. 

( ) ( ) ( ) 2coscoscos
13

3
2
2

1
1 +

= ∫∫∫ −−− pzpypx
I dzdydx  

C     **EXAMPLE** 
      INTEGER*4 N 
      COMMON P 
      EXTERNAL FUN,LSUB 
      EPSA=1.0E-5 
      EPSR=1.0E-5 
      NMIN=7 
      NMAX=511 
      M=3 
      DO 10 I=1,3 
      P=FLOAT(I) 
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      CALL AQMC8(M,LSUB,FUN,EPSA,EPSR, 
     *NMIN,NMAX,S,ERR,N,ICON) 
   10 WRITE(6,600) P,ICON,S,ERR,N 
      STOP 
  600 FORMAT(' ',30X,'P=',F6.1,5X,'ICON=', 
     *I5,5X,'S=',E15.7,5X,'ERR=',E15.7,5X, 
     *'N=',I5) 
      END 
      SUBROUTINE LSUB(K,X,A,B) 
      DIMENSION X(2) 
      GO TO (10,20,30),K 
   10 A=-1.0 
      B=1.0 
      RETURN 
   20 A=-2.0 
      B=2.0 
      RETURN 
   30 A=-3.0 
      B=3.0 
      RETURN 
      END 
 
      FUNCTION FUN(X) 
      DIMENSION X(3) 
      COMMON P 
      FUN=1.0/(COS(P*X(1))*COS(P*X(2)) 
     **COS(P*X(3))+2.0) 
      RETURN 
      END 
 
Method 
This subroutine uses a product formulas in which a 
modified Clenshaw-Curtis rule is applied repeatedly to 
each of dimension. Since AQC8 works successfully for 
smooth functions and oscillatory functions, this 
subroutine has the same characteristic with AQC8. 
  For detailed information on the Clenshaw-Curtis rule, 
see AQC8. 
 
• The product formula 

Consider the following triple integral. 

( )321321 ,,3

3

2

2

1

1
xxxfI dxdxdx ∫∫∫= ψ

ϕ
ψ
ϕ

ψ
ϕ  (4.1) 

The lower limit and upper limit of the integral are given 
by 

ϕ1=a ,  ψ1=b 
ϕ 2=ϕ 2(x1) ,  ψ2=ψ2(x1) 
ϕ 3=ϕ 3(x1,x2) ,  ψ3=ψ3(x1,x2) 

The integral I in (4.1) is obtained by computing step by 
step as follows: 

( ) ( )∫= 3

3
3321212 ,,, ψ

ϕ
dxxxxxxI f  (4.2) 

( ) ( )∫= 2

2
221211 ,ψ

ϕ
dxxxIxI  (4.3) 

( )∫= 1

1
111

ψ
ϕ

dxxII  (4.4) 

Therefore, I is obtained when the function I1is integrated 
for x1. In this state the function I1(x1) can be obtained by 
fixing x1 when the function I2(x1,x2) is integrated fixing x1 
and x2 on [ϕ 3(x1,x2),ψ3((x1,x2)] for x3 of f(x1,x2,x3). This 
subroutine uses a modified Clenshaw-Curtis rule to 
integrate I along coordinate axis x1, x2, or x3. 
 
• Computing procedures 
 
Procedure 1 ... Initialization 
Determine the initial value of various variables and 
constants used for tests. 
 
Procedure 2 ... Determination of abscissas and weights 
Obtain the abscissas and weights to be used for the 
Clenshaw-Curtis rule by a recurrence formula. Then put 
them into one-dimensional work arrays. Since the upper 
limit on the number of abscissas is 511(=29−1), each size 
of the one-dimensional array required for the abscissas 
and weights is 256(=28), respectively. 
  Procedure 2 is performed only on the first call and this 
procedure is bypassed on subsequent calls.  
  Triple integration is considered in the following   
procedure 3, 4, and 5. 
 
Procedure 3 ... Initialization for integration in the 
direction of axis x1 
Set seven points on the interval [ϕ 1,ψ1] which are 
defined as x1

i (i=1,2,3,...7).  These are the first seven 
abscissas obtained in Procedure 2 and linearly 
transformed to the interval [ϕ 1,ψ1]. 
 
Procedure 4 ... Initialization for integration in the 
direction of axis x2 
One of x1

i(i=1,2,...,7) or one of the eight abscissas added 
on axis x1 is assumed to be X1. Set the seven points on 
interval [ϕ 2(X1),ψ2(X1)] of variable x2 for this X1. They 
are dencted by x2

i (i = 1, 2, ..., 7).  These are the points as 
in Procedure 3 which are obtained and linearly 
transformed to the interval [ϕ 1,ψ1]. 
 
Procedure 5 ... Initialization for integration in the 
direction of axis x3 
Assume one of x2

i(i=1,2,...,7) or one of the eight 
abscissas added on axis x2 to be X2.  Set seven points on 
the interval [ϕ 3(X1,X2),ψ3(X1,X2)] of variable x3 for 
(X1,X2). They are denoted by x3

i(i=1,2,...,7). These are the 
points as in Procedure 3 which are obtained in Procedure 
2 and the first seven of them are linearly transformed. 
 
Procedure 6 ... Integration in the direction of axis x3 
Compute the values of function f at the points (X1,X2,x3

i) 
(i=1,2,...,7) and obtain an approximation SI7(X1,X2). The 
obtained approximation is the initial approximation for 
(4.2) when fixing (x1,x2). 



AQMC8 

118 

  Furthermore, define x3
i where i=8,9,...,15 from the 

points obtained in Procedure 2. Then compute the values 
of function f at (X1,X2,x3

i) for i=8,9,...15. The 
approximation SI15(X1,X2) for (4.2) is obtained based on 
the 15 points. Repeat this computation adding eight 
points each time until the approximation converges. If the 
approximation does not converge even with NMAX 
number of abscissas or the error cannot be improved any 
more because of round-off error, set the value of ICON 
depending upon the behavior of approximation. 
 
Procedure 7 ... Integration in the direction of axis x2 
Execute procedures 5 and 6 for all x2

i (i=1,2,...,7) defined 
in Procedure 4 and obtain approximation SI7(X1) of the 
integral in the direction of axis x2. This is an 
approximation to (4.3) when fixing x1. Furthermore, 
define x2

i (i=8,9,...,15) from the points obtained in 
Procedure 2 and execute Procedure 5 and 6 to obtain 
SI15(X1). Repeat adding eight points each time until the 
approximation converges. When the approximation does 
not converge, set the value of ICON. 
 
Procedure 8 ... Integration in the direction of axis x1 
Execute Procedures 4, 5, 6 and 7 for all x1

i (i=1,2,...,7) 
defined in Procedure 3. Then obtain the approximation 
SI7 of the integral in the direction of axis x1. This is the 
initial approximation for the triple integration (4.4). 
Furthermore, define x1

i (i=8,9,...,15) from the points 
obtained in Procedure 2 and execute procedure 4, 5, 6 
and 7 to obtain SI15. Repeat adding eight points each time 
until the approximation converges. When the 
approximation does not converge, set the value of ICON 
and terminate the processing. 
 
• Error evaluation 

In the triple integration (4.1), to transfer the integral 
interval [ϕ 1,ψ1] to [-1,1]. the following variable 
transformation is performed: 

  111
11

1
11

1 '
2

'
2

βαϕψϕψ +≡++−= xxx  

The variable transformation for x2 and x3 is performed 
at one time to transfer the integral interval 
[ϕ2(x1),ψ2(x1)], [ϕ 3(x1,x2),ψ3(x1,x2)] to [-1,1] as 
follows: 

( ) ( ) ( ) ( )
2

'
2

1212
2

1212
2

xxxxxx ϕψϕψ ++−=  

( ) ( )12212 ''' xxx βα +≡  
( ) ( ) ( ) ( )
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,,

'
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,, 213213
3

213213
3

xxxxxxxxxx ϕψϕψ +
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−
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( ) ( )≡ +α β3 1 2 3 3 1 2x x x x x' , ' ' ' , '  

   

The integration (4.1) is obtained as follows: 

∫−=
1

1 111 )'(' xhdxI α  (4.5) 

( ) ( )∫−
=

1

1 212121 )','(''' xxgdxxxh α  (4.6) 

( ) ( )∫− +=
1

1 212111321321 ')'(,'('','',' xxxfdxxxxxg αβαα  

( ) ( ) ( ))213321312 ',''',',' xxxxxx βαβ ++  (4.7) 

When the Clenshaw-Curtis rule is used for the 
integration on the righthand side in (4.7), and the 
discretization error is denoted by p(x1',x2'), the 
following holds: 

( ) ( ) ( ) ( )212132121 ','','','~',' xxpxxxxgxxg α+=  (4.8) 

, where 
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 (4.9) 

This is the approximation based upon (8P+7) points. 
And Ai,k is the value depending upon (x'1,x'2) and Wi,k is 
a weight. p(x'1,x'2) is estimated by 

( ) ( ) 1,1PP,7P,521 WAA',' +⋅+=xxp  (4.10) 

Then substitute (4.8) in (4.6) and obtain the following: 

( ) ( )∫−=
1

1 221121 ')','(~'' dxxxgxxh α  (4.11) 

( )∫−+
1

1 22121312 ')','()','(' dxxxpxxx αα  

When the Clenshaw-Curtis rule is used for the 
integration of the first item on the righthand side, and 
the discretization error is denoted by q(x'1), then the 
first item can be written as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( ) 
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 (4.12) 

q(x'1) is estimated as (4.10) by 

( ) ( ) 1,17,5,1' +⋅+= QQQ WBBxq  (4.13) 

Substitute the first equation of (4.12) in (4.11) and 
substitute the obtained equation in (4.5) to obtain the 
following: 
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∫∫
∫∫
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 (4.14) 

Also, when the Clenshaw-Curtis rule is used for the 
integration of the first item on the righthand side of 
(4.14), and the discretization error is denoted by r, the 
following holds: 
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 (4.15) 

r is estimated by  

( ) 1,1RR,7R,5 WCC +⋅+=r  (4.16) 

Therefore ~I  in (4.15) is the approximation to the triple 
integration and the error I I− ~  is obtained by 

substituting the first equation in (4.15) in (4.14) as 
follows: 

∫∫

∫

−−

−

+

+≤−

1

1 1221213
1

1 121

1

1 111211

'')','()','()'(

')'()'(~

dxdxxxpxxx

dxxqxrII

ααα

ααα
(4.17) 

This indicates how the discretization errors p(x'1,x'2), 
q(x'1) and r effect the entire error. The estimations of 
p(x'1,x'2), q(x'1), and r can be obtained by (4.10), (4.13) 
and (4.16) respectively. These equations hold when the 
approximation converges rapidly. When the 
approximation does not converge rapidly, another 
estimation is considered. Define the approximation to 
the integral when using the Clenshaw-Curtis rule in 
which 2n − 1 points are used, as I2n − 1. The error for 
the approximation to the integral using the Clenshaw-
Curtis rule in which 2n-1 − 1 points are used can be 
evaluated by |I2n-1 − I2n-1-1|. When the error evaluation of 
the Clenshaw-Curtis rule is assumed to be E(2n-1 − 1), it 
will be an underestimation if the approximation does 
not converge rapidly. Here the Clenshaw-Curtis rule 
contains 2n-1 − 1 number of branch points using 
expansion coefficients and weight coefficients as in 
(4.10), (4.13) and (4.16). 
  Therefore the following equation holds: 

( )12II 1
1212 1 −>− −

−− −
nEnn  (4.18) 

When (4.18) is met, the following is used as the error 
evaluation for P in 2n − 1 ≤ 8P+7 < 2n+1 − 1 instead of 
E(8P+7). 

( ) ( )E P I I E
2n 1 2n 1 1

n 18 7 2 1+ ⋅ − −
− − −

−  (4.19) 

I2n-1, I2n-1-1 corresponds to ( ) )'(~,','~
121 xhxxg  and I when 

using 2n-1 or 2n-1 − 1 number of branch points respectively. 
 
• Convergence criterion 

In order I I a− ≤~ ε  (an absolute error tolerance), it is 

sufficient that each term of the righthand side in (4.17) 
can be bounded as: 
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The following are sufficient for the above. 
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  Here the following are assumed: 

α1>0,   α2(x'1)>0,   α3(x'1,x'2)>0 

On the other hand, computational error bounds for 
( ) ( )~ ' , ' ' , 'g x x x x1 2 3 1 2α , ( ) ( )~ ' 'h x x1 2 1α  and ~I α 1  

denoted by ρ(3)(x'1,x'2),ρ(2)(x1),ρ(1), respectively, are 
estimated as follows using the round off unit. 
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where, 
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Summarizing the above discussions, the convergence 
criterion constants for each step are defined as follows: 
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where, ~g , and ~h , and ~I  of the righthand sides are 
approximations which have been obtained so far. The 
convergence criterion is performed as follows: 
When the following equation is satisfied, g(x'1,x'2) is 
assumed to have converged. 

( ) ( )( )21
3

21 ','',' xxxxp τ≤  (4.22) 

When the following is satisfied, ( )~ 'h x 1  is assumed to 
have converged. 

( ) ( )( )1
2

1 '' xxq τ≤  (4.23) 

Then the following is satisfied, the obtained ~I  is 
output to parameter S as an approximation to the 
multiple integral. 

( )1τ≤r  (4.24) 
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G24-13-0201  AQME, DAQME 

Multiple integration of a function by double exponential 
formula 
CALL AQME(M,INT,LSUB,FUN,EPSA,EPSR,NMIN, 
NMAX,S,ERR,N,ISF,ICON) 

 
Function 
A multiple integral of dimension m(1 ≤ m ≤ 3) is defined 
here by 

( )mm xxxfdxdxdxI
m

m

,,, 2121
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2

1

1
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ψ
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 (1.1) 

Generally the lower limits and upper limits are given as 
follows: 
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This subroutine handles semi-infinite or infinite regions 
along with finite regions. In other words, the integral 
interval [ϕ k,ψk] for xk can independently be [0,∞) or 
(−∞,∞). Under these conditions, this subroutine obtains 
an approximation S that satisfies, for εa, εr given, 

( )II ra εε ,maxS ≤−  (1.2) 

by using Takahashi-Mori double exponential formula 
repeatedly. 
 
Parameters 
M ..... Input. Dimension m of the integral 
INT .... Input. Information indicating the type of 

intervals for each integration variable. One-
dimensional array of size m. The k-th element 
INT(K) indicates the type of the integration 
interval for the k-th variable xk, and should be 
specified either of 1, 2, or 3 according to the 
following rule: 
1 ... Finite interval 
2 ... Semi-infinite interval 
3 ... Infinite interval 
  For example, for the triple integration 

( )321
2

0 30 20 1 ,, xxxfdxdxdxI ∫∫∫
∞

=
ππ

 

INT(1)=2, INT(2)=1 and INT(3)=1. 
LSUB ... Input. The name of the subroutine 

Subprogram which evaluates the lower limit ϕk 
and upper limit ψk. 
   The form of the subroutine is as follows: 
SUBROUTINE LSUB(K,X,A,B) 
where, 
K ... Input.  Index k of integration variable. 

1 ≤ k ≤ m. 
X ... Input.  One-dimensional array of size 

(M−1) which corresponds to X(1)=x1, 
X(2)=x2,.....,X(M−1)=xm−1−1. 

A ... Output.  The value of the lower limit  
ϕ k(x1,x2,...,xk−1−1) 

B ... Output.  The value of the upper limit  
ψk(x1,x2,...,xk−1) 

    However if the interval [ϕ k,ψk] is either 
[0,∞) or (−∞,∞), it is not necessary to define 
values of A and B for corresponding k. 

FUN ... Input. The name of the function subprogram 
which evaluates the integrand f(x1,x2,...,xm) 
   The form of subroutine is as follows: 
FUNCTION FUN(X) 
where, parameter X is a one-dimensional array 
of size M with the correspondence 
X(1)=x1,X(2)=x2,...,X(M)=xm. 

EPSA ... Input. The absolute error tolerance εa (≥0.0) 
for the integral. 

ERSR ... Input. The relative error tolerance εr (≥0.0) for 
the integral. 

NMIN ... Input. Lower limit (≥0) on the number of 
evaluations of the integrand function when 
integrating in each integration variable. A 
proper value is 20. 

NMAX ... Input. Upper limit (NMAX≥NMIN) on the 
number of the evaluation of the integrand 
function when integrating in each integration 
variable. A proper value is 705 (if the value 
exceeding 705 is specified, 705 is assumed). 
(See Notes) 

S ..... Output. An approximation (See Notes) 
ERR ... Output. An estimate of the absolute error in the 

approximation S. 
N ..... Output. Total number of integrand evaluations 

actually performed. It must be a 4-byte integer 
variable. 

ISF ... Output. Information on the behavior of the 
integrand when the value of ICON is in 
25000's. ISF is a 3-digit positive integer in 
decimal. Representing ISF by 
 

      ISF=100j1+10j2+j3 
 

j3, j2 or j1 indicates the behavior of the 
integrand function in the direction of axis x3, x2 
or x1 respectively. Each j1 assumes 1, 2, 3 or 0 
which is explained as follows: 
1 ... The function value increases rapidly near 

the lower limit of integration or if the 
interval is infinite, the function values tend 
to zero very slowly as x → −∞. 

2 ... The function value increases rapidly near 
the upper limit of integration or if the 
interval is semi-infinite or infinite, the 
function values tend to zero very slowly 
as x→∞. 

3 ... The events indicated in the above 2 and 3 
occur concurrently. 

0 ... The above mentioned event does not 
occur. 

ICON ... Output. Condition code (See Table AQME-1). 
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Comments on use 
• Subprograms used 

SSL II ... MGSSL,AMACH,AFMAX,AFMIN, 
UAQE1,UAQE2,UAQE3,UFN10,UFN20,UFN30, 
UFN40 

FORTRAN basic function ... ABS,ALOG,SQRT, 
EXP,FLOAT,COSH,SINH,MAX0,AMAX1,AMIN1, 
MOD 

 

Table AQME-1  Condition code 

Code Meaning Processing 
0 No error  

10001 
   

10077 

When integrating in the 
direction of axis x3 or x2, the 
following events occur. 
The first place indicates the 
direction of axis x3 and the 
second place indicates the 
direction of axis x2.  Each 
assumes the value of 0 
through 7 (there is no case 
when both of them are zero). 
1. The required accuracy in 

the direction of the axis 
cannot be obtained due 
to the round-off error. 

2. The required accuracy 
cannot be obtained even 
if the number of the 
evaluations of the 
integrand function in the 
direction of the axis 
reaches the upper 
limit(NMAX). 

4. The required accuracy in 
the direction of the axis 
cannot be obtained even 
if integrating by the 
minimum step size 
defined in the subroutine. 

3. The events indicated 
above in 1 and 2 occur 
concurrently. 

5. The events indicated 
above in 1 and 4 occur 
concurrently. 

6. The events indicated 
above in 2 and 4 occur 
concurrently. 

0. No events indicated 
above occur. 

The obtained 
approximation is 
output to S. The 
required 
accuracy may be 
satisfied. 

10100 
   

10177 

When integrating in the 
direction of axis x1, the 
required accuracy cannot be 
obtained due to the round-off 
error. The lower two digits 
mean the same as those in 
codes 10001 - 10077. 
 

The obtained 
approximation is 
output to S. The 
accuracy almost 
reaches a limit 
attainable. 

 

Code Meaning Processing 
20200 

   
20277 

When integrating in the 
direction of axis x1, even if 
the number of evaluations of 
the integrand function 
reaches the upper 
limit(NMAX), the required 
accuracy cannot be obtained. 
The lower two digits mean 
the same as those in codes 
10001 - 10077. 

The obtained 
approximation is 
output to S. The 
required accuracy 
is not always 
guaranteed. If the 
value of NMAX is 
taken as a larger 
one, the accuracy 
may be improved 
(up to 
NMAX=705). 

20400 
   

20477 

When integrating in the 
direction of axis x1 even by 
the minimum step size 
defined in the subroutine, the 
required accuracy cannot be 
obtained. The lower two digits 
mean the same as those in 
codes 10001 - 10077. 

The obtained 
approximation is 
output to S. 

25000 
   

25477 

When integrating in the 
direction of a certain axis, the 
value of the function rapidly 
increases near the lower limit 
or upper limit of the 
integration interval, or when 
the integration interval is 
semi-infinite or infinite, the 
integrand function slowly 
converges to 0 as the 
integration variable tends to 
infinite. The lower three digits 
mean the same as those in 
codes 10001 - 10077. 

Processing is 
continued after 
relaxing the 
required 
accuracy. The 
obtained 
approximation is 
output to S. Even 
when the integral 
does not exist 
theoretically, this 
range of code 
may be returned. 
For detailed 
information on 
the behavior of 
the integrand, 
refer to 
parameter ISF. 

30000 One of the following 
occurred: 
1 EPSA<0.0 
2 EPSR<0.0 
3 NMIN<0 
4 NMAX<NMIN 
5 M≤0 or M≥4 
6 Some value other than 

1, 2, or 3 is input for the 
element containing INT. 

Processing 
terminates. 
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• Notes 
The function subprogram associated with parameter 
FUN must be defined as a subprogram whose argument 
is only the integration variable vector X. Its function 
name must be declared as EXTERNAL in a calling 
program. If the integrand includes auxiliary variables, 
they must be declared in the COMMON statement for 
the purpose of communicating with the calling program. 
  When this subroutine is called many times, constants 
(table of abscissas and weights for the integration 
formula) are determined only on the first call, and this 
computation  is bypassed on subsequent calls, thus the 
computation time is shortened.  
  This subroutine works successfully even when the 
integrand function changes rapidly in the neighborhood 
of the boundary of integration region. This subroutine 
is most recommended when algebraic or logorithmic 
singularities are located on the boundary. If the integral 
domain is finite and the integrand is smooth or 
oscillatory, you should use subroutine AQMC8. 
  This subroutine works successfully for the integrand 
f(x1,x2,...,xm) which converges to zero rather slowly 
when x→±∞. However, if the function is extremely 
oscillatory in the region, high accuracy may not be 
attained. 
  This subroutine does not evaluate the function on the 
boundary, therefore it is possible for the function value 
to be infinity. However, points which tend to infinity 
must not be contained in the region. 
  When the integration interval in the direction of a 
certain axis(say, i-th axis) is infinite, the function 
values for large |xi| is required, therefore if the desired 
accuracy is high, the function subprogram FUN needs 
to have a defence against overflows and underflows. 

 
Parameters NMIN and NMAX 
Parameters NMIN and NMAX must be specified 
considering that this subroutine limits the number of 
evaluations of integrand in the direction of each 
coordinate axis as 
NMIN ≤ ni ≤ NMAX 
  This means that f(x1,x2,...,xm) is evaluated at least NMIN 
times in the direction of each coordinate axis, but not 
more than NMAX times, regardless of the result of the 
convergence test. When the integral does not converge 
within NMAX evaluations, this information is output to 
the first, second, or third digit of ICON corresponding to 
the axis x3, x2 or x1 respectively. 
  When extremely small NMAX is given, for example 
NMAX=2, NMAX is increased automatically to a value 
which is determined by the behavior of f(x1,x2,...,xm). 

Accuracy of the integral approximation S 
This subroutine tries to obtain an approximation S which 
satisfies (1.2) when εa and εr are given. When εr=0, the 
approximation is obtained with its absolute error within 
εa. Similarly, when εa=0, the approximation is obtained 
with its relative error within εr. This is sometimes 
obstructed by unexpected characteristics of the function 
or an unexpected value of εa or εr. For example, when εa 
or εr is extremely small compared to the arithmetic 
precision in function evaluation, the effect of rounding-
off errors becomes greater, so there is no use in 
continuing the computation even though the number of 
integrand evaluations has not reached the upper limit 
(NMAX). Depending upon the axis, this information is 
output to the third, second or first place of ICON. 
Generally speaking, even when the effect of the 
rounding-off error on axis x3 or x2 is large, this may not 
effect the total accuracy of integral approximation S. It 
may satisfy the required accuracy. This must be checked 
depending on the estimate ERR. 
  As mentioned in "Parameters NMIN and NMAX", the 
approximation sometimes does not converge within 
NMAX evaluations. In this case, this information is 
output to ICON. Therefore, even if this event occurs on 
axis x3 or x2, the obtained integral approximation 
sometimes will satisfy the required accuracy. 
  In addition, the approximation may not converge though 
the smallest step-size defined in this subroutine is used. 
Although this information is output to ICON, even if this 
event occurs on axis x3 or x2, the required accuracy may 
be satisfied. 
  To determine the accuracy of the integration, this 
subroutine always outputs an estimate of its absolute 
error in parameter ERR, as well as the integral 
approximation S. 
 
• Example 

The integral 

∫∫∫
− −∞

+
= 2

1
1 1

0 3
321

0 20 1
ex xx

dx
xxx

dxdxI  

is computed in the following program. 
 
C     **EXAMPLE** 
      INTEGER*4 N 
      EXTERNAL FUN,LSUB 
      DIMENSION INT(3) 
      INT(1)=2 
      INT(2)=1 
      INT(3)=1 
      EPSA=1.0E-3 
      EPSR=1.0E-3 
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      NMIN=20 
      NMAX=705 
      M=3 
      CALL AQME(M,INT,LSUB,FUN,EPSA,EPSR, 
     *      NMIN,NMAX,S,ERR,N,ISF,ICON) 
      WRITE(6,600) ICON,S,ERR,N 
      IF(ICON.GE.25000) WRITE(6,610) ISF 
      STOP 
  600 FORMAT(' ',10X,'ICON=',I6,5X,'S=', 
     *E15.7,5X,'ERR=',E15.7,5X,'N=',I6) 
  610 FORMAT(' ',20X,'ISF=',I3) 
      END 
      SUBROUTINE LSUB(K,X,A,B) 
      DIMENSION X(2) 
      A=0.0 
      GO TO (10,20,30),K 
   10 RETURN 
   20 B=X(1) 
      RETURN 
   30 B=1.0-X(2) 
      RETURN 
      END 
      FUNCTION FUN(X) 
      DIMENSION X(3) 
      Y=X(2)+X(3) 
      IF(Y.LT.1.0E-30) GO TO 20 
      IF(X(1).GT.80.0) GO TO 20 
      Y=X(1)*SQRT(Y) 
      IF(Y.LT.1.0E-30) GO TO 20 
      FUN=EXP(-X(1))/Y 
      RETURN 
   20 FUN=0.0 
      RETURN 
      END 
 
Method 
This subroutine uses the direct product multiple 
integration method in which automatic integration 
method based upon Takahashi-Mori's double exponential 
formula is repeated in the direction of each axis. Since 
the methods used in the following subroutines are used 
for this, you should refer to each subroutine for details. 
The way to apply the double exponential formula to 
multiple integration and the way to compute it are 
described below. 
 
• Multiple integration using the double exponential 

formula 
In m-multiple integration defined in (1.1), when m=3, 
the variable transformation 

( )I dx dx dx f x x x= ∫ ∫ ∫1
1
1

2
2
2

3
3
3

1 2 3ϕ
ψ

ϕ
ψ

ϕ
ψ

, ,  (4.1) 

is performed for each integral variable of the 
integration 

xk=φ k(tk)  ,  k=1,2,3 (4.2) 

When the integration (4.1) is transformed and the 
interval [ϕ k,ψk] is transformed to (−∞,∞), the 
following integration will be obtained. 

( ) ( ) ( )( )
( ) ( ) ( )

I dt dt dt f t t t
t t t

=
× ′ ′ ′

−∞
∞

−∞
∞

−∞
∞

∫ ∫∫1 2 3 1 1 2 2 3 3

1 1 2 2 3 3

φ φ φ
φ φ φ

, ,  (4.3) 

(4.3) can be expressed step by step as follows: 

( ) ( )( ) ( ) ( ) ( )( ) ( )I t t f t t t t dt2 1 1 2 2 1 1 2 2 3 3 3 3φ φ φ φ φ φ, , ,= ′
−∞
∞

∫
 (4.4) 

( )( ) ( ) ( )( ) ( )I t I t t t dt1 1 1 2 1 1 2 2 2 2 2φ φ φ φ= ′
−∞
∞

∫ ,  (4.5) 

( )( ) ( )I I t t dt I0 1 1 1 1 1 1= ′ ≡
−∞
∞

∫ φ φ  (4.6) 

  Using the trapezoidal rule to obtain infinite 
integration Ik-1(k=1,2,3) in (4.4), (4.5) and (4.6), the 
following integration formula can be obtained. 

( ) ( )( ) ( )

3,2,1,

,...,1111

=

′= ∑
∞

−∞=
−

k

hnhnhnIhI
kn

kkkkkkkkk φφφ
 (4.7) 

where, hk is the step size for tk. 
   This subroutine uses the following as variable 
transformation of (4.2): 
 

1) When ϕ k=A, ψk=B for finite A and B 

( )φk k kt t=
− 



 +

+B A A B
22

3
2

tanh sinh  (4.8) 

2) When ϕ k=0, ψk → ∞ 

( )φk k kt t=




exp sinh

3
2

 (4.9) 

3) when ϕ k → −∞, ψk → ∞ 

( )φk k kt t=




sinh sinh

3
2

 (4.10) 

• Multiple integration convergence criterion 
For each Ik in (4.4), (4.5) and (4.6), the following 
inequalities 

( )S I Ia r2 2 2− ≤ max ,ε ε  (4.11) 

( )S I Ia r1 1 1− ≤ max ,ε ε  (4.12) 

( )S I Ia r0 0 0− ≤ max ,ε ε  (4.13) 

are solved for each Sk, and the last S0 is used as S in 
(1.2). 
  For detailed information on how to set the step size in 
the equally spaced step-size trapezoidal rule, 
information on convergence criterion, information on 
how to get the threshold to approximate the finite sum 
(4.7) by using infinite sum, or information on how to 
detect the influence of the rounding-off error, refer to 
Method of subroutine AQE. 
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• Computing procedure 
Procedure 1 ... Initialization 
Define the initial value of several variables and 
constants for criterions. 
 
Procedure 2 ... Computation of abscissas and weight 
coefficients 
Transforms the integral variables and compute 
abscissas (φ k(tk)) and values of weight (φ 'k(tk)) 
according to INT value. The number of abscissas and 
weights are calculated as 2×352×3. This computation is 
performed only when this subroutine is called for the 
first time. It is bypassed on subsequent calls. 
 
Procedure 3 ... Integration in the direction axis 
x1-Computing I0 

Approximation S0 for I0 in (4.6) is computed. 
Convergence is tested in (4.13). I1(φ 1(t1)) value required 
for computing I0 is computed in procedure 4. The 
obtained S0 and the error estimate are output to parameter 
S and ERR. 
 
Procedure 4 ... Integration in the direction of axis x2-
Computing I1(φ 1(t1)).   
Approximation S1 for I1 (φ1(t1)) in (4.5) is computed. The 
convergence is tested in (4.12).  The value of I1(φ 1(t1)) is 
computed in Procedure 5. 
 
Procedure 5 ... Integration in the direction of axis x3-
Approximation S2 for I2(φ 1(t1),φ 2(t2)) in (4.4) which is 
used to compute I2 (φ1(t1), φ2 (t2)) is computed. The 
convergence is tested in (4.11). 
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G23-11-0201  AQN9, DAQN9 

Integration of a function by adaptive Newton-Cotes 9 
point rule 
CALL AQN9 
(A,B,FUN,EPSA,EPSR,NMIN,NMAX,S,ERR,N, ICON) 

 
Function 
Given a function f(x) and constant a, b, εa, εr, this 
subroutine obtains an approximation S that satisfies 

( ) ( ) 




 ⋅≤− ∫∫

b

ara
b

a
dxxfdxxfS εε ,max  (1.1) 

by adaptive Newton-Cotes 9 point rule. 
 
Parameters 
A ..... Input. Lower limit a of the interval. 
B ..... Input. Upper limit b of the interval. 
FUN ... Input. The name of the function subprogram 

which evaluates the integrand f(x). (See the 
example.) 

EPSA .. Input. The absolute error tolerance εa(≥0.0) for 
the integral. 

EPSR .. Input. The relative error tolerance εr(≥0.0) for 
the integral. 

NMIN .. Input. Lower limit on the number of function 
evaluations. A proper value is 21. 
0≤NMIN<150. 

NMAX .. Input. Upper limit on the number of function 
evaluations. 
A proper value is 2000. 
(See Notes.) 

S ..... Output. An approximation to the integral (see 
"Notes".) 

ERR ... Output. An estimate of the absolute error in the 
approximation. 

N ..... Output. The number of function evaluations 
actually performed. 

ICON .. Output. Condition code. 
See Table AQN9-1. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL,AMACH 
FORTRAN basic functions ... ABS, MAX0, AMAX1, 
AMIN1, ALOG, DLOG, MOD, FLOAT 
 

• Notes 
The function subprogram associated with parameter 
FUN must be defined as a subprogram whose argument 
is only the integration variable. Its function name must 
be declared as EXTERNAL in its calling program. If 
the integrand includes auxiliary variables, they must be 
declared in the COMMON statement for the purpose of 
communicating with the calling program (see the 
example). 

Table AQN9-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 
| 

13111 

Irregular points such as 
singular points are found. 

1000 means algebraic 
singularities 2000, 
Cauchy's 
singularities, and 
3000, both of the 
two 

 100 means logarithmic 
singularities 

 10 means discontinuity 
points 

 1 means other 
irregular points 

Processing 
continues.  
For algebraic 
singularity, or 
discontinuity 
points only, S 
will usually 
satisfy the 
desired 
accuracy. 

20000 
| 

23111 

The desired accuracy is not 
attained though the number 
of integrand evaluations has 
reached the upper limit. 
Meanings of last four digits 
are the same as those 
described above. 

Processing 
stops.  
S is an 
approximation 
obtained so 
far, but not 
accurate. 

30000 One of the followings 
detected. 

1 EPSA<0.0 
2 EPSR<0.0 
3 NMIN<0, NMIN≥150 
4 NMAX≤NMIN 

Aborted 

 
  This subroutine may be used for a broad class of 
function: it can handle successfully even those integrands 
which have peaks, or irregular points such as algebraic 
singularities, logarithmic singularities, or discontinuities 
at places which can be accessed in the manner of 
bisection, such as endpoints, the midpoint or quartered 
points. Consequently this subroutine should be used with 
first priority for such class of integrands as well as ones 
whose properties are not clearly understood. However, in 
order to improve the accuracy of the solution, it is 
desirable to change the integration variable if necessary 
so that difficult points may be located only at endpoints. 
  It should also be noted, however, that subroutine AQC8 
will best handle oscillatory functions as well as smooth 
ones in the sense of efficiency, while AQE does for 
functions having singularities only at endpoints. 
  When the value of the integrand f(x) goes to infinity 
(f(x)→±∞) at a certain point within the interval [a,b], it is 
necessary to replace the value of f(x) at that point with 
some finite value (such as 0), as shown in the example 
below. 
 
Parameters NMIN and NMAX 
This subroutine limits the number of evaluation of 
integrand f(x) as follows: 
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NMIN≤Number of evaluations≤NMAX 

  This means that f(x) is evaluated at lease NMIN times 
and not more than NMAX times, regardless of the result 
of the convergence test. When a value of S that satisfies 
expression (1.1) is not obtained within NMAX 
evaluations, processing stops with ICON value 20000 - 
21111. In addition, if the value of NMAX is less than 21, 
a default value of 21 is used. 
 
Accuracy of the approximation S 
This subroutine obtains a value of S satisfying (1.1) when 
constants εa, εr are given.  Consequently, εr=0 means to 
obtain the approximation with its absolute error within εa, 
similarly, εa = 0 means to obtain it with its relative error 
within εr. This purpose is sometimes obstructed by 
unexpected characteristics of the function or unexpected 
values of εa or εr. For example, when εa or εr is extremely 
small in comparison with arithmetic precision in function 
evaluations, the number of function evaluations is 
increased and sometimes the approximation does not 
converge within NMAX times. In this case, S is only an 
interim approximation and not accurate. This is indicated 
by ICON within the code range from 20000 to 21111. As 
well as the integral approximation S, this subroutine puts 
out an estimate of the absolute error in parameter ERR 
for checking the actual accuracy of approximation. 
 
• Example 

Increasing the value of the auxiliary variable p from 0.1 
to 0.9 by 0.1 at a time, this example computes the 
integral 

 
C     **EXAMPLE** 
      COMMON P 
      EXTERNAL FUN 
      A=0.0 
      B=1.0 
      EPSA=1.0E-4 
      EPSR=1.0E-4 
      NMIN=21 
      NMAX=2000 
      DO 10 I=1,9 
      P=FLOAT(I)/10.0 
      CALL AQN9(A,B,FUN,EPSA,EPSR,NMIN, 
     *     NMAX,S,ERR,N,ICON) 
   10 WRITE(6,600) P,ICON,S,ERR,N 
      STOP 
  600 FORMAT(' ',30X,'P=',F6.3,5X, 
     *'ICON=',I5,5X,'S=',E15.7,5X, 
     *'ERR=',E15.7,5X,'N=',I5) 
      END 
      FUNCTION FUN(X) 
      COMMON P 
      FUN=0.0 
      IF(X.GT.0.0) FUN=X**(-P)+SIN(P*X) 
      RETURN 
      END 
 

Method 
This subroutine uses an adaptive automatic integration 
based on the Newton-Cotes 9 point rule. Adaptive 
automatic integration is a method which automatically 
places abscissas densely where the integrand f(x) changes 
rapidly, or sparsely where it changes gradually. This is 
currently the best method for automatic integration in 
terms of reliability and economy. 
 
• Computing procedures 
Procedure 1 ... Initialization 
Initializes the left end point x, width w, and 
approximation S to the integral as x=a, w=w0=(b − a), 
and S=0; and initializes various variables and constants to 
be used for various judgment. Calculates function values 
to f0, f2, f3, f4, f5, f6, f7, f8, and f10, at octasectional points of 
the integration interval including both end points, and f1, 
and f9 at the hexadecasectional end points. (See Figure 
AQN9-1.) The average value f  of f(x) in the integration 
interval is calculated with these 11 function values by 
means of the modified Newton-Cotes 9-point rule 
(expression 4.5). 
 
Procedure 2 ... Bisection and information string 
Bisects the current subinterval (left end point x, width w). 
Stores the function values f6, f7, f8, f9 and f10 relevant to 
the right-half portion, value of width w, and estimate e of 
the truncation error in the stack. Calculates the function 
value at the second right-most octasectional point 
(marked with x in Figure AQN9-1) in the left portion and 
let it be denoted by f8. Proceeds to procedure 3 to 
manipulate function values in the left portion. 

109876543210

x w

 
Points 0, 2 ~ 8, 10 are octasectional points 
Points 1 and 9 are hexadecasectional points 

 
Fig. AQN9-1  Point locations 

Procedure 3 ... Convergence criterion 
Calculates those function values at octasectional points 
and at hexadecasectional end points which are not 
available yet, namely, four values f1, f4, f6, and f9. Then 
estimates the truncation error e by (4.4) of the 
approximate integral over the current subinterval, and 
makes convergence test to e. If the test is satisfactory 
proceeds to procedure 7, otherwise to procedure 4. 
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Procedure 4 ... Detection of irregular points 
Checks whether there is an irregularity at the end points 
of the current subinterval. If there is an irregularity, 
control is passed to procedure 6, and when width w 
becomes less than the tolerable minimum value 
determined by input variables such as a, b, εa, and εr, 
control is passed to procedure 5. In other cases, control is 
passed back to procedure 2. 
 
Procedure 5 ... Confirmation of the existance of 

irregularity 
Checks irregularity using the relaxed criterion. If the test 
is satisfactory proceeds to procedure 6; otherwise to 
procedure 7. 
 
Procedure 6 ... Handling of irregular points 
Calculates the approximate integral over the current 
subinterval by an analytical formula depending on the 
type of detected irregularity. 
 
Procedure 7 ... Accumulation of the approximation 

retrieval 
Normally, the approximate integral over the current 
subinterval is calculated by means of the modified 9-
point rule(4.5) and accumulated to S. In the case of 
irregularity, the value obtained in procedure 6 is 
accumulated to S. The information stored in the stack is 
retrieved and the function value f2 in a new subinterval is 
calculated, then control is passed back to procedure 3. If 
the stack becomes empty, processing is stopped and the 
value of S is assumed to be the integral. 
 
• Newton-Cotes 9-point rule and error estimation 

Expressions (4.1) and (4.2) give the approximation 
S(x,w) and the truncation error e when the Newton-
Cotes 9-point rule is applied to the interval with width 
w (Figure AQN9-1), where I is the true value of the 
integral and fi is the function value at point i. 

( ) ( ) ( ){
( ) ( ) }

S x w w f f f f

f f f f f

I e

, = + + +

− + + + −

= +

28350
989 5888

928 10496 4540

0 10 2 8

3 7 4 6 5 (4.1) 

e w f= 37
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where f(10) denotes the 10th derivative of f(x) at some 
point in the interval. Conventionally, value e has been 
estimated as follows:  
The Newton-Cotes 9-point rule is applied to both the 
bisected intervals to obtain S(x,w/2) and S(x+w/2,w/2) 
then e is estimated as  

( ) ( ) ( )( ){ }e S x w S x w S x w w≈ − + +1024
1023

2 2 2, , ,

 (4.3) 

  In this case, however, eight function values must be 
additionally calculated. As is clear from expression (4.2), 
it is only necessary to estimate f(10), so only 11 function 
values are sufficient to do this; therefore, only two 
additional function values need be calculated. This 
subroutine estimates value e from the 10th order 
differentiation formula (4.4) based on the octasectional 
points and two hexadecasectional points 1 and 9 of the 
interval (Figure AQN9-1) as follows: 
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( ) }564 6435056056 fff −++  (4.4) 

  When the value e satisfies the convergence criterion 
(expression (4.7)), e is subtracted from S(x,w) to obtain a 
more accurate approximation. In this subroutine, however 
this is done directly by means of the modified Newton-
Cotes formula shown below which is derived from the 
difference between the righthand sides of (4.1) and (4.4). 
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( ) }+ + +81233152 1547917804 6 5f f f  (4.5) 

  In (4.5) the signs of weights to be multiplied by the 
function values are not constant, whereas the signs are 
constant in (4.5); thus, (4.5) is an good integration 
formula with high stability in numerical sense. 
 
• Convergence criterion 

Unlike a global automatic integration method, an 
adaptive automatic integration requires convergence 
judgment for each subinterval. The following criterion 
has been used to make the resultant approximation S 
satisfy the requirement (1.1): 

  ( ) 0,max wwSe ra ′≤ εε  (4.6) 

where S' is an approximation to ( )f x dx
a
b

∫  and w0 is the 

width (b − a) of the whole integration interval. This 
formula is based on a natural idea that the tolerable 
errors relevant to subintervals in proportion to each 
width. However, it is generally true that an 
approximation obtained by eliminating the dominant 
term in such a way done in the subroutine would be  
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much more accurate than required. In this case, it 
seems to be too conservative to use (4.6) as it is. 
Instead it is advantageous to relax the criterion for 
short intervals having little effect on the total accuracy, 
to save the number of function evaluations. This 
subroutine employs (4.7) for this purpose: 

( ) ( )wwwwSe ra 020 log,max ⋅′≤ εε  (4.7) 

  Although (4.7) is not based on a theoretical 
background, it is effective in practical use. The value S' 
in (4.7) is calculated using the average f  of f(x) 
obtained in procedure 1 as follows: 

( )′ = + −S S f b x  (4.8) 

• Detection and handling of irregular points 
Consider that the integration interval includes 
irregularities such as discontinuities, logarithmic 
singularities, and algebraic singularities. The Cauchy's 
singularities for which the integral diverges in the 
normal sense but converges as the Cauchy's principal 
integration is also considered. If the function value is 
infinite at these irregularities, the value shall be 
replaced with an appropriate finite value, for example, 
zero. 
  Since the value e in (4.4) does not satisfy the 
convergence criterion when the subinterval includes a 
irregularity, subdivision will be repeated to produce a 
sequence of intervals each including the irregularity. 
Assume that the irregularity is at one of 2m -sectional 
point in the whole integration interval, where m is a 
positive integer. In this case, from some stage of 
repeated subdivision a sequence of subintervals {Ii, 
i=1,2,...} are generated which share the irregularity at a 
fixed end point, with the length of each subinterval 
being halved. For simplicity, assume the irregularity is 
at the origin (x=0) and at the left end point of the 
interval. (See Figure AQN9-2) 

I4

I3

I2

I1

 
Fig. AQN9-2  Detection of irregularity 

  Consider a normalized error wee =~
 derived from 

normalizing the truncation error e by w.  Let ~ei  denote 
the ~e  relevant to the interval Ii. Since ~ei  is a  

homogeneous linear combination of function values at 
similar points with respect to the irregular point and 
has coefficients independent of interval width, 
moreover the sum of the coefficients is zero, the 
following can be seen: 

Discontinuity point Value ei  aproaches 

a constant value e.

Logarithmic  

singularity Value ei ei 1 ei
approaches a constant

value d.

Algebraic

singularity Value ei ei+1
approachesa constant 

value r.
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∆ ∆
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   When ~ei  exhibits one of the above properties over 
the subinterval is calculated as follows: 

1) Discontinuity point ... Let the jump at the irregular 
point be δ, then it is obtained from (4.4) as follows: 

  δ =
×

468242775
2383 3003

~e  (4.8) 

Since a discrepancy equal to δ has been added to the 
value of f0, it is only necessary to substitue f0 − δ for f0 
and perform calculation of (4.5). 

2) Logarithmic singularity ... Assume the function in the 
vicinity of the irregular point to be: 

  f(x)=αlogx+β (4.9) 

Then, the value of α is obtained from (4.4) as follows: 

α =
× ×

468242775
2383 3003 2log

d  (4.10) 

Since 

  ( ) ( )( )
( ) ( ) β

βα

+==

+−== ∫
2log2

,1log

5

0

wwff

wwdxxfI
w

 

the value of I is calculated as: 

  I=w(f5+α(log2 − 1))  (4.11) 

3) Algebraic singularity ... Assume the function in the 
vicinity of the irregular point to be: 

  ( ) γβα ++= +1pp xxxf  (4.12) 
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Order p of the irregular point is obtained as: 

  p=log2r (4.13) 

Calculate α, β and γ using f0, f5=f(w/2), f10=f(w), γ, 
~e (last ~ei ), and ~ ′e ( ~e  previous to ~ei ); then, 
calculate the following analytically with these values: 

  ( ) 









+

+
+

+
==

+

∫ γ
βα

21

1

0 p
w

p
w

wdxxfI
ppw

 (4.14) 

4) Cauchy's singularity ... Assume an algebraic 
singularity to be at the right end of an interval and 
order p of the singularity is equal to or less than -1. If 
the singularity is also an algebraic singularity at the 
left end of the interval on the right of the interval and 
its order is p, and the combination of the primary 
portion there of and that of the left interval results in 

zero, this point is assumed to be a Cauchy's 
singularity. The integral over this interval is 
calculated as the integral of the integrand minus the 
primary portion. 

 
• Information storing 

In procedure 2, the following 10 items are stored in the 
stack: five function values f6, f7, f8, f9 and f10 relevant to 
the right-half portion f3, f5, f7, f8 of the interval (to be 
used as and f10 later; width w and the value of 
log2(w0/w); and three values of ~ei , ∆ ~ei , and ∆ ~ei /∆ ~ei+1 , 
necessary to detect irregularities. In procedure 7, these 
items are retrieved in reverse order and processed again. 
The stack depth (the number of stack fields) is 60 in 
any case, that is, the required storage capacity is 600 
elements. 
(See also references [96] and [97] for details.) 
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A21-12-0101  ASSM, DASSM 

Addition of two matrices (real symmetric + real sym-
metric) 
CALL ASSM(A,B,C,N,ICON) 

 
Function 
These subroutines perform addition of n × n real 
symmetric matrices A and B. 

C=A+B 

where C is an n × n real symmetric matrix. n≥1. 
 
Parameters 
A ..... Input. Matrix A, in the compressed mode, one-

dimensional array of size n(n+1)/2. 
B ..... Input. Matrix B, in the compressed mode, one-

dimensional array of size n(n+1)/2. 
C ..... Output. Matrix C, in the compressed mode, 

one-dimensional array of size n(n+1)/2. 
(Refer to "Comment on use".) 

N ..... Input. The order n of matrices A, B and C. 
ICON ... Output. Condition codes. Refer to Table 

ASSM-1. 
 
Table ASSM-1  Condition code 

Code Meaning Processing 
0 No error  

30000 n<1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... none 

• Notes 
Saving the storage area: 
When the contents of array A or B are not required 
save the area as follows; 
− When the contents of array A is not needed. 

  CALL ASSM(A,B,A,N,ICON) 

− When the contents of array B is not needed. 

  CALL ASSM(A,B,B,N,ICON) 

In these cases, matrix C is stored in array A or B. 
 
• Example 

The following shows an example of obtaining the 
addition of matrices A and B. Here, n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(5050),C(5050) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
   10 READ(5,100) N 
      IF(N.EQ.0) STOP 
      WRITE(6,150) 
      NT=N*(N+1)/2 
      READ(5,200) (A(I),I=1,NT) 
      READ(5,200) (B(I),I=1,NT) 
      CALL ASSM(A,B,C,N,ICON) 
      IF(ICON.NE.0) GOTO 10 
      CALL PSM(IA,1,A,N) 
      CALL PSM(IB,1,B,N) 
      CALL PSM(IC,1,C,N) 
      GOTO 10 
  100 FORMAT(I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** MATRIX ADDITION **') 
      END 
 
  Subroutine PSM in the example is for printing the real 
symmetric matrix. This program is shown in the example 
for subroutine MGSM. 
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A25-31-0201  ASVD1, DASVD1 

Singular value decomposition of a real matrix (House-
holder method, QR method) 
CALL ASVD1(A,KA,M,N,ISW,SIG,U,KU,V,KV,VW, 
ICON) 

 
Function 
Singular value decomposition is performed for m × n real 
matrix A using the Householder method and the QR 
method. 

A=UΣΣΣΣ V T (1.1) 

where U and V are matrices of m × l and n × l 
respectively, l=min(m,n). 
   When l=n(m≥n), U TU=V TV=VV T=In 
   When l=m(m<n), U TU=UU T=V TV=Im 
ΣΣΣΣ is an l × l diagonal matrix expressed by 
ΣΣΣΣ=diag(σi),σi≥0 and σi is a singular value of A. Singular 
values σi are the positive square root of the eigenvalues 
of matrix ATA and the i-th row of V is the eigenvector 
corresponding to the eigenvalue σi. 
m≤1, n≤1. 
   For dimensions of matrices A, U, ΣΣΣΣ, and V see Fig. 
ASVD1-1. 

n
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( m < n )

( m ≥ n )

nn n
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n n

n
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Fig. ASVD1-1  Relationship between dimension of the matrices in 
singular value decomposition 

 
Parameters 
A ..... Input. Matrix A. Two-dimensional array 

A(KA,N). (See "Comments on use".) 
KA ..... Input. Adjustable dimension (≥M) of array A. 
M ..... Input. Number of rows in matrices A and U. 
N ..... Input. Number of columns in matrices A and U, 

and number of rows of V. 
ISW ... Input. Control information. 

ISW=10d1 + d0 with 0 ≤ d0 , d1 ≤ 1, specified 
as follows: 
d1=0 ... Matrix U is not obtained. 
d1=1 ... Matrix U is obtained. 
d0=0 ... Matrix V is not obtained. 
d0=1 ... Matrix V is obtained. 

SIG .... Output. Singular values of matrix A. One-
dimensional array of size l+1. (See "Comments 
on use".) 

U ..... Output. Matrix U. Two-dimensional array 
U(KU,N). (See "Comments on use".) 

KU ..... Input. Adjustable dimension (≥M) of array U. 
V ..... Output. Matrix V. Two-dimensional array 

V(KV,K), where K= min(M+1,N). (See 
"Comments on use".) 

KV .... Input. Adjustable dimension (≥N) of array V. 
VW ..... Work area. One-dimensional array of size n+1. 
ICON ... Output. Condition code. See Table ASVD1-1. 
 
Table ASVD1-1  Condition code 

Code Meaning Processing 
0 No error  

15000 Some singular values 
cannot be obtained. 

Discontinued 

30000 M<1,N<1,KA<M,KU<M,KV<
N or ISW≠0,1,10,11. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MGSSL 
FORTRAN basic functions ... MIN0, MOD, SIGN, 
SQRT, AMAX1, ABS 

 
• Notes 

If you use decomposition factors U, ΣΣΣΣ, and V, from 
singular value decomposition, generalized inverse A+ 
of the original matrix A or least squares minimal norm 
solution of linear equations Ax=b can be obtained. (For 
details, see Section 3.5.) 
  In this case, it is effective to use subroutine GINV or 
LAXLM. 
  Although the singular value decomposition can be 
widely utilized (see Section 3.5), it requires a great 
amount of computation, this is a weak point. 
  Therefore, U and V should be computed when they 
are required. When there is no need to compute them, 
since U and V are not referenced, the corresponding 
real arguments need not be two-dimensional array. 
ISW can control such requests. 
  This subroutine allows rewriting of either U or V on A 
to reduce storage space. When A does not have to be 
saved, a real argument corresponding to U or V is 
written as a real argument and to reduce storage space. 
  All singular values are non-negative and are stored in 
descending order. When ICON is set to 15000, only the 
non-negative values are singular values, and the rest are 
−1and are arranged randomly. 
  The relationship of the number of columns m and the 
number of rows n of matrix A is not constrained in this 
subroutine. This subroutine can 
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perform singular value decomposition for any types of 
m × n matrices A's under any of the following 
conditions: 

• m > n 
• m = n 
• m < n 

 
• Example 

Singular value decomposition is performed for m × n 
matrix A. All singular values and the corresponding 
columns of V are output. However, U is not computed 
and V is computed on A, where 1 ≤ n ≤ 100 and 1 ≤ m 
≤ 100. 
  Subroutine SVPRT in this example is used to print 
singular values and eigenvectors. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),SIG(100),VW(100) 
   10 READ(5,500) M,N 
      IF(M.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,M),J=1,N) 
      WRITE(6,600) M,N 
      DO 20 I=1,M 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL ASVD1(A,100,M,N,1,SIG,A,100, 
     *           A,100,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.15000) GO TO 10 
      CALL SVPRT(SIG,A,100,N,N) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',20X,'ORIGINAL MATRIX', 
     *5X,'M=',I3,5X,'N=',I3/) 
  610 FORMAT('0',4(5X,'A(',I3,',',I3,')=', 
     *E14.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 
      SUBROUTINE SVPRT(SIG,V,K,N,M) 
      DIMENSION SIG(N),V(K,M) 
      WRITE(6,600) 
      DO 20 INT=1,M,5 
      LST=MIN0(INT+4,M) 
      WRITE(6,610) (J,J=INT,LST) 
      WRITE(6,620) (SIG(J),J=INT,LST) 
      DO 10 I=1,N 
   10 WRITE(6,630) I,(V(I,J),J=INT,LST) 
   20 CONTINUE 
      RETURN 
  600 FORMAT('1',20X, 
     *'SINGULAR VALUE AND EIGENVECTOR') 
  610 FORMAT('0',10X,5I20) 
  620 FORMAT('0',5X,'SV',3X,5E20.7/) 
  630 FORMAT(5X,I3,3X,5E20.7) 
      END 
 
Method 
The following singular value decomposition is performed 
for m × n matrix A by using the Householder and QR 
methods. 

A=UΣΣΣΣ V T (4.1) 

where U and V are m × l and n × l matrices respectively, 
l=min(m,n) and ΣΣΣΣ is an l × l diagonal matrix expressed by 
ΣΣΣΣ=diag(σi),σi≥0, and 
 
• when l=n(m≥n),U TU=V TV=VV T=In 
• when l=m(m<n),U TU=UU T=V TV=Im 
 
The value of σi is called the singular value of A. 
  This subroutine does not constrain the size of m or n. It 
can decompose any type of matrices. Since m × n matrix 
A, where m≥n, is generally used, it is shown below. 
 
• Computation procedures 

This subroutine performs singular value decomposition 
of (4.1) by the following two stages. 
(a) Reduction to the upper bidiagonal matrix (the 

Householder method) 
Operating two finite sequences P1,...,Pn and 
Q1,...,Qn−2 of Householder transformations from the 
right and left sides of matrix A alternatively 

J0=Pn･･･P1AQ1･･･Qn−2 (4.2) 

  The matrix A is reduced to an upper bidiagonal 
matrix shown in Fig. ASVD1-2. 

(m − n) × n0

0

0 ln

l3

l2

qn

q2

q1J0 ≡

 
Fig. ASVD1-2  Structure of an upper bidiagonal matrix 

  Starting with A1=A, the following are defined: 

nkkkk ...,,1,2/1 ==+ APA  (4.3) 
2...,,1,2/11 −== ++ nkkkk QAA  (4.4) 

  Let Ak=(aij
 (k)), Pk should be such that 

mkja k
ik ...,,1,0)2/1( +==+  

  and Qk should be such that 

nkja k
kj ...,,2,0)1( +==+  

  Therefore, Pk and Qk can be chosen as follows: 
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nkbkkkk ,...,1,T =−= xxIP  (4.5) 

2...,,1,T −=−= nkckkkk yyIQ  (4.6) 

  where, 
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 (4.7) 

(b) Reduction to the diagonal matrix (the QR method) 
Choosing two orthogonal transformation sequences 
Si and Ti, for i=0,1,..., the matrix Ji+1 

iiii TJSJ T
1=+  (4.8) 

  can converge to the diagonal matrix ΣΣΣΣ. 
  Namely, matrix ΣΣΣΣ can be repressed by using (4.9) 
for a certain integer q. 

qq TTJSS ⋅⋅⋅⋅⋅⋅=Σ 00
T
0

T  (4.9) 

(a) With these operations, matrix A will be transformed 
to a diagonal matrix and transformation matrices U 
and V are expressed as follows by using (4.1), (4.2) 
and (4.9) 

qn SSPPU ⋅⋅⋅⋅⋅⋅= 01  (4.10) 

qn TTQQV ⋅⋅⋅⋅⋅⋅= − 021  (4.11) 

  These can be generated by multiplying the 
transformation matrices from the right and left sides 
alternatively. 
  In this case, matrix Ti in (4.8) must be defined 
such that symmetric tridiagonal matrix M J Ji i

T
i=  

converges to a diagonal matrix while matrix Si must 
be defined such that all Ji converges to bidiagonal 
matrices. 

 
• How to select transformation matrices in QR method 

This section describes how to select transformation 
matrices Ti and Si in (4.8). For notation, use the 
following notation: 

JJMJJMTTSSJJJJ TT
1 ,,,,, ≡≡≡≡≡≡ + iiii  

  J is transformed to J  by alternatively operating the 
two-dimensional Givens rotation from left and right 
sides. Thus, 

nnn RRJRLLLJ ⋅⋅⋅⋅⋅⋅= − 32
T
2

T
1

T  (4.12) 

where, 

1

−sinθk

cosθk

cosθk

sinθk (k)
(k−1)

0

0

0

00

0

1

1

1

(k−1)  (k)

Lk=

 
and Rk is defined in the same way using φ k instead of θk. 
Angle θk, k=2,...,n and angle φk, k=3,...,n can be defined 

so that J  can be an upper bidiagonal matrix for 
arbitrary φ2. 
  Thus, the following steps should be taken with J=(jij). 

− R2 generates non-zero element j21. 
− L2

T generates non-zero element j13 by eliminating j21. 
− R3 generates non-zero element j32 by eliminating j13. 
− Rn generates non-zero element jnn-1 by eliminating jn-2n. 
− Ln

T eliminates jnn-1. 
  Figure ASVD1-3 shows these steps with n=5. 
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Fig. ASVD1-3  Behavior of non-zero elements(n=5) 

Let 

 S=L2L3･･･Ln (4.13) 
 T=R2R3･･･Rn (4.14) 

  then from (4.12), the following equation holds. 

 J=STJT (4.15) 

  since J is an upper bidiagonal matrix, the M  

MTTJJM TT ==  (4.16) 

will be symmetric tridiagonal matrix such as M. 
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The first rotating angle φ 2, that is, the first transformation 
R2 was not defined. φ 2 can be defined such that the 
transformation in (4.16) is a QR 
transformation, with an origin shift s. 
  Therefore, the following QR transformation can hold 

sss MTTM T=  (4.17) 

where 

matrixtriangularupper:

T

s

ss

sss

ss

s
s

R
ITT

MITR
RTIM

=

=+

=−

 

 To hold QR transformation, the first column of R2 
should be proportioned to that of M − sI. As the usual 
QR method, the origin shift s may be defined as the 
eigenvalue at the smallest absolute value, in the two-
dimensional submatrix in lower right of M. Actually Ts 
and T are equal. 
 
• Convergence criterion and direct sum in QR method 

Convergence is tested as follows: 
When 

1ε≤ne  (4.18) 

is satisfied, decrease the order of matrices by 1 after 
adopting as a singular value 
|qn|. 
where, 

u∞= 01 Jε  (4.19) 

and u is a unit round-off. 
If the following holds for some k (k≠n), 

1ε≤ke  (4.20) 

the matrix is split into direct sum of two submatrices, 
which will be processed independently. 
  If the following holds for k (k≠1). 

1ε≤kq  (4.21) 

operates the two-dimensional Givens rotation 
associated with the k-th column form the right side of J 
as follows: 
jk-2,k and jk,k-1 are generated when ek=jk-1,k is eliminated. 
jk-3,k and jk,k-2 are generated when jk-2,k is eliminated. 
     .................................................................... 
  Thus 

q1

ek−1

qk−10
δk−1 qk ek+1

e2

=

qn

en0

0

0

(k−1) (k)

(k)
J

δ1 δ2

 
  However, the following will be held by orthogonality 
of transformation matrix. 

2
1

222
1

2
2

2
1 εδδδ ≤=++⋅⋅⋅++ −

− kkk qq  (4.22) 

All absolute values of δ1, δ2,..., δk-1 are less than ε1 then 
matrix J  can be split into two submatrices. 
Every singular value is obtained within 30 times 
iteration of QR method. Otherwise, the processing is 
terminated and unobtained singular values are defined 
− 1. 
  For details, see Reference [11]. 
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A52-31-0302  BDLX, DBDLX 

A system of linear equations with a positive-definite 
symmetric band matrix decomposed into the factors L, D 
and LT 
CALL BDLX(B,FA,N,NH,ICON) 

 
Function 
This subroutine solves a system of linear equations. 

LDLTx = b (1.1) 

Where L is an n × n unit lower band matrix with band 
width h, D is an n × n diagonal matrix, b is an n-
dimensional real constant vector, x is an n-dimensional 
solution vector, and n>h≥0. 
 
Parameters 
B ..... Input. Constant vector b. 

Output. Solution vector x. 
One dimensional array with size n. 

FA .... Input. Matrices L and D-1. See Fig. BDLX-1. 
FA is a one-dimensional array of size n(h+1) − 
h(h+1)/2 to contain L and D-1 in the 
compressed mode for symmetric band matrices. 
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Note: 
The diagonal and lower band portions of the matrix D-1+(L-I) are 
contained in one-dimensional array FA in the compressed mode for a 
symmetric band matrix. 

Fig. BDLX-1  How to contain matrices L and D-1 

N ......... Input. Order n of matrices L and D. 
NH ...... Input. Lower band width h. 
ICON .. Output. Condition code. Refer to Table 

BDLX-1 

Table BDLX-1  Condition code 

Code Meaning Processing 
0 No error  

10000 The coefficient matrix was 
not positive-definite. 

Continued 

30000 NH<0 or NH≥N By passed 
 
Comments on use 
• Subprograms used 

SSL II .... MGSSL 
FORTRAN basic functions ... None 

 
• Notes 

This subroutine omits the operations concerning the 
elements out of the band so that the processing speed is 
faster than subroutine LDLX provided for a positive-
definite symmetric matrix. 
  Note that in this subroutine the decomposed matrices 
L and D-1 contained in the compressed mode for 
symmetric band matrix are required. A system of linear 
equations can be solved by calling this subroutine 
following the subroutine SBDL. However, subroutine 
LSBX can be usually called to solved such equations in 
one step. 

 
• Example 

A system of linear equations is solved after first LDLT 
decomposition of n × n coefficient matrix with band 
width h using subroutine SBDL. n≤100 and h≤50. 

 
C     **EXAMPLE** 
      DIMENSION A(3825),B(100) 
   10 READ(5,500)N,NH 
      IF(N.EQ.0)STOP 
      NH1=NH+1 
      NT=N*NH1-NH*NH1/2 
      READ(5,510)(A(I),I=1,NT) 
      WRITE(6,640) 
      L=0 
      LS=1 
      DO 20 I=1,N 
      L=L+MIN0(I,NH1) 
      JS=MAX0(1,I-NH) 
      WRITE(6,600)I,JS,(A(J),J=LS,L) 
   20 LS=L+1 
      CALL SBDL(A,N,NH,1.0E-6,ICON) 
      WRITE(6,610)ICON 
      IF(ICON.GE.20000)STOP 
      READ(5,510)(B(I),I=1,N) 
      CALL BDLX(B,A,N,NH,ICON) 
      WRITE(6,610)ICON 
      DET=A(1) 
      L=1 
      DO 30 I=2,N 
      L=L+MIN0(I,NH1) 
   30 DET=DET*A(L) 
      DET=1.0/DET 
      WRITE(6,620)(B(I),I=1,N) 
      WRITE(6,630)DET 
      GO TO 10 
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  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(' ','(',I3,',',I3,')' 
     */(10X,5E17.8)) 
  610 FORMAT(/10X,'ICON=',I5) 
  620 FORMAT(/10X,'SOLUTION VECTOR' 
     *//(10X,5E17.8)) 
  630 FORMAT(/10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=', 
     *E17.8) 
  640 FORMAT(/10X,'INPUT MATRIX') 
      END 
 
Method 
Solving a system of linear equations (4.1) 

LDLTx = b (4.1) 

is equivalent to solving the following equations (4.2) and 
(4.3). 

Ly = b (4.2) 
LTx = D-1y (4.3) 

• Solving Ly=b (Forward substitution) 
Ly=b can be serially solved using equations (4.4). 

( ) ( ) ( )nnij
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 (4.4) 

• Solving LTx=D-1y (Backward substitution) 
LTx=D-1y can be serially solved using equations (4.5). 

1,...,,
n)h,+min(i

1

1 nixldyx
ik

kkiiii == ∑
+=

−  (4.5) 

Where D-1 = diag(di
-1), xT = (x1, ..., xn). 

For further details, see Reference [7]. 
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E12-32-1102  BICD1, DBICD1 

B-spline two-dimensional interpolation coefficient calcula-
tion (I-I). 
CALL BICD1(X,NX,Y,NY,FXY,K,M,C,VW,ICON) 

 
Function 
Given function values fij=f(xi,yj) at point (xi,yj), 
(x1<x2<...<xnx,y1<y2<...<yny), on the xy plane, as well as 
partial derivatives fi,j

(λ,µ), i=1,nx, j=1, ny, λ=1, 2, ..., (m − 
1)/2, µ=1,2, ..., (m − 1)/2 at the boundary points, the 
interpolation coefficients cα,β’s in the dual m-th (m:odd 
integer) degree B-spline two-dimensional interpolating 
function 

( ) ( ) ( )∑ ∑
−

+−=

−

+−=
++=

1

1

1

1
1,1,,,

y xn

m

n

m
mm yNxNcyxs

β α
βαβα  (1.1) 

are obtained with restriction m≥3, nx≥2 and ny≥2. 
  For later use, we introduce below a notation jif ,

ˆ  with 

l=(m − 1)/2 for convenience. And a matrix consisting of 

jif ,
ˆ  as elements is shown in Fig. BICD1-1. 

1,...,3,2:
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+==
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Parameters 
X ..... Input Discrete points xj's in the x-direction. 
NX .... Input. Number of the xi's. 
Y ..... Input. Discrete points yj's in the y-direction. 

One-dimensional array of size ny. 
NY .... Input. Number of the yi's. 
FXY ... Input. Function values and partial derivatives, 

jif ,
ˆ 's. 

Two-dimensional array as FXY (K,NY+M−1). 
FXY (I,J) is assigned jif ,

ˆ . See Fig. BICD1−1. 
K ..... Input. Adjustable dimension for arrays FXY 

and C(K≥NX+M−1). 
M ..... Input. Degree of the B-spline. 

See Note. 
C ..... Output. Interpolation coefficients, cαβ's. 

Two-dimensional array as C(K,NY+M−1) 
C-m+i,-m+j is put out in C(I,J). 

VW .... Work area. One-dimensional array of size. 
{max(nx,ny)+1}(m+2) −3+(m+1) 2/2. 

ICON .. Output. Condition code. See Table BICD1-1. 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UMIO1, UCIO1, UBAS1 and 
ULUI1 
FORTRAN basic functions ... MOD and FLOAT 

Function value and partial
derivatives at (xi−l, yny)

Function value and partial
derivatives at (xnx, yny)

Function value and partial
derivatives at (x1, yny)

Function value and partial
derivatives at (xnx, yj−l)

Function value at
 (xj−l, y j−l) ,where
2≤i−l≤nx−1,
2≤j−l≤ny−1

Function value and partial
derivatives at (x1, yj−l)

Function value and partial
derivatives at (xi−l, y1)

Function value and partial
derivatives at (xnx, y1)

Function value and partial
derivatives at (x1, y1)

i i=nx+l−1
i=nx+l

j=1 j=l+1
i=1

i=l+1
i=l+2

i=nx+2l

j=l+2 j= ny+l-1 j= ny+l j= ny+2l

j

 
Fig. BICD1-1  Function value and derivatives jif ,

ˆ ’s (l = (m-1)/2) 
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Table BICD1-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either of the followings 
occurred. 
(a) M is not an odd 

number. 
(b) xi which satisfies 

xi≥xi+1 exists. 
(c) yj which satisfies  

yj≥ yj+1 exists. 
(d) M<3 
(e) NX<2 or NY<2 

Bypassed 

 
• Notes 

By calling the subroutine BIFD1 after subroutine 
BICD1, the interpolated values based on the B-spline 
interpolating function (1.1), as well as derivatives 
and/or integrals can be obtained. The parameter values 
of X, NY, Y, NY, K, M and C are passed from BICD1 
to input to BIFD1. 
The degree m is preferably 3 or 5. In double precision, 
if the original function is smooth and fij's are given with 
high accuracy, the degree may be increased above 3 or 
5, but not beyond 15. 

 
• Example 

See the example given for subroutine BIFD1. 
 
Method 

The B-spline two-dimensional interpolating function 
S(x,y) to be obtained here is a direct extension of the B-
spline interpolating function (I) obtained by subroutine 
BIC1. In other words, S(x,y) is defined in the region 

( ){ }R x y x x x y y ynx x ny= ≤ < ≤ ≤, ,1  and satisfies the 

following conditions: 
(a) The S(x,y) is a dual m-th degree, at most, 

polynomial in each of the partial region 

( ){ }R x y x x x y y yi j i i j j, , ,= ≤ < ≤ <+ +1 1  

The dual m-th degree means that the function is of degree 
m with respect to both x and y. 

(b) ( ) ][, 1,1 R−−∈ mmCyxS   i.e., for λ=0, 1, ..., C m-1, m-1, 
and µ = 0, 1, ... , m−1, 

( )yxS
yx

,µλ

µλ

∂∂
∂ +

 

 exists and also is continuous. 
(c) ( ) yxjiii njnifyxS ,...,2,1,,...,2,1,, , ===  

( )
( ) ( ) 21,...,2,1,21,...,2,1

,1,,1,, ),(
,

),(

−=−=

===

mm

njnifyxS yxjiji

µλ

µλµλ
 

  The S(x,y) which satisfies (a) and (b) above can be 
represented as 
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  with cαβ's being arbitrary constants. The Nαm+1(x), 
Nβm+1(y) are both m-th degree B-splines and represented 
respectively by 

( ) ( ) [ ]xsssgssxN mmmm ;,...,, 11111, +++++++ −= αααααα

 (4.2) 

( ) ( ) [ ]ytttgttyN mmmm ;,...,, 11111, +++++++ −= ββββββ  
 (4.3) 

  where sequences of {si} and {tj} are the same as for the 
one-dimensional B-spline interpolating function (I). 
Let's define iN ,

ˆ
α  and iN ,

ˆ
β  as follows: 
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  Then the coefficients in (4.1) can be uniquely 
determined by the interpolation condition (c). By using 
(4.1), the condition (c) can be stated as 

∑ ∑
−

+−=

−

+−=
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1
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ˆˆˆ
y xn
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jij
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m
i fNNc

β
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αβα  (4.4) 

  and this can be further rewritten to a simpler form by 
defining several matrices as follows: 
• F is an (nx+m − 1) by (ny+m − 1) matrix with the 

elements jif ,
ˆ 's 

• C is an (nx+m − 1) by (ny+m − 1) matrix with the 
elements cα,β's 

• ΦΦΦΦ is an (nx+m − 1) by (nx+m − 1) matrix whose i-th row 
consists of iN ,

ˆ
α 's, where α = −m+1, − m+2,...,  

nx − 1 
• ΨΨΨΨ  is an (ny+m−1) by (ny+m − 1) matrix whose j-th row 

consists of jN ,
ˆ

β 's, where β = −m+1, −m+2,..., ny−1 
 
  By using these matrices, Eq.(4.4) can be rewritten to 

FC =TΨΨΨΨΦΦΦΦ  (4.5) 

  Objective matrix C can be solved as follows. First, 
consider 

TFX =ΨΨΨΨ  (4.6) 
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as (nx+m − 1) systems of linear equations of order (ny+m 
− 1) and then we can solve them for matrix X. Next, 
considering 

TXC =ΦΦΦΦ  (4.7) 

as (ny+m − 1) systems of linear equations of order (nx+m 
− 1) then they can be solved for matrix C. Matrices ΦΦΦΦ 
and ΨΨΨΨ are of exactly the same form as the coefficient 
matrices in the linear equations when obtaining the one-
dimensional B-spline interpolating function (I). See the 

explanation for subroutine BIC1. 
  This subroutine solves the linear equations, (4.6) and 
(4.7), by using Crout method (LU decomposition 
method) in the slave subroutines UMIO1, UCIO1 and 
ULUI1. 
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E12-32-3302  BICD3, DBICD3 

B-spline two-dimensional interpolation coefficient calcula-
tion (III-III) 
CALL BICD3(X,NX,Y,NY,FXY,K,M,C,XT,VW,ICON) 

 
Function 
Given function values fij=f(xi,yj) at points (xi,yj) 
(x1<x2<...<xnx, y1<y2<...<yny), on the xy-plain, the 
interpolation coefficients cα,β's of dual m-th degree (m 
odd integer) B-spline two-dimensional interpolationg 
function. 

( ) ( ) ( )∑ ∑
−

+−=

−

+−=
++=

mn

m

mn

m
mm

y x

yNxNcyxS
1 1

1,1,,
β α

βαβα ,  (1.1) 

  are obtained. The knots of S(x,y) are as shown in (1,2) 
as for x-direction, and as shown in (1.3) as for y-direction. 
(See Fig. BICD3-1.) 
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jy
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  Here m≥3, nx≥m+2 and ny≥m+2 
 
Parameters 
X ..... Input. Discrete points xi's in the x-direction. 

One-dimensional array of size nx. 
NX .... Input. Number of the xi's, nx. 
Y ..... Input. Discrete points yj's, in the y-direction. 

One-dimensional array of size ny 
NY .... Input. Number of the yj's, ny 
FXY ... Input. Function values fij. 

Two-dimensional array as FXY(K,NY). 
FXY(I,J) is to be assigned fij 

K ..... Input. Adjustable dimension for arrays FXY 
and C(K≥NX). 

M ..... Input. Degree of the B-spline, m. 
See Note. 

C ..... Output. Interpolation coefficients cα,β. 
Two-dimensional array as C(K,NY). 
c-m+i,-m+i is put out to C(I,J). 

XT ... Output. Knots {ξi} and {ηj}. 
One dimensional array of size (nx −m+1) +  (ny 
− m+1). 
{ξi} is put out first followed by {ηj}. 

VW .... Work area. One dimensional array of the 
following size: 
{max(nx,ny)-2}m + 2(m+1)+2max(nx,ny). 

ICON .. Output. Condition code. See Table BICD3-1. 

 x

 s2  s3  s4 s5
s6
s7
s8

s1
s0

s−1
s−2

 ξ1  ξ2  ξ3  ξ4  ξ5

 x6  x7 x5 x4 x3 x2 x1

 η1

 η2

 η3

 η4

 y1

 y2

 y3

 y4

 y5

 y6

 y

 y7 η5

  t−2   t−1   t0    t1

  t2

  t3

  t4

  t8    t7    t6    t5

 
Fig. BICD3-1  Knots {ξi} and {ηj} (for nx=ny=7 and m=3) 
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Table BICD3-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 One of the followings 
occurred:  
(a) M is not an odd integer. 
(b) NX<M+2 or NY<M+2 
(c) xi which satisfies  

xi≥xi+1 exists. 
(d) yj  which satisfies  

yj≥yj+1 exists. 
(e) M<3 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UMIO3, UCIO3, UBAS1 and 
ULUI3 
FORTRAN basic functions ... MOD and FLOAT 

 
• Notes 

By calling the subroutine BIFD3 after subroutine 
BICD3, the interpolated values based on the B-spline 
interpolating function (1.1), as well as derivatives 
and/or integrals can be obtained. The parameter values 
of X, NX, Y, NY, K, M, C and XT are passed from 
BICD3 to input to BIFD3. 
  The degree m is preferably 3 or 5. In double precision, 
if the original function is smooth and fij's are given with 
high accuracy, the degree may be increased above 3 or 
5, but not beyond 15. 

 
• Example 

See the example given for subroutine BIFD3. 
 
Method 
The B-spline two-dimensional interpolating function 
S(x,y) to be obtained here is a direct extension of the B-
spline interpolating function (III) obtained by subroutine 
BIC3. In other words, taking knots {ξi} and {ηj} in the x- 
and y-directions as shown in (1.2) and (1.3), S(x,y) is 
defined in the region R={(x,y) | x1 ≤ x ≤ xnx,  y1 ≤ y ≤ 
yny}and satisfies the following conditions: 
(a) The S(x,y) is a dual m-th degree, at most, polynomial in 

each of the partial region Ri,j.= ( ){ ,, 1+≤≤ ii xyx ξξ  
}1+≤≤ jj y ηη . The dual m-th degree means that the 

function is of degree m with respect to both x and y. 
(b) ( )S x y Cm m, ∈ − −1, 1  [R] i.e., for λ = 0, 1, ..., m − 1, and 

( )yxS
yx

m ,,1,...,1,0 µλ

µλ

∂∂
∂µ

+
−=  exists and also is 

continuous. 
(c) S(xi,yj)=fij,  i=1,2,...,nx, j=1,2,...,ny. 
 
  The S(x,y) which satisfies (a) and (b) above, can be 
represented as 
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  with the cα,β's being arbitrary constants. The Nα,m+1(x) 
and Nβ,m+1(y) are both the m-th degree B-splines and 
represented respectively by 

( ) ( ) [ ]xsssgssxN mmmm ;,...,, 11111, +++++++ −= αααααα

 (4.2) 
( ) ( ) [ ]ytttgttyN mmmm ;,...,, 11111, +++++++ −= ββββββ

 (4.3) 

  where knots {si} and {tj} are the same as for the one-
dimensional B-spline interpolating function (III). An 
example is shown in Fig. BICD3-1. 
  The coefficients in (4.1) can be uniquely determined by 
the interpolation condition (c). By using (4.1), condition 
(c) canbe stated as 

( ) ( )
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1
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and can be further rewritten to a simpler form by defining 
several matrices as follows: 
• F is an nx × ny matrix with the elements fij 
• C is an nx × ny matrix with the elements cα,β 
• ΦΦΦΦ  is an nx × nx matrix whose i-th row consists of 

Nα,m+1(xi), where α= − m+1,..., nx − m 
• ΨΨΨΨ is an ny × ny matrix whose j-th row consists of 

Nβ,m+1(yj), where β= − m+1,..., ny − m 
 
  By using these matrices above, Eq.(4.4) can be rewritten 
as 

FC =TΨΨΨΨΦΦΦΦ  (4.5) 

  Objective matrix C can be solved as follows. First, 
consider 

TFX =ΨΨΨΨ  (4.6) 

  as nx systems of linear equations of order ny and then we 
can solve them for the matrix X. Next, considering 

TXC =ΦΦΦΦ  (4.7) 

  as ny systems of linear equations of order nx then they 
can be solved for matrix C. The matrices ΦΦΦΦ  and ΨΨΨΨ are 
exactly of the same form as the coefficient matrix in the 
linear equations when obtaining the one-dimensional B-
spline interpolating function (III). (See the explanation 
for subroutine BIC3.) 
This subroutine solves the linear equations, (4.6) and 
(4.7), by using Crout method (LU decomposition 
method) in the slave subroutines UMIO3, UCIO3 and 
ULUI3. 
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E12-31-0102  BIC1, DBIC1 

B-spline interpolation coefficient calculation (I) 
CALL BIC1(X,Y,DY,N,M,C,VW,ICON) 

 
Function 
Given function values yi = f(xi), i=1, 2, ..., n, at the 
discrete points x1, x2, ..., xn(x1 < x2 < ... <xn), as well as 
derivatives yl

(1) = f(x1) and yn
(1) = f(xn), l=1, 2, ..., (m − 

1)/2, at both end points x1 and xn, the interpolation 
coefficients, cj's, j= −m+1, −m+2, ..., n − 1, in the 
interpolating function represented as a linear combination 
of B-splines of degree m(odd integer), 
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 (1.2) 

Here m≥3 and n≥2. 
 
Parameters 
X ..... Input. Discreate points, xi's. 

One-dimensional array of size n. 
Y .... Input. Function values, yi's. 

One-dimensional array of size n. 
DY .... Input. Derivatives at end points x1 and xn. 

Two-dimensional array of DY(2,(m − 1)/2). 
DY(1,l) and DY(2, l) are assigned y1

(l) and yn
(l), 

respectively for l=1,2,...,(m − 1)/2. 
N ..... Input. Number of the discrete points, n. 
M ..... Input. Degree of the B-spline, m 

See Note. 
C ..... Output. Interpolating coefficients cj's. 

One-dimensional array of size n+m − 1. 
VW .... Work area. 

One-dimensional array of size (n − 
2)m+(m+1)2/2+(m+1). 

ICON .. Output. Condition code. See Table BIC1-1. 

Table BIC1-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either of the followings 
occurred:  
1 M is not an odd integer. 
2 xi which satisfies  

xi≥xi+1 exists. 
3 M<3. 
4 N<2. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UMIO1, UCIO1, UBAS1 and 
ULUI1 
FORTRAN basic functions ... MOD and FLOAT 

 
• Notes 

By calling the subroutine BIF1 after subroutine BIC1, 
the interpolated values based on the B-spline 
interpolating function (1.1), as well as derivatives 
and/or integrals can be obtained. The parameter values 
of X, N, M and C are passed from BIC1 to input to 
BIF1. 
  The degree m is preferably 3 or 5. In double precision, 
if the original function is smooth and yi's are given with 
high accuracy, the degree may be increased above 3 or 
5, but not beyond 15. 

 
• Example 

See the example given for subroutine BIF1. 
 
Method 
The m-th degree B-spline interpolating function S(x) to 
be obtained here is a function defined in the interval 
[x1,xn] and satisfying the following conditions: 
(a) S(x) is polynomial at most of degree m in the 

subinterval [xi, xi+1) , i=1, 2, ..., n − 1. 
(b) S(x) ∈  Cm-1[x1,xn],i.e., S(x) and its derivatives of up to 

order (m − 1) are conditnous in the interval [x1,xn]. 
(c) S(xi)=yn, i=2,3,...,n − 1 
(d) S(l)(xl) = yl

(l), 
S(l)(xn) = yn

(l), l=0, 1, ..., (m − 1)/2 
 
  A m-th degree spline function defined with knots {tj}, j 
= −m+1,−m+2,...,n+m, taken as 
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can be represented as 
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where, Nj,m+1(x) is the m-th degree B-spline and given by 

( ) ( ) ];,...,,[ 11111, xtttgttxN mjjjmjmjmj +++++++ −=  

(For details, see Chapter 7, 7.1) 
  Considering locality of Nj,m+1(x), 
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  and applying the interpolation conditions (c) and (d) 
described above to Eq. (4.2), a system of (n+m − 1) 
linear equations 
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are given with cj's; j= − m+1, − m+2,...,n − 1, unknown. 
  By solving these equations all of the interpolation 
coefficients cj's can be obtained. 
  The form of the coefficient matrix in the linear 
equations (4.4) is shown in Fig. BIC1-1 as an example 
for m=5 and n=8. 
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Fig. BIC1-1  Coefficient matrix (in the case of m=5 and n=8) 

  The subroutine solves the linear equations by using the 
Crout method (LU decomposition). 
Subroutines UMIO1, ULUI1 and UCIO1 are called. 
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B-spline interpolation coefficient calculation II 
CALL BIC2(X,Y,DY,N,M,C,VW,ICON) 

 
Function 
Given function value yi=f(xi), i=1,2,...,n at the discrete 
points x1, x1, ..., xn(x1<x2<...<xn), as well as derivatives 
y1

(l) = f(x1) and yn
(l) = f(xn), l=(m+1)/2, (m+1)/2+1, ..., m − 

1 at both end points x1 and xn, the interpolating 
coefficients cj's, j=− m+1, − m+2, ..., n − 1 in the 
interpolating function represented as a linear combination 
of B-splines of degree m (odd integer), 
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are obtained. 
  The S(x) to be obtained satisfies 
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  Here, m≥3, and n≥(m+1)/2. 
 
Parameters 
X ..... Input. Desecrate Points, xi's. 

One-dimensional array of size n. 
Y ..... Input. Function values yi's. 

One dimensional array of size n. 
DY .... Input. Derivatives at end points x1 and xn⋅ 

Two-dimensional array of DY(2,(m − 1)/2). 
DY(1,l-(m − 1)/2) and DY(2,l(m − 1)/2) are 
assigned y1

(l) and yn
(l), respectively, for 

l=(m+1)/2,(m+1)/2+1,...,m − 1 
N ..... Input. Number of the discrete points, n. 
M ..... Input. Degree of the B-spline, m. 

See Note. 
C ..... Input. Interpolation coefficients cj's. 

One-dimensional array of size n+m − 1. 
VW .... Work area. 

One-dimensional array of size 
m(n+m − 3)+2(m+1). 

ICON .. Output. Condition code. 
See Table BIC2-1. 

Table BIC2-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either of the followings 
happened.  
1 M is not an odd integer. 
2 xi which satisfies xi≤xi+1 

exists. 
3 M<3 
4 N<(M+1)/2 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UMIO2, UCIO2, UBAS1 and 
ULUI1 
FORTRAN basic functions ... MOD and FLOAT 

 
• Notes 

By calling the subroutine BIF2 after subroutine BIF2, 
the interpolated values based on the B-spline 
interpolating function (1.1), as well as derivatives 
and/or integrals can be obtained. The parameter values 
of X, N, M and C are passed from BIC2 to input to 
BIF2. 
  The degree m is preferably 3 or 5. In double precision, 
if the original function is smooth and yi's are given with 
high accuracy, the degree may be increased above 3 or 
5, but not beyond 15. 

 
• Example 

See the example given for subroutine BIF2. 
 
Method 
The m-th degree B-spline interpolating function S(x) to 
be obtained here is a function defined in the interval 
[x1,xn] and satisfying the following conditions: 
(a) S(x) is a polynomial at most of degree m in the 

subinterval [xi,xi+1], i=1, 2, ..., n − 1. 
(b) S(x)∈ Cm-1 [x1,xn] i.e., S(x) and its derivatives of up to 

order (m − 1) are continuos in the interval [x1,xn]. 
(c) S(xi)=yi, i=1,2,..,n 
(d) S(l)(x1)=y1

(l), 
S(l)(xn)=yn

(l) , l = (m+1)/2, (m+1)/2+1, ..., m − 1 
 
  A m-th degree spline function defined with knots {tj}, j 
= −m+1, −m+2, ..., n+m, taken as 
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can be represented as 
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where, Nj,m+1(x) is the m-th degree B-spline and given by 

( ) ( ) ];,...,,[ 11111, xtttgttxN mjjjmjmjmj +++++++ −=  (4.2) 

(For details, see Section 7.1) 
  Considering locality of Nj,m+1(x), 
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  and applying the interpolation conditions (c) and (d) 
described above to Eq. (4.2), a system of (n+m − 1) 
linear equations 
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are given with cj's; j= −m+1, −m+2,...,n − 1, unknown. 
  By solving these equations all of the interpolation 
coefficients cj's can be obtained. 
  The form of the coefficient matrix in the linear 
equations (4.4) is shown in Fig. BIC2-1 as an example 
for m=5 and n=8. 
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Fig. BIC2-1  Coefficient matrix (n=7 and m=3) 

  The subroutine solves the linear equations by using the 
Crout method (LU decomposition). 
Subroutines UMIO2, ULUI1 and UCIO2 are called. 
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B-spline interpolation coefficient calculation (III) 
CALL BIC3(X,Y,N,M,C,XT,VW,ICON) 

 
Function 
Given function values  yi=f(xi), i=1,2,...,n for discrete 
points x1, x2, ..., xn(x1<x2<...<xn) this subroutine obtains 
the interpolating spline S(x)of degree m represented as a 
linear combination of B-splines: 
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The knots of the spline are taken as 
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  where m is odd integer greater than 2 and n≥m+2 must 
be satisfied. 
 
Parameters 
X ..... Input. Desecrate Points, xi. 

One-dimensional array of size n. 
Y ..... Input. Function values, yi. 

One-dimensional array of size n. 
N ..... Input. Number n of the discrete points. 
M ..... Input. Degree m of the B-spline. 

(See comment) 
C ..... Output. Interpolation coefficients cj. 

One-dimensional array of size n. 
XT .... Output. The knots ξi. 

One-dimensional array of size n − m+1. 
VW .... Work area. One-dimensional array of size 

mn+2. 
ICON .. Output. Condition code. See Table BIC3-1. 
 
Table BIC3-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 (1) M is not an odd 
number,  
or 

(2) N<M+2, or 
(3) xi≤xi+1, or 
(4) M<3. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ........ MGSSL, UMIO3, UCIO3, UBAS1 and 
ULUI3 
FORTRAN basic function ........ MOD 

• Notes 
The interpolated values or derivative or integrals based 
on the interpolating spline (1.1) may be determined by 
the subroutine BIF3 following this subroutine. In that 
case the values of parameters X, N, M, C, and XT are 
input to the subroutine BIF3. 
  The preferred degree m is 3 or 5. 
  In double precision, however, if the original function 
does not change obruptly and yi is given with high 
accuracy, the degree may be increased above 3 or 5, 
but not beyond 15. 

 
• Example 

See the example for the subroutine BIF3. 
 
Method 
Given function values yi=f(xi). i=1,2,...,n for discrete 
points x1,.x2,...,xn(x1<x2<...<xn) the interpolating spline of 
degree m to be obtained here is a function which is 
defined on the interval [x1,xn] and satisfies the following 
requirements. 
(a) S(x) is polynomial of degree m at most on each 

subinterval [ξi, ξi+1], i=1, 2, ..., n − m  ,  ξ1=x1, 
ξi=xi+(m-1)/2  ,  i=2, 3, ..., n − m  ,  ξn-m+1=xn 

(b) S(x)∈ Cm-1[xl,xn].  That is, S(x) and its derivatives of 
up to order m-1 are continuous on the interval [x1,xn]. 

(c) S(xi)=yi, i=1,2,..,n 
 
  The S(x) satisfying (a), (b) and (c) can be given by 
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  where cj's, j= − m+1, − m+2,...,n − m, are constants, 
Nj,m+1(x) is a normalized m-th degree B-spline and 
defined by 

( ) ( ) ];,...,,[ 11111, xtttgttxN mjjjmjmjmj +++++++ −=  (4.2) 

(For details, see Section 7.1) 
  In this subroutine, the knots {tr} of the B-spline is given 
by 
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A typical behavior of Nj,m+1(x) with the knots {tr} is 
shown in Fig. BIC3-1. 
  The interpolation coefficients cj's can be determined by 
solving the linear equations: 
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Fig.BIC3-1  Example of B-spline Nj,m+1(x) : µ = 3, with seven discrete points at equal intervals 
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  which satisfies the interpolation conditions. 
  The coefficient matrix of the equations have many null 
elements because of locality of the B-spline and therefore, 
it has a similar form to a banded matrix. An example of 
the coefficient matrix is given in Fig. BIC3-2 for the case, 
n=7 and m=3. 
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Fig. BIC3-2  Coefficient matrix (n =7 and m =3) 

  The subroutine solves these linear equations by using 
Crout method (LU decomposition method). 
Subroutine ULUI3 is called. 
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B-spline interpolation coefficient calculation (IV) 
CALL BIC4(X,Y,N,M,C,VW,ICON) 

 
Function 
Given periodic function values yi=f(xi), i=1, 2, ..., n, 
(where y1=yn) at the discrete points x1, x2, ..., xn 
(x1<x2<...<xn) with the period (xn−x1), the interpolation 
coefficients cj's, j=−m+1, −m+2, ..., n − 1 in the 
interpolating function represented as a linear combination 
of B-splines of degree m (odd integer), 
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are obtained. 
  The obtained S(x) is a periodic function with the period 
(xn−x1) similarly to f(x) and satisfies the boundary 
conditions: 

( ) ( ) 1,...,1,0,)(
1

)( −== mlxSxS n
ll  (1.2) 

Here m ≥ 3 and n ≥ m+2.  

 
Parameters 
X ..... Input. Discrete points, xi's. 

One-dimensional array of size n. 
Y ..... Input. Function values yi's. 

One dimensional array of size n. 
Must be y1=yn. If y1≠yn, yn is taken. 

N ..... Input. Number of the discrete points, n. 
M ..... Input. Degree of the B-spline, m. 

See Notes. 
C ..... Input. Interpolation coefficients cj. 

One-dimensional array of size n+m−1. 
VW .... Work area. 

One-dimensional array of size  
(n−1)(2m−1)+m+1 

ICON .. Output. Condition code. See Table BIC4-1. 
 
Table BIC4-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either of the followings 
occurred.  
(a) M is not an odd integer. 
(b) N<M+2 
(c) xi satisfying  

xi≤xi+1 exists. 
(d) M<3 

Aborted 

Comments on use 
• Subprograms used 

SSL II ... MGSSL, UMIO4, UCIO4, UBAS4, ULUI4 
and UPEP4 
FORTRAN basic functions ... MOD and FLOAT 
 

• Notes 
By calling the subroutine BIF4 after subroutine BIC4, 
the interpolated values based on the B-spline 
interpolating function (1.1), as well as derivatives 
and/or integrals can be obtained. The parameter values 
of X, N, M and C are passed from BIC4 to input to 
BIF4. 
The degree m is preferably 3 or 5. In double precision, 
if the original function is smooth and yi's are given with 
high accuracy, the degree may be increased above 3 or 
5, but not beyond 15. 
 

• Example 
See the example given for subroutine BIF4. 

 
Method 
The m-th degree B-spline interpolating function S(x) to 
be obtained here is a function defined in the interval 
[x1,xn] and satisfying the following conditions: 
  Condition (c) is necessary for S(x) to be periodic and is 
peculiar to this subroutine. 
(a) S(x) is polynomial at most of order m in the interval 

[xi,xi+1), i=1, 2, ... n − 1. 
(b) S(x)∈ Cm-1 [x1,xn] , i.e., the S(x) and its derivatives of 

up to degree m−1 are continuous in the interval [x1,xn]. 
(c) S(l)(x1) = S(l)(xn), l=0,1,...,m − 1 
(d) S(xi)=yi, i=2,3,..,n (y1=yn is assumed) 
 
  First, the spline function satisfying condition (c) will be 
explained. We take the knots {tj} of the B-spline as 
follows (see Fig. BIC4-1): 
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  The m-th degree spline function based on this knots can 
be expressed with cj's being arbitrary constants: 
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where Nj,m+1(x) is the m-th degree B-spline and given by 

( ) ( ) ];,...,,[ 11111, xtttgttxN mjjjmjmjmj +++++++ −=  

(For further details, see Section 7.1) 
Adding the condition: 
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0,...,1,1 +−== −+ mjcc njj  (4.3) 

to Eq. (4.2), the periodic condition (c) described above is 
satisfied. 
Next, the interpolation condition (d) is written as 
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with m=2l − 1(l ≥ 2), Eq. (4.3) is rewritten to 
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Rewriting Eq. (4.4) by using the above relationships, 
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can be obtained. 
  Eq. (4.6) is a system of linear equations with (n − 1)   
unknowns cj's ( j=−l+2,−l+3,...,n − l ). 
Solving the equations and using the relationships (4.5), 
all of the interpolation coefficients cj's of the spline 
function (4.2) can be obtained. The coefficient matrix of 
equations (4.6) has a form similar to a banded matrix. An 
example is given in Fig. BIC4-2 for the case of m=5(l=3) 
and n=9. 
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Fig. BIC4-2  Coefficient matrix (m=5 and n=9) 

  The subroutine solves the linear equations given above 
by using Crout method (LU decomposition method). 
Subroutines UMIO4, ULUI4 and UCIO4 are called. 
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Fig. BIC4-1  Knots {tj} 
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B-spline two-dimensional interpolation, differentiation 
and integration (I-I) 
CALL BIFD1(X,NX,Y,NY,M,C,K,ISWX,VX,IX,ISWY, 
VY,IY,F,VW,ICON) 

 
Function 
When, on the xy-plane, the function values fij= f(xi, yj) are 
given at the points (xi, yi), (x1 < x2 < … < xnx, y1 < y2 < … 
< yny), and also the following partial derivatives are given 
at the boundary points, an interpolated value or a partial 
derivative at point P(vx, vy) or a double integral on the 
area {(x,y) | x1 ≤ x ≤ vx , y1 ≤ y ≤ vy}are obtained. (See Fig. 
BIFD1-1) 
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Fig. BIFD1-1  Point p in the area R={(x,y) | x1 ≤ x ≤ xnx , y1≤ y≤ yny} 

  However, subroutine BICD1 must be called before 
using subroutine BIFD1 to calculate the interpolating 
coefficients Cα,β in the B-spline two-dimensional 
interpolating function, 
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  where m is an odd integer and denotes the degree of the 
B-splines, Nα,m+1(x) and Nβ,m+1(y). Here x1≤ vx≤xnx, 
y1≤νy≤yny, m≥3, nx≥2 and ny≥2. 
 

Parameters 
X ..... Input. Discrete points, xi's in the x direction. 

One-dimensional array of size nx. 
NX .... Input. Number of xi's, nx. 
Y ..... Input. Discrete points yi's in the y direction. 

One-dimensional array of size ny. 
NY .... Input. Number of yi's, ny. 
M ..... Input. Degree of the B-spline. See Notes. 
C ..... Input. Interpolating coefficients Cα,β (output 

from BICD1). Two-dimensional array as 
C(K,NY+M−1). 

K ..... Input. Adjustable dimension for array C. 
(K≥NX+M−1).  

ISWX .. Input. An integer which specifies the type of 
calculation in the direction of x. 
−1≤ISWX≤m  
See the parameter F. 

VX .... Input. x-coordinate at point P(vx,vy). 
IX .... Input. Value i which satisfies xi≤vx<xi+1. 

If vx=xnx then IX=nx−1 
Output. Value i which satisfies xi≤vx<xi+1. 
See Notes. 

ISWY .. Input. An integer which specifies the type of 
calculation in the direction of y. 
−1≤ISWY≤m(See the parameter F) 

VY .... Input. y-coordinate at point P(vx,vy). 
IY .... Input. Value j which satisfies yj≤vy<yj+1. 

If vy=yny, then IY=ny−1 
Output. Value j which satisfies yj≤vy<yj+1. 
See Notes. 

F ..... Output. Interpolated value, partial derivative 
or integral obtained. Setting ISWX=λ and 
ISWY=μ, one of the following values is put 
out depending on combination of λ and μ. 
When 0≤λ,μ 
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  The interpolated value can be obtained by setting 
λ=μ=0. 
When λ= −1, 0≤μ 
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VW .... Work area. 
One-dimensional array of size 4(m+1) + 
max(nx,ny)+m − 1 

ICON .. Output. Condition code.  
See Table BIFD1-1. 

 
Table BIFD1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Either X(lX)≤VX<X(lX+1) or 
Y(lY)≤VY<Y(lY+1) is not 
satisfied. 

lX or lY shown 
on the left is 
searched for in 
the subroutine 
and the 
processing is 
continued. 

30000 Either of the followings 
occurred:  
1  VX<X(1) or VX>X(NX) 
2  VY<Y(1) or VY>Y(NY) 
3  ISWX<-1 or ISWX>M 
4  ISWY<-1 or ISWY>M 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UCAD1 and UBAS1 
FORTRAN basic function ... FLOAT 
 

• Notes 
The subroutine, based on the B-spline two-dimensional 
interpolating function (1.1) given by using subroutine 
BICD1, obtains an interpolated value, a partial 
derivative or a double integral. 
  Therefore subroutine BICD1 must be called to obtain 
the interpolating function (1.1) before calling this 
subroutine to obtain an interpolated value, etc. Also 
parameters X, NX, Y, NY, K, M and C must be 
directly passed from subroutine BICD1. 
  Parameters IX and IY should satisfy the relationships 
X(IX)≤VX<X(IX+1) and Y(IY)≤VY<Y(IY+1), 
respectively. If not, IX and IY that satisfy those 
relationships are searched for to continue the 
processing. 
 

• Example 
By inputting points (xi,yi), function values fij, i=1,2,...,nx, 
j=1, 2, ..., ny, partial derivatives fi,j(λ,µ),i=1,nx, 
j=1,ny,λ=1, 2, ..., (m −1)/2, µ=1, 2, ..., (m −1)/2, and 
degree m, interpolated values or partial derivatives at 
points (vir,ujs); vir =xi+(xi+1 − xi)⋅(r/4), ujs=yj+(yj+1 - yj) 
⋅(s/4), i=1, 2, ..., nx−1, j=1, 2, ..., ny−1 , r=0, 1, ..., 4, 
s=0,1,...,4, or integrals over the area {(x,y) | x1 ≤ x ≤ vir , 
y1 ≤ y ≤ ujs}) are obtained. 
Here nx≤30, ny≤30 and m≤5. Further, the data input to 

FXY(I,J) must be given as follows, when m=5, for 
example 
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C     **EXAMPLE** 
      DIMENSION X(30),Y(30),FXY(32,32), 
     *C(32,32),VW(232),R(5,5) 
      READ(5,500) NX,NY,M 
      READ(5,510) (X(I),I=1,NX), 
     *            (Y(J),J=1,NY) 
      NXM=NX+M-1 
      NYM=NY+M-1 
      READ(5,510) ((FXY(I,J),I=1,NXM), 
     *J=1,NYM) 
      WRITE(6,600) M,(I,X(I),I=1,NX) 
      WRITE(6,610) (J,Y(J),J=1,NY) 
      WRITE(6,620) ((I,J,FXY(I,J),I=1,NXM), 
     *J=1,NYM) 
      K=32 
      CALL BICD1(X,NX,Y,NY,FXY,K,M,C, 
     *VW,ICON) 
      IF(ICON.EQ.0) GO TO 20 
      WRITE (6,630) 
      STOP 
   20 NX1=NX-1 
      NY1=NY-1 
      M2=M+1 
      DO 80 LY2=1,M2 
      ISWY=LY2-2 
      DO 70 LX2=1,M2 
      ISWX=LX2-2 
      WRITE(6,640) ISWX,ISWY 
      DO 60 IY=1,NY1 
      HY=(Y(IY+1)-Y(IY))*0.25 
      YJ=Y(IY) 
      DO 50 IX=1,NX1 
      HX=(X(IX+1)-X(IX))*0.25 
      XI=X(IX) 
      DO 40 J=1,5 
      VY=YJ+HY*FLOAT(J-1) 
      DO 30 I=1,5 
      VX=XI+HX*FLOAT(I-1) 
      IXX=IX 
      IYY=IY 
      CALL BIFD1(X,NX,Y,NY,M,C,K,ISWX, 
     *VX,IXX,ISWY,VY,IYY,F,VW,ICON) 
      R(I,J)=F 
   30 CONTINUE 
   40 CONTINUE 
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      WRITE(6,650) IXX,IYY,((R(I,J),I=1,5), 
     *J=1,5) 
   50 CONTINUE 
   60 CONTINUE 
   70 CONTINUE 
   80 CONTINUE 
      STOP 
  500 FORMAT(3I6) 
  510 FORMAT(2F12.0) 
  600 FORMAT('1'//10X, 'INPUT DATA',3X,'M=', 
     *I2//20X,'NO.',10X,'X'/(20X,I3,E18.7)) 
  610 FORMAT(//20X,'NO.',10X,'Y'/(20X,I3, 
     *E18.7)) 
  620 FORMAT(3(10X,'FXY(',I2,',',I2,')=', 
     *E15.7)) 
  630 FORMAT('0',10X,'ERROR') 
  640 FORMAT(//5X,'ISWX=',I2,3X,'ISWY=', 
     *I2//) 
  650 FORMAT(10X,'IX=',I3,2X,'IY=',I3/ 
     *(15X,5(5X,E15.7))) 
      END 
 

Method 
Suppose that the interpolating coefficient cα,β in the dual 
m-th degree B-spline two dimensional interpolating 
function. 
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is already obtained by subroutine BICD1. 
  Subroutine BIFD1 calculates an interpolated value, 
partial derivative and/or an integral based on the 
interpolating function (4.1). The method is given in 
Section 7.1 "Definition, representation and calculation 
method of bivariate spline function". 
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E11-32-3301  BIFD3, DBIFD3 

B-spline two-dimensional interpolation, differentiation 
and integration (III-III) 
CALL BIFD3(X,NX,Y,NY,M,C,K,XT,ISWX,VX,IX, 
ISWY,VY,IY,F,VW,ICON) 

 
Function 
Given the function values fij=f(xi,yj ) at points (xi, yj), (x1 
< x2 < ... < xnx, y1 < y2 < ... < yny) on the xy -plane, an 
interpolated value or a partial derivative at the point 
P(vx,vy) and/or a double integral over the area [x1 ≤ x ≤ 
vx  ,  y1 ≤ y ≤ vy], is obtained. (See Fig. BIFD3-1) 
  Before using subroutine BIFD3, the knots {ξj} in the x-
direction and the knots {ηj} in the y-direction, and also 
the interpolating coefficients cα,β in the B-spline two-
dimensional interpolating function 
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  must be calculated by subroutine BICD3, where m is an 
odd integer and denotes the degree of the B-splines 
Nα,m+1(x) and Nβ,m+1(y). Here x1≤vx≤xnx, y1≤vy≤yny, m ≥ 3, 
nx ≥ m+2, ny ≥ m+2. 
 

P(vx, vy)

x
xnx

………………..x3x2x1

y1

y2

y3

yny

y

 
Fig. BIFD3-1  Point p in the area R={(x,y) | x1 ≤ x ≤ xnx , y1 ≤ y ≤yny} 

Parameters 
X ..... Input. Discrete points, xi's in the x-direction. 

One-dimensional array of size nx. 
NX .... Output. Number of xi's, nx. 
Y ..... Input. Discrete points yj's in the y-direction. 

One dimensional array of size ny. 
NY .... Input. Number of yj's, ny. 
M ..... Input. The degree of the B-spline, m. See Note. 
C ..... Input. Interpolation coefficients cα,β (output 

from BICD3). 
Two-dimensional array as C(K,NY). 

K ..... Input. Adjustable dimension for array C. 
XT .... Input. Knots in the x- and y-direction (output 

from BICD3). 
One-dimensional array of 
size(nx−m+1)+(ny−m+1). 

ISWX .. Input. An integer which specifies type of 
calculation associated with x-direction. 
−1≤ISWX≤m. See parameter F. 

VX .... Input. x-coordinate of the point P(vx,vy). 
IX .... Input. The i which satisfies xi≤vx<xi+1. 

If vx=xnx, then IX=nx−1. 
Output. The i which satisfies xi≤vx<xi+1. 
See Note. 

ISWY .. Input. An integer which specifies type of 
calcuration associated with y-direction. 
−1≤ISWY≤m. See the parameter F. 

VY .... Input. y-coordinate of the point P(vx,vy). 
IY .... Input. The j value which satisfies yj≤vy<yj+1. 

If vy=yny then IY=ny−1 
Output. The j which satisfies yj≤vy<yj+1. 
See Note. 

F ..... Output. Interpolated value, partial derivative 
or integral value. Setting ISWX=λ and 
ISWY=μ, one of the following value is put out 
depending on combination of λ and μ: 
• When 0 ≤ λ,μ 
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The interpolated value can be obtained by 
setting λ = μ = 0. 

• When λ=−1, 0≤μ 
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• When λ ≥ 0, μ = −1 
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• When λ = μ = −1 
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VW .... Work area. 

One-dimensional array of size 4(m+1) + 
max(nx,ny) 

ICON .. Output. Condition code.  
See Table BIFD3-1. 

 
• Subprograms used 

SSL II ... MGSSL, UCAD1 and UBAS1 
FORTRAN basic function ... FLOAT 
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Table BIFD3-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 X(lX)≤VX<X(lX+1) or 
Y(lY)≤VY<Y(lY+1) is not 
satisfied. 

lX or lY shown 
on the left is 
searched for in 
the subroutine 
and the 
processing is 
continued. 

30000 Either of the followings 
occurred:  
1   VX<X(1) or VX>X(NX) 
2   VY<Y(1) or VY>Y(NY) 
3   ISWX<-1 or ISWX>M 
4   ISWY<-1 or ISWY>M 

Bypassed 

 
• Notes 

The subroutine, based on the B-spline two-dimensional 
interpolating function (1.1) given by using subroutine 
BICD3, obtains an interpolated value, a partial 
derivative or a double integral. Therefore subroutine 
BICD3 must be called to obtain the interpolating 
function (1.1) before calling this subroutine to obtain 
an interpolated value, etc. Also parameters X, NX, Y, 
NY, K, M, C and XT must be directly passed from 
subroutine BICD3. 
  Parameters IX and IY should satisfy the relationships 
X(IX)≤VX<X(IX+1) and Y(IY)≤VY<Y(IY+1). If not, 
IX and IY that satisfy those relationships are searched 
for to continue the processing. 

 
• Example 

By inputting points (xi,yj), function values fij, i=1,2,...,nx, 
j=1,2,...,ny, and the degree m, interpolated values or 
partial derivatives at the point (vir,ujs) ; 
vir=xi+(xi+1−xi)(r/4), ujs=yj+(yj+1−yj)(s/4), i=1,2,...,nx−1, 
j=1,2,...,ny−1, r=0,1,...,4 and s=0,1,...,4, and/or 
integrals over the area[x1 ≤ x ≤ vir, y1 ≤ y ≤ ujs] are 
obtained. Here nx≤30, ny≤30 and m≤5. 

 
C     **EXAMPLE** 
      DIMENSION X(30),Y(30),FXY(30,30), 
     *C(30,30),XT(52),VW(182),R(5,5) 
      READ(5,500) NX,NY,M 
      READ(5,510) (X(I),I=1,NX), 
     *            (Y(J),J=1,NY) 
      READ(5,510) ((FXY(I,J),J=1,NY),I=1,NX) 
      WRITE(6,600) M,(I,X(I),I=1,NX) 
      WRITE(6,610) (J,Y(J),J=1,NY) 
      WRITE(6,620) 
      DO 10 I=1,NX 
   10 WRITE(6,630) (I,J,FXY(I,J),J=1,NY) 
      K=30 
      CALL BICD3(X,NX,Y,NY,FXY,K,M,C, 
     *XT,VW,ICON) 
      IF(ICON.EQ.0) GO TO 20 
      WRITE(6,640) 
      STOP 
 

   20 NX1=NX-1 
      NY1=NY-1 
      M2=M+2 
      DO 80 LX2=1,M2 
      ISWX=LX2-2 
      DO 70 LY2=1,M2 
      ISWY=LY2-2 
      WRITE(6,650) ISWX,ISWY 
      DO 60 IX=1,NX1 
      HX=(X(IX+1)-X(IX))*0.25 
      XI=X(IX) 
      DO 50 IY=1,NY1 
      HY=(Y(IY+1)-Y(IY))*0.25 
      YJ=Y(IY) 
      DO 40 I=1,5 
      VX=XI+HX*FLOAT(I-1) 
      DO 30 J=1,5 
      VY=YJ+HY*FLOAT(J-1) 
      IXX=IX 
      IYY=IY 
      CALL BIFD3(X,NX,Y,NY,M,C,K,XT, 
     *ISWX,VX,IXX,ISWY,VY,IYY,F,VW,ICON) 
      R(I,J)=F 
   30 CONTINUE 
   40 CONTINUE 
      WRITE(6,660)IXX,IYY,((R(I,J),J=1,5), 
     *I=1,5) 
   50 CONTINUE 
   60 CONTINUE 
   70 CONTINUE 
   80 CONTINUE 
      STOP 
  500 FORMAT(3I6) 
  510 FORMAT(2F12.0) 
  600 FORMAT('1'//10X,'INPUT DATA',3X, 
     *'M=',I2//20X,'NO.',10X,'X'/ 
     *(20X,I3,E18.7)) 
  610 FORMAT(//20X,'NO.',10X,'Y'/ 
     *(20X,I3,E18.7)) 
  620 FORMAT(//20X,'FXY'/) 
  630 FORMAT(3(10X,'FXY(',I2,',',I2,')=', 
     *E15.7)) 
  640 FORMAT ('0',10X,'ERROR') 
  650 FORMAT(//5X,'ISWX=',I2,3X,'ISWY=', 
     *I2//) 
  660 FORMAT(10X,'IX=',I3,2X,'IY=',I3/ 
     *(15X,5(5X,E15.7))) 
      END 
 
 
Method 
Suppose that the dual m-th degree B-spline two-
dimensional interpolating function. 
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  is already obtained by subroutine BICD3. Subroutine 
BIFD3 calculates interpolated values, partial derivative 
and/or an integrals based on the interpolating function 
(4.1). The method is described in Section 7.1 "Definition, 
representation and calculation method of spline function". 
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E11-31-0101  BIF1, DBIF1 

B-spline interpolation, differentiation and integration (I) 
CALL BIF1(X,N,M,C,ISW,V,I,F,VW,ICON) 

 
Function 
Given function values yi=f(xi), i=1,2,...,n at discrete 
points x1,x2...,xn(x1<x2<...<xn) and derivatives y1

(l) = f 
(l)(x1) and yn

(l) = f (l)(xn), l=1,2,...,(m − 1)/2 at each end 
point x1 and xn, then an interpolated value, a derivative at 
the point x=v∈[x1, xn], or an integral from x1 to v are 
obtained. However, subroutine BIC1 must be called 
before using subroutine BIF1 to calculate the 
interpolating coefficients cj, j=−m+1, −m+2, ..., n − 1 in 
the B-spline interpolating function, 
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1

1
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n
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mjj xNcxS  (1.1) 

, where m is an odd integer and is the degree of the B-
spline Nj,m+1(x) and x1≤v≤xn, m ≥ 3 and n ≥ 2. 
 
Parameters 
X ..... Input. Discrete points xi. 

One-dimensional array of size n. 
N ..... Input. Number of the discrete points, n. 
M ..... Input. Degree of the B-spline, m. 

See Note. 
C ..... Input. Interpolating coefficients cj(output from 

BIC1) One-dimensional array of size n+m−1. 
ISW ... Input. An integer which specifies the type of 

calculation. 
If ISW=0, interpolated value F=S(v). 
If ISW=l (1 ≤ l ≤ m), l-th order derivative 
F=S(l)(v). 

If ISW=−1, integral ∫=
v

x
dxxSF

1

)(  are 

calculated, respectively. 
V ..... Input. The point v at which the interpolated 

value etc. is to be obtained. 
I ..... Input. Value of i which satisfies xi≤v<xi+1. 

If v=xn the parameter should be given n−1. 
Output. Value of i which satisfies xi≤v<xi+1. 
See Note. 

F ..... Output. Interpolated value, l-th order 
derivative or integral. See parameter ISW. 

VW .... Work area. One-dimensional array of size 
m+1. 

ICON .. Output. Condition code. 
See Table BIF1-1. 

Table BIF1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 X(l)≤V<X(I+1) is not 
satisfied. 

The I given on 
the left is 
searched for in 
the subroutine 
and the 
processing is 
continued. 

30000 Either of the followings 
occurred:  
(a)  V<X(1) or V>X(N) 
(b)  ISW<-1 or ISW>M 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UCAR1 and UBAS1 
FORTRAN basic function ... FLOAT 

 
• Notes 

The subroutine obtains an interpolated value, 
derivative or integral based on the B-spline 
interpolating function (1.1) which is obtained by using 
subroutine BIC1. Therefore, BIC1 must be called 
before calling this subroutine. Parameters, X, N, M and 
C must be directly passed from BIC1 to subroutine 
BIF1. 
  Parameter I should satisfy the relationships 
X(I)≤V<X(I+1). If not, the value of I which satisfies 
the relationship is searched for to continue the 
processing. 

 
• Example 

By inputting discrete points xi, function values yi, 
i=1,2,...; n derivatives y1

(l), l=1,2,...(m − 1)/2, and yn
(l), 

l=1,2,...,(m − 1)/2 at each end point, and the degree m, 
the following values are obtained; an integral value 
from x1 to vij=xi+(xi+1-xi)( j/5), i =1,2,...,n − 1, 
j=0,1,...,5, an interpolated value or derivatives of order 
one through m.  Here n≤101, and m≤5. 
 

C     **EXAMPLE** 
      DIMENSION X(101),Y(101),C(105), 
     *DY(2,2),VW(519),R(6) 
      READ(5,500) N,M 
      LM1=(M-1)/2 
      READ(5,510) (X(I),Y(I),I=1,N) 
     *,((DY(I,L),I=1,2),L=1,LM1) 
      WRITE(6,600) N,M,(I,X(I),Y(I),I=1,N) 
      CALL BIC1(X,Y,DY,N,M,C,VW,ICON) 
      IF(ICON.EQ.0) GO TO 10 
      WRITE(6,610) 
      STOP 
   10 N1=N-1 
      M2=M+2 
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      DO 40 L2=1,M2 
      ISW=L2-2 
      WRITE(6,620) ISW 
      DO 30 I=1,N1 
      H=(X(I+1)-X(I))/5.0 
      XI=X(I) 
      DO 20 J=1,6 
      V=XI+H*FLOAT(J-I) 
      II=I 
      CALL BIF1(X,N,M,C,ISW,V,II,F,VW,ICON) 
      R(J)=F 
   20 CONTINUE 
      WRITE(6,630) II,(R(J),J=1,6) 
   30 CONTINUE 
   40 CONTINUE 
      STOP 
  500 FORMAT(2I6) 
  510 FORMAT(2F12.0) 
  600 FORMAT('1'//10X,'INPUT DATA',3X, 
     *'N=',I3,3X,'N=',I2//20X,'NO.',10X, 
     *'X',17X,'Y'//(20X,I3,2E18.7)) 
  610 FORMAT('0',10X,'ERROR') 
  620 FORMAT('1'//10X,'L=',I2/) 
  630 FORMAT(6X,I3,6E18.7) 
      END 
 

Method 
Suppose that the m-th degree B-spline interpolating 
function is already obtained by the subroutine BIC1 as 
follows: 
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The subroutine, based on Eq. (4.1), obtains an 
interpolated value, l-th order derivative and/or integral 
from Eqs. (4.2), (4.3) and (4.4), respectively 
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  The method of calculating these three values is 
explained in section 7.1 "Calculating spline function". 
The subroutine described here performs calculation of 
Nj,m+1(x) and its derivative and integral by using the 
subroutine UBAS1. 
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E11-31-0201  BIF2, DBIF2 

B-spline interpolation, differentiation and integration (II) 
CALL BIF2(X,N,M,C,ISW,V,I,F,VW,ICON) 

 
Function 
Given function values yi=f(xi), i=1,2,...,n at discrete 
points x1,x2...,xn(x1<x2<...<xn), and derivatives y1

(l)=f (l)(x1) 
and yn

(l)=f (l)(xn), l=(m+1)/2,(m+1)/2+1,...,m − 1 at each 
end point x1 and xn then an interpolated value, a 
derivative at the point x=v∈ [x1, xn], or an integral from x1 
to v are obtained. However, subroutine BIC2 should be 
called before using subroutine BIF2 to calculate the 
interpolating coefficients cj, j=−m+1, −m+2, ..., n − 1 in 
the B-spline interpolating function, 
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  where m is an odd integer and is the degree of the B-
spline Nj+1(x) and x1≤v≤xn, m≥3 and n≥(m+1)/2. 
 
Parameters 
X ..... Input. Discrete points xi. 

One-dimensional array of size n. 
N ..... Input. Number of the discrete points, n. 
M ..... Input. Degree of the B-spline, m. 

See Note. 
C ..... Input. Interpolating coefficients cj(output from 

BIC2) 
One-dimensional array of size n+m−1. 

ISW ... Input. An integer which specifies the type of 
calculation. 
If ISW=0, interpolated value F=S(v). 
If ISW=l (1 ≤ l ≤ m), l-th order derivative 
F=S(l)(v). 

If ISW= −1, integral ( )∫=
v

x
dxxSF

1
 are 

calculated, respectively. 
V ..... Input. The point v at which the interpolated 

value etc. is to be obtained. 
I ..... Input. Value of i which satisfies xi≤v<xi+1. 

If v=xn the parameter should be given n−1. 
Output. Value of i which satisfies xi≤v<xi+1. 
See Note. 

F ..... Output. Interpolated value, l-th order 
derivative or integral. See parameter ISW. 

VW .... Work area. One-dimensional array of size m+1. 
ICON .. Output. Condition code. 

See Table BIF2-1. 

Table BIF2-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 X(l)≤V<X(I+1) is not 
satisfied. 

The I given on 
the left is 
searched for in 
the subroutine 
and the 
processing is 
continued. 

30000 Either of the followings 
occurred:  
(a)   V<X(1) or V>X(N) 
(b)   ISW<-1 or ISW>M 

Aborted 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UCAR1 and UBAS1 
FORTRAN basic function ... FLOAT 
 

• Notes 
The subroutine obtains an interpolated value, derivative 
or integral based on the B-spline interpolating function 
(1.1) which is obtained by using subroutine BIC2. 
Therefore, BIC2 must be called before calling this 
subroutine. Parameters, X, N, M and C must be directly 
passed from BIC2 to subroutine BIF2. 
Parameters I should satisfy the relationships 
X(I)≤V<X(I +1). If not, the value I which satisfies the 
relationship is searched for to continue the processing. 
 

• Example 
By inputting discrete points xi, function values yi, 
i=1,2,...,n, derivatives y1

(l) and yn(l), l = 
(m+1)/2,(m+1)/2+1,...,m − 1, at each end point, and the 
degree m, the following values are obtained; an integral 
value from x1 to vij=xi+(xi+1−xi)( j/5), i=1,2,...,n − 1, 
j=0,1,...,5, an interpolated value or derivatives of order 
one through m. Here n≤101, and m≤5. 
 

C     **EXAMPLE** 
      DIMENSION X(101),Y(101),C(105), 
     *DY(2,2),VW(527),R(6) 
      READ(5,500) N,M 
      LM1=(M-1)/2 
      READ(5,510) (X(I),Y(I),I=1,N) 
     * ,((DY(I,L),I=1,2),L=1,LM1) 
      WRITE(6,600) N,M,(I,X(I),Y(I),I=1,N) 
      CALL BIC2(X,Y,DY,N,M,C,VW,ICON) 
      IF(ICON.EQ.0) GO TO 10 
      WRITE(6,610) 
      STOP 
   10 N1=N-1 
      M2=M+2 
      DO 40 L2=1,M2 
      ISW=L2-2 
      WRITE(6,620) ISW 
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      DO 30 I=1,N1 
      H=(X(I+1)-X(I))/5.0 
      XI=X(I) 
      DO 20 J=1,6 
      V=XI+H*FLOAT(J-I) 
      II=I 
      CALL BIF2(X,N,M,C,ISW,V,II,F,VW,ICON) 
      R(J)=F 
   20 CONTINUE 
      WRITE(6,630) II,(R(J),J=1,6) 
   30 CONTINUE 
   40 CONTINUE 
      STOP 
  500 FORMAT(2I6) 
  510 FORMAT(2F12.0) 
  600 FORMAT('1'//10X,'INPUT DATA',3X, 
     *'N=',I3,3X,'N=',I2//20X,'NO.',10X, 
     *'X',17X,'Y'//(20X,I3,2E18.7)) 
  610 FORMAT('0',10X,'ERROR') 
  620 FORMAT('1'//10X,'L=',I2/) 
  630 FORMAT(6X,I3,6E18.7) 
      END 
 

Method 
Suppose that the m-th degree B-spline interpolating 
function is already obtained by the subroutine BIC2 as 
follows: 
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  The subroutine, based on Eq. (4.1), obtains an 
interpolated value, l-th order derivative and/or integral 
from Eqs. (4.2), (4.3) and (4.4), respectively 
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  The method of calculating these three values is 
explained in section 7.1 "Calculating spline function". 
The subroutine described here performs calculation of 
Nj,m+1(x) and its derivative and integral by using the 
subroutine UBAS1. 
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E11-31-0301  BIF3, DBIF3 

B-spline interpolation, differentiation and integration (III)
CALL BIF3(X,N,M,C,XT,ISW,V,I,F,VW,ICON) 

 
Function 
Given function values yi=f(xi), i=1,2,...,n at discrete 
points x1,x2,...,xn(x1<x2<...<xn), this subroutine obtains 
interpolated value or derivative at x=v or integral over 
the interval [x1, v]. 
Before using this subroutines, it is necessary a sequence 
of knots ξi, i=1,2,...,n−m+1, and interpolating 
coefficients cj, j=−m+1,−m+2,...,n − m of the B-spline 
interpolation: 

( ) ( )xNcxS mjj
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   have been given by the subroutine BIC3. Where m is 
an odd number which denotes the degree of B-spline 
Nj,m+1(x). 

x1≤v≤xn,  m≥3 and  n≥m+2 

 
Parameters 
X ..... Input. Discrete points xi. 

X is a one-dimensional array of size n. 
N ..... Input. Number of the discrete points n. 
M ..... Input. The degree of the B-spline: m. (See 

Note) 
C ..... Input. Interpolating coefficients cj (output 

from BIC3) 
C is a one-dimensional array of size n. 

XT .... Input. The knots ξi, (output from BIC3). 
XT is a one-dimensional array of size n−m+1. 

ISW ... Input. An integer which specifies the type of 
calculation. 
When ISW=0, interpolated value F=S(v). 
When ISW=l (l=1,2,...,m), the derivative of 
order l: F=S(l)(v), and 

When ISW=−1, integral ( )∫=
v

x
dxxSF

1

 are 

calculated, respectively. 
V ..... Input. The points v at which the interpolated 

value etc. is to be obtained. 
I ..... Input. An integer i which satisfies xi≤v<xi+1. 

When v=xn the parameter should be given n−1. 
Output. An interger i which satisfies xi≤v<xi+1. 
(See Note.) 

F ..... Output. Interpolated value or derivative of 
order l or integral. (See ISW) 

VW .... Work area. VW is a one-dimensional array of 
size 2m+2. 

ICON .. Output. Condition code. Refer to Table BIF3-1. 

Table BIF3-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 X(l)≤V<X(I+1) is not 
satisfied. 

I is searched 
for in the 
subroutine and 
the processing 
is continued. 

30000 1   V<X(1) or V>X(N), or 
2   ISW<-1 or ISW>M 

Aborted  

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UCAR1 and UBAS1 
FORTRAN basic function ... FLOAT 
 

• Notes 
The subroutine determines interpolated values or 
derivative or integral based on the B-spline 
interpolating functions determined by the subroutine 
BIC3. 
Therefore, the subroutine BIC3 must be called to 
determine the interpolating function (1.1) before 
calling this subroutine to determine interpolated values, 
etc. Parameters, X, N, Y, C and XT must be identical 
with those of the BIC3. 
Parameters I should preferably satisfy X(I)≤V<(I+1). 
If the parameter does not satisfy the condition, I that 
satisfies X(I)≤V<X(I+1) is searched for to continue 
processing. 
 

• Example 
Discrete point xi, function value yi, i=1,2,...,n and 
degree m are input, and integrals from x1, interpolated 
values and differentials of the first through the m-th 
degree in vij=xi+(xi+1−xi)×( j/5), i=1,2,...,n − 1, 
j=0,1,...,5 are determined. n≤101, n≤5. 
 

C     **EXAMPLE** 
      DIMENSION X(101),Y(101),C(101),XT(99), 
     *VW(507),R(6) 
      READ(5,500) N,M 
      READ(5,510) (X(I),Y(I),I=1,N) 
      WRITE(6,600) N,M,(I,X(I),Y(I),I=1,N) 
      CALL BIC3(X,Y,N,M,C,XT,VW,ICON) 
      IF(ICON.EQ.0) GO TO 10 
      WRITE(6,610) 
      STOP 
   10 N1=N-1 
      M2=M+2 
      DO 40 L2=1,M2 
      ISW=L2-2 
      WRITE(6,620) ISW 
      DO 30 I=1,N1 
      H=(X(I+1)-X(I))/5.0 
      XI=X(I) 
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      DO 20 J=1,6 
      V=XI+H*FLOAT(J-1) 
      II=I 
      CALL BIF3(X,N,M,C,XT,ISW,V,II,F, 
     *          VW,ICON) 
      R(J)=F 
   20 CONTINUE 
      WRITE(6,630) II,(R(J),J=1,6) 
   30 CONTINUE 
   40 CONTINUE 
      STOP 
  500 FORMAT(2I6) 
  510 FORMAT(2F12.0) 
  600 FORMAT('1'//10X,'INPUT DATA',3X, 
     *'N=',I3,3X,'N=', I2//20X, 'NO.',10X, 
     *'X',17X,'Y'//(20X,I3,2E18.7)) 
  610 FORMAT('0',10X,'ERROR') 
  620 FORMAT('1'//10X,'L=',I2/) 
  630 FORMAT(6X,I3,6E18.7) 
      END 
 

Method 
Suppose that the m-th degree B-spline interpolating 
function is already obtained by the subroutine BIC3 as 
follows: 
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  The subroutine, based on Eq. (4.1), obtains an 
interpolated value, l-th order derivative and/or integral by 
Eqs. (4.2), (4.3) and (4.4), respectively. 
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  The method of calculating these three values is 
explained in section 7.1 "Calculating spline function". 
  The subroutine described here performs calculation of 
Nj,m+1(x) and its derivative and integral by using the 
subroutine UBAS1. 
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E11-31-0401  BIF4, DBIF4 

B-spline interpolation, differentiation and integration (IV)
CALL BIF4(X,N,M,C,ISW,V,I,F,VW,ICON) 

 
Function 
Given a periodic function values yi=f(xi), i=1,2,...,n 
(where y1=yn), of period (xn−xl) at the discrete points 
x1,x2...,xn(x1<x2<...<xn), then an interpolated value, a 
derivative or an integral from x1 to v are obtained. 
   However, subroutine BIC4 must be called before using 
this subroutine BIF4 to calculate the interpolating 
coefficients cj, j= −m+1,−m+2,...,n−1  in the B-spline 
interpolation function, 
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   which satisfies the periodic condition, where m is an 
odd integer and denotes the degree of the B-spline 
Nj,m+1(x). Here x1≤v≤xn, m≥3 and n≥m+2 
 
Parameters 
X ..... Input. Discrete points xi. 

One-dimensional array of size n. 
N ..... Input. Number of the discrete points n. 
M ..... Input. Degree of the B-spline, m. 

(See Note.) 
C ..... Input. Interpolating coefficients cj (output 

from BIC4) 
One-dimensional array of size n+m-1. 

ISW ... Input. An integer which specifies the type of 
calculation. 
If ISW=0, the interpolated value F=S(v). 
If ISW=l (1 ≤ l ≤ m), l-th order derivative 
F=S(l)(v). 

If ISW=−1, integral ( ) dxxS
v

x∫= 1

F  are 

calculated, respectively. 
V ..... Input. The point v at which the interpolated 

value etc. is to be obtained. 
I ..... Input. Value of i which satisfies xi≤v<xi+1. 

If v=xn the parameter should be given n−1. 
Output. Value of i which satisfies xi≤v≤xi+1. 
See Note. 

F ..... Output. Interpolated value, l-th order 
derivative or integral. See parameter ISW. 

VW .... Work area. 
One-dimensional array of size m+1. 

ICON .. Output. Condition code. 
See Table BIF4-1. 

Table BIF4-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 X(l)≤V<X(I+1) is not 
satisfied. 

The l given on 
the left is 
searched for in 
the subroutine 
and the 
processing is 
continued. 

30000 Either of the followings 
occurred:  
(a)   V<X(1) or V>X(N) 
(b)   ISW<-1 or ISW>M 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UCAR4, UBAS4 and UPEP4 
FORTRAN basic function ... FLOAT 
 

• Notes 
The subroutine obtains an interpolated values, 
derivatives or integral based on the B-spline 
interpolating function (1.1) which is obtained by using 
subroutine BIC4. Therefore, BIC4 must be called 
before calling this subroutine. Parameters X, N, M and 
C must be directly passed from BIC4 to subroutine 
BIF4. 
Parameters I should satisfy the relationship 
X(I)≤V<X(I+1). If not, the value of I which satisfies 
the relationship is searched for to continue the 
processing. 
 

• Example 
By inputting discrete points xi, function values yi, 
i=1,2,...,n (with period (xn-xl)), and degree m, the 
following values are obtained; integrals form x1 to 
vij=xi+(xi+1−xi)･( j/5), i=1,2,...,n -1, and j=0,1,2,...,5 
interpolated values, and derivatives of order one 
through m. 
Here n≤101, and m≤5. 
 

C     **EXAMPLE** 
      DIMENSION X(101),Y(101),C(105), 
     *VW(906),R(6) 
      READ(5,500) N,M 
      READ(5,510) (X(I),Y(I),I=1,N) 
      WRITE(6,600) N,M,(I,X(I),Y(I),I=1,N) 
      CALL BIC4(X,Y,N,M,C,VW,ICON) 
      IF(ICON.EQ.0) GO TO 10 
      WRITE(6,610) 
      STOP 
   10 N1=N-1 
      M2=M+2 
      DO 40 L2=1,M2 
      ISW=L2-2 
      WRITE(6,620) ISW 
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      DO 30 I=1,N1 
      H=(X(I+1)-X(I))/5.0 
      XI=X(I) 
      DO 20 J=1,6 
      V=XI+H*FLOAT(J-1) 
      II=I 
      CALL BIF4(X,N,M,C,ISW,V,II,F, 
     *VW,ICON) 
      R(J)=F 
   20 CONTINUE 
      WRITE(6,630) II,(R(J),J=1,6) 
   30 CONTINUE 
   40 CONTINUE 
      STOP 
  500 FORMAT(2I6) 
  510 FORMAT(2F12.0) 
  600 FORMAT('1'//10X,'INPUT DATA',3X, 
     *'N=',I3,3X,'N=',I2//20X,'NO.',10X, 
     *'X',17X,'Y'//(20X,I3,2E18.7)) 
  610 FORMAT('0',10X,'ERROR') 
  620 FORMAT('1'//10X,'L=',I2/) 
  630 FORMAT(6X,I3,6E18.7) 
      END 
 

Method 
Suppose that the m-th degree B-spline interpolating 
function has been already obtained by subroutine BIC4 as 
follows: 
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  where the S(x) is a periodic function with period (xn−xl) 
which satisfies 
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  The subroutine, based on Eq. (4.1), obtaines an 
interpolated value, l-th order derivative or integral by 
using Eqs. (4.3), (4.4) and (4.5), respectively 
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  The method of calculating these three values is 
explained in Section 7.1 "Calculating spline function". 
Subroutine BIF4 perfoms calculation of Nj,m+1(x) and its 
derivatives and integral by using the subroutine UBAS4. 
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I11-81-1201  BIN, DBIN 

Integer order modified Bessel function of the first kind 
In(x) 
CALL BIN(X,N,BI,ICON) 

 
Function 
This subroutine computes integer order modified Bessel 
function of the first kind 
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by the Taylor expansion and recurrence formula. 
 
Parameters 
X ..... Input. Independent variable x. 
N ..... Input. Order n of In(x). 
BI .... Output. Function value In(x). 
ICON .. Output. Condition code. See Table BIN−1. 
  When N=0 or N=1, ICON is handled the same as in 
ICON of BI0 andBI1. 
 
Table BIN-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 One of the following was 
true with respect to the 
values of X and N: 
⋅  |X| > 100 
⋅  1/8 ≤ |X| < 1 and 
   |N| ≥ 19 |X|+29 
⋅  1 ≤ |X| < 10 and 
   |N| ≥ 4.7 |X| + 43 
⋅  10 ≤ |X| ≤ 100 and 
   |X| ≤ 1.83 |X| + 71 
 

BI is set to 0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... AFMAX, AFMIN, AMACH, BI0, BI1, 
MGSSL, ULMAX 
FORTRAN basic functions ... ABS, IABS, FLOAT, 
EXP, MAX0 and SQRT. 
 

• Notes 
The ranges of |X| and |N| are indicated by the null area 
in Fig. BIN-1. These limits are provided to avoid 
overflow and underflow in the calculations. (See 
"Method".) 
 

  When calculating I0(x) and I1(x), subroutines BI0 and 
BI1 should be used instead. 

| X | 100 10 1 1/8
  20

  31

  48

  90

259

| N |

 
Fig. BIN-1  Calculation range of the arguments 
 
• Example 

The following example generates a table of In(x) for 
range of from 0 to 10 with increment 1and for the range 
of N from 20 to 30 with increment 1. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 20 N=20,30 
      DO 10 K=1,11 
      X=K-1 
      CALL BIN(X,N,BI,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,N,BI 
      IF(ICON.NE.0) WRITE(6,620) X,N,BI,ICON 
   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',5X,'N',8X, 
     *'IN(X)'/) 
  610 FORMAT(' ',F8.2,I5,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'N=',I5,5X,'BI=',E17.7,5X, 
     *'CONDITION=',I10) 
      END 
 
Method 
With |x|=1/8 as the boundary, the formula used to 
calculate Bessel function In(x) changes.  
Since I-n(x)=In(x), In(−x)=(−1)nIn(x), n and x will be used 
instead of |n| and |x| in the following. 
 
• For 0≤x<1/8 

The computation is based on the Taylor expansion: 
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  The value of In(x) is computed as a partial sum of the 
first N terms with N being taken large enough so that the 
last term no longer affects the value of the partial sum 
significantly. 
 
• For 1/8 ≤ x ≤ 100 

Letting M be a certain integer sufficiently greater than 
n and x the recurrence formula: 

( ) ( ) ( )xFxF
x
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2
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is evaluated for k=M, M − 1,...,1 where  
FM+1(x) =0, FM(x) =flmin 

Then, In(x) is computed as 
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[Determination of M] 

( ){ }[ ]M m n n= + + −2 1 0 20 0max , /  (4.4) 

   where [ ] denotes the Gaussian notation, and m0 is taken 
as follows: 
(a) For 1/8≤x<1 

Single precision: m0=4.8x+6.1, n0=3.6x+2.1 (4.5) 
Double precision: m0=9.4x+9.5 
n0=5.0x+4.5 (4.6) 

(b) For 1≤x<10 
Single precision: m0=1.4x+9.6, n0=0.9x+5.1 (4.7) 
Double precision: m0=2.5x+15.5 
n0=1.4x+8.6 (4.8) 

(c) For 10 ≤ x ≤ 100 
Single precision: m0=0.75x+17.5 
n0=0.28x+11.2 (4.9) 
Double precision: m0=0.77x+32.3 
n0=0.45x+17.5 (4.10) 

 
  For more information, see References [81] and [82]. 
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I11-83-0301  BIR, DBIR 

Real order modified Bessel function of the first kind Iv(x) 
CALL BIR(X,V,BI,ICON) 

 
Function 
This subroutine computes the value of real order 
modified Bessel function of the first kind 
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by using the power series expansion (above expression) 
and the recurrence formula. 
 
Parameters 
X ..... Input. Independent variable x(x≥0). 
V ..... Input. Order v of Iv(x) (v≥0). 
BI .... Output. Value of function Iv(x). 
ICON .. Output. Condition code. See Table BIR-1. 
 
Table BIR-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 X>log(flmax) BI is set to 0.0. 
30000 X<0 or V<0. BI is set to 0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... AFMAX, AMACH, AFMIN, MGSSL, 
ULMAX 
FORTRAN basic function ... FLOAT, ABS, GAMMA, 
AMAX1, EXP 
 

• Notes 
0 ≤ X ≤ log(flmax) and V ≥0. 
When computing I0(x) and I1(x), subroutines BI0 and 
BI1 are used instead. 
  When a set of function values Iv(x), Iv+1(x), Iv+2(x), ..., 
Iv+M(x) is needed at the same time, Iv+M(x) and Iv+M-1(x) 
are computed with this subroutine, and next, Iv+M-2(x), 
Iv+M-3(x), ..., Iv(x) should be computed in sequence from 
high order to low order, by using the recurrence 
formula continuously. Conversely, it should be avoided 
in computing Iv+2(x) and Iv+3(x), ..., Iv+M(x) by the 
recurrence formula, after computing Iv(x) and Iv+1(x) 
with this subroutine, in sequence from low order to 
high order. 
 

• Example 
The following example generates a table of Iv(x) for the 
range of x from 0 to 10 with increment 1 and for the 
range of v from 0.4 to 0.6 with increment 0.01. 

C     **EXAMPLE** 
      DO 20 K=1,11 
      X=K-1 
      DO 10 NV=40,60 
      V=FLOAT(NV)/100.0 
      CALL BIR(X,V,BI,ICON) 
      IF(ICON.EQ.0) WRITE(6,600) X,V,BI 
   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT(' ',F8.2,F8.3,E17.7) 
      END 
 
Method 
When it is known that the value of Iv(x) will be the 
underflowed value, the following computations are 
skipped and the result 0.0 is output. 
  The computation of Iv(x) depends on the range of x. 

 
• 0 ≤ x ≤ 1 

With the power series expansion 
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  , it is computed until the k-th term is less than the unit 
round-off in relative to the first term. 
 
• 1<x≤log( flmax) 

Recurrence formula is used. 
Let's suppose that m is a sufficiently large integer 
(determined by x, v, and the desired precision), and that 
δ is a sufficiently small constant (positive smallest 
number allowed for the computer used) and moreover 
that n and α are determined by 

v=n+α(n;integer,0 ≤ α < 1) 

Initial values 

Gα+m+1(x)=0, Gα+m(x)=δ 

are set, and recurrence formula 
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  is repeatedly applied to k=m,m − 1,...,1. Then the value 
of function Iv(x) is obtained as 
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  For the method of determining of m and other details, 
see Reference [81]. 
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I11-81-0601  BI0,DBI0 

Zero order modified Bessel function of the first kind I0(x) 
CALL BI0(X,BI,ICON) 

 
Function 
This subroutine computes the zero order modified Bessel 
function of the first kind I0(x) 
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by polynomial approximations and the asymptotic 
expansion. 
 
Parameters 
X ..... Input. Independent variable x. 
BI .... Output. Function value I0(x). 
ICON .. Output. Condition code. See Table BI0-1. 
 
Table BI0-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 |X| > log (flmax) BI is set to 
flmax. 

 
Comments on use 
• Subprograms used 

SSL II ... AFMAX, MGSSL, ULMAX 
FORTRAN basic function ... ABS, EXP, and SQRT 
 

• Notes 
[The range of argument X] 
|X| ≤ log ( flmax) 
If |X| exceeds the limits, an overflow will occur during 
the calculation of ex. This limit is provided for that 
reason. (See "Method".) 

 
• Example 

The following example generates a table of I0(x) from 0 
to 100 with increment 1. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,101 
      X=K-1 
      CALL BI0(X,BI,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,BI 
      IF(ICON.NE.0) WRITE(6,620) X,BI,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',9X,'I0(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'BI=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 

Method 
With |X| = 8 as the boundary, the approximation formula 
used to calculate modified Bessel function I0(x) changes. 
Since I0(−x)=I0(x), x is used instead of |x| in the following. 
 
• For 0≤x<8 

The power series expansion of I0(x) 
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  is calculated using the approximation formulas in (4.2) 
and (4.3). 
Single precision: 
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Double precision: 
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• For 8 ≤ x ≤ log(flmax) 
The asymptotic expansion of I0(x) 
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  is calculated using the approximation formulas in (4.5) 
and (4.6) 
Single precision: 
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Double precision: 
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I11-81-0701  BI1,DBI1 

First order modified Bessel function of the first kind I1(x) 
CALL BI1(X,BI,ICON) 

 
Function 
This subroutine computes the first order modified Bessel 
function of the first kind 
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by polynomial approximations and the asymptotic 
expansion. 
 
Parameters 
X ..... Input. Independent variable x. 
BI .... Output. Function value I1(x). 
ICON .. Output. Condition code. See Table BI1-1. 
 
Table BI1-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 X>log(flmax) or X<-log(flmax) BI is set to flmax 
or BI is set to  
-flmax. 

 
Comments on use 
• Subprograms used 

SSL II ... AFMAX, MGSSL, ULMAX 
FORTRAN basic function ... ABS, EXP, and SQRT 

 
• Notes 

[Range of argument X] 
|X| ≤ log( flmax) 
If |X| exceeds the above limits, an overflow will occur 
in the calculation of x. This limit is provided for that 
reason. (See "Method".) 

 
• Example 

The following example generates a table of I1(x) from 
0 to 100 with increment 1. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,101 
      X=K-1 
      CALL BI1(X,BI,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,BI 
      IF(ICON.NE.0) WRITE(6,620) X,BI,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',9X,'I1(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'BI=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 
 

Method 
With |x| as the boundary, the approximation formula used 
to calculate the modified Bessel function I1(x) changes. 
Since I1(−x)= −I1(x), x is used instead of |x| in the 
following. 
• For 0≤x<8 

The power series expansion of I1(x) 
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  is calculated using the approximation formulas in (4.2) 
and (4.3). 
Single precision: 
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Double precision: 
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• For 8 ≤ x ≤ log(flmax) 
The asymptotic expansion of I1(x) 
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  is calculated using the approximation formulas in (4.5) 
and (4.6) 
Single precision: 
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Double precision: 
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I11-81-1001  BJN, DBJN 

Integer order Bessel function of the first kind Jn(x) 
CALL BJN(X,N,BJ,ICON) 

 
Function 
This subroutine computes integer order Bessel function 
of the first kind 
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by Taylor expansion and the asymptotic expansion. 
 
Parameters 
X ..... Input. Independent variable x. 
N ..... Input. Order n of Jn(x). 
BJ .... Output. Function value Jn(x). 
ICON .. Output. Condition code. See Table BJN-1. 

When N=0, or N=1, the same handling as for 
the ICON of BJ0 and BJ1 applies. 

 
Table BJN-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 One of the following 
conditions was true with 
respect to the value of X 
and N. 
⋅  |X| > 100 
⋅  1/8 ≤ |X| < 1 and 
   |N| ≥ 19 |X| + 29 
⋅  1 ≤ |X| < 10 and 
   |N| ≥ 4.7 |X| + 43 
⋅  10 ≤ |X| ≤ 100 and 
   |N| ≥ 1.83 |X| + 71 

BJ is set to 
0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... AFMIN, AMACH, BJ0, BJ1, MGSSL and 
UTLIM 
FORTRAN basic function ... ABS, IABS, FLOAT, 
MAX0, DSIN, DCOS,  and DSQRT 
 

• Notes 
The range of |X| and |N| are indicated by the null area 
in Fig. BJN-1. These limits are provided to avoid 
overflow and underflow during calculations (refer to 
"Method"). 

 
  When calculating J0(x) and J1(x), subroutines BJ0 and 
BJ1 should be used instead. 

| X | 100 10 1 1/8
   20

   31

   90

   48

 259

| N |

 
Fig. BJN-1  Calculation range of the arguments 

• Example 
The following example generates a table of Jn(x) for 
the range of x from 0.0 to 10.0 with increment 1.0 and 
for the range of N from 20 to 30 with increment 1. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 20 N=20,30 
      DO 10 K=1,11 
      X=K-1 
      CALL BJN(X,N,BJ,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,N,BJ 
      IF(ICON.NE.0) WRITE(6,620) X,N,BJ,ICON 
   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',5X,'N',8X, 
     *'JN(X)'/) 
  610 FORMAT(' ',F8.2,I5,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'N=',I5,5X,'BJ=',E17.7,5X, 
     *'CONDITION=',I10) 
      END 
 
Method 
With |x| = 1/8 as the boundary, the calculation formula of 
Bessel function Jn(x) changes.  
Since  J-n (x)=Jn(−x)=(−1)nJn(x), n and x will be used 
instead of |n| and |x| in the following. 
 
• For 0≤x<1/8 

The computation is based on the Taylor expansion: 

( ) ( )

( )( ) 




⋅⋅⋅−

++⋅
+







+
−=

422242

222
1

!2
4

2

nn
x

n
x

n
xxJ n

n

n
 (4.1) 



BJN 

170 

   The value of Jn(x) is computed as a partial sum of the 
first N terms with N being taken large enough so that the 
last term no longer affects the value of the partial sum 
significantly. 
 
• For 1/8 ≤ x ≤ 100 

Letting M be a certain integer sufficiently greater than 
n and x the recurrence formula: 

( ) ( ) ( )xFxF
x
kxF kkk 11

2
+− −=  (4.2) 

is evaluated for k=M,M − 1,...,1, where FM+1(x)=0, 
FM(x)=flmin. 
Then, Jn(x) is computed as 
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[Determination of M] 
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   where [ ] denotes the Gaussian notation, and m0 is taken 
as follows: 
(a) For 1/8≤x<1 

Single precision: m0=5.5x+5 (4.5) 
Double precision: m0=8x+10 (4.6) 

(b) For 1≤x<10 
Single precision: m0=1.8x+9 (4.7) 
Double precision: m0=2x+19 (4.8) 

(c) For 10 ≤ x ≤ 100 
Single precision: m0=1.25x+18 (4.9) 
Double precision: m0=1.3x+34 (4.10) 

  For more information, see References [81] and [82]. 
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I11-83-0101  BJR, DBJR 

Real order Bessel function of the first kind Jv(x) 
CALL BJR(X,V,BJ,ICON) 

 
Function 
This subroutine evaluates real order Bessel function of 
the first kind 
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by using power series expansion (above expression), 
recurrence formula, and asymptotic expansion. 
 
Parameters 
X ..... Input. Independent variable x (x≥0). 
V ..... Input. Order v of Jv(x) (v≥0). 
BJ .... Output. Value of function Jv(x). 
ICON .. Output. Condition code. See Table BJR-1.  
 
Table BJR-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 Any of these errors.  
⋅  X>100 and V>15 
⋅  X≥tmax 

BJ is set to 0.0.

30000 X<0 or V<0 BJ is set to 0.0.
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, AFMIN, MGSSL, UTLIM 
FORTRAN basic function ... FLOAT, ABS, GAMMA, 
AMAX1, MOD, SQRT, COS, SIN 
 

• Notes 
X≥0, V≥0. 
X, V, must be within in the range shown as the white part 
in Fig. BJR-1. And, X<tmax are required since values of 
sin(X−(1/2⋅V+1/4)π) and cos(X−(1/2⋅V+1/4)π) in the 
asymptotic expansion are not computed accurately when 
X is great. See Method (4.4) expression. 

X
tmax

1000100101
0

15

V

 

Fig. BJR-1  Argument range 

   To evaluate J0(x) or J1(x), it is better to use BJ0 or 
BJ1 respectively rather than this subroutine. 
   When a set of function values Jv(x), Jv+1(x), 
Jv+2(x), ..., Jv+M(x) is needed at the same time, Jv+M(x) 
and Jv+M−1(n) are computed with this subroutine first, 
and next, Jv+M-2(x), Jv+M-3(x), ..., Jv(x) should be 
computed in sequence from high order to low order, by 
using the recurrence formula continuously. Conversely, 
it should be avoided in computing Jv+2(x), Jv+3(x), ..., 
Jv+M(x) by recurrence formula after computing Jv(x) 
and Jv+1(x) with this subroutine, in sequence from low 
order to high order. 
 

• Example 
The following example generates a table of Jv(x) for 
the range of x from 0 to 10 with increment 1 and for 
the range of v from 0.4 to 0.6 with increment 0.01. 
 

C     **EXAMPLE** 
      DO 20 K=1,11 
      X=K-1 
      DO 10 NV=40,60 
      V=FLOAT(NV)/100.0 
      CALL BJR(X,V,BJ,ICON) 
      IF(ICON.EQ.0) WRITE(6,600) X,V,BJ 
   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT(' ',F8.2,F8.3,E17.7) 
      END 
 
Method 
When it is known that the value of Jv(x) will underflow 
(has a value less than about 10−75), the following 
computations are skipped and the result 0.0 is output. 
  Different computations of Jv(x) are used corresponding 
to ranges of x and v. 
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• 0≤x<1 
With the power series expansion 
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  , it is computed until the k-th term becomes less than 
unit round-off, in relative to the first term. 
 
• Single precision: 1 ≤ x ≤ 16, or 16< x ≤100 

and v>0.115x+4 
Double precision: 1≤ x <30, or 30 ≤ x ≤ 100 
and v>0.115x+4 
The recurrence formula is used for the computation. 
  Let's suppose that m is a sufficiently large integer 
(determined by x, v, and the desired precision), and that 
δ is a sufficiently small constant (positive smallest 
number allowed for the computer used), and moreover 
that n and α are determined by 

  v=n+α(n: integer,0 ≤ α <1) 

  Initial values 

  ( ) ( ) δαα == +++ xFxF mm ,01  

  are set, and recurrence formula 

( ) ( ) ( ) ( )xFxF
x
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  is repeatedly applied to k=m,m − 1,...,1. Then the value 
of function Jv(x) is obtained as 
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  For the method of determining of m and other details, 
see Reference [81]. 
• Single precision: 100<x<tmax and v≤15, or 

16<x≤100 and v≤0.115x+4 
Double precision: 100<x<tmax and v≤15, or 
30 ≤ x ≤ 100 and v≤0.115x+4 
The asymptotic expansion 
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is used for the computation. Where 
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( ) 10, =v  
P(x,v) and Q(x,v) is computed until each k-th term 
relative to the first term is less than Single precision: max 
(unit round-off, 10-10) Double precision: max (unit round-
off, 10-20) 
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I11-81-0201  BJ0,DBJ0 

Zero order Bessel function of the first kind J0(x) 
CALL BJ0(X,BJ,ICON) 

 
Function 
This subroutine computes zero order Bessel function of 
the first kind 
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by rational approximations and the asymptotic expansion. 
 
Parameters 
X ..... Input. Independent variable x. 
BJ .... Output. Function value J0(x). 
ICON .. Output. Condition code. See Table BJ0-1 
 
Table BJ0-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 |X| ≥ tmax BJ is set to 
0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... ABS, DSIN, DCOS, and 
DSQRT 
 

• Notes 
[Range of argument] 
|X| ≤ tmax 
The limits are set since sin(x − π / 4) and cos(x − π / 4) 
lose accuracy if |X| becomes large. 
(See (4.4) in the Method section.) 

 
• Example 

The following example generates a table of J0(x) from 
0.0 to 100.0 with increment 1.0. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,101 
      X=K-1 
      CALL BJ0(X,BJ,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,BJ 
      IF(ICON.NE.0) WRITE(6,620) X,BJ,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',9X,'J0(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'BJ=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 
 

Method 
With |x|=8 as the boundary, the form of the 
approximation formula used for calculating Bessel 
function J0(x) changes. Since J0(−x)=J0(x), x is used 
instead of |x| in the following. 
 
• For 0 ≤ x ≤ 8 

The expansion of J0(x) into power series 
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  is calculated using the following rational 
approximations. 
Single precision: 
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  Theoretical precision = 8.54 digits 
 
Double precision: 
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  Theoretical precision = 19.22 digits 
 
• For x>8 

The asymptotic expansion of J0(x) 
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is evaluated through use of the following approximate 
expressions of P0(x) and Q0(x): 
Single precision: 
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   Theoretical precision = 10.66 digits 

( ) ∑∑
==

+ ==
2

0

2
1

0

12
0 8,

k

k
k

k

k
k xzzdzcxQ  (4.6) 

Theoretical precision = 9.58 digits 
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Double precision: 
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Theoretical precision = 18.16 digits 

( ) ∑∑
==

+ ==
5

0

2
5

0

12
0 8,

k

k
k

k

k
k xzzdzcxQ  (4.8) 

Theoretical precision = 18.33 digits 
 
  For more information, see Reference [78]pp.141~149. 
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I11-81-0301  BJ1, DBJ1 

First order Bessel function of the first kind J1(x) 
CALL BJ1(X,BJ,ICON) 

 
Function 
This subroutine computes first order Bessel function of 
the first kind 

( ) ( ) ( )
( )∑

∞

=

+

+
−=

0

12

1 !1!
21

k

kk

kk
xxJ  

by rational approximations and the asymptotic expansion. 
 
Parameters 
X ..... Input. Independent variable x. 
BJ .... Output. Function value J1(x). 
ICON .. Output. Condition code. See Table BJ1-1 
 
Table BJ1-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 |X| ≥ tmax BJ is set to 
0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UTLIM 
FORTRAN basic function ... ABS, DSIN, DCOS, and 
DSQRT 
 

• Notes 
[Range of argument] 
|X| ≤ tmax 
The range limits are set since sin(x−3π/4) and 
cos(x−3π/4) lose accuracy if |X| becomes too large. 
(See "Method".) 
 

• Example 
The following example generates a table of J1(x) from 
0.0 to 100.0 with increment 1.0. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,101 
      X=K-1 
      CALL BJ1(X,BJ,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,BJ 
      IF(ICON.NE.0) WRITE(6,620) X,BJ,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',9X,'J1(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'BJ=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 
 

Method 
With |x|=8 as the boundary, the form of the 
approximation used to calculate Bessel function J1(x) 
changes. Since J1(−x)= −J1(x), x is used instead of |x| in 
the following. 
 
• For 0 ≤ x ≤ 8 

The expansion of J1(x) into power series 

( ) ( ) ( )
( )∑

∞

=

+

+
−=

0

12

1 !1!
21

k
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kk
xxJ  (4.1) 

  is calculated using the following rational approx-
imations. 
Single precision: 

( ) ∑∑
==

+=
5

0

2
4
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12
1

k

k
k

k

k
k xbxaxJ  (4.2) 

  Theoretical precision = 8.19 digits 
Double precision: 

( ) ∑∑
==

+=
8
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2
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12
1

k

k
k

k

k
k xbxaxJ  (4.3) 

Theoretical precision = 18.68 digits 
 
• For x>8 

The asymptotic expansion of J1(x) 

( ) ( ) ( ){
( ) ( )}

J x
x

P x x

Q x x

1 1

1

2 3 4

3 4

= −

− −

π
π

π

cos

sin

 (4.4) 

is evaluated through use of the following approximate 
expressions of P0(x) and Q0(x): 
Single precision: 

( ) ∑∑
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==
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2
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2
1 8,

k

k
k

k

k
k xzzbzaxP  (4.5) 

  Theoretical precision = 10.58 digits 

( ) ∑∑
==

+ ==
2

0

2
1

0

12
1 8,

k

k
k

k

k
k xzzdzcxQ  (4.6) 

  Theoretical precision = 9.48 digits 
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Double precision: 

( ) ∑∑
==

==
5

0

2
5

0

2
1 8,

k

k
k

k

k
k xzzbzaxP  (4.7) 

  Theoretical precision = 18.11 digits 

( ) ∑∑
==

+ ==
5

0

2
5

0

12
1 8,

k

k
k

k

k
k xzzdzcxQ  (4.8) 

  Theoretical precision = 18.28 digits 
For more information, see Reference [78]pp.141~149. 
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I11-81-1301  BKN, DBKN 

Integer order modified Bessel function of the second kind 
Kn(x) 
CALL BKN(X,N,BK,ICON) 

 
Function 
This subroutine computes integer order modified Bessel 
function of the second kind 
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for x>0 by the recurrence formula, where, In(x) is integer 
order modified Bessel function of the first kind, and γ 
denotes the Euler's constant, and also the assumption 

01
0

1
=∑

=m
m  is made. 

 
Parameters 
X ..... Input. Independent variable x. 
N ..... Input. Order n of Kn(x). 
BK .... Output. Function value Kn(x). 
ICON .. Output. Condition code. See Table BKN-1. 
 
  When N=0 or N=1, ICON is handled the same as the 
ICON of BK0 and BK1. 
 
Table BKN-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 N>log(flmax) BK is set to 
0.0. 

30000 X≤0 BK is set to 
0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... BK0, BK1, MGSSL, and ULMAX 
FORTRAN basic function ... IABS, FLOAT, ALOG, 
EXP, and SQRT 

• Notes 
[Range of the argument X] 
0<X≤log(flmax) 
  If X is outside of the above range, overflow and 
underflow will occur in the calculation of e-x. The limit 
is provided for that reason. (See (4.4) and (4.5) in the 
Method sections of BK0 and BK1.) 
When calculating K0(x) and K1(x), BK0 and BK1 
should be used. 
 

• Example 
The following example generates a table of Kn(x) for 
the range of x from 1 to 10 with increment 1 and for the 
range of N from 20 to 29 with increment 1. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 20 N=20,29 
      DO 10 K=1,10 
      X=K 
      CALL BKN(X,N,BK,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,N,BK 
      IF(ICON.NE.0) WRITE(6,620) X,N,BK,ICON 
   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',5X,'N',8X, 
     *'KN(X)'/) 
  610 FORMAT(' ',F8.2,I5,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'N=',I5,5X,'BK=',E17.7,5X, 
     *'CONDITION=',I10) 
      END 
 
Method 
Bessel function Kn(x) is calculated using the following 
recurrence formula 

( ) ( ) ( ) 1,...,2,1,2
11 −=+= −+ nkxKxK

x
kxK kkk  (4.1) 

where, both K0(x) and K1(x) are calculated by using BK0 
and BK1. 
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I11-83-0401  BKR, DBKR 

Real order modified Bessel function of the second kind 
Kv(x) 
CALL BKR(X,V,BK,ICON) 

 
Function 
This subroutine computes real order modified Bessel 
function of the second kind: 

( ) ( ) ( )
( )π

π
v

xIxI
xK vv

v sin2
−

= −  

by the method by Yoshida and Ninomiya. 
Iv(x) is modified Bessel function of the first kind. 
Where x>0. 
 
Parameters 
X ..... Input. Independent variable x. 
V ..... Input. Order v of Kv(x). 
BK .... Output. Value of function Kv(x). 
ICON .. Output. Condition code. 
See Table BKR-1. 
 
Table BKR-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 X=0.0. Or BK was large 
enough to overflow. 

The maximum 
value of the 
floating point is 
output to BK. 

30000 X<0.0 BK=0.0. 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, AFMAX, MGSSL, ULMAX 
FORTRAN basic functions ... FLOAT, ALOG, 
AMAX1, ALGAMA, GAMMA, ABS, SQRT, EXP 
 

• Notes 
X>0.0 must be satisfied. 
  When computing K0(x) or K1(x), BK0 or BK1 should 
be used for efficiency instead of this subroutine. 
  When the values of Kv(x), Kv+1(x), Kv+2(x),..., Kv+M(x) 
are required at one time, first obtain Kv(x) and Kv+1(x) 
by this subroutine and obtain others in sequence from 
low order to high order as Kv+2(x), Kv+3(x), ..., Kv+M(x). 
  When the subroutine is called repeatedly with a fixed 
value of v but with various, large values of x in 
magnitude, the subroutine computes Kv(x) efficiently 
by bypassing a common part of computation. 

 
• Example 

The following example generates a tale of Kv(x) for the 
range of x from 1 to 10 with increment 1 and for the 
range of v from 0.4 to 0.6 with increment 0.01. 
 

C     **EXAMPLE** 
      DO 20 NV=40,60 
      V=FLOAT(NV)/100.0 
      DO 10 K=1,10 
      X=FLOAT(K) 

      CALL BKR(X,V,BK,ICON) 
      WRITE(6,600) V,X,BK,ICON 
   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT(' ',F8.3,F8.2,E17.7,I7) 
      END 
 
Method 
The vth-order modified Bessel function of the second 
kind Kv(x) is defined as 

( ) ( ) ( )
( )π

π
v

xIxI
xK vv

v sin2
−

= −  (4.1) 

using modified Bessel function of the first kind Iv(x) and 
I-v(x). When the order v is an integer n, the function is 
defined as the limit as v→n. 
Since 

K-v(x)=Kv(x) (4.2) 

  holds, computation is required only for v≥0. 
  This subroutine directly computes the value of Kv(x) 
when 0≤µ≤2.5. 
When v≥2.5, let µ denote the fractional part of v. 
When µ≥0.5, this subroutine directly obtains Kµ+1(x) and 
Kµ+2(x) and when µ>0.5, it directly obtains Kµ(x) and 
Kµ+1(x). And then it computes the value of Kv(x) by 

( ) ( ) ( )xKxK
x
vxK vvv 11

2
−+ +=  (4.3) 

The Yoshida-Ninomiya method for the computation of 

Kv(x) when 0≤v≤2.5 is explained below. 
  The method for computing Kv(x) depends on x and v. In 
Fig. BKR-1, one method is used in the domain A and 
another in the domain B. 
 
• Method in the domain A 

The method here uses the series expansions of I-v(x) 
and Iv(x). 
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Fig. BKR-1  Domain A and B 
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 (4.5) 

φ 1(v,x) and φ 2(v,x) are defined, for later use, as 
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 (4.6) 

  The approximation formula depends on whether 
0≤v≤0.5, 0.5<v≤1.5 or 1.5<v≤2.5. 
  Here, an example with 0≤v≤0.5 is explained. 
  From (4.4), (4.5) and (4.6), the following equation can 
be obtained: 
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where, 
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 (4.8) 

  When these values are computed, cancellation of digits 
may occur when v ≈ 0 . To avoid this, take the following 
procedures. 
  First, in the computation of Bk(v,x), since φ 1(v,x) and 
φ2(v,x) are of the same sign, no cancellation occurs in the 
addition. 
  However, φ 1(v,x) and φ 2(v,x) can be computed 
according to their definitions only when (x/2)v<1/2 or 
when (x/2) v >2. 
  When 1/2≤(x/2) v ≤2, that is −log2≤vlog(x/2)≤log 2, 
cancellation may occurs (where, in the addition of a+b, 
when max (|a|, |b|)/|a+b| ≥ 2, a round-off error occurs. 
This is equivalent to having a binary round-off error of 
one digit or more). 
  To compute φ 1(v,x) and φ 2(v,x) without any 
cancellation, it is sufficient to find the best approximation 
in relative sense to the function in the range of −log 2 ≤ t 
≤ log 2. 
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  By the approximation, we can compute 
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 (4.10) 

  This subroutine uses the following approximation to f(t): 
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 (4.11) 

  (For detailed information on concrete values of M, N, pk 
and qk, refer to [88]) 
  Also, as for Ak(v,x) in (4.8), to avoid cancellations in 
computing the value of (1/Γ (k+1−v)−1/Γ (k+1+v))/(k!v), the 
best approximation in relative sense should be provided. If 
we denote the expression in { } by ( )~A vk  we can find, 
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( )] ( )+ ≥−

~A v kk 1 1  (4.12) 

This means that only an approximation to ( )~A v0  should 
be provided. However, for k=1, (4.12) causes 
cancellation. Therefore it can be used for k≥2. As a result, 
the best approximation to ( )~A v0  and ( )~A v1  in the range 
of 0 ≤v≤0.5 is required. 
  This subroutine uses the best approximation 
polynomials of the form 
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  (For detailed information on M, pk, N, qk, refer to [88].) 
  Thus Ak(v,x) and Bk(v,x) can be obtained without 
cancellations. If 0≤v≤0.5, then A0(v,x)≤0 and Ak(v,x)≥0 
(k=1,2,...) if x≤2, then Bk(v,x)≥0 and if x>2, then 
Bk(v,x)<0 (k=0,1,2,...). Therefore, in the addition in (4.7), 
cancellations may occur. Testing results imply that no 
cancellation occurs in the domain A when 0≤v≤0.5 in 
Fig.BKR-1. The items used in the sum in (4.7) becomes 
small enough as k becomes large. Therefore, the items 
used for convergence to the required accuracy is less. 
  Consequently, if we use the best approximation (for 
detailed information on M and pk, refer to [88]), 

( ) ( )g v
v

v= 2
π

πsin  (4.15) 

  to 
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k vpvg

0

2  (4.14) 
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the value of Kv(x) can be computed as 

( )
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I x I x
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  When v=0, K0(x) can be computed more efficiently from 
the expression, 
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which is the limit of (4.1) as v→0,. instead of using 
(4.16). In (4.17), γ denotes the Euler's constant, 
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m
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m0

11,0 ΦΦ0  

  If the required relative accuracy is assumed to be ε, 
when 

v x<1723
1
2. ε  (4.18) 

Kv(x) and K0(x) are the same in the sense of relative 
accuracy. Then Kv(x) is computed by using (4.17). 
  For the calculation when 0.5<v≤1.5 and 1.5<v≤2.5, the 
methods are almost the same as that above. 
 
• Method in the domain B 

The method below is a generalization of the τ-method 
for computing Kn(x) of integer order. 
  The method is based on the expression for Kv(x) of the 
form 

( )K x
x

e f
xv

x
v= 





−π
2

1
 (4.19) 

and uses the approximation to fv(1/x). Letting t=1/x, and 
fv(x) satisfies 

( ) ( ) ( ) ( )t f t t f t v f tv v v
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  When adding the shifted Ultraspherical polynomial 
orthogonal on the interval [0,η] multiplied by τ on the 
right of (4.20), 
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  where, 
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is the shifted Ultraspherical polynomial. Equation (4.21) 
has the following mth degree polynomial solution. 
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  where, 
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  Here fvm(t) is considered as the approximation polynomial 
to f(t). From the initial condition fvm(0)=1 (as t→0, fv(t)→1) τ 
can be determined. Then 
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can be obtained. Although (4.25) contains α and η as 
unknown, when α=0.5 ( ( )tC m

)*( αααα  is a shifted Legendre 
polynomial) and η=t, the accuracy reaches the best. 
In this case, 
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holds. Where, Pmk
*  is a coefficient of a shifted Legendre 

polynomial, 
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By multiplying both the numerator and the denominator 
by tm, we obtain 
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  where, 
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  Equation (4.29) can be expressed using the power of v2 
as follows: 
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  where, 
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With initial values 

p p p0 0 1,0 1,11 1 1, , ,= = − =  (4.33) 

( )q q m q0 0 1,0
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1,11 2 1 1, , ,= = − + =  (4.34) 

  pk,l and qk,l can be computed using the following 
recurrence formulas. 
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  Equation (4.30) may be expressed as 
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  Using (4.19), (4.28), (4.31) and (4.37), we obtain as 
approximation to Kv(x) 
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  where, 
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  In (4.40), when m is fixed, the relationship is such that 
the larger the x, the higher the accuracy. Also when x is 
fixed, the relationship is such that the larger the m, the 
higher the accuracy. Equation (4.40) is used for the 
domain B in Fig. BKR-1. This subroutine sets m as 
follows in consideration of efficiency. 

Single precision:  when
when
when

x m
x m
x m

< =
≤ < =
≤ =







2 9
2 10 6
10 4

,
,

,
 (4.42) 

Double precision: when 
when 
when

x m
x m

x m

< =
≤ < =
≤ =







2 28
2 10 16
10 11

,
,

,
 (4.43) 

  This subroutine contains a table in which constants dij 
and ei are stored in the data statement. 
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I11-81-0801  BK0, DBK0 

Zero order modified Bessel function of the second kind 
K0(x) 
CALL BK0(X,BK,ICON) 

 
Function 
This subroutine computes the values of zero order 
modified Bessel function of the second kind 
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(where I0(x): zero order modified Bessel function of the 
first kind and γ : Euler's constant) by polynomial 
approximations and the asymptotic expansion. 
Where, x>0. 
 
Parameters 
X ..... Input. Independent variable x. 
BK .... Output. Function value K0(x). 
ICON .. Output. Condition code. See Table BK0-1. 
 
Table BK0-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 X>log(flmax) BK is set to 
0.0. 

30000 X≤0 BJ is set to 
0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, ULMAX 
FORTRAN basic function ... ALOG, EXP, and SQRT 
 

• Notes 
[Range of argument X]. 
0<X≤log(flmax) 
If X exceeds the limits, and underflow will occur 
during the calculation of e-x. This limit is provided for 
that reason. (See (4.5) and (4.6) in "Method".) 
 

• Example 
The following example generates a table of K(x) from 1 
to 100 with increment 1. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      X=K 
      CALL BK0(X,BK,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,BK 
      IF(ICON.NE.0) WRITE(6,620) X,BK,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',9X,'K0(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'BK=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 

 
Method 
With x=2 as the boundary, the approximation formula 
used to calculate modified Bessel function K0(x) changes. 
 
• For 0<x<2 

The power series expansion of K0(x) 
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  (where I0(x): zero order modified Bessel function of the 
first kind, γ: Euler's constant) is calculated using the 
approximation formulas (4.2) and (4.3). 
Single precision: 
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Double precision: 
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• For 2 ≤ x ≤ log(flmax) 
The asymptotic expansion of K0(x) 
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  is calculated using the approximation formulas (4.5) and 
(4.6) 
Single precision: 
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Double precision: 
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I11-81-0901  BK1, DBK1 

First order modified Bessel function of the second kind 
K1(x) 
CALL BK1(X,BK,ICON) 

 
Function 
This subroutine computes first order modified Bessel 
function of the second kind K1(x) 
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(where I1(x): first order modified Bessel function of the 
first kind, γ : Euler's constant) by polynomial 
approximations and the asymptotic expansion. 
Where, x>0. 
 
Parameters 
X ..... Input. Independent variable x. 
BK .... Output. Function value K1(x). 
ICON .. Output. Condition code. See Table BK1-1. 
 
Table BK1-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 X>log(flmax) BK is set to 
0.0. 

30000 X≤0 BK is set to 
0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, ULMAX 
FORTRAN basic function ... ALOG, EXP, and SQRT 
 

• Notes 
[Range of argument X]. 
0< X≤log(flmax) 
If X exceeds the limits, and underflow will occur in the 
calculation of e-x. This limit is provided for that reason. 
(See (4.5) and (4.6) in "Methods".) 
 

• Example 
The following example generates a table of K1(x) from 
1 to 100 with increment 1. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      X=K 
      CALL BK1(X,BK,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,BK 
      IF(ICON.NE.0) WRITE(6,620) X,BK,ICON 
   10 CONTINUE 
      STOP 
 

  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',9X,'K1(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'BK=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 
 
 
Method 
With x=2 as the boundary, the approximation formula 
used to calculate modified Bessel function K1(x) changes. 
• For 0<x<2 
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 (4.1) 

  (where I1(x): first order modified Bessel function of the 
first kind, γ: Euler's constant) is calculated using the 
approximation formulas (4.2) and (4.3). 
Single precision: 
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Double precision: 
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• For 2 ≤ x ≤ log(flmax) 
The asymptotic expansion of K1(x) 
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  is calculated using the approximation formulas (4.5) and 
(4.6) 
Single precision: 
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Double precision: 
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Balancing of a real matrix 
CALL BLNC(A,K,N,DV,ICON) 

 
Function 
The diagonal similarity transformation shown in (1.1) is 
applied to an n-order matrix A. By this transformation, 
sums of the norms of elements in the corresponding i-th 
row and i-th column (i=1,...,n) are almost equalized for 
the transformed real matrix ~A . 

~A D AD= −1  (1.1) 

D is a diagonal matrix. n≥1. 
 
Parameters 
A ..... Input. Real matrix A. 

Output. Balanced real matrix ~A . 
A(K,N) is a two-dimensional array. 

K ..... Input. Adjustable dimension of array A. 
N ..... Input. Order n on A and ~A . 
DV .... Output. Scaling factor (diagonal elements of 

D). 
DV is a one-dimensional array of size n. 

ICON .. Output. Condition code. 
See Table BLNC-1. 

 
Table BLNC-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N=1 Balancing was 
not performed. 

30000 N<1 or K<N Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... IRADIX and MGSSL 
FORTRAN basic function ... ABS 
 

• Notes 
If there are large differences in magnitude of elements 
in a matrix, the precision of the computed eigenvalues 
and eigenvectors on that matrix can be adversely 
affected. This routine is used to avoid the adverse 
effects. 
  If each element of a matrix is nearly the same 
magnitude, this routine should be omitted. 
  If all elements of a row or column (except the 
diagonal element) are zero, balancing of the row and 
corresponding column is bypassed. 
  In order to obtain the eigenvectors x of real matrix A, 
the back transformation of (3.1) must be applied to 
eigenvectors ~x  of matrix ~A  which has been balanced 
by this routine. 

xDx ~=  (3.1) 

  The back transformation of (3.1) can be performed 
using subroutine HBK1. (See the section on HBK1.) 
 
• Example 

After balancing an n-order real matrix A, it is reduced 
to a real Hessenburge matrix H using subroutine HES1, 
then the eigenvalues are determined using subroutine 
HSQR. n≤100. 
 

C     **EXAMPLE** 
      DIMENSION A(100,100),DV(100),PV(100) 
     *,ER(100),EI(100) 
   10 CONTINUE 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL BLNC(A,100,N,DV,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      CALL HES1(A,100,N,PV,ICON) 
      CALL HSQR(A,100,N,ER,EI,L,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,630) (ER(I),EI(I),I=1,L) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX',5X, 
     *'N=',I3/) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     *E14.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
  630 FORMAT('0',5X,'EIGENVALUE'/'0',20X, 
     *'REAL',16X,'IMAG'/('0',15X,2(E15.7, 
     *5X))) 
      END 
 
Method 
An n-order real matrix A is balanced through iterations of 
the diagonal similarity transformation. 

As=Ds
-1As-1Ds  s = 1,2,... (4.1) 

  Where A0=A, Ds is the diagonal matrix shown in (4.2), 
and s is the number of iterations. 
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  In the balancing of (4.1), excluding the diagonal 
elements, the sum of the magnitude of elements in the i-th 
row of As is made almost equal to that of the magnitude 
of elements in the i-th column. Letting As  
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(s)), balancing is performed such that 
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is saturated. If Dsi is defined as shown in (4.4), Ds of (4.2) 
can be expressed as (4.5). 
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Ds=Ds1Ds2･･･Dsn (4.5) 

The equation (4.5) shows that the transformation of (4.1) 
can be performed by executing the transformation of 
(4.6) for i=1,2,...,n. 

siissi si
DADA 1

1
−

−=  (4.6) 
where  andA A A As s s sn0 1= =−  

Dsi that is di
(s) is defined such that the transformed i-th 

row and corresponding column satisfy the equation (4.3). 
If they already satisfy the equation (4.3) at the time of 
transformation,  di

(s)=1. Iterations of (4.1) continue until 
(4.3) is satisfied for all rows and corresponding columns. 
A brief description of this procedure follows: 
• Excluding the diagonal element, the sums of 

magnitudes of elements in i-th row and corresponding 
column are computed. 
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• di
(s) is defined 

di
(s)=ρ k (4.9) 

where
2  for binary digits
16 for hexadecimal digits

ρ =




 

k is defined to satisfy the condition 

ρρρ RR k ≥⋅>⋅ 2C  (4.10) 

From (4.10), when C< R/ρ, k >0, and when C ≥ R/ρ, k≤0. 
 
• Whether or not transformation is necessary is 

determined by 

( ) ( )C R C Rk⋅ + < +ρ ρ2 0 95.  (4.11) 

  If (4.11) is satisfied, transformation is performed where 
( )di
s k= ρ . If (4.11) is not satisfied, transformation is 

bypassed. 
 
• Balancing ends when transformation can no longer be 

performed on any row or column. Then, the diagonal 
elements of D shown in (4.12) are stored as the scaling 
factor in the array DV. 

D=D1D2･･･Ds (4.12) 

  For further information see Reference [13] pp.315-326. 
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A system of linear equations with a real general band 
matrix decomposed into the factors L and U 
CALL BLUX1(B,FA,N,NH1,NH2,FL,IP,ICON) 

 
Function 
This subroutine solves a system of linear equations 

LUx=b (1.1) 

where L is a unit lower band matrix with band width h1, 
U is an upper band matrix with band width 
h(=min(h1+h2+1,n) and b is an n-dimensional real 
constant vector. Further, the order, the lower and upper 
band widths of the original matrix which has been LU-
decomposed are n, h1 and h2 respectively, where n>h1≥0 
and n>h2≥0. 
 
Parameters 
B ..... Input. Constant vector b. 

Output. Solution vector x. 
One-dimensional array of size n. 

FA .... Input. Matrix U. 
See Figure BLUX1-1. 
One-dimensional array of size n⋅h. 

N ..... Input. Order n of matrices L and U. 
NH1 ... Input. Lower band width h1 of the LU-

decomposed original matrix. 
NH2 ... Input. Upper band width h2 of the LU-

decomposed original matrix. 
FL .... Input. Matrix L. 

One-dimensional array of size (n − 1)⋅h1. 
See Fig. BLUX1-2. 

IP .... Input. Transposition vector which indicates the 
history of the row exchange in partial pivoting. 
One-dimensional array of size n. 

ICON .. Output. Condition code. See Table BLUX1-1. 
 
Table BLUX1-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The coefficient matrix was 
singular. 

Discontinued 

30000 N≤NH1, N≤NH2, NH1<0, 
NH2<0 or there was error in 
IP. 

Bypassed 

 Upper band matrix U Array FA 
u11 u h1

u2 2
u h2 1+

un h n h− − un h n−

un n−1un n− −1 1

un n

0

0

u11

u h1
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u h2 1+

un h n h− −

un h n−

un n−1

un n− −1 1

un n

*
*

*

*

h

h

h

h

h

n h⋅

 
 

Note: The elements marked by  *⋅⋅⋅*  are arbitrary values. 

Fig. BLUX1-1  Storage of elements of U in array FA 

 Unit lower band matrix  L Array FL 

m21 0

0

*
*

*

*

( )n h− ⋅1 1

h1

h1

h1

h1

1

1

1

1

1

mh1+1 1

mn n-h1
mn n−2 mnn−1

mn n− −1 2

m21

mh1+1 1

mn n-h1

mn n− −1 2

mn n−2

mn n−1

 
Note: The diagonal elements are not stored. 

The elements marked by  *⋅⋅⋅*  are arbitrary values. 

Fig. BLUX1-2  Storage of elements of  L in array FL 

Comments on use 
• Subprograms used 

SSL II .... MGSSL 
FORTRAN basic function ... MIN0 
 

• Notes 
A system of linear equations can be solved by calling 
this subroutine following subroutine BLU1. At this 
case, this subroutine requires the output parameters 
from subroutine BLU1 as the input parameters (except 
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for the constant vector). However, such equations can 
be solved by calling subroutine LBX1 in one step. 
  This subroutine, by making use of band matrix 
characteristics, saves a data storage area. In some cases, 
however, depending on the size of the band width, a 
larger data storage area may be required than used by 
subroutine LUX provided for real general matrices. 
  If that is the case, subroutine LUX may be used to 
more save data storage area. 
  This subroutine is especially useful for the case where 
the upper and lower band widths of the coefficient 
matrix of order n are approximately less than n/3, 
provided both the band widths are equal. 
 

• Example 
This example shows that the subroutine BLU1 is once 
called to decompose the n × n matrix with lower band 
width h1 and upper band width h2 and then l systems of 
linear equations with the decomposed coefficient 
matrix are solved. n≤100, h1≤20 and h2≤20. 

 
C     **EXAMPLE** 
      DIMENSION A(4100),B(100),FL(1980), 
     *IP(100),VW(100) 
      CHARACTER*4 NT1(6),NT2(6),NT3(6) 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *'EN  ','T   '/, 
     *NT2/'CO  ','NS  ','TA  ','NT  ', 
     *2*'    '/, 
     *NT3/'SO  ','LU  ','TI  ','ON  ', 
     *2*'    '/ 
      READ(5,500) N,NH1,NH2,L 
      NT=N*MIN0(NH1+NH2+1,N) 
      READ(5,510) (A(I),I=1,NT) 
      M=1 
      WRITE(6,600) N,NH1,NH2 
      CALL PBM(NT1,6,A,N,NH1,NH2) 
      CALL BLU1(A,N,NH1,NH2,1.0E-6, 
     *IS,FL,IP,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.EQ.0) GO TO 10 
      WRITE(6,620) 
      STOP 
   10 READ(5,510) (B(I),I=1,N) 
      CALL PGM(NT2,6,B,N,N,1) 
      CALL BLUX1(B,A,N,NH1,NH2, 
     *FL,IP,ICON) 
      CALL PGM(NT3,6,B,N,N,1) 
      M=M+1 
      IF(L.GT.M) GO TO 10 
      WRITE(6,630) 
      STOP 
  500 FORMAT(4I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'///5X, 
     *'LINEAR EQUATIONS  AX=B' 
     */5X,'ORDER=',I4 
     */5X,'SUB-DIAGONAL LINES=',I4 
     */5X,'SUPER-DIAGONAL LINES=',I4) 
  610 FORMAT(' ',4X,'ICON=',I5) 
  620 FORMAT(' '/5X,'** ABNORMAL END **') 
  630 FORMAT(' '/5X,'** NORMAL END **') 
      END 
 

  Subroutines PBM and PGM in these example are used 
to print out a band matrix and a real matrix, respectively. 
Those programs are described in the examples for 
subroutines LBX1 and MGSM. 
 
Method 
A system of linear equations 

LUx=b (4.1) 

can be solved by solving two following equations 

Ly=b (4.2) 
Ux=y (4.3) 

  where L is an n × n unit lower band matrix with band 
width h1 and U is an n × n upper band matrix with band 
width h (=min(h1+h2+1,n)). 
  This subroutine assumes that the triangular matrices L 
and U have been formed using the Gaussian elimination 
method. 
  Particularly, L is represented by 

L=(Mn-1Pn-1...M1P1)-1 (4.4) 

  where Mk is the matrix to eliminate the elements below 
the diagonal element in the k-th column at the k-th step of 
the Gaussian elimination method, and Pk is the 
permutation matrix which performs the row exchanging 
required in partial pivoting. (For further details, refer to 
method for subroutine BLU1). 
 
• Solving Ly=b (Forward substitution) 

The equation (4.5) can be derived from the equation 
(4.4) by the equation (4.2). 

y=Mn-1Pn-1...M1P1b (4.5) 

  The equation (4.5) is successively computed using the 
following equations. 

( )

( ) ( )

( ) ( )

( ) ( )

( )n

n
nn

n

by

bPMb

bPMb

bPMb

bb

=

=

=

=

=

−
−−

1
11

2
22

3

1
11

2

1

:
 



BLUX1 

188 

  where Mk is the following matrix. 
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  In this subroutine, b(k+1) (k=0,1,...,n − 1) are successively 
obtained by the following sequence: 
  Corresponding to the row exchange at the k-th step of 
the Gaussian elimination process, the elements of 
constant vector b(k) are exchanged such that 
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• Solving Ux=y (Backward substitution) 
Ux=y can be serially solved using equation (4.6). 
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  By increasing the precision of the inner products in the 
equation (4.6), the effects of rounding errors is 
minimized. 
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A52-11-0202  BLU1, DBLU1 

LU-decomposition of a real general band matrix 
(Gaussian elimination method) 
CALL BLU1(A,N,NH1,NH2,EPSZ,IS,FL,IP,VW,ICON) 

 
Function 
An n × n real general band matrix with lower band width 
h1 and upper band width h2 is LU decomposed using the 
Gaussian elimination method. 

A=LU (1.1) 

  Where L is an unit lower band matrix and U is an upper 
band matrix. n>h1≥0 and n>h2≥0. 
 
Parameters 
A ..... Input. Matrix A. 

Output. Matrix U. 
See Fig. BLU1-1. 
Matrix A is stored in a one-dimensional array 
of size n･min (h1+h2+1,n) in the compressed 
mode for band matrices. 

N ..... Input. Order n of matrix A. 
NH1 .... Input. Lower band width h1 of matrix A. 
NH2 .... Input. Upper band width h2 of matrix A. 
EPSZ .. Input. Tolerance for relative zero test of pivots 

in decomposition process of matrix A (≥0.0). 
When EPSZ is 0.0, the standard value is used. 
(See Notes.) 

IS .... Output. Information for obtaining the 
determinant of matrix A. (See Notes.) 

FL .... Output. The matrix L. 
See Fig. BLU1-2. 
One-dimensional array of size (n − 1)h1. 

IP .... Output. The transposition vector which 
indicates the history of row exchanging that 
occurred in partial pivoting. 
One dimensional array of size n. 
(See Notes.) 

VW .... Work area. 
One-dimensional array of size n. 

ICON .. Output. Condition code. 
See Table BLU1-1. 

 
Table BLU1-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The relatively zero pivot 
occurred. It is highly 
probable that the matrix is 
singular. 

Discontinued 

30000 N≤NH1, N≤NH2, NH1<0, 
NH2<0 or EPSZ<0.0 

Bypassed 

 Upper band matrix  U                  Array  A 
 

u11 u h1

u2 2
u h2 1+

un h n h− − un h n−

un n−1un n− −1 1

un n

0

0

u11

u h1

u2 2

u h2 1+

un h n h− −

un h n−

un n−1

un n− −1 1

unn

*
*

*

*

h

h

h

h

h

n h⋅

 
Note: The elements marked by  *…*  may have invalid data. 

h=min(h1+h2+1,n) 

Fig. BLU1-1  Storage of the elements of U in array A. 

 Unit lower band matrix  L               Array  FL 
 

m21 0

0

*
*

*

*

( )n h− ⋅1 1

h1

h1

h1

h1

1

1

1

1

1

m
h1+1 1

mn n-h1
mn n−2 mnn−1

mn n− −1 2

m21

m
h1+1 1

mn n-h1

mn n− −1 2

mn n−2

mn n−1

 
Note: The diagonal elements are not stored. The elements 

marked by  *…*  may have invalid data. 

Fig. BLU1-2  Storage of the elements of L in array FL 

Comments on use 
• Subprograms used 

SSL II .... AMACH, MGSSL 
FORTRAN basic functions .... ABS, MIN0 
 

• Notes 
This subroutine assumes that the relatively zero pivot 
occurs when the absolute value of the pivot is smaller 
than the largest absolute value of the elements, in the 
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coefficient matrix, multiplied by EPSZ in the LU-
decomposition using the Gaussian elimination method. 
In such a case, the processing is discontinued with 
ICON=20000. The standard value of EPSZ is 16 u, u 
being the unit round off. If the processing is to proceed 
at a low pivot value, EPSZ will be given the minimum 
value, but the result is not always be guaranteed. 
  The elements of matrix U are stored in array A as 
shown in Fig. BLU1-1. Therefore, the determinant of 
matrix A can be obtained by multiplying the product of 
the n diagonal elements, i.e., n array elements A(i×h+1), 
i=0,1,...,n − 1, by the IS value, where 
h=min(h1+h2+1,n). 
  In this subroutine, the elements of array A are actually 
exchanged in partial pivoting. That is, if the I-th row ( I 
≥ J ) has been selected as the pivotal row in the J-th 
stage (J=1,2,...,n − 1) of decomposition, the elements 
of the I-th and J-th rows of matrix A are exchanged. 
Then, I is stored into IP(J) in order to record the history 
of this exchange. 
  It is possible to solve a system of linear equations by 
calling subroutine BLUX1 following this subroutine. 
However, instead of these subroutines, subroutine 
LBX1 can be called to solve such an equations in one 
step. 
  This subroutine, by making use of band matrix 
characteristics, saves data storage area. In some cases, 
however, depending on the size of the band width, a 
larger data storage area may be required (including 
work area) than used by subroutine ALU provided for 
real general matrices. If that is the case, subroutine 
ALU may be used to save more data storage area. 
  This subroutine is especially useful for the case where 
the upper and lower band widths of the matrix of order 
n are approximately less than n/3, provided both the 
band widths are equal. 

 
• Example 

For an n × n matrix with lower band width h1 and upper 
band width h2, the LU-decomposition is computed. 
n≤100, h1≤20 and h2≤20. 
 

C     **EXAMPLE** 
      DIMENSION A(4100),FL(1980),IP(100), 
     * VW(100) 
      CHARACTER*4 NT1(6),NT2(15),NT3(10) 
      DATA NT1/'MA  ','TR  ','IX  ', 
     *         3*'    '/, 
     *NT2/'LU  ','-D  ','EC  ','OM  ', 
     *    'PO  ','SE  ','D   ','MA  ', 
     *    'TR  ','IX  ',5*'    '/, 
     *NT3/'TR  ','AN  ','SP  ','OS  ', 
     *    'IT  ','IO  ','N   ','VE  ', 
     *    'CT  ','OR  '/ 
      READ(5,500) N,NH1,NH2 
      NT0=MIN0(NH1+NH2+1,N) 
      NT=N*NT0 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,600) N,NH1,NH2 
 

      CALL PBM(NT1,6,A,N,NH1,NH2) 
      CALL BLU1(A,N,NH1,NH2,1.0E-6, 
     *          IS,FL,IP,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.EQ.0) GO TO 10 
      WRITE(6,620) 
      STOP 
   10 CALL PBM(NT2,15,A,N,NH1,NH2) 
      CALL PGM(NT3,10,IP,N,N,1) 
      DET=IS 
      DO 20 I=1,NT,NT0 
      DET=DET*A(I) 
   20 CONTINUE 
      WRITE(6,630) DET 
      WRITE(6,640) 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1' 
     *///5X,'DETERMINANT COMPUTATION' 
     */5X,'ORDER=',I4 
     */5X,'SUB-DIAGONAL LINES=',I4 
     */5X,'SUPER-DIAGONAL LINES=',I4) 
  610 FORMAT(' ',4X,'ICON=',I5) 
  620 FORMAT(' '/5X,'** ABNORMAL END **') 
  630 FORMAT(' ',4X,'DET=',E16.8) 
  640 FORMAT(' '/5X,'** NORMAL END **') 
      END 
 
  Subroutines PBM and PGM are used to print out a 
general band matrix and a real general matrix, 
respectively. Those programs are described in the 
examples for subroutines LBX1 and MGSM, respectively. 
 
Method 
• Gaussian elimination method 

Generally, n × n non-singular matrix A can be 
decomposed, with partial pivoting, into a unit lower 
triangular matrix L and an upper triangular matrix U as 
equation (4.1). 

A=LU (4.1) 

  Now, let A(k) represent the matrix at the k-th step of 
Gaussian elimination method, where A(1)=A. 
  The first step of the elimination is to obtain A(2) by 
eliminating the elements below the diagonal element in 
the first column. This process can be described as the 
form (4.2) in a matrix expression, 

A(2)=M1P1A(1) (4.2) 

  where P1 is a permutation matrix which performs the 
row exchanging required for partial pivoting and M1 is a 
matrix to eliminate the elements below the diagonal 
element in the first column of the permuted matrix. 
Similarly, the k-th step of the elimination process can be 
described as the form (4.3). 

A(k+1)=MkPkA(k) (4.3) 



BLU1 

191 

where 
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ka a ,    a= =A  

  At the final n-th step, it can be described as follows: 

A(n)=Mn-1Pn-1A(n - 1) 
      =Mn-1Pn-1...M1P1A(1) (4.5) 

  and then matrix A (=A(1)) has been transformed into the 
upper triangular matrix A(n). 
  Let matrices U and L represent the forms (4.6) and (4.7). 

U=A(n) (4.6) 
L=(Mn−1Pn−1...M1P1)−1 (4.7) 

  Then, the equation (4.5) can be represented by the 
equation (4.8). 

A=LU (4.8) 

Since 
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  matrix L shown in the equation (4.7) is a lower 
triangular matrix. 
Thus matrix A is decomposed into unit lower triangular 
matrix L and upper triangular matrix U. 

• Procedure performed in the subroutine 
In the k-th step (k=1,...,n − 1) of the elimination 
process, this subroutine obtains each element of the k-
th column of matrix L and the k-th row of matrix U 
using equations (4.10) and (4.11). 

( )

( ) ,..,2,1, ++== kki
a
a

m k
kk

k
ik

ik  

 ( )n,hk 1min +  (4.10) 

( ) ,..,1,, +== kkiau k
kjkj  

 ( )n,hhk 21min ++  (4.11) 

  The principal minor A(k+1) which is eliminated in the 
(k+1)-th step is obtained using equation (4.12), 

( ) ( )a a m ukl
k

kl
k

kj jl
+ = −1  

 ( )nhjjjk ,min,...,2,1 1+++=  
 ( )nhhjjjl ,min,...,2,1 21 ++++=  (4.12) 

  where A(k)=(aij
(k)), L=(mij), U=(uij) 

Prior to each step of the elimination process, the pivotal 
element akk

(k) in equation (4.10) is selected to minimize 
the effect of rounding errors as follows: 
  That is, the first step is to select the largest value in the 
equation (4.13), 

( ) ( )nhkkklaV k
lkl ,min,...,1,, 1++=  (4.13) 

  and the next step is to regard the element alk
(k) as the 

pivotal element, when Vl is the inverse of the largest 
absolute element in the l-th row of the matrix A, and then 
the elements of the l-th and k-th rows are exchanged. If 
the selected pivotal element akk

(k) satisfies 

( )a a ukk
k

ij≤ ⋅max 16  

  where A=(aij) and u is a unit round off, matrix A(1) is 
regarded as numerically singular and the processing is 
discontinued with ICON=20000. For more information, 
see References [1], [3], [4] and [8]. 
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A52-21-0302  BMDMX, DBMDMX 

A system of linear equations with a real indefinite symmetric 
band matrix decomposed into factors M, D, and MT. 
CALL BMDMX(B,FA,N,NH,MH,IP,IVW,ICON) 

 
Function 
This subroutine solves a system of linear equations with a 
MDMT-decomposed real symmetric band matrix. 

P-1MDMTP-Tx=b (1.1) 

where M is an n × n, unit lower band matrix having band 
width ~h , D is a symmetric block diagonal matrix 
comprising symmetric blocks each at most of order 2, P 
is a permutation matrix to be used to interchange rows in 
the pivoting procedure when the coefficient matrix is 
MDMT-decomposed, b is an n-dimensional real constant 
vector, and x is an n-dimensional solution vector. Further, 
mk+1,k=0 if dk+1,k≠0, where M=(mij) and D=(dij) for 
n> ~h ≥0. 
 
Parameters 
B ..... Input. Constant Vector b. 

Output. Solution vector x. 
One-dimensional array of size n. 

FA .... Input. Matrices M and D given in the 
compressed mode for symmetric band matrix 
assuming M to have band width hm. (See 
Figure BMDMX-1) 
One-dimensional array of size  
n(hm+1)−hm(hm+1)/2. 

N ..... Input. Order n of the matrices M and D, 
constant vector b, and solution vector x. 

NH .... Input. Band width ~h  of matrix M. (See 
"Comments on Use".) 

MH .... Input. Maximum tolerable band width hm 
(N>MH≥NH) of matrix M. (See "Comments 
on Use".) 

IP .... Input. Transposition vector indicating the 
history of row interchange in the pivoting 
procedure. 
One dimensional array of size n. (See 
"Comments on Use".) 

IVW ... Work area. One-dimensional array of size n. 
ICON .. Output. Condition code. (See Table BMDMX-

1.) 

d d11 21
0 Excluding

the upper
triangular
portion

Block diagonal matrix D Array FA

0

d d21 2 2

d33
d

4 4

0

0
m32

1

1

1

1

0

0

m4 3

The diagonal
portion and
the band por-
tion corre-
sponding to
the maximum
tolerable band
width

Only the
lower traian-
gular portion

0

0
m d32 33

d11

d d21 22

m d43 4 4

d11

d21

d2 2

0

m32

d33

0

m4 3

d4 4

 
Note: In this example, orders of blocks in  D are 2, 1, and 1; 

band width of M is 1, and the maximum tolerable band 
width is 2. 

Fig. BMDMX-1  Storing method of matrices M and D 

Table BMDMX-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The coefficient matrix is 
singular. 

Bypassed. 

30000 NH<0, NH>MH, N≥MH, or 
IP error. 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... MIN0 
 

• Notes 
Simultaneous linear equations can be solved by calling 
this subroutine after decomposing the coefficient 
matrix into factors M, D, and MT using subroutine 
SBMDM; however, the solution is obtained by calling 
subroutine LSBIX in an ordinary case. 
  Input parameters FA, NH, IP, and MH of this 
subroutine are the same as output parameters A, NH, IP, 
and input parameter MH of subroutine SBMDM. 
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• Example 
Simultaneous linear equations are solved after 
decomposing an n × n real symmetric band matrix 
having band width h with subroutine SBMDM. Where 
n≥100 and ~h ≤hm≤50. 
 

C     **EXAMPLE** 
      DIMENSION A(3825),B(100),IP(100), 
     *          IVW(100) 
      READ(5,500) N,NH,MH 
      WRITE(6,600) N,NH,MH 
      NT=(N+N-MH)*(MH+1)/2 
      READ(5,510) (A(J),J=1,NT) 
      EPSZ=0.0 
      CALL SBMDM(A,N,NH,MH,EPSZ,IP,IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      READ(5,510) (B(I),I=1,N) 
      CALL BMDMX(B,A,N,NH,MH,IP,IVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,630) (B(I),I=1,N) 
      STOP 
  500 FORMAT(3I4) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'N=',I3,5X,'NH=',I3,5X, 
     *'MH=',I3) 
  610 FORMAT(' ',5X,'ICON OF SBMDM=',I6) 
  620 FORMAT(' ',5X,'ICON OF BMDMX=',I6) 
  630 FORMAT(11X,'SOLUTION VECTOR' 
     */(15X,5E15.6)) 
      END 
 
Method 
To solve simultaneous linear equations 

P-1MDMT(PT)-1x=b (4.1) 

having coefficient expressed in MDMT-decomposed real 
symmetric band matrix is reduced to solve 

Mx(1)=Pb (4.2) 
Dx(2)=x(1) (4.3) 
MTx(3)=x(2) (4.4) 
(PT)-1x=x(3) (4.5) 

where M is an n × n unit lower band matrix, D is a 
symmetric block diagonal matrix comprising symmetric 
blocks each at most of order 2, b is a constant vector, and 
x is a solution vector. In this subroutine, it is assumed 
that M and D are matrices decomposed by the block 
diagonal pivoting method, where P is a permutation 
matrix. (See "Method" for subroutine SBMDM.) 
 

  Solving Mx(1)=Pb by backward substitution.   
For the 1 × 1 pivot (the order of blocks in matrix D is 
1), the solution is obtained serially from (4.6). 

( ) ( )1
1

1

1
k

i

k
ikii xmbx ∑

−

=

−′=    ni ,...,1, =  (4.6) 

  If 2 × 2 pivot (the order of blocks in matrix D is 2) is 
used in iteration i, ( )xi+1

1  is obtained after ( )xi
1  from (4.7), 

then iteration i+2 is processed. 

( ) ( )1
1

1
1

1
1 k

i

k
ikii xmbx ∑

−

=
++ −′=  

         ( ) ( ) ( ) ( )( ),,...,, 11
1

1 T

nij xxxmM ==  (4.7) 

 (Pb)T=(b1',...,bn') 

  Solving Dx(2)=x(1) 
For 1 × 1 pivot, the solution is obtained serially from 

( ) ( ) nidxx iiii ,...,1,12 ==  (4.8) 

  If 2 × 2 pivot is used in itenation i, ( )xi+1
2  is obtained after 

( )xi
2  from (4.9), then iteration i+2 is processed. 

( ) ( ) ( )( ) dxddxx iiiiiii
1

1,11,1
12

++++ −⋅=  
( ) ( ) ( )( ) dxddxx iiiiiii

1
,1

1
1

2
1 −⋅= +++  (4.9) 

( ) iiiiiiii ddddd ,1,11,1 ++++ −⋅=  

where  ( ) ( ))2()2(
1

)2( ...,,,
T

nijd xxxD ==  

  Solving MTx(3)=x(2) by forward substitution 
For 1 × 1 pivot, the solution is obtained serially from 

( ) ( ) ( )3

1

23
k

n

ik
kiii xmxx ∑

+=

−=    , 1,...,ni =  (4.10) 

  If 2 × 2 pivot is used in iteration i, ( )xi−1
3  is obtained after 

( )xi
3  from (4.11), then iteration i+2 is processed. 

( ) ( ) ( )3

1
1,

2
1

3
1 k

n

ik
ikii xmxx ∑

+=
−−− −=  (4.11) 

where. ( ))3()3(
1

)3( ...,, nxxx
T

=  
  Solving (PT)-1x=x(3) 
Elements xi of solution vector x are obtained by 
multiplying the permutation matrix by vector x(3). 
Actually, however, these elements are obtained by 
exchanging elements of vector x(3) using values in 
transposition vector IP. The band structure of the 
coefficient matrix has been ignored for simplifying 
explanations above, however, the band structure is 
effectively used to efficiently process calculations in the 
actual program. 
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E32-32-0202  BSCD2, DBSCD2 

B-spline two-dimensional smoothing coefficient calcula-
tion (variable knots) 
CALL BSCD2(X,NX,Y,NY,FXY,KF,SX,SY,M,XT, 
                        NXT,YT,NYT,NXL,NYL,RNOT, C, 
                        KC,RNOR,VW, IVW,ICON) 

 
Function 
Given observed value fij=f(xi,yj), observation error  
σi,j=σxi⋅σyj, at lattice points (xi,yj); i=1,2,...,nx, j=1,2,...,ny, 
a tolerance for the square sum of residuals δt

2 and initial 
sequence of knots ξ1,ξ2,...,ξns; η1,η2,...,ηls in the x- and y-
directions, this subroutine obtains a bivariate B-spline 
smoothing function of degree m to the data in the sense of 
least squares in which the square sum of residuals is 
within the tolerance, by adding knots appropriately on the 
x- and y-axis. 
  Namely, letting the numbers of knots in the x- and y-
directions be nt and lt, the subroutine obtains the 
coefficients Cα, β in the B-spline smoothing function (1.2), 
subject to (1.1). 

( ) ( ){ } 2

1 1
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2 1
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  This subroutine outputs knots ξ1,ξ2,...,ξnt, in the x-
direction, η1,η2,...,ηlt, in the y-direction, square sum of 
residuals (1.3) at each step of adding knots and statistics 
(1.4) and (1.5), along with coefficient Cα,β. 
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⋅
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1
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(where, ( )S x y,  denotes m-th degree B-spline smoothing 
function with knots ξ1,ξ2,...,ξnr and η1,η2,...,ηlr) 

( )( ){ },1122 −+−+−⋅= ++ mlmnnn rryxlnln rrrr
δσ  (1.4) 

( )( ),112log 2 −+−++⋅= + mlmnnnAIC rrlnyxr rr
δ  (1.5) 

Here, σxi>0, σyj>0, m≥1, ns≥2, ls≥2 and the initial knots ξi, 
i=1,2,...,ns; ηj, j=1,2,...,ls should be satisfied. 
 
Parameters 
X ..... Input. Discrete points xi in the x-direction. 

One-dimensional array of size nx. 
NX .... Input. Number of xi, namely nx. 

Y ..... Input. Discrete points yj in the y-direction. 
NY .... Input. Number of yj, namely ny. 
FXY ... Input. Observed values fij. 

Two-dimensional array of FXY(KF,NY). 
KF .... Input. Adjustable dimension (≥NX) of array 

FXY. 
SX .... Input. Observation errors σxi in the x-direction. 

One-dimensional array of size nx. 
SY .... Input. Observation errors σyj in y-direction. 

One-dimensional array of size ny. 
M ..... Input. Degree m of B-spline (See Notes). 
XT .... Input. Initial knots ξi, i=1,2,...,ns in the x-

direction (See Notes). 
Output. Final knots ξi, i=1,2,...,nt in the x-
direction. The results are output in the order 
ξ1<ξ2<...<ξnt. 
One dimensional array of size NXL. 

NXT ... Input. The number of initial knots ns in the x-
direction. 
Output. The number of knots nt finally used in 
the x-direction. 

YT .... Input. Initial knots ηj, j=1,2,...,ls in the y-
direction (See Notes). 
Output. ηj, j=1,2,...,lt in the y-direction. 
The results are output in the order 
η1<η2<...<ηlt. 
One-dimensional array of size NYL. 

NYT ... Input. The number of initial knots ls in the y-
direction. 
Output. The number of knots lt finally used in 
the y-direction. 

NXL ... Input. Upper limit (≥ns) on the number of 
knots in the x-direction (See Notes). 

NYL ... Input. Upper limit (≥ls) on the number of knots 
in the y-direction (See Notes). 

RNOT .. Input. The tolerance δt
2 for square sum of 

residuals. A proper value is δt
2=nx⋅ny. 

C ..... Output. Smoothing coefficients Cα, β, 
α=−m+1,−m+2,...,lt−1; β=−m+1,−m+2,...,nt−1. 
These are stored in C(α+m, β+m). 
Two-dimensional array of C(KC,NYL+M−1). 

KC .... Input. Ajustable dimension (≥ NXL+M-1) of 
Array C. 

RNOR .. Output. Values of (1.3), (1.4) and (1.5) at each 
step of adding knots. 
Two-dimensional array of RNOR(3,KR), 
where KR=(NXL−ns)+(NYL−nl)+1 
Letting nr+lr=ns+ls, ns+ls+1, ... nt+lt, δ2

nr+lr is 
stored in RNOR (1,Pr), σ nr lr+

2  is stored in 
RNOR (2,Pr), and AICr is stored in RNOR 
(3,Pr), where Pr=(nr−ns)+(lr−ls)+1. (See Notes). 

VW .... Work area. 
One-dimensional array of size max (s1, s2),  
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where 
( )( )s n n m mx y1 2 1= + + +  

       ( ){+ + +max max , ,n m n mx y  

                  ( )( )}2 1+ + + +min ,n m n m mx y  

( ){ } ( )s n n m n nx y x y2 3 1= + + + +min ,  

          + + +NXL NYL 2  
IVW ... Work area. 

One-dimensional array of size 
nx+ny+max(NXL,NYL)⋅m 

ICON .. Output. Condition code. 
See table BSCD2-1. 

 
Table BSCD2-1 Condition code 

Code Meaning Processing 
0 No error  

10000 Although the number of 
knots in the x-direction 
reached the upper limit, the 
convergence criterion (1.1) 
was not satisfied. 

Outputs the 
most recently 
obtained 
smoothing 
function. 

11000 Although the number of 
knots in the y-direction 
reached the upper limit, the 
convergence criterion (1.1) 
was not satisfied. 

 

30000 One of the following 
occurred:  
1 σxi≤0 
2 σyj≤0 
3 M<1 
4 XT(I)=XT(K), where I≠K 

or YT(I)=YT(K), where 
I≠K 

5 ns<2 or ls<2 
6 NXL<ns or NYL<ls 
7 ( ) ( )i

i
i

i
xminmin >ξ  or 

( ) ( )i
i

i
i

xmaxmax <ξ  

8 ( ) ( )j
j

j
j

yminmin >η  or 

( ) ( )j
j

j
j

ymaxmax <η  

Bypassed 

 
Comments on use 
• Subprogram used 

SSL II ... MGSSL, UPOB2, UPCA2, UREO1, UBAS0, 
UCDB2 
FORTRAN basic function ... FLOAT, IFIX, ALOG, 
ABS 
 

• Notes 
By calling BSFD1 after the subroutine BSCD2, 
smoothed values, partial derivatives and double 
integrals can be obtained based on the B-spline 
smoothing function (1.2). 
  At that time, the parameter values of M, XT, NT and 
C must be the input into BSFD1. 

  An appropriate value for degree m (either even or 
odd) is 3, but the value should not exceed 5. This is 
because the normal equation with respect to Cα, β 
becomes ill-conditioned as degree m is increased. 
  Initial knots ξi, ηj, (i=1,2,...,ns; j=1,2,...,ls) can be 
typically given by 

n ls s= = 2  

( )ξ 1= min ,
i ix   ( )ξ ns i ix= max  

( )η 1= min ,
j jy   ( )η ls j jy= max ,  

  The upper limit NXL and NYL on the number of 
knots in the x- and y-directions should preferably be 
given by nx/2 and ny/2 respectively. (If the number of 
knots increases, the normal equation becomes ill-
conditioned.) This subroutine terminates when the 
number of knots reaches the upper limit regardless of 
satisfying equation (1.1), setting ICON=10000 (for the 
x-direction) or ICON=11000 (for the y-direction). 
  The information output to RNOR is the history of 
various criteria in the process of adding knots at each 
step. The history can be used for checking the obtained 
smoothing function. These criteria generally decrease 
according to the addition of knots, the change 
becoming slow as step goes. Particularly when σ2

nr+lr 
and AICr are virtually unvarying the smoothing 
function exhibits good one. The user can check the 
obtained smoothing functions by printing out the 
contents of RNOR. 
 

• Example 
The bivariate third degree B-spline smoothing function 
is obtained by inputting lattice points (xi,yj): i=1,2,...,80, 
j=1,2,...,60, observed values fij, and observation errors 
σxi and σyj in x- and y-directions. Initial knots are given 
as (3.1) and (3.2) in x- and y-directions respectively. 
The upper limit on the number of knots are 20 for the 
x-direction and 15 for the y-direction. 

( ) ( )i
i

maxiimin xxxx max,min 21 ==== ξξ  (3.1) 

( ) ( )j
j

maxjjmin yyyy max,min 21 ==== ηη  (3.2) 

Then, letting VXr and VYs denote (3.3) and (3.4), 
subroutine BSFD1 computes the smoothing value at each 
point and the first-order partial derivatives in the x- and 
y-directions. 

( )
10...,,1,0
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( )
10...,,1,0

10
=

−+=
s

syyyVYs minmaxmin  (3.4) 
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C     **EXAMPLE** 
      DIMENSION X(80),Y(60),FXY(80,60), 
     *          SX(80),SY(60),XT(20),YT(15), 
     *          C(22,17),RNOR(3,32), 
     *          VW(670),IVW(200),RR(3) 
      NX=80 
      NY=60 
      READ(5,500) (X(I),SX(I),I=1,NX), 
     *(Y(J),SY(J),J=1,NY) 
      DO 10 I=1,NX 
      DO 10 J=1,NY 
      READ(5,510) FXY(I,J) 
   10 CONTINUE 
      M=3 
      NXT=2 
      NYT=2 
      XMAX=X(1) 
      XMIN=X(1) 
      YMAX=Y(1) 
      YMIN=Y(1) 
      DO 20 I=2,NX 
      IF(X(I).GT.XMAX) XMAX=X(I) 
      IF(X(I).LT.XMIN) XMIN=X(I) 
   20 CONTINUE 
      DO 30 J=2,NY 
      IF(Y(J).GT.YMAX) YMAX=Y(J) 
      IF(Y(J).LT.YMIN) YMIN=Y(J) 
   30 CONTINUE 
      XT(1)=XMIN 
      XT(2)=XMAX 
      YT(1)=YMIN 
      YT(2)=YMAX 
      NXL=20 
      NYL=15 
      RNOT=FLOAT(NX*NY) 
C 
      CALL BSCD2(X,NX,Y,NY,FXY,80,SX,SY, 
     *M,XT,NXT,YT,NYT,NXL,NYL,RNOT,C,22, 
     *RNOR,VW,IVW,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,610) 
      NT=NXT+NYT 
      DO 40 I=4,NT 
      IADD=I-3 
      WRITE(6,620) I,(RNOR(J,IADD),J=1,3) 
   40 CONTINUE 
C 
      HX=(XMAX-XMIN)/10.0 
      HY=(YMAX-YMIN)/10.0 
      DO 70 I=1,11 
      VX=XMIN+HX*FLOAT(I-1) 
      WRITE(6,630) VX 
      WRITE(6,640) 
      DO 60 J=1,11 
      VY=YMIN+HY*FLOAT(J-1) 
      DO 50 K=1,3 
      KM1=K-1 
      ISWX=MOD(KM1,2) 
      ISWY=KM1/2 
      CALL BSFD1(M,XT,NXT,YT,NYT,C,22, 
     *ISWX,VX,IX,ISWY,VY,IY,RR(K),VW,ICON) 
   50 CONTINUE 
      WRITE(6,650) VY,(RR(K),K=1,3) 
   60 CONTINUE 
   70 CONTINUE 
      STOP 
  500 FORMAT(2F10.0) 
  510 FORMAT(F10.0) 
  600 FORMAT(10X,'ICON=',I5//) 
  610 FORMAT(8X,'NO. OF KNOTS',9X, 
     *'RNOR(1,*)',11X,'RNOR(2,*)',11X, 
     *'RNOR(3,*)'/) 
 

  620 FORMAT(10X,I2,8X,3(5X,E15.8)) 
  630 FORMAT(//5X,'VX=',E15.8) 
  640 FORMAT(16X,'VY',13X,'SMOOTHED VALUE', 
     *8X,'DS(X,Y)/DX',10X,'DS(X,Y)/DY') 
  650 FORMAT(5X,4(5X,E15.8)) 
      END 
 
Method 
This subroutine obtains bivariate m-th degree B-spline 
smoothing function by adding knots so that square sum of 
residuals may become less than the given tolerance δt

2. 
  Now, let us assume ξ1, ξ2, ..., ξnr and η1, η2, ..., ηlr are 
given in the x- and y-direction respectively which satisfy 
the following: 

ξ1<ξ2<.....<ξnr 
η1<η2<.....<ηlr 

  At the initial step, nr=ns and lr=ls. The coefficient Cα, β 
of the bivariate m-th degree spline function 
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in which the above knots are used, is determined so that 
the square sum of residuals 

( ){ } 2
,

1 1
22 ,1

jiji

n

j

n

i ji
yxSf

yx

y x

−
⋅∑∑

= = σσ
 (4.2) 

assumes the minimum. Such Cα,β can be obtained by 
solving the system of linear equations (normal equations) 
resulting from partially differentiating (4.2) with respect 
to Cα,β and equating it to zero. The value of (4.2) 
corresponding to the obtained Cα,β is assumed to be δ2

nr+lr. 
  If δ2

nr+lr ≤ δ2
t, (4.1) can be taken as the bivariate m-th 

degree B-spline smoothing function. If δ2
nr+lr >δ2

t, 
determine the new knots to be added under the following 
procedures. 
Compute residuals εij=fij − ( )S x yi j, ,  i=1,2,...nx, 
j=1,2,...,ny at each point. 
  Using these values, compute 
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  The maximum values of { ui|1 ≤ i ≤ nr−1}, { vj|1 ≤ j ≤ 
lr−1} are assumed to be ui and vj. When ui is greater than 
vj, nr is increased by 1 assuming ξ=(ξi+ξi+1)/2 to be added. 
On the other hand, when vj greater than ui, lr is increased 
by 1 assuming η=(ηj+ηj+1)/2 to be added.  
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Replacing the updated knots in the x- or y-direction in the 
ascending order, repeat the above mentioned procedures. 
  This is repeated until the square sum of square becomes 
less than the given value δt

2, updating knots and 
increasing the number of knots subsequently. 
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B21-21-0502  BSCT1, DBSCT1 

Selected eigenvalues of a real symmetric tridiagonal 
matrix (Bisection method) 
CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 

 
Function 
Using the bisection method, the m largest or m smallest 
eigenvalues of an n-order real symmetric tridiagonal 
matrix T are determined. 1 ≤ m ≤ n .  
 
Parameters 
D ..... Input. Diagonal elements of tridiagonal matrix 

T. 
D is a one-dimensional array of size n. 

SD .... Input. Subdiagonal elements of tridiagonal 
matrix T. 
SD is a one-dimensional array of size n. 
The elements are stored in SD(2) to SD(N). 

N ..... Input. Order n of the tridiagonal matrix. 
M ..... Input. 

M=m ... The number of largest eigenvalues 
desired. 
M=−m ... The number of smallest eigenvalues 
desired. 

EPST .. Input. The absolute error tolerance used to 
determine accuracy of eigenvalues (refer to 
equation (4.9) in the Method section). when a 
negative value is given, an appropriate default 
value is used. 

E ..... Output. m eigenvalues. Order in descending 
order if M is positive and in ascending order if 
M is negative. 
E is a one-dimensional array of size m. 

VW .... Work area. VW is a one-dimensional array of 
size n+2m. 

ICON .. Output. Condition code. Refer to Table 
BSCT1-1. 

 
Table BSCT1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N=1 E(1)=D(1) 
30000 N<|M| or M=0 Bypassed 

 
Comments on use 
• Subprogram used 

SSL II ... AMACH and MGSSL 
FORTRAN basic function ... IABS,ABS and AMAX1 
 

• Notes 
Normally, when determining the eigenvalues of a real 
symmetric matrix, the subroutine TRID1 is used first to 
reduce that matrix to a tridiagonal matrix, then this 

routine or TRQL can be used to determine the 
eigenvalues. 
  If n/4 or more eigenvalues are being determined, 
computation time is generally better using TRQL 
instead of this routine. 
  If the possibility of an eigenvalue being zero exists, 
refer to "Convergence criterion and EPST parameter" 
in the Method section, then specify EPST accordingly. 
 

• Example 
After an n-order real symmetric matrix is first reduced 
to a triagonal matrix using TRID1, m eigenvalues are 
calculated. n≤100. 
 

C     **EXAMPLE** 
      DIMENSION A(5050),D(100),SD(100), 
     *E(100),VW(300) 
   10 READ(5,500) N,M,EPST 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N,M 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+1 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      CALL TRID1(A,N,D,SD,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 
      WRITE(6,630) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      MM=IABS(M) 
      WRITE(6,640) (I,E(I),I=1,MM) 
      GO TO 10 
  500 FORMAT(2I5,E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX'/ 
     *11X,'** ORDER =',I5,10X,'** M =',I3/) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT(/11X,'** CONDITION CODE =',I5/) 
  630 FORMAT('0'/11X,'** EIGENVALUES') 
  640 FORMAT(5X,'E(',I3,')=',E15.7) 
      END 
 
Method 
Using the bisection method, the m largest or m smallest 
eigenvalues are determined from n-order real symmetric 
tridiagonal matrix T. 
  If a subdiagonal element of real symmetric tridiagonal 
matrix T shown in Fig. BSCT1-1 is zero, that matrix can 
be split, into submatrices at that point.  If T can be split 
the eigenvalues of T can be obtained by determining the 
eigenvalues of each submatrix. Since the bisection 
method is applied to each submatrix, in the explanation 
below, T is assumed not to be split, i.e., bi≠0. 



BSCT1 

199 

  For the matrix (T−λ I) shown in Fig. BSCT1-2, the 
value λ that satisfy 

det(T−λ I) = 0 (4.1) 

  are the eigenvalues of T. Let the leading principle minor 
of the matrix (T−λ I) be Pi(λ), then the recurrence 
formula in (4.2) can be developed. 
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  The polynomials P0(λ), P1(λ), ..., Pn(λ) of (4.2) is a 
Sturm sequence. Let L(λ) be the number of agreements in 
sign of consecutive members of this sequence, then L(λ) 
is equal to the number of eigenvalues which are smaller 
than λ. 
  However, if Pi(λ)=0, the sign of Pi-1(λ) is used. In the 
actual calculations, (4.2) is replaced by the sequence: 

( ) ( ) ( ) niPPq iii ,...,2,1,1 == − λλλ  (4.3) 

  Using (4.3), L(λ) is easily determined. L(λ) is the 
number of cases that the sequence qi(λ) yields a positive 
or zero value. From (4.2) and (4.3) qi(λ) is 
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Fig. BSCT1-1  Real symmetric tridiagonal matrix T 
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Fig. BSCT1-2  Matrix [T-λI] 

  If qi-1(λ) = 0, then 

( ) ( )q c b ui i iλ λ= − −  (4.5) 

  where, u is the unit round-off. 
  Using this method overflow and underflow can be 
avoided, and L(λ) can still be calculated even if bi = 0. 
Now consider determining the largest k-th eigenvalue. 
Suppose the eigenvalues have the relationship 

λ1≥λ2≥.....≥λk≥.....≥λn (4.6) 

1) Using Gershgorin's Method, interval [l0,r0] which 
includes all n eigenvalues is determined. 
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where b1=0, bn+1=0. 
 

2) Iterations of (4.8) are continued until λk is 
approximately in the midpoint of interval [lj,rj] 
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  Interval [lj,rj] in which λk lies is bisected with each 
interation of (4.8). 
  Using 1) and 2), this routine determines the interval in 
which the m largest eigenvalues lie. Then in that interval, 
eigenvalues are determined for each submatrix.  When m 
eigenvalues have been obtained, processing is terminated. 
 
Convergence criterion and EPST Parameters 
In this routine, convergence is determined by 

( ) EPST2 ++≤− jjjj rlulr  (4.9) 

  EPST is specified as the allowable absolute error 
tolerance in determining the eigenvalues. When (4.9) is 
satisfied, (lj+rj)/2 is considered an eigenvalue. If 
EPST=0.0, (4.9) becomes 

( )jjjj rlulr +≤− 2  (4.10) 
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  In this case, bisection of the interval is continued until 
the least significant digits of lj and rj become 
approximately equal, such that it takes a long time to 
compute the eigenvalue. EPST is used to indicate the 
precision at which this computation is terminated. EPST 
is also a safeguard, since (4.10) would never be satisfied 
for eigenvalues which are zero. 
  When a negative EPST is specified, for each submatrix, 
the following default value is used. 

( )00 ,max=EPST rlu ⋅  (4.11) 

  Where l0 and r0 are the upper and lower limits of the 
range obtained by the Gerschgorin method which 
includes eigenvalues of each submatrix. For further 
information see References [12] pp.299-302, [13] 
pp.249-256, and [15].  
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E32-31-0102 BSC1, DBSC1 

B-spline smoothing coefficient calculation (with 
fixed knots) 
CALL BSC1(X, Y, W, N, M, XT, NT, C, R, RNOR, 
VW, IVW, ICON) 

 
Function 
Given observed values y1, y2, ..., yn at points x1, x2, ..., xn, 
weighted function values wi=w(xi), i=1,2,...,n, and knots 
of the spline function ξ1, ξ2, ..., ξni, the B-spline 
smoothing function in the sense of least squares is 
obtained. In other words, 1et 
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be the m-th (m: either an odd or even integer) degree B-
spline smoothing function to be obtained, and then the 
smoothing coefficients cj's which minimize the sum of 
squares of the weighted residual: 
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are obtained. 
  The interval Iξ=[min(ξj),max(ξj)] spanned by the knots 
{ξi} does not always have to contain all of the n discrete 
points. For example, as shown in Fig. BSC1-1, the Iξ can 
be specified as a part of the interval Ix=[min(xi),max(xi)] 
which is spanned by all of the discrete points. If so, ( )S x  
given by (1.1) such discrete points, (whose number is, say, 
ne) as contained in the interval so, when taking the 
summation in (1.2), only the discrete points contained in 
the interval Iξ have to be taken into consideration. 
  Here, wi≥0, m≥1, nt≥3, ξj≠ξk (j≠k) and ne≥nt+m-1. 
 

Interval Iξ

Interval Ix

 
Fig. BSC1-1 Section Iξ for smoothing function 

Parameters 
X.......... Input. Discrete points xi's. 

One-dimensional array of size n. 
Y.......... Input. Observed values yi. 

One-dimensional array of size n. 
W......... Input. Weighted function values. 

One-dimensional array of size n. 
N.......... Input. Number of the discrete points. 
M ......... Input. Degree of the B-spline. See Notes. 
XT ....... Input. Knots ξj's. See Notes. 

One-dimensional array of size nt. 
Output. If on input 
XT(1)<XT(2)<...<XT(nt) 
was not satisfied, XT's are aligned to satisfy it 
on output. 

NT ....... Input. Number of the knots, nt. 
C .......... Output. Smoothing coefficients cj's. 

One-dimensional array of size nt+m-1, 
R .......... Output. Residuals ( )y S xi i− , i=1,2,...,n.     One-

dimensional array of size n. 
RNOR. Output. Square sum of the weighted residual, δm

2. 
VW ...... Work area. One-dimensional array of size 

(nt+m)(m+1). 
IVW..... Work area. One-dimensional integer type array 

of size n. 
ICON ... Output. Condition code. 

See Table BSC1-1. 
 
Table BSC1-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either of the followings 
occurred: 
(a) At least one w i is 

negative. 
(b) M<1 
(c) XT(I)=XT(K) (I≠K) 
(d) NT<3 
(e) ne<NT+M-1 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UREO1, UNCA1, UCDB1, 
UCAO1 and UBAR1 
FORTRAN basic function ... DSQRT 
 

• Notes 
By calling subroutine BSF1 after subroutine BSC1, the 
interpolated values as well as derivatives or integrals 
can be obtained based on the B-spline smoothing 
function (1.1). The parameter values of M, XT, NT and 
C are passed from BSC1 to input to BSF1. 
  The degree m is preferably 3 but no greater than 5, 
because the normal equation (see "Method") used when 
obtaining the smoothing coefficients cj's become  



BSC1 

202 

 ill-conditioned as m becomes large. 
  It is important for the knots ξi to be located according 
to the behavior of observed values. In general, a knot 
should be assigned to the point at which the observed 
values have a peak or change rapidly. Any knot should 
not be assigned in an interval where the observed 
values change slowly. (See Fig. BSC1-2.) 

 

x
ξ6ξ5ξ4ξ3ξ2ξ1

 
Fig.BSC1-2 Knots ξξξξ i 

• Example 
See the example given for subroutine BSF1. 

 
Method 
By setting the m-th degree B-spline smoothing function 
as 
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the subroutine obtains the smoothing coefficients cj's 
which minimize the sum of squares of the weighted 
residuals. 
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The interval in which ( )S x  is defined is Iξ = [min(ξj), 
max(ξj)] spanned by the user specified knots {ξj}. For 
simplicity let's assume the knots {ξj} satisfy the 
relationship ξj<ξj+1 (j=1,2,...,nt-1), and all of the n 
discrete points xi's are contained in the interval [ξl,ξnt]. 
  First, the knots {tj} of the B-spline Nj,m+1(x) are taken by 
using {ξj} as follows (see Fig. BSC1-3): 
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Fig. BSC1-3  Knots {tj} 

  Among all the spline functions represented as (4.1), the 
one which minimizes (4.2) can be obtained by solving so-
called a normal equation with respect to cj's. That is, 
taking partial derivatives of δm

2 in (4.2) with respect to 
cj's and setting them to zero, the normal equation with 
respect to cj's can be obtained as follows. 
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k=-m+1, -m+2, ....., nt-1 (4.4) 

 
  The above is a system of linear equations of order 
(nt+m-1) and the coefficient matrix is of the form of a 
symmetric band matrix. Fig. BSC1-4 shows an example 
of the matrix for m=3 an nt=5. 
 

* * * *
* * * * *
* * * * * *
* * * * * * *

* * * * * *
* * * * *

* * * *

0

0





























 

 
Fig. BSC1-4  Coefficient matrix (for m=3 and nt=5) 

  Therefore, solving Eq. (4.4) gives cj's. This subroutine 
solves the linear equations above by using Cholesky 
method (LTL decomposition method) with the slave 
subroutines UNCA1 and UCDB1. 
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E32-31-0202 BSC2, DBSC2 

B-spline smoothing coefficient calculation (variable 
knots) 
CALL BSC2(X,Y,S,N,M,XT,NT,NL,RNOT,C, 
RNOR,VW,IVW,ICON) 

 
Function 
Given observed values y1, y2, ..., yn at discrete points x1, 
x2, ..., xn, observation errors σ1, σ2, ..., σn, a tolerance δt

2  
for the square sum of residuals, and initial knots ξ1, 
ξ2, ...,ξns, then this subroutine obtains a B-spline 
smoothing function of degree m to the data in the sense of 
least squares, by adding knots so that the square sum of 
residuals becomes within the tolerance. 
Namely, letting nt denote the number of knots finally 
used, and δnt

2  the corresponding square sum of residuals, 
the subroutine obtain the coefficients cj in the B-spline 
smoothing function (1.1), subject to (1.2). 
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  This subroutine outputs final knots ξ1, ξ2, ..., ξnt, square 
sum of residuals (1.3) at each step in which knots are 
added and the statistics (1.4) and (1.5). 

( ){ } 2

1
2

2 1
ii

n

i i
n xSy

r
−= ∑

= σ
δ  (1.3) 

  (where ( )S x  is an m-th degree B-spline smoothing 
function in which ξ1, ξ2, ..., ξnr are knots.) 
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,...,1,
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 (1.5) 

  Here, σi>0, m≥1, ns≥2 and initial knots ξj must satisfy 
( ) ( ) ( ) ( )iijjiijj

x,x maxmaxminmin ≥≤ ξξ  

 
Parameters 
X.......... Input. Discrete points xi. 

One-dimensional array of size n. 
Y.......... Input. Observed values yi. 

One-dimensional array of size n. 
S .......... Input. Observation errors σi. (See Notes.) 

One-dimensional array of size n. 

N.......... Input. Number n of the discrete points. 
M ......... Input. Degree m of the B-spline. (See Notes.) 
XT ....... Input. Initial knots ξj, j=1,2,...,ns. (See Notes.) 

Output. Knots ξj, j=1,2,...,nt finally used. The 
results are output in the order of ξ1<ξ2<...<ξnt. 
One-dimensional array of size NL. 

NT ....... Input. Number ns of initial knots. 
Output.  Number nt of knots finally used. 

NL ....... Input. The upper limit on the number of knots. 
(See Notes.) 

RNOT.. Input. The tolerance δt
2  for the square sum of 

residuals. A proper value is δt
2 =n. 

C .......... Output. Smoothing coefficients Cj, j=-m+1, -
m+2, ..., nt-1. 
Cj is stored in C(j+m). 
One-dimensional array of size (NL+M-1) 

RNOR.. Output. Values of (1.3), (1.4) and (1.5) at each 
step in which knots are added.  
Two-dimensional array RNOR(3,NL-ns+1). 
Letting nr=ns,ns+1,...,nt, 
δnr

2  is stored in RNOR(1,nr-ns+1), 

σ nr
2  is stored in RNOR(2,nr-ns+1), 

AICr is stored in RNOR(3,nr-ns+1). 
(See Notes.) 

VW ...... Work area. 
One-dimensional array of size (M+1) + (M+2) 
(NL+M). 

IVW..... Work area.   
One-dimension/array of size (N+NL+M). 

ICON ... Output. Condition code. 
See Table BSC2-1. 

 
Table BSC2-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Although the number of knots 
reached the upper limit, the 
convergence criterion (1.1) 

was not satisfied. 

Outputs the most 
recently obtained 

smoothing 
function. 

30000 One of the followings 
occurred: 
1 σi≤0 
2 M<1 
3 XT(I)=XT(K) where I≠K 
4 ns<2 
5 NL<ns 
6 ( ) ( )

( ) ( )
min min

max max
j j i i

j j i i

x

x

ξ

ξ

>

<

or
 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... AFMAX, MGSSL, UPOB1, UPCA1, 
UREO1, UBAS0, UCDB2 
FORTRAN basic function ... SQRT, IFIX, ABS, 
FLOAT, ALOG 
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• Notes 
By calling subroutine BSF1 after this subroutine, 
smoothed values, derivatives, or integrals can be 
obtained based on (1.2). At that time, the parameter 
values of M, XT, NT and C must be the same as those 
used in BSF1. 
  An appropriate value for degree m (either even or 
odd) is 3, but the value should not exceed 5. This is 
because the normal equation with respect to smoothing 
coefficient Cj becomes ill-conditioned as degree m 
increases. 
  Initial knots ξj, j=1,2,...,ns can be generally given by 

( ) ( )i
i

ni
i

s

xx
n

s max,min

2

1 ==
=

ξξ  

   Observation error σi is an estimate for the error 
contained in the observed value yi. For example, if yi 
has di significant decimal digits, the value i

d yi−10 can 

be used as σi. σi is used to indicate how closely ( )S x  
should be fit to yi. The larger σi is, the less closely 

( )S x  is fit to yi. 
  Upper limit NL on the number of knots should be 
given a value near n/2 (if the number of knots increases, 
the normal equation becomes ill-conditioned). This 
subroutine terminates processing by setting 
ICON=10000 when the number of knots reaches the 
upper limit regardless of (1.1). 
  The information output to RNOR is the history of 
various criteria in the process of adding knots at each 
step. The history can be used for checking the obtained 
smoothing function. 

  
• Example 

By inputting 100 discrete points xi, observed values yi 
and observation errors σi, a third degree B-spline 
smoothing function is obtained. 
  Here, the initial knots are taken as 

( ) ( )i
i

i
i

xxxx max,min max2min1 ==== ξξ  

 and the upper limit on the number of knots to be 20. 
  Subsequently smoothed values and 1st through 3rd 
order derivatives are computed at each point of 

( )
50,...,1,0

50/minmax1

=

⋅−+=

j

jxxv j ξ
 

 by using subroutine BSF1. 
  
C     **EXAMPLE** 
      DIMENSION X(100),Y(100),S(100),XT(20), 
     *          C(25),RNOR(3,20),VW(120), 
     *          IVW(125),RR(4) 
      N=100 
      READ(5,500) (X(I),Y(I),S(I),I=1,N) 
 

      M=3 
      NT=2 
      XMAX=X(1) 
      XMIN=X(1) 
      DO 10 I=2,N 
      IF(X(I).GT.XMAX) XMAX=X(I) 
      IF(X(I).LT.XMIN) XMIN=X(I) 
   10 CONTINUE 
      XT(1)=XMIN 
      XT(2)=XMAX 
      NL=20 
      RNOT=FLOAT(N) 
C 
      CALL BSC2(X,Y,S,N,M,XT,NT,NL,RNOT, 
     *C,RNOR,VW,IVW,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,610) 
      DO 20 I=2,NT 
      IADD=I-1 
      WRITE(6,620) I,(RNOR(J,IADD),J=1,3) 
   20 CONTINUE 
C 
      H=(XMAX-XMIN)/50.0 
      WRITE(6,630) 
      DO 40 J=1,51 
      V=XT(1)+H*FLOAT(J-1) 
      DO 30 L=1,4 
      ISW=L-1 
      CALL BSF1(M,XT,NT,C,ISW,V,I, 
     *          RR(L),VW,ICON) 
   30 CONTINUE 
      WRITE(6,640) V,(RR(L),L=1,4) 
   40 CONTINUE 
      STOP 
C 
  500 FORMAT(3F10.0) 
  600 FORMAT(10X,'ICON=',I5//) 
  610 FORMAT(8X,'NO. OF KNOTS',9X, 
     *'RNOR(1,*)',11X,'RNOR(2,*)',11X, 
     *'RNOR(3,*)'/) 
  620 FORMAT(10X,I2,8X,3(5X,E15.8)) 
  630 FORMAT(//14X,'ARGUMENT',9X, 
     *'SMOOTHED VALUE',8X,'1ST DERIV.', 
     *10X,'2ND DERIV.',10X, 
     *'3RD DERIV.'/) 
  640 FORMAT(10X,E15.8,4(5X,E15.8)) 
      END 
 
Method 
This subroutine obtain the m-th degree B-spline 
smoothing function such that the square sum of residuals 
is less than a given tolerance δt

2 , by adding knots 
adaptively. 
  Suppose that knots ξ1, ξ2, ..., ξnr have already been 
determined and arranged in the order 

ξ1<ξ2<.....<ξnr 
where, initially nr=ns. The coefficients Cj in m-th degree 
spline with the knots above 

( ) ( )∑
−

+−=
+=

1

1
1,

rn

mj
mjj xNcxS  (4.1) 

are determined so that the square sum of residuals 
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 (4.2) 
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may assume the minimum. (For details, refer toBSC1). 
Denoting the value of (4.2) with the obtained Cj by δnr

2 , if 
δ δnr t

2 2≤ , (4.1) can be taken as the m-th degree B-spline 
smoothing function. 
  Ifδ δnr t

2 2> , the square sum of residuals 

( ) ( ){ } 2

2
2 1,

1

ii
ix

r xSynj
jij

−= ∑
+<≤ σ

δ
ξξ

 (4.3) 

for each subinterval [ξj,ξj+1] is computed. Then we add, 
to the current set of knots, the midpoint ξ=(ξi+ξi+1)/2 of 
the interval in which δ2(j,nr) takes the maximum. 
  The updated knots are arranged in ascending order, and 
letting this be ξ1, ξ2, ..., ξnr+1, then the above process is 
repeated. This processing is repeated until the square sum 
of squares becomes less than the tolerance δt

2 . 
 



BSEG 

206 

B51-21-0201 BSEG, DBSEG 

Eigenvalues and eigenvectors of a real symmetric 
band matrix (Rutishauser-Schwarz method, bisection 
method and inverse iteration method) 
CALL BSEG (A, N, NH, M, NV, EPST, E, EV, K, 
VW, ICON) 

 
Function 
This subroutine obtains the largest or smallest m 
eigenvalues of a real symmetric band matrix A of order n 
and band width h by using the Rutishauser-Schewarz 
method and the bisection method and also obtains the 
corresponding nν eigenvectors by using the inverse 
iteration method. The eigenvectors are normalized so as 
to satisfy x

2
1= . Here, 1≤m≤n, 0≤nν≤m and 0≤h<<n. 

 
Parameters 
A.......... Input. Real symmetric band matrix A. 

Compressed mode for a symmetric band matrix. 
One-dimensional array of size n(h+1)-h(h+1)/2 
When nν≠0, the contents are not destroyed after 
computation 
When nν=0, the contents are altered on output. 

N.......... Input. Order n of the matrix A. 
NH ....... Input. Bandwidth h. 
M ......... Input. The m number of eigenvalues to be 

obtained.  
M=+m ... The largest eigenvalues are obtained. 
M=-m ... The smallest eigenvalues are obtained. 

NV ....... Input. The nν number of eigenvectors are 
obtained 
When NV=-nν, replaced as NV=+nν in the 
subroutine. 
When nν=0, no eigenvectors are calculated. 

EPST ... Input. Upper limit of absolute error used for 
convergence cirterion to eigenvalues obtained. 
See "Method" for the subroutine BSCT1. 
If EPST<0, a standard upper limit is set. 

E .......... Output. Eigenvalues. One-dimensional array of 
size m. 

EV ....... Output. Eigenvectors. 
The eigenvectors are stored in the column-wise 
direction. 
Two dimensional arrays as represented by 
EV(K,NV). 

K.......... Input. Adjustable dimension of the array EV. 
When nν=0, this is an arbitrary number. 

VW ...... Work area. One-dimensional array of size 
max(3n+2m,2n(h+1)). 
When nν=0, the size is as large as 3n+2m. 

ICON ... Output. Condition code. 
See Table BSEG-1. 

 
Table BSEG-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 NH=0 Executed 
normally. 

15000 All of the eigenvectors could 
not be obtained. 

Unobtained 
eigenvectors are 
set to 0 vectors. 

20000 None of the eigenvectors 
could be obtained. 

All of the 
eigenvectors 

become 0 
vectors. 

30000 NH<0, NH≥N, N>K, M=0, 
M NV orM N< >  

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... BTRID, BSCT1, BSVEC, AMACH and 
MGSSL 
FORTRAN basic function ... IABS 

 
• Notes 

This subroutine is provided for a real symmetric band 
matrix, and is suitable for obtaining eigenvalues, from 
either the largest or smallest eigenvalues, to a matrix 
whose ratio of its bandwidth h to order n, (i.e., h/n), is 
no larger than 1/6. Although the eigenvectors 
corresponding to the obtained eigenvalues can be 
calculated at the same time, since the inverse iteration 
method used in this subroutine is applied not for a real 
symmetric tridiagonal matrix, but for directly 
processing the input band matrix, the method is 
relatively ineffective. Consequently, unnecessary 
eigenvectors should not be calculated. If NV=0 is set, 
no eigenvectors have to be obtained. If a very small 
number of eigenvalues of a real symmetric band matrix 
of high order needs to be obtained, from either the 
largest or smallest eigenvalues in absolute value, and at 
the same time the corresponding eigenvectors are to be 
calculated as well, either this method or simultaneous 
iteration method by Jennings, whichever is better, 
should be adopted. 

 
• Example 

The largest or smallest m eigenvalues of a real 
symmetric band matrix 
A of order n and bandwidth h and also the 
corresponding nv eigenvectors are obtained in this 
example below for n≤100, h≤10, and m≤10. 
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C     **EXAMPLE** 
      DIMENSION A(1100),E(10),EV(100,10) 
     *         ,VW(2100) 
   10 READ(5,500) N,NH,M,NV,EPST 
      IF(N.EQ.0) STOP 
      NN=(NH+1)*(N+N-NH)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N,NH,M,NV 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=MIN0(NH+1,I)+NE 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      CALL BSEG(A,N,NH,M,NV,EPST,E,EV,100, 
     *          VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      MM=IABS(M) 
      NNV=IABS(NV) 
      IF(NNV.EQ.MM) GO TO 40 
      NNV1=NNV+1 
      DO 30 J=NNV1,MM 
      DO 30 I=1,N 
   30 EV(I,J)=0.0 
   40 CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
  500 FORMAT(4I5,E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX'/ 
     *       11X,'** ORDER =',I5,10X,'NH=', 
     *       I3,10X,'M=',I3,10X,'NV=',I3/) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT(/11X,'** CONDITION CODE =',I5/) 
      END 
 
  For subroutine SEPRT, see the example of the 
subroutine SEIG1. 
 
Method 
The largest or smallest m eigenvalues of a real symmetric 
band matrix A of order n and bandwidth h as well as the 
corresponding nν eigenvectors are obtained. 
  First, the matrix A is reduced to a tridiagonal matrix T 
by the Rutishauser-Schwarz method. Its operation is  

given by 

SS AQQT T=  (4.1) 

  where Qs is an orthogonal matrix and can be produced 
as a product of an orthogonal matrix shown in the Fig. 
BSEG-1. Its operation is carried out by using the 
subroutine BTRID. 
  Secondly, m egenvalues of T are obtained by using the 
bisection method in the subroutine BSCT1. 
  Thirdly, the corresponding eigenvectors x of A are 
obtained by using the inverse iteration method. The 
inverse iteration is a method to obtain eigenvectors by 
iteratively solving 

( ) ,...2,1,1 ==− − rrr xxIA µ  (4.2) 

  when an approximate eigenvalue solution µ is given. 
where µ is obtained by the bisection method and x0 is an 
appropriate initial vector. This operation is performed by 
using the subroutine BSVEC. The eigenvectors are to be 
normalized so that 1

2
=x . 

  For further details, see "Method" for the subroutines 
BTRID, BSCT1 and BSVEC, and References [12] and 
[13]. 
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Fig. BSEG-1  General form of orthogonal similarity 
transformation matrix used in the Rutishauser-Schwarz method 
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B51-21-1001 BSEGJ, DBSEGJ 

Eigenvalues and eigenvectors of a real symmetric 
band matrix (Jennings method) 
CALL BSEGJ (A, N, NH, M, EPST, LM, E, EV, K, 
IT, VW, ICON) 

 
Function 
The m eigenvalues of a real symmetric band matrix of 
order n and bandwidth h are obtained starting with the 
eigenvalue of the largest (or smallest) absolute value first, 
and also the corresponding eigenvectors are obtained for 
the given m initial vectors by using the Jennings' 
simultaneous iteration method with the Jennings' 
acceleration. When starting with the smallest absolute 
value, matrix A must be positive definite. The 
eigenvectors should be normalized such that x

2
1= . 

Here 1≤m<<n and 0≤h<<n. 
 
Parameters 
A.......... Input. Real symmetric band matrix A. 

When obtaining the eigenvalues of the smallest 
absolute value first, the contents are altered on 
output. 
Compressed mode for symmetric band matrix. 
One-dimensional array of size n(h+1)-h(h+1)/2. 

N.......... Input. Order n of matrix A. 
NH ....... Input. Bandwidth h of matrix A. 
M ......... Input. The number of eigenvalues and 

eigenvectors obtained, m. 
M=m ... the m largest absolute value of 
eigenvalues are desired. 
M=-m ... the smallest absolute value of 
eigenvalues are desired. 

EPST ... Input. Constant ε used for convergence criterion 
for the eigenvectors. 
If this value is zero or negative, a standard value 
is set.  
See "Comments on use". 

LM....... Input. Upper limit for the number of iterations. 
If the number of iterations exceeds this number, 
the processing is terminated. See "Comments on 
use". 

E .......... Output. Eigenvalues. Stored in the sequence as 
specified by parameter M. 
One-dimensional array of size m. 

EV ....... Input. The m initial vectors stored in 
columnwise direction. See "Comments on use". 
Output. Eigenvectors. Two-dimensional array of 
EV(K,m+2) with the elements stored in column 
wise direction. 

K.......... Input. Adjustable dimension of EV. 
IT ......... Output. The number of iterations performed 

until eigenvalues and eigenvectors are obtained. 

VW ...... Work area. One-dimensional array of a size no 
less than max(n,2m)+m(3m+1)/2. 

ICON ... Output. Condition code. See Table BSEGJ-1. 
 
Table BSEGJ-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The number of iterations 
exceeded upper limit LM. 

Terminated. E 
and EV contain 

the 
approximations 

of the so far 
obtained 

eigenvalues and 
eigenvectors, 
respectively. 

28000 Orthogonalization of 
eigenvectors at each iteration 

cannot be attained. 

Discontinued 

29000 Matrix A is not positive 
definite, or possibly singular. 

Discontinued 

30000 NH<0, NH≥N, N>K, M=0 or 
|M|>N 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MSBV, SBDL, BDLX, TRID1, 
TEIG1, TRBK, UCHLS, USERT, MGSSL 
FORTRAN basic functions ... MAX0, AMAX1, ABS, 
IABS, FLOAT and SQRT 

 
• Notes 

It is desirable for the initial eigenvectors to be a good 
approximation to the eigenvectors corresponding to the 
obtained eigenvalues. If approximate vectors are not 
available, the standard way to choose initial vectors is 
to use the first m column vectors of the unit matrix I. 
The number of eigenvalues and eigenvectors, m had 
better be smaller than n such that m/n<1/10. The 
numbering of the eigenvalues is from the largest (or 
smallest) absolute value of eigenvalue such as λ1, λ2, ..., 
λn. It is desirable, if possible, to choose m in such a 
way that mm λλ 1+  <<1 (or λm+1/λm >>1) to achieve 
convergence faster. 
  The parameters EPST is used to examine the 
convergence of elements of the eigenvector normalized 
so that 1

2
=x . Whenever an eigenvector 

converges for the convergence criterion constant ε , 
the corresponding eigenvalue converges at least with 
accuracy A ⋅ ε  and in most cases is higher. It is 
therefore better to choose somewhat a larger EPST 
value. When defining unit round off as u, the standard 
value is set ε=16u. When the eigenvalues are very close 
to each other, however, convergence may not be 
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attained. If so, it is safe to choose such that ε≥100u. 
  The upper limit LM for the number of iterations is 
used to forcefully terminate the iteration when 
convergence is not attained. It should be set taking into 
consideration the required accuracy and how close the 
eigenvalues are to each other. The standard value is 
500 to 1000. 
  SSL II is provided with eigenvectors of a real 
symmetric band matrix by using a direct method. If the 
same problem is to be solved, a direct method is 
generally faster except that it needs more storage space 
in computation of the eigenvectors. Choose an 
appropriate subroutine after considering the size of the 
problem, required accuracy, amount of storage and the 
execution time. 

 
• Example 

This example obtains eigenvalues and eigenvectors of a 
real symmetric band matrix A of order n and bandwidth 
h, when n≤100, h≤10 and m≤10. 

 
C     **EXAMPLE** 
      DIMENSION A(1100),E(10),EV(100,12) 
     *         ,VW(300) 
   10 READ(5,500) N,NH,M,EPST 
      IF(N.EQ.0) STOP 
      MM=IABS(M) 
      NN=(NH+1)*(N+N-NH)/2 
      READ(5,510) (A(I),I=1,NN), 
     *            ((EV(I,J),I=1,N),J=1,MM) 
      WRITE(6,600) N,NH,M 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=MIN0(NH+1,I)+NE 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      CALL BSEGJ(A,N,NH,M,EPST,500,E,EV, 
     *           100,IT,VW,ICON) 
      WRITE(6,620) ICON,IT 
      IF(ICON.GE.20000) GO TO 10 
      CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
  500 FORMAT(3I5,E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',20X,'ORIGINAL MATRIX', 
     *       5X,'N=',I3,5X,'NH=',I3,5X, 
     *       'M=',I3/) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0',20X,'ICON=',I5,5X,'IT=',I5) 
      END 
 
  The subroutine SEPRT is used in this example to print 
eigenvalues and eigenvectors of a real symmetric matrix. 
For details, refer to the example of the subroutine SEIG1. 
 
Method 
• Jennings simultaneous iteration method 

Letting the eigenvalues of a real symmetric band matrix 
of order n, and of the largest absolute value first be as 

nλλλ ,...,, 21  

and the corresponding orthogonally normalized 
eigenvectors be as 

nvvv ,...,, 21  

where diagonal matrix ΛΛΛΛ and orthogonal matrix V are 
defined by 

( )
( )n

ndiag
vvvV ,...,,

,...,,

21

21

=
= λλλΛ

 

then 

AV V= ΛΛΛΛ  (4.1) 

  The simultaneous iteration method is the extension of 
the power method. Starting from an appropriate n × m 
matrix X1 

,...2,11 ==+ iii AXX  (4.2) 

is iterated and Xi is to be converged towards the m 
eigenvectors, that is the first m rows of V, corresponding 
to the largest absolute value first. However, if iteration is 
performed only for (4.2), each row of Xi converges 
towards the vector corresponding to the first row νννν1 of V, 
thus the purpose is not achieved. In the simultaneous 
iteration method, iteration matrix Xi is always 
orthonormalized based upon the properties of the 
eigenvalues and eigenvectors. 
  Assume that eigenvectors v1,...,vk-1 corresponding to 
eigenvalues λ1,...,λk-1 have been obtained. 

  The largest value for Avv T  is obtained when νννν=ννννk, 

and then the following condition is satisfied 

1,...,1,0T −== kiivv  

Now 

kkk AvvT=λ  

is the eigenvalue containing the k-th largest absolute 
value and vk is the corresponding eigenvector. 
 
  Jennings simultaneous iteration method proceeds as 
follows: 
(indexes used for iteration matrices are omitted) 
1) Y is obtained by multiplying A by X from the right. 

Y=AX (4.3) 

2)  m-order symmetric matrix B is obtained by 
multiplying XT by Y form the right. 

B=X TY (4.4) 

3) The eigenvalues µi, i=1,2,...,m of B and the 
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corresponding eigenvectors pi, i=1,2,...,m are obtained. 

B=PMP T (4.5) 

where M is a diagonal matrix and P is an orthogonal 
matrix. 

( )
( )m

mm

pppP
M

,...,,
...,,...,,diag

21

121

=

≥≥= µµµµµ
 

4) Z is obtained by multiplying Y by P from the right. 

Z=YP (4.6) 

5) Z is multiplied by ZT from the left to obtain an m-
order symmetric positive-definite matrix and this 
matrix is LLT decomposed (this is called LLT 
decomposition). 

ZTZ=LLT (4.7) 

6) X* is obtained by solving the equation X*LT=Z 

X*=ZL-T (4.8) 

X* is a normal orthogonal matrix. 

X TX *=Im (4.9) 

where, Im is an m-order unit matrix. 
7) Convergence is tested for X*. Return to procedure 1) 

setting X* as a new X, administering to the speed up 
as required basis. 

 
  The coefficient matrix when expanding iteration matrix 
X by eigenvector V is shown below. When expanding 
each column of matrix X by eigenvectors, the following is 
assumed: 

∑
=

==
n

i
iijj mjcx

1

,...,1,v  (4.10) 

  Equation (4.10) can be expressed by coefficient matrix 
C=(cij) of n × m matrix as 

X=VC (4.11) 

  Since X is orthogonal, 
XTX=Im 

  and V is orthogonal, C can be orthogonal. 

CTC=Im (4.12) 

  C is divided into two parts; the first m rows and the 
remaining n-m rows, 













=

2

1

C

C
C  (4.13) 

  Corresponding to this, Λ is divided into the following 
blocks. 







=

2

1

Λ
Λ

Λ
O

O
 (4.14) 

  Based on the preparation of procedures 1) through 7) 
above, C is tested as follows. 
 
1)' Substituting (4.11) in (4.3), equation (4.1) becomes, 

Y= AX = AVC = VΛC (4.15) 

The i-th column of the coefficient matrix is multiplied 
by λi. This means that the elements of the eigenvector 
corresponding to the eigenvalue in which the absolute 
value is large in (4.15) are focused and compressed. 

2)' Substituting (4.11) and (4.15) in (4.4), considering V 
to be orthogonal, 

B=X TY=C TΛC (4.16) 

From (4.13) and (4.14), B may be expressed as, 

22
T
111

T
1 CCCCB ΛΛ +=  (4.17) 

3)' In this procedure, no solution can be obtained if no 
assumptions are made regarding C. 
  Assume that in (4.13), C2=0 is given. This means 
that X represents all the first m vectors of V. Where 
(4.17) is expressed as, 

11
T
1 CCB Λ=  (4.18) 

  From (4.12) C is an m-order orthogonal matrix. 
Since (4.5) and (4.18) are performed by orthogonal 
similar transformation for the same m-order matrix B, 
they are expressed by selecting an appropriate V (for 
example, by changing the sign of eigenvector vi or 
selecting the corresponding eigenvector for multiple 
eigenvalues) as: 

C P I1 = m  (4.19) 

1Λ=M  (4.20) 

4)' From (4.6) and (4.15), Z can be expressed as, 

CPVYPZ Λ==  (4.21) 

When C2=0, 











=

O
VZ

1Λ
 (4.22) 

5)' From (4.12) and orthogonality of V, 
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Z TZ=P T C TΛΛΛΛ2CP=LLT 

When C2=0, 

Z TZ=ΛΛΛΛ1
2=LLT 

from 

L= |ΛΛΛΛ1| = diag(|λ1|, … , |λm|) (4.23) 

6)' From (4.8) and (4.21), 

X*=VΛΛΛΛCPL-T (4.24) 

When C2=0, then 

X*=V (4.25) 

  Therefore, when C2=0, an eigenvalue and 
eigenvector can be obtained by one iteration. 
When 












 +
=

2

1

E

EI
C

m

 (4.26) 

and the elements of E1 and E2 are the first order least 
value, (4.19) and (4.20) hold if the second-order least 
value is omitted. And therefore, 













⋅= −1

122 ΛΛ C

I
VX

m*
 (4.27) 

  This indicates that the element of eigenvector vj 
(j>m) contained in xi (i≤m) of X is reduced in each 
iteration by the ratio 
λλλλ j/λλλλ i 

  This means that C2 of C is approaching the least 
value. 

 
  In procedure 1), the elements of an eigenvector 
corresponding to the eigenvalue of the largest absolute 
value is compressed. In procedures 2), 3), and 4), the 
eigenvectors are refined along with obtaining eigenvalues. 
In procedures 5) and 6), the eigenvectors are made 
orthonormal. 
 
• Computation procedures 

This subroutine obtains the m eigenvalues of the largest 
(or the smallest) absolute values of a real symmetric 
band matrix of order n and bandwidth h and also the 
corresponding eigenvectors based upon m given initial 
vectors, using the Jennings simultaneous iteration 
method. 

 
(a) When obtaining the eigenvalues starting with the 

smallest absolute value and the corresponding 
eigenvector, the following is used instead of 
equation (4.3) in procedure 1). 

Y = A-1X (4.28) 

 A is decomposed into LDLT using subroutine SBDL. 
If A is not a positive definite matrix or it is singular, 
the processing is terminated with ICON=29000. 

(b) When obtaining B in 2), it is processed along with 
1) to reduce storage space as follows, where row 
vector yi of Y is computed in (4.29). 

v = xi 

yi = Av  or  yi = A-1v (4.29) 
         i = 1, …, m 

  Equation (4.29) is computed by subroutine MSBV 
or BDLX. Since B is an m-order real symmetric 
matrix, its diagonal and lower triangular elements 
can be computed as 

bii = vT yi 

bji = xj
T yi         , j = i+1, …, m 

Thus, Y is produced directly in the area for X by 
taking xi for each column of X and obtaining yi and 
bji. 

(c) 3) is performed sequentially by subroutine TRID1, 
TEIG1 and TRBK. Arrange the eigenvectors 
corresponding to the eigenvalues in the order of the 
largest absolute value to the smallest using 
subroutine UESRT. 

(d) 5) is performed by subroutine UCHLS. If LLT 
decomposition is impossible, processing is 
terminated with ICON=28000. 

(e) In 7), the m-th columns xm and *
mx  of X and X* are 

examined to see if 

EPST* ≤−=
∞mmd xx  (4.30) 

is satisfied. 
  If satisfied, the diagonal elements of M obtained in 
3) become eigenvalues (when obtaining the smallest 
absolute values first, the inverse numbers of the 
diagonal elements become the eigenvalues) and 
each column of X* becomes the corresponding 
eigenvector. 

 
• Jennings' acceleration 

This subroutine uses the original Jennings' method 
explained above, incorporating the Jennings' 
acceleration for vector series. 

 
Principle of acceleration 
A vector series x(k) where k=1,2,... that converges to 
vector x is expressed as a linear combination of 
vectors vj where j=1,2,...,n that are orthogonal to 
each other and constant ρρρρj such as | ρρρρj | < 1 where 
j=1,2,...,n as follows: 
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( ) ∑
=

+=
n

j
j

k
j

k p
1

vxx  (4.31) 

  A new vector is generated from three subsequent vectors 
x(k), x(k+1), and x(k+2) as follows: 

( ) ( ) ( )( )122 +++ −+= kkk s xxxx  (4.32) 

where 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )211

211

2 +++

+++

+−−

−−=
kkkTkk

kkTkk
s

xxxxx

xxxx  (4.33) 

  Substituting (4.31) to (4.33) and using the orthogonal 
relation of vj, s is expressed as: 

( )∑

∑

=

=

−
= n

j
jj

n

j
jj

zp

zp

s

1

1

1

 (4.34) 

where 

( ) njppz jj
k

jj ,...,2,1,1
2

2
22 =−= v  (4.35) 

  Substituting (4.31) and (4.34) to (4.32), and the 
following for s, 

∑

∑

=

==
+

= n

j
j

n

j
jj

z

zp

s
sp

1

1

1
 (4.36) 

then x  is obtained as: 

j
k
j

n

j

j p
p
pp

vxx 1

1 1
+

=

⋅
−
−

+= ∑  (4.37) 

  It is known from (4.36) that p  is the average of pj with 
respect to the positive weight zj. Assuming 

,21 ⋅⋅⋅>> pp  then following is satisfied for a 
sufficiently large value k: 

11 >>> j,zz j  

Thus, p p≈ 1  is obtained, and this proves 

xx ≈  
  This is a brief explanation of the Jennings' acceleration 
principle. 
  Assuming, ( )k

ix to be vector of column i of the iteration 
matrix xk in Jennings' method, the vector is expressed as 
follows for a sufficiently large value k: 

( ) ( ) jji

kn

mj
iji

k
i c vvx ∑

+=

+=
1

/ λλ  (4.38) 

where | λj / λi | < 1 
This means that Jennings' acceleration is applicable. 

Computation procedure 
1) Assume the initial value of the constant as the 

criterion for adopting the acceleration to be: 

δ = 1
2 n

 (4.39) 

2) Assume another criterion constant for adopting the 
acceleration to be: 

( )εδη ,51max ⋅=  (4.40) 

Then, vector number ja of the vector to be processed is 
set in m and the following acceleration cycle starts: 

3) Stores every other vector obtained from the latest 
values of 

aj
x  in columns (m+1) and (m+2) of the EV. 

4) Performs simultaneous iteration of Jennings' method. 
5) Judges convergence of (4.30) only for  ja=m 
6) If (4.41) is satisfied, proceeds to step 10) : 

η≤−
aa j

*
j xx  (4.41) 

7) If (4.42) is satisfied, proceeds to step 3) : 

δ≤−
aa j

*
j xx  (4.42) 

8) Calculates 
aj

x  by performing Jennings' acceleration 

with every other iterated vector of 
aj

x  

9) Orthogonalizes the 
ajx  to satisfy the following: 

1

,0

2

T

=

≠=⋅

a

a

j

aij jj

x

xx
 (4.43) 

10) Decrements ja by one, then proceeds to step 3) if ja≥1 
11) If the convergence condition is satisfied in step 5), 

iteration is stopped; otherwise, changes δ to: 

( )εηδδ 10,,1000max=  (4.44) 

then proceeds to step 2). 
 
• Notes on the algorithm 
In Jennings' acceleration, every other vectors are used for 
the following reasons: 
  It is clear from (4.37) that Jennings' acceleration is 
effective when weighted average p  (the weight is 
positive) of pj is close to p1. If all values of pj have the 
same sign, this condition is to be satisfied ordinarily; 
however, if there is a value having a sign opposite that of 
p1 and the absolute value close to that of pj, considerable 
effect of Jennings' acceleration cannot be expected. If 
every other vectors are used in place of successive 
vectors, that is, pj is substituted for pj

2 , the difficulty 
explained above caused by different signs of  pj is 
eliminated. 
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  Jennings' acceleration is effective for the eigenvalue  
problem having almost same eigenvalues in magnitude. 
  (See references [18] and [19] for simultaneous iteration 
of Jennings' method, and reference [18] for acceleration.) 
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E-31-32-0101 BSFD1, DBSFD1 

B-spline two-dimensional smoothing 
CALL BSFD1 (M, XT, NXT, YT, NYT, C, KC, 
ISWX, VX, IX, ISWY, VY, IY, F, VW, ICON) 

 
Function 
Given observed value fi,j=f(xi,yj), observation error 
σi,j=σxi⋅σyj at lattice points (xi,yj); i=1,2,...,nx, j=1,2,...,ny, 
this subroutine obtains a smoothed value or a partial 
derivative at the point P(vx,vy), or a double integral over 
the range [ξ1≤x≤vx, η1≤y≤vy] based on the bivariate m-th 
degree B-spline smoothing function. 
  However, subroutine BSCD2 must be called before 
using subroutine BSFD1 to determine the knots ξ1, ξ2,..., 
ξnt in the x-direction, the knots η1, η2,..., ηlt in the y-
direction, and the smoothing coefficients Cα,β in the m-th 
degree B-spline smoothing function. 

( ) ( ) ( )yNxNcyxS mm

n

m

l

m

tt

1,1,,

1

1

1

1
, +−

−

+−=

−

+−=
∑∑= βαβα

αβ
 (1.1) 

m≥1, ξ1≤vx<ξnt, η1≤vy≤ηlt 
 
Parameters 
M ............ Input. Degree of the B-spline. 
XT .......... Input. Knots ξi in the x-direction. 

One-dimensional array of size nt. 
NXT........ Input. Number nt of knots ξi in the x-direction. 
YT .......... Input. Knots ηi in the y-direction. 

One-dimensional array of size lt. 
NYT........ Input. Number lt of knots ηi in the y-direction. 
C ............. Input. Smoothing coefficient Cα,β. 

Two-dimensional array of C(KC,lt+m-1) 
KC .......... Input. Adjustable dimension (≥nt+m-1) for 

array C. 
ISWX...... Input. Type of computations in the x-direction. 

-1≤ISWX≤M (See parameter F.) 
VX .......... Input. Coordinate x at points P(vx,vy) 
IX............ Input. i satisfying ξi≤vx<ξi+1. 

When vx=ξnt, IX=nt-1. 
Output. i satisfying ξj≤vx<ξi+1. 
(See Notes.) 

ISWY...... Input. Type of computations in the y-direction. 
-1≤ISWY≤M (See parameter F.) 

VY .......... Input. Coordinate y at points P(vx,vy). 
IY............ Input. j satisfying ηj≤vy<ηj+1. 

When vy=ηlt, IY=lt-1. 
Output. j satisfying ηj≤vy<ηj+1 
(See Notes.) 

F.............. Output. Smoothed value, partial devivative or 
integral. Suppose ISWX=λ and ISWY=µ, one 
of the following values is output depending 
upon the combination of λ and µ. 

 
• When 0≤λ,µ 

( )yx v,vS
yx µλ

µλ

∂∂
∂ +

=F  

A smoothed value can be obtained by setting 
λ=µ=0. 
• When λ=-1, and 0≤µ, 

( ) dxv,xS
y

xv
y∫ 











=
1

F
ξ µ

µ

∂
∂

 

• When λ≥0 and µ=-1, 

( ) dyy,vS
x

yv

x∫ 











=
1

F
η λ

λ

∂
∂

 

• When λ=µ=-1, 

( )∫∫= xy vv
dxy,xSdy

11

F
ξη  

VW ......... Work area. 
One-dimensional array of size 
5(m+1)+max(nt,lt) 

ICON ...... Output. Condition code. 
See Table BSFD1-1. 

 
Table BSFD1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 XT(IX)≤VX<XT(IX+1) or 
YT(IY)≤VY<YT(IY+1) is not 
satisfied. 

The IX or IY 
shown on the 
left is searched 
for in the 
subroutine and 
processing 
continues. 

30000 One of the following 
occurred: 
1)VX<XT(1) or VX>XT(NXT) 
2)VY<YT(1) or VY>YT(NYT) 
3)ISWX<-1 or ISWX>M 
4)ISWY<-1 or ISWY>M 

Bypassed 

 
Comments on use 
• Subprogram used 

SSL II ... MGSSL, UCAR2, UBAS1 
FORTRAN basic function ... FLOAT 
 

• Notes 
This subroutine obtains the smoothed value, partial 
derivative or double integral based upon B-spline two 
dimensional smoothing function (1.1) 
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obtained by subroutine BSCD2. 
  Therefore, subroutine BSCD2 must be called to obtain 
the smoothing function (1.1) before calling this 
subroutine. The values of parameters M, XT, NXT, YT, 
NYT, C, and KC must be directly passed from BSCD2. 
  Parameters IX and IY should satisfy 
XT(IX)≤VX<XT(IX+1) and YT(IY)≤VY<YT(IY+1) 
respectively. If not, IX and IY which satisfy the 
relationship is found and the processing is continued. 
 
• Example 
Refer to Example of subroutine BSCD2. 

Method 
Suppose that by subroutine BSCD2, the bivariate m-th 
degree B-spline smoothing function 

( ) ( ) ( )yNxNcyxS mm

n

m

l

m

tt

1,1,,

1

1

1

1
, ++

−

= +−

−

= +−
∑∑= βαβα
αβ

 (4.1) 

is obtained. 
This subroutine computes smoothed values, partial 
derivatives or integrals based upon the smoothing 
function of (4.1). 
For detailed information, see Section 7.1 in Part I. 
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E31-31-0101  BSF1, DBSF1 

B-spline smoothing, differentiation and integration 
(with fixed knots) 
CALL BSF1(M,XT,NT,C,ISW,V,I,F,VW,ICON) 

 
Function 
Given observed values y1, y2, ..., yn at points x1, x2, ..., xn, 
weighted function values wi=w(xi), i=1,2,...,n and knots 
of the spline function, ξ1, ξ2, ...,ξnt (ξ1<ξ2<...<ξnt) then a 
smoothed value, or derivative at x=v∈[ξ1,ξnt] or integral 
from ξ1 to v is obtained based on the B-spline smoothing 
function. 
  One condition is that the smoothing coefficients cj's, j=-
m+1, -m+2, ..., nt-1 in the B-spline smoothing function 

( ) ( )xNcxS mjj

n

j m

t

1,

1

1
+

−

= +−
∑=  (1.1) 

must be calculated in subroutine BSC1 or BSC2 before 
using subroutine BSF1, where m is the degree of the B-
spline Nj,m+1(x). 
Also ξ1≤v≤ξm, m≥1, nt≥3, must be satisfied. 
 
Parameters 
M ..... Input. Degree of the B-spline m. See Notes. 
XT .... Input. Knots ξj's. 

One-dimensional array of size nt. 
NT ... Input. Number of the knots ξi's, nt. 
C ..... Input. Smoothing coefficient cj's (output from 

BSC1 or BSC2) 
One-dimensional array of size nt+m-1. 

ISW ... Input. An integer which specifies the type of 
calculation. 
If ISW=0, the smoothing value, 

( )F = S v  

If ISW= ( )l l m1 ≤ ≤  ,the l-th order derivative, 

F ( )= S vl ( ).  

If ISW=-1, the integral value, ( )dxx
v

∫=
1

SF
ξ

  

are obtained, respectively. 
V ..... Input. The point ν at which the smoothing 

value, etc.are obtained. 
I ….. Input. The i which satisfies ξi≤v<ξi+1. 

If ν = ξnt,I=nt-1. 
Output. The i which satisfies ξi ≤ ν < ξi+1. 
See Notes. 

F ..... Output. Smoothed value, the l-th order 
derivative or integral value depending on ISW. 
See parameter ISW. 

VW ... Work area. One-dimensional array of size 
m+1. 

ICON .. Output. Condition code. See Table BSF1-1. 

Table BSF1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 XT(I) ≤V<XT(I+1) is not 
satisfied. 

I satisfying the 
left relationship 
is searched for 
and the 
processing is 
continued. 

30000 One of the following 
occurred: 
(a)V<XT(1) or V>XT(NT) 
(b)ISW<-1 or ISW>M 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UCAR1and UBAS1 
FORTRAN basic function ... FLOAT 
 

• Notes 
This subroutine obtains a smoothed value, derivative 
or integral based on the B-spline smoothing function 
(1.1) obtained by subroutine BSC1 or BSC2. 
  Therefore, subroutine BSC1 or BSC2 must be called 
to obtain the smoothing function (1.1) before calling 
subroutine BSF1. The parameter values of M, XT, NT, 
and C must be the same as those used in BSC1 or 
BSC2. 
  Parameter I should satisfy the relationship 
XT(I)≤V<XT(I+1). If not, the I which satisfies the 
relationship is searched for to continue the processing. 
 

• Example 
By inputting discrete points xi's, observed values yi's, 
i=1,2,...,n, knots ξj's j=1,2,...,nt and the degree m, 
smoothed values, the 1st to m-th order derivatives at 
and integrals from ξ1 to the point. 

( ) ( )
5,...,1,0

,1...,,2,1,51

=

−=×−+= +

j

nijv tiiiij ξξξ
 

are obtained. 
Here, the weighted function values wi, i=1,2,...,n to each 
of the observed values are all set to 1.0, and also 
min(ξj)≤xi≤max(ξj), i=1,2,...,n, n≤101, nt≤10 and m≤5. 
 
C     **EXAMPLE** 
      DIMENSION X(101),Y(101),W(101), 
     *XT(10),C(14),R(101),VW(66),IVW(101), 
     *RR(6) 
      READ(5,500) N,M 
      READ(5,510) (X(I),Y(I),I=1,N) 
      READ(5,500) NT 
      READ(5,520) (XT(I),I=1,NT) 
      WRITE(6,600) N,M,(I,X(I),Y(I),I=1,N) 
      WRITE(6,610) NT,(I,XT(I),I=1,NT) 
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      DO 10 I=1,N 
   10 W(I)=1.0 
      CALL BSC1 (X,Y,W,N,M,XT,NT,C,R, 
     *RNOR,VW,IVW,ICON) 
      IF(ICON.EQ.0) GO TO 20 
      WRITE(6,620) 
      STOP 
   20 WRITE(6,630) RNOR 
      N1=NT-1 
      M2=M+2 
      DO 50 L2=1,M2 
      ISW=L2-2 
      WRITE(6,640) ISW 
      DO 40 I=1,N1 
      H=(XT(I-1)-XT(I))/5.0 
      XI=X(I) 
      DO 30 J=1,6 
      V=XI+H*FLOAT(J-1) 
      II=I 
      CALL BSF1(M,XT,NT,C,ISW,V, 
     *II,F,VW,ICON) 
      RR(J)=F 
   30 CONTINUE 
      WRITE(6,650) II,(RR(J),J=1,6) 
   40 CONTINUE 
   50 CONTINUE 
      STOP 
  500 FORMAT(2I6) 
  510 FORMAT(2F12.0) 
  520 FORMAT(F12.0) 
  600 FORMAT('1'//10X,'INPUT DATA',3X, 
     *'N=',I3,3X,'M=',I2//20X,'NO.',10X, 
     *'X',17X,'Y'//(20X,I3,2E18.7)) 
  610 FORMAT(/10X,'INPUT KNOTS',3X, 
     *'NT=',I3/20X,'NO.',10X,'XT'// 
     *(20X,I3,E18.7)) 
  620 FORMAT('0',10X,'ERROR') 
  630 FORMAT(10X,'SQUARE SUM OF',1X, 
     *'RESIDUALS=',E18.7) 
  640 FORMAT('1'//10X,'L=',I2/) 
  650 FORMAT(6X,I3,6E18.7) 
      END 
 

Method 
Suppose that the m-th degree B-spline smoothing 
function 

( ) ( )∑
−
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1

1
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mj
mjj xNcxS  (4.1) 

has been obtained by subroutine BSC1 or BSC2. 
Subroutines BSF1, based on the smoothing function 

(4.1), obtains a smoothed value, l-th order derivative or 
integral by using the (4.2), (4.3) and (4.4), respectively. 
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( )( ) ( ) ( )∑
−

+−=
+

=
1

1
1,

t

mj

n

mj

l
j

l vNcvS  (4.3) 

( )dxxI
v

∫=
1

S
ξ

 (4.4) 

The calculation method for the above is described in 
Section "Calculating spline function." 

This subroutine calculates Nj,m+1(x), its derivative and 
integral by calling subroutine UBAS1. 
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B51-21-0402 BSVEC, DBSVEC 

Eigenvectors of a real symmetric band matrix (Inverse 
iteration method) 
CALL BSVEC(A,N,NH,NV,E,EV,K,VW,ICON) 

 
Function 
When nv number of eigenvalues are given for a real 
symmetric band matrix A of order n and bandwidth h the 
corresponding eigenvectors are obtained by using the 
inverse iteration method. 
 
Parameters 
A ..... Input. Real symmetric band matrix A. 

Compressed mode for symmetric band matrix. 
One-dimensional array of size n(h+1)-
h(h+1)/2. 

N ..... Input. Order n of matrix A. 
NH .... Input. Bandwidth h 
NV .... Input. Number of eigenvectors to be obtained. 

For NV=-nv set as NV=+nv. 
E ..... Input. Eigenvalues. 

One-dimensional array of size at least nv. 
EV .... Output. Eigenvectors. 

The eigenvectors are stored in column wise 
direction. 
Two-dimensional array of EV(K, nv) 

K ..... Input. Adjustable dimension of the array EV. 
VW .... Work area. One-dimensional array of size 

2n(h+1). 
ICON .. Output. Condition code. 

See Table BSVEC-1. 
 
Table BSVEC-1  Condition codes 

Code Meaning Processing 
        0 No error  
10000 NH=0 Executed 

normally. 
15000 All of the eigenvectors could 

not be obtained. 
The 
eigenvector is 
set to zero-
vector. 

20000 None of the eigenvectors 
could be obtained. 

All of the 
eigenvectors 
become zero-
vectors. 

30000 NH<0, NH≥N, N>K,NV=0 or 
NV N>  

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MGSSL 
FORTRAN basic function ... MAX0, MIN0, ABS, 
SIGN and SQRT 

• Notes 
This subroutine is for a real symmetric band matrix. 
For obtaining eigenvalues and eigenvectors of a real 
symmetric matrix, use subroutine SEIG1 or SEIG2. 
Further, for a real symmetric tridiagonal matrix, use 
subroutine TEIG1 or TEIG2. If the eigenvalues are 
close to each other in a small range, the inverse 
iteration method used to obtain the corresponding 
eigenvectors may not converge. If this happens, ICON 
is set to 15000 or 20000 and unobtained eigenvectors 
become zero-vectors. 

 
• Example 

When a real symmetric band matrix A of order n and 
bandwidth h and also its nv number of eigenvalues are 
given, the corresponding eigenvectors are obtained in 
this example by using the inverse iteration method for 
the case n≤100, h≤10 and nv≤10. 

 
C     **EXAMPLE** 
      DIMENSION A(1100),E(10),EV(100,10), 
     *          VW(2100) 
   10 READ(5,500) N,NH,NV 
      IF(N.EQ.0) STOP 
      NN=(NH+1)*(N+N-NH)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N,NH,NV 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=MIN0(NH+1,I)+NE 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      NNV=IABS(NV) 
      READ(5,510) (E(I),I=1,NNV) 
      CALL BSVEC(A,N,NH,NV,E,EV,100,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL SEPRT(E,EV,100,N,NNV) 
      GO TO 10 
  500 FORMAT(3I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX'/ 
     *       11X,'** ORDER =',I5,'NH=',I3, 
     *       10X,'NV=',I3/) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT(/11X,'** CONDITION CODE =',I5/) 
      END 
 
  For subroutine SEPRT, see the example of the 
subroutine SEIG1. 
 
Method 
When a real symmetric band matrix A of order n and 
bandwidth h and also its nv number of eigenvalues are 
given, the corresponding eigenvector are obtained by 
using the inverse iteration method. 
Suppose the true eigenvalues have the relation. 

λ1>λ2>...>λn (4.1) 
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  Given µj as an approximation of λj the inverse iteration 
method iteratively solves 

( ) ,...2,1,1 ==− − rrrj xxIA µ  (4.2) 

  with an appropriate initial vector x0, and chooses xr as 
eigenvector when it has satisfied convergence criteria. 

First, A-µjI is decomposed to a unit lower triangular 
matrix L and upper triangular matrix U 

( ) LUIAP =− jµ  (4.3) 

and the resulting equation 

1−= rr PxLUx  (4.4) 

  is solved, where P is a permutation matrix which 
performs row interchange for a partial pivoting. To solve 
Eq. (4.4), the following two equations 

11 −− = rr PxLy  (forward substitution) (4.5) 

1−= rr yUx  (backward substitution) (4.6) 

are to be solved. 
  The method described above is the general inverse 
iteration, but if it is applied to a real symmetric band 
matrix, the handwidth becomes large because of the row 
interchange in the Eq. (4.3), and the storage space for an 
LU-decomposed matrix increases substantially compared 
to the space for the original matrix A. This subroutine, in 
order to minimize this increase, discards the L component 
leaving only the U component. 

1−= rr xUx  (4.7) 

Since an appropriate initial eigenvector x0 can be 
represented as 

( )
i

n

i
i ux ∑

=
=

1

0
0 α  (4.8) 

  by the true eigenvectors u1,u2,...,un which correspond to 
the true eigenvalues, from Eq. (4.7), let 

x U x1
1

0= −  (4.9) 

  and substituting Eqs. (4.3) and (4.8) into (4.9), we 
obtain 
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Rewriting ( )
ik

n

i
i βα∑
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0   to  ( )α k
1 , 

( ) ( )∑
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i
iij
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1 uIAx αµ  

Similarly, rewriting ( )
ik
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r
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1   to  ( )α k
r  , and from 

( ) ( ) ,...2,1,
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r
jr uIAx αµ  (4.10) 

xr is given by 
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 (4.11) 

  The constant 1/(λj-µj)r can be eliminated by normalizing 
xr at each iteration step. Therefore 

( ) ( ) ( ) ( )∑
≠
=

−−+=
n

ji
i

r
ji

r
jji

r
ij

r
jr

1

µλµλαα uux  (4.12) 

  In general, |(λj-µj)/(λi-µj)|<<1,  so Eq. (4.12) indicates 
that if 0)( ≠r

jα , the larger r becomes, the closer xr 

approaches eigenvector ( )α j
r

ju . 
 
• Initial vector and convergence criteria 

This subroutine normalize xr-1 at each step such that 

Ax unr
23

11 =−  (4.13) 

and if xr satisfies 

11 ≥rx  (4.14) 

then xr is accepted as an eigenvector, where u is the 
unit round off, and A  is represented by 

∑
≥

=
ji

ija
n
2A  (4.15) 

  which is close to A
1
 and is easy to calculate. The 

reason that Eq. (4.15) can be used is as follows: from 
Eqs. (4.3) and (4.7). 

( ) 11
T

1 rrrrj xLxPxxIA −=− µ  (4.16) 
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  The right hand side of Eq. (4.16) is the residual vector 
when considering x xr r 1

 as an eigenvector. 
  Since L is a lower triangular matrix whose diagonal 
elements are 1 and absolute values of other off-diagonal 
elements are less than 1, and P is a permutation matrix, 
the norm of the vector is assumed not to be increased by 
the linear transformation P T L. Therefore, if xr 1

1≥ , the 
norm in the right hand side of Eq.(4.16) is very small, so 
there is no objection to accept xn as an eigenvector. For 
the initial vector x0, a vector which consists of the 
continuous n elements 

[ ] ,...2,1=−= iiiRi φφ  (4.17) 

  is used, where Ri's are not pseudo random numbers in a 
statistical sense but are increasingly uniformly distributed 
random numbers in the interval [0,1], and 

( )φ = −5 1 2  (4.18) 

  By doing this, there is no need to alter the way of 
choosing an initial vector for multiple eigenvalues, and/or 
to give any perturbation to the eigenvalues, so that the 
computation becomes simpler. This subroutine initializes 
the first random number to be R1=φ every time it is called 
in order to guarantee consistency with its computed 
results. 

If five iterations of Eq, xr is still not enough to satisfy 
the convergence criterion (4.14), this subroutine tries 
another five more iterations after relaxing the criterion by 
setting the coefficient of A  in Eq. (4.13) to 10n3/2u. 

  If convergence is still not accomplished, the iteration is 
assumed to be non-convergent and the corresponding 
column of EV are all set to zero and ICON is given 
15000. 
 
• Orthogonalizing the eigenvectors 

All eigenvectors of a real symmetric matrix should be 
orthogonal to each other, but once the eigenvalues 
become close to each other, the orthogonal nature of 
the eigenvectors tend to collapse. Therefore, this 
subroutine, to insure the eigenvectors orthogonal, 
performs the following: 
first it examines to see if the eigenvalue µi to which the 
corresponding eigenvector is obtained and the 
eigenvalue at one step before, µi-1, satisfies the 
relationship 

A3
1 10−

− ≤− ii µµ  (4.19) 

If the relationship is satisfied, the eigenvector xi 
corresponding to the eigenvalue µi is modified to the 
eigenvector xi-1 corresponding to µi-1 in such a way that 

( ) 0, 1 =−ii xx  (4.20) 

  In a similar way, for a group of eigenvalues which 
successively satisfy the relationship (4.19), their 
corresponding eigenvectors are reorthogonalized. 
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B51-21-0302 BTRID, DBTRID 

Reduction of a real symmetric band matrix to a real 
symmetric tridiagonal matrix (Rutishauser-Schwarz 
method) 
CALL BTRID(A,N,NH,D,SD,ICON) 

 
Function 
A real symmetric band matrix A of order n and 
bandwidth h is reduced to a real symmetric tridiagonal 
matrix T by using the Rutishauser-Schwarz's orthogonal 
similarity transformation, such as SS AQQT T= , where Qs 
is an orthogonal matrix, and also 0≤h<<n. 
 
Parameters 
A ..... Input. Real symmetric band matrix A. Its 

contents are destroyed an output. Compressed 
mode for a symmetric band matrix. One-
dimensional array of size n(h+1)-h(h+1)/2 

N ..... Input. Order n of the matrix A. 
NH .... Input. Bandwidth h. 
D ..... Output. Diagonal elements of the tridiagonal 

matrix. 
One-dimensional array of size n. 

SD .... Output. Subdiagonal elements of the 
tridiagonal matrix T. One-dimensional array of 
size n. In the subroutine, only SD(2) to SD(N) 
are used and SD(1) is set to zero. 

ICON .. Output. Condition code. See Table BTRID-1. 
 
Table BTRID-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 NH=0 or NH=1 No reduction 
performed. 

30000 NH<0 or NH≥N Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH and MGSSL 
FORTRAN basic functions ... MIN0, ABS and SQRT 
 

• When compared to the Householder method which 
reduces the matrix to a real symmetric tridiagonal 
matrix, the Rutishauser method used in this subroutine 
is better both in terms of the amount of storage and 
computations if the ratio of the bandwidth to the order 
number, r=h/n, is small. If the ratio r exceeds 1/6, the 
Householder method is better. 

• Example 
This example computes eigenvalues by using 
subroutine BSCT1 after reduction of a real symmetric 
band matrix of order n and bandwidth h to a tridiagonal 
matrix under conditions n≤100 and h≤10. 

 
C     **EXAMPLE** 
      DIMENSION A(1100),D(100),SD(100), 
     *          E(100),VW(300) 
   10 READ(5,500) N,NH,M,EPST 
      IF(N.EQ.0) STOP 
      NN=(NH+1)*(N+N-NH)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N,NH,IABS(M) 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=MIN0(NH+1,I)+NE 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      CALL BTRID(A,N,NH,D,SD,ICON) 
      WRITE(6,620) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,640) (I,D(I),SD(I),I=1,N) 
      CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 
      WRITE(6,650) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      MM=IABS(M) 
      WRITE(6,660) (I,E(I),I=1,MM) 
      GO TO 10 
  500 FORMAT(3I5,E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX'/ 
     *       11X,'** ORDER =',I5,10X,'NH=', 
     *       I3,'M=',I3/) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0'/11X,'** TRIDIAGONAL ', 
     *       'MATRIX') 
  630 FORMAT(/11X,'** CONDITION CODE =',I5/) 
  640 FORMAT(5X,I5,2E16.7) 
  650 FORMAT('0'/11X,'** EIGENVALUES') 
  660 FORMAT(5X,'E(',I3,')=',E15.7) 
      END 
 
Method 
Although the Householer method is often used for 
reduction of a real symmetric matrix to a tridiagonal 
matrix (see"Method" for the subroutine TRID1), if this 
method is applied to a band matrix, however, its non-zero 
elements spread over the matrix during the reduction, and 
therefore it cannot be used only in the range of band area. 
On the other hand, in the Rutishauser-Schwarz method, 
subdiagonal lines can be eliminated one by one from 
outside first by processing the band part of the band 
matrix A (of order n, band width h, and each element aij). 
  Consider lower part of matrix A including its diagonal 
elements since the matrix is symmetric. 
  First, in order to eliminate ah+11, , transform matrix A 

into T
111 ARRA = , where R1 is an orthogonal matrix  
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associated with the h-th and (h+1)-th rows of A, and 
tan 1,1,11 hh aa +=θ . 
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The element ah+1.1 becomes zero by this operation, but 
another new non-zero element a2h+1,h is generated. In 
order to eliminate it, perform A1=R2A1R2

T by using the 
orthogonal matrix, 
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associated with the 2h-th and (2h+1)-th rows of the 
matrix, where tan hhhh aa ,2,122 +=θ . By this operation, 
a2h+1,h becomes zero, but again another new non-zero 
element a3h+1,2h is generated. By using this similarity 
transformation (orthogonal similarity transformation) 
repeatedly by an appropriate orthogonal matrix, element 
ah+1,1 can be eliminated entirely. To eliminate ah+2,2 an 
appropriate orthogonal transformation is repeatedly 
performed to eliminate non-zero elements generated 
during the transformation. Then element ah+2,2 can be 
entirely eliminated. By repeatedly performing this 
operation, all the most outward subdiagonal elements can 
be eliminated and the bandwidth is reduced to h-1. 

  The bandwidth can be reduced further by one by 
applying the same procedure as done to the original 
matrix to this newly produced matrix. 
  Fig. BTRID-1 shows the non-zero elements (indicated 
by × in the diagram) that are generated successively when 
eliminating the element ah+1,1, i.e., a31 (indicated by * in 
the diagram) for n=10 and h=2 and the lines of influence 
of the orthogonal similarity transformation to eliminate 
the non-zero elements. 
  The number of multiplications necessary for eliminating 
the most outward subdiagonal elements of a matrix of 
bandwidth h is approximately 4n2, so that the number of 
necessary multiplications for a tridiagonalization is about 
4hn2 (See Reference [12]). On the other hand, in 
Householder method the number of necessary 
multiplications for tridiagonalization of a real symmetric 
matrix of order n is 2n3/3. Therefore, for r=h/n<1/6, the 
Rutishauser method is better in respect to the number of 
multiplications carried out. 
  The orthogonal matrix Qs used to reduce the original 
matrix A to a tridiagonal matrix (T=QsAQs

T) can get 
denoted as a product of orthogonal matrices R1,R2,... such 
as Qs=Rs...R2R1. 
  However, since it is not a good idea to have the Qs as an 
n × n matrix as far as amount of storage and  
computations are concerned, this subroutine does not 
carry out such an computation. 
 

A =

× × ×
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Fig. BTRID-1 Elimintation of elements by Rutishauser-Schwarz 
method 
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I11-81-1101 BYN, DBYN 

Integer order Bessel function of the second kind Yn(x) 
CALL BYN(X,N,BY,ICON) 

 
Function 
This subroutine computes the integer order Bessel 
function of the second kind 
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for x>0, by the recurrence formula. Where, Jn(x) is the 
integer order Bessel function of the first kind, and γ 
denotes the Euler's constant and also the assumption 

01
0

1
=∑

=m
m  is made. 

 
Parameters 
X ..... Input. Independent variable x. 
N ..... Input. Order n of Yn(x). 
BY .... Output. Function value Yn(x). 
ICON .. Output. Condition code. See Table BYN-1. 
 
  When N=0 or N=1, ICON is handled the same as in 
ICON for BY0 and BY1. 
 
Table BYN-1 Condition codes 

Code Meaning Processing 
0 No error  

20000 X≥tmax BY is set to 0.0. 
30000 X≤0 BY is set to 0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... BY0, BY1, UBJ0, UBJ1, MGSSL, and 
UTLIM 
FORTRAN basic function ... IABS, FLOAT, DSIN, 
DCOS, DLOG, and DSQRT 

• Notes 
[Range of argument X] 
0<X<tmax 
If X becomes large enough, sin(x-π/4) and cos(x-π/4) , 
which are used in calculating Y0(x) and Y1(x), will lose 
accuracy. The limit is provided for that reason. (See 
(4.4) in the Method section of BY0 and BY1) 
When calculating ( )Y x Y xo    and  , ( ),  use subroutines1  
BY0 and BY1 instead. 

 
• Example 

The following example generates a table of Yn(x) for 
range of x from 1 to 10 with increment 1 and for the 
range of N from 20 to 29 with increment 1. 

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 20 N=20,29 
      DO 10 K=1,10 
      X=K 
      CALL BYN(X,N,BY,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,N,BY 
      IF(ICON.NE.0) WRITE(6,620) X,N,BY,ICON 
   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',5X,'N',8X, 
     *'YN(X)'/) 
  610 FORMAT(' ',F8.2,I5,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'N=',I5,5X,'BY=',E17.7,5X, 
     *'CONDITION=',I10) 
      END 
 
Method 
Bessel function Yn(x) is calculated using the following 
recurrence formula. 

( ) ( ) ( ) 1,...,2,1,2
11 −=−= −+ nkxYxY

x
kxY kkk  (4.1) 

where, both Y0(x) and Y1(x) are calculated by using BY0 
and BY1. 
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I11-83-0201 BYR, DBYR 

Real order Bessel function of the second kind Yν(x) 
CALL BYR(X,V,BY,ICON) 

 
Function 
This subroutine evaluates a real order Bessel function of 
the second kind 

( ) ( ) ( ) ( )
( )Y x

J x J x
ν

ν ννπ
νπ

=
− −cos

sin
 

by using a modified series expansion and the τ method. 
In the above expression, Jν(x) is the Bessel function of 
the first kind. 
 
Parameters 
X ..... Input. Independent variable x. 
V ..... Input. Order ν of Yν(x). 
BY .... Output. Value of function Yν(x). 
ICON .. Output. Condition code. (See Table BYR-1.) 
 
Table BYR-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 • X=0.0 or the value of BY 
was large almost to 
overflow.  

• X≥tmax 

The negative 
infinite value of 
the floating 
point 
expression is 
output to BY.  
BY is set as 
0.0. 

30000 X<0.0 or V<0.0 BY is set as 
0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, AFMAX, MGSSL, ULMAX, and 
UTLIM 
FORTRAN basic function ... FLOAT, ALOG, AMAX1, 
ALGAMA, ABS, GAMMA, SQRT, SIN, and COS 

 
• Notes 

X>0.0 and ν≥0.0 must be satisfied. 
To evaluate Y0(x) or Y1(x), it is better to use BY0 or 
BY1 respectively rather than this subroutine. 
If values Yν(x), Yν+1(x), Yν+2(x), ... Yν+M(x) are necessary 
at the same time, calculate Yν(x) and Yν+1(x) and with 
this subroutine , then use recurrence formula((4.2) in 
"Method") repeatedly to obtain the values of higher 
order as Yν+2(x), Yν+3(x), ..., Yν+M(x). 
If this subroutine is called repeatedly with the same 
value of ν for large values of x, the common procedure 
is bypassed to calculate the value of Yν(x) effectively. 

• Example 
The following example calculates the value of Yν(x) for 
ν from 0.5 to 0.8 with increment 0.01 and for x from 1 
to 10 with increment 1. 
 

C     **EXAMPLE** 
      DO 20 NV=50,80 
      V=FLOAT(NV)/100.0 
      DO 10 K=1,10 
      X=FLOAT(K) 
      CALL BYR(X,V,BY,ICON) 
      WRITE(6,600) V,X,BY,ICON 
   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT(' ',F8.3,F8.2,E17.7,I7) 
      END 
 
Method 
A ν-order Bessel function of the second kind is defined 
using Bessel functions of the first kind Jν(x) and J-ν(x) as 
follows: 

( ) ( ) ( ) ( )
( )νπ
νπ νν

ν sin
cos xJxJxY −−

=  (4.1) 

  If the value of order ν is expressed as integer n, this is 
defined as the limit value for ν → n . 
  In this subroutine, the value of Yν(x) is calculated 
directly for 0≤ν≤2.5. For ν>2.5, if fraction part µ of ν is 
equal to or less than 0.5, values of Yµ+1(x) and Yµ+2(x) are 
calculated directly; and if µ is greater than 0.5, values of 
Yµ(x) and Yµ+1(x) are calculated directly. These values are 
used to calculate Yν(x) form the recurrence formula: 

( ) ( ) ( )xYxY
x

xY 11
2

−+ −= ννν
ν  (4.2) 

  For 0≤ν≤2.5, calculation method of Yν(x) is explained 
below. The method varies depending on the value of x. 
For 

x≤3.66 (4.3) 

the calculation method for a small value of x is used; 
whereas, for 

x>3.66 (4.4) 

the calculation method for a large value of x is used. 
  The method for a small value of x 
  Series expansion of the following functions Jν(x) and  J-

ν(x) is used: 
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  φ1(ν,x) and φ2(ν,x) are defined as follows: 
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The calculation method varies depending on the 
interval of ν: 0≤ν≤0.5, 0.5<ν≤1.5, and 1.5<ν≤2.5. 
Explanations of the calculation method for 0≤ν≤0.5 
follow. 

The following is obtained from expressions (4.5), (4.6), 
and (4.7): 

( ) ( ) ( ) { ( ) ( )}x,vBx,vAvxJvxJ k
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∞
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0
cos π  (4.8) 
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 (4.9) 

  If Ak(ν,x) and Bk(ν,x) are calculated as they are, 
cancellation occurs for ν ≈ 0. This is prevented as 
follows: 
  Since φ1(ν,x) and φ2(ν,x) have the same sign in 
Bk(ν,x),cancellation does not occur even when they are 
added; however, if φ1(ν,x) and φ2(ν,x) defined in 
expression (4.7) are calculated as they expressed in the 
right sides, cancellation occurs if (x/2)ν is close to 1. To 

calculate φ1(ν,x) and φ2(ν,x) as accurate as binary 
rounding error, it is only necessary to obtain the best 
approximation of the following function f(t) having the 
required accuracy for -log2≤t≤log2: 

( ) ⋅⋅⋅+++=−=
!3!2!1

11 2tt
t

etf
t

 (4.10) 

This is because φ1(ν,x) and φ2(ν,x) can be calculated 
with a high accuracy using the best approximation as 
follows: 
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The following best approximation of function f(t) is 
incorporated in this subroutine: 
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To calculate (1/Γ(k+1-ν)-cos(νπ)/Γ(k+1+ν))/(k!ν) for 
Ak(ν,x) in expression (4.9) without cancellation, it is only 
necessary to obtain the best approximation having the 
required accuracy. 

In this case, since the following is satisfied for the part 
enclosed in braces in Ak(ν,x) of expression (4.9). 
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it is only necessary to obtain an approximation of ( )~A0 ν  
for 0≤ν≤0.5. In this subroutine, 

( ) ( )∑
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0
00

~ νννν  (4.14) 

is used as the best approximation. 
  Values of Ak(ν,x) and Bk(ν,x) can be obtained without 
cancellation in this way, buy all values do not have the same 
sign; consequently, cancellation may occur in the addition to 
be processed in expression (4.8). Since function Yν(x) is an 
oscillating function with respect to x for constant ν and has a 
zero point, it is impossible to obtain the value of such a 
function with a relative accuracy. This means that the 
absolute accuracy must be used. (except for the case if the 
value of x is small and the value of Yν(x) takes a great 
negative value.) Examining the range for x in which the value 
of Yν(x) can be calculated with an absolute accuracy 
applicable in principle, 
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x≤3.66 (4.15) 

is found to be valid in this method. Since values of the 
terms comprising the sum in expression (4.8) become 
sufficiently small as the value of k becomes greater, it is 
only necessary to calculate a relatively small number of 
terms until the resultant value converges according to the 
required accuracy. 

Therefore, the value of Yν(x) is obtained from 
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using the best approximation 
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of 

( ) ( )
ν
νπν sin=g  (4.18) 

For ν = 0, the value of Y0(x) is calculated with the limit 
value obtained from expression (4.1) for ν → 0  as follows. 
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  This is more efficient than the calculation of (4.16). 
  Where γγγγ is the Euler's constant, Φ0=1, and  

  ( )∑
=

≥=
k

m
k k

m0

11Φ . 

  The calculation method for 0≤ν≤0.5 has been explained. 
  Calculation methods for 0.5<ν≤1.5 and 1.5<ν≤2.5 are 
omitted because the same concept applies to these ranges. 
The method for a large value of x 

Bessel function of the second kind Yν(x) is given as the 
imaginary part of the Hankel function of the first kind 

( )( ) ( ) ( )xiYxJxH ννν +=1  (4.20) 

Where i is the imaginary unit ( )i = −1 , ( )J xν  is the 

Bessel function of the first kind. And f
xν
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 is defined 

as follows: 
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where, 
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 is an imaginary function, and assume 

whose real part is 
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 and whose imaginary part is 
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. In this case, f
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 is expressed as: 
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Using expressions (4.20), (4.21), and (4.22), Yν(x) is 
represented as : 

( )










 −−





+










 −−











=

ππ

ππ
π

4
1

2
1cos1,

4
1

2
1sin1,2 2

1

vx
x

vQ

vx
x

vP
x

xYv
 (4.23) 

  Let us obtain the approximation of 






x
f 1
ν  of (4.21) in 

the following paragraph. If the approximation is known, 
the real and imaginary parts of expression (4.22) are 

obtained as P
x

ν , 1





 and Q
x

ν , 1





. With these values, 

Yν(x) is obtained. 
  The Hankel function of the first kind ( ) ( )H xν

1 satisfies 
the following differential equation: 

( )x d w
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x dw
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x w2
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Assuming t
x

=
1

 and substituting ( ) ( )H xν
1  of (4.21) to 

(4.24), f
xν

1





 or ( )f tν  satisfies the following 

differential equation. 
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  Applying the τ method to this differential equation, the 
approximation of fν(t) is obtained for a small value of t. 
For this purpose, let us consider the following differential 
equation derived from (4.25) by adding the shifted 
ultraspherical polynomial on the orthogonal interval [0,η] 
to the right side by multiplying τ. 
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  This equation has the following polynomial of degree m 
as a particular solution: 
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where 
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)*(α
mkC  is the k-th order  coefficient of )()*( tCm

α . If the value 
of τ  in the right side of (4.26) is sufficiently small, fνm(t) can 
be regarded as the approximation polynomial of fν(t). 

Determining the value of τ  (the value of  τ  decreases 
as the value of m increases) by the initial condition 
fνm(0)=1(fν(t) → 1 for t →0), we obtain the following 
approximation polynomial fνm(t) of fν(t) for 0≤t≤η: 
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  The value of α is assumed to be 1 based on the results 
of experiments conducted for the accuracy of  fνm(t) with 
various values. 

  Since P
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 and Q
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 are the real and imaginary 

parts of f
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, they can be expressed as 
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For efficient calculation formulas of P
x

ν , 1





 and 
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, these expressions are transformed to  
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where 
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dl and en are given as 
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  As explained at the beginning of explanations, this method 
is applied to the range of x>3.66; thus the calculation formula 
can be determined with a minimum value for the required 
accuracy assuming η=1/3.66. Since the value of m decreases 
in proportion to that of η, it is best to change the values of η 
and m depending on intervals of  x to improve calculation 
efficiency for a large value of  x. It is known that the values 

of P
x

ν , 1





 and Q
x

ν , 1





 can be efficiently calculated from 

the following: 
For single precision: 
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For double precision: 
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 (4.36) 

In this subroutine, the constants dl and en are tabulated 
in advance. 
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I11-81-0401 BY0, DBY0 

Zero order Bessel function of the second kind Y0(x). 
CALL BY0(X,BY,ICON) 

 
Function 
This subroutine computes the zero order Bessel function 
of the second kind Y0(x) 
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(where J0(x): zero order Bessel function of the first kind 
and γ : Euler's constant) 
by rational approximations and the asymptotic expansion. 
  Where, x>0. 
 
Parameters 
X ..... Input. Independent variable x. 
BY .... Output. Function value Y0(x). 
ICON .. Output. Condition code. See Table BY0-1. 
 
Table BY0-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 X≥tmax BY is set to 0.0. 
30000 X≤0 BY is set to 0.0. 

 
Comments on use  
• Subprograms used 

SSL II ... UBJ0,MGSSL, and UTLIM 
FORTRAN basic functions ... DSIN, DCOS, DLOG 
and DSQRT 

 
• Notes 

[Range of argument X] 
0<X<tmax 
These limits are used because sin(x-π/4) and cos(x-π/4) 
lose accuracy if X becomes large. (See "Method".) 

 
• Example 

The following example generates a table of Y0(x) from 
1 to 100 with increment 1. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      X=K 
      CALL BY0(X,BY,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,BY 
      IF(ICON.NE.0) WRITE(6,620) X,BY,ICON 
   10 CONTINUE 
      STOP 
 

  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',9X,'Y0(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'BY=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 
 
Method 
With x=8 as the boundary, the approximation formula 
used to calculate Bessel function Y0(x) changes. 
 
• For 0<x≤8 

The expansion of Y0(x) into power series 
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  (where J0(x): Zero-order Bessel function of the first kind 
and γ: Euler's constant) is calculated using the following 
rational approximations. 
Single precision: 
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  Theoretical precision = 8.14 digits 
 
Double precision: 
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  Theoretical precision = 18.78 digits 
 
• For x>8 

The asymptotic expansion of Y0(x) 
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is evaluated through use of the following approximate 
expressions of P1(x) and Q1(x) 
Single precision: 
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Theoretical precision = 10.66 digits 
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Theoretical precision = 9.58 digits 
 
Double precision: 
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Theoretical precision = 18.16 digits 
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Theoretical precision = 18.33 digits 
For more information, see Reference [78] pp.141 - 149. 
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I11-81-0501 BY1, DBY1 

First order Bessel function of the second kind Y1(x). 
CALL BY1(X,BY,ICON) 

 
Function 
This subroutine computes the first order Bessel function 
of the second kind 
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(where J1(x): first order Bessel function of the first kind 
and γ : Euler's constant) by rational approximations and 
the asymptotic expansion. Where, x>0. 
 
Parameters 
X ..... Input. Independent variable x. 
BY .... Output. Function value Y1(x). 
ICON .. Output. Condition code. See Table BY1-1. 
 
Table BY1-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 X≥tmax BY=0.0 
30000 X≤0 BY=0.0 

 
Comments on use  
• Subprograms used 

SSL II ... UBJ1, MGSSL and UTLIM 
FORTRAN basic function ... DSIN, DCOS, DLOG and 
DSQRT 

 
• Notes 

The range of argument X 
0<X<tmax 
These limits are set because sin(x-3π/4) and cos(x-
3π/4) can not be calculated accuracy if X becomes 
large. (See "Method".) 

 
• Example 

The following example generates a table of Y1(x) from 
1 to 100 with increment 1. 

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      X=K 
      CALL BY1(X,BY,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,BY 
      IF(ICON.NE.0) WRITE(6,620) X,BY,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF BESSEL ', 
     *'FUNCTION'///6X,'X',9X,'Y1(X)'/) 
  610 FORMAT(' ',F8.2, E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'BY=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 

 
Method 
With x=8 as the boundary, the approximation formula 
used to calculate Bessel function Y1(x) changed. 
 
• For 0<x≤8 

The power series expansion of Y1(x). 
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  (where J1(x): first order Bessel function of the first kind 
and γ: Euler's constant) is calculated using the following 
rational approximations. 
Single precision: 
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Theoretical precision = 8.96 digits 
 
Double precision: 
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Theoretical precision = 18.24 digits 
 
• For x>8 

The asymptotic expansion of Y1(x) 
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is calculated through use of the following approximate 
expression P1(x) and Q1(x): 
Single precision: 
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Theoretical precision = 10.58 digits 
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Theoretical precision = 9.48 digits 
 
Double precision: 
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Theoretical precision = 18.11 digits 
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Theoretical precision = 18.28 digits 
 
For more information, see Reference [78] pp.141 - 149. 
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I11-82-1101 CBIN, DCBIN 

Integer order modified Bessel function of the first kind 
In(z) with complex variable 
CALL CBIN(Z,N,ZBI,ICON) 

 
Function 
This subroutine computes integer order modified Bessel 
function of the first kind In(z) with complex variable 
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by the power series expansion of the above form and 
recurrence formula. 
 
Parameters 
Z ..... Input. Independent variable z. Complex variable. 
N ..... Input. Order n of In(z). 
ZBI .... Output. Function value In(z). Complex variable. 
ICON .. Output. Condition code. 

See Table CBIN-1. 
 
Table CBIN-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 |Re(z)| ≥ log(flmax) or 
|Im(z)| ≥ log(flmax) 

ZB1=(0.0,0.0) 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MGSSL, ULMAX 
FORTRAN basic functions ... REAL, AIMAG, ABS, 
IABS, FLOAT, CEXP, MAX0 
 

• Notes 
The range of argument should, be ( ) ( )maxflzRe log≥  

and ( ) ( )maxflzIm log≥ . 
  When a set of function values In(z), In+1(z), In+2(z), ..., 
In+M(z), is required at the same time, first, obtain In+M(z) 
and In+M-1(z) with this subroutine. Then the others can 
be obtained in sequence from high order to low order, 
that is, In+M-2(z), In+M-3(z), ..., In(z), by using repeatedly 
the recurrence formula. Obtaining of the values in the 
reverse order, that is In+2(z), In+3(z), ..., In+M(z), by the 
recurrence formula after obtaining In(z) and In+1(z) by 
this subroutine, must be avoided because of its 
unstableness. 
 

• Example 
The value of In(z) is computed for n=1,2, where 
z=10+5i. 

 

C     **EXAMPLE** 
      COMPLEX Z,ZBI 
      Z=(10.0,5.0) 
      DO 10 N=1,2 
      CALL CBIN(Z,N,ZBI,ICON) 
      WRITE(6,600) Z,N,ZBI,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT(' ',2F8.2,I6,5X,2E17.7,I7) 
      END 
 
Method 
If it is known beforehand that the absolute value of In(z) 
will underflow, the following computation is not 
performed with setting the result as (0.0,0.0). 
  In(z) is computed in different ways depending upon the 
value of z. 
1) When ( ) ( )Re Imz z+ ≤ 1, 

The power series expansion, 

( ) ( )∑
∞

= +













=

0

2

!!
4
1

2
1

k

k

n

n knk

z
zzI  (4.1) 

is evaluated until the k-th item becomes less than the 
round-off level of the first term. 
2) When ( ) ( )Re Imz z+ >1, ( ) ( )maxflz logRe ≤  and 

( ) ( )maxflz logIm ≤ . 
The recurrence formula is used. Suppose m to be an 
appropriately large integer (which depends upon the 
required precision, z and n) and δ  to be an appropriately 
small constant (10-38 in this subroutine). 
 With the initial values. 
 Gm+1(z)=0, Gm(z)=δ 

 repeat the recurrence equation, 
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 for k=m, m-1,...,1. 
 In(z) can then be obtained from  

( ) ( ) ( )







≈ ∑

=

m

k
kkn

z
n zGzGezI

0

ε  (4.3) 

 where 

( )
( )




≥
=

=
12
01

k
k

kε  

 Equation (4.3) can be used when Re(z)≥ 0. 
 When Re(z)<0, cancellation will take place in the 

above computations. Therefore, using the relation In(-
z)=(-1)n In(z), the problem can be reduced to the 
computation above. 

 For detailed information, for example, on how to 
determine m, see Reference [81] and [83]. 
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I11-82-1301 CBJN, DCBJN 

Integer order Bessel function of the first kind Jn(z) with 
complex variable 
CALL CBJN(Z,N,ZBJ,ICON) 

 
Function 
This subroutine computes the integer order Bessel 
function of the first kind with complex variable 
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by evaluating the power series expansion of the form 
above and recurrence formula. 
 
Parameters 
Z ..... Input. Independent variable z. Complex 

variable. 
N ..... Input. Order n of Jn(z). 
ZBJ .... Output. Value of function Jn(z). Complex 

variable. 
ICON .. Output. Condition code. 

See Table CBJN-1. 
 
Table CBJN-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 ( ) ( )Re z log> flmax or 

( ) ( )Im z log> flmax  

ZBJ=(0.0,0.0) 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MGSSL, ULMAX 
FORTRAN basic functions ... REAL, AIMAG, ABS, 
IABS, MOD, FLOAT, CEXP, CONJG, MAX0, 
CMPLX 

 
• Notes 

The range of argument z should be ( ) ( )maxflz logRe ≤  

and ( ) ( )maxflz logIm ≤ . 
When all the values of Jn(z), Jn+1(z), Jn+2(z), ..., 

Jn+M(z) are required at the same time, first obtain 
Jn+M(z) and Jn+M-1(z), by this routine. Then the others 
can be obtained in sequence from high order to low 
order, that is, Jn+M-2(z), Jn+M-3(z), ..., Jn(z), by repeating 
the recurrence formula. Obtaining of values in the 
reverse order, that is, Jn+2(z), Jn+3(z), ..., Jn+M(z), by the 
recurrence formula after obtaining Jn(z) and Jn+1(z) by 
this subroutine, is not recommended because of its 
unstableness. 

 
• Example 

The value of Jn(z) is computed for n=1 and n=2, where 
z=10+5i. 
 

C     **EXAMPLE** 
      COMPLEX Z,ZBJ 
      Z=(10.0,5.0) 
      DO 10 N=1,2 
      CALL CBJN(Z,N,ZBJ,ICON) 
      WRITE(6,600) Z,N,ZBJ,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT(' ',2F8.2,I6,5X,2E17.7,I7) 
      END 
 
Method 
If it is known beforehand that the absolute value of Jn(z) 
will underflow the following computation is bypassed 
with the result as (0.0,0.0). 
  The method for computing Jn(z) depends upon the value 
of z. 
• When ( ) ( )Re Imz z+ ≤ 1, 

The power series expansion 
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is evaluated until the k-th term becomes less than the 
round-off level of the first term. 

• When ( ) ( )Re Imz z+ >1, ( ) ( )maxflz logRe ≤  and 

( ) ( )maxflz logIm ≤  
The recurrence formula is used for the computation. 
Suppose m to be an appropriately large integer (which 
depends upon the required accuracy, z and n) and δ to be 
an appropriately small constant (10-38 in this subroutine). 
  With the initial values, 

Fm+1(z)=0, Fm(z)=δ 

and repeating the recurrence equation, 
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z
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for k=m, m-1,...,1 
Jn(z) can be obtained from  

( ) ( ) ( )







≈ ∑

=

−
m

k
k

k
kn

iz
n zFizFezJ

0

ε  (4.3) 

where 

( )
( )




≥
=

=
12
01

k
k

kε  

Equation (4.3) can be used only when 0≤arg z≤π. 
When -π<arg z<0 cancellation will take place. 
Therefore, using the relation ( ) ( )zJzJ nn =  it is, 
reduced to be within the condition 0≤arg z≤π. 

 
For detailed information, for example, on how to 
determine m, see References [81] and [83]. 
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I11-84-0101 CBJR, DCBJR 

Real order Bessel function of the first kind Jν(z) with 
complex variable 
CALL CBJR(Z,V,ZBJ,ICON) 

 
Function 
This subroutine computes the value of real order Bessel 
function of the first kind with complex variable z 
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using the power series expansion (above expression) and 
the recurrence formula. 

In the above expression, the value of (1/2⋅z)v adopt the 
principal value. Though the principal value of 
( ) ( )2log21 zvv ez ≡⋅  depends on how the principal value 
of log(z/2) is selected, it is determined by FORTRAN 
basic function CLOG. Usually, the principal value of 
log(z/2)=log |z/2|+ i arg z, -π<arg z ≤π 
 
Parameters 
Z ..... Input. Independent variable z. (complex 

variable). 
V ..... Input. Order v of Jν(z) (ν≥0). 
ZBJ .... Output. Value of function Jν(z). (complex 

variable). 
ICON .. Output. Condition code. See Table CBJR-1. 
 
Table CBJR-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 ( ) ( )maxfllogzRe >  or 

( ) ( )maxfllogzIm >  

Set ZBJ=(0.0,0.0)

30000 V<0 Set ZBJ=(0.0,0.0)
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, AMACH, ULMAX 
FORTRAN basic functions ... REAL, AIMAG, ABS, 
FLOAT, CEXP, CLOG, GAMMA, CONJG, AMAX1, 
CMPLX 

 
• Notes 

( ) ( )maxflz logRe ≤ , ( ) ( )maxflz logIm ≤ , and V≥0. 
When a set of function values Jν(z), Jν+1(z), Jν+2(z), ..., 
Jν+M(z), is needed at the same time, Jν+1(z) and  
Jv+M-1(z) are computed with this subroutine, and next 
Jν+M-2(z), Jν+M-3(z), ..., Jν(z) are computed by using the 
recurrence formula repeatedly, it should be avoided in 
computing Jν+2(z), Jν+3(z), ..., Jν+M(z) by the recurrence 
formula, after computing Jν(z) and Jν+1(z) with this 
subroutine, in sequence from low order to high order. 

 

• Example 
The following example generates a table of Jν(z) at 
z=10+5i for the range of v from 0.1 to 10 with 
increment 0.1. 

 
C     **EXAMPLE** 
      COMPLEX Z,ZBJ 
      Z=(10.0,5.0) 
      DO 10 NV=1,100 
      V=FLOAT(NV)/10.0 
      CALL CBJR(Z,V,ZBJ,ICON) 
      IF(ICON.EQ.0) WRITE (6,600) Z,V,ZBJ 
   10 CONTINUE 
      STOP 
  600 FORMAT(' ',2F8.2,F10.3,5X,2E17.7) 
      END 
 
Method 
When it is known the value of Jν(z) will underflow, the 
following computations are bypassed and the result 0.0 is 
output. 
  The computation of Jv(z) depends on z 
 
• ( ) ( )Re Imz z+ ≤ 1 
With the power series expansion 
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  it is computed until the k-th term is less than the unit 
round-off in relative to the first term. 
 
• ( ) ( ) 1ImRe >+ zz  and ( ) ( )maxflz logRe ≤  and 

( ) ( )maxflz logIm ≤  
Recurrence formula is used. 
  Let's suppose that m is a certain large integer 
(determined by z, ν, and the desired precision), and 
that δ is set to a certain small constant (10-38) and 
moreover that n and α are determined by 

( )1<0integer,: αα ≤+= nnv  

Initial values 

( ) ( ) δαα == +++ zFzF mm ,01  

are set, and recurrence formula 

( ) ( ) ( ) ( )zFzF
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α  (4.2) 
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  is repeatedly applied to k=m,m-1,...,1. Then the value of 
function Jν(z) is obtained as 
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  The above expression is suitable in the range of 0 ≤ arg 
z ≤ π. Since cancellation occurs in the above expression 
when -π≤arg z<0, the problem is returned to that of 
0≤arg z≤π using the relation of ( ) ( )zJzJ vv = . 
  For the method of determining of m and other details, 
see References [81] and [83]. 
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I11-82-1201 CBKN, DCBKN 

Integer order modified Bessel function of the second kind 
Kn(z) with complex variable. 
CALL CBKN(Z,N,ZBK,ICON) 

 
Function 
This subroutine computes the value of integer order 
modified Bessel function of the second kind with 
complex variable z 

( ) ( )

( ) ( )

( )
( ) ( )

( )∑

∑
−

=

−

∞

=
+

+

−







−−−






+

+
+













−+














+−=

=

1

0

2

0

2

1

4!
!1

22
1

!!
4

22
1

2
log1

n

k

kn

k
nkk

k

nn

n
n

nn

z
k
knz

knk

z
z

zIz

zKzK

ΦΦ

γ

 

by using the recurrence formula and the τ-method. Here, 
when n=0, the last term is zero, γ is the Euler's constant. 
  In(z) is the modified Bessel function of the first kind, 
and 
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Parameters 
Z ..... Input. Independent variable z. Complex 

variable. 
N ..... Input. Order n of Kn(z). 
ZBK .... Output. Value of function Kn(z). Complex 

variable. 
ICON .. Output. Condition code. 

See Table CBKN-1. 
 
Table CBKN-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 One of the following occurred 
• |Re(z)| > log(flmax) 
• |Re(z)| < 0 and 

|Im(z)| > log(flmax)  
• |Re(z)| ≥ 0 and 

|Im(z)| ≥ tmax 

ZBK=(0.0,0.0) 

30000 z 0.0=  ZBK=(0.0,0.0) 

Comments on use 
• Subprograms used 

SSL II ..... AMACH, CBIN, MGSSL, ULMAX, 
UTLIM 
FORTRAN basic functions ... REAL, AIMAG, ABS, 
IABS, MOD, CSQRT, CEXP, CLOG, FLOAT, 
CMPLX 

 
• Notes 

- 0≠z  

- ( ) ( )maxflz logRe ≤  
- When Re(z)>0,  

( ) maxtz <Im  
  Otherwise the value of exp(-z) used in the 
computations cannot be correctly computed. 

- When Re(z)<0, ( ) ( )maxflz logIm ≤  is required. 
When Re(z)≥0 and all the values of Kn(z), Kn+1(z), 
Kn+2(z), ..., Kn+M(z) are required at the same time, first 
obtain Kn(z) and Kn+1(z) by this routine. Then the 
others can be obtained in the order of 
Kn+2(z), Kn+3(z), ..., Kn+M(z), by repeating the 
recurrence formula (See (4.1) in Method). When 
Re(z)<0, since this is not stable, this subroutine must 
be called for each required order. 

 
• Example 

The value ov K1(1+2i) is computed. 
 
C     **EXAMPLE** 
      COMPLEX Z,ZBK 
      Z=(1.0,2.0) 
      N=1 
      CALL CBKN(Z,N,ZBK,ICON) 
      WRITE(6,600) Z,N,ZBK,ICON 
      STOP 
  600 FORMAT(' ',2F8.2,I6,5X,2E17.7,I7) 
      END 
 
Method 
Since 

K-n(z) =Kn(z) 

when n<0, it is reduced to the case n≥0. 
The method for computing Kn(z) depends on whether 
Re(z)≥0 or Re(z)<0. 
• When ( )Re z ≥ 0  

Kn(z) can be computed by the recurrence formula, 

( ) ( ) ( )
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  with the starting values K0(z) and K1(z) 
  Computational procedures for K0(z) and K1(z) depend 
on the value of z. 
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• For: 
Single precision: |Im(z)| < -2.25 Re(z) + 4.5 and 
Double precision: |Im(z)| < -4 Re(z) + 8 
K0(z) and K1(z) are computed as follows 
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where, Ik(z) is obtained by the recurrence formula. 
 
• For: 

Single precision: |Im(z)| ≥ -2.5 Re(z) + 4.5 and  
Double precision: |Im(z)| ≥ -4 Re(z) + 8 
The τ-method is used. (See Reference [84]). In this 
method, Kn(z) is obtained from 
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  and fn(1/z) is approximated. 
Assume t=1/z, then fn(t) satisfies 
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4
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Adding on the righthand side of (4.5) τ times a 
shifted Ultraspherical polynomial orthogonal over the 
interval [0,η], then 

( ) ( ) ( ) ( ) ( )






=





 −−′++′′

η
τ α tCtfntfttft *

mnnn 4
112 22

 (4.6) 

where 
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  denotes the shifted Ultraspherical polynomial (when 
α=0, it is equivalent to the shifted Chebyshev 
polynomial and when α=0.5, it is equivalent to the 
shifted Legendre polynomial). 
Equation (4.6) contains the solution of the following m-
th degree polynomial 

( )
( )

( )∑
∑

= +

=

+
=

m

k
k

k

k

i

i
imk

nm ak

taC
tf

0 1

0

*

1 η
τ

α

 (4.8) 

where, 
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If τ is determined from the initial condition fnm(0)=1 (as 
t → 0,fn(t) → 1) we can obtain 
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This equation contains α and η as unknowns. It has 
been seen when α=0.5 (the shifted Ultraspherical 
polynomial) and η=t, the highest accuracy can be 
obtained. (See Reference [84]). 
  In this case, 
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where *
mkP  are the coefficients of the shifted 

Ultraspherical polynomial 
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By multiplying the denominator and numerator by tm 
and expressing as powers of t. 
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  can be obtained as a computational expression for 
Kn(z) from (4.4) and (4.13). 
  Where 

( ) ( ) ( )~ , , ,G m n G m n G m ni i m=  (4.17) 
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( ) ( ) ( )nmGnmHnmH mii ,,2,~
π

=  (4.18) 

  This subroutine sets m in case n equal 0 or 1 as 
follows in consideration of efficiency. 
 

Single precision: 
when z ≥ 17  , m=3 
otherwise , m=7 

Double precision: 
when (Re(z))2+0.425(Im(z))2≥152 , m=10 
otherwise , m=19 

  This subroutine contains a table in which constants 
( )G m ni ,  and ( )H m ni ,  are stored in the data statement. 

• When Re(z)<0 
The cut of Kn(z) is selected on the negative real axis. 
Therefore, when Im(z)≥0, the relation 

Kn(z)=(-1)nKn(-z)-πiIn(-z) (4.19) 
when Im(z)<0, the relation 

Kn(z)=(-1)nKn(-z)-πiIn(-z) (4.20) 

  are used, where the value of Kn(-z) can be obtained by 
using the calculation for Re(z)≥0 mentioned previously, 
and the value of In(-z) can be obtained by subroutine 
CBIN. Thus the additional computations for In(-z) are 
required when Re(z)<0, as is not the case when Re(z)>0. 
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B21-15-0202  CBLNC, DCBLNC 

Balancing of a complex matrix 
CALL CBLNC (ZA, K, N, DV, ICON) 

 
Function 
An n-order complex matrix A is balanced by the diagonal 
similar transformation shown in (1.1). 

~
A = D AD-1  (1.1) 

  Balancing means to almost completely equalize the sum 
of norm of the i-th column (i = 1, ..., n) and that of the i-
th row for the transfo rmed complex matrix. The 
norm of the elements is ||z||1=|x|+|y| for complex number z 
= x + i⋅y. D is a real diagonal matrix, and n ≥ 1. 
 
Parameters 
ZA... lnput. Complex matrix A. 

Output.  Balanced complex matrix 
~
A .  ZA is 

a two-dimensional array, ZA (K,N) 
K... Input. Adjustable dimension of array ZA. 
N... Input.  Order n of complex matrix A and 

~
A  . 

DV... Output.  Scaling factor (Diagonal elements of 
D) 
One-dimensional array of size n. 

ICON... Output.  Condition code. 
See Table CBLNC- 1 . 

 
Table CBLNC-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 No balancing. 
30000 N < 1 or K < N. Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... IRADIX, MGSSL 
FORTRAN basic functions ... REAL, AIMAG, ABS  
 

• Notes 
If there are large difference in magnitude of elements 
in a matrix, the precision of the computed eigen-values 
and eigenvectors on this matrix may not be computed 
accurately. This subroutine is used to avoid the adverse 
effects. 
   When each elements of a matrix is nearly the same 
magnitude, this subroutine performs no transformation.  
Therefore this subroutine should not be executed . 
   This subroutine omits balancing of the column (or 
row) and the corresponding row (or column) in which 
all the elements of a column or row except the 

diagonal elements are zero. 
   When obtaining eigenvector x of matrix A , the back 
transformation of (3.1) must be applied to the 
eigenvector ~x  of matrix 

~
A  balanced by this 

subroutine. 

x x= D~  (3.1)  

   The back transformation of (3.1) can be performed 
by subroutine CHBK2 (See the selection on CHBK2). 

 
• Example 

After balancing the n-order complex matrix A, it is 
transformed to the complex Hessemberg matrix by 
subroutine CHES2 and the eigenvalue is obtained by 
the subroutine CHSQR. 
When n ≤ 100. 
 

C     **EXAMPLE** 
      COMPLEX ZA(100,100),ZE(100) 
      DIMENSION DV(100),IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE (6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610)(I,J,ZA(I,J),J=1,N) 
      CALL CBLNC(ZA,100,N,DV,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      CALL CHES2(ZA,100,N,IP,ICON) 
      CALL CHSQR(ZA,100,N,ZE,M,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,630) (ZE(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX', 
     *       5X,'N=',I3/) 
  610 FORMAT(/2(5X,'A(',I3,',',I3,')=', 
     *       2E15.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
  630 FORMAT('0',5X,'EIGENVALUE'/'0',20X, 
     *       'REAL',16X,'IMAG'/('0',15X, 
     *       2(E15.7, 5X))) 
      END 
 
Method 
An n-order complex matrix A is balanced by performing 
iterative diagonal similar transformation in (4.1).  

...,2,1,1
1 =−
− ssss s DAD=A  (4.1)  

  Where A0 = A and Ds is a real diagonal matrix 
expressed in (4.2) and s is the number of iterations. 
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  In the balancing of (4.1), excluding the diagonal 
element, the sum of the magnitude of elements in the i-th 
row of As is made almost equal to that of the magnitude 
of elements in the i-th column. 
  Assuming ( )( )s

ijs a=A , balancing is performed such that 
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  should be satisfied. 
  If Dsi is defined as shown in (4.4), Ds of (4.2) can be 
expressed as (4.5). 
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snsss DDDD ⋅⋅⋅= 21  (4.5) 

  From (4.5), (4.1) can be transformed by sequentially 
performing transformation of (4.6) for i = l, 2, ..., n. 

sisisi si= DADA 1
1

−
−  (4.6) 

  where, 
  Diagonal element ( )ai

s  of Dsi is defined so that the 
transformed i-th column and corresponding row satisfy 
(4.3). If they satisfy (4.3) before transformation, ( )di

s =1, 
that is Dsi = I. 

   Iteration of (4.1) terminates when (4.3) is satisfied for 
all column and rows. 
   This subroutine executes this operation in the following 
steps: 
1) The sum of norms of each element in the i-th column 

and row is computed excluding the diagonal element.  
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2) ( )s
id  is defined as, 

  ( ) ks
id ρ=  (4.9) 

where 






=
digitslhexadecimafor16

digitsbinaryfor2
ρ  

  k is defined to satisfy the following condition. 

  ρρρ RCR k ≥⋅>⋅ 2  (4.10) 

   From (4.10), k > 0 when C < R/ρ and k ≤ 0 when C 
≥ R/ρ. 

3) By the condition shown in (4.11), whether or not 
transformation is required is determined.  

  ( ) ( )RCRC kk +<+⋅ 95.02 ρρ  (4.11) 

  When (4.11) is satisfied, transformation is 
performed where ( ) ks

id ρ=  and if not satisfied, 
transformation is bypassed. 

4) When transformation has been performed for all 
columns and rows, the balancing process terminates. 
  Then, the diagonal elements of D shown in (4.12) 
are stored as the scaling factor in array DV.  

  sDDDD ⋅⋅⋅= 21  (4.12) 

  For details, see Reference [13] pp.315 - 326. 
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I11-82-1401 CBYN, DCBYN  

Integer order Bessel function of the second kind Yn(z) 
with complex variable  
CALL CBYN (Z, N, ZBY, ICON)  

 
Function 
This subroutine computes the value of integer order 
Bessel function of the second kind with complex variable.  
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  by using the recurrence formula and the τ-method. In 
the definition when n = 0, the last item is zero, γ denotes 
the Euler’s constant Jn(z) is Bessel function of the second 
kind and  

( )11

0

1

0

≥=

=

∑
=

k
m

k

m
kΦ

Φ

 

 
Parameters 
Z ... Input.  Independent variable z.  Complex 

variable. 
N ... Input.  Order n of Yn(z). 
ZBY ... Output.  Value of function Yn(z).  Complex 

variable. 
ICON ... Output. Condition code. 

See Table CBYN-1.  
 
Table CBYN-1 Condition codes  

Code Meaning Proceccisng 
0 No error  

20000 ( ) ( )Re z log> flmax or 

( ) ( )Im z log> flmax  

ZBY = (0.0, 0.0) 

30000 |z| = 0.0 ZBY = (0.0, 0.0) 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, CBIN, CBKN, MGSSL, ULMAX, 
UTLIM 
FORTRAN basic functions ... REAL, AIMAG, IABS, 
CONJG, CMPLX, MOD  

• Notes 
− |z|≠0 
− ( ) ( )maxflz logRe ≤  and ( ) ( )maxflz logIm ≤  
− When all the values of Yn(z), Yn+1(z), Yn+2(z), ..., 

Yn+M(z) are required at a time, the procedure to be 
mentioned below under Method is most 
recommendable. 

 
• Example 

The value of Y1(1+2i) is computed.  
 
C     **EXAMPLE** 
      COMPLEX Z,ZBY 
      Z=(1.0,2.0) 
      N=1 
      CALL CBYN(Z,N,ZBY,ICON) 
      WRITE(6,600)Z,N,ZBY,ICON 
      STOP 
  600 FORMAT(' ',2F8.2,I6,5X,2E17.7,I7) 
      END 
 
Method 
Because we know  

( ) ( ) ( )zYzY n
n

n 1−=−  (4.1)  

  the computation for n < 0 can be reduced to that 
for n > 0 
  Also, because  

( ) ( )zYzY nn =  (4.2)  

when Im (z) < 0, this is reduced to that wen Im (z) ≥ 0. 
Yn(z) is computed using the relation.  

( ) ( ) ( ) ( )izKiizIizY n
nn

n
n

n −−−−= + 121

π
 (4.3) 

                             , i = −1  

  where, the value of In(−iz) is computed by subroutine 
CBIN which uses the recurrence formula, and the value 
of Kn (− iz) is computed by subroutine CBKN which uses 
the recurrence formula and τ-method. 
  When all the values of Yn(z), Yn+1(z), Yn+2(z), ..., Yn+M(z) 
are required at a time, they are obtained efficiently in the 
way indicated below.  First the value of In+M (− iz) and 
In+M-1 (− iz) are obtained by CBIN, and then repeating the 
recurrence formula, the values are obtained sequentially 
in the order of the highest value first until In (− iz), is 
obtained. Kn (− iz) and Kn+1 (− iz) are obtained by CBKN 
and then repeating the recurrence formula the values are 
obtained sequentially in the order of the lowest value first 
until Kn+M(z) is obtained. 
  Then, by the relation in (4.3), the required computation 
is done.  
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B21-15-0101  CEIG2, DCEIG2 

Eigenvalues and corresponding engenvectors 
of a complex matrix (QR method) 
CALL CEIG2 (ZA, K, N, MODE, ZE, ZEV, VW, IVW, 
ICON) 

 
Function 
This subroutine computes the eigenvalues and the 
corresponding eigenvectors of an n-order complex matrix 
A.  The eigenvectors are normalized so that ||x||2=1.  n ≥ 1. 
 
Parameters 
ZA ... Input.  Complex matrix A. 

ZA is a complex two-dimensional array, ZA 
(K, N) 
The contents of ZA are altered on output. 

K ... Input.  Adjustable dimension (≥ n) of arrays 
ZA and ZEV. 

N ... Input.  Order n of complex matrix A 
MODE ... Input.  Specifies whether or not balancing is 

required. 
When MODE = 1, balancing is omitted. 
When MODE ≠ 1, balancing is included. 

ZE ... Output.  Eingenvalues. 
Complex two-dimensional array of size n. 

ZEV ... Output.  Eigenvectors. 
The eigenvectors are stored in the rows 
corresponding to the eigenvalues. 
ZEV is a complex two-dimensional array, ZEV 
(K, N) 

VW ... Work area.  One-dimensional array of size n. 
IVW ... Work area.  One-dimensional array of size n. 
ICON ... Output.  Condition code. 

See Table CEIG2-1. 
 
Table CEIG2-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 ZE (1) = ZA (1,1) 
ZEV (1) = (1.0, 
0.0) 

20000 The eigenvalues and 
eigenvectors could not be 
determined since reduction 
to trangular matrix was not 
possible. 

Discontinued 

30000 N < 1 or K < N. Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, CBLNC, CHES2, CSUM, 
CNRML, IRADIX, MGSSL 
FORTRAN basic functions ... ABS, REAL, AIMAG, 
AMAX1, CSQRT, SIGN, SQRT, CONJG 

 

• Notes 
When the magnitude in each element of a complex 
matrix varies greatly, the precision of the results can be 
improved by valancing the matrix with subroutine 
CBLNC.  When the magnitude in each element of a 
matrix is about the same, balancing will produce 
minimal improvement.  In this state, by specifying 
MODE = 1, the balancing procedure should be skipped. 
  This subroutine obtains all eigenvalues and 
eigenvectors of a complex matrix. 
  When only eigenvalues are required, they must be 
obtained by subroutines CBLNC, CHES2 and CHSQR. 
  When a subset of eigenvectors is required, they must 
be obtained by subroutines CBLNC, CHES2, CHSQR, 
CHVEC, CHBK2, CNRML. 
 

• Example 
All eigenvalues and eigenvectors of an n-order 
complex matrix A are determined.  n ≤ 100. 

 
C     **EXAMPLE** 
      COMPLEX ZA(100,100),ZE(100), 
     *        ZEV(100,100) 
      DIMENSION IND(100),VW(100),IVW(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,ZA(I,J),J=1,N) 
      CALL CEIG2(ZA,100,N,0,ZE,ZEV,VW, 
     *           IVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      DO 30 I=1,N 
   30 IND(I)=1 
      CALL CEPRT(ZE,ZEV,100,N,IND,N) 
      GO TO 10 
  500 FORMAT(I3) 
  510 FORMAT(4E15.7) 
  600 FORMAT('0',5X,'ORIGINAL MATRIX', 
     *5X,'N=',I3) 
  610 FORMAT(/2(5X,'A(',I3,',',I3,')=', 
     *2E15.7)) 
  620 FORMAT('0',5X,'ICON=',I5) 
      END 
 

  In the above example, subroutine CEPRT prints all 
the eigenvalues and eigenvectors of a complex matrix.  
The contents are: 

 
      SUBROUTINE CEPRT(ZE,ZEV,K,N,IND,M) 
      COMPLEX ZE(M),ZEV(K,M) 
      DIMENSION IND(M) 
      WRITE(6,600) 
      MM=0 
      DO 20 J=1,M 
      IF(IND(J).EQ.0) GO TO 20 
      MM=MM+1 
      ZE(MM)=ZE(J) 
      DO 10 I=1,N 
      ZEV(I,MM)=ZEV(I,J) 
   10 CONTINUE 
   20 CONTINUE 
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      IF(MM.EQ.0) GO TO 50 
      DO 40 INT=1,MM,3 
      LST=MIN0(INT+2,MM) 
      WRITE(6,610) (J,J=INT,LST) 
      WRITE(6,620) (ZE(J),J=INT,LST) 
      DO 30 I=1,N 
      WRITE(6,630) (ZEV(I,J),J=INT,LST) 
   30 CONTINUE 
   40 CONTINUE 
   50 RETURN 
  600 FORMAT('1',30X,'**EIGENVECTORS**') 
  610 FORMAT('0',26X,I3,29X,I3,29X,I3) 
  620 FORMAT('0',' EIGENVALUES', 
     *3(2X,2E15.7)) 
  630 FORMAT(12X,3(2X,2E15.7)) 
      END 
 
Method 
This subroutine determines the eigenvalues and the 
correspondng eigenvectors of an n-order complex  
matrix A. 
  The eigenvalues of an n-order complex matrix are 
determined as diagonal elements of upper triangle matrix 
R by processing the following three steps: 
• An complex matrix A is balanced by the diagonal 

similar transformation,  

ABB=A 1~ −  (4.1)  

where B is the diagonal matrix whose element is a 
scaling factor. For details, refer to subroutine CBLNC. 

• The complex matrix 
~
A  is reduced by the stabilized 

elementary transformation into the complex 
Hessemberg matrix H. 

SAS=H ~1−  (4.2)  

where S is obtained by the product of transformation 
matrices S1, S2, ..., Sn−2,  

221 −⋅⋅⋅= nSSSS  (4.3)  

and each Si can be obtained by permutation matrix Pi 
and elimination matrix Ni as  

2,...,2,1,1 −=− niiii NP=S  (4.4)  

For details, refer to subroutine CHES2. 
• The complex Hessemberg matrix H is reduced by the 

complex QR method into the complex upper triangle 
matrix R.  

R
*
R HQQ=R  (4.5)  

Where QR is an unitary matrix given by, 

LR QQQQ ⋅⋅⋅= 21  (4.6)  

which is the product of transformation matrix Q1, Q2, ..., 
QL used in the complex QR method. 
  For details, refer to subroutine CHSQR. 

  The eigenvectors can be obtained as column vectors in 
matrix X obtained by (4.8) if matrix F which transforms 
upper triangle matrix R into a diagonal matrix D by a 
similarity transformation (4.7) is available.  

RFF=D 1−  (4.7) 
FBSQ=X R  (4.8) 

  To verify that column vectors of matrix X given by (4.8) 
are the eigenvectors of matrix A, substitute (4.1), (4.2) 
and (4.5) to obtain (4.7).  

AXXFABSQBSQF=D 1111 −−−− =R
*
R  (4.9) 

  If BSQR are represented as Q, from (4.3) and (4.6)  

Ln QQQSSBS=Q ⋅⋅⋅⋅⋅⋅ − 21221  (4.10) 

  As shown in (4.10), Q can be computed by sequentially 
taking the product of the transformation matrices. 
  F can be determined as a unit upper triangular matrix. 
  From (4.7),  

FD = RF  (4.11) 

   Let the elements of D, R, and F be represented as 
D=diag(λi), R=(γij) and F=(fij) respectively, then elements 
fij can be obtained from (4.11) for j=n, n-1, ..., 2 as 
follows  

( ) 1...,,2,1
1

−−=−= ∑
+=

jjiff
j

ik
ijkjikij λλγ  (4.12)  

where, 

( )
( ) 1,0

,0

=>=

=>=

iiij

iiiij

fjif

ji λγγ
 

If λi=λj , fij is obtained as follows.  

( )∑
+=

∞=
j

ik
kjikij uff

1

Aγ  (4.13) 

where u is a unit round-ff and ||A||∞ is a norm defined by 

∑
=

∞ =
n

i
ij

j
a

1
1

maxA  (4.14)  

where A=(aij). 
Therefore, norm ||z||1 for complex number z = x + iy is 
defined by  

z x y
1

= +  

  For details, see References [12] and [13] pp.372 - 395. 
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I11-11-0101  CELI1, DCELI1  

Complete elliptic integral of the first kind K(x)  
CALL CELIl (X, CELI, ICON)  

 
Function 
This subroutine computes the complete elliptic integral of 
the first kind  

( ) ∫ −
= 2

0 2sin1

π

θ

θ

x

dxK  

using an approximation formula for 0 ≤ x < 1 .  
 
Parameter 
X ...... Input.  Independent variable x  
CELI ... Output.  Function value K(x). 
ICON ... Output.  Condition code. 

See Table CELI1-1.  
 
Table CELI1-1 Condition codes  

Code  Meaning  Processing  
0  No error   

30000  X < 0 or X ≥ 1  CELI is set to 
0.0. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... DLOG  
 

• Example 
The following example generates a table of the 
function values from 0.00 to 1.00 with increment 0.01. 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      A=K-1 
      X=A/100.0 
      CALL CELI1(X,CELI,ICON) 
      IF(ICON.EQ.0)WRITE(6,610)X,CELI 
      IF(ICON.NE.0)WRITE(6,620)X,CELI,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF COMPLETE ', 
     *'ELLIPTIC INTEGRAL OF THE FIRST ', 
     *'KIND'///6X,'X',9X,'K(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'CELI=',E17.7,5X, 
     *'CONDITION=',I10) 
      END 
 
Method 
For 0 ≤ x < l, the complete elliptic integral of the first 
kind K (x) is calculated using the following 
approximations. 
• Single precision:  

( ) ( )∑∑
==

−=
4

0

4

0

log
k

k
k

k

k
k tbttaxK  (4.1)  

where t = 1 − x  
 
Theoretical precision = 7.87 digits  
 

• Double precision:  

( ) ( )∑∑
==

−=
10

0

10

0

log
k

k
k

k

k
k tbttaxK  (4.2) 

where t = 1 − x  
 
Theoretical precision = 17.45 digits  
 

  For further information, see Reference [78] pp.150 ~ 
154.  
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I11-11-0201 CELI2, DCELI2  

Complete elliptic integral of the second kind E(x)  
CALL CELI2 (X, CELI, ICON)  

 
Function 
This subroutine computes the complete elliptic integral of 
the second kind  

( ) ∫ −= 2
0

2sin1
π

θθ dxxE  

using an approximation formula for 0 ≤ x ≤ 1.  
 
Parameters 
X .......... Input. Independent variable x. 
CELI .... Output. Function value E(x). 
ICON ... Output.  Condition code.  See Table CELI2-1.  
 
Table CELI2-1 Condition codes  

Code  Meaning  Processing  
0  No error   

30000  X < 0 or X > 1  CELI is set to 0.0. 
 
Comments on use 
• Subprograms used  

SSL II ... MGSSL  
FORTRAN basic function ... DLOG  
 

• Example  
The following example generates a table of the 
function values from 0.00 to 1.00 with increment 0.01.  

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,101 
      A=K-1 
      X=A/100.0 
      CALL CELI2(X,CELI,ICON) 
      IF(ICON.EQ.0)WRITE(6,610)X,CELI 
      IF(ICON.NE.0)WRITE(6,620)X,CELI,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF COMPLETE ', 
     *'ELLIPTIC INTEGRAL OF THE SECOND ', 
     *'KIND'///6X,'X',9X,'E(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'CELI=',E17.7,5X, 
     *'CONDITION=',I10) 
      END 
 
Method 
For 0 ≤ x ≤ 1, the value of complete elliptic integral of 
the second kind E(x) is calculated using the following 
approximations.  
• Single precision:  

( ) ( )∑∑
==

−=
4

1

4

0

log
k

k
k

k

k
k tbttaxE  (4.1) 

where t = 1 − x  
 
Theoretical precision = 7.80 digits  
 

• Double precision:  

( ) ( )∑∑
==

−=
10

1

10

0

log
k

k
k

k

k
k tbttaxE  (4.2) 

where t = 1 − x  
 
Theoretical precision = 17.42 digits  
 
However, when x =1, E(x) is set to 1.  
For more information, see Reference [78] pp.150 ~ 154.  
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I11-51-0201 CFRI, DCFRI  

Cosine Fresnel integral C(x)  
CALL CFRI (X, CF, ICON)  

 
Function 
This subroutine computes Cosine Fresnel integral,  

( ) ( ) ∫∫ 




==

xx
dttdt

t
txC π π

π

2

0

2

0 2
coscos

2
1  

by series and asymptotic expansion, where x ≥ 0.  
 
Parameters 
X ..... Input.  Independent variable x . 
CF .... Output.  Value of C(x).  
ICON.. Output. condition codes. See Table CFRI-1.  
 
Table CFRI-1 Condition codes 

Code  Meaning  Processing  
0 No error   

20000  X ≥ tmax CF = 0.5  
30000  X<0 CF = 0.0 

  
Comments on use 
• Subprograms used  

SSL II ... MGSSL, UTLIM  
FORTRAN basic functions ... SIN, COS, and SQRT. 
 

• Notes  
Teh valid range of parameter X are:  
0 ≤ X < tmax 
  This is provided because sin(x) and cos(x) lose their 
accuracy if X exceeds the above ranges. 
 

• Example 
The following example generates a table of C(x) from 
0.0 to 100.0 with increment 1.0.  

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,101 
      X=K-1 
      CALL CFRI(X,CF,ICON) 
      IF(ICON.EQ.0)WRITE(6,610)X,CF 
      IF(ICON.NE.0)WRITE(6,620)X,CF,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF FRESNEL ', 
     *'INTEGRAL'///6X,'X',9X,'C(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'C=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 
 

Method 
Two different approximation formulas are used 
depending on the ranges of xdivided at x = 4. 
 
• For 0 ≤ x < 4  

The power series expansion of C(x)  

( ) ( )
( ) ( )∑

∞

= +
−=

0

2

14!2
12

n

n
n

x
nn

xxC
π

 (4.1)  

  is calculated with the following approximation 
formulas:  
Single precision:  

( ) 4,
7

0

2 xzzaxxC
k

k
k == ∑

=

 (4.2)  

Double precision:  

( ) ∑
=

=
12

0

2

k

k
k xaxxC  (4.3)  

• For x ≥ 4  
The asymptotic expansion of C(x)  

( ) ( ) ( ) ( ) ( )C x x P x x Q x= + +
1
2

sin cos  (4.4) 

is calculated through use of the following approximate 
expression for P(x) and Q(x): 
Single precision:  

( ) xzza
x

xP
k

k
k 4,2 11

0

== ∑
=

 (4.5) 

( ) xzzb
x

xQ
k

k
k 4,2 10

0

1 == ∑
=

+  (4.6) 

Double precision:  

( ) xzzbza
x
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k

k
k

k

k
k 4,1 10

0

10
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=−= ∑∑
==

 (4.7) 

( ) xzzdzc
x

xQ
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k

k
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+  (4.8) 
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F12-15-0101  CFT, DCFT  

Multi-variate discrete complex Fourier transform (radix 8 
and 2 FFT)  
CALL CFT (A, B, N, M, ISN, ICON)  

 
Function 
When M -variate (where the dimension of each variable is 
Nl , N2 , ..., NM) complex time series data {xJ1 ,..., JM} is given, 
this subroutine performs a discrete complex Fourier 
transform or its inverse transform using the Fast Fourier 
Transform (FFT) method. Nl , N2 , ..., NM must be equal to 
2l each (where l = 0 or positive integer), and M ≥ 1 . 
 
• Fourier transform  

When {xJ1,..., JM} is input, this subroutine determines 
{N1…NMαK1,..., KM} by performing the transform 
defined in (1.1).  
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∑∑

 (1.1) 

• Inverse Fourier transform  
When {αK1,..., KM}  is input, this subroutine determines 
{xJ1,..., JM} by performing the inverse transform defined 
in (1 .2) .  
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 (1.2) 

Parameters 
A ..... Input. Real parts of {xJ1,..., JM} or {αK1,..., KM} . 

Output.  Real parts of {N1…NMαK1,..., KM} or 
{xJ1,..., JM}. 
M-dimensional array. (See “Notes”.) 

B ..... Input. Imaginary parts of {xJ1,..., JM} or  
{αK1,..., KM}.  
Output.  Imaginay parts of  
{N1…NMαK1,..., KM} or {xJ1,..., JM}. 

M-dimensional array.  
(See “Notes”.) 

N ..... Input. The dimensions of the M-variate 
transform are specified as N (1) = N1, N (2) = 
N2, ..., N(M) = NM. 
N is a one-dimensional array of size M. 

M ... Input.  Number (M) of variables. 
ISN ... Input.  Specifies normal or inverse transform 

(  ≠ 0). 
Transform: ISN = +1 
Inverse transform: ISN = −1 
(See “Notes”.) 

ICON .. Output.  Condition code. 
See Table CFT-1. 

 
Table CFT-1  Condition codes 

Code  Meaning  Processing  
0  No error   

30000 M < 1, ISN = 0 or either of 
N1, N2, ..., or NM is not 2l (l 
= 0 or positive integer) 

Aborted  

 
Comments on use 
• Subprograms used  

SSL II ... CFTN, PNR, and MGSSL  
FORTRAN basic functions ... ATAN, ALOG, SQRT, 
SIN, and IABS  
 

• Notes 
General definition of discrete complex Fourier 
transform:  
Multi-variate discrete complex Fourier transform and 
inverse Fourier transform are generally defined as:  
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  K1,..., KM,J1,..., JM,ω1,...,ωM are defined in  (1.1) and 
(1.2). This subroutine determines  
{N1…NMαK1,..., KM} or {xJ1,..., JM} in place of {αK1,..., JM} 
of (3.1) or {xJ1,..., JM} of (3.2). Scaling of the resultant 
values is left to the user. Notice that a normal transform 
followed by an iverse transform returns the original data 
multipled by the value N1…NM.  
Data storage:  
User must store the real parts of input {xj1,..., JM} in M-
dimensional array A as shown in Fig. CFT-1, and store 
the imaginary parts in M-dimensional array B in the same 
way.  On output, this subroutine stores {N1…NMαK1,..., 

KM} or {xJ1,..., JM} in this manner.  
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The two-dimensional array  A(N1, N2)
which contains  {xJ1,J2}.

xN1-1,0

x1,0

x0,0

N2

N1

xN1-1,1

x1,1

x0,1

xN1-1, N2-1

x1 N2-1

x0 N2-1

Example of a two-varitate transform (M=2) 

Fig. CFT-1 Storage of {xJ1,...,JM}  

 In general, when performing M-variate -variate 
transform, if the data sequence is the same as given in 
FORTRAN for an M-dimensional array, parameters A 
and B can each be a one-dimensional array. 
Specifying ISN:  
ISN is used to specify normal or inverse transform. It is 
also used as follows: If the real and imaginary parts of 
{xJ1,..., JM} or {αK1,..., KM} are each stored with an interval I, 
the ISN parameter is speified as follows: 

Transform : ISN = +I 
Inverse transform: ISN = −I  

In this case, the results of transform are also stored in 
intervals of I.  
 
• Examples  

(a) 1-variable transform 
Complex time series data {xJ1} of dimensional N1 
is put, and the result {N1αK1} is determined using 
this routine. In case of Nl ≤ 1024 (= 210)  

 
C     **EXAMPLE** 
      DIMENSION A(1024),B(1024) 
      READ(5,500) N,(A(I),B(I),I=1,N) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,N) 
      CALL CFT(A,B,N,1,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,620) (I,A(I),B(I),I=1,N) 
      STOP 
  500 FORMAT(I5/(2E20.7)) 
  600 FORMAT('0',10X,'INPUT DATA N=',I5/ 
     *(15X,I5,2E20.7)) 
  610 FORMAT('0',10X,'RESULT ICON=',I5) 
  620 FORMAT(15X,I5,2E20.7) 
      END 
 

(b) 2-variate transform  
Complex time series data {xJ1,J2,J3} of dimension Nl, 
N2 and N3 is put, a Fourier transform is performed, 
and then by performing an inverse 

transform on the results, {xJ1,J2,J3} is determined. 
Here Nl = 2, N2 = 4 and N3 = 4.  

 
C     **EXAMPLE** 
      DIMENSION A(2,4,4),B(2,4,4),N(3) 
      DATA N/2,4,4/ 
      READ(5,500)(((A(I,J,K),B(I,J,K), 
     *            I=1,2),J=1,4),K=1,4) 
      WRITE(6,600)N,(((I,J,K, 
     *            A(I,J,K),B(I,J,K), 
     *            I=1,2),J=1,4),K=1,4) 
C     NORMAL TRANSFORM 
      CALL CFT(A,B,N,3,1,ICON) 
      IF(ICON.NE.0)STOP 
C     INVERSE TRANSFORM 
      CALL CFT(A,B,N,3,-1,ICON) 
      IF(ICON.NE.0)STOP 
      NT=N(1)*N(2)*N(3) 
      DO 10 I=1,2 
      DO 10 J=1,4 
      DO 10 K=1,4 
      A(I,J,K)=A(I,J,K)/FLOAT(NT) 
      B(I,J,K)=B(I,J,K)/FLOAT(NT) 
   10 CONTINUE 
      WRITE(6,610)(((I,J,K, 
     *            A(I,J,K),B(I,J,K), 
     *            I=1,2),J=1,4),K=1,4) 
      STOP 
  500 FORMAT(8E5.0) 
  600 FORMAT('0',10X,'INPUT DATA',5X, 
     *'(',I3,',',I3,',',I3,')'/ 
     *(15X,'(',I3,',',I3,',',I3,')',2E20.7)) 
  610 FORMAT('0',10X,'OUTPUT DATA'/ 
     *(15X,'(',I3,',',I3,',',I3,')',2E20.7)) 
      END 
 
Method 
This subroutine performs a multi-variate discrete 
complex Fourier transform using the radix 8 and 2 Fast 
Fourier Transform (FFT) method.  
 
• Multi-variate transform  

The multi-variate transform defined in (3.1) can be 
reduced to simpler form by rearranging common terms. 
  For example, the two-variate transform can be 
reduced to as shown in (4.1).  

  ∑∑
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In (4.1), the scaling factor 1/Nl⋅N2 is omitted. ∑
2J

of 

(4.1) is performed on Nl groups 1-variable transforms 
of dimension N2 with respect to J1. Then based on the 

results, ∑
1J

is performed on N2 groups l-variable 

transforms of dimension N1 with respect to J2.  
  In the same way, a mult-variate discrete complex 
Fourier transform is achieved by performing 1 -variable 
transforms on complex number groups in each variable.  
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  In this routine, the 8 and 2 radix Fast Fourier 
Transform is used to perform 1 -variable transforms on 
each variable.  

 
• Principles of the Fast-Fourier Transform (FFT) method  

1-variable discrete complex Fourier transform is 
defined as  

( )ni

nkx
n

j

jk
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  In (4.2), the scaling factor 1/ n is omitted.  
  If (4.2) is calculated directly, n2k complex 
multiplications will be required. While, when (4.2) is 
calculated by the FFT method, if n can be factored into 
r⋅r, the number of multiplications is reduced to the order 
of 2 nr by taking account of the characteristics of the 
exponential function ω−jk. This is illustrated below.  
Since k and j of (4.2) can be expressed as  
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  when (4.3) is substituted in (4.2), it results  
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  If the right side of (4.4) is re-organized according to j0 
and j1 and common terms are rearranged, we obtain  
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  In calculating (4.5) , each of ∑
0J

and ∑
1J

performs r 

sets of elementary Fourier transforms of dimension r and 

exp −
⋅





2 0 0
2πi

j k
r

 is the rotation factor for the results of 
j1
∑ . 

Therefore, the number of multiplications involved in the 
calculation of (4.5) is as shown in (4.6); when n is large, 
the calculation load decreases.  

( ) ( ) ( )( )
( )2

22

12

11

−+=

−−+⋅+⋅=

rnr

rrrrrrCn  (4.6) 

  If r is factored into smaller numbers, the calculation 
efficiency can be further increased.  
 
  See the specific example given in the section CFTN.  
For further information, refer to References [55], [56], 
and [57].  
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F12-11-0101  CFTM, DCFTM 

Multi-variate discrete complex Fourier transform (mixed 
radix FFT) 
CALL CFTM (A, B, N, M, ISN, ICON) 

 
Function 
When M-variate (where the dimenstion of each variable 
is N1, N2, ..., NM) complex time series data {xJ1,...,JM} is 
given.  This subroutine performs a discrete complex 
Fourier transforms or its inverse transform by using the 
Fast Fourier Transform (FFT).  The dimension of each 
variable must be 1 or satisfy the following conditions: 
• It must be expressed by a product of prime factors p (p 

= {4, 3, 5, 7,11,13,17,19,23,2}).  (The same prime 
factor can be duplicated.) 

• The maximum number of prime factors used must be 
eleven. 

• The product of the square free factors (i.e., the 
remainder obtained when divided by the square factor) 
must be less than or equal to 210. 
Also M ≥ 1. 
 

• Fourier transform 
By inputting {xJ1,...,JM} and performing the transform 
defined by (1.2), {N1…NMαK1,...,KM} is obtained. 
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• Fourier inverse transform 
By inputting {αK1,...,KM} and performing the transform 
defined by (1.3), {xJ1,...,JM} is obtained. 
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Parameters 
A ......... Input.  Real part of {xJ1,...,JM} or {αK1,...,KM} 

Output.  Real part of {N1…NMαK1,...,KM} or 
{xJ1,...,JM} 
M-dimensional array. 

See “Notes”. 
B ........ Input.  Imaginary part of {xJ1,...,JM} or 

{αK1,...,KM} 
Output.  Imaginary part of {N1…NMαK1 ,..., KM} 
or {xJ1,..., JM} 
M-dimensional array. 
See “Notes”. 

N ......... Input.  Dimensions for the M-variate transform 
are given such as N(1) = N1, N(2) = N2 , …, 
N(M) = NM. 
One-dimensional array of size M. 

M ...... Input.  Number of variate: M 
ISN ... Input.  Either transform or inverse transform is 

specified (≠ 0) as follows: 
for transform: ISN = +1 
for inverse transform: ISN = −1 
See “Notes”. 

ICON .. Output.  Condition code 
See Table CFTM-1. 

 
Table CFTM-1  Condition codes 

Code Meaning Processing 
0 No error  

29100  the dimension 
N satisfies  
N (mod γ2) =0 

Bypassed 

29200  The dimension 
N satisfies  
N (mod γ) = 0 
 

 

29300 Number of prime factors 
exceeds 11 

 

29400 Product of square free factors 
exceeds 210 

 

30000 M ≤ 0, ISN = 0 or one of the 
dimension ≤ 0 

 

 
Comments on use 
 
• Subprograms used 

SSL II .... UCFTM and MGSSL 
FORTRAN basic functions ... ATAN, COS, SIN, 
SQRT, MOD and FLOAT 

 
• Notes 

General definition of Fourier transform: 
The multi-variate discrete complex Fourier transform 
and its inverse transform are generally defined by (3.1) 
and (3.2). 
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 Either of the 
dimensions, 
N1, ..., NM, 
has a prime 
factor γ that 
is no less 
than 23, and 
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  where definitions of K1, ..., KM, J1, ..., JM, and 
ω1,...,ωM are given in (1.2) and (1.3). 
 
  The subroutine obtaines {N1…NMαK1,...,KM} or 
{xJ1,...,JM} corresponding to the left-hand side of (3.1) and 
(3.2), respectively, and the user must scale the results, if 
necessary.  If the transform and/ or inverse transform are 
executed without being scaled by calling the subroutine 
successively, each element of the input data is output and 
multiplied by N1…NM. 
Determination of dimension and processing speed: 
When determining the dimension in each variable, the 
conditions given in paragraph "Function" need to be 
satisfied, but if possible, it is desirable that the prime 
factors chosen are no larger than 5 (i.e., p ≤ 5).  In this 
way, the processing speed is generally faster than the case 
where the prime factors are greater than 5 (i.e., p > 5).  
Table CFTM-2 lists all numbers up to 10000 which can 
be expressed only by using prime factors less than or 
equal to 5.  Further, if the dimension is expressed to the 
power of 2 (2l, l ≥ 0 and also integer), the processing 
speed is faster if subroutine CFT is used. 
 
Table CFTM-2 all numbers up to 10000 
 

2 90 405 1215 2916 6075 
3 96 432 1250 3000 6144 
4 100 450 1280 3072 6250 
5 108 480 1296 3125 6400 
6 120 486 1350 3200 6480 
8 125 500 1440 3240 6561 
9 128 512 1458 3375 6750 

10 135 540 1500 3456 6912 
12 144 576 1536 3600 7200 
15 150 600 1600 3645 7290 
16 160 625 1620 3750 7500 
18 162 640 1728 3840 7680 
20 180 648 1800 3888 7776 
24 192 675 1875 4000 8000 
25 200 720 1920 4050 8100 
27 216 729 1944 4096 8192 
30 225 750 2000 4320 8640 
32 240 768 2025 4374 8748 
36 243 800 2048 4500 9000 
40 250 810 2160 4608 9216 
45 256 864 2187 4800 9375 
48 270 900 2250 4860 9600 
50 288 960 2304 5000 9720 
54 300 972 2400 5120 10000 
60 320 1000 2430 5184  
64 324 1024 2500 5400  
72 360 1080 2560 5625  
75 375 1125 2592 5760  
80 384 1152 2700 5832  
81 400 1200 2880 6000  

 
  Data storing method: 
All the real parts of the input {xJ1,...,JM} are stored into the 
M-dimensional array A as shown in Fig. CFTM-1.  The 
imaginary parts are stored likewise into the M-
dimensional array B, as are the input {αK1,...,KM} and the 
output {N1…NMαK1,...,KM} and {xJ1,...,JM} 

Example of two-variate transform (M=2)

The two-dimensional array  A(N1, N2) storing {xJ1,J2}

N2

N1

xN1-1, N2-1xN1-1,0

x1, N2-1

x0,N2-1

x1,0

x0,0

xN1-1,1

x1,1

x0,1

 
Fig. CFTM-1 Storing method of {xJ1 ,..., JM} 

  In general, when performing M-variate transform, if its 
data sequence is the same as given in FORTRAN for an 
M-dimensional array, parameters A and B can be each a 
one-dimensional array. 
Giving the parameter ISN: 
The parameter ISN specifies whether transform or 
inverse transform is performd, and it can also specify the 
interval I with which the real and imaginary parts of 
{xJ1,...,JM} or {αK1,...,KM} are stored in array A and B. 
 
Transform: ISN = −I 
Inverse transform: ISN = −I 
 
  The transformed results are also stored with the interval 
I. 
 
• Example 

(a) For a one-variable transform 
By inputting complex time series data {xJ1} of 
dimension N1 and performing Fourier transform, 
{N1αK1} is obtained. 
Here N1 ≤ 1000. 

 
C     **EXAMPLE** 
      DIMENSION A(1000),B(1000) 
      READ(5,500) N,(A(I),B(I),I=1,N) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,N) 
      CALL CFTM(A,B,N,1,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,620) (I,A(I),B(I),I=1,N) 
      STOP 
  500 FORMAT(I5/(2E20.7)) 
  600 FORMAT('0',10X,'INPUT DATA N=',I5/ 
     *      (15X,I5,2E20.7)) 
  610 FORMAT('0',10X,'RESULT   ICON=',I5) 
  620 FORMAT('0',10X,'OUTPUT DATA'/ 
     *      (15X,I5,2E20.7)) 
      END 
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(b) For three-variate transform 
By inputting complex time series data {xJ1,J2,J3} of 
dimensions Nl , N2 and N3 , performing Fourier 
transform, and by using the results performing 
Fourier inverse transform, {xJ1,J2,J3} is obtained.  
Here Nl = 5, N2 = 12 and N3 = 7.  

 
C     **EXAMPLE** 
      DIMENSION A(5,12,7),B(5,12,7),N(3) 
      DATA N/5,12,7/ 
      READ(5,500) (((A(I,J,K),B(I,J,K), 
     *             I=1,N(1)),J=1,N(2)), 
     *             K=1,N(3)) 
      WRITE(6,600) N,(((I,J,K,A(I,J,K), 
     *             B(I,J,K),I=1,N(1)), 
     *             J=1,N(2)),K=1,N(3)) 
C     NORMAL TRANSFORM 
      CALL CFTM(A,B,N,3,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0)STOP 
C     INVERSE TRANSFORM 
      CALL CFTM(A,B,N,3,-1,ICON) 
      NT=N(1)*N(2)*N(3) 
      DO 10 K=1,N(3) 
      DO 10 J=1,N(2) 
      DO 10 I=1,N(1) 
      A(I,J,K)=A(I,J,K)/FLOAT(NT) 
      B(I,J,K)=B(I,J,K)/FLOAT(NT) 
   10 CONTINUE 
      WRITE(6,620) (((I,J,K,A(I,J,K), 
     *             B(I,J,K),I=1,N(1)), 
     *             J=1,N(2)),K=1,N(3)) 
      STOP 
  500 FORMAT(2E20.7) 
  600 FORMAT('0',10X,'INPUT DATA',5X, 
     *       '(',I3,',',I3,',',I3,')'/ 
     *      (15X,'(',I3,',',I3,',',I3,')', 
     *       2E20.7)) 
  610 FORMAT('0',10X,'RESULT ICON=',I5) 
  620 FORMAT('0',10X,'OUTPUT DATA'/ 
     *      (15X,'(',I3,',',I3,',',I3,')', 
     *       2E20.7)) 
      END 
 
Method 
The multi-variate discrete complex Fourier transform is 
performed by using the mixed radix Fast Fourier 
Transform (FFT) with the prime factor p (2 ≤ p ≤ 23). 
 
• Multi-variate transform  

The multi-variate transform defined in (1.2) can be 
reduced by rearranging common terms. For example, 
the two-variate transform can be reduced to as shown 
in (4.1)  
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  In (4.1) ∑
2J

takes N1 sets of one-variable transforms of 

dimension N2 with respect to J1 , and for that result, ∑
1J

 

takes N2 sets of one-variable transforms of dimension 

N1 with respect to J2. 
Similary, the multi-variable discrete complex Fourier 
transform is achieved by performing a multi-set of one-
variable transforms in each variable.  The subroutine 
applies the mixed radix Fast Fourier Transform with the 
prime factor p to perform one-variable transforms in each 
variable.  
 
• Principle of mixed radix Fast Fourier Transform  

A one-variable discrete complex Fourier transform is 
defined as  
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  In (4.2), an ordinary scaling factor 1/ n is omitted.  
When calculating (4.2) directly, the multiplications of 
complex numbers are required as many as n2.  
If n is expressed by n = r⋅q with arbitrary factors r and q, 
and the characteristics of the exponential function ω-jk are 
considered, then the number of multiplication is reduced 
to about n (r + q) .  Let k and j in (4.2) be as follows:  
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  Substituting (4.3) into (4.2),  
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  Rearranging the right side of (4.4) with respect to j0 and 
j1 and putting the common terms together, (4.5) is 
obtained  
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In (4.5), ∑
1j

takes r sets of transforms of dimension q 

with respect to j0 , and ∑
0

j
takes q sets of transforms of 

dimension r with respect to j1.  The exp{−2πi⋅k0j0/r} is 
a rotation factor for the result of ∑

1j
. Therefore, the 

number of multiplications, Cn, done in (4.5) can be 
given in (4.6), and for a large n , it is smaller than n2 
which is the computation amount needed when (4.2) is 
calculated directly.  
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  This type of transform is called a radix r and q Fast 
Fourier Transform.  If r and q can be factored further to 

prime factors, the computation efficiency will be 
increased. The subroutine uses the mixed radix Fast 
Fourier Transform with prime factors of up to 23.  
For further details, refer to Reference [57].  
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F12-15-0202  CFTN, DCFTN  

Discrete complex Fourier transforms (radix 8 and 2 FFT. 
reverse binary order output)  
CALL CFTN (A, B, NT, N, NS, ISN, ICON)  

 
Function 
When one-variable complex time series data {xj} of 
dimension n is given. this subroutine performs discrete 
complex Fourier transforms or inverse transforms using 
the Fast Fourier Transform (FFT) method. The value n 
must be equal to 21(l = 0 or positive integer) .  
 
• Fourier transform  

When {xj} is input, this subroutine determines { }n k
~α  

by performing the transform defined in (1.1).  
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• Inverse Fourier transform  
When {αk} is input, this subroutine determines { }jx~  
by performing the inverse transform defined in (1.2).  
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  { }~α k  and { }~x j  indicate that the transformed data is not 
in ascending order, since transform is performed in the 
area that the data was input.  Let the results {αk} and {xj} 
of the Fourier transform or inverse Fourier transform 
defined in (3.1) and (3.2) be ordered in ascending order, 
{ }~α k  , { }~x j  are in reverse binary order.  
 
Parameters 
A .... Input.  Real parts of {xj} or {αk}. 

Output.  Real parts of { }n k
~α  or { }~x j . 

One-dimensional array of size NT. 
B...... Input.  Imaginary part of {xj} or {αk}. 

Output.  Imaginary parts of { }n k
~α  or { }~x j . 

One-dimensional array of size NT. 
NT.... Input.  The total number of data, including {xj} 

or {αk}, to be transformed (≥ N, NS) . 
Normally, NT = N is specified. (See "Notes".) 

N ...... Input.  Dimension n. 
NS .... Input.  The interval of the consecutive data 

{xj} or {αk} to be transformed of dimension n 
in the NT data (≥ 1 and ≤ NT) . Normally, NS 
= 1 is specified. (See "Notes".) 

ISN ... Input.  Specifies normal or inverse transform 
(≠ 0).  
Transform : ISN = +1  
Inverse transform: ISN = −1 (Refer to 
"Notes".) 

ICON .. Output. Condition code.  See Table CFTN-1.  
 
Table CFTN-1 Condition codes 

Code  Meaning  Processing  
0  No error   

30000  ISN = 0, NS < 1, NT < N,  
NT < NS, or N ≠ 2l 
(l = 0 or positive integer) 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL  
FORTRAN basic functions ... ATAN, ALOG, SQRT 
and SIN  
 

• Notes 
General definition of discrete complex Fourier 
transform: 
Discrete complex Fourier transform and inverse 
Fourier transform are generally defined as: 
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0

−== ∑
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− nkx
n
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jk
jk ωα  (3.1) 

and 

1,...,1,0,
1
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−== ∑
−

=

njx
n

k

jk
kj ωα  (3.2) 

where 

( )ω π= exp 2 i n  

  This subroutine determines { }n k
~α  or { }~x j  in place of 

{αk} of (3.1) or {xj} of (3.2). { }~α k  and { }~x j  indicate 
that the transformed data is not in normal ascending order, 
since transform is performed in the area that data was 
input. That is, { }n k

~α is in reverse binary order and its 
elements are multiplied by the value n compared to{αk}. 
{ }~xk is also in reverse binary order compared to {xk}.  
Scaling and permutation of the result data are left to the 
user.  Data can be permuted using subroutine PNR. 
  Refer to Example (a). 
Use of this subroutine: 
Usually, when performing a Fourier transform or an 
inverse Fourier transform, the subroutine CFT may be 
used. When normal and inverse transforms are performed 
successively, using this subroutine and subroutine CFTR 
together will increase efficiency. That is, at first { }n k

~α  is 
obtained by this routine. After a certain process is carried 
out, then processed { }n k

~α  can be performed inverse 
transform by subroutine CFTR  
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without permutation. So, by the deletion of permutation, 
the processing speed can be reduced. 
   In subroutine CFTR, the Fourier transform and inverse 
Fourier transform defined in (3.3) or (3.4) are performed. 
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njx
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k
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kj ωα  (3.4) 

   Refer to Example (b). 
Multi-variate transform: 
With this subroutine, multi-variable transforms are 
possible. For the 2-variate transform, the Fourier 
transform and inverse Fourier transform are defined as: 
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  and 
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  where ( ) ( )ω π ω π1 2= =exp , exp2 1 2 2i N i N  
  (3.5) can be reduced to simpler form by rearranging 
common terms as 
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 (3.7) 

The multi-variate transform of (3.7) is achieved by first 

performing ∑
2J
 on Nl group 1-variable transforms of 

dimension N2 with respect to Jl , and then ∑
1J

 is 

performed with the results on N2 groups l-variable 
transforms of dimension Nl with respect to J2.  With 

calling this subroutine once,∑
2J
 on N1 groups 1-variable 

transforms of dimension N2 is performed.  And with 

another calling, ∑
1J

 on N2 groups l-variable transforms of 

dimension Nl is performed.  This subroutine should be 
called as shown below concretely. 
 

a) User must store {xJ1,J2} in the two-dimensional array 
A and B as shown in Fig. CFTN-1. 

The two-dimensional array A(N1, N2)
which contains  {xJ1 ,J2}

xN1-1,0

x1,0

x0,0

N2

N1

xN1-1,1

x1,1

x0,1

xN1-1, N2-1

x1, N2-1

x0,N2-1

 
Fig. CFTN-1 Storage of {xJ1,J2} 

b) This subroutine is called twice 
   : 
NT=N1*N2 
NS=1 
CALL CFTN(A,B,NT,N1,NS,1,ICON) 
NS=N1 
CALL CFTN(A,B,NT,N2,NS,1,ICON) 
   : 

 
  Since the resultis is { }2,1

~21 KKNN α⋅ , as with one-
variable transforms, scaling and permutation of the data 
should be performed yhen necessary. 
  Data permutation can be done with subroutine PNR.  
The inverse transform defined in (3.6) can be processed 
similarly.  Processing is possible for more than two 
variates. Refer to example (c) for threevariate 
applications. 
Specifying ISN: 
ISN is used to specify normal or inverse transform. 
It is also used as follows: 
If the real parts and imaginary parts of NT data are each 
stored in areas of size NT⋅I in intervals of I, the following 
specification is made. 

Transform : ISN = +I 
Inverse transform : ISN = −I 

In this case, the results of transform are also stored in 
intervals of I. 
 
• Examples 
(a) 1-variable transform 

Complex time series data {xj} of dimension n is put, 
and a Fourier transform is performed. The results are 
permuted using subroutine PNR and {nαk} obtained. 
In case of n≤1024 (=210). 
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C     **EXAMPLE** 
      DIMENSION A(1024),B(1024) 
      READ(5,500) N,(A(I),B(I),I=1,N) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,N) 
      CALL CFTN(A,B,N,N,1,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      CALL PNR(A,B,N,N,1,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,620) (I,A(I),B(I),I=1,N) 
      STOP 
  500 FORMAT(I5 /(2E20.7)) 
  600 FORMAT('0',10X,'INPUT DATA N=',I5/ 
     *      /(15X,I5,2E20.7)) 
  610 FORMAT('0',10X,'RESULT ICON=',I5) 
  620 FORMAT(15X,I5,2E20.7) 
      END 
 
(b) Successive transform/inverse transform 

Complex time series data {xj} of dimension n is put, 
and this routine performs a Fourier transform to 
obtain { }n k

~α . Processing is done without 
permutation of the data, then the subroutine CFTR 
performs an inverse Fourier transform on the results. 
In case of n ≤ l024 (= 210) . 

 
C     **EXAMPLE** 
      DIMENSION A(1024),B(1024) 
      READ(5,500) N,(A(I),B(I),I=1,N) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,N) 
C     NORMAL TRANSFORM 
      CALL CFTN(A,B,N,N,1,1,ICON) 
      IF(ICON.NE.0)STOP 
         : 
C     INVERSE TRANSFORM 
      CALL CFTR(A,B,N,N,1,-1,ICON) 
      IF(ICON .NE. 0)STOP 
      DO 10 I=1,N 
      A(I)=A(I)/FLOAT(N) 
      B(I)=B(I)/FLOAT(N) 
   10 CONTINUE 
      WRITE(6,610) (I,A(I),B(I),I=1,N) 
      STOP 
  500 FORMAT(I5/(2E20.7)) 
  600 FORMAT('0',10X,'INPUT DATA N=',I5/ 
     *      /(15X,I5,2E20.7)) 
  610 FORMAT('0',10X,'OUTPUT DATA'/ 
     *      /(15X,I5 ,2E20.7)) 
      END 
 
(c) 3-variate transform 

Complex time series data {xJ1,J2,J3} of dimension Nl , 
N2 and N3 is put, and this subroutine performs a 
Fourier transform to obtain { }3,2,1

~321 KKKNNN α⋅⋅ .  
Processing is done without permulation of the data, 
then subroutine CFTR performs a Fourier inverse 
transform on the results. 

  In case of Nl⋅N2⋅N3 ≤ 1024 (= 210). 
  The data can be stored in a one-dimensional array as 
shown in Fig. CFTN-2. 

*

*

One-dimensional array A (NT)
which contains {xJ1,J2,J3}

( )= × ×N N N1 2 3
NT

x0,0,0

x1,0,0

x2,0,0

xN1-1,0,0

x0,1,0

x1,1,0

x2,1,0

xN1-1,1,0

x0,2,0

xN1-1,N2-1,0

x0,0,1

x1,0,1

x2,0,1

xN1-1,N2-1,N3-1
 

Note: 
When stored in this way, NS can be specified in the order of the three 
ca1ls --- 1, N1, N1*N2. 

Fig. CFTN-2 Storage of {xJ1,J2,J3} 

C     **EXAMPLE** 
      DIMENSION A(1024),B(1024),N(3) 
      READ(5,500) N 
      NT=N(1)*N(2)*N(3) 
      READ(5,510) (A(I),B(I),I=1,NT) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,NT) 
C     NORMAL TRANSFORM 
      NS=1 
      DO 10 I=1,3 
      CALL CFTN(A,B,NT,N(I),NS,l,ICON) 
      IF(ICON.NE.0) STOP 
      NS=NS *N(I) 
   10 CONTINUE 
            : 
C     INVERSE TRANSFORM 
      NS=1 
      DO 20 I=1,3 
      CALL CFTR(A,B,NT,N(I),NS,-1,ICON) 
      IF(ICON.NE.0) STOP 
      NS=NS*N(I) 
   20 CONTINUE 
C     NORMALIZATION 
      DO 30 I=1,NT 
      A(I)=A(I)/FLOAT(NT) 
      B(I)=B(I)/FLOAT(NT) 
   30 CONTINUE 
      WRITE(6,610) (I,A(I),B(I),I=1,NT) 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(2E20.7) 
  600 FORMAT('0',10X,'INPUT DATA N=',3I5/ 
     *      /(15X,I5,2E20.7)) 
  610 FORMAT('0,10X,'OUTPUT DATA'/ 
     *      /(15X,I5,2E20.7)) 
      END 
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Method 
This subroutine performs discrete complex Fourier 
transforms using the radix 8 and 2 Fast Fourier 
Transform (FFT) method, or performs the inverse 
transforms.  Refer to the section on subroutine CFT for 
the principles of FFT.  In this section, a specific example 
in which n = 16 will be discussed.  In this case, the 
Fourier transform is defined as 

( )162exp
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15
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kx jk

j
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πω

ωα

=

== −

=
∑  (4.1) 

   The scaling factor l/16 is omitted in (4.1).  In this 
routine, n is factored into factors 8 and 2 (n =8 × 2). k 
and j can be expressed as 
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   If (4.2) is substituted in (4.1) and common terms are 
rearranged, (4.3) results. Where, ( ) 810 10
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   In this routine, (4.3) is successively calculated. 
The results are stored in the same area that data was input. 
The procedure follows, see Fig. CFTN-3. 
 
• Process l: ( ) ⇐⋅+ 200 kjx  
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   (4.4) is executed.  The elementary Fourier transform of 

dimension 8 corresponding to ∑
1j

 are performed initially 

with respect to j0=0 , that is, the data x0, x2, x4, x6, x8, x10, 
xl2 and xl4 are transformed. 
   Then the transform of dimension 8 is performed with 
respect to j0=1, that is the data xl, x3, x5, x7, x9, x11, xl3 and 
xl5 are transformed. 
The results are multiplied by the rotation factor 

exp −




2

16
0 0

πi
j k

 

This multiplication is not necessary for j0=0 because the 
rotation factor is 1 when j0=0. When j0=1 , with the 
exception of k0=0, the following rotation factors are 
multiplied together in order − ξ1,ξ2,ξ3,ξ4,ξ5,ξ6 and ξ7, 
ξ=exp(−2πi/16). The above results are stored in 
x(j0+k0⋅2) . 
 
• Process 2: ( )x k k1 0 2+ ⋅ ⇐  

( )2
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2exp 00
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0
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kjx
kj
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π  (4.5) 

  is executed.  With the results of process 1 , the Fourier 

transform of dimension 2 corresponding to ∑
0j

 is 

performed with respect to k0=0, that is data x0 and xl are 
transformed. Similarly, with respect to k0=1,...,7 , the 
Fourier transform of dimension 2 is performed for each. 
It is not necessary to multiply these results by the rotation 
factor.The above results are stored in x(k1+k0⋅2). 
Since the x(k1+k0⋅2) obtained in this way is in reverse 
digit order compared to the α(k0+k1⋅8) to be obtained as 
the discrete complex Fourier transform of dimension 16, 
it is expressed as ( )~α k k1 0 2+ ⋅ .  In this routine, since the 
results of elementary Fourier transform of dimension 8 
are in reverse binary order, the final result ( )~α k k1 0 2+ ⋅  

is also in reverse binary order compared to ( )α k k0 1 8+ ⋅ . 
 
   For further information, see References [55], [56], and 
[57]. 
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Note: 
The circled numbers represent the order of the data. 
ξ=exp(−2πi/16).  Since the results of Fourier transforms of dimension 8 are in 
reverse binary order, ( )~α k k1 0 2+ ⋅ is in reverse binary order 

against ( )α k k0 1 8+ ⋅ . 
*1 Complex Fourier transform of dimension 2. 

Fig. CFTN-3  Flow chart of a complex Fourier transform of dimension 16 
(reverse binary order output) 
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F12-15-0302  CFTR, DCFTR 

Discrete complex Fourier transform (radix 8 and 2 FFT. 
reverse binary order input) 
CALL CFTR (A, B, NT, N, NS, ISN, ICON) 

 
Function 
When the one-variable complex time series data {xj} of 
dimension n is given in reverse binary order as { }~x j , the 
discrete complex Fourier transform or its inverse 
transform is performed by using the Fast Fourier 
Transform (FFT). Here n = 2l (l = 0 or positive integer). 
 
• Fourier transform 

{ }~x j is input and the transform defined by (1.1) is 
carried out to obtain {nαk} . 
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• Fourier inverse transform 
{ }~α k  is input and the transform defined by (1.2) is 
carried out to obtain {xj}. 
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   The sequence of the transformed {nαk} and {xj} are 
given in the normal sequence. 
 
Parameters 
A ..... Input.  Real part of { }~x j or { }~α k  . 

Output.  Real part of {nαk} or {xj}. 
One-dimensional array of size NT. 

B ..... Input. Imaginary part of { }~x j  or { }~α k . 
Output. Imaginary part of {nαk} or {xj} . 
One-dimensional array of size NT. 

NT ... Input.  Total number of data in which { }~x j  or 

{ }~α k
 to be transformed are contained. (NT ≥ 

N and NS) Normally, NT = N. 
See "Notes". 

N .. Input.  Dimension: n 
NS .. Input.  Interval of the consecutive data { }~x j  

or {nαk} to be transformed of dimension n in 
the NT data. (NS ≥ 1 and ≤ NT) Normally, NS 
= 1. See "Notes". 

ISN .. Input.  Either transform or inverse transform is 
specified (≠ 0) as follows: 
for transform: ISN = +l 
for inverse transform: ISN = −l 
See "Notes". 

ICON .. Output.  Condition code 
See Table CFTR-1 . 

Table CFTR-1 Conditions codes 

Code Meaning  Processing 
0 No error   

30000 ISN = 0. NS < 1, NT < N, NT 
< NS, or N≠2l  
(l = 0 or positive integer) 

By pessed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic functions ... ATAN, ALOG, SQRT 
and SIN 

 
• Notes 

General definition of Fourier transform: 
The discrete complex Fourier transform and its inverse 
transform are generally defined as given in (3.1) and 
(3.2). 
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   The subroutine performs transform for }~{ jx  or }~{ kα  

whose sequence is reverse binary order. The }~{ jx  and 

{nαk} correspond to {xj} and {nαk} in the right-hand 
side of (3.1) and (3.2), respectively.  The transformed 
results, {nαk} or {xj}, are obtained each corresponding to 
{nαk} and {xj} in the left-hand side of (3.1) and (3.2), 
respectively.  That is, the obtained result sequence is 
normal order and the elements of {nαk} are given 
multiplied by n . 
   The normalization of the results must be carried out by 
the user, if necessary. 
Use of the subroutine: 
For Fourier transform or inverse Fourier transform, the 
subroutine CFT is normally used, but if the transform 
and inverse transform are to be executed one after 
another, the subroutine CFTN and CFTR described in 
this section should be used for better efficiency. 
   Refer to "Comments on use" of subroutine CFTN. 
Application of multi-variate transform: 
This subroutine, CFTR, can be applied to a multi-variate 
transform. For exarnple, a two-variate Fourier transform 
and its inverse transform are defined as follows: 
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where ( ) ( )ω π ω π1 22 1 2 2= =exp , expi N i N  
Eq. (3.5) can be rewritten to 
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   The two-variate transform (3.7) above is achieved such 
that Nl sets of one-variable transforms of dimension N2 
are performed with respect to J1, and for that result. N2 
sets of one-variable transforms of dimension N1 
performed with respect to J2 . 
The subroutine is capable of performing N1 sets of one-
variable transforms of dimesnsion N2 simultaneously 
once it is called.  In this way computational load is 
reduced compared to the case where the one-variable 
transforms of dimension N2 are calculated one by one, so 
that a multi-variate transform can be accomplished 
efficiently.  In practice, specify as shown below and then 
call the subroutine. 
a) { }~xJ J1, 2  are stored in the two-dimensional array A and 

B as illustrated in Fig. CFTR-1. 
b) the subroutine is called twice as follows: 

 
   : 
NT=N1*N2 
NS=1 
CALL CFTR(A,B,NT,N1,NS,1,ICON) 
NS=N1 
CALL CFTR(A,B,NT,N2,NS,1,ICON) 
   : 

 
   The obtained result is { }2,121 KKNN α⋅ , so 
normalization must be done by the user, if necessary, in 
the same way as for a one-variable transform. 
The inverse transform defined in (3.6) can be similarly 
performed.  Transforms with more than two variate are 
also possible and example (b) shows a case of three 
variates. 
Giving ISN: 
The parameter ISN specifies whether transform or 
inverse transform is performed. and can be also used for 
the following case.  That is, when the real and imaginay 
parts of NT number of { }~x j  or { }~α k  are stored in the 
area of size NT⋅I with an interval I between each other, 
the ISN is specified as follows: 
for transform: ISN = +I 
for inverse transform: ISN = −I 
The transformed results are stored also with an interval I. 

Two dimensional array, A (N1. N2), which stores { }~xJ J1, 2  

N2

N1

~
,xN1 1 1−

~
,x1 0

~
,x0 0

~
,xN1 1 1−

~
,x1 1

~
,x0 1

~
,xN N1 1 2 1− −

~
,x N1 2 1−

~
,x N0 2 1−

 
Note: 
Array A contains the real parts of { }~x .  The imaginary parts are stored 
likewise in the two-dimensional array B (N1, N2). 

Fig. CFTR-1 Storing method 

• Example 
(a) One-variable transform 

The complex time series data {xj} of dimension n 
are input, and permuted by subroutine PNR in 
reverse binary order. 
The result { }~x j  is subjected to Fourier transform 
by the subroutine to obtain {nαk} . 
Here n ≤ 1024 (= 210). 

 
C     **EXAMPLE** 
      DIMENSION A(1024),B(1024) 
      READ(5,500) N,(A(I),B(I),I=1,N) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,N) 
      CALL PNR(A,B,N,N,1,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      CALL CFTR(A,B,N,N,1,1,ICON) 
      WRITE(6,620) (I,A(I),B(I),I=1 ,N) 
      STOP 
  500 FORMAT(I5/(2E20.7)) 
  600 FORMAT('0',10X,'INPUT DATA N=',I5/ 
     *      /(15X,I5 ,2E20.7)) 
  610 FORMAT('0',10X,'RESULT ICON=',I5) 
  620 FORMAT('0',10X,'OUTPUT DATA'// 
     *      (15X,I5 ,2E20.7)) 
      END 
 

(b) Three-variate transform 
The three-variate complex time series data {xJ1,J2,J3} 
of dimension N1, N2 and N3 are input and 
permuted by subroutine PNR in reverse binary 
order. 
The results { }~

,xJ J J1, 2 3  are subjected to Fourier 
transform by the subroutine to obtain 
{N1⋅N2αK1,K2}. 
The data {xJ1,J2,J3} may be stored in a one-
dimensional array as illustrated in Fig.CFTR-2. 
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*

*

One-dimensional array, A (NT),
which stores

( )= × ×N N N1 2 3

{ }~
, ,xJ J J1 2 3

NT

~
, ,x0 0 0

~
, ,x1 0 0

~
, ,x2 0 0

~
, ,xN1 1 0 0−

~
, ,x1 1 0

~
, ,x0 1 0

~
, ,x2 1 0

~
, ,xN1 1 1 0−

~
, ,x0 2 0

~
, ,xN N1 1 2 1 0− −

~
, ,x0 0 1

~
, ,x1 0 1

~
, ,x2 0 1

~
, ,xN N N1 1 2 1 3 1− − −  

Note 
Array A contains the real part of { }~x . The imaginary parts are 
contained likewise in the one-dimensional array B (NT). Parameter NS, 
when contained in this way, is given 1, N1 and N1⋅N2 for each of the 
three times the subroutine is called. 

Fig. CFTR-2 Storage of { }~ ,x J J J1, 2 3  

C     **EXAMPLE** 
      DIMENSION A(1024),B(1024),N(3) 
      READ(5,500) N 
      NT=N(1)*N(2)*N(3) 
      READ(5,510) (A(I),B(I),I=1,NT) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,NT) 
      NS=1 
      DO 10 I=1,3 
      CALL PNR(A,B,NT,N(I),NS,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      CALL CFTR(A,B,NT,N(I),NS,1,ICON) 
      NS=NS*N(I) 
   10 CONTINUE 
      WRITE(6,620) (I,A(I),B(I),I=1,NT) 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(2E20.7) 
  600 FORMAT('0',10X,'INPUT DATA N=',3I5/ 
     *      /(15X,I5 ,2E20.7)) 
  610 FORMAT('0',10X,'RESULT ICON=',I5) 
  620 FORMAT('0',10X,'OUTPUT DATA'// 
     *      (15X,I5 ,2E20.7)) 
      END 
 
Method 
The discrete complex Fourier transform is performed by 
using the radix 8 and 2 Fast Fourier Transform (FFT) .  
The input data is to be given in reverse binary order.  For 
the principle of the Fast Fourier Transform, refer to the 
section of subroutine CFT. 
   In this section, the transform is explaind for n = 16. 

( )162exp

,15,...,1,0,
15

0

i

kx
j

jk
jk

πω

ωα

=

== ∑
=

−

 (4.1) 

   where the scaling factor 1/16 is omitted. The subroutine 
factors n by using 2 and 8 (n = 2 × 8). 
   k and j are expressed as follows: 

k k k k k
j j j j j

= ⋅ + ≤ ≤ ≤ ≤
= ⋅ + ≤ ≤ ≤ ≤

0 1 0 1

0 1 0 1

2 0 7 0 1
8 0 1 0 7

, ,
, ,

 (4.2) 

   Substituting (4.2) into (4.1) and rearranging the 
common terms, (4.3) is obtained. 

( ) ∑
= 






 −=+⋅

7

0

01
10

1
8

2exp2
j

kjjkk πα  

 ⋅ −







exp 2
16
1 1πi j k

 (4.3) 

 ( )∑
=

+⋅






 −⋅

1

0
10

10

0

8
2

2exp
j

jjxkjiπ  

   where ( )
10 210 2 kkkk +⋅≡+⋅ αα  

 
   The subroutine is given its input data in reverse binary 
order, i.e., ( )~x j j0 1 2+ ⋅  is given instead of x( j0⋅8+j1), 
then Eq. (4.3) is calculated successively.  The results are 
stored in the same area. 
   The procedure is explained below, in conjunction with 
Fig. CFTR-3. 
 
• Step l: ( )~x k j1 1 2+ ⋅ ⇐  

           ( )∑
=

⋅+






 −

1

0
10

10

0

2~
2

2exp
j

jjx
kj

iπ  (4.4) 

   First of all, Fourier transforms of dimension 2 are 

performed by ∑
0j

 with respect to j0=0, that is, transform 

is done for ~x0  and ~x1 .  Similarly, the Fourier transforms 
of dimension 2 are performed with respect to j0=1 to 7 
and the results are stored in ( )~x k j1 1 2+ ⋅ . 
 
• Step 2: ( )~x k k1 0 2+ ⋅ ⇐  

( )2~
16

2exp
8

2exp

11

7

0

1101

1

⋅+⋅







 −







 −∑

=

jkx

kjikji
j

ππ
 (4.5) 

   The results obtained at step 1 are multiplied by the 

rotation factors, exp −








2
16
1 1πi

j k  and Fourier transforms 

of dimension 8 are performed by ∑
1j

 with respect to k0=0 

and k0=1. 
When k0=0, the all rotation factors are 1, so no 
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multiplication is necessary, and the transform is done for 
121086420 x~,x~,x~,x~,x~,x~,x~  and ~x14  when k1=1 the transform 

is done after ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~x x x x x x x x1 3 5 7 9 11 13 15  are multiplied by 
the rotation factor.  The rotation factors are ξ0, ξ1, ξ2, ξ3, 
ξ4, ξ5, ξ6 and ξ7, where  
ξ = exp(-2πi/16). Since each of the input data sequence 
for these two sets of Fourier transforms of dimension 8 is 
in reverse binary order, each of the 

transformed results is permuted in the normal order and 
stored in ( )~x k k1 0 2+ ⋅ . 

The obtained ( )~x k k1 0 2+ ⋅  agrees with ( )~α k k1 0 2+ ⋅  
which is the result of the "discrete complex Fourier 
transform of dimension 16". 
 
   For further information, see References [55], [56], and 
[57]. 

 

( ) ( )2~
2

2exp
16

2exp
8

2exp2 10

7

0

1

0

101101
10

1 0

⋅+






 −







 −







 −=+⋅ ∑ ∑

= =

jjxkjikjikjikk
j j

πππα  

 ( )~x j j0 1 2+ ⋅  Step 1 ( )~x k j1 1 2+ ⋅  Step 2 ( )α k k0 12⋅ +  

1

9

5

13

3

11

7

15

0

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

0

8

4

12

2

10

6

14

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

*1
j

j
1

0
0= ∑,

*1
j

j
1

0
1= ∑,

*1
j

j
1

0
2= ∑,

*1
j

j
1

0
3= ∑,

*1
j

j
1

0
4= ∑,

*1
j

j
1

0
5= ∑,

*1
j

j
1

0
6= ∑,

*1
j

j
1

0
7= ∑,

ξ 4

ξ 2

ξ 6

ξ 1

ξ 5

ξ 3

ξ 7

Fourier
transform
of dimen-
sion 8

k
j

1
1

0= ∑,

Fourier
transform
of dimen-
sion 8

k
j

1
1

1= ∑,

 
Note: 
Numbers inside O marks indicate the data sequence, and ξ = exp(-2πi/16). 
*1: Complex Fourier transform of dimension 2 

Fig. CFTR-3 Flow chart of a complex Fourier transform of dimension 16 
(reverse binary order input) 
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A11-40-0101  CGSBM, DCGSBM 

Storage mode conversion of matrices (real general to real 
symmetric band) 
CALL CGSBM (AG, K, N, ASB, NH, ICON) 

 
Functions 
This subroutine converts an n × n real symmetric band 
matrix with band width h stored in the general mode into 
one stored in the compressed mode for symmetric band 
matrix, where n > h ≥ 0. 

 
Parameters 
AG .... Input.  The symmetric band matrix stored in 

the general mode.  Two-dimensional array, AG 
(K, N). 
(See "Comments on Use.") 

K .... Input.  The adjustable dimension (≥ N) of 
array AG. 

N ..... Input.  The order (n) of the matrix. 
ASB ... Output.  The Symmetric band matrix stored in 

the compressed mode. 
One-dimensional array of size 
n(h+1)−h(h+1)/2. 

NH ..... Input.  Band width h of the matrix. 
ICON .. Output.  Condition code. (See Table CGSBM-1.) 
 
Table CGSBM-1 Condition codes 

Code  Meaning  Processing 
0  No error.   

30000 NH < 0, N ≤ NH, or K<N By passed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... MAX0 

 
• Notes 

Storing method of the symmetric band matrix in the 
general mode: 
Only the elements of the lower band and the diagonal 
portions can be stored in array AG. The elements of the 
lower band portion are copied into those of the upper 
band portion in this subroutine. 

 
• Saving the storage area: 

If the contents of array AG need not be retained, the 
storage area can be saved using an EQUIVALENCE 
statement as follows: 
EQUIVALENCE (AG (1,1), ASB (1)) (See "Example" 
for details.) 

 
• Example 

Given an n × n positive-definite symmetric band matrix 
with band width h in the general mode, this example 
converts it into one stored in the compressed mode for 
symmetric band matrix, then performs decomposition. 
Subroutine SBDL is used for the decomposition, 
whereas this subroutine and subroutine CSBGM are 
used to convert the mode, where n ≤ 100 and h ≤ 20. 

 
C     **EXAMPLE** 
      DIMENSION AG(100,100),ASB(1890) 
      EQUIVALENCE(AG(1,1),ASB(1)) 
   10 READ(5,500) N,NH 
      IF(N.EQ.0)STOP 
      K=100 
      READ(5,510) ((AG(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,NH,((I,J,AG(I,J), 
     *             I=1,N),J=1,N) 
      CALL CGSBM(AG,K,N,ASB,NH,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      EPSZ=0.0 
      CALL SBDL(ASB,N,NH,EPSZ,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL CSBGM(ASB,N,NH,AG,K,ICON) 
      WRITE(6,630) N,NH,((I,J,AG(I,J), 
     *             J=1,N),I=1,N) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(//10X,'** INPUT MATRIX **'/ 
     *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     *(2X,4('(',I3,',',I3,')',E17.8))) 
  610 FORMAT('1'/10X,'CGSBM ICON=',I5) 
  620 FORMAT(/10X,'SBDL ICON=',I5) 
  630 FORMAT('1'//10X,'DECOMPOSED MATRIX'/ 
     *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     *(2X,4('(',I3,',',I3,')',E17.8))) 
      END 
 
Method 
A real symmetric band matrix stored in a two-
dimensional array AG in the general mode is processed 
as follows to be a symmetric band matrix in a one-
dimensional array in the compressed mode. 
   The elements of the lower band portion are moved to 
the upper band portion using the diagonal as the axis of 
symmetry. 

AG(I,J)→AG(J,I), I − h ≤ J ≤ I − 1 

   The elements of the diagonal and upper band AG (I,J) 
are moved to the ASB, beginning from column 1 of AG, 
as follows: 
 
Elements in the Matrix Elements in the  
general mode Elements compressed mode 

AG (I, J)  −−→  aij  −−→  ASB  (J (J−1)/2+I) 
       , I = 1, 2, ⋅⋅⋅, J   ,   J = l, 2, ⋅⋅⋅, h+1 
AG (I, J)  −−→  aij  −−→  ASB (hJ − h (h+1)/2+I) 
       , I = J−h, J−h+1, ⋅⋅⋅, J , J = h+2, h+3, ⋅⋅⋅,N 
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A11-10-0101 CGSM, DCGSM 

Storage mode conversion of matrices 
(real general to real symmetric) 
CALL CGSM (AG, K, N, AS, ICON) 

 
Functions 
This subroutine converts an n × n real symmetric matrix 
stored in the general mode into a symmetric matrix stored 
in the compressed mode. n ≥ 1. 
 
Parameters 
AG .. Input.  The symmetric matrix stored in the 

general mode.  AG is a two-dimensional array, 
AG (K, N). (See "Comments on use".) 

K .. Input.  The adjustable dimension ( ≥ N) of 
array AG. 

N ... Input.  The order n of the matrix. 
AS ... Output.  The symmetric matrix stored in the 

compressed mode. AS is a one-dimensional 
array of size n (n +1)/2. 

ICON ... Output.  Condition codes. Refer to Table 
CGSM-1. 

 
Table CGSM-1 Condition code 

Code  Meaning  Processing  
0 No error   

30000  N < 1 or K < N  By passed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... None 

 
• Notes 

Storage method of the symmetric matrix in the general 
mode: 
Only the elements of the diagonal and lower triangular 
portions need be given to array AG. The subroutine 
copies the lower triangular portion to the upper 
triangular portion. 
If there is no need to keep the contents on the array AG, 
more atorage can be saved by using the 
EQUIVALENCE statement as follow; 

  EQUIVALENCE (AG(1,1), AS(1)) 

Refer to the example shown below. 
 
• Example 

Given an n × n positive-definite symmetric matrix in 
the general mode, the inverse matrix is obtained by 
subroutines SLDL and LDIV as shown in the example. 
   In this case, the required mode conversion is 

performed by subroutines CGSM and CSGM.  
Here n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(5050) 
      EQUIVALENCE(A(1,1),B(1)) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      K=100 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      CALL CGSM(A,K,N,B,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.EQ.30000) GOTO 10 
      EPSZ=0.0 
      CALL SLDL(B,N,EPSZ,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GOTO 10 
      CALL LDIV(B,N,ICON) 
      WRITE(6,630) ICON 
      CALL CSGM(B,N,A,K,ICON) 
      WRITE(6,640) ICON 
      WRITE(6,650)N,((I,J,A(I,J),J=1,N), 
     *            I=1,N) 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'//10X,'** INPUT MATRIX **'/ 
     *10X,'ORDER=',I5/(2X, 
     *4('(',I3,',',I3,')',E17.8))) 
  610 FORMAT(10X,'CGSM ICON=',I5) 
  620 FORMAT(10X,'SLDL ICON=',I5) 
  630 FORMAT(10X,'LDIV ICON=',I5) 
  640 FORMAT(10X,'CSGM ICON=',I5) 
  650 FORMAT('1'//10X,'** INVERSE ', 
     *'MATRIX **'/10X,'ORDER=',I5/(2X, 
     *4('(',I3,',',I3,')',E17.8))) 
      END 
 
Methods 
This subroutine converts an n × n real symmetric matrix 
stored in a two-dimensional array AG in the general 
mode to in a one-dimensional array in the compressed 
mode through the following procedures. 
• With the diagonal as the axis of symmetry, the 

elements of the lower triangular portion are transferred 
to the upper triangular portion. 

  AG(I,J)  →  AG(J,I), J<I 

• The diagonal and upper triangular elements AG (I,J) is 
transferred to the J (J-1)/2 + I position in AS. 
   Here, J ≥ I. Transfer begins with the first column of 
AG and continues column by column. 
   The correspondence between locations is shown 
below, where NT = n (n + 1)/2 . 
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Elements in the 
general mode 

Elements of 
the matrix 

Elements in the 
compressed mode 

AG (1, 1) → a11 → AS (1) 
AG (1, 2) → a21 → AS (2) 
AG (2, 2)  → a22 → AS (3) 
     :  :      : 
AG (I, J)  → aji → AS (J (J − 1)/2+I) 
     :  :      : 
AG (N-1, N)  → ann−1 → AS (NT − 1) 
AG (N, N)  → ann → AS (NT) 
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B21-15-0602  CHBK2, DCHBK2 

Back transformation of the eigenvectors of a complex 
Hessenberg matrix to the eigenvectors of a complex 
matrix 
CALL CHBK2 (ZEV, K, N, IND, M, ZP, IP, DV, ICON) 

 
Function 
This subroutine back-transforms m eigenvectors of an n -
order Hessenberg matrix H to eigenvectors of a complex 
matrix A. H is assumed to be obtained from A using the 
stabilized elementary similarity transformation method. 
No eigenvectors of complex A are normalized. n ≥ 1. 
 
Parameters 
ZEV ... Input.  m eigenvectors of complex Hessenberg 

matrix H. 
Output. ml eigenvectors of complex matrix A.  
The ml indicates the number of IND elements 
whose value is 1. 
ZEV is a two-dimensional array, ZEV (K,M) 

K .. Input.  Adjustable dimension of arrays ZEV 
and ZP. (≥ n). 

N .. Input.  Order n of complex matrices A and H. 
IND ... Input. IND(J)=1 implies that the eigenvector 

corresponding to the j-th eigenvalue of ZEV is 
to be back-transformed. 
IND(J)=0 implies that the eigenvector 
corresponding to the j-th eigenvalue of ZEV is 
not to be back-transformed.  IND is one-
dimensional array of size M . 
See "Comments on use" 

M ... Input.  Total number of eigenvalues corres-
ponding to eigenvectors of complex 
Hessenberg matrix H. 

ZP ... Input.  Information necessary for a transfor-
mation matrix (A to H). ZP (K,N) is a two-
dimensional complex array. 
See "Comments on use". 

IP ... Input.  Information necessary for a 
transformation matrix (A to H) . IP is a one-
dimensional array of size n. 
See "Comments on use". 

DV ... Input.  Scaling factor applied to balance 
complex matrix A.  DV is a one-dimensional 
array of size n.  
If balancing of complex matrix A was not 
performed, DV=0.0 can be specified. 
Therefore, DV does not necessarily have to be 
a one-dimensional array. 
See "Comments on use". 

ICON ... Output.  Condition code. 
See Table CHBK2-l 

Table CHBK2-1 Condition Codes 

Code  Meaning  Processing 
0  No error   

10000  N=1  ZEV(1,1)=(1.0,0.0) 
30000  N <M,M < 1 or K < N  By passed 

 
Comments on use 
• Subroutines used 

SSL II ... MGSSL 
FORTRAN basic function ... None 

 
• Notes 

After subroutine CHVEC is executed, parameters ZEV, 
IND and M can be used as input parameters for this 
subroutine. 
   Parameters ZA and IP for subroutine CHES2 
correspond to parameters ZP and IP for this subroutine 
and can be used as input parameters for this subroutine.  
For information about the contents of parameters ZP 
and IP, refer to the section on CHES2. 
   For information about the contents of scaling factor 
DV, refer to the section on CBLNC. 
 

• Example 
Eigenvectors and eigenvalues of an n -order complex 
matrix are calculated by using the following 
subroutines: 
CBLNC ..... Balancing of a complex matrix 
CHES2 ..... Reduction to a complex Hessenberg 

matrix 
CHSQR ..... Determination of eigenvalues of a 

complex Hessenberg matrix 
CHVEC ..... Determination of eigenvectors of a 

complex Hessenberg matrix. 
CHBK2 ..... Back-transformation of eigenvectors of a 

complex Hessenberg matrix to 
eigenvectors of a complex matrix 

CNRML ..... Nomalization of eigenvectors of a 
complex matrix. 

However eigenvectors are calculated in the order in 
which eigenvalues are determined. When n ≤ 100: 
 

C     **EXAMPLE** 
      COMPLEX ZA(100,100),ZE(100), 
     *ZAW(100,101),ZEV(100,100) 
      DIMENSION IND(100),DV(100),IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,ZA(I,J),J=1,N) 
      CALL CBLNC(ZA,100,N,DV,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      CALL CHES2(ZA,100,N,IP,ICON) 
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      DO 30 J=1,N 
      IM=MIN0(J+1,N) 
      DO 30 I=1,IM 
   30 ZAW(I,J)=ZA(I,J) 
      CALL CHSQR(ZAW,100,N,ZE,M,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      DO 40 I=1,M 
   40 IND(I)=1 
      CALL CHVEC(ZA,100,N,ZE,IND,M, 
     *           ZEV,ZAW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL CHBK2(ZEV,100,N,IND,M,ZA,IP, 
     *           DV,ICON) 
      CALL CNRML(ZEV,100,N,M,2,ICON) 
      CALL CEPRT(ZE,ZEV,100,N,IND,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',10X,'ORIGINAL MATRIX' 
     *//11X,'ORDER=',I5) 
  610 FORMAT(/2(5X,'A(',I3,',',I3,')=', 
     *2E15.7)) 
  620 FORMAT(/11X,'CONDITION CODE=',I5/) 
      END 
 

   In this example, subroutine CEPRT is used to print 
the eigenvalues and corresponding eigenvectors of a 
complex matrix.  For further information see the 
example of CEIG2. 

 
Method 
This subroutine back-transforms the eigenvectors of an n-
order complex Hessenberg matrix H to the eigenvectors 
of balanced complex matrix A and then back-transforms 
the resultant eigenvectors to eigenvectors of an original 
complex matrix A. 
   An complex matrix A is balanced by using the diagonal 
similarity transformation method shown in (4.1).  The 
balanced complex matrix is reduced to a complex 
Hessenberg matrix H by using the (n − 2) stabilized 
elementary similarity transformations as shown in (4.2). 

~A D AD= −1  (4.1) 

221
1

1
1

2
1
2

~
−

−−−
− ⋅⋅⋅⋅⋅⋅= nn SSSASSSH  (4.2) 

   Where D is a diagonal matrix and Si is represented by 
permutation matrix Pi and elimination matrix Ni as shown 
in (4.3). 

1−= iii NPS   2,...,2,1 −= ni  (4.3) 

  Let eigenvalues and eigenvectors of H by λ and y 
respectively and then obtain 

Hy y= λ  (4.4) 

   From (4.1) and (4.2), (4.4) becomes: 

yySSADSDSSS 1 λ=⋅⋅⋅⋅⋅⋅ −
−−−−

− 221
1

1
1

2
1
2 nn  (4.5) 

   If both sides of (4.5) are premultiplied by DS1S2…Sn-2. 

ySSDSySSADS 221221 −− ⋅⋅⋅=⋅⋅⋅ nn λ  (4.6) 

results and eigenvector x of A becomes: 

ySSDSx 221 −⋅⋅⋅= n  (4.7) 

x is calculated as shown in (4.8) and (4.9) 
starting with y=xn-1. 

1,2,...,2,1
1

1 −=== +
−

+ niiiiiii xNPxSx  (4.8) 
x Dx= 1  (4.9) 

   For further information about stabilized elementary 
similarity transformation and balancing, see the section 
on CBLNC and CHES2. 
 
   For details see Reference [13] pp.339 - 358. 
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B21-15-0302  CHES2, DCHES2 

Reduction of a complex matrix to a complex Hessenberg 
matrix (stabilized elementary similarity transformation) 
CALL CHES2 (ZA, K, N, IP, ICON) 

 
Function 
This subroutine reduces an n-order complex matrix A to a 
complex Hessenberg matrix H using the stabilized 
elementary similarity transformation method (Gaussian 
elimination method with partial pivoting) . 

H S AS= −1  

where S is a transformation matrix. 
n ≥ l. 
 
Parameters 
ZA ... Input.  Complex matrix A. 

Output.  Complex Hessenberg matrix H and 
transformation matrix. 
See Figure CHES2-1. 
ZA is a complex two-dimentional array, ZA (K, 
N). 

K .. Input.  Adjustable dimension of array ZA. 
(≥ n) 

N ... Input.  Order n of complex matrix A. 
IP ... Output.  Information required by permutation 

matrix S. (See Fig. CHES2-1.) 
IP is a one-dimensional array of size n. 

ICON... Output. 
See Table CHES2-1. 
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Note: 
The section indicated with ∗  is the Hessenberg matrix.  The rest 
contains some information for the transformation matrix. × indicates a 
work area. 

Fig. CHES2-1 Array ZA and IP after transformation 

 
Table CHES2-1 Condition codes 

Code Meaning Processing 
0 No error  

10000 N =1 or N = 2 No transformation 
30000 K < N or N < 1 Bypassed 

 

Comments on use 
• Subroutines used 

SSL II ... CSUM, AMACH, MGSSL 
FQRTRAN basic functions ... REAL, AIMAG, ABS, 
AMAX1 

 
• Notes 

Output arrays ZA and IP are required to determine the 
eigenvectors of matrix A. 
   The precision of eigenvalues is determined in the 
complex Hessenberg transformation process.  For that 
reason this subroutine has been implemented so that 
complex Hessenberg matrices can be determined as 
accurately as possible.  However, if a complex matrix 
contains very large and very small eigenvalues, the 
precision of smaller eigenvalues is liable to be more 
affected by the reduction process − some smaller 
eigenvalues are difficult to determine precisely. 
 

• Example 
This example transforms an n -order complex matrix to 
a complex Hessenberg matrix and determines its 
eigenvalues through use of the subroutine CHSQR. 
n ≤ 100 

 
C     **EXAMPLE** 
      COMPLEX ZA(100,100),ZE(100) 
      DIMENSION IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,ZA(1,J),J=1,N) 
      CALL CHES2(ZA,100,N,IP,ICON) 
      WRITE(6,620) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,610) ((I,J,ZA(I,J), 
     *             J=1,N),I=1,N) 
      CALL CHSQR(ZA,100,N,ZE,M,ICON) 
      WRITE(6,640) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,650) (I,ZE(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',10X,'ORIGINAL MATRIX' 
     * //11X,'ORDER=',I5/) 
  610 FORMAT(/2(5X,'A(',I3,',',I3, 
     * ')=',2E15.7)) 
  620 FORMAT('0'//11X, 
     * 'HESSENBERG MATRIX') 
  630 FORMAT(/11X,'CONDITION CODE=',I5/) 
  640 FORMAT('0'/11X,'EIGENVALUES') 
  650 FORMAT(5X,'E(',I3,')=',2E15.7) 
      END 
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Method 
An n-order complex matrix A is reduced to a complex 
Hessenberg matrix H through n-2 iterations of the 
stabilized elementary similarity transformation method. 

2,...,2,1,1
1 −== −

− nkkkkk SASA  (4.1) 

where A0=A. 
   When transformation is completed An-2 is in the 
complex Hessenberg matrix. 
   The k-th transformation is performed according to the 
following procedure: 
Let ( ))1(

1
−

− = k
ijk aA  

1) The elements )1( −k
ika  , i=k+1,..., n in the k-th column 

are searched for the element of the maximum norm. 
The following is assumed as the norm of complex 
number z = x + iy : 
z x y

1
= +  

   If a ( )1−k
kmk

a  is the element of the maximum norm, 

number mk is stored as the k-th element of IP. 
2) If mk = k+1 is satisfied the next step is executed 

immediately. 
If mk > k+1 is satisfied the k-th and subsequent 
columns elements in the mk-th row are exchanged by 
the elements in the ( k + 1 )-th row of Ak-1 

3) Using )1(
,1

−
+
k

kka  as a pivot, all elements of the (k+2)-th 
and subsequent rows in the k-th column are eliminated 
through use of: 

  ( ) ( ) ( ) nkiaaa k
kk

k
ik

k
ik ,...,2,1

,1
1 +=−= −

+
−  (4.2) 

and 

  ( ) ( ) ( ) ( )
nkj
nki

aaaa k
jk

k
ik

k
ij

k
ij ,...,1

,...,2
,~ 1

,1
1

+=
+=

+= −
+

−  (4.3) 

4) If mk=k+1 is satisfied the next step is executed. 
If mk > k+1 is satisfied, all elements in the (k +1)-th 
column are exchanged by the mk-th column. 

5) At this step, each element in the (k +1)-th and 
subsequent columns is assumed as ~ ( )aij

k . 
   All elements in the (k +1)-th column are modified as 
follows: 

  ( ) ( ) ( ) ( ) niaaaa
n

kj

k
jk

k
ij

k
ik

k
ik ,...,2,1,~~

2
11 =−= ∑

+=
++  (4.4) 

   The row exchanging at the second step is performed by 
premultiplying Ak-1 by permutation matrix Pk shown in 
Fig. CHES2-2.  The elimination of elements at the third 
step performed by premultiplying Pk by elimination 
matrix Nk shown in Fig. CHES2-3. Therefore, 

11 , −− == kkkkkk NPSPNS  (4.5) 

result. 
   Where, Pk

-1 is equal to Pk, and Nk
-1 is obtained by 

reversing all signs of non-diagonal elements of Nk. 











































+

+

1

1
01

1

1
10

1

1

1

1

0

0

k

k

k

m

k

mk
P

 
Fig. CHES2-2 Permutation matrix Pk 
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Note: 

)1( −k
ija  is an element obtained after Pk is multiplied by Nk. 

Fig. CHES2-3 Elimination matrix Nk 

   Information mk necessary for Pk is stored as the k-th 
element of IP and all elements of the (k +2)-th and 
subsequent rows in the (k +1)-th columun of Nk are stored 
as aij

k( )  of the (k +2)-th and subsequent rows in the k-th 
column of A. 
   If n = 2 or n = 1 is satisfied, no transformantion is 
performed. 
 
   For further information see Reference [13] pp.339 - 
358. 
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B21-15-0402  CHSQR, DCHSQR 

Eigenvalues of a complex Hessenberg matrix (QR 
method) 
CALL CHSQR (ZA, K, N, ZE, M, ICON) 

 
Function 
This subroutine determines all eigenvalues of an n -order 
complex Hessenberg matrix A by using the QR method. 
n ≥ l. 
 
Parameters 
ZA ... Input.  Complex Hessenberg matrix A. 

The contents of A are altered on output. 
ZA is a two-dimensional complex array, ZA 
(K,N) 

K .. Input.  Adjustable dimension of array ZA.(≥ n) 
N ... Input.  Order n of the complex Hessenberg 

matrix A. 
ZE ... Output.  Eigenvalues. 

The J-th eigenvalue is ZE (J) ( J = 1 ,2,...M) . 
ZE is a one-dimensional complex array of size n. 

M ... Output.  Number of determined eigenvalues. 
ICON ... Output.  Condition code. 

See Table CHSQR-1. 
 
Table CHSQR-1 Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 ZE (1) = ZA (1, 1) 
15000 Any of the eigenvalues could 

not be determined. 
The number of 
eigenvalues 
that were 
obtained is set 
to M. 

20000 No eigenvalues could be 
determined. 

M is set to zero. 

30000 K < N or N < 1 Bypassed 
 
Comments on use 
• Subroutines used 

SSL II ... AMACH, MGSSL 
FORTRAN basic functions ... REAL, AIMAG, 
CONJG, ABS, SIGN, AMAXl, SQRT, CSQRT 
 

• Notes 
Normally, this subroutine is used to determine all 
eigenvalues after CHES2 has been executed. 
   If eigenvectors are also needed array ZA should be 
copied onto another area before this subroutine is 
called. 
 

• Example 
This example reduces an n -order complex matrix to a 
complex Hessenberg matrix through use of CHES2 and 
then determines its eigenvalues. n ≤ 100. 
 

C     **EXAMPLE** 
      COMPLEX ZA(100,100),ZE(100) 
      DIMENSION IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,ZA(I,J),J=1,N) 
      CALL CHES2(ZA,100,N,IP,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      CALL CHSQR(ZA,100,N,ZE,M,ICON) 
      WRITE(6,630) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,640) (I,ZE(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',10X, 
     * '** ORIGINAL MATRIX'//11X, 
     * '** ORDER=',I5/) 
  610 FORMAT(/2(5X,'A(',I3,',',I3, 
     * ')=',2E15.7)) 
  620 FORMAT(/11X,'** CONDITION CODE=', 
     * I5/) 
  630 FORMAT('0'/11X,'** EIGENVALUES') 
  640 FORMAT(5X,'E(',I3,')=',2E15.7) 
      END 
 
Method 
In the QR method, the diagonal elements become 
eigenvalues by making the lower subdiagonal elements of 
complex Hessenberg matrix A converge to zero.  To 
accomplish this the unitary similarity transformation 
shown in (4.1) is applied repeatedly. 

,...2,1,*
1 ==+ sssss QAQA  (4.1) 

where A1=A. 
Qs is a unitary matrix which is uniquely determined in the 
QR decomposition shown in (4.2). 

sss RQA =  (4.2) 

where Rs is an upper triangular matrix whose diagonal 
elements are positive real numbers. 
   To improve the rate of convergence, QR decomposition 
is normally applid to origin-shifted matrix (As - ksI) 
instead of As.  ks is the origin shift. 
Qs and Rs are obtained from (4.3) instead of (4.2). 

ssss k RQIA =−  (4.3) 
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   The process for the complex QR methods is described 
below. 
Let ( ) ( )ij

s
ijs aa == AA ,)( . 

1) (4.4) determines whether there are elements which 
can be regarded as relative zero among lower 
subdiagonal elements )(

21
)(

1, ....,, ss
nn aa −  of As. 

    ( ) 2,...,1,,
11, −=<− nnlua s

ll A  (4.4) 

u is the unit round-off.  ||   ||1 is a norm defined for 
complex number z= x + iy as: 

  z x y
1
= +  (4.5) 

||A|| is a norm defined as: 

  
11

max∑
=

=
n

i
ijj

aA  (4.6) 

al l
s
,

( )
−1  is relative zero if it satisfies (4.4).  If it does not 

satisfy (4.4), step 2) is performed. 
(a) If l = n , )(s

nna  is adopted as an eigenvalue, order n 

of the matrix is reduced to n −−−− 1 , and the process 
returns to step 1). 
If n = 0, the process is terminated. 

(b) When 2 ≤ l ≤ n − 1, the matrix is split as shown in 
Fig. CHSQR-1, and the process proceeds to step 
2) assuming submatrix D as As . 
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Note: Element ε is regarded as zero. 

Fig. CHSQR-1 A direct sum of submatrices for a Hessenberg matrix 

2) Origin shift ks corresponds to the eigenvalue of lowest 
norm ||     ||1 in the lowest 2 × 2 principle submatrix of 
As . As − ksI is obtained by subtracting ks from 
diagonal elements of As. 

3) By applying two-dimensional Givens unitary 
transformation Pl

* (for l =1, 2, . .., n −1) to As − ksI is 
transformed to upper triangular matrix Rs: 

( ) sssnn k RIAPPPP =−⋅⋅⋅−−
*

1
*
2

*
2

*
1  (4.7) 

Therefore , 

121 −⋅⋅⋅= ns PPPQ  (4.8). 

   Unitary matrix Pl is determined by using the l -th 
diagonal element x of matrix As - ksI and its 
subdiagonal element y as shown below: 
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  where : 

c x r=  (4.9) 
c y r=  (4.10) 

r x y= +2 2  (4.11) 

4) After two-dimensional unitary transformation Pl is 
applied to Rs , As+1 is obtained by adding origin shift 
ks to diagonal elements. 

IPPPRA snss k+⋅⋅⋅= −+ 1211  (4.12) 

   This subroutine executes step 3) in combination with 
step 4) to increasse computational speed and reduce 
storage requirements. 
   For further information see References [12] and [13] 
pp.372-395. 
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B21-15-0502  CHVEC,DCHVEC 

Eigenvectors of a complex Hessenberg matrix (Inverse 
iteration method) 
CALL CHVEC (ZA, K, N, ZE, IND, M, ZEV, ZAW, 
ICON ) 

 
Function 
This subroutine determines eigenvector x which 
corresponds to selected eigenvalue µ of an n -order 
complex Hessenberg matrix by using the inverse iteration 
method.  However no eigenvectors are normalized. n ≥ l. 
 
Parameters 
ZA ... Input.  Complex Hessenberg matrix A. 

ZA is a two-dimensional complex array, ZA 
(K, N). 

K ... Input.  Adjustable dimension of arrays ZA, EV 
and ZAW. 

N ... Input.  Order n of the complex Hessenberg 
matrix A. 

ZE ... Input.  Eigenvalue µ. 
The j-th eigenvalue µj is stored in ZE ( j). 
ZE is a one-dimensional complex array of size M. 

IND ... Input.  Indicates whether or not eigenvectors 
are to be determined.  If the eigenvector 
corresponding to the j-th eigenvalue µj is to be 
determined, IND ( j) = 1 must be specified.  If 
it is not to be determined IND ( j) = 0 must be 
specified.  IND is a one-dimensional array of 
size M. 

M .. Input.  Total number of eigenvalues stored in 
array ZE (≤ n ) 

ZEV ... Output.  Eigenvectors are stored in columns of 
ZEV. 
ZEV is a two-dimensional complex array, ZEV 
(K, MK).  MK indicates the number of 
eigenvectors to be determined. See 
"Comments on use". 

ZAW ... Work area.  ZAW is a two-dimensional 
complex array, ZAW (K, N + 1) . 

ICON ... Output.  condition code. 
See Table CHVEC- 1 . 

 
Table CHVEC-1  Condition codes 

Code  Meaning  Processing 
0  No error   

10000  N = 1  ZEV (1, 1) = 
(1.0, 0.0) 

15000  An eigenvector 
corresponding to a specified 
eigenvalue could not be 
determined. 

IND information 
about the 
eigenvector that 
could not be 
determined is 
set to zero. 

20000 No eigenvectors could be 
determined. 

All IND 
information are 
set to zero. 

30000 M < 1, N < M or K < N Bypassed 

Comments on use 
• Subroutines used 

SSL II ... AMACH, CSUM, MGSSL 
FORTRAN basic functions ... REAL, AIMAG, ABS, 
MIN0, AMAXl, FLOAT, SQRT 

 
• Notes 

The number of eigenvectors (MK) indicates the 
number of IND elements whose value is 1. 
   Since IND elements are set to zero if any eigenvector 
cannot be determined, MK indicates the number of 
eigenvectors which does not exceed the number of 
eigenvectors specified before computation. 
   The eigenvalues used by this subroutine can be 
obtained by the CHSQR subroutine. 
   When they are determined by CHSQR, the 
parameters ZE and M can be used as input parameters 
for this subroutine. 
   This subroutine can be used to determine 
eigenvectors of complex Hessenberg matrices only. 
   When selected eigenvectors of a complex Hessenberg 
matrix are to be determined: 
(a) The complex matrix is first reduced into a complex 

Hessenberg matrix by the subroutine CHES2. 
(b) The eigenvalues of the complex matrix are 

determined by the subroutine CHSQR. 
(c) The eigenvectors of the complex Hessenberg matrix 

are determined by this subroutine. 
(d) The above eigenvectors are back-transformed to 

eigenvectors of the complex matrix by the 
subroutne CHBK2. 
   However the subroutne CEIG2 should be utilized 
to determine all eigenvalues and corresponding 
eigenvectors of a complex matrix for convenience. 

This subroutine can be used to determine some of the 
eigenvectors of a complex matrix according to the 
procedure described above. Therefore, the eigenvectors 
are not normalized. If necessary, they must be 
normalized by the subroutine CNRML subsequently. 
   When the subroutines CHBK2 and CNRML are used, 
the parameters IND, M and ZEV can be used as input 
parameters for the subroutines CHBK2 and CNRML. 
 

• Example 
This example determines eigenvalues of an n-order 
complex matrix through use of the subroutines CHES2 
and CHSQR and obtains eigenvectors through use of 
the subroutines CHVEC and CHBK2. 
   The obtained eigenvectors are normalized by the 
subroutine CNRML (||x||2=1). n ≤ 100. 
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C     **EXAMPLE** 
      COMPLEX ZA(100,100),ZAW(100,101), 
     *        ZE(100),ZEV(100,100) 
      DIMENSION IND(100),IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,ZA(I,J),J=1,N) 
      CALL CHES2(ZA,100,N,IP,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      DO 30 J=1,N 
      IM=MIN0(J+1,N) 
      DO 30 I=1,IM 
   30 ZAW(I,J)=ZA(I,J) 
      CALL CHSQR(ZAW,100,N,ZE,M,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      DO 40 I=1,M 
   40 IND(I)=1 
      CALL CHVEC(ZA,100,N,ZE,IND,M,ZEV, 
     *           ZAW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL CHBK2(ZEV,100,N,IND,M,ZA, 
     *           IP,0.0,ICON) 
      CALL CNRML(ZEV,100,N,IND,M,2,ICON) 
      CALL CEPRT(ZE,ZEV,100,N,IND,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX', 
     *       5X,'N=',I3) 
  610 FORMAT(/2(5X,'A(',I3,',',I3,')=', 
     *       2E15.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 

   The subroutine CEPRT used in this example prints 
the eigenvalues and eigenvectors of the complex matrix.  
For further information see an example of subroutine 
CEIG2. 

 
Method 
The inverse iteration method is used to determine 
eigenvector x corresponding to eigenvalue λ of an n -
order complex Hessenberg matrix. 
   In the inverse iteration method, if matrix A and 
approximation µj for eigenvalue λj of ΑΑΑΑ are given, an 
appropriate initial vector x0 is used to solve equation 
(4.1) iteratively. 
   When convergence conditions have been satisfied, xr is 
determined as the resultant eigenvector. 

( ) ,...2,1,1 ==− − rrrj xxIA µ  (4.1) 

   Now let the eigenvalue of n-order matrix A be λi 
(i=1,2,...,n), and the eigenvector corresponding to λi be ui. 
   Since the appropriate initial vector x0 can be expressed 
by the linear combination of eigenvector ui of matrix A as 
shown in (4.2), xr can be written as shown in (4.3) if all 
eigenvalues λi are different. 
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Since 

( ) ( )λ µ λ µj j i i− − 〈〈10.  

is established if i is not equal to j, (4.3) indicates that if αj 
≠ 0, xr tends rapidly to approach a multiple of uj as r 
grows greater. 
   The system of linear equations shown in (4.1) is solved 
by using (4.4) after decomposition of (A − µj I) to a lower 
triangular matrix L and an upper triangular matrix U. 

LUx Pxr r= −1  (4.4) 

where P is the permutation matrix used for pivoting (4.4) 
can be solved as follows: 

Ly Pxr r− −=1 1  (Forward substitution)   (4.5) 
Ux yr r= −1  (Backward substitution)   (4.6) 

   Since any vector may be used for initial vector x0 , x0 
may be given such that y0 of (4.7) has a form such as 
y0=(1,1,...,1)T 

y L Px0
1

0= −  (4.7) 

   Therefore, for the first iteration, the forward 
substitution in (4.5) can be omitted. In general, the 
eigenvectors can be obtained by repeating forward 
substitution and backeard substitution for the second and 
following iterations. 
   This subroutine uses the inverse iteration method as 
described below: 
 
• Selection of the initial vector 

y0 in (4.8) is used for the initial vector. 

  y r0 = ⋅EPS1  (4.8) 

where vector r is defined as shown in (4.9) and Φ is a 
golden section ratio shown in (4.10). 

[ ] ,...2,1, =−= kkkrk ΦΦ  (4.9) 

( ) 215 +=Φ  (4.10) 

EPS1 can be expressed as shown in (4.11). 

EPS1 = ⋅u A  (4.11) 
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where u is the unit round-off. 
Norm ||A|| can be expressed as shown in (4.12). 

∑
=

⋅=
n

i
ij

j
a

1
1

maxA  (4. 12) 

For complex number z = x + iy , norm ||z|| is assumed as 
shown in (4.13). 

z x y
1
= +  (4. 13) 

• Normalization of the iterated vector 
Let 

( )T
21 ,...,, rnrrr xxx=x  

then the iterated vector is normalized as shown in 
(4.14) for r ≥ l. 

EPS1
1

11 == ∑
=

n

i
rir xx  (4.14) 

• Method for convergence criterion 
After backward substitution, xr (before normalization) 
is tested by (4.15) to determine whether the 
eigenvectors have been accepted. 

xr n
1

01≥ .  (4.15) 

If (4.15) is satisfied, xr is accepted as the eigenvectors. 
   If it is not satisfied, normalization described in second 
step is repeated up to five times. When convergence is 
not successful, the eigenvector is ignored and the next 
eigenvector is processed. 
 
• Measures to be taken when eigenvalues have multiple 

roots or close roots 
Since this subroutine produces initial vector y0 using 
random numbers, you need not take special measures 
when an eigenvalue has multiple roots or close roots.  
To make a reproduction of numerical solutions, the 
random numbers are initialized each time this 
subroutine is called. 

 
   For further information see Reference [13] pp.418-439. 
 



CJART 

 275 

C22-15-0101  CJART, DCJART 

Zeros of a polynomial with complex coefficients (Jarratt 
method) 
CALL CJART (ZA, N, Z, ICON) 

 
Function 
This subroutine finds zeros of a polynomial with complex 
coefficients 

01
10 =+⋅⋅⋅++ −

n
nn azaza  (1.1) 

(ai : complex number, |a0| ≠ 0) 
 
by the Jarratt method. 
 
Parameters 
ZA ..... Input.  Coefficients of the equation. 

ZA is a complex one-dimensional array of size 
n + 1 , Where ZA (1) = a0, ZA (2) = a1, ... , 
ZA(N+1)=an ,  The contents of ZA are altered 
on output. 

N ..... Input.  Order n of the equation. 
Output.  Number of roots that were obtained. 
(See "Comments on use"). 

Z ... Output. n roots. 
Z is a complex one-dimensional array of size n.  
The roots are output in Z (1), Z (2), ... in the 
order that they were obtained. 
Thus. if N roots are obtained, they are stored 
in Z (1) to Z (N). 

ICON ... Output.  Condition code.  See Table CJART-1. 
 
Table CJART-l  Condition codes 

Code  Meaning  Processing 
0 No error  

10000 All n roots could not be 
obtained. 

The number of roots 
which were obtained 
is output to the 
parameter N and the 
roots are output to 
Z(1) through Z(N). 

30000 n < 1 or | a0 |=0. Bypassed 
 
Comments on use 

Subprogram used 
SSL II ... AMACH, CQDR, UCJAR, and MGSSL 
FORTRAN basic functions ... CMPLX, SQRT, CABS, 
CONJG, AIMAG, REAL and ABS. 
 

• Notes 
For arrays ZA and Z, COMPLX must be declared in a 
program which calls this subroutine. 
   When n is 1 or 2, instead of Jarratt’s method, the root 
formula is used. 
   An n-th degree polynomial equation has n roots, 
however it is possible, though rare, that all of these 
roots can not be found. The user must check the 

parameters ICON and N on output to confirm that all of 
roots were found. 

 
• Example 

The degree n and complex coefficients ai are input, and 
the roots are calculated. 1 ≤ n ≤ 50. 
 

C     **EXAMPLE** 
      DIMENSION ZA(51),Z(50) 
      COMPLEX ZA,Z 
      READ(5,500) N 
      N1=N+1 
      READ(5,510) (ZA(I),I=1,N1) 
      DO 10 I=1,N1 
      K=I-1 
   10 WRITE(6,600) K,ZA(I) 
      CALL CJART(ZA,N,Z,ICON) 
      WRITE(6,610) N,ICON 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,620) (I,Z(I),I=1,N) 
      STOP 
  500 FORMAT(I2) 
  510 FORMAT(2F10.0) 
  600 FORMAT(10X,'A(',I2,')=',2E20.8) 
  610 FORMAT(10X,'N=',I2,5X,'ICON=',I5) 
  620 FORMAT(10X,'Z(',I2,')=',2E20.8) 
      END 
 
Method 
This subroutine uses a slightly modified version of 
Garside-Jarratt-Mack method (an iterative method).  Let 
the polynomial equation be 

( ) 01
10 =+⋅⋅⋅++≡ −

n
nn azazazf  (4.1) 

then its roots match those of 

( ) ( ) ( ) 01 =′≡ zfzfzF  (4.2) 

   This subroutine makes use of the faster convergence 
property of (4.2) since it has only simple roots. 
 
• The iterative formula 

Suppose that z1, z2, and z3 are three initial values to a 
root and they satisfy | f(a3)| ≤ | f(a2)| ≤ | f(a1)|.  Then the 
following three methods are used as iterative formulas.  
In the following, let Fi ≡ )( izF  for i = l, 2, and 3. 

 
Method 1: 
Near a root of a n-th degree polynomial  f(z) , we can 
write 

( ) ( ) ( )1 F z z a b cz≈ − +   (4.3) 

   where a, b, and c are constants 
   Thus, a new root can be obtained by choosing a such 
that (4.3) is true for z1, z2, and z3. Namely, a is obtained 
as 
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+=  (4.4) 

Method 2 (Newton’s method): 
The following a’  can be used as a new root. 

33 1 Fza −=′  (4.5) 

Method 3 (modified Newton’s method): 
Suppose that . 

( ) nauzf 13 <  (4.6) 

is satisfied, where u1= u  and u is the round-off unit.  
Let m be the rough multiplicity of current root, then we 
can write ( )m z a F≈ −3 3  and the following 

′′ = −a z m F3 3  (4.7) 

   Usually, Method 1 and Method 2 are both used, and the 
result with the smallest adjustment is used as the new 
approximate root a4.  The Method 3 is used to increase 
the speed of convergence. 
 
• Choosing initial values 

   waa n
n 51

0 =  (4.8) 

With (4.8), initial values z1, z2, z3 are setected according 
to 

   iw w iw iw, ,− + 2  (4.9) 

   They are ordered such that | f(z3)| ≤ | f(z2)| ≤ | f(z1)| 
   If convergence does not occur after 50 iterations, new 
initial values are selected as follows: 

iwwiwwiww 33,22,23 +−+−+−  

   When a root α is obtained, the degree of the equation is 
reduced by setting. 

( ) ( ) ( )α−= zzfzg  

   Using g(z) as the new  f(z), w is recalculated and 

α,2, iwwiww ±−±−  (4.10) 

are used as initial values for solving  f(z)=0.  The sign is 
selected to match the sign of the imaginary part of α . 
 
• Preventing overflows 

To prevent overflow when evaluating  f(z) and f ’(z), 
the coefficients of  f(z) are normalized by dividing them 
with the arithmetic mean of their absolute values. 

 
• Convergence criterion 

If 

( ) ∑
=

−≤
n

i

in
i zanuzf

0
33 10  (4.11) 

is satisfied, z3 is then taken as a root of  f(z). 
 
   For further information, see References [26] and [27]. 
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A22-15-0202  CLU, DCLU 

LU-decomposition of a complex general matrix (Crout’s 
method) 
CALL CLU (ZA, K, N, EPSZ, IP, IS, ZVW, ICON) 

 
Function 
An n × n complex general matrix A is LU-decomposed 
using the Crout’s method 

PA = LU (1.1) 

Where P is a permutation matrix which performs the row 
exchanged required in partial pivoting, L is a lower 
triangular matrix, and U is a unit upper triangular matrix. 
n ≥ l. 
 
Parameter 
ZA .... Input.  Matrix A 

Output.  Matrices L and U. 
See Fig. CLU-1. 
ZA is a complex two-dimensional array, ZA(K, 
N). 

K .... Input.  Adjustables dimension of array ZA (≥ 
N). 

N ..... Input.  Order n of matrix A. 
EPSZ .. Input.  Tolerance for relative zero test of 

pivots in decomposition process of A (≥0.0). 
When EPSZ is 0.0, a standard value is used. 
(See Notes.) 

IP.... Output.  The transposition vector which 
indicates the history of row exchanging that 
occurred in partial pivoting. 
IP is a one-dimensional array of size n. 
(See to Notes.) . 

IS.... Output.  Information for obtaining the 
determinant of matrix A.  If the n calculated 
diagonal elements of array ZA are multiplied 
by IS, the determinant is obtained.  

ZVW ... Work area.  ZVW is a complex one-
dimensional array of size n. 

ICON .. Output.  Condition code. 
See Table CLU-1. 

 
Table CLU-l  Condition codes 

Code  Meaning  Processing 
0 No error   

20000  Either all of the elements of 
some row in matrix A were 
zero or the pivot became 
relatively zero.  It is highly 
probable that the matrix is 
singular. 

Discontinued 

30000  K < N, N < 1 or EPSZ < 0.0  By passed 
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Fig. CLU-1 Storage of factors L and U in array ZA 

Comments on use 
• Subprograms used 

SSL II ..... AMACH, CSUM, MGSSL 
FORTRAN basic functions ..... REAL, AIMAG, ABS 

 
• Notes 

If EPSZ is set to 10-s, this value has the following 
meaning: while performing the LU-decomposition by 
Crout’s method, if the loss over s significant digits 
occured for both real and imaginaty parts of the pivot, 
the LU-decomposition should be discontinued with 
ICON = 20000 regarding the pivot to be relatively zero.  
Let u be the unit round-off, then the standard value of 
EPSZ is l6u.  If the processing is to proceed at a lower 
pivot value, EPSZ will be given the minimum value but 
the result is not always guaranteed. 
   The transposition vector corresponds to the 
permutation matrix P of LU decomposition in partial 
pivoting.  In this subroutine, with partial pivoting, the 
elements of array ZA are actually exchanged.  In other 
words, if the I-th row has been selected as the pivotal 
row in the J-th stage ( J = 1 , ..., n ) of decomposition, 
the elements has the I-th and J-th rows of array ZA are 
exchanged.  The history of this exchange is recorded in 
IP by storing I in IP(J).  A system of linear equations 
can be solved by calling subroutine CLUX following 
this subroutine.  However, instead of calling these two 
subroutines, subroutine LCX is usually called to solve 
such equations in one step. 

 
• Example 

An n × n complex matrix is LU decomposed. n ≤ 100. 
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C     **EXAMPLE** 
      DIMENSION ZA(100,100),ZVW(100),IP(100) 
      COMPLEX ZA,ZVW,ZDET 
      READ(5,500) N 
      IF(N.LE.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,ZA(I,J),J=1,N), 
     *             I=1,N) 
      CALL CLU(ZA,100,N,0.0,IP,IS,ZVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      ZDET=CMPLX(FLOAT(IS),0.0) 
      DO 10 I=1,N 
      ZDET=ZDET*ZA(I,I) 
   10 CONTINUE 
      WRITE(6,620) (I,IP(I),I=1,N) 
      WRITE(6,630) ((I,J,ZA(I,J),J=1,N), 
     *I=1,N) 
      WRITE(6,640) ZDET 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(5(2F8.3)) 
  600 FORMAT('1'//10X,'**INPUT MATRIX **', 
     * /12X,'ORDER=',I5/(5X, 
     * 2('(',I3,',',I3,')',2E15.8,2X))) 
  610 FORMAT('0',10X,'CONDITION CODE =',I5) 
  620 FORMAT('0',10X,'TRANSPOSITION VECTOR', 
     * /(10X,7('(',I3,')',I5,5X))) 
  630 FORMAT('0',10X,'OUTPUT MATRIX', 
     * /(5X,2('(',I3,',',I3,')',2E15.8,2X))) 
  640 FORMAT('0',10X, 'DETERMINANT OF ', 
     * 'MATRIX',2E20.8) 
      END 
 
Method 
• Crout’s method 

Generally, in exchanging rows using partial pivoting, 
an n × n non-singular complex general matrix A can be 
decomposed into a lower triangular matrix L and a unit 
upper triangular matrix U. 

PA = LU (4.1) 

P is the permutation matirx which performs the row-
exchanging required in partial pivoting.  The Crout’s 
method is one method to obtain the elements of L and U.  
This subroutine obtains values in the j-th column of L and 
j-th column of U in the order ( j = l, ... , n) using the 
following equations. 

1,...,1,
1

1

−=









−= ∑

−

=

jilulau ij

i

k
kjikijij  (4.2) 

njiulal
j

k
kjikijij ,...,,

1

1

=−= ∑
−

=

 (4.3) 

   where, A = ( aij ) , L = ( lij ) and U = ( uij ) Actually, 
using partial pivoting, rows are exchanged.  The Crout’s 
method is a variation of the Gaussian elimination method.  
The same caluculations are involved, but the seqnece is 
differenct.  In the Crout’s method, the elements of L and 
U are calculated at the same time using equations (4.2) 
and (4.3).  By increasing the precision of the inner 
products in this step, the effects of rounding errors are 
minimized. 
 
• Partial pivoting 

When the matrix A is given as 









⋅+⋅+
⋅+⋅+

=
0.00.00.00.1
0.00.10.00.0

ii
ii

A  

   Though this matrix is numerically stable, LU 
decomposition can not be performed.  In this state, even 
if a matrix is numerically stable, large errors would occur 
if LU decomposition were directly computed.  To avoid 
these errors, partial pivoting with row equalibration is 
used.  For more details, see References [1], [3], and [4]. 
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A22-15-0602  CLUIV, DCLUIV  

The inverse of a complex general matrix decomposed into 
the factors L and U  
CALL CLUIV (ZFA, K, N, IP, ICON)  

 
Function  
The inverse A-1 of an n × n complex general matrix A 
given in decomposed form PA = LU is computed.  

PLUA 111 −−− =  

Where L and U are respectively an n × n lower triangular 
and a unit upper triangular matrices and P is a 
permutation matrix which performs the row exchanges in 
partial pivoting for LU decomposition. n ≥ l.  
 
Parameters  
ZFA .... Input.  Matrices L and U  

Output.  Inverse A-1.  
ZFA is a two-dimensional array, FA (K, N).  
See Fig. CLUIV-1.  

K ..... Input.  Adjustable dimension of array ZFA 
(≥N ).  

N ...... Input.  Order n of the matrices L and U.  
IP .....  Input.  Transposition vector which indicates 

the history of row exchanges in partial 
pivoting.  One-dimensional array of size n  

ICON .. Output.  Condition code.  See Table CLUIV-1.  
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Fig. CLUIV-1  Storage of the elements of L and U is array ZFA 

Table CLUIV-1  Condition codes  

Code Meaning Processing 
0 No error  

20000 Matrix was singular. Discontinued 
30000 K < N or N < 1 or there was 

an error in IP. 
Bypassed 

 
Comments on use  
• Subprogram used  

SSL II ..... CSUM, MGSSL  
FORTRAN basic function ..... None.  

 
• Notes  

Prior to calling this subroutine, LU-decomposed matrix 
must be obtained by subroutine CLU and must be 
input as the parameters ZFA and IP to be used for this 
subroutine.  

The subrotine LCX should be used for solving a 
system of linear equatons. Obtaining the solution by 
first computing the inverse requires more steps of 
calculation, so subroutine CLUIV should be used only 
when the inverse is inevitable. 

The transposition vector corresponds to the 
permutation matrix P of  

PA LU=  

  when performing LU decomposition with partial 
pivoting, refer to Notes of the subroutine CLU. 
 
• Example  

The inverse of an n × n complex general matrix 
iscomputed. n ≤ 100.  
 

C     **EXAMPLE** 
      DIMENSION ZA(100,100),ZVW(100),IP(100) 
      COMPLEX ZA,ZVW 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,ZA(I,J),J=1,N), 
     *             I=1,N) 
      CALL CLU(ZA,100,N,0.0,IP,IS,ZVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      CALL CLUIV(ZA,100,N,IP,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,630) ((I,J,ZA(I,J),I=1,N), 
     *             J=1,N) 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(//11X,'**INPUT MATRIX**'/12X, 
     *'ORDER=',I5/(2X,4('(',I3,',',I3,')', 
     *2E16.8))) 
  610 FORMAT('0',10X,'CONDITION CODE(CLU)=', 
     *I5) 
  620 FORMAT('0',10X,'CONDITION ', 
     *'CODE(CLUIV)=',I5) 
  630 FORMAT('0',10X,'**INVERSE MATRIX**', 
     */(2X,4('(',I3,',',I3,')',2E16.8))) 
      END 
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Method 
The subroutine computes the inverse of an n × n complex 
general matrix A, giving the LU-decomposed matrices L, 
U and the permutation matrix P which indicates row 
exchanges in partial pivoting. 
Since 

PA = LU (4.1) 

then, the inverse A-1 can be represented using (4.1) as 
follows: the inverse of L and U are computed and then 
the inverse A-1 is computed as (4.2). 

PLUA 111 −−− =  (4.2) 

L and U are as shown in Eq. (4.3) for the following 
explanation. 

( ) ( )ijij uU,lL ==  (4.3) 

• Calculating L-1 
Since the inverse L-1 of a lower  triangular matrix L is 
also a lower triangular matrix, if we represent L-1 by 

( )L− =1 ~lij  (4.4) 

then Eq. (4.5) is obtained based on the relation LL-1=I. 
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where, ( )njilii ,...,0 =≠  

• Calculating U-1 
Since the inverse U-1 of a unit upper triangular matrix U 
is also a unit upper triangular matrix, if we represent U-1 
by 

( )iju~1 =−U  (4.7) 

then Eq. (4.8) is obtained based on the relation U U -1=I. 
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Since uij = 1,(4.8) can be rewritten 
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j

ik
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+= 1
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Considering ~ujj =1, the elements ~ujj  of the j-th column 
(j=n,..., 2) of U-1 are obtained as follows: 
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• Calculating U-1L-1P 
Let the product of matrices U-1 and L-1 be B, then its 
elements are obtained by 
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Considering ~uii =1, the element bij of the j-th column 
(j=1, ...,n) of B are obtained by 
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=  (4.10) 

Next, matrix B is multiplied by the permutation matrix to 
obtain the inverse A-1.  Actually however, based on the 
values of the transposition vector IP, the elements of A-1 
are obtained simply by exchanging the column in the 
matrix B.  The precison of the inner products in (4.6), 
(4.9) and (4.10) has been raised to minimize the effect of 
rounding errors.  For more invormation, see Reference 
[1]. 
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A22-15-0302  CLUX, DCLUX  

A system of linear equations with a complex general 
matrix decomposed into the factors L and U  
CALL CLUX (ZB, ZFA, K, N, ISW, IP, ICON) 

 
Function  
This subroutine solves a system of linear equations. 

LUx = Pb (1.1)  

L and U are, respectively, the n × n lower triangular 
and unit upper triangular matrices, P is a permutation 
matrix which performs row exchange with partial 
pivoting for LU decomposition of the coefficient matrix, 
b is an n-dimensional complex constant vector, and x is 
the n-dimensional solution vector.  Also, one of the 
following equations can be solved instead of (1.1). 

Ly = Pb (1.2) 
Uz= b  (1.3) 

Parameters 
ZB .... Input.  Constant vector b. 
 Output.  One of the solution vectors x, y, or z. 
 ZB is a complex one-dimensional array of size 

n. 
ZFA .... Input.  Matrix L and matrix U. 
 Refer to Fig. CLUX-1. 
 ZFA is a complex two-dimensional array, ZFA 

(K, N).  
K .... Input.  Adjustable dimension of the array ZFA 

( ≥N).  
N .... Input.  The order n of the matrices L and U. 
ISW .... Input.  Control information  
 ISW = 1 ... x is obtained. 
 ISW = 2 ... y is obtained.  
 ISW = 3 ... z is obtained.  
IP .... Input.  The transposition vector which 

indicates the history of row exchange in partial 
pivoting.  IP is a one-dimensional array of size 
n. (See Notes of subroutine CLU.)  

ICON .. Output.  Condition code  
 See Table CLUX-1 
 
Table CLUX- 1  Condition codes  

Code Meaning Processing 
0 No error  

20000  The coefficient matrix was 
singular. 

Aborted  

30000 K<N, N<1, ISW = 1, 2, 3, or 
there was an error in IP. 

Aborted 
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Fig. CLUX-1  Storage of the elements of L and U in the array ZFA 

Comments on use 
• Subprograms used 

SSL II ..... CSUM, MGSSL  
FORTRAN basic function ..... None 
 

• Notes 
A system of linear equations can be solved by first 
calling the subroutine CLU to decompose the 
coefficient into L and Uand then by calling this routine.  
However, instead of calling these two routines, 
subroutine LCX is usually called to solve such 
equations in one step.  
 

• Example 
A system of linear equations is solved by first using 
subroutine CLU to decompose the n × n coefficient 
matrix into L and U. n ≤ 100.  
 

C     **EXAMPLE** 
      DIMENSION ZA(100,100),ZB(100), 
     *    ZVW(100),IP(100) 
      COMPLEX ZA,ZB,ZVW 
      READ(5,500) N 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      READ(5,510) (ZB(I),I=1,N) 
      WRITE(6,600) N,((I,J,ZA(I,J),J=1,N), 
     *             I=1,N) 
      WRITE(6,610) (I,ZB(I),I=1,N) 
      CALL CLU(ZA,100,N,0.0,IP,IS,ZVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      CALL CLUX(ZB,ZA,100,N,1,IP,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (I,ZB(I),I=1,N) 
      STOP 
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  500 FORMAT(I5) 
  510 FORMAT(5(2F8.3)) 
  600 FORMAT(///10X,'**COMPLEX MATRIX **', 
     */12X,'ORDER=',I5/(5X,2('(',I3,',',I3, 
     *')',2E15.8,2X))) 
  610 FORMAT('0',10X,'CONSTANT VECTOR', 
     */(5X,3('(',I3,')',2E15.8,2X))) 
  620 FORMAT('0',10X,'CONDITION ', 
     *'CODE(CLU)=',I5) 
  630 FORMAT('0',10X,'CONDITION ', 
     *'CODE(CLUX)=',I5) 
  640 FORMAT('0',10X,'SOLUTION VECTOR', 
     */(5X,3('(',I3,')',2E15.8,2X))) 
      END 
 
Method 
A system of linear equations  

LUx = Pb (4.1)  

can be solved by solving the two equations:  

Ly = Pb (4.2) 
Ux= y  (4.3)  

• Solving Ly = Pb (forward substition) 
Ly = Pb can be serially solved using equation 
(4.4). 
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where, L=(lij),yT=(y1, ..., yn),(Pb)T=(b’1, ..., b’n). 
 
• Solving Ux = y (backward substitution)  

Ux = y can be serially solved using equations 

1,...,,
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nixuyx
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 (4.5)  

where, U=(uij),xT = (x1, ..., xn) 
 

The precision of the inner products in (4.4) and (4.5) 
has heen raised to minimize the effect of rounding errors.  
For more information, see References [1], [3], and [4]. 
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B21-15-0702  CNRML, DCNRML  

Normalization of eigenvectors of a complex matrix  
CALL CNRML (ZEV, K, N, IND, M, MODE, 
ICON)  

 
Function 
This subroutine normalizes m eigenvectors xi of an n-
order complex matrix using either (1.1) or (1.2). 

∞= iii xxy  (1.1) 

2iii xxy =  (1.2) 

n ≥ 1. 
 
Parameters 
ZEV ... Input.  m eigenvectors xi (i= l, 2, ..., m).  

Eigenvectors xi are stored in columns of ZEV.  
See “Comments on use”. 
Output.  m normalized eigenvectors yi . 
Normalized eigenvectors yi are stored into the 
corresponding eigenvector xi . 
ZEV is a complex two-dimensional array. 
ZEV(K, M). 

K ... Input.  Adjustable dimension of array ZEV (≥ 
n). 

N ... Input. Order n of the complex matrix. 
IND ... Input.  Specifies eigenvectors to be normalized.  

If IND (j) = 1 is specified the eigenvector 
corresponding to the j-th eigenvalue is 
normalized.  If IND (j)=0 is specified the 
eigenvector corresponding to the j-th 
eigenvalue is not normalized. 

 IND is a one-dimensional array of size M. 
 See “Comments on use”. 
M ... Input.  Size of array IND.  See Notes. 
MODE ...Input.  Indicates the method of normalization. 
 When MODE=1 ... (1.1) is used. 
 When MODE=2 ... (1.2) is used. 
ICON ... Output.  Condition code. 
 See Table CNRML-1. 
 
Table CNRML-1  Condition codes  

Code  Meaning  Processing 
0 No error   

10000 N=1 ZEV(1, 1) = (1.0. 0.0) 
30000 N<M, M<1, K<N, MODE 

was neither 1 or 2, or 
IND specification was 
invalid. 

Bypassed 

Comments on use 
• Subroutines used 

SSL 11 ... MGSSL 
FORTRAN basic functions ... REAL, AIMAG, 
AMAXl, SQRT  

 
• Notes 

When the CHVEC or CHBK2 subroutine is called 
before this subroutine, parameters ZEV, IND and M 
can be used as input parameters for this subroutine.  

 
• Example 

This example normalizes the eigenvectors of an n-order 
complex matrix obtained by the subroutine CEIG2 so 
that the resultant eigenvectors ean be ∞x =1. 

 n ≤ 100.  
 
C     **EXAMPLE** 
      COMPLEX ZA(100,100),ZE(100), 
     *        ZEV(100,100) 
      DIMENSION IND(100),VW(100),IVW(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,ZA(I,J),J=1,N) 
      CALL CEIG2(ZA,100,N,1,ZE,ZEV, 
     *           VW,IVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GT.10000) GO TO 10 
      DO 30 I=1,N 
   30 IND(I)=1 
      CALL CNRML(ZE,ZEV,100,N,IND,N,1,ICON) 
      CALL CEPRT(ZE,ZEV,100,N,IND,N) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX', 
     *       5X,'N=',I3/) 
  610 FORMAT(/2(5X,'A(',I3,',',I3,')=', 
     *       2E15.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 

The subroutine CEPRT used in this example, prints 
the eigenvalues and corresponding eigenvectors of a 
complex matrix. 

For further information see an example of using the 
subroutine CEIG2. 

 
Method 
Given m eigenvectors xi (i =1, ..., m) ofan n-order 
complex vector, normalized eigenvectors yi are computed.  
Where xi = (x1i , ... , xni)T 
  When MODE=1 is specified. each vector xi is 
normalized such that the maximum absolute value among 
the elements of each vector becomes 1 . 
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kiiiii xx,xxy
k

max== ∞∞  (4.1) 

  When MODE=2 is specified, each vector xi is 
normalized such that the sum of the square of absolute 
values corresponding to its elements is 1. 

∑
=

==
n

k 1

2
2 kii2iii xx,xxy  (4.2) 
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I11-41-0201  COSI, DCOSI  

Cosine integral Ci(x) 
CALL COSI (X, CI, ICON)  

 
Function 
This subroutine computes cosine integral 

( ) ∫
∞

−=
x

i dt
t

txC )(cos  

by series and asymptotic expansions, where x ≠0. 
If x < 0, cosine integral Ci (x) is assumed to take a 
principal value. 
 
Parameters 
X ..... Input.  Independent variable x. 
CI ..... Output. Value of Ci (x). 
ICON ... Output.  Condition codes.  See Table COSI-1 
 
Table COSI-1  Condition codes 

Code Meaning  Processing 
0 No error   

20000 |X| ≥ tmax CI = 0.0 
30000 X=0 CI = 0.0 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, UTLIM 
FORTRAN basic functions . .. ABS, SIN, COS, and 
ALOG  

 
• Notes 

The valid ranges of parameter X are: 
|X|< tmax 
This is provided because sin (x) and cos (x) lose their 
acduracy, if |X| exceeds the above ranges.  

 
• Example 

The following example generates a table of Ci(x) from 
0.1 to l0.0 with increment 0.1. 

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      X=FLOAT(K)/10.0 
      CALL COSI(X,CI,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,CI 
      IF(ICON.NE.0) WRITE(6,620) X,CI,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF COSINE ', 
     *'INTEGRAL FUNCTION'///6X,'X',9X, 
     *'CI(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     *E17.7,5X,'CI=',E17.7,5X,'CONDITION=', 
     *I10) 
      END 
 

Methods 
Two different approximation formulas are used 
depending on the ranges of x divided at x= ±4. 
  Since Ci(x)=Ci(-x), the following discussion is limited to 
the case in which x > 0. 
 
• For 0 < x< 4 

The power series expansion of Ci(x), 

( ) ( ) ( )
( )∑

∞

=

−++=
1

2

2!2
1log

n

nn

i nn
xxxC γ  (4.1)  

is calculated, with the following approximation formulas: 
Single precision: 

( ) ( ) 4,log
7

0

2 xzzaxxC
k

k
ki =+= ∑

=

 (4.2)  

Double precision: 

( ) ( ) ∑
=

+=
12

0

2log
k

k
ki xaxxC  (4.3)  

• For x ≥ 4 
The asymptotic expansion of  

( ) ( ) ( ) ( ) ( ){ } xxxQxxPxCi cossin +−=  (4.4) 

is calculated through use of the following approximate 
expression for P(x) and Q(x): 
Single precision:  

( ) xzzaxP
k

k
k 4,

11

0

== ∑
=

 (4.5) 

( ) xzzbxQ
k

k
k 4,

11

0

== ∑
=

 (4.6) 

Double precision: 

( ) xzzbzaxP
k

k
k

k

k
k 4,

11

0

11

0

== ∑∑
==

 (4.7) 

( ) xzzdzcxQ
k

k
k

k

k
k 4,

11

0

10

0

1 =−= ∑∑
==

+  (4.8) 
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C21-15-0101  CQDR, DCQDR  

Zeros of a quadratic equation with complex coefficients  
CALL CQDR (Z0, Z1, Z2, Z,ICON)  

 
Function 
This subroutine finds zeros of a quadratic equation with 
complex coefficients: 

( )00 021
2

0 ≠=++ aazaza  

Parameters 
Z0, Zl, Z2 ..Input.  Coefficients of the quadratic equation. 
 Complex variables 
 where Z0 = a0, Zl = a1 and Z2 = a2 
Z ..... Output.  Roots of the quadratic equation.  Z is 

a complex one-dimensional array of size 2. 
ICON .. Output.  Condition code.  
 
Table CQDR-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 |a0| = 0.0 -a2/a1 is stored in 
Z (1).  Z(2) may 

be invalid. 
30000 |a0| = 0.0 and |a1| = 0.0 Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ...MGSSL 
FORTRAN basic functions ... CSQRT, REAL, 
AIMAG, and ABS 

 
• Example. 

Complex coefficients are entered and the roots z are 
determined. 

 
C     **EXAMPLE** 
      DIMENSION Z(2) 
      COMPLEX Z0,Z1,Z2,Z 
      READ(5,500) Z0,Z1,Z2 
      CALL CQDR(Z0,Z1,Z2,Z,ICON) 
      WRITE(6,600) ICON,Z0,Z1,Z2 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,610) (Z(I),I=1,2) 
      STOP 
  500 FORMAT(6F10.0) 
  600 FORMAT(10X,'ICON=',I5/10X,'A=',2E15.6/ 
     *      (12X,2E15.6)) 
  610 FORMAT(10X,'Z=',2E15.6/12X,2E15.6) 
      END 

Method 
The roots of complex quadratic equation a0z2 + a1z + a2 = 
0 can be obtained from 

2
2

112
2

11 4,4 PPPPPP −−−−+−  

where 011 aaP =  and 022 aaP =   

If 2
2

1 4PP >> , there will be potentially large loss  of 

accuracy in either 2
2

11 4PPP −+−  or 

2
2

11 4PPP −−− .  In order to avoid this situation, root 
formulas with rationalized numerators, as shown below, 
are used in calculations. 

Let 2
2

1 4PPD −=  
When D  = 0 

z1=−P1/2 
z2=−P1/2 

When D ≠0 
let the real part of P1 be x and the imaginary part be y. 

for x > 0  

( ) 211 DPz −−=  

( )DPPz +−= 122 2  (4.1) 

for x < 0  

( )DPPz +−= 121 2  

( ) 212 DPz +−=  (4.2) 

for x= 0  

( )
( ) 0

2

2

122

11 ≥






+−=

−−=
y

DPPz

DPz
 

( )
( ) 0

2

2

12

121 <






+−=

+−=
y

DPz

DPPz
 (4.3)  

In the calculation of discriminant D=P1
2−4P2 if |P1| is 

very large, P1
2 may cause an overflow.  In order to avoid 

this situation, the real and imaginary parts of Pl are tested 
to see if they are greater than 1035.  The above methods 
are used when those conditions are not satisfied, 
otherwise the following used.  

1121 41 PPPPD −=  
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A11-40-0201  CSBGM, DCSBGM 

Storage mode conversion of matrices 
(real symmetric band to real general)  
CALL CSBGM (ASB, N, NH, AG, K, ICON)  

 
Function 
This subroutine converts an n × n real symmetric band 
matrix with band width h stored in the compressed mode 
into that stored in the general mode, where n > h ≥ 0. 
 
Parameters 
ASB .... Input.  The symmetric band matrix stored in 

the compressed mode 
 One-dimensional array of size 

n(h+1)−h(h+1)/2. 
N....... Input.  The order n of the matrix. 
NH..... Input.  The band width h of the matrix. 
AG..... Output.  The symmetric band matrix stored in 

the general mode 
Two-dimensional array, AG (K, N). 
(See “Comments on Use.”) 

K ........ Input.  The adjustable dimension (≥ N) of 
array AG. 

ICON . Output.  Condition code. (See Table CSBGM-
1.) 

 
Table CSBGM-1 Condition codes 

Code Meaning Processing 
0 No error.  

30000 NH < 0, N ≤ NH, or  
K < N. 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSLII ... MGSSL 
FORTRAN basic function ... None  

 
• Notes 

Storing method of the symmetric band matrix in the 
general mode: 
  The symmetric band matrix in the general mode 
transformed by this subroutine contains not only the 
lower band and diagonal portions but also the upper 
band portion and other elements (zero elements).  
 
Saving the storage area: 

If there is no need to keep the contents on the array 
ASB, more storage area can be saved by using the 
EQUIVALENCE statement as follows.; 
EQUIVALENCE (ASB (1), AG (1, 1)) 
(See “Example” for details.) 

• Example 
Given an n × n real symmetric band matrix with band 
width h , the inverse matrix is obtained using 
subroutines ALU and LUIV, where mode conversion is 
performed by this subroutine, where n ≤ 100 and h ≤ 
20. 

 
C     **EXAMPLE** 
      DIMENSION ASB(1890),AG(100,100), 
     *          VW(100),IP(100) 
      EQUIVALENCE(ASB(1),AG(1,1)) 
   10 READ(5,500) N,NH 
      IF(N.EQ.0) STOP 
      NT=(NH+1)*(N+N-NH)/2 
      READ(5,510) (ASB(I),I=1,NT) 
      K=100 
      CALL CSBGM(ASB,N,NH,AG,K,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,610) N,NH,((I,J,AG(I,J), 
     *             J=1,N),I=1,N) 
      EPSZ=0.0 
      CALL ALU(AG,K,N,EPSZ,IP,IS,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LUIV(AG,K,N,IP,ICON) 
      WRITE(6,630) ICON 
      WRITE(6,640) N,NH,((I,J,AG(I,J), 
     *             J=1,N),I=1,N) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'CSBGM ICON=',I5) 
  610 FORMAT(//10X,'** INPUT MATRIX **'/ 
     *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     *(2X,4('(',I3,',',I3,')',E17.8))) 
  620 FORMAT(/10X,'ALU ICON=',I5) 
  630 FORMAT(/10X,'LUIV ICON=',I5) 
  640 FORMAT('1'//10X,'** INVERSE ', 
     *'MATRIX **'/10X,'ORDER=',I5,5X, 
     *'BANDWIDTH=',I5/(2X,4('(',I3,',',I3, 
     *')',E17.8))) 
      END 
 
Method 
A real symmetric band matrix stored in a one-
dimensional array ASB in the compressed mode is 
converted as follows to be a symmetric band matrix in a 
two-dimensional array in the general mode : 
  The elements of the ASB are moved to the diagonal and 
upper triangular portions of the AG in descending 
element number order, beginning from the last element 
(of column n). 
  The correspondence between locations is shown below.  
 
Elements in the  Matrix elements Elements in the 
compressed mode  general mode 

( )( )
2,...,1NN,J,J,...,1JJ,I

J)AG(I,I21JASB

+−=−−=

→→++−

hh

ahhh ij  

 
( )( )

1,...,,1J,1,...,1JJ,I

J)AG(I,I21JJASB

hh

aij

+=−=

→→+−
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The lower triangular portion is copied by the upper 
triangular portion using the diagonal as the axis of 
symmetry so as to be AG (I, J) = AG(J, I), where I>J. 



CSBSM 

289 

A11-50-0201 CSBSM, DCSBSM  

Storage mode conversion of matrices  
(real symmetric band to real symmetric)  
CALL CSBSM (ASB, N, NH, AS, ICON)  

 
Function 
This subroutine converts an n × n symetric band matrix 
with band width h stored in the compressed mode for 
symmetric band matrix into that stored in the compressed 
mode for symmetric matrix, where n>h≥0.  
 
Parameters 
ASB .... Input.  The symmetric band matrix stored in 

the compressed mode for symmetric band 
matrix. 
One-dimensional array of size 
n(h+1)−h(h+1)/2. 

N ...... Input.The order n of the matrix. 
NH ..... Input. Band width h of the symmetric band 

matrix. 
AS ..... Output.  The symmetric band matrix stored in 

the compressed mode for symmetric matrix. 
One-dimensional array of size n(n +1)/2 . 
(See “Comments on Use.”) 

ICON Output. Condition code. (See Table CSBSM- 
I.) 

 
Table CSBSM-1  Condition codes 

Code Meaning Processing 
0 No error.  

30000 NH < 0 or NH ≥ N. Bypassed. 
 
Comments on use 
• Subprograms used 

SSL II ...MGSSL 
FORTRAN basic function ... None  

 
• Notes 

Saving the storage area: 
If there is no need to keep the contents on the array 
ASB, more storage can be saved by using the 
EQUIVALENCE statement as follows ;  
 
EQUIVALANCE (ASB (1), AS (1)) 
(See “Example” for details.) 

 
• Example 

Given an n × n positive-definite symmetric band 

matrix with band width h stored in the compressed 
mode, for symmetric band matrix the inverse matrix is 
obtained using subroutines SLDL and LDIV, where the 
mode conversion is performed by this subroutihe. 
Where n ≤ 100 and h≤ 20. 

 
C     **EXAMPLE** 
      DIMENSION AS(5050),ASB(1890) 
      EQUIVALENCE(AS(1),ASB(1)) 
   10 READ(5,500) N,NH 
      IF(N.EQ.0) STOP 
      NS=(N+1)*N/2 
      NT=(NH+1)*(N+N-NH)/2 
      READ(5,510) (ASB(I),I=1,NT) 
      CALL CSBSM(ASB,N,NH,AS,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,610) N,NH,(I,AS(I),I=1,NS) 
      EPSZ=0.0 
      CALL SLDL(AS,N,EPSZ,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LDIV(AS,N,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,640) N,NH,(I,AS(I),I=1,NS) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'CSBSM ICON=',I5) 
  610 FORMAT(//10X,'** INPUT MATRIX **'/ 
     *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     *(2X,5('(',I4,')',E17.8))) 
  620 FORMAT(/10X,'SLDL ICON=',I5) 
  630 FORMAT(/10X,'LDIV ICON=',I5) 
  640 FORMAT('1'//10X,'** INVERSE ', 
     * 'MATRIX **'/ 
     * 10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     * (2X,5('(',I4,')',E17.8))) 
      END 
 
Method 
A real symmetric band matrix stored in a one-
dimensional array ASB in the compressed mode for 
symmetric band matrix is converted as follows to be 
stored in one-dimensional array AS in the symmetric 
matrix compressed mode for symmetric matrix.  The 
elements are moved in column wise, where zero elements 
are stored outside the band portion.  The correspondence 
between locations other than these zero elements are 
shown below.  
 

Elements in the 
compressed mode for 
symmetric band 
matrix 

Matrix 
elements  

Elements in the 
compressed mode for 
symmetric matrix  

( )
1,...,2,1I,I,...,2,1J,

J)+1)/2AS(I(IJ21)I(IASB

+==

−→→+−

h
aij  

 
( )

2,...,1NN,I,I,...,1I,I=J,

J))+1)/2AS(I(I/2)1(JIASB

+−=−−

−→→+−+⋅

hh

ahhh ij  



CSGM 

290 

A11-10-0201  CSGM, DCSGM  

Storage mode conversion of matrices  
(real symmetric to real general) 
CALL CSGM (AS, N, AG, K, ICON) 

 
Function 
This subroutine converts an n × n real symmetric matrix 
stored in the compressed mode into a symmetric matrix 
stored in the general mode. n ≥ l.  
 
Parameters 
AS ... Input.  The symmetric matrix stored in the 

compressed mode. 
AS is a one-dimensional array of size n (n+1) / 
2. 

N ... Input.  The order n of the matrix. 
AG ... Output.  The symmetric matrix stored in the 

general mode. 
AG is a two dimensional array, AG (K,N). 

K ... Input.  The adjustable dimension (≥ N) of 
array AG 

ICON.. Output.  Condition code.  See Table CSGM-1. 
 
Table CSGM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N < 1 or K < N Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL  
FORTRAN basic function ... none 

 
• Note 

The symmetric matrix in the general mode:  
The symmetric matrix in the general mode transformed 
by the subroutine contains not only the lower trianguler 
portion and the diagnoal portion but also the upper 
triangular portion. 
Saving the storage area: 
If there is no need to keep the contents on the array AS, 
more storage area can be saved by using the 
EQUIVALENCE statement as follows;  

 
EQUIVALENCE (AS(1), AG(1,1)) 

 
Refer to the example shown below.  

 
• Example 

Given an n × n real symmetric matrix in the 
compressed mode, the inverse matrix is obtained by 
subroutines ALU and LUIV as shown in the example.  
In this case, the required mode conversion is performed 
by this subroutine. Here, n ≤ l00. 

C     **EXAMPLE** 
      DIMENSION A(5050),B(100,100), 
     *          VW(100),IP(100) 
      EQUIVALENCE (A(1),B(1,1)) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      K=100 
      CALL CSGM(A,N,B,K,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.EQ.30000) GOTO 10 
      WRITE(6,610) N,((I,J,B(I,J), 
     *             J=1,N),I=1,N) 
      EPSZ=0.0 
      CALL ALU(B,K,N,EPSZ,IP,IS,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GOTO 10 
      CALL LUIV(B,K,N,IP,ICON) 
      WRITE(6,630) ICON 
      WRITE(6,640) N,((I,J,B(I,J), 
     *             J=1,N),I=1,N) 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'CSGM ICON=',I5) 
  610 FORMAT(//10X,'** INPUT MATRIX **'/ 
     *10X,'ORDER=',I5/ 
     *(2X,4('(',I3,',',I3,')',E17.8))) 
  620 FORMAT(/10X,'ALU ICON=',I5) 
  630 FORMAT(/10X,'LUIV ICON=',I5) 
  640 FORMAT('1'//10X,'** INVERSE ', 
     *'MATRIX **'/10X,'ORDER=',I5/ 
     *(2X,4('(',I3,',',I3,')',E17.8))) 
      END 
 
Method 
This subroutine converts an n × n real symmetric matrix 
stored in a one-dimensional array AS in the compressed 
mode to in a two-dimensional array in the general mode 
acccording to the following procedures. 
• The elements stored in AS are transferred to the 

diagonal and upper triangular portions serially from the 
largest address, i.e. the n-th column. 
The correspondence between locations is shown below, 
where NT = n (n + 1 ) / 2. 

 
Elements in 

compressed mode 
Elements of 

matrix 
Elements in 

general mode 
AS(NT) → ann → AG(N,N) 
AS(NT-1) → ann-1 → AG(N-1,N) 

. . . 

. . . 

. . . 
AS(I(I-1)/2+J) → aij → AG(J,I) 

. . . 

. . . 

. . . 
AS(2) → a21 → AG(1,2) 
AS(1) → a11 → AG(1,1) 

 
• With the diagonal as the axis of symmetry, the 

elements of the upper triangular portion are transferred 
to the lower triangular portion so that AG(I,J) = 
AG(J,I).  Here, I>J. 
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A11-50-0101  CSSBM, DCSSBM 

Storage conversion of matrices 
(real symmetric to real symmetric band) 
CALL CSSBM (AS, N, ASB, NH, ICON) 

 
Function 
This subroutine converts an n × n real symmetric band 
matrix with band width h stored in compressed mode for 
symmetric matrix into one stored in compressed mode for 
symmetric band matrix, where n × h≥ 1. 
 
Parameters 
AS ..... Input.  The symmetric band matrix stored in 

compressed mode for symmetric matrix. 
One-dimensional array of size n (n + 1)/2.  

N ...... Input.  The order n of the matrix. 
ASB ... Output.  The symmetric band matrix stored in 

compressed mode for symmetric band matrix 
One-dimensional array of size  
n (h + 1 ) - h (h + 1)/2. 

NH ... Input.  Band width h of the symmetric band 
matrix. 

ICON .. Output.  Condition code.  (See Table CSSBM-
1). 

 
Table CSSBM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 NH < 0 or NH ≤ N. Bypassed. 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... None. 

 
• Notes 

Saving the storage area: 
If there is no need to keep the contents on the array AS, 
more storage area can be saved by using the 
EQUIVALENCE statement as follows;  
 
EQUIVALENCE (AS (1), ASB (1)) 
(See “Example” for details.) 

 
• Example 

Given an n × n positive-definite symmetric band matrix 
with band width h stored in compressed mode for 
symmetric band matrix, the LDLT decomposition is 

performed using subroutine SBDL in the compressed 
mode for symmetric band matrix, where the mode 
conversion is performed by this subroutine. 
Where n ≤ 100 and h ≤ 20. 

 
C     **EXAMPLE** 
      DIMENSION AS(5050),ASB(1890) 
      EQUIVALENCE(AS(1),ASB(1)) 
   10 READ(5,500) N,NH 
      IF(N.EQ.0) STOP 
      NT=(N+1)*N/2 
      READ(5,510) (AS(I),I=1,NT) 
      WRITE(6,600) N,NH,(I,AS(I),I=1,NT) 
      CALL CSSBM(AS,N,ASB,NH,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      EPSZ=0.0 
      CALL SBDL(ASB,N,NH,EPSZ,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL CSBSM(ASB,N,NH,AS,ICON) 
      WRITE(6,630) N,NH,(I,AS(I),I=1,NT) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(//10X,'** INPUT MATRIX **'/ 
     *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     *(2X,5('(',I4,')',E17.8))) 
  610 FORMAT('1'//10X,'CSSBM ICON=',I5) 
  620 FORMAT(10X,'SBDL ICON=',I5) 
  630 FORMAT('1'/10X,'DECOMPOSED MATRIX'/ 
     *10X,'ORDER=',I5,5X,'BANDWIDTH=',I5/ 
     *(2X,5('(',I4,')',E17.8))) 
      END 
 
Method 
A real symmetric band matrix stored in one-dimensional, 
array AS in the compressed mode for symmetric matrix is 
converted as follows to be stored in one-dimensional 
array ASB in the compressed mode for symmetric band 
matrix.  The elements are moved in column wise as 
follows: 
 

Elements in the 
compressed mode for 
symmetric matrix 

Matrix 
elements 

Elements in the 
compressed mode for 
symmetric band 
matrix 

( )( ) ( )( )
1,...,21,I,I,...,2,1J,

J21IIASBJ21IIAS

+==

+−→→+−

h

aij  

 
( )( )

( )( )

N3,...,+2,+=I,
I,...,1I,IJ,

21JIASB

J21IIAS

hh
hh

hhh

aij

+−−=
+−+⋅

→→+−
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C23-15-0101  CTSDM, DCTSDM 

Zero of a complex function (Muller’s method) 
CALL CTSDM (Z, ZFUN, ISW, EPS, ETA, M, 
ICON) 

 
Function 
This subroutine finds a zero of a complex function  

f (z) = 0 

by Muller’s method. 
An initial approximation to the zero must be given. 

 
Parameters 
Z ..... Input.  An initial value to the zero to be 

obtained. 
Output.  Approximate root. 

ZFUN .. Input.  The name of the complex function 
subprogram which evaluates the function f(z). 

ISW ... Input.  Control information.  The user assigns 
one value from ISW= 1,2 and 3 to define the 
convergence criterion.  
 When ISW=1, zi becomes the root if it 
satisfies the condition  

( )f zi ≤ EPS: Criterion I 

When ISW=2, zi becomes the root if it 
satisfies  
z zi i− −1  ≤ ETA ⋅ zi : Criterion II  

When ISW=3, zi becomes the root if either of 
the criteria described above are satisfied.  

EPS ... Input.  The tolerance used in Criteria I. 
(See parameter ISW.) 
EPS ≥ 0.0. 

ETA .... Inpuf.  The tolerance used in Criteria II. 
(See parameter ISW.) 
ETA ≥ 0.0. 

M ..... Input. The upper limit of iterations ( > 0) 
(See Notes.) 
Output.  The number of iterations executed. 

ICON ... Output.  Condition code.  See Table CTSDM-
1. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, AMACH, AFMAX and AFMIN 
FORTRAN basic functions ... CABS, CMPLX, EXP, 
ALOG, CSQRT, SQRT, REAL and AIMAG 
 

• Notes 
The complex function subprogram associated with 
argument ZFUN must be declared by the EXTERNAL 
statement in the calling program. 

Iterations are repeated m times unconditionally, 
when M is set equal to M = -m (m > 0).  However, the 
iteration will stop during iterations  

Table CTSDM-1  Condition codes 

Code Meaning Processing 
1 Zj satisfied Criteria I. (See 

parameter ISW.) 
Normal return 

2 Zj satisfied Criteria II. (See 
aprameter ISW.) 

Normal return 

10 The iteration was repeated m 
times (M=-m) 

Normal return 

11 Although M=-m on input the 
iteration stopped because  
|f (zj)|=0 was satisfied during 
iterations and z j was taken as 
a root. 

Normal return 

12 Although M=-m on input the 
iteration stopped because  
|zj-zj-1|≤u⋅|zj|was satisfied 
during iteration and z j was 
taken as a root. 

Normal return 

10000 Specified criterion was not 
met during the specified 
number of iteration. 

The last zj was 
returned in 
parameter Z. 

20000 A certain difficulty occurred, 
so iteration could not be 
continued. (See notes.) 

Bypassed 

30000 Error(s) in parameter setting. 
When M>0, 
1 ISW=1 and EPS<0, or 
2 ISW=2 and ETA<0, or 
3 ISW=3 and EPS<0 and/or 
ETA<0. 
or when M = 0, or 
ISW≠1, 2 or 3. 

Bypassed 

 
when the lefthand side of the Criteria I is equal to 0.0, or 
the lefthand side of the Criteria II is smaller than or equal 
to the round-off level. 
 
• Example 

One root of f(z) = ez-i is obtained with initial value z0 = 
0.  

 
C     **EXAMPLE** 
      COMPLEX Z,ZFEXP 
      EXTERNAL ZFEXP 
      Z=CMPLX(0.0,0.0) 
      ISW=3 
      EPS=0.0 
      ETA=1.0E-6 
      M=100 
      CALL CTSDM(Z,ZFEXP,ISW,EPS,ETA,M, 
     *ICON) 
      WRITE(6,600) ICON,M,Z 
      STOP 
  600 FORMAT(10X,'ICON=',I5/13X,'M=',I5/ 
     *       13X,'Z=',2E15.7) 
      END 
      FUNCTION ZFEXP(Z) 
      COMPLEX Z,ZFEXP 
      ZFEXP=CEXP(Z)-CMPLX(0.0,1.0) 
      RETURN 
      END 



CTSDM 

293 

Method 
The subroutine uses Muller’s method.  The method uses a 
interpolating polynomial P(z) of degree two which 
approximates f(z) near a root.  This algorithm has the 
following features. 
• Derivatives of f(z) are not required. 
• The function is evaluated only once at each iteration. 
• The order of convergence is 1.84 (for a single root). 
 
Muller method 
Let α be a root of f(z) and let three values zi-2,zi-1 and zi be 
approximations to the root (See later for initial values z1, 
z2,and z3).  According to Newton’s interpolation formula 
of degree two, f(z) is approximated around the three 
values as follows:  
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where fi=f(zi) and f[zi,zi-1],f[zi, zi-1,zi-2] 
are the first and the second order divided differences 

of .f(z) respectively and defined as follows. 
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P(z) = 0 is then solved and the two roots are  
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Of these two roots of P(z)= 0, the root closer to zi is 
taken as the next approximation zi+1.  In (4.1) when the 
term of z2 is zero, that is when f[zi,zi-1,zi-2] = 0, in stead of 
(4.3) the following formula is used. 
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  In (4.1), wheh the both terms of z and z2 are null, P(z) 
reduces to a constant and defeats the Muller’s algrorithm 
(See later Considerations of Algorithm.) 
• Initial values. zl, z2and z3 

Let the initial value set by the user in input parameter Z 
be z when |z| ≠ 0. 
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• When f(zi-2) = f(zi-1) = f(zi) 
In this case, Muller’s method will fail to continue 
iterations because both terms of z2 and z in (4.1) vanish.  
The subroutine perturbs zi-2, zi-1 and zi so that the 
subroutine may get out of the situation  
f(zi-2) =.f(zi-1 ) = f (zi)  
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where p = -u-1/10, and u is the round-off unit, and n is 
the number of times of perturbation. 

If the perturbation continues more than five times, this 
subroutine will terminate unsuccessfully with ICON 
=20000.  
 
Convergence criterion 
Two condition are considered. 
Condition I 
When zi satisfies ( )izf  ≤ EPS. it is taken as a root. 
Condition II 
When zi satisfies 1−− ii zz  ≤ ETA･ iz , it is taken as a 
root.  When the root is a multiple root or very close to 
another root, ETA must be set sufficiently large. When 
ETA < u (u is the round-off unit), the subroutine will 
increase ETA as equal to u. 
 

For further details, see Reference [32]  
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B51-30-0201  ECHEB, DECHEB  

Evaluation of a Chebyshev series  
CALL ECHEB (A, B, C, N, V, F, ICON)  

 
Function 
Given an n-terms Chebyshev series  f(x) defined on 
interval [a, b] 
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this subroutine obtains value f(v) at arbitrary point v in 
the interval. 
 Symbol Σ’ denotes the initial term only is taken with 
factor 1/2. 
 a≠b, v ∈  [a,b] and n ≥ l.  
 
Parameters 
A.......... Input.  Lower limit a of the interval for the 

Chebyshev series. 
B.......... Input.  Upper limit b of the interval for the 

Chebyshev series. 
C........... Input.  Coefficients {ck}. 

C is a one dimensional array of size n.  
Coefficients are stored as shown below: 

 C(1) = c0, C(2)=c1, ..., C(N)= cn-1 
N.......... Input.  Number of terms n of the Chebyshev 

series. 
V.......... Input.  Point v which lies in the interal [a, b]. 
F........... Output.  Value f(v) of the Chebyshev series. 
ICON... Output.  Condition code.  See Table ECHEB-1. 
 
Table ECHEB-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 One of the following 
occurred: 
1 N<1 
2 A = B 
3 v∉  [a, b] 

Bypassed 

 
Comments on use 
• Subroutine used 

SSL II ... MGSSL 
FORTRAN basic function ... None 

 
• Notes  

This subroutine obtains value f(v) of a Chebyshev 
series.  The subroutine FCHEB can be utilized for 
Chebyshev series expansion of arbitrary smooth 
function f(x). 

• Example 
This example uses the subroutine FCHEB for series 
expansion of the sine function  
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in the interval [0, π]. 
 Precision requirements ... Absolute error 5･10-5. 
 By using the resultant expanded coefficients this 
subroutine evaluate Chebyshev series at 32 Chebyshev 
points as follows:  
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jjx j πππππ
 

This example also evaluates and prints its error. 
 
C     **EXAMPLE** 
      DIMENSION C(257),TAB(255) 
      EXTERNAL FUN 
      EPSA=5.0E-5 
      EPSR=0.0 
      NMIN=9 
      NMAX=257 
      A=0.0 
      B=ATAN(1.0)*4.0 
      CALL FCHEB(A,B,FUN,EPSA,EPSR,NMIN, 
     *           NMAX,C,N,ERR,TAB,ICON) 
      IF(ICON.NE.0) GOTO 20 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,601) (C(K),K=1,N) 
      WRITE(6,602) 
      X=A 
      NS=32 
      H=ATAN(1.0)*2.0/FLOAT(NS) 
      DO 10 J=1,NS 
      X=B*COS(H*FLOAT(J-1))**2 
      CALL ECHEB(A,B,C,N,X,Y,ICON) 
      IF(ICON.NE.0) GOTO 20 
      ERROR=FUN(X)-Y 
      WRITE(6,603) X,Y,ERROR 
   10 CONTINUE 
      STOP 
   20 WRITE(6,604) ICON 
      STOP 
  600 FORMAT('0',3X,'EXPANSION OF', 
     1' FUNCTION FUN(X)',3X,'N=',I4,3X, 
     2'ERROR=',E13.3,3X,'ICON=',I6) 
  601 FORMAT (/(5E15.5)) 
  602 FORMAT ('0',10X,'X',7X,'EVALUATION', 
     18X,'ERROR'/) 
  603 FORMAT(1X,3E15.5) 
  604 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
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      FUNCTION FUN(X) 
      REAL*8 SUM,XP,TERM 
      EPS=AMACH(EPS) 
      SUM=X 
      P=X*X 
      XP=X*P 
      XN=-6.0 
      N=3 
   10 TERM=XP/XN 
      SUM=SUM+TERM 
      IF(DABS(TERM).LE.EPS) GO TO 20 
      N=N+2 
      XP=XP*P 
      XN=-XN*FLOAT(N)*FLOAT(N-1) 
      GOTO 10 
   20 FUN=SUM 
      RETURN 
      END 
 
Method 
The value of an n -terms Chebyshev series (1.1) is 
obtained by the backward recurrence formula. 
• Backward recurrence formula 

To obtain the value f(v) of Chebyshev series  

( ) ( )∑
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k
kk xTc'xf  

at the interval [-1,1], the following adjoint sequence 
{bk} is effective. 
   If {bk} is defined as:  

012 == ++ nn bb  
,...1,,2 21 −=+−= ++ nnkcbvbb kkkk  (4.1) 

the value f(v) of the Chebyshev series can be obtained by 
the following expression: 

( ) ( ) 220 bbvf −=  (4.2) 

  This subroutine first transforms variable v∈  [a, b] to 
variable s∈  [-1,1].  

( )
s

v b a
b a

=
− +

−
2

 (4.3) 

 Then it obtains Chebyshev series value f(v) by using 
(4.1) and (4.2). 
 The number of multiplications required to evaluate the 
value of an n-terms Chebyshev series is approximately n. 
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E51-10-0201  ECOSP, DECOSP  

Evaluation of a cosine series  
CALL ECOSP (TH, A, N, V, F, ICON)  

 
Function 
Given an n-terms cosine series with period 2T  
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this subroutine obtains the value f(v) for arbitrary point v. 
T> 0 and n ≥ l. 
 
Parameters 
TH..... Input. Half period T of the cosine series. 
A....... Input.  Coefficients {ak}. 

A is a one-dimensional array of size N. 
Each coefficient is stored as shown below: 
A(1) = a0, A(2) = al, ..., A(N) = an-1 

N....... Input.  Number of terms n of the cosine series. 
V....... Input.  Point v. 
F........ Output.  Value f (v) of the cosine series. 
ICON... Output.  Condition code. 

See Table ECOSP-1. 
 
Table ECOSP-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either the two occurred. 
1 N<1 
2 TH ≤ 0 

Bypassed 

 
Comments on use 
• Subroutine used 

SSL II ... MGSSL 
FORTRAN basic functions ... COS and ATAN 

 
• Notes 

This subroutine obtains value f(v) of a cosine series. 
  The FCOSF subroutine can be utilized when smooth 
even function f(t) with period 2 T is subject to cosine 
series expansion.  

 
• Example 

This example integrates an odd function with parameter 
ω 
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when x= h , 2h , ..., 10h .  However h = π/(10ω). 
  Since this integrand is an odd function with period 2π/ω 
it is expanded at first in a sine series by the subroutine 
FSINF according to the required precision of εa = εr = 5･
10-5 : 
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By integrating (3.2) termwise it can be obtained that  
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However the initial term a0 is determined to satisfy F(0) 
= 0. 
  At this stage the subroutine ECOSP can be called to 
obtain an approximate value for indefinite integral (3.1) 
when x = h , 2h , ..., 10h . 
  Since this analytical solution is  

( ) ( )




 −= − 2cossin

4
1 1 xxF ωπ
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it is compared with the result obtained by this subroutine. 
 
C     **EXAMPLE** 
      DIMENSION A(257),TAB(127) 
      EXTERNAL FUN 
      COMMON W,PI 
      PI=ATAN(1.0)*4.0 
      EPSA=0.5E-04 
      EPSR=EPSA 
      NMIN=0 
      NMAX=257 
      W=PI*0.25 
      DO 1 I=1,5 
      TH=PI/W 
C     EXPANSION OF INTEGRAND 
      CALL FSINF(TH,FUN,EPSA,EPSR,NMIN, 
     *           NMAX,A,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      WRITE(6,600) N,ERR,ICON,W 
      WRITE(6,601) (A(K),K=1,N) 
C     TERMWISE INTEGRATION 
      DO 2 K=2,N 
      A(K)=-A(K)/(FLOAT(K-1)*W) 
    2 CONTINUE 
C     EVALUATION OF COSINE SERIES 
      CALL ECOSP(TH,A,N,0.0,P,ICON) 
      IF(ICON.NE.0) GO TO 10 
      A(1)=-P*2.0 
      WRITE(6,610) 
      H=TH*0.1 
      DO 3 K=1,10 
      X=H*FLOAT(K) 
      CALL ECOSP(TH,A,N,X,P,ICON) 
      IF(ICON.NE.0) GO TO 10 
      Q=TRFN(X) 
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      WRITE(6,611) X,P,Q 
    3 CONTINUE 
      W=W+W 
    1 CONTINUE 
      STOP 
   10 WRITE(6,620) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' INTEGRAND',3X,'N=',I4,5X,'ERR=', 
     *E15.5,5X,'ICON=',I5,5X,'W=',E15.5) 
  601 FORMAT(/(5E15.5)) 
  610 FORMAT('0',5X,'EVALUATION OF', 
     *' COSINE SERIES'/'0',6X, 
     *'AUGUMENT',7X,'COMPUTED',11X,'TRUE') 
  611 FORMAT(3E15.5) 
  620 FORMAT('0',5X,'CONDITION CODE',I6) 
      END 
      FUNCTION FUN(T) 
      COMMON W 
      X=W*T 
      P=SIN(X) 
      FUN=P/SQRT(P*P+1.0) 
      RETURN 
      END 
      FUNCTION TRFN(T) 
      COMMON W,PI 
      TRFN=(PI*.25-ASIN(COS(W*T)* 
     *     SQRT(0.5)))/W 
      RETURN 
      END 

Method 
This subroutine obtains a value of an n-terms cosine 
series (1.1) by using a backward recurrence formula. 
  Upon choosing 

θ π=
T

t  

f(t) = g (θ) leads to a cosine series with peritd 2π. 
  Therefore the value of g(θ) can be obtained when 

θ π=
T

v  

is satisfied.  It can be calculated efficiently throuhg use of 
the backward recurrence formula (4.1). 

0,1,...,1,
cos2

0

21

12

−=
+−⋅=

==

++

++

nnk
abbb

bb

kkkk

nn

θ  (4.1) 

  The value of an n-terms cosine series can be obtained by 
(4.2). 

( ) ( ) ( )f v g b b= = −θ 0 1 2  (4.2) 

  The number of multiplications required to evaluate the 
value of an n-terms cosine series is approximately n. 
  The cosine function is evaluated only once.  
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B21-11-0101  EIG1, DEIG1  

Eigenvalues and corresponding eigenvectors of a real 
matrix (double QR method)  
CALL EIG1 (A, K, N, MODE, ER, EI, EV, VW, 
ICON)  

 
Function 
All eigenvalues and corresponding eigenvectors of an n-
order real matrix A are determined.  The eigenvectors are 
normalized such that x

2
= 1.  n ≥ 1. 

 
Parameters 
A ....... Input.  Real matrix A. 

A is a two-dimensional array, A (K, N).  The 
contents of A are altered on output. 

K ....... Input.  The adjustable dimension of arrays A 
and EV. 

N ....... Input.  Order n of A. 
MODE ... Input.  Specifies balancing. 

MODE=1... Balancing is omitted. 
MODE≠1... Balancing is included. 

ER,EI ..... Output.  Eigenvalues 
Eigenvalues are divided into their real and 
imaginary parts.  The real part is stored in ER, 
and the imaginary part is stored in EI. 
If the jth eigenvalues is complex, the (j+1)th 
eigenvalues is its complex conjugate (refer to 
Fig. EIG1-1).  ER and EI are one-dimensional 
arrays of size n. 

EV ....... Output.  Eigenvectors. 
Eigenvectors are stored in the columns which 
correspond to their eigenvalues.  If an 
eigenvalue is complex, its eigenvector is also 
complex; such eigenvectors are stored as 
shown in Fig. EIG1-1.  For details see 
“Comments on use”. 
EV is a two-dimensional array, EV (K,N). 

VW ....... Work area.  Used during balancing and 
reducing matrix A to a real Hessenberg matrix. 
VW is a one-dimensional array of size n. 

ICON ..... Output.  Condition code.  Refer to Table 
EIG1-1.  

 
Table EIG1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 ER (1) = A (1, 1), 
EV (1,1) = 1.0 

20000 Eigenvalues and 
eigenvectors could not be 
determined since 
reduction to a triangular 
matrix was not possible. 

Discontinued 

30000 N < 1 or K < N Bypassed 

Comments on use 
• Subprograms used 

SSL II ... AMACH, BLNC, IRADIX, HES1, and 
MGSSL 
FORTRAN basic functions ... ABS, SQRT, SIGN, and 
DSQRT. 

65432

The real
eigenvector for λ3.

The imaginary part of
the complex
eigenvector for λ4.( v4)

The real part of the
complex eigenvector
for λ4. (u4)

The real
eigenvector for λ2.

The real eigenvector for λ6.

The real
eigenvector for λ1.

Array EV

Array EI

Array ER

1
(λ2)

n

where   λ5=λ4

λj=αj+iβj

−β4

α6

β4 0.00.00.00.0

α5α4α3α2α1

(λ1) (λ6)(λ5)(λ4)(λ3)

Note:
If the eigenvector x4
corresponding to λ4 is
x4 = u4 + iv4 , the
eigenvector x5
corresponding to
λ5 is x5 = x4 = u4−iv4

*

*

 
Fig. EIG1-1 Corresponding between eigenvalues and eigenvectors  

• Notes 
Complex eigenvalues and corresponding eigenvectors 
In general, real matrices have real eigenvalues and 
complex eigenvalues.  Complex eigenvalues become 
pairs of conjugate complex eigenvalucs.  In this 
routine, if the jth eigenvalue (λj ) is a complex 
eigenvalue, λ and λ*

j are stored in ER and EI in the 
following way. 

λj  = ER(J) + i⋅EI(J) (i: imaginary unit) 
λj

*  = ER(J+1) + i⋅EI(J+1) 
 = ER(J) − i⋅EI(J)  

  If eigenvector xj which corresponds to λj becomes a 
complex vector. 

jjj ivux +=  

  Then. eigenvector *
jx  which corresponds to *

jλ  becomes  

jjj ivux +=*  
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Therefore if real part uj and imaginary part vj of x are 
obtained, x can easily be determined.  Consequently, in 
this subroutine, only eigenvector xj which corresponds to 
λj is calculated.  Real part uj of xj is stored in the Jth 
column of EV, and imaginary part vj is stored in the 
(J+1)th column.  Refer to Fig. EIG1-1.  If the magnitude 
of each element in a real matrix varies greatly, the 
precision of the result can be improved by balancing the 
matrix with subroutine BLNC.  Balancing will produce 
minimal improvement if the magnitude of each element 
in a matrix is about the same and should be skipped by 
setting MODE=1.  This subrotine is used to obtaine all 
eigenvalues and corresponding eigenvectors of a real 
matrix.  If all the eigenvalues of a real matrix are desired, 
BLNC, HES1 and HSQR should be used.  If a subset of 
the eigenvectors of a real matrix is desired, BLNC, HES1, 
HSQR, HVEC, and HBK1 should be used.  

 
• Example 

All eigenvalues and corresponding eigenvectors of a 
real matrix A of order n are determined.  n≤ l00. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),ER(100),EI(100), 
     * EV(100,100),VW(100),IND(100) 
   10 CONTINUE 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610)(I,J,A(I,J),J=1,N) 
      CALL EIG1(A,100,N,0,ER,EI,EV,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      IND(1)=0 
      CALL EPRT(ER,EI,EV,IND,100,N,N) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('0',5X,'ORIGINAL MATRIX', 5X, 
     * 'N=',I3) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     * E15.7)) 
  620 FORMAT('0',5X,'ICON=',I5) 
      END 
 
   In the above example, the subroutine EPRT prints all 
eigenvalues and corresponding eigenvectors of a real 
matrix.  The contents of EPRT are:  
 
      SUBROUTINE EPRT(ER,EI,EV,IND,K,N,M) 
      DIMENSION ER(M),EI(M),EV(K,M),IND(M) 
      WRITE(6,600) 
      IF(IABS(IND(1)).EQ.1) GO TO 40 
      J=0 
      DO 30 I=1,M 
      IF(J.EQ.0) GO TO 10 
      IND(I)=0 
      J=0 
      GO TO 30 
 

   10 IF(EI(I).NE.0.0) GO TO 20 
      IND(I)=1 
      GO TO 30 
   20 IND(I)=-1 
      J=1 
   30 CONTINUE 
   40 MM=0 
      DO 50 I=1,M 
      IF(IND(I).EQ.0) GO TO 50 
      MM=MM+1 
      ER(MM)=ER(I) 
      IND(MM)=IND(I) 
      IF(EI(I).EQ.0.0) GO TO 50 
      MM=MM+1 
      ER(MM)=EI(I) 
      IND(MM)=IND(I+1) 
   50 CONTINUE 
      KAI=(MM-1)/5+1 
      LST=0 
      DO 70 L=1, KAI 
      INT=LST+1 
      LST=LST+5 
      IF(LST.GT.MM) LST=MM 
      WRITE(6,610) (J,J=INT,LST) 
      WRITE(6,620) (ER(J),J=INT,LST) 
      WRITE(6,630) (IND(J),J=INT,LST) 
      DO 60 I=1,N 
      WRITE(6,640) I,(EV(I,J),J=INT,LST) 
   60 CONTINUE 
   70 CONTINUE 
      RETURN 
  600 FORMAT('1',10X,'**EIGENVECTORS**') 
  610 FORMAT('0',5I20) 
  620 FORMAT('0',1X,'EIGENVALUE',5E20.8) 
  630 FORMAT(2X,'IND',6X,I10,4I20) 
  640 FORMAT(6X,I5,5E20.8) 
      END 
 
Method 
All eigenvalues and corresponding eigenvectors of an n-
order real matrix A are determined as follows: Using the 
following two-stage transformation process, the 
eigenvalues of an n-order real matrix are determined by 
obtaining the diagonal elements of upper triangular 
matrix R. 
• Reduction of real matrix A to real Hessenberg matrix H 

using the Householder method.  

HH AQQH T=  (4.1) 

QH is an orthogonal matrix which is the product of the 
transformation matrices P1, P2, ....., Pn−2 used in the 
Householder method.  

221 ... −⋅⋅⋅= nH PPPQ  (4.2) 

   For a description of the Householder method, refer to 
HESl. 
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• Reduction of a real Hessenberg matrix H to an upper 
triangular matrix R using the double QR method. 

RR HQQR T=  (4.3) 

   QR is an orthogonal matrix which is the product of the 
transformation matrices Q1, Q2, ..., Qs used in the double 
QR method. 

sR QQQQ ⋅⋅⋅= ...21  (4.4) 

   For further information on the double QR method, refer 
to HSQR.  If matrix F, which transforms upper triangular 
matrix R to diagonal matrix D, in the similarity 
transformation of (4.5) is available, eigenvectors can be 
obtained as the column vectors of matrix X in (4.6). 

RFFD 1−=  (4.5) 
FQQX RH=  (4.6) 

   To verify that the column vectors of amtrix X in (4.6) 
are the eigenvectors of real matrix A, substitute (4.1) and 
(4.3) in (4.5) to obtain (4.7). 

FQAQQQFAXXD RHHR
TT11 −− ==  (4.7) 

   If QHQR are represented as Q, from (4.2) and (4.4), then 

sn QQQPPPQ ⋅⋅⋅⋅⋅⋅⋅= − ...... 21221  (4.8) 

   As shown in (4.8), Q can be computed by repeatedly 
taking the product of the transformation matrices.  X can 
be obtained by taking the product of Q from (4.8) and 
matrix F.  Transformation matrix F can be determined as 
an upper triangular matrix as follows: From (4.5), 

FD = RF (4.9) 

   Let the elements of D, R, and F be represented as D = 
diag(λi), R = (rij), F = (fij), then elements fij are obtained 
from (4.9) as in (4.10) for j = n, n- 1, ..., 2. 

( )( )1...,,2,1
1

−−=−= ∑
+=

jjifrf
j

ik
ijkjikij λλ  (4.10) 

where, rij = 0 (i>j),  ri i= λi 
fij = 0 (i>j),  fii = 1 

 
If λ i = λj, fij is obtained as 

∑
+=

∞=
j

ik
kjikij ufrf

1

R  (4.11) 

   where u is the unit round-off 
The above computations are performed only when all the 
eigenvalues are real.  However, if real matrix A has 
complex eigenvalues, R cannot become a complete 
triangular matrix.  The elements of matrix R which has 
complex eigenvalues λl−1 and λl( = *

1−lλ ) are shown in 
Fig. EIG1-2. 
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Fig. EIG1-2  Quasi triangular matrix R with a complex eigenvalue (λl−1, 
λl) 

   In this case, the procedure to obtain fij becomes 
complicated.  When, in the course of computation fij in 
(4.10), if a complex eigenvalue λi (i = l) is encountered, flj 
and fl-1j are obtained by solving a system of linear 
equations (4.12). 
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 (4.12) 

   In addition, the lth and (l−1)th column elements of F 
becomes complex vectors.  However, since λl and λl-1 are 
conjugates, their complex vectors are also conjugates of 
each other.  Since, if one of them is determined the other 
need not be computed, only fil−1 (i=l,l−1,...,1) is obtained 
corresponding to λl−1 in this routine.  fil−1 is determined as 
follows: 
   That is, for i=l and l−1, fil−1 is determined from (4.13) 
and for i=l−2, l−3, ...1, fil−1 is determined from (4.10). 

11 =−llf  
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 (4.13) 

   On computation of fij−1 in (4.10), if λi and λi−1 are 
furthermore a pair of complex conjugate eigenvalues, 
corresponding fil−1 and fi−1l−1 are obtained from (4.12). 
   The real part of fil−1 is stored in the (l−1)th column of F 
and the imaginary part of fil−1 is stored in the lth column. 
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   From matrix F thus obtained and transformation matrix 
Q, eigenvectors x of brief description of this procedure 
follows: 

X = QF (4.14) 

   Where, X is normalized such that x 2 = 1. 
   Also, in this routine, a real matrix is balanced using 
BLNC before it is reduced to a Hessenberg matrix unless 
MODE=1. 
   For further information, see References [12] and [13] 
pp 372-395. 
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E51-20-0201 ESINP, DESINP 

Evaluation of a sine series 
CALL ESINP (TH, B, N, V, F, ICON) 

 
Function 
Given an n-terms sine series with period 2T 

( ) ∑
−

=

==
1

0
0 0,sin

n

k
k bkt

T
btf π  (1.1) 

this subroutine obtains value f (v) for arbitrary point v. 
T > 0 and n≥ 1. 
 
Parameters 
TH..... Input.  Half period T for the sine series. 
B..... Input.  Coefficients {bk}. 
 B is a one-dimensional array of size N. 
 Each coefficient is stored as shown below: 
 B(1)=0.0,  B(2)=b1, ..., B(N)=bn-1 
N..... Input.  Number of terms n of the sine series. 
V..... Input.  Arbitrary point v. 
F..... Output.  Value f (v) of the sine series. 
ICON... Output.  Condition code. 
 See Table ESINP-1. 
 
Table ESINP-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either the tow occurred: 
1 N < 1 
2 TH ≤ 0 

Bypassed 

 
Comments on use 
• Subroutine used 

SSL II ... MGSSL 
FORTRAN basic functions ... COS, ATAN and SIN 

 
• Notes 

This subroutine obtains value f (v) of a sine series.  The 
subroutine FSINF should be utilized when smooth odd 
function f (t) with period 2T is subject to sine series 
expansion. 

 
• Example 

This example integrates an even function having 
parameter ω. 

( )

πππππω

ω

ω

4,2,,
2

,
4

,

cos1

cos
0 2

=

+
= ∫

x
dt

t

txF
 (3.1) 

when x = h, 2h, ..., 10h.  However h = π/(10ω).  Since 
this integrand is an even function with period 2π/ω it is 
expanded at first in a cosine series shown in (3.2) by 

the subroutine FCOSF according to the required 
precision of εa = εr = 10-5. 

( ) ∑
−

=

+≈
1

1
0 cos

2
1 n

k
k tkaatf ω  (3.2) 

Upon integrating (3.2) termwise it can be obtained that 

( )

1,...,2,1 , ,0
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0

1
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−===

= ∑
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=
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k
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xkbxF

k
k

n

k
k

ω

ω
 (3.3) 

At this time the subroutine ESINP is called to obtain 
the approximate value of indefinite integration (3.3) 
upon choosing x = h, 2h, ..., 10h. 
Since this analytical solution is 

( ) 





= −

2
sinsin1 1 txF ω

ω
 (3.4) 

it is compared with the result obtained by this 
subroutine. 
 

C     **EXAMPLE** 
      DIMENSION A(257),TAB(127) 
      EXTERNAL FUN 
      COMMON W 
      PI=ATAN(1.0)*4.0 
      EPSA=0.5E-04 
      EPSR=EPSA 
      NMIN=0 
      NMAX=257 
      W=PI*0.25 
      DO 1 I=1,5 
      TH=PI/W 
C     EXPANSION OF INTEGRAND 
      CALL FCOSF(TH,FUN,EPSA,EPSR,NMIN, 
     *           NMAX,A,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      WRITE(6,600) N,ERR,ICON,W 
      WRITE(6,601) (A(K),K=1,N) 
C     TERMWISE INTEGRATION 
      DO 2 K=2,N 
      A(K)=A(K)/(FLOAT(K-1)*W) 
    2 CONTINUE 
C     EVALUATION OF SINE SERIES 
      WRITE(6,610) 
      H=TH*0.1 
      DO 3 K=1,10 
      X=H*FLOAT(K) 
      CALL ESINP(TH,A,N,X,P,ICON) 
      IF(ICON.NE.0) GO TO 10 
      Q=TRFN(X) 
      WRITE(6,611) X,P,Q 
    3 CONTINUE 
      W=W+W 
    1 CONTINUE 
      STOP 
   10 WRITE(6,620) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' INTEGRAND',3X,'N=',I4,5X,'ERR=', 
     *E15.5,5X,'ICON=',I5,5X,'W=',E15.5) 
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  601 FORMAT(/(5E15.5)) 
  610 FORMAT('0',5X,'EVALUATION OF', 
     *' SINE SERIES'/'0',6X, 
     *'AUGUMENT',7X,'COMPUTED',11X,'TRUE') 
  611 FORMAT(3E15.5) 
  620 FORMAT('0',5X,'CONDITION CODE',I6) 
      END 
      FUNCTION FUN(T) 
      COMMON W 
      X=W*T 
      P=COS(X) 
      FUN=P/SQRT(P*P+1.0) 
      RETURN 
      END 
      FUNCTION TRFN(T) 
      COMMON W 
      TRFN=ASIN(SIN(W*T)*SQRT(0.5))/W 
      RETURN 
      END 
 
Method 
This subroutine obtains a value of an n-terms sine series 
shown in (1.1) by using the backward recurrence formula. 

  Upon choosing θ π=
T

t , f(t)=g(θ) leads to a sine series 

with period 2π. 
  Therefore g(θ) can be obtained when v

T
πθ =  is 

satisfied − it can be calculated efficiently by the 
following backward recurrence formula: 

1,...,1,
cos2

0

21

12

−=
+−⋅=

==

++

++

nnk
bccc

cc

kkkk

nn

θ  (4.1) 

  Therefore the value of an arbitrary point in the sine 
series can be obtained by (4.2). 

( ) ( ) θθ sin1cgvf ==  (4.2) 

 The number of multiplications required for evaluation of 
an n-terms sine series is approximately n.  The cosine and 
sine functions are evaluated only once respectively. 
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I11-31-0101 EXPI, DEXPI 

Exponential integrals Ei(x), Ei (x) 

CALL EXPI (X, EI, ICON) 
 
Function 
This subroutine computes the exponential integrals Ei(x) 
and iE (x) defined as follows using an approximation 
formula. 
For x < 0: 

( ) ∫∫ ∞−

∞

−

−

=−=
x t

x

t

i dt
t

edt
t

exE  

For x > 0: 

( ) ∫∫ ∞−

−

∞

−

==
x tx t

i dt
t

e.dt
t

exE P.VP.V.  

P.V. means that the principal value is taken at t=0. 
Where, x≠0. 
 
Parameters 
X..... Input.  Independent variable x. 
EI..... Output.  Function value Ei(x) or Ei (x). 
ICON..... Output.  Condition code.  See Table EXPI-1. 
 
Table EXPI-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 X > log(flmax) or 
X < -log(flmax) 

EI is set to flmax 
or  
EI is set to 0.0.

30000 X=0 EI is set to 0.0.
 
Comments on use 
• Subprograms used 

SSL II ... AFMAX, MGSSL and ULMAX 
FORTRAN basic functions ... EXP, ALOG, and ABS 
 

• Notes 
[Range of argument] 

( )maxlog flX ≤  

   If X  exceeds the above limit, Ei(x) and Ei (x) 
respectively cause underflow or overflow in 
calculating ex.  The limitation is made so that these 
difficulties can be avoided beforehand in the 
subroutine. 

X≠0 
Ei(x) and Ei (x) are undefined for x=0. 

 
• Example 

The following example generates a table of the 
function values from 0.01 to 0.50 with increment 0.01. 

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,50 
      X=FLOAT(K)/100.0 
      CALL EXPI(X,EI,ICON) 
      IF(ICON.EQ.0) WRITE(6,610)X,EI 
      IF(ICON.NE.0) WRITE(6,620)X,EI,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF EXPONENTIAL ', 
     * 'INTEGRAL FUNCTION'/// 
     * 6X,'X',9X,'EI(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     * E17.7,5X,'EI=',E17.7,5X,'CONDITION=', 
     * I10) 
      END 
 

 
Method 
The approximation formulas to compute Ei(x) and Ei (x), 
differs depending on the following ranges of x.   
[-174.673, -4), [-4, -1), [-1, 0), (0, 6], (6, 12], (12, 24], 
(24, 174.673].  In the following, s= x , t=1/ x . 
 
• For log(flmax) ≤ x < −4 

Single precision: 
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Theoretical precision = 9.09 digits 
 
Double precision: 
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Theoretical precision = 18.88 digits 
 
• For −4 ≤ x < −1 

Single precision: 
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Theoretical precision = 10.04 digits 
Double precision: 

( ) ∑∑
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Theoretical precision = 19.20 digits 
 

• For -1 ≤ x < 0 
Single precision: 
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Theoretical precision = 10.86 digits 
 
Double precision: 
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Theoretical precision = 18.54 digits 
 

• For 0 < x ≤ 6 
Single precision: 
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Theoretical precision = 9.94 digits 
Where z = x/6, x0=0.37250 7410 
Double precision: 
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Theoretical precision = 20.76 digits 
 
Where z = x/6, x0=0.37250 7410 81366 63446 

• For 6 < x ≤ 12 
 
Single precision: 
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Theoretical precision = 8.77 digits 
Double precision: 
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Theoretical precision = 19.21 digits 
 

• For 12 < x ≤ 24 
Single precision: 
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Theoretical precision = 9.45 digits 
Double precision: 
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Theoretical precision = 19.22 digits 
 

• For 24 < x ≤ log(flmax) 
Single precision: 
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Theoretical precision = 8.96 digits 
Double precision: 
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Theoretical precision = 18.11 digits 
 
For more information, see Reference [79] and [80]. 
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E51-30-0101 FCHEB, DFCHEB 

Chebyshev series expansion of a real function (Fast cosine 
transform, function input) 
CALL FCHEB (A, B, FUN, EPSA, EPSR, NMIN, 
NMAX, C, N, ERR, TAB, ICON) 

 
Function 
Given a smooth function f(x) on the interval [a, b] and 
required accuracy εa and εr, this subroutine performs 
Chebyshev series expansion of the function and 
determines n coeffieients {ck} which satisfy (1.1). 
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 (1.1) 

Symbol Σ’ denotes to make sum but the initial term only 
is multipled by factor 1/2. f can be defined as (1.3) by 
using function values taken at sample points xj (shown in 
(1.2)) on the interval [a, b]. 
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    Where a ≠ b and εa ≥ 0 and εr ≥ 0. 
 
Parameters 
A............. Input.  Lower limit a of the interval. 
B............. Input.  Upper limit b of the interval. 
FUN........ Input.  Name of the function subprogram 

which calculates the function f(x) to be 
expanded.  See Notes. 

EPSA...... Input.  The absolute error tolerance εa. 
EPSR...... Input.  The relative error tolerance εr.  Lower 

limit. 
NMIN..... Input.  Lower limit of terms of Chebyshev 

series (≥0). 
The value of NMIN should be specified as 
(power of 2) + 1. 
The default value is 9.  See Notes. 

NMAX... Input.  Upper limit of terms of Chebyshev 
series (≥NMIN). 
The value of NMAX should be specified as 
(power of 2) + 1. 
The default value is 257. 
See Notes. 

C............. Output.  Coefficients {ck}. 
Each coefficient is stored as shows below: 
C(1) = c0, C(2) = c1, ..., C(N) = cn-1 
One-dimensional array of size NMAX. 

N............. Output.  Number of terms n of the Chebyshev 
series (≥5) 
The value of N takes as (power of 2) + 1. 

ERR........ Output.  Estimate of the absolute error of the 
Chebyshev series. 

TAB........ Output.  The trigonometric function table used 
for series expansion is stored. 
One-dimensional array whose size is greater 
than 3 and equal to the following: 
• If a ≠ 0 ..... (NMAX-3)/2. 
• If a = 0 ..... NMAX-2. 
See Notes. 

ICON...... Output.  Condition code. 
See Table FCHEB-1. 

 
Table FCHEB-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The required accuracy was 
not satisfied due to 
rounding-off errors.  The 
required accuracy was far 
too high. 

C contains 
resultant 
coefficients.  The 
accuracy of the 
series is the 
maximum 
attainable. 

20000 The required accuracy was 
not satisfied through the 
number of terms of the 
series has reached the 
upper limit. 

Bypassed. 
C contains 
coefficients 
obtained at that 
time.  ERR 
contains an 
estimate of 
absolute error 
obtained at that 
time. 

30000 One of the following 
conditions occurred: 
1 A = B 
2 EPSA < 0.0 
3 EPSR < 0.0 
4 NMIN < 0 
5 NMAX < NMIN 

Bypassed 

 
Comments on use 
 
• Subprograms used 

SSL II ... MGSSL, AMACH, UTABT and UCOSM 
FORTRAN basic functions ... ABS, AMAX1, AMIN1 
and FLOAT 

 
• Notes 

− The function subprogram specified by the FUN 
parameter must be defined as a subprogram having 
independent variable x only as the argument.  The 
program calling this subroutine must include an 
EXTERNAL statement specifying the corresponding 
function name.  If a given function contains auxiliary 
variable, they must be declared by a COMMON 
statement, which is used to establish an interface with 
the calling program. 

 
− Use of the trigonometric function talbe 

The trigonometric function table is produced only 
once even when this subroutine is called repeatedly.  
If it does not contain the  
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 trigonometric function values necessary for series 
expansion, only the necessary values are calculated 
and added.  Therefore, this subroutine should be 
called without making a change in the trigonometric 
function table − without changing the contents of 
TAB. 

  
− This subroutine normally changes the interval of 

variable from [a, b] to [-1, 1] and expands function 
f(x) base on the chebyshev polynomials.  When the 
end point a of the interval is zero, this subroutine 
expands function f(x) base on the shifted Chebyshev 
polynomials to avoid making an error in calculation 
(loss of significant digits) while making a change of 
the variable. 
   However, the coefficients {ck} used the shifted 
Chebyshev polynomials are the same as those used 
the Chebyshev polynomials. 
   On such reason, the size of trigonometric function 
table used internally is (NMAX-3)/2 in case of using 
the Chebyshev polynomials, on the other hand, 
(NMAX-2) in case of using the shifted Chebyshev 
polynomials. 

 
− If the value of NMIN or NMAX is not equal to 

power of 2 plus one, the following value is assumed: 
(maximum power of 2 not exceeding that value) + 1 
However, NMAX = 5 is assumed if NMAX is less 
than 5. 

 
− The degree of error decrement depends on the 

smoothness of f(x) and the width of interval [a, b] as 
the number of terms n increases.  When f(x) is an 
analytical function, the error decreases depending on 
the exponential function order O (r n), 0 < r < 1.  
When f(x) has up to k-th continuous derivatives, the 
error decreases depending on the the rational 

function order O (
k

n
ba − ).  When k = 0 or k = 1, the 

error cannot be estimated accurately because the 
number of terms to be expanded in a series increases.  
Therefore the function to be processed by this 
subroutine should have, at least, up to 2nd 
continuous derivatives. 

 
− Accuracy of the series 

This subroutine tries to obtain a Chebyshev series 
which satisfies (1.1) when εa and εr are given, εr = 0 
means that f(x) is expanded in a Chebyshev series 
with its absolute error within εa.  Similarly εa = 0 
means that f(x) is expanded in a Chebyshev series 
with its relative error within εr.  This purpose is 
sometimes obstructed by unexpected characteristics 
of f(x) or an unexpected value of  εa or εr.  For 
example, when εa or εr is extremely small in 
comparison with computational error in function 

evaluations, the effect of rounding-off errors 
becomes grater, so it is no use to continue the 
computation even though the number of terms 
subject to series expansion has not reached the upper 
limit.  In this case, the processing is bypassed after a 
condition code of 10000 is set to ICON.  At this time, 
the accuracy of the Chebyshev series becomes the 
attainable limit for the computer used.  The 
Chebyshev series sometimes does not converge 
within NMAX evaluations.  In this case, the 
coefficient value is an approximation obtained so far 
and is not always accurate.  The processing is 
bypassed after a condition code of 20000 is set to 
ICON. 

   To determine the accuracy of Chebyshev series, this 
subroutine always sets an estimate of absolute error 
in ERR. 

 
− When inverse transform is required for Chebyshev 

series expansion, the subroutine FCOST should be 
utilized for cosine transform.  The inverse transform 
mean to obtain the  function value. 

( ) ( )
1,...,1,0,

21

0

−=





−

+
= ∑

−

=

nj
ab

abx
Tc"xf j

kk

n

k
j  

 for a sample point xj, which lies in the interval [a, b] 
indicated by (1.2).  Where symbol Σ” denotes the 
initial and last terms are multiplied by factor 1/2.  
Therefore only the coefficient cn-1 of the last term 
must be doubled before the FCOST subroutine is 
called. 

   During inverse transform, the contents of TAB must 
be kept intact because the trigonometric function 
table produced by this subroutine is used by the 
subroutine FCOST.  See Example 2. 

 
• Examples 

Example 1 expands exponential function 

( ) 
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=0 !n

n
x

n
xexf  

on the interval [-2, 2] in Chebyshev polynomials 
{Tk(x/2)} according to the required accuracy of εa = 0 
and εr = 5⋅10-5. 
NMIN = 9 and NMAX = 257 is assumed. 

 
C     EXAMPLE 1 
      DIMENSION C (257), TAB (127) 
      EXTERNAL FUN 
      EPSA=0.0 
      EPSR=5.0E-5 
      NMIN=9 
      NMAX=257 
      A=-2.0 
      B=2.0 
      CALL FCHEB(A,B,FUN,EPSA,EPSR, 
     *           NMIN,NMAX,C,N,ERR,TAB,ICON) 
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      IF(ICON.GT.10000) GOTO 10 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,601) (C(I),I=1,N) 
      STOP 
   10 WRITE(6, 602) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' FUNCTION FUN(X)',3X,'N=',I4, 
     *5X,'ERR=',E15.5,5X,'ICON=',I5) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(X) 
      REAL*8 SUM,XP,TERM 
      EPS=AMACH(EPS) 
      SUM=1.0 
      XP=X 
      XN=1.0 
      N=1 
   10 TERM=XP/XN 
      SUM=SUM+TERM 
      IF(DABS(TERM).LE. 
     1   DABS(SUM)*EPS) GOTO 20 
      N=N+1 
      XP=XP*X 
      XN=XN*FLOAT(N) 
      GOTO 10 
   20 FUN=SUM 
      RETURN 
      END 
 

Example 2 Inverse transform for Chebyshev series 
expansion 
Example 2 expands since function 

( ) ( ) ( ) 
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on the interval [0, π] in Chebyshev polynomials 
{Tk(x/2)} according to the required accuracy of εa = 
5⋅10-5 and εr = 0. 
NMIN = 9 and NMAX = 513 is assumed. 
Example 2 then checks the values taken by the 
Chebyshev series at n sample points. 
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cos22 −=
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+= njj
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x j
πππ  

through use of the subroutine FCOST. 
 
C     EXAMPLE 2 
      DIMENSION C(513),TAB(511) 
      EXTERNAL FUN 
      EPSA=5.0E-5 
      EPSR=0.0 
      NMIN=9 
      NMAX=513 
      A=0.0 
      B=ATAN(1.0)*4.0 
      CALL FCHEB(A,B,FUN,EPSA,EPSR, 
     *           NMIN,NMAX,C,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GOTO 10 
      WRITE(6,600) N,ERR,ICON 
      C(N)=C(N)*2.0 
      NM1=N-1 
 

      WRITE(6,601) (C(I),I=1,N) 
      CALL FCOST(C,NM1,TAB,ICON) 
      WRITE(6,602) 
      WRITE(6,601) (C(I),I=1,N) 
      STOP 
   10 WRITE(6,603) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' FUNCTION FUN(X)',3X,'N=',I4, 
     *5X,'ERR=',E15.5,5X,'ICON=',I5) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'INVERSE TRANS', 
     *'FORM BY ''FCOST''') 
  603 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(X) 
      REAL*8 SUM,XP,TERM 
      EPS=AMACH(EPS) 
      SUM=X 
      P=X*X 
      XP=X*P 
      XN=-6.0 
      N=3 
   10 TERM=XP/XN 
      SUM=SUM+TERM 
      IF(DABS(TERM).LE.EPS) GOTO 20 
      N=N+2 
      XP=XP*P 
      XN=-XN*FLOAT(N)*FLOAT(N-1) 
      GOTO 10 
   20 FUN=SUM 
      RETURN 
      END 
 
Method 
This subroutine uses an extended Clenshaw-Curtis 
method for Chebyshev series expansion enhanced the 
speed by using fast cosine transform. 
• Chebyshev series expansion method 

For simplicity, the domain of f(x) subject to Chebyshev 
series expansion is assumed to be [-1, 1]. 
The Chebyshev series expansion of f(x) can be 
expressed as: 

( ) ( )∑
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=
0k

kk xTc'xf  (4.1) 

( ) ( )dx
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xTxfc k
k ∫− −

=
1

1 21

2
π

 (4.2) 

Upon choosing x = cosθ, (4.2) consequently gives 

( ) θθθ
π

π
dkfck coscos2

0∫=  (4.3) 

Therefore, ck is regarded as coefficients for the cosine 
series of the continuous even function f(cosθ) with period 
2π. 
  To obtain coefficients (4.2) for Chebyshev series 
expansion through use of the Gauss-Chebyshev numerical 
integration formula means to determine fourier 
coefficients (4.3) for even functions based on the 
midpoint rule. The Gaussian integral formula is the best 
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 in the sense that it can be utilized to integrate correctly a 
polynomial of degree up to 2n-3 based on n-1 sample 
points.  The trapezoidal rule for (4.3) can be utilized to 
integrate correctly a polynomial of degree up to 2n-3 
based on n sample points.  That is, the trapezoidal rule is 
almost the best. 
  Since input to this subroutine is a function, this 
subroutine obtains a Chebyshev series consisting of terms 
whose number is specified by doubling the number of 
sample points according to the required accuracy.  
Therefore this subroutine uses the best trapezoidal rule 
for this purpose.  The resultant n-terms Chebyshev series 
satisfies interpolatory condition 
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jkkj xTc"xf  (4.4) 

at n sample points shown below: 
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  In order to keep unity of the Chebyshev series notations, 
the last coefficient of (4.4) is multiplied by factor 1/2, 
and express the series as (4.1). 
  Based on the error evaluation of series expansion 
described below, this subroutine determines the number 
of terms n which satisfies 
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on the interval [-1, 1] as well as series coefficients {ck} 
by using the Fast Fourier Transform (FFT) method. 
   Coefficients { p

kc } for terms n (=np+1, np=2p) are 
determined by the trapezoidal rule for as shown in (4.6): 
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However the ordinary scaling factor 2/np is omitted. 
  Coefficients { 1+p

kc } for terms n = np+1+1 whose number 
is doubled can efficiently be obtained by making a good 
use of complementary relation between the midpoint rule 
and the trapezoidal rule.  That is, function f(x) be 
sampled at each midpoint of sample points at which { ck

p } 
are determined as shown in (4.7): 
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The discreate cosine transform (using the midpoint 
rule) can be defined as shown in (4.8): 
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Then coefficients { 1+p
kc } can be determined by the 

recurrence formula as show in (4.9): 
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As described above the coefficients { p
kc } of discrete 

Chebyshev series. 
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by which f(x) is expanded can be determined by increasing a 
value of p gradually based on (4.6), (4.8) and (4.9).  When 
the convergence criterion is satisfied each coefficient { p

kc } 
is normalized by multipling by factor 2/np. 
 
• Error evaluation for Chebyshev series 

The following relationship exists between the 
coefficients {ck} associated with Chebyshev series 
expansion shown in (4.1) and the coefficients { p

kc } 
associated with discreate Chebyshev series expansion 
at the p-th stage shown in (4.10): 
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From (4.11), the error evalution formula for the p-stage 
Chebyshev series is introduced as 
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   If f(x) is analytical function on the interval, its series 
coefficients {ck} decreases according to exponential 
function order O (rk), 0 < r < 1 as subscript k increases.  
As a result r can be estimated based on the p-th stage 
discrete Chebyshev series coefficients p

kc . 

Let p
kc  to be Ark  (A: Constant).  Since k is at most 

np, 4/pnr can be obtained based on the ratio of the coefficient 
corresponding to the last np to that corresponding to 3/4np.  
This subroutine estimates r by using not only the 

pnc -th and 

3/4np-th but also the (np -1)-th and (3/4np -1)-th coefficients 
in order to avoid a state that 

pnc  or 
pnc 43  becomes zero by 

accident as shown below: 



FCHEB 

310 



















































+

+
=

−

−
99.0,2

1

min

4

4
31

4
3

1

p

pp

pp

n

p

n

p

n

p
n

p
n

cc

cc
r  

The upper limit of r is defined as 0.99 because the 
convergence rate of the series become slow and 
Chebyshev series expansion of f(x) is virtually impossible 
when r is greater than 0.99. 
 By using the resultant r, the error ep at the p-th stage can 
be estimated by (4.12) and (4.13). 
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The last coefficient p
np

c  only is multipled by factor 1/2 

because (4.13) is a discreate Chebyshev series using a 
trapezoidal rule. 
 
• Computational process 

Step 1: Initialization 
1) Initialization of the trigonometric function table  

Three cosine function values are determined in 
reverse binary order corresponding to equispaced 
three sample points in the interval [0, π/2].  Each 
entry of the trigonometric function table can be used 
as a sample point during sampling of f(x). 

2) Initial Chebyshev series expansion 
This subroutine determines 2

0c , 2
1c , 2

2c , 2
3c , and 

2
4c , as a result of 5-terms Chebyshev series 

expansion (upon choosing np=4 in (4.6)).  It also 
determines the norm f  of f(x) based on (1.3). 

 
Step 2: Convergence criterion 
If np+1 ≤ NMIN is satisfied this subroutine bypasses a 
convergence test and unconditionally executes step 3.  
If np+1 > NMIN is satisfied this subroutine performs a 
convergence test as described below: 
− This subroutine estimates a computational error limit 

ρ 

( )ufnp 2=ρ  (4.14) 

 where u is the unit round off, and a tolerance ε for 
convergence test as 

{ }fra εεε ,max=  (4.15) 

− If the coefficients p
np

c
1−
 and p

np
c  of the last two terms 

at the p-th stage have been lost significant digits, that 
is, if the coefficients satisfy (4.16). 
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this subroutine assumes that the series has  
 This is because the accuracy of computation can not 

increase any longer. 
 If ρ < ε is satisfied this subroutine terminates 

normally after a condition code of 0 is set to ICON. 
 If ρ ≥ ε is satisfied this subroutine terminates 

abnormally after a condition code of 10000 is set to 
ICON, assuming that the required accuracy of εa or εr 
is too small. 

− If coefficients of the last two terms consist of 
significant digits, this subroutine estimates absolute 
error ep based on (4.13). 

 When ep < ε is satisfied this subroutine terminates 
normally after a condition code of 0 is set to ICON. 

 When ep < ε is not satisfied but 2np+1 ≤ NMAX is 
satisfied, this subroutine unconditionally executes 
Step 3. 

 When ep < ε is not satisfied but 2np+1 > NMAX is 
satisfied, this subroutine terminates abnormally after 
a condition code of 20000 is set to ICON, assuming 
that the required accuracy is not satisfied when the 
number of terms to be expanded in a Chebyshev 
series reaches the upper limit. 
 
ep  < ε  (4.17) 

  
Note that resultant coefficients are normalized 
whether this subroutine terminates normally or 
abnormally. 

 
Step 3: Sampling of f(x) and calculating the norm of f(x) 
At each midpoint of np+1 sample points which have 
previously determined, this subroutine samples f(x) in 
reverse binary order as shown in (4.18): 
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However, in case of a = 0, this subroutine samples f(x) to 
avoid loss of significant digits while changing its 
variables as shown in (4.19): 
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At this time, this subroutine adds a new trigonometric 
function table entry and determines the norm of f(x) by 
using (1.3). 
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Step 4: Discrete cosine transform (using the midpoint 
rule) 
This subroutine performs discrete cosine transform using 
the Fast Fourier Transform (FFT) method to determine 
{ p

kc~ } for sample points obtained by Step 3. 
 
Step 5: Computing { 1+p

kc } 

By using { p
kc } obtained previously and { p

kc~ } obtained 
by Step 4, this subroutine determines of 2np+1 terms 
based on the recurrence formula shown in (4.9). 
Then, this subroutine executes Step 2 after it increases a 
value of p by one. 

Step 3 and 4 consumes most of the time required to 
execute this subroutine.  The number of multiplications 
required to determine coefficients for an n-terms 
Chebyshev series is approximately nlog2 n except for that 
required for sampling of f(x). 
 
  For further information, see Reference [59].  For 
detailed information about discrete cosine transform, see 
an explanation of the subroutines FCOST and FCOSM. 
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E51-10-0101 FCOSF, DFCOSF 

Cosine series expansion of an even function (Fast cosine 
transform) 
CALL FCOSF (TH, FUN, EPSA, EPSR, NMIN, 
NMAX, A, N, ERR, TAB, ICON) 

 
Function 
This subroutine performs cosine series expansion of a 
smooth even function f(t) with period 2T according to the 
required accuracy of εa and εr.   It determines n 
coefficients {ak} which satisfy 

( ) { }fkt
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where symbol Σ’ denotes to make sum but the initial term 
only is multiplied by factor 1/2.  The norm f  of f(t) is 
defined as shown in (1.3) by using function values taken 
at sample points shown in (1.2) within the half period  
[0, T]. 

1,...,1,0,
1

−=
−

= njj
n

Tt j  (1.2) 

( )j
nj

tff max
10 −≤≤

≤  (1.3) 

Where T > 0, εa ≥ 0, εr ≥ 0. 
 
Parameters 
TH..... Input.  Half period T of the function f(t). 
FUN.... Input.  Name of the function subprogram with 

calculates f(t) to be expanded in a cosine series. 
See an example of using this subroutine. 

EPSA... Input.  The absolute error tolerance εa. 
EPSR... Input.  The relative error tolerance εr. 
NMIN... Input.  Lower limit of terms of cosine series 

(≥0). 
NMIN should be taken a value such as (power 
of 2) + 1. 
The default value is 9. 
See Notes. 

NMAX... Input.  Upper limit of terms of cosine series.  
(NMAX ≥ NMIN). 
NMAX should be taken a value such as 
(power of 2) + 1. 
The default value is 257. 
See Notes. 

A..... Output.  Coefficient {ak}. 
One-dimensional array of size NMAX. 
Each coefficient is stored as shown below: 
A(1) = a0, A(2) = a1, ..., A(N) = an-1 

N..... Output.  Number of terms n of the cosine 
series (≥5). 
N takes a value such as (power of 2) + 1. 

ERR.... Output.  Estimate of the absolute error of the 
series. 

TAB.... Output.  TAB contains a trigonometric 
function table used for series expansion.  One-
dimensional array whose size is greater than 3 
and equal to (NMAX-3)/2. 

ICON... Output.  Condition code. 
See Table FCOSF-1. 

 
Table FCOSF-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The required accuracy was 
not satisfied due to 
rounding-off errors. 
The required accuracy is too 
high. 

A contains 
resultant 
coefficients.  The 
accuracy of the 
series is the 
maximum 
attainable. 

20000 The required accuracy was 
not satisfied though the 
number of terms of the 
series has reached the 
upper limit. 

Bypassed. 
A contains 
resultant 
coefficients and 
ERR contains an 
estimate of 
absolute error. 

30000 One of the following cases 
occurred: 
1  TH ≤ 0 
2  EPSA < 0.0 
3  EPSR < 0.0 
4  NMIN < 0 
5  NMAX < NMIN 

Bypassed 

 
Comments on use 
• Subroutines used 

SSL II ... MGSSL, AMACH, UTABT, UCOSM and 
UNIFC 
FORTRAN basic functions ... ABS, AMAX1, AMIN1 
and FLOAT 
 

• Notes 
− The function subprogram specified by the FUN 

parameter must be a subprogram defined at the 
interval [0, T] having independent variable t only as 
the argument. 
The name must be declared by the EXTERNAL 
statement in the program which calls this subroutine. 
If the function contains auxiliary variable, they must  
be declared by a COMMON statement to establish an 
interface with the calling program.  See Example of 
using this subroutine. 
 

− Use of the trigonometric function table 
  When this subroutine is repeatedly called, the 
trigonometric function table is produced only once. 
A new trigonometric function table entry is made on 
an as-required basis.  Therefore the contents of TAB 
must be kept intact when this subroutine is called 
subsequently. 

 
− If NMIN or NMAX does not take a value such as 

(power of 2) + 1, this subroutine assumes  
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the maximum value of (power of 2) + 1 which does not 
exceed that value.  Howeger NMAX = 5 is assumed if 
NMAN < 5 is satisfied. 
 

− The degree of error decrement greatly depends on the 
smoothness of f(t) in the open interval (-∞,∞) as the 
number of terms n increases.  If f(t) is an analytical 
periodic function, the error decreases according to 
exponential function order O (rn), 0 < r < 1.  If it has 
up to k-th continuous derivatives, the error decreases 
according to rational function order O (n-k). 
When k=0 or k=1, an estimate of absolute error is not 
always accurate because the number of terms to be 
expanded increases greatly. 
Therefore, the function used by this subroutine 
should have, at least, up to 2nd continuous 
derivatives. 

  
− Accuracy of the series 

This subroutine determines a cosine series which 
satisfies (1.1) according to the required accuracy of 
εa and εr.  If  εr = 0 is specified, this subroutine 
expands f(t) in a cosine series within the required 
accuracy of absolute error  εa. 
Similarly  εa = 0 is specified, this subroutine expands 
f(t) in a cosine series within the required accuracy of 
relative error  εr.  However cosine series expansion is 
not always successful depending on the specification 
of εa and εr.  For example, when εa or εr     is too small 
in comparison with computational error of f(t), the 
effect of rounding-off errors becomes greater on the 
computational result even if the number of terms to 
be expanded does not reach the upper limit. 
   In such a case, this subroutine abnormally 
terminates after a condition code of 10000 is set to 
ICON.  At this time, the accuracy of the cosine series 
becomes the attainable limit for the computer used.  
The number of terms to be expanded in a cosine 
series sometimes does not converge within NMAX 
evaluations depending on the characteristics of f(t).  
In such a case, this subroutine abnormally terminates 
after a condition code of 20000 is set to ICON.  Each 
coefficient is an approximation obtained so far, and 
is not accurate. 
   To determine the accuracy of cosine series this 
subroutine always set an estimate of absolute error in 
ERR. 

  
− When inverse transform is attempted by the 

subroutine FCOST, the coefficient an-1 of the last 
term must be doubled in advance. 
Note that the content of TAB must be kept intact 
whether normal or inverse transform is attempted. 
See Example 2. 

− When f(t) is only a periodical function, this 
subroutine can be used to perform cosine series 
expansion for even function as (f(t) +f(-t))/2. 

 
− If f(t) has no period and is absolutely integrable, its 

theoretical cosine transform can be defined as shown 
in (3.1): 

( ) ( ) tdttfF ∫
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cosωω  (3.1) 

If f(t) is dampted according to order of O (e-at) (a < 0), an 
approximation of the Fourier integral can be obtained as 
described below: 
  Assume that ( )f t  can be ignored on the interval [T,∞) 
when T is sufficiently large.  By defining T which 
satisfies (3.2) 

( ) Ttutf ≥< ,  (3.2) 

where u is the unit round off. 
This subroutine can be used to determine cosine series 
coefficients {ak} for f(t), assuming that f(t) is a function 
with period 2T. 
Since {ak} can be expressed as 

( ) tdtk
T

tf
T

a
T

k ∫=
0

cos2 π  (3.3) 

(3.4) can be established based on (3.1) and (3.2). 
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Based on this relationship this subroutine can calculate an 
approximation of cosine transform shown in (3.1) by 
using discrete cosine transform. 
   When inverse transform 

( ) ( ) ωωω
π

dtFtf ∫
∞

=
0

cos2  (3.5) 

is to be calculated, the subroutine FCOST can be called 
for n pieces of data as follows: 
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   See Example 2. 
 
• Examples 

Example 1 
This example expands the following even function with 
period 2π having auxiliary variable p 

( )f t p
p t p

=
−

− +
1

1 2

2

2cos
 

in a cosine series according to the required accuracy of 
εa = 5⋅10-5 and εr = 5⋅10-5. 
Where NMIN = 9 and NMAX = 257 are assumed. 
The theoretical cosine series expansion of f(t) is as 
follows: 

( ) ∑
∞

=

+=
1

cos21
k

k ktptf  

This example prints cosine series coefficients when p = 
1/4, 1/2 and 3/4. 

 
C     **EXAMPLE** 
      DIMENSION A(257),TAB(127) 
      EXTERNAL FUN 
      COMMON P 
      TH=ATAN(1.0)*4.0 
      EPSA=0.5E-4 
      EPSR=EPSA 
      NMIN=9 
      NMAX=257 
      P=0.25 
    1 CALL FCOSF(TH,FUN,EPSA,EPSR, 
     *NMIN,NMAX,A,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      WRITE(6,600) N,ERR,ICON,P 
      WRITE(6,601) (A(I),I=1,N) 
      P=P+0.25 
      IF(P.LT.1.0) GO TO 1 
      STOP 
   10 WRITE(6,602) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' FUNCTION FUN(T)',3X,'N=',I4, 
     *5X,'ERR=',E15.5,5X,'ICON=',I16,5X, 
     *'P=',E15.5) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(T) 
      COMMON P 
      FUN=(1.0-P*P)/(1.0-2.0*P*COS(T)+P*P) 
      RETURN 
      END 
 
Example 2 
Cosine transform and inverse transform 
This example transforms even function 

( ) dxxxF  cos
2

sech
0∫
∞

= ωπω  

in a cosine series according to the required accuracy of 
εa = 5⋅10-5 and εr = 5⋅10-5 and compares the results with 
analytical solution F(ω) = sech ω. 
   Then, this example performs inverse transform of the 
function by using the subroutine FCOST and check the 
accuracy of the results. 

 
C     **EXAMPLE** 
      DIMENSION A(257),TAB(127), 
     *          ARG(257),T(257) 
      EXTERNAL FUN 
      COMMON HP 
      HP=ATAN(1.0)*2.0 
      TH=ALOG(1.0/AMACH(TH))/HP 
      EPSA=0.5E-04 
      EPSR=EPSA 
      NMIN=9 
      NMAX=257 
C     COSINE TRANSFORM 
      CALL FCOSF(TH,FUN,EPSA,EPSR, 
     *NMIN,NMAX,A,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      TQ=TH*0.5 
      H=(HP+HP)/TH 
      DO 1 K=1,N 
      ARG(K)=H*FLOAT(K-1) 
      A(K)=A(K)*TQ 
      T(K)=TRFN(ARG(K)) 
    1 CONTINUE 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,610) 
      WRITE(6,601) (ARG(K),A(K),T(K),K=1,N) 
C     INVERSE TRANSFORM 
      Q=1.0/TQ 
      DO 2 K=1,N 
      A(K)=A(K)*Q 
    2 CONTINUE 
      A(N)=A(N)*2.0 
      NM1=N-1 
      CALL FCOST(A,NM1,TAB,ICON) 
      IF(ICON.NE.0) GO TO 10 
      H=TH/FLOAT(NM1) 
      DO 3 K=1,N 
      ARG(K)=H*FLOAT(K-1) 
      T(K)=FUN(ARG(K)) 
    3 CONTINUE 
      WRITE(6,620) 
      WRITE(6,610) 
      WRITE(6,601) (ARG(K),A(K),T(K),K=1,N) 
      STOP 
   10 WRITE(6,602) ICON 
      STOP 
  600 FORMAT('0',5X,'CHECK THE COSINE', 
     *' TRANSFORM OF FUNCTION FUN(T)', 
     *3X,'N=',I4,5X,'ERR=',E15.5,5X, 
     *'ICON=',I5) 
  610 FORMAT('0',6X,'ARGUMENT',7X, 
     *'COMPUTED',11X,'TURE') 
  620 FORMAT('0',5X,'CHECK THE INVERSE' 
     *,' TRANSFORM') 
  601 FORMAT(/(3E15.5)) 
  602 FORMAT('0',5X,'CONDITION CODE',I6) 
      END 
      FUNCTION FUN(T) 
      COMMON HP 
      FUN=1.0/COSH(T*HP) 
      RETURN 
      END 
      FUNCTION TRFN(W) 
      TRFN=1.0/COSH(W) 
      RETURN 
      END 
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Method 
This subroutine applies discrete fast cosine transform 
(based on the trapezoidal rule) to cosine transform for 
entry of functions. 
 
• Cosine series expansion 

For simplicity, an even function f(t) with a period of 2π. 
The function can be expanded in a cosine series as 
shown below: 

( ) ∑
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0 cos
2
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k
k ktaatf  (4.1) 

( ) dtktxfak ∫=
π

π 0
cos2  (4.2) 

This subroutine uses the trapezoidal rule to compute 
(4.2) by dividing the closed interval [0, π] equally. 
By using resultant coefficients {ak}, this subroutine 
approximates (4.1) by finite number of terms. 
  If this integrand is smooth, the number of terms is 
doubled as far as the required accuracy of εa and εr is 
satisfied.  If sampling is sufficient, (4.3) will be 
satisfied. 
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where n indicates the number of samples (power of 
2+1). 
Where symbol Σ " denotes to make sum but the initial 
and last terms only are multipled by factor 1/2. 
 The resultant trigonometric polynomial is a 
trigonometric interpolation polynominal in which each 
breakpoint used by the trapezpidal rule is an 
interpolation point as shown below: 
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   The cosine series expansion is explained in detail 
below. 
Assume that coefficients obtained by the trapezoidal 
rule using n sample points (n = np+1, np = 2p) are 
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Where the ordinary scaling factor 2/np is omitted from 
(4.5). 
   When the number of terms is doubled as np+1 = 2np 
each coefficient can efficiently be determined by 
making a good use of complementary relation between 
the trapezoidal rule and the midpoint rule. 

At each midpoint between sample points used by the 
trapezoidal rule (4.5), f(t) can be sampled as shown 
below: 
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Discrete cosine transform (using the midpoint rule) for 
(4.6) can be defined as shown below: 
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Since (4.8) is satisfied at this stage { ak
p+1 } can be 

determined. 
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  By using this recurrence formula for { p
ka }, f(t) can be 

expanded in a cosine series of higher degree while the 
number of terms is doubled as far as the required 
accuracy is satisfied.  Then { p

ka } is normalized by 
multipling by factor 2/np.  Note that the coefficient of 
the last term is multipled by factor 1/np so that all 
cosine series can be expressed in the same manner as 
shown in (4.1). 

 
• Error evaluation for cosine series 

The following relationship exists between the 
theoretical cosine coefficients ak of f(t) and discrete 
cosine coefficient { ak

p } taken at the p-th stage: 
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This results from (4.2) and (4.5) as well as 
orthogonality of trigonometric functions.  The error 
evaluation for a cosine series at the p-th stage 

( ) ∑∑
∞

+==

≤−
10

2cos
p

p

nk
k

n

k

p
k akta"tf  (4.10) 

can be deduced from (4.9).  If f(t) is an analytical 
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periodic function its series coefficients {ak} decrease 
according to exponential function order O (rk) (0 < r < 1) 
as k increases.  The r can be estimated from a discreate 
cosine coefficient at the p-th stage.  Let p

ka  = Ark (A: 
constant).  Since k is at most np, 4/pnr can be estimated 
from the ratio of the coefficient of the last term np to the 
coefficient of term 3/4np.  This subroutine does not allow 
the two coefficients to be zero by accident.  Therefore it 
uses the (np-1)-th and (3/4np-1)-th coefficients together 
with those coefficients to estimate a value of r as shown 
below. 
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If r is greater than 0.99, this subroutine cannot actually 
expand f(t) in a cosine series because the convergence 
rate of the series becomes weak. 
   By using the resultant r, the p-th stage error 
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can be estimated from (4.10). 
The last coefficient p

np
a  only is multipled by factor 1/2 

since this coefficient is a discrete cosine coefficient using 
the trapezoidal rule. 
 
• Computational process 

Step 1: Initialization 
− Initialization of Trigonometric function table 

At three points which divides in interval [0, π/2] 
equally, three values for the cosine function is 
obtained in reverse binary order.  The trigonometric 
function table is not initialized if this subroutine is 
called in advance.  The trigonometric function table 
is used for discrete cosine transform. 
 

− Initial cosine series expansion 
This subroutine performs 5-terms cosine series 
expansion whose np is 4(p=2) in (4.5) and 
calculates 2

0a , 2
1a , 2

2a , 2
3a , 2

4a .  At this time it also 
obtains f  based on the norm definition shown in 
(1.3). 

 
Step 2: Convergence criterion 
If np + 1 ≤ NMIN is satisfied this subroutine does not 
perform a convergence test and executes step 3. 
If np + 1 > NMIN is satisfied this subroutine performs a 
convergence test as described below: 
   This subroutine estimates computational error limit 

( )ufnp 2=ρ  (4.12) 

where u is the unit round off, and a tolerance for 
convergence test as 

{ }fra εεε ,max=  (4.13) 

   If the last two terms at the p-th stage have been lost 
significant digits, that is, if the coefficients satisfy (4.14). 
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the computational accuracy cannot be increased even if 
this computation continues.  Therefore this subroutine 
replaces the absolute error ep of the cosine series by the 
computational error ρ, assuming that the cosine series is 
converged.  If ρ < ε is satisfied this subroutine sets a 
condition code of 0 to ICON.  If ρ ≥ ε is satisfied this 
subroutine sets a condition code of 10000 to ICON 
assuming that εa or εr is relatively smaller than unit round 
off u 
  If (4.14) is not satisfied, this subroutine estimates error 
ep based on (4.11). 
 
If ep < ε is satisfied this subroutine sets a condition code 
of 0 to ICON and terminates normally.  If ep < ε is not 
satisfied but 2np + 1 ≤ NMAX is satisfied, this subroutine 
immediately executes Step 3.  Otherwise this subroutine 
sets a condition code of 20000 to ICON and terminates 
abnormally assuming that the required accuracy is not 
satisfied even when the number of terms to be expanded 
is reached the upper limit. 
Note that each coefficient is normalized whether this 
subroutine terminates normally or abnormally. 
 
Step 3: Calculation of sample points 
Sample points to be used for sampling of f(t) at the p-th 
stage can be expressed as follows: 
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They can be obtained in reverse binary order through use 
of the recurrence formula shown below: 
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where np = 2p. 
 
Step 4: Sampling of f(t) and calculation of the norm 
This subroutine obtains values of f(t) for n sample points 
based on (4.16). and overwrites them on the sample 
points. 
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It also calculates norm f  based on the norm definition 
shown in (1.3). 
 
Step 5: Trigonometric function table creation 
This subroutine produces the trigonometric function table 
required by step 6.  The trigonometric function table is 
not recalculated each time this subroutine is called. 
 
Step 6: Discrete cosine transform (using the midpoint 
rule) 
For sample points obtained by Step 4, this subroutine 
performs discrete cosine transform using the Fast Fourier 
Transform (FFT) method to determine }~{ p

ka . 
 
Step 7: Calculation of }{ 1+p

ka  

This subroutine combines }{ p
ka  obtained previously with  

by using (4.8) to obtain the coefficients }{ 1+p
ka  of the 

discrete cosine series consisting of 2np + 1 terms. 
   Then, this subroutine executes Step 2 after it increases 
a value of p by one. 
 
   Step 4 and 6 consume most of the time required to 
execute this subroutine. 
Then number of multiplications required to determine the 
coefficients of a cosine series consisting of n terms is 
about nlog2n. 
 
   To save storage this subroutine overwrites sample 
points, samples and expansion coefficients onto a one-
dimensional array A. 
 
   For further information, see Reference [59]. 
For detailed information about discrete cosine transfom, 
see an explanation of the subroutines FCOST and 
FCOSM. 
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F11-11-0201 FCOSM, DFCOSM 

Discrete cosine transform (midpoint rule, radix 2 FFT) 
CALL FCOSM (A, N, ISN, TAB, ICON) 

 
Function 
Given n same point {xj+1/2}, 
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  by equally dividing the half period of the even function 
with period 2π, a discrete cosine transform or its inverse 
transform based on the midpoint rule is performed by 
using the Fast Fourier Transform (FFT). 
  Here n = 2l (l = 0 or positive integer). 
 
• Cosine transform 

By inputting {xj+1/2} and performing the transform 
defined in (1.2), the Fourier coefficients {n/2⋅ak} are 
obtained 
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• Cosine inverse transform 
By inputting {ak} and performing the transform defined 
in (1.3), the values of the Fourier series {xj+1/2} are 
obtained. 
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   where Σ’ denotes the first term only is taken with factor 
1/2. 
 
Parameters 
A..... Input.  {xj+1/2} or {ak}. 

Output.  {n/2⋅ak} or {xj+1/2}. 
One-dimensional array of size n. 
See Fig. FCOSM-1. 

N..... Input.  Sample point number n. 
 

One-dimensional array A(N)

N

xn−1/2xn−3/2x2+1/2x1+1/2x1/2

an−1an−2a2a1a0{ak}

{xj+1/2}

 
Note: { ka

n

2
} is handled the same way as for {ak}. 

Fig. FCOSM-1  Data storing method 

ISN... Input.  Transform or inverse transform is 
indicated. 
For transform: ISN = +1 
For inverse transform: ISN = -1 

TAB..... Output.  Trigonometric function table used in 
the transform is stored. 
One-dimensional array of size n-1. 
See “Notes”. 

ICON.. Output.  Condition code. 
See Table FCOSM-1. 

 
Table FCOSM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 ISN ≠ 1, ISN ≠ -1 or N ≠ 2l 
(l = 0 or positive integer) 

Aborted. 

 
Comments on use 
• Subprograms used 

SSL II ... UPNR2, UTABT, UCOSM and MGSSL 
FORTRAN basic functions ... SQRT and MAX0 

 
• Notes 

General definition of Fourier transform: 
The discrete cosine transform and its inverse transform 
based on the midpoint rule are generally defined by 
(3.1) and (3.2). 
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  The subroutine obtains {n/2⋅ak} and {xj+1/2} which 
correspond to the left-hand side of (3.1) and (3.2), 
respectively, and the user has to scale the results, if 
necessary. 
Use of the trigonometric function table: 
When the subroutine is called successively for transforms 
of a fixed dimension, the trigonometric function table is 
calculated and created only once.  Therefore, when 
calling the subroutine subsequently, the contents of the 
parameter TAB must be kept intact. 
  Even when the dimension differs, the trigonometric 
function table need not be changed.  A new trigonometic 
function table entry can be made on an as-required basis. 
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• Example 
By inputting n sample points {xj+1/2}, performing the 
transform by the subroutine and scaling the results, the 
discrete Fourier coefficients {ak} are obtained.  By 
performing the inverse transform after that, {xj+1/2} are 
obtained. 
Here n ≤ 512. 

 
C     **EXAMPLE** 
      DIMENSION X(512),TAB(511) 
C     COSINE TRANSFORM 
      ISN=1 
      READ(5,500) N,(X(I),I=1,N) 
      WRITE(6,600) N 
      WRITE(6,601) (X(I),I=1,N) 
      CALL FCOSM(X,N,ISN,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
C     NORMALIZE 
      CN=2.0/FLOAT(N) 
      DO 10 K=1,N 
      X(K)=X(K)*CN 
   10 CONTINUE 
      WRITE(6,602) ISN 
      WRITE(6,601) (X(I),I=1,N) 
C     COSINE INVERSE TRANSFORM 
      ISN=-1 
      CALL FCOSM(X,N,ISN,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) ISN 
      WRITE(6,601) (X(I),I=1,N) 
   20 WRITE(6,603) ICON 
      STOP 
  500 FORMAT(I5/(6F12.0)) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA',5X, 
     *       'ISN=',I2) 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 
Method 
The discrete cosine transform based on the midpoint rule 
of dimension n (=2l, l = 0, 1, ...) is performed by using 
the radix 2 Fast Fourier Transform (FFT). 
  The transform based on the midpoint rule can be 
accomplished by considering the even function x(t) to be 
a complex valued function and performing the discrete 
complex Fourier transform for the even function based on 
the midpoint rule of dimension 2n.  In this case, however, 
it is known that the use of the characteristics of the 
complex transform permits efficient transform. 
For the complex value function x(t) with period 2π, the 
discrete Fourier transform based on the midpoint rule of 
dimension 2n (= 2l+1, l = 0, 1, 2, ...) is defined as 
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  The basic idea of the FFT is to accomplish the objective 
transform by repeating the elementary discrete Fourier 
transform by repeating the elementary discrete Fourier 
transform of small dimension (i.e., if the radix is 2, the 
dimension is 2).  In other words, considering sample data 
which consist of (j+1) th element and subsequent ones 
with the interval pn~ , (= 2l+1-p, p = 1, 2, ...) and defining 
the transform 
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of dimension np = 2p, then the transform (4.2) can be 
satisfied with the FFT algorithm (4.3) of radix 2. 
  Initial value  
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  The values obtained in the final step of these recurrence 
equations are the discrete Fourier coefficients (4.4). 

( ) 12,...,1,0,,02 1 −== + nkkxn l
kα  (4.4) 

  If x(t) is an even function, the fact that x(t) is real, i.e., 

x(t) = x (t) ( x (t) is a complex conjugate of x(t)), 

and symmetric, i.e., 

( ) ( )x t x t2π − =  

affects the intermediate results {xp(j,k)} of the FFT as 
follows: 
Real property: xp(j, 0) is real 
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Symmetric property: 
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On the other hand, the relationship 

ak=2αk , k=0,1,...,n-1 

can be satisfied between the complex Fourier coefficients 
{αk} for the even function x(t) and the Fourier 
coefficients defined by the following discrete cosine 
transform 
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  Therefore by using the characteristic (4.5) in the FFT 
algorithm (4.3) as well as the relationship above, the 
number of computations and the memory using them.  
That is, the range of j and k used in (4.3) are halved, so 
the FFT algorithm of radix 2 for the discrete cosine 
transform (4.6) can be represented by 
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  Normally, the area to store the intermediate results {xp(j, 
k)} needs one-dimensional array of size n, but if the input 
data is permuted in advance by reverse binary 
transformation, the above computation can be carried out 
by using the same area in which the data was input.  The 
number of real number multiplications necessary for the 
cosine transform of dimension n is about nlog2n. 
 
• Transform procedure in the subroutine 

(a) The necessary trigonometric function table (size n-
1) for the transform is created in reverse binary 
order. 

(b) The sample points {x(π/n(j+1/2))} (size n) are 
permuted in reverse binary order. 

(c) The FFT algorithm (4.7), which takes into 
consideration the symmetric property of the input 
data is performed in the same area to obtain the 
Foruier coefficients {ak} in normal order. 

 
• Inverse transform procedure 

(a) The necessary trigonometric function table for the 
inverse transform procedure. 
This table is the same one as used in the transform 
procedure. 

(b) By inputting the n Fourier coefficients {ak} for the 
even function {x(π/n(j+1/2))}, and tracing 
backwards the recurrence equations (4.7) with 
respect to p, the function values {x(π/n(j+1/2))} are 
obtained in reverse binary order. 

(c) By permuting the obtained n data by reverse binary 
transformation, the function values {x(π/n(j+1/2))} 
are obtained in normal order. 
For further details, refer to Reference [58]. 
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F11-11-0101 FCOST, DFCOST 

Discrete cosine transform (Trapezoidal rule, radix 2 FFT) 
CALL FCOST (A, N, TAB, ICON) 

 
Function 
Given n+1 sample points {xj}, by equally dividing the 
half period of the even function with period 2π into n, 

njj
n

xx j ,...,1,0, =⎟
⎠
⎞

⎜
⎝
⎛=
π  (1.1) 

  a discrete cosine transform or its inverse transform 
based on the trapezoidal rule is performed by using the 
Fast Fourier Transform (FFT).  Here, n = 2l (l = 0 or 
positive integer). 
 
• Cosine transform 

By inputting {xj} and performing the transform defined 
in (1.2), the Fourier coefficients {n/2⋅ak} are obtained. 
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n

x"an n

j
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  where Σ” denotes both the first and last terms of the 
sum are taken with factor 1/2. 
 
• Cosine inverse transform 

By inputting {ak} and performing the transform 
defined in (1.3), the values of the Fourier series {xj} 
are obtained 

njkj
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a"x
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k
kj ,...,1,0,cos
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==∑
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π  (1.3) 

Parameters 
A..... Input.  {xj} or {ak} 

Output.  {n/2･ak} or {xj} 
One-dimensional array. 
See Fig. FCOST-1. 

N..... Input.  Sample point number-1 
TAB... Output.  Trigonometric function table used by 

the transform is stored. 
One-dimensional array of size n/2-1. 
See “Notes”. 

ICON.. Output.  Condition code. 
See Table FCOST-1. 

 
Table FCOST-1  Condition codes 

Code Meaning Processing 
      0 No error  

30000 N ≠ 2l (l: 0 or positive 
integer) 

Bypassed 

One-dimensional array A(N+1)

N+1

xnxn−1x2x1x0

anan−1a2a1a0{ak}

{xj}

 
Note: { ka

n

2
} is handled in the same way as for {ak}. 

Fig. FCOST-1  Data storing method 

Comments on use 
• Subprograms used 

SSL II ... UPNR2, UTABT, UCOSM and MGSSL 
FORTRAN basic functions ... SQRT and MAX0 

 
• Notes 

General definition of Fourier transform: 
The discrete cosine transform and its inverse transform 
based on the trapezoidal rule are generally defined by 
(3.1) and (3.2). 
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  The subroutine obtains {n/2･ak} and {xj} which 
correspond to the left-hand side of (3.1) and (3.2), 
respectively and the user has to scale the results, if 
necessary. 
Calculating trigonometric polynomial: 
When obtaining values of the n-th order trigonometric 
polynomial 

( ) ntataatx n cos...cos
2
1

10 +++=  (3.3) 
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⎛π by using the inverse  

transform, the highest order coefficient an must be 
doubled in advance.  Refer to example (b). 
Use of the trigonometric function table: 
When the subroutine is called successively for 
transforms of a fixed dimension, the trigonometric 
function table is calculated and created only once.  
Therefore, when calling the subroutine subsequently, the 
contents of parameter TAB must be kept intact. 
  Even when the dimension differs, the trigonometric 
function table need not be changed.  A new 
trigonometric function table entry can be made on an as-
required basis. 



FCOST 

322 

• Example 
(a) By inputting n+1 sample points {xj}, performing the 

transform by the subroutine and scaling the results, 
the discrete Fourier coefficients {ak} are obtained.  
By performing its inverse transform after that, {xj} 
are obtained. 
  Here n ≤ 512. 

 
C     **EXAMPLE** 
      DIMENSION X(513),TAB(255) 
      READ(5,500) N 
      NP1=N+1 
      READ(5,501) (X(I),I=1,NP1) 
C     COSINE TRANSFORM 
      WRITE(6,600) N 
      WRITE(6,601) (X(I),I=1,NP1) 
      CALL FCOST(X,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
C     NORMALIZE 
      CN=2.0/FLOAT (N) 
      DO 10 K=1,NP1 
      X(K)=X(K)*CN 
   10 CONTINUE 
      WRITE(6,602) 
      WRITE(6,601) (X(I),I=1,NP1) 
C     COSINE INVERSE TRANSFORM 
      CALL FCOST(X,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) 
      WRITE(6,601) (X(I),I=1,NP1) 
   20 WRITE(6,603) ICON 
      STOP 
  500 FORMAT(I5) 
  501 FORMAT(6F12.0) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA') 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 

(b) By inputting cosine coefficients {ak}, the values 
{x(πj/n)} of the n-th order trigonometric 
polynomial 

( ) ( )
nta

tnataatx

n

n

cos

1cos...cos
2
1

110
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−+++= −  

 at the sample points {πj/n} are obtained.  The 
coefficient of the last term must be doubled before 
it is input. 

   Here n ≤ 512. 

C     **EXAMPLE** 
      DIMENSION A(513),TAB(255) 
      READ(5,500) N 
      NP1=N+1 
      READ(5,501) (A(K),K=1,NP1) 
      WRITE(6,600) N 
      WRITE(6,601) (A(K),K=1,NP1) 
      A(NP1)=A(NP1)*2.0 
      CALL FCOST(A,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) 
      WRITE(6,601) (A(K),K=1,NP1) 
   20 WRITE (6,603) ICON 
      STOP 
  500 FORMAT(I5) 
  501 FORMAT(6F12.0) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA') 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 
Method 
The discrete cosine transform based on the trapezoidal 
rule of dimension n+1 (=2l+1, l = 0, 1, ...) is performed 
by using the radix 2 Fast Fourier Transform (FFT). 
  The transform based on the trapezoidal rule can be 
accomplished efficiently by using the transform based on 
the midpoint rule.  The subroutine uses this method. 
  Dividing equally into np (=2p, p = 0,1, ...)  the half 
period [0, π] of an even function x(t) with period 2π, the 
discrete cosine transform based on the trapezoidal rule is 
defined as 
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  Also the discrete cosine transform based on the 
midpoint rule of dimension np is defined as 
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  In Eqs. (4.1) and (4.2), however, the ordinary scaling 
factor 2/np is omitted. 
  Doubling the division number to np+1, the {ak

p+1} can be 
expressed as follows by using { p

ka } and { p
kâ } both of 

which have half as many dimension as { 1ˆ +p
ka }. 
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  The equations shown in (4.3) can be considered as 
recurrence equations with respect to p to obtain { 1+p

ka } 

from { p
ka }.  Therefore, when performing transform with 

division number 2l, if the initial condition { 1
ka ; k = 0, 1, 

2} is given and the discrete cosine transform based on the 
midpoint rule of dimension 2p is performed each at the p-
th stage (p = 1, 2, ..., l -1), then the discrete cosine 
transform series { p

ka , k = 0, 1, ..., np} ( p = 1, 2, ..., l ) 
based on the trapezoidal rule can be obtained by using 
equations (4.3). 
  The number of multiplications of real numbers executed 
is about nlog2n, which means the calculation method 
described above to obtain { l

ka } is fast. 
 
Procedural steps taken in the subroutine 
Taking the first n points out of the sequenced n+1 sample 
points x0, x1, ..., xn and permuting them in reverse binary 
order representing x(0), x(1), ..., x(n).  In this way, all the 
necessary data for the recurrence equations (4.3) can be 
gained successively. 
  Next, the trigonometric function table (size n/2-1) 
necessary for the transform is made in reverse binary 
order corresponding to the sample point numbers.  
Finishing with the preparatory processing, the cosine 
transform is performed as follows: 

(a) Initialization 
{ 1

ka , k = 0, 1, 2} with p=1 are obtained by using x(0), 
x(1), x(n) and stored in x(.), respectively. 

(b) Cosine transform based on the midpoint rule of 
dimension 2p. 
By inputting np sample points, x(np), x(np+1), ..., 
x(np+1-1), and performing the cosine transform based 
on the midpoint rule, { p

ka ) are obtained in the same 
area.  For the cosine transform based on the midpoint 
rule, see method for subroutine FCOSM. 

(c) Calculation of recurrence equations with respect to 
{ p

ka } 
All of the intermediate results are overwritten, so no 
supplementary work area is needed.  That is, the four 
elements, p

ka , p
knp

a − , p
kâ  and p

knp
a −ˆ , at the (p+1) th 

step are calculated according to the recurrence 
equations by using the four elements, 1+p

ka , 1+
−

p
knp

a , 

1+
+

p
knp

a  and 1
1

+
−+

p
knp

a  at the p-th stage, and are stored in 

the same positions corresponding to the ones at the p-
th stage. 
Repeating stages (b) and (c) with p = 1, 2, ..., l-1, {ak} 
can be obtained. 
 
For further details, see Reference [58]. 
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E51-20-0101 FSINF, DFSINF 

Sine series expansion of an odd function (Fast sine 
transform) 
CALL FSINF (TH, FUN, EPSA, EPSR, NMIN, 
NMAX, B, N, ERR, TAB, ICON) 

 
Function 
This subroutine performs sine series expansion of a 
smooth odd function f(t) with period 2T according to the 
required accuracy of εa and ε r .  It determines n 
coefficients {bk} which satisfy 
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T
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k εεπ ,maxsin
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 (1.1) 

Since {bk} contains trivial coefficient b0 = 0, the number 
of coefficients to be expanded actually is n-1.  The norm 

f  of f(t) is defined as shown in (1.3) by using function 
values taken at sample points shown in (1.2) within the 
half period [0, T]. 
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Where T > 0, εa ≥ 0, εr  ≥ 0. 
 
Parameters 
TH..... Input.  Half period T of the function f(t). 
FUN.... Input.  Name of the function subprogram 

which calculates f(t) to be expanded in a sine 
series. 
See Example of using this subroutine. 

EPSA... Input.  The absolute error tolerance εa. 
EPSR... Input.  The relative error tolerance εr. 
NMIN... Input.  Lower limit of terms of sine series (>0). 

NMIN should be taken a value such as power 
of 2.  The default value is 8. 
See Notes. 

NMAX... Input.  Upper limit of terms of sine series.  
(NMAX > NMIN).  NMAX should be taken a 
value such as power of 2.  The default value is 
256. 
See Notes. 

B..... Output.  Coefficients {bk}. 
One-dimensional array of size NMAX.  Each 
coefficient is stored as shown below: 
B(1)=b0, B(2)=b1, ..., B(N)=bn-1, 

N..... Output.  Number of terms n of the sine series 
(≥4). 
N takes a value such as power of 2. 

ERR.... Output.  Estimate of the absolute error of the 
series. 

TAB.... Output.  TAB contains a trigonometric 
function table used for series expansion. 

One-dimensional array whose size is greater 
than 3 and equal to NMAX/2-1. 

ICON... Output.  Condition code. 
See Table FSINF-1. 

 
Table FSINF-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The required accuracy was 
not satisfied due to 
rounding-off errors.  The 
required accuracy is too 
high. 

B contains 
resultant 
coefficients.  
The accuracy of 
the series is the 
maximum 
attainable. 

20000 The required accuracy was 
not satisfied though the 
number of terms of the 
series has reached the 
upper limit. 

Bypassed. B 
contains 
resultant 
coefficients and 
ERR contains 
an estimate of 
absolute error. 

30000 One of the following cases 
occurred: 
1 TH ≤ 0 
2 EPSA < 0.0 
3 EPSR < 0.0 
4 NMIN < 0 
5 NMAX < NMIN 

Bypassed 

 
Comments on use 
• Subroutines used 

SSL II ... MGSSL, AMACH, UTABT, USINM and 
UNIFC 
FORTRAN basic functions ... ABS, AMAX1, AMIN1 
and FLOAT 

 
• Notes 

The function subprogram specified by the FUN 
parameter must be a subprogram defined at the interval 
[0, T] having independent variable t only as the 
argument. 
The name must be declared by the EXTERNAL 
statement in the program which calls this subroutine. 
If the function contains auxiliary variable, they must be 
declared by a COMMON statement to establish an 
interface with the calling program. 
See Example of using this subroutine. 

 
Use of the trigonometric function table 
When this subroutine is repeatedly called, the 
trigonometric function table is produced only once.  A 
new trigonometric function table entry is made on an 
as-required basis.  Therefore the contents of TAB must 
be kept intact when this subroutine is called 
subsequently. 
 
If NMIN of NMAX does not take a value such as 
power of 2, this subroutine assumes the maximum 
value of power of 2 which does not exceed that value.  
However NMAX = 4 is assumed if NMAX < 4 is 
satisfied.
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  The degree of error decerement greatly depends on 
the smoothness of f(t) in the open interval (-∞, ∞) as 
the number of terms n increases.  If f(t) is an analytical 
periodic function, the error decreases according to 
exponential function order O (rn) (0 < r < 1). 

If it has up to k-th continuous derivatives, the error 
decreases according to rational function order O(n-k).  
When k = 0 or k = 1, an estimate of absolute error is not 
always accurate because the number of terms to be 
expanded increases greatly.  Therefore, the function used 
by this subroutine should have, at least, up to 2-nd 
continuous derivatives. 
 
Accuracy of the series 
This subroutine determines a sine series which satisfies 
(1.1) according to the required accuracy of εa and εr. 
If εr = 0 is specified, this subroutine expands f(t) in a sine 
series within the required accuracy of absolute error εa. 
  Similarly εa = 0 is specified, this subroutine expands f(t) 
in a sine series within the required accuracy of relative 
error εr. 
  However sine series expansion is not always successful 
depending on the specification of εa and εr.  For example, 
when εa or εr is too small in comparison with 
computational error of f(t), the effect of rounding-off 
errors becomes greater on the computational result even 
if the number of terms to be expanded does not reach the 
upper limit. 
  In such a case, this subroutine abnormally terminates 
after a condition code of 10000 is set to ICON.  At this 
time, the accuracy of the sine series becomes the 
attainable limit for the computer used.  The number of 
terms to be expanded in a sine series sometimes does not 
converge within NMAX evaluations depending on the 
characteristics of f(t).  In such a case, this subroutine 
abnormally terminates after a condition code of 20000 is 
set to ICON.  Each coefficient is an approximation 
obtained so far, and is not accurate.  To determine the 
accuracy of sine series, this subroutine always set an 
estimate of absolute error in ERR. 
 
  Any inverse transform can be attempted by the 
subroutine FSINT.  Note that the contents of TAB must 
be kept intact whether normal or inverse transform is 
attempted.  See Example 2. 
  When f(t) is only a periodical function, this subroutine 
can be used to perform sine series expansion for odd 
function as (f(t) - f(-t))/2. 
  If f(t) has no period and is absolutely integrable, its 
theoretical sine transform can be defined as shown in 
(3.1): 

( ) ( ) tdttfF ωω sin
0∫
∞

=  (3.1) 

If f(t) is damped according to order of O (e-at) (a > 0), 
an approximation of the Fourier integral can be 
obtained as described below: 
  Assume that ( )f t  can be ignored on the interval [T, 

∞) when T is sufficiently large. 
By defining T which satisfies (3.2). 

( ) Ttutf ≥< ,  (3.2) 

Where u is the unit round off. 
This subroutine can be used to determine sine series 
coefficients {bk} for f(t), assuming that f(t) is a function 
with period 2T. 
Since {bk} can be expressed as  

( ) dtkt
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b
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k
πsin2

0∫=  (3.3) 

(3.4) can be established based on (3.1) and (3.2). 
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Based on this relationship this subroutine can calculate 
an approximation of sine transform shown in (3.1) by 
using discrete sine transform. 
  When inverse transform 

( ) ( ) ωωω
π

tdFtf sin2
0∫
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=  (3.5) 

is to be calculated, the subroutine FSINT can be called 
for n pieces of data as follows: 

1,...,1,0,2 −=
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The subroutine FSINT can obtain an approximation of: 

1,...,1,0, −=




 njj

n
Tf  

See Example 2. 
 
• Examples 

Example 1: 
This example expands the following odd function with 
period 2π having auxiliary variable p 

( )f t t
p t p

=
− +

sin
cos1 2 2  

in a sine series according to the required accuracy of εa 
= 5⋅10-5 and εr = 5⋅10-5.  Where NMIN = 8 and NMAX 
= 256 are assumed. 
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  The theoretical sine series expansion of f(t) is as 
follows: 

( ) ∑
∞

=

−=
1

1 sin
k

k ktptf  

This example prints sine series coefficients when p = 1/4, 
1/2 and 3/4. 
 
C     **EXAMPLE** 
      DIMENSION B(256),TAB(127) 
      EXTERNAL FUN 
      COMMON P 
      TH=ATAN(1.0)*4.0 
      EPSA=0.5E-04 
      EPSR=EPSA 
      NMIN=8 
      NMAX=256 
      P=0.25 
    1 CALL FSINF(TH,FUN,EPSA,EPSR, 
     *NMIN,NMAX,B,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      WRITE(6,600) N,ERR,ICON,P 
      WRITE(6,601) (B(I),I=1,N) 
      P=P+0.25 
      IF(P.LT.1.0) GO TO 1 
      STOP 
   10 WRITE(6,602) ICON 
      STOP 
  600 FORMAT('0',5X,'EXPANSION OF', 
     *' FUNCTION FUN(T)',3X,'N=',I4, 
     *5X,'ERR=',E15.5,5X,'ICON=',I6,5X, 
     *'P=', E15.5) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(T) 
      COMMON P 
      FUN=SIN(T)/(1.0-2.0*P*COS(T)+P*P) 
      RETURN 
      END 
 
Example 2: 
Sine transform and inverse transform 
This example transform odd function 

( ) tdtteF x ωω sin
0

2

∫
∞ −=  

in a sine series according to the required accuracy of εa = 
5･10-5 and εr = 5 ⋅10-5 and compares the results with 
analytical solution 

( ) 4
2

4

ω
ωπω

−
⋅= eF  

Then, this example performs inverse transform of the 
function by using the subroutine FSINT and checks the 
accuracy of the results. 

C     **EXAMPLE** 
      DIMENSION B(256),TAB(127), 
     *          ARG(256),T(256) 
      EXTERNAL FUN 
      COMMON PI,SQPI 
      PI=ATAN(1.0)*4.0 
      SQPI=SQRT(PI) 
      TH=SQRT(ALOG(4.0/AMACH(TH))) 
      EPSA=0.5E-04 
      EPSR=0.0 
      NMIN=8 
      NMAX=256 
C     SINE TRANSFORM 
      CALL FSINF(TH,FUN,EPSA,EPSR,NMIN, 
     *NMAX,B,N,ERR,TAB,ICON) 
      IF(ICON.GT.10000) GO TO 10 
      TQ=TH*0.5 
      H=PI/TH 
      DO 1 K=1,N 
      ARG(K)=H*FLOAT(K-1) 
      B(K)=B(K)*TQ 
      T(K)=TRFN(ARG(K)) 
    1 CONTINUE 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,610) 
      WRITE(6,601) (ARG(K),B(K),T(K), K=1,N) 
C     INVERSE TRANSFORM 
      Q=1.0/TQ 
      DO 2 K=1,N 
      B(K)=B(K)*Q 
    2 CONTINUE 
      CALL FSINT(B,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 10 
      H=TH/FLOAT(N) 
      DO 3 K=1, N 
      ARG(K)=H*FLOAT(K-1) 
      T(K)=FUN(ARG(K)) 
    3 CONTINUE 
      WRITE(6,620) 
      WRITE(6,610) 
      WRITE(6,601) (ARG(K),B(K),T(K),K=1,N) 
      STOP 
   10 WRITE(6,602)ICON 
      STOP 
  600 FORMAT('0',5X,' CHECK THE SINE', 
     *' TRANSFORM OF FUNCTION FUN(T)', 
     *3X,'N=',I4,5X,'ERR=',E15.5,5X, 
     *'ICON=',I5) 
  610 FORMAT('0',6X,'ARGUMENT',7X, 
     *'COMPUTED',11X,'TRUE') 
  620 FORMAT('0',5X,'CHECK THE INVERSE' 
     *,' TRANSFORM') 
  601 FORMAT(/(3E15.5)) 
  602 FORMAT('0',5X,'CONDITION CODE',I6) 
      END 
      FUNCTION FUN(T) 
      FUN=T*EXP(-T*T) 
      RETURN 
      END 
      FUNCTION TRFN(W) 
      COMMON PI,SQPI 
      TRFN=W*EXP(-W*W*0.25)*SQPI*0.25 
      RETURN 
      END 
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Method 
This subroutine applies discrete fast sine transform 
(based on the trapezoidal rule) to sine transform for entry 
of functions. 
 
• Sine series expansion 

For simplicity, an odd function f(t) with a period of 2π.  
The function can be expanded in a sine series as shown 
below: 
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( ) dttktfbk ∫=
π

π 0
sin2  (4.2) 

This subroutine uses the trapezoidal rule to compute 
(4.2) by dividing the closed interval [0, π] equally.  By 
using resultant coefficients {bk} this subroutine 
approximates (4.1) by finite number of terms. 
If this integrand is smooth, the number of terms is 
doubled as far as the required accuracy of εa and εr is 
satisfied.  If sampling is sufficient, (4.3) will be 
satisfied. 
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where n indicates the number of samples (power of 
2+1) and b0=0.  The resultant trigonometric polynomial 
is a trigonometric interpolation polynomial in which 
each breakpoint used by the trapezoidal rule is an 
interpolation point as shown below: 
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  The sine series expansion is explained in detail below. 
Assume that coefficients obtained by the trapezoidal 
rule using n sample points (n=np, np=2p) are 
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Where the ordinary scaling factor 2/np is omitted from 
(4.5). 
  When the number of terms is doubled as np+1 = 2np 
each coefficient can efficiently be determined by 
making a good use of complementary relation between 
the trapezoidal rule and the midpoint rule.  At each 
midpoint between sample points used by the 
trapezoidal rule (4.5), f(t) can be sampled as shown 
below: 
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Discrete sine transform (using the midpoint rule) for (4.6) 
can be defined as shown below: 
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  Since (4.8) is satisfied at this stage }{ 1+p
kb  can be 

determined. 
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  By using this recurrence formula for }{ p
kb , f(t) can be 

expanded in a sine series of higher degree while the 
number of terms is doubled as far as the required 
accuracy is satisfied. 
Then }{ p

kb  is normalized by multipling by factor 2/np. 
 
• Error evaluation for sine series 

The following relationship exists between the 
theoretical sine coefficients {bk} of f(t) and discrete 
sine coefficients }{ p

kb , taken at the p-th stage: 
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This results from (4.2) and (4.5) as well as 
orthogonality of trigonometric functions. 
The error evaluation for a sine series at the p-th stage 
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can be deduced from (4.9). 
  If f(t) is an analytical periodic function, its series 
coefficients {bk} decrease according to exponential 
function order O (rk) (0 < r < 1) as k increases.  Then r can 
be estimated from a discrete sine coefficient at the p-th 
stage.  Let bk

p  = Ark (A: constant).  Since k is at most 
4/,1 pn

p rn −  can be estimated from the ration of the 
coefficient of the last term np-1 to the coefficient of term 
3/4np-1.  This subroutine does not allow the two 
coefficients to be zero by accident.  Therefore it uses the 
(np-2)-th and (3/4np-2)-th coefficients together with those 
coefficients to estimate a value of r as shown below. 
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If r is greater than 0.99, this subroutine cannot actually 
expand f(t) in a sine series because the convergence rate 
of the series becomes weak.  By using the resultant r, 
the p-th stage error. 
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np pp
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can be estimated from (4.10). 
 
• Computational process 

Step 1: Initialization 
− Initialization of Trigonometric function table 

At three points which divides interval [0, π/2] equally, 
three values for the cosine function is obtained in 
reverse binary order.  The trigonometric function 
table is not initialized if this subroutine is called in 
advance.  The trigonometric function table is used for 
discrete sine transform. 

− Initial sine series expansion 
This subroutine performs 4(p=2) in (4.5) and 
calculates .,,,0.0 2

3
2
2

2
1 bbb   At this time, it also obtains 

f  based on the norm definition shown in (1.3). 
 
Step 2: Convergence criterion 
If np < NMIN is satisfied this subroutine does not 
perform a convergence test but immediately executes 
Step 3. 
If  np > NMIN is satisfied, this subroutine performs a 
convergence test as described below: 
  This subroutine estimates computational error limit 

( ),2ufn p=ρ  (4.12) 

where u is the unit round off. 
and a tolerance for convergence test as 

{ }fra εεε ,max=  (4.13) 

  If the last two terms at the p-th stage have been lost 
significant digits, that is, if the coefficients satisfy 
(4.14). 

ρ<+ −−
p

n
p
n pp

bb 12 2
1  (4.14) 

the computational accuracy cannot be increased even if 
this computation continues. 
Therefore, this subroutine replaces the absolute error ep 
of the sine series by the computational error ρ, 
assuming that the sine series is converged. 
  If ρ < ε is satisfied, this subroutine sets a condition 
code of 0 to ICON.  If ρ ≥ ε is satisfied, this subroutine 
sets a condition code of 10000 to ICON assuming that 
εa or εr is relatively smaller than unit round off u. 
  If (4.14) is not satisfied, this subroutine estimates 
absolute error ep based on (4.11).  If ep ≥ ε is satisfied, 
this subroutine sets a condition code of 0 to ICON and 
terminates normally.  If ep < ε is not satisfied but 2np ≤ 

NMAX is satisfied, this subroutine immediately 
executes Step 3.  Otherwise this subroutine sets a 
condition code of 20000 to ICON and terminates 
abnormally assuming that the required accuracy is not 
satisfied even when the number of terms to be 
expanded its reached the upper limit.  Note that each 
coefficient is normalized whether this subroutine 
terminates normally or abnormally. 
 
Step 3: Calculation of sample points 
Sample points to be used for sampling of f(t) at the p-th 
stage can be expressed as follows: 
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They can be obtained in reverse binary order through 
use of the recurrence formula shown below: 
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where np = 2p. 
 
Step 4: Sampling of f(t) and calculation of the norm 
This subroutine obtains values of f(t) for n sample 
points based on (4.16) and overwrites them on the 
sample points. 
  It also calculates norm f  based on the norm 
definition shown in (1.3). 

 
Step 5: Trigonometric function table creation 
This subroutine produces the trigonometric function 
table required by Step 6.  The trigonometric function 
table is not recalculated each time this subroutine is 
called. 

 
Step 6: Discrete sine transform (using the midpoint 
rule) 
For sample points obtained by Step 4, this subroutine 
performs discrete sine transform using the Fast Fourier 
Transform (FFT) method to determine { p

kb~ }. 
 

Step 7: Calculation of { 1+p
kb } 

This subroutine combines { p
kb } obtained previously 

with { p
kb~ } by using (4.8) to obtain the coefficients 

{ 1+p
kb } of the discrete sine series consisting of 2np + 1 

terms. 
  Then, this subroutine executes Step 2 after it increases 
a value of p by one. 

 
  Step 4 and 6 consume most of the time required to 
execute this subroutine. 
The number of multiplications required to determine 
the coefficients of a sine series consisting of n 
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terms is about nlog2 n. 
To save storage this subroutine overwrites sample 
points, samples and expansion coefficients onto a one-
dimensional array B. 

  For further information, see Reference [59]. 
For detailed information about discrete sine transform, 
see an explanation of the subroutines FSINT and 
FSINM. 
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F11-21-0201 FSINM, DFSINM 

Discrete sine transform (midpoint rule, radix 2 FFT) 
CALL FSINM (A, N, ISN, TAB, ICON) 

 
Function 
Given n sample points {xj+1/2}, 
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by equally dividing the half period of the odd function 
x(t) with period 2π, a discrete sine transform or its 
inverse transform based on the midpoint rule is 
performed by using the Fast Fourier Transform (FFT). 
  Here n = 2l (l = 0 or positive integer). 
 
• Sine transform 

By inputting {xj+1/2} and performing the transform 
defined in (1.2), the Fourier coefficients {n/2⋅bk} are 
obtained. 
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• Sine inverse transform 
By inputting {bk} and performing the transform defined 
in (1.3), the value of the Fourier series {xj+1/2} are 
obtained. 
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Parameters 
A..... Input.  {xj+1/2} or {bk} 

Output.  {n/2･bk} or {xj+1/2} 
One-dimensional array of size n 
See Fig. FSINM-1. 

N..... Input.  Sample point number n 
One-dimensional array A(N)

N

xn−1/2xn−3/2x2+1/2x1+1/2x1/2

bnbn−1b3b2b1{bk}

{xj+1/2}

 
Note: { }kbn ⋅2/  is handled in the same way as for {bk}. 
 
Fig. FSINM-1  Data storing method 

ISN... Input.  Transform or inverse transform is 
indicated. 
For transform:  ISN = +1 
For inverse transform:  ISN = -1 

TAB... Output.  Trigonometric function table used in 
the transform is stored. 
One-dimensional array of size n-1. 
See “Notes”. 

ICON.. Output.  Condition code 
See Table FSINM-1. 

 
Table FSINM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 ISN ≠ 1, ISN ≠ -1 or N ≠ 2l 
(l = 0 or positive integer) 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... UPNR2, UTABT, USINM and MGSSL 
FORTRAN basic functions ... SQRT and MAX0 

 
• Notes 

General definition of Fourier Transform: 
The discrete sine transform and its inverse transform 
based on the midpoint rule are generally defined by 
(3.1) and (3.2) 
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  The subroutine obtains {n/2･bk} and {xj+1/2} which 
correspond to the left-hand side of (3.1) and (3.2), 
respectively, and the user has to scale the results, if 
necessary. 
Calculation of trigonometric polynomial: 
When obtaining the values x(π/n(j+1/2)) of the n-th 
order trigonometric polynomial 

( ) ntbtbtbtx n sin...2sinsin 21 +++=  

  by using the inverse transform, the highest order 
coefficient bn must be doubled in advance.  See 
example (b). 
Use of the trigonometric function table: 
When the subroutine is called successively for 
transforms of a fixed dimension, the trigonometric 
function table is calculated and created only once.  
Therefore, when calling the subroutine subsequently, 
the contents of the parameter TAB must be kept intact. 
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Even when the dimension differs, the trigonometric 
function table need not be changed.  A new trigonometric 
function table entry can be made on an as-required basis. 
 
• Example 

(a) By imputing n sample point {xj+1/2} performing the 
transform in the subroutine and scaling the results, 
the discrete Fourier coefficients {bk} are obtained.  
By performing the inverse transform after that, 
{xj+1/2} are obtained. 
  Here n ≤ 512. 

 
C     **EXAMPLE** 
      DIMENSION X(512),TAB(511) 
C     SINE TRANSFORM 
      ISN=1 
      READ(5,500) N,(X(I),I=1,N) 
      WRITE(6,600) N 
      WRITE(6,601) (X(I),I=1,N) 
      CALL FSINM(X,N,ISN,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
C     NORMALIZE 
      CN=2.0/FLOAT(N) 
      DO 10 K=1,N 
      X(K)=X(K)*CN 
   10 CONTINUE 
      WRITE(6,602) ISN 
      WRITE(6,601) (X(I),I=1,N) 
C     SINE INVERSE TRANSFORM 
      ISN=-1 
      CALL FSINM(X,N,ISN,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) ISN 
      WRITE(6,601) (X(I),I=1,N) 
   20 WRITE(6,603) ICON 
      STOP 
  500 FORMAT(I5/(6F12.0)) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA',5X, 
     *       'ISN=',I2) 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 

(b) By inputting sine coefficients {bk} based on the 
midpoint rule, the values {x(π(j+1/2)/n)} of the n-th 
trigonometric polynomial. 

( ) ntbtbtbtx n sin...2sinsin 21 +++=  

 are obtained at the sample points {π(j+1/2)/n}.  The 
coefficient of the last term bn must be doubled 
before it is input. 
  Here n ≤ 512. 

 

C     **EXAMPLE** 
      DIMENSION B(512),TAB(511) 
      ISN=-1 
      READ(5,500) N,(B(I),I=1,N) 
      WRITE(6,600) N 
      WRITE(6,601) (B(I),I=1,N) 
      B(N)=B(N)*2.0 
      CALL FSINM(B,N,ISN,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) ISN 
      WRITE(6,601) (B(I),I=1,N) 
   20 WRITE(6,603) ICON 
      STOP 
  500 FORMAT(I5/(6F12.0)) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA',5X, 
     *       'ISN=',I2) 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 
Method 
The discrete sine transform based on the midpoint rule of 
dimension n(= 2l, l=0, 1, ...) is performed by using the 
Fast Fourier Transform (FFT). 
  The transform based on the midpoint rule can be 
accomplished by considering the odd function x(t) to be a 
complex valued function and performing the discrete 
complex Fourier transform for the odd function based on 
the midpoint rule of dimension 2n.  In this case, however, 
it is known that the use of the characteristics of the 
complex transform permits efficient transform. 
  For the complex valued function x(t) with period 2π, the 
discrete Fourier transform based on the midpoint rule of 
dimension 2n (=2l+1, l=0, 1, 2, ...) is defined as 
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The basic idea of the FFT is to accomplish the objective 
transform by repeating the elementary discrete Fourier 
transform of small dimension (i.e., if the radix is 2, the 
dimension is 2).  In other words, considering sample data 
which consist of (j+1)th element and subsequent ones 
with the interval ,...)2,1,2(~ 1 == −+ pn pl

p  and defining the 
transform 
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1,...,1,0,1~...,,1,0 −=−= pp nknj  (4.2) 

of dimension np = 2p, then the transform can be satisfied 
with the FFT algorithm (4.3) of radix 2. 
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Initial value 
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 (4.3) 
The values obtained in the final step of these recurrence 
equations are the discrete Fourier coefficients (4.4). 

( ) 12...,,1,0,,02 1 −== + nkkxn l
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If x(t) is an odd function, the fact that x(t) is real, i.e., 
)()( txtx =  ( )(tx  is a complex conjugate of x(t)), and 

skew-symmetric, i.e., 

( ) ( )x t x t2π − = −  

affects the intermediate results {xp(j, k)} of the FFT as 
follows: 
Real property: xp(j, 0) is real 
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Skew-symmetric property: 
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On the other hand, the relationship 

nkib kk ...,,2,1,2 == α  

can be satisfied between the complex Fourier coefficients 
{αk} for the odd function x(t) and the Fourier coefficients 
defined by the following discrete sine transform 
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  Therefore, by using the characteristic (4.5) in the FFT 
algorithm (4.3) as well as the relationship above, the 
number of computations and the memory used can be 
reduced to a quarter of those without using them.  That 

is, the range of j and k used in (4.3) are halved, so the 
FFT algorithm of radix 2 for the discrete sine transform 
(4.6) can be represented by 

( ) ( ) ( )
( ) ( ) ( ){ }

lp

n
k

n
j

j
n

i

kjnxkjxknjx

kjnxkjxkjx

pp

p

p
pp

p
p

p
ppp

...,,2,1

1
2

,...,1,0,1
2

~
...,,1,0

2
1

~exp

,1~,,

,1~,,

1

11
1

11

=

−=−=
















 +−⋅

−−+=−

−−−=

−

−−
−

−−

π  (4.7) 

  Normally, the area to store the intermediate results {xp(j, 
k)} needs one-dimensional array of size n, but if the input 
data is permuted in advance by reverse binary 
transformation, the above computation can be carried out 
by using the same area in which the data was input.  The 
number of real number multiplications necessary for the 
sine transform of dimension n is about nlog2n. 
 
• Transform procedure in the subroutine 

(a) The necessary trigonometric function table (size n-
1) for the transform is created in reverse binary 
order. 

(b) The sample points {x(π/n(j+1/2))} (size n) are 
permuted in reverse binary order. 

(c) The FFT algorithm (4.7) which takes into 
consideration the skew-symmetric property of the 
input data is performed in the same area to obtain 
the Fourier coefficients in the order, bn, bn-1, ..., b1. 

(d) The Fourier coefficients {bk} are rearranged in 
ascending order. 

 
• Inverse transform procedure 

(a) The necessary trigonometric function table for the 
inverse transform is created.  This table is the same 
one as used in the transform procedure (a). 

(b) Rearranging the Fourier coefficients {bk} in the 
order,  bn, bn-1, ..., b1, {bn-k} is obtained. 

(c) By inputting {bn-k} and tracing back words the 
recurrence equations (4.7) with respect to p, the 
function value {x(π/n(j+1/2)} of the odd function 
x(t) is obtained in reverse binary order. 

(d) By permuting the obtained n data by reverse binary 
transformation, the function values {x(π/n(j+1/2)} 
are obtained in normal order. 

 
For further details, refer to the Reference [58]. 
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F11-21-0101, FSINT, DFSINT 

Discrete sine transform (Trapezoidal rule, radix 2 FFT) 
CALL FSINT (A, N, TAB, ICON) 

 
Function 
Given n sample points {xj}, 
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by dividing equally into n the half period of the odd 
function x(t) with period 2π, a discrete sine transform or 
its inverse transform based on the trapezoidal rule is 
performed by using the Fast Fourier Transform (FFT). 
Here n = 2l (n: positive integer) 
 
• Sine transform 

By inputting {xj} and performing the transform defined 
in (1.2), the Fourier coefficients {n/2⋅bk} are obtained. 
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• Sine inverse transform 
By inputting {bk} and performing the transform 
defined in (1.3), the values of the Fourier series {xj} 
are obtained. 
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Parameters 
A..... Input.  {xj} or {bk}. 

Output.  {n/2･bk} or {xj}. 
One-dimensional array of size n. 
See Fig. FSINT-1. 

 
One-dimensional array A(N)

N

xn−1xn−2x2x1

bn−1bn−2{bk}

{xj}

b2

0

0 b1

 
Note: { kb

n

2
} is handled the same way as for {bk}. 

Fig. FSINT-1  Data storing method 

N.... Input.  Sample point number n 
TAB... Output.  Trigonometric function table used in 

the transform is stored. 
 One dimensional array of size n/2-1. 
 See “Notes”. 
ICON.. Output.  Condition code.  See Table FSINT-1. 
 
Table FSINT-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N ≠ 2l (l: positive integer) Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... UPNR2, UTABT, USINM and MGSSL 
FORTRAN basic functions ... SQRT and MAX0 

 
• Notes 

General definition of Fourier transform: 
The discrete sine transform and its inverse transform 
based on the trapezoidal rule are generally defined by 
(3.1) and (3.2), 
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  The subroutine obtains {n/2･bk} and {xj} which 
correspond to the left-hand side of (3.1) and (3.2), 
respectively, and the user has to scale the results, if 
necessary. 
Use of the trigonometric function table: 
When the subroutine is called successively for 
transforms of a fixed dimension, the trigonometric 
function table is calculated and created only once.  
Therefore when calling the subroutine subsequently, the 
contents of parameter TAB must be kept intact. 
  Even when the dimension differs, the trigonometric 
function table need not be changed.  A new 
trigonometric function table entry can be made on an as-
required basis. 
 
• Example 

By inputting n sample points {xj}, performing the 
transform by the subroutine and scaling the results, the 
discrete Fourier coefficients {bk} are obtained.  Also 
by performing the inverse transform after that, {xj} are 
obtained. 
  Here n ≤ 512. 

 
C     **EXAMPLE** 
      DIMENSION X(512),TAB(255) 
C     SINE TRANSFORM 
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      READ(5,500) N,(X(I),I=1,N) 
      WRITE(6,600) N 
      WRITE(6,601) (X(I),I=1,N) 
      CALL FSINT(X,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
C     NORMALIZE 
      CN=2.0/FLOAT(N) 
      DO 10 K=1,N 
   10 X(K)=X(K)*CN 
      WRITE(6,602) 
      WRITE(6,601)(X(I),I=1,N) 
C     SINE INVERSE TRANSFORM 
      CALL FSINT(X,N,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) 
      WRITE(6,601) (X(I),I = 1,N) 
   20 WRITE(6,603) ICON 
      STOP 
  500 FORMAT(I5/(6F12.0)) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA') 
  603 FORMAT('0',5X,'CONDITION CODE', 
     *       I8) 
      END 
 
Method 
The discrete sine transform based on the trapezoidal rule 
of dimension n(= 2l, l = 1, 2, ...) is performed by using 
the radix 2 Fast Fourier Transform (FFT). 
  The transform based on the trapezoidal rule can be 
accomplished efficiently by using the transform based on 
the midpoint rule.  The subroutine uses this method. 
  Dividing equally into np (= 2, p = 1, 2, ...) the half 
period [0, π] of an odd function x(t) with period 2π, the 
discrete sine transform based on the trapezoidal rule is 
defined as 
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  Also the discrete sine transform based on the midpoint 
rule of dimension np is defined as 
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  In Eqs. (4.1) and (4.2), however, the ordinary scaling 
factor 2/np is omitted. 
Doubling the division number to np+1 the { 1+p

k
b } can be 

expressed as follows by using { p
k

b } and { p
k

b̂ } both of 

which have half as many dimension as { 1+p
k

b }. 
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  The equations shown in (4.3) can be considered as 
recurrence formula with respect to p to obtain { 1+p

k
b } 

from { p
k

b }.  Therefore, when performing transform with 

division number 2l, if the initial condition b1
1 = x(π/2) is 

given and the discrete sine transform based on the 
midpoint rule of dimension np is performed each at the p-
th stage (p=1, 2, ..., l-1) then the discrete sine transform 
series { p

k
b ; k = 1, 2, ..., np-1} (p = 1, 2, ..., l) based on 

the trapezoidal rule can be obtained by using equations 
(4.3). 

  The number of multiplications of real numbers executed 
is about nlog2n (n = 2l). 
 
Procedural steps taken in the subroutine 
Permuting the sample points, x0, x1, ..., xn-1, in reverse 
binary order, they are denoted as x(0), x(1), ..., x(n-1), 
where x(0) = x0 = 0. 
  Next, the trigonometric function table (size n/2 -1) 
1)necessary for the transform is made in reverse binary 
order corresponding to the sample point number. 
  Finishing with the preparatory processing, the sine 
transform is performed as follows: 
(a) Initialization 

b1
1 = x(1) and p = 1 

(b) Sine transform based on the midpoint rule of 
dimension np 
  By inputting np sample points x(np), x(np+1), ..., 
x(np+1-1) and performing the sine transform based on 
the midpoint rule, { p

k
b } are obtained in the same area 

in the order pp
n

p
n bbb

pp 1̂,...,ˆ,ˆ
1−

.  For the sine transform 

based on the midpoint rule, see Method for subroutine 
FSINM. 

(c) Calculation of recurrence equations with respect to 
{ p

k
b̂ } 

At the p-th stage, the intermediate results,  
( ) ,,...,,,0 121

p
n

pp
p

bbbx −  

pp
n bb

p 1̂,...,ˆ  are stored in the array elements, x(0), 

x(1), ..., x(np+1-1).  The { 1+p
k

b } are obtained by using 

only this area.  That is, the two elements, 1+p
k

b  and 
1
1

+
−+

p
knp

b  at the (p+1)th stage are calculated from the 

two elements p
kb  and ( )1,...,2,1ˆ −= p

p
k nkb  at the p-th 

stage, according to the recurrence equations (4.3), and 
they are stored in the corresponding array elements of 
the p-th stage. 
  By repeating procedure (b) and (c) above with p = 1, 
2, ..., l-1 the {bk} can be obtained. 
  For further details, refer to the Reference [58]. 
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B52-11-0101 GBSEG, DGBSEG 

Eigenvalues and eigenvectors of a real symmetric band 
generalized eingeproblem (Jennings method) 
CALL GBSEG (A, B, N, NH, M, EPSZ, EPST, LM, 
E, EV, K, IT, VW, ICON) 

 
Function 
This subroutine obtains m eigenevalues and 
corresponding eigenvectors of a generalized 
eigenproblem 

BxAx λλλλ=  (1.1) 

consisting of real symmetric matrices A and B of order n 
and bandwidth h in the ascending or descending order of 
absolute values by using m given initial vectors.  It adopts 
the Jennings’ simultaneous iteration method with the 
Jennings’ acceleration.  When starting with the largest or 
smallest absolute value, matrix B or A must be 
positivedefinite respectively.  The eigenvectors is 
normalized such that: 

IBXX =T  (1.2) 
or 

IAXX =T  (1.3) 

1 ≤ <<m n and 0 ≤ <<h n  
 
Parameters 
A..... Input.  Real symmetric band matrix A. 

When eigenvalues are obtained in the 
ascending order of absolute values, the 
contents of A are altered on output. 
Compressed mode for symmetric band 
matrices. 
A is a one-dimensional arrays of size n (h+1) − 
h (h+1)/2. 

B..... Input.  Real symmetric band matrix B. 
The contents of B are altered on output. 
Compressed mode for symmetric band 
matrices. 
B is a one-dimensional array of size n (h+1) − 
h(h+1)/2. 
See “Comments on use”. 

N..... Input.  Order n of matrices A and B. 
NH... Input.  Bandwidth h of matrices A and B. 

See “Comments on use”. 
M.... Input.  Number of eigenvalues and 

eigenvectors to be obtained, m. 
M = m ... m eigenvalues are obtained in the 
descending order of absolute values. 
M = −m .. m eigenvalues are obtained in the 
ascending order of absolute values. 

EPSZ.. Input.  Relative zero criterion for pivoting 
associated with LLT decomposition of matrix 
A or B. 

If zero or negative value is given, an 
appropriate default value is used. 
See “Comments on use”. 

EPST.. Input.  Constant ε used for convergence 
criterion of eigenvectors.  If zero or negative 
value is given, an appropriate default value is 
used. 
See “Comments on use”. 

LM... Input.  Upper limit for the number of iterations. 
If the number of iterations exceeds the limit, 
the processing is terminated. 
See “Comments on use”. 

E.... Output.  Eigenvalues.  Each eigenvalue is 
stored in the sequence as specified by the M 
parameter. 
E is a one-dimensional array of size m. 

EV... Input.  m initial vectors stored in the m-th 
columns (in columnwise direction). 
See “Comments on use”. 
Output.  Eigenvectors.  Eigenvectors are stored 
in the m-th columns (in columnwise direction). 
EV (K, m+2) is a two-dimensional array. 

K..... Input.  Adjustable dimension of EV. 
IT... Output.  Number of iterations which are made 

until eigenvectors are obtained. 
VW... Work area.  VW is a on-dimensional array of 

size 2n+m(3m+1)/2. 
ICON.. Output.  Condition code. 

See Table GBSEG-1. 
 
Table GBSEG-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The number of iterations 
exceeded upper limit LM. 

Terminated. 
E and EV 
contain the 
approximations 
of eigenvalues 
and 
eigenvectors 
obtained so far. 

25000 Orthogonalization of 
eigenvectors at each 
interation cannot be 
attained. 

Discontinued. 

28000 Matrix A or matrix B is not 
positive-definite. 

Discontinued. 

29000 Matrix A or matrix B is 
singular. 

Discontinued. 

30000 NH < 0, NH ≥ N, N > K, M = 

0 or M  > N 

Discontinued. 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MSBV, TRID1, TEIG1, TRBK, 
UCHLS, UBCHL, UBCLX, UERST, MGSSL 
FORTRAN basic functions ... IABS, ABS, AMAX1, 
FLOAT, SQRT 
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• Notes 
When eigenvalues are obtained in the ascending order 
of absolute values, the contents of matrix B are saved 
into array A.  When this subroutine handles several 
generalized eigenproblems involving the identical 
matrix B, it can utilize the contents of matrix B in array 
A. 
  The bandwidth of matrix A must be equal to that of 
matrix B.  If the bandwidth of matrix A is not equal to 
that of matrix B, the greater band-width is assumed; 
therefore zeros are added to the matrix of smaller band-
width as required. 
  The EPSZ default value is 16 u when u is the unit 
round off.  When EPSZ contains 10-s this subroutine 
regards the pivot as zero if the cancellation of over s 
significant digits occurs for the pivot during LLT 
decomposition of matrix A or B. 
Then this subroutine sets a condition code ICON to 
29000 and terminates abnormally.  If the processing is 
to proceed at a low pivot value, EPSZ will be given the 
minimum value but the result is not always guaranteed.  
If the pivot becomes negative during LLT 
decomposition of matrix A or B, the matrix is regarded 
as singular and a condition code ICON to 28000.  This 
subroutine terminates abnormally. 
  The parameter EPST is used to examine the 
convergence of eigenvector normalized as 1

2
=x .  

Whenever an eigenvector converges for the 
convergence criterion constant ε, the corresponding 
eigenvalue converges at least with accuracy ε⋅A  and 
in most cases is higher.  It is therefore better to choose 
somewhat a larger EPST value.  When defining the unit 
round off as u, the default value is ε = 16u.  When the 
eigenvalues are very close to each other, however, 
conveygence may not be attained.  If so, it is safe to 
choose ε such that ε ≥ 100u. 
  The upper Limit LM for the number of iteration is 
used to forcefully terminate the iteration when 
convergence is not attained.  It should be set taking into 
consideration the required accuracy and how close the 
eigenvalues are to each other.  The standard value is 
500 to 1000. 
  It is desirable for the initial eigenvectors to be a good 
approximation to the eigenvectors corresponding to the 
obtained eigenvalues.  If approximate vectors are not 
available, the standard way to choose initial vectors is 
to use the first m column vectors of the unit matrix I.  
The number of eigenevalues and eigenvectors, m had 
better be smaller than n such that m/n < 1/10.  The 
numbering of the eigenvalues is from the largest (or 
smallest) absolute value of eigenvalues such as λ1, 
λ2, ..., λn.  It is desirable if possible, to choose m in 
such a way that |λm-1 / λm| <<1  (or |λm+1 / λm| >> 1) to 
achieve convergence faster. 

• Example 
This example obtains eigenvalues and corresponding 
eigenvectors of generalized eigenproblem 
Ax = λBx 
consisting of real symmetric matrices A and B of order 
n and bandwidth h. 
n ≤ 100, h ≤ 10 and m ≤ 10. 

 
C     **EXAMPLE** 
      DIMENSION A(1100),B(1100),E(10), 
     *          EV(100,12),VW(400) 
   10 READ(5,500) N,NH,M,EPSZ,EPST 
      IF(N.EQ.0) STOP 
      MM=IABS(M) 
      NN=(NH+1)*(N+N-NH)/2 
      READ(5,510) (A(I),I=1,NN), 
     *            (B(I),I=1,NN), 
     * ((EV(I,J),I=1,N),J=1,MM) 
      WRITE(6,600) N,NH,M 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=MIN0(NH+1,I)+NE 
   20 WRITE (6,610) I,(A(J),J=NI,NE) 
      WRITE(6,620) N,NH,M 
      NE=0 
      DO 30 I=1,N 
      NI=NE+1 
      NE=MIN0(NH+1,I)+NE 
   30 WRITE(6,610) I,(B(J),J=NI,NE) 
      CALL GBSEG(A,B,N,NH,M,EPSZ,EPST,500, 
     *     E,EV,100,IT,VW,ICON) 
      WRITE(6,630) ICON,IT 
      IF(ICON.GE.20000) GO TO 10 
      CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
  500 FORMAT(3I5,2E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',20X,'ORIGINAL MATRIX A', 
     * 5X,'N=',I3,5X,'NH=',I3,5X,'M=',I3/) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0',20X,'ORIGINAL MATRIX B', 
     * 5X,'N=',I3,5X,'NH=',I3,5X,'M=',I3/) 
  630 FORMAT('0',20X,'ICON=',I5, 
     * 5X,'IT=',I5) 
      END 
 
  The SEPRT subroutine used in this example prints 
eigenvalues and eigenvectors of a real symmetric matrix.  
For further information see an example of using the 
subroutine SEIG1. 
 
Method 
This subroutine obtains m eigenvalues and corresponding 
eigenvectors of generalized eigenproblem. 

Ax = λBx (4.1) 

consisting of real symmetric band matrices A and B of 
order n and bandwidth h in the ascending of descending 
order of absolute values of the eigenvalues by using m 
given initial vectors.  It adopts the Jennings’ 
simultaneous iteration method with Jennings’ 
acceleration. 
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 For detailed information about the Jennings’ 
simultaneous iteration method see the “Method” of the 
subroutine BSEGJ. 
 
• Computational procedures 

If m eigenvalues λ1, λ2, ..., λm are to be determined in 
the ascending order of absolute values, (4.1) must be 
transformed as shown in (4.2) 

Bx Ax Ax= =1
λ

µ  (4.2) 

and m eigenvalues µ1, µ2, ..., µm can be determined by 
using the following: 

miii ,...,1,/1 == µλ  

  Therefore, the following explanation is concerned 
about only the case when m eigenvalues are to be 
determined in the descending order of absolute values. 

1) Matrix B is decomposed into LLT by the 
subroutine UBCHL. 

T~~BBB =  (4.3) 

 This procedure transforms a general eigenproblem 
shown in (4.1) to a standard eigenproblem such 
that: 

uuBAB λ=−− T1 ~~  (4.4) 
 where 

xBu T~=  (4.5) 

2) Let m approximate eigenvectors u1, u2, ..., um be 
formed into m columns of U which is an n × m 
matrix. 

 These vectors are assumed to be formed into an 
orthonormal matrix as shown in (4.6): 

mIUU =T  (4.6) 

 where Im indicates an m-order unit matrix. 
   By multiplying U by T~−B , A and ~B −1  in this 

order from the left, 

UBABV T1 ~~ −−=  (4.7) 

 results.  Multiplying V by UT from the left, 

UBABUVUC T1TT ~~−==  (4.8) 

 results. 
   This processing is actually performed in parallel 

to save storage as follows: 

   For i=1, 2, ..., m (4.9) results by using auxiliary 
vector y. 

yBABv

uy

i

i
T1 ~~ −−=

=
 (4.9) 

   This processing can be performed by using the 
subroutines UBCLX and MSBV.  Since C is an m-
dimensional symmetric matrix, its lower triangular 
portion can be denoted by: 

,T
ivy=iic  (4.10) 

mijc ji ,...,1,T +== ij vu  (4.11) 

   Thus, by taking ui for each column of U and 
obtaining vi, cii and cji, V is produced directly in 
the area for U. 

3) Solving the eigenproblem for C, C is decomposed 
to the form 

TPMPC =  (4.12) 

 where M is a diagonal matrix using eigenvalues of 
C as diagonal elements and P is a m-dimensional 
orthogonal matrix. 

   This processing is performed by using the 
subroutines TRID1, TEIG1 and TRBK, which are 
called successively.  Then the eigenvectors 
corresponding to the eigenvalues are sorted such 
that the largest absolute values comes first using 
the subroutine UESRT. 

4) Multiply V by P form the right, and produce an n 
× m matrix W shown below: 

W VP=  (4.13) 

5) To orthogonalize each column of W, produce an m 
- dimensional real symmetric positive-definite 
matrix WT W and decompose it into LLT shown 
below: 

W TW = LLT (4.14) 

   This processing is performed by using the 
subroutine UCHLS. 

   If LLT decomposition is not possible this 
subroutine sets a condition code ICON to 25000 
and terminates abnormally. 

6) Solve the equation U *LT = W to compute 

U *= WL-T (4.15) 

 U * has an orthonormal system as in equation (4.6). 
 The m-th columns um and um

* of U and U * are 
examined to see if 

ε≤−=
∞mmd uu*  (4.16) 
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 is satisfied. 
   If this convergence condition is not satisfied, see U * 

as a new U and go to Step 2). 
7) If it is satisfied, the iteration is stopped and the 

diagonal elements of M obtained in Step 3) become 
eigenvalues, and the first m row of 

*T~ UBX −=  (4.17) 

 become the corresponding eigenvectors.  This 
processing is performed by using the subroutine 
UBCLX. 

   These steps given above are a general description of 
the Jennings’s method. 

   For further information see References [18] and [19]. 
 
• Jennings’ acceleration 

To accelerate the simultaneous Jennings’ iteration 
method previously explained, the Jennings’ 
acceleration method for vector series in incorporated in 
this subroutine.  See explanations about subroutine 
BSEGJ for the principle and application of Jennings’ 
acceleration. 



GCHEB 

339 

E51-30-0301 GCHEB, DGCHEB 

Differentiation of a Chebyshev series 
CALL GCHEB (A, B, C, N, ICON) 

 
Function 
Given an n-terms Chebyshev series defined on the 
interval [a, b] 

( ) ( )







−
+−= ∑

−

= ab
abxTc'xf kk

n

k

21

0

 (1.1) 

this subroutine computes its derivative in a Chebyshev 
series 
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and determines its coefficients { ′ck }. 
Symbol Σ′ denotes to make sum but the initial term only 
is multipled by factor 1/2. 
Where a ≠ b and n ≥ 1. 
 
Parameters 
A..... Input.  Lower limit a of the interval for the 

Chebyshev series. 
B..... Input.  Upper limit b of the interval for the 

Chebyshev series. 
C..... Input.  Coefficients{ck} .  

Each coefficient is stored as shown below: 
C(1) =c0, C(2) =c1, ..., C(N) =cn-1 

Output.  Coefficients {c′k} for the derivative. 
Each coefficient is stored as shown below: 
C(1) =c′0, C(2) =c′1, ..., C(N-1) =c′n-2 
C is a one-dimensional array of size N. 

N..... Input.  Number of terms n. 
Output.  Number of terms of the derivative n−1. 
See Notes. 

ICON.. Output.  Condition code. 
See Table GCHEB-1. 

 
Table GCHEB-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 Either of the two 
conditions occurred: 
1     N < 1 
2     A = B 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... FLOAT 

• Notes 
When a derivative of an arbitrary function is required, 
this subroutine can be used together with the subroutine 
FCHEB for Chebyshev series expansion. 
  When a differential coefficient is determined at 
arbitrary point, this subroutine should be used together 
with the subroutine ECHEB for evaluation of the 
Chebyshev series.  See Example. 
  This subroutine can be called repeatedly to compute a 
derivative of higher order. 
  The error of a derivative can be estimated from the 
absolute sum of the last two terms.  Note that the error 
of a derivative increases as order increases. 
  If only one term is entered this subroutine produces 
only one term. 

 
• Example 

This example expands exponential function 

( ) 
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∞

=0 !n

n
x

n
xexf  

defined on the interval [-2, 2] in a Chebyshev series 
according to the required accuracy of εa = 0 and εr = 5･
10-5 by using the subroutine FCHEB.  It then computes 
the derivative from the resultant Chebyshev series by 
using this subroutine.  It also evaluates differential 
coefficients by using the ECHEB subroutine while 
increasing the value of x from −2 to 2 with increment 
0.05 and compares them with the true values. 

 
C     **EXAMPLE** 
      DIMENSION C(257),TAB(127) 
      EXTERNAL FUN 
      EPSR=5.0E-5 
      EPSA=0.0 
      NMIN=9 
      NMAX=257 
      A=-2.0 
      B=2.0 
      CALL FCHEB(A,B,FUN,EPSA,EPSR,NMIN, 
     *           NMAX,C,N,ERR,TAB,ICON) 
      IF(ICON.NE.0) GOTO 20 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,601) (C(K),K=1,N) 
      CALL GCHEB(A,B,C,N,ICON) 
      IF(ICON.NE.0) GOTO 20 
      WRITE(6,602) 
      WRITE(6,601) (C(K),K=1,N) 
      WRITE(6,603) 
      H=0.05 
      X=A 
   10 CALL ECHEB(A,B,C,N,X,Y,ICON) 
      IF(ICON.NE.0) GOTO 20 
      ERROR=FUN(X)-Y 
      WRITE(6,604) X,Y,ERROR 
      X=X+H 
      IF(X.LE.B) GOTO 10 
      STOP 
   20 WRITE(6,605) ICON 
      STOP 
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  600 FORMAT('0',3X,'EXPANSION OF', 
     1' FUNCTION FUN(X)',3X,'N=',I4,3X, 
     2'ERROR=',E13.3,3X,'ICON=',I6) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'DERIVATIVE OF', 
     1' CHEBYSHEV SERIES') 
  603 FORMAT('0',10X,'X',7X, 
     1'DIFFERENTIAL',6X,'ERROR'/) 
  604 FORMAT(1X,3E15.5) 
  605 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(X) 
      REAL*8 SUM,XP,TERM 
      EPS=AMACH(EPS) 
      SUM=1.0 
      XP=X 
      XN=1.0 
      N=1 
   10 TERM=XP/XN 
      SUM=SUM+TERM 
      IF(DABS(TERM).LE. 
     1   DABS(SUM)*EPS) GOTO 20 
      N=N+1 
      XP=XP*X 
      XN=XN*FLOAT(N) 
      GOTO 10 
   20 FUN=SUM 
      RETURN 
      END 
 

Method 
This subroutine performs termwise differentiation of an 
n-terms Chebyshev series defined on the interval [a, b] 
and expresses its derivative in a Chebyshev series.  Let a 
derivative to be defined as follow: 
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The following relationships exist between coefficients for 
the derivative: 
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This subroutine determines coefficients { kc′ } by using 
differential formula (4.2) for Chebyshev polynomials. 
The number of multiplications required to compute a 
derivative from an n-terms series is about 2n. 
  For further information about recurrence formula (4.2), 
see explanation of the subroutine ICHEB. 
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A25-31-0101 GINV, DGINV 

Moore-Penrose generalized inverse of a real matrix (the 
singular value decomposition method) 
CALL GINV (A, KA, M, N, SIG, V, KV, EPS, VW, 
ICON) 

 
Function 
This subroutine obtains the generalized inverse A+ of an 
m × n matrix  A using the singular value decomposition 
method. 
m ≥ 1 and n ≥ 1. 
 
Parameters 
A..... Input.  Matrix A. 

Output.  Transposed matrix of A+ . 
A is a two-dimensional array A (KA, N).   
See Notes. 

KA.... Input.  Adjustable dimension of array A.  KA 
≥ M. 

M..... Input.  Number of rows in matrix A, m. 
N..... Input.  Number of columns in matrix A or 

number of rows in matrix V, n. 
SIG... Output.  Singular values of matrix A. 

One-dimensional array of size n. 
See Notes. 

V..... Output.  Orthogonal transformation matrix 
produced by the singular value decomposition. 
V is a two-dimensional array V (KV, K). 
K = min (M + 1, N). 

KV..... Input.  Adjustable dimension of array V. 
KV ≥ N. 

EPS... Input.  Tolerance for relative zero test of the 
singular value. 
EPS ≥ 0.0 
If EPS is 0.0 a standard value is used. 
See Notes. 

VW..... Work area.  VW is a one-dimensional array of 
size n. 

ICON.. Output.  Condition code. 
See Table GINV-1. 

 
Table GINV-1  Condition codes 

Code Meaning Processing 
0 No error  

15000 Any singular value 
could not be obtained. 

Discontinued 

30000 KA < M, M < 1, N < 1, 
KV < N or EPS < 0.0 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... ASVD1, AMACH, MGSSL  
FORTRAN basic function ... None 

• Notes 
Note that the transposed matrix (A+)T instead of the 
generalized inverse A+ is placed on A. 
   Singular values are non-negative.  They are stored in 
descending order. 
   When ICON is set to 15000, unobtained singular 
values are -1.  In this case, resultant singular values 
aren’t arranged in descending order. 
   Since the EPS has direct effects on the determination 
of the rank of A, it must be specified carefully. 
   The least squares minimal norm solution of a system 
of linear equations Ax = b can be expressed as X = A+ 
b by using the generalized inverse A+.  However this 
subroutine should not be used except when generalized 
inverse A+ is required.  The subroutine LAXLM is 
provided by SSL II for this purpose. 

 
• Example 

This example obtains a generalized inverse of an m × n 
real matrix. 
1 ≤ n ≤ m ≤ 100 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),SIG(100), 
     *          V(100,100),VW(100) 
   10 READ(5,500) M,N 
      IF(M.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,M),J=1,N) 
      WRITE(6,600) M,N, 
     *  ((I,J,A(I,J),J=1,N),I=1,M) 
      CALL GINV(A,100,M,N,SIG,V,100,0.0, 
     *          VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) GO TO 10 
      WRITE(6,620) N,M, 
     *  ((I,J,A(J,I),I=1,M),J=1,N) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX'/ 
     *  6X,'ROW NUMBER=',I4,5X, 
     *  'COLUMN NUMBER=',I4/ 
     *  (10X,4('(',I3,',',I3,')',E17.7, 
     *  3X))) 
  610 FORMAT(' ',10X,'CONDITION CODE=' 
     *  ,I6) 
  620 FORMAT('1',5X, 
     *  'GENERALIZED INVERSE'/6X, 
     *  'ROW NUMBER=',I4,5X, 
     *  'COLUMN NUMBER=',I4/(10X, 
     *  4('(',I3,',',I3,')',E17.7,3X))) 
      END 
 
Method 
The n × m matrix satisfying all conditions listed in (4.1) 
with regard to an m × n real matrix A is called (Moore-
Penrose matrix) the generalized inverse of A. 
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XXAX
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T  (4.1) 

A generalized inverse is uniquely defined for a real 
matrix A and is denoted by A+.  If matrix A is a square 
and nonsingular matrix, A+ is equal to A-.  Based on the 
uniqueness of generalized inverse (4.2) and (4.3) can be 
established from (4.1). 

( ) AA =
++ , (4.2) 

( ) ( )TT ++
= AA  (4.3) 

Therefore m ≥ n can be assumed without loss of 
generality. 
• Singular value decomposition and a generalized inverse 

Let the singular value decomposition of A be defined 
as follows: 

TVUA ΣΣΣΣ=  (4.4) 

   When U is an m × n matrix satisfying U T U = I, V is 
an n × n orthogonal matrix and ΣΣΣΣ is an n × n diagonal 
matrix. 
   By adding m−n column vectors to the right of U to 
produce an orthogonal matrix Uc of order m and adding 
a zero matrix with the (m−n)-th row, the n-th column to 
the lower portion of ΣΣΣΣ  to obtain a matrix ΣΣΣΣc, then the 
singular value decomposition of A can be expressed as 
follows: 

TVUA ccΣΣΣΣ=  (4.5) 

If ΣΣΣΣ is determined as follows: 

( )nσσσ ,...,,diag 21=ΣΣΣΣ  (4.6) 

then an n × n diagonal matrix ΣΣΣΣ + is expressed as shown 
in (4.7)  

( )++++ = nσσσ ,...,,diag 21ΣΣΣΣ  (4.7) 

where, 
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   The matrix obtained by adding an n × (m-n) zero 
matrix to the right of ΣΣΣΣ + is equal to +

cΣΣΣΣ . 

   Let  T
cc UVX += ΣΣΣΣ . 

   Substituting such a X and (4.5) into (4.1), (4.1) is 
repressed as shown in (4.9) due to orthogonality of Uc 
and V. 
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   Thus,  due to the uniqueness of the generalized 
inverse, A+ can be defined as 

T
cc UVA ++ = ΣΣΣΣ  (4.10) 

By using the characteristics of +
cΣΣΣΣ  and definitions of Uc, 

(4.10) can be rewritten as follows: 

TUVA ++ = ΣΣΣΣ  (4.11) 

• Computational procedures 
This subroutine determines matrices U, ΣΣΣΣ and V by 
performing the singular value decomposition of A. 
   The resultant matrix U is placed in the area 
containing matrix A by subroutine ASVD1.  For 
detailed information, see an explanation of subroutine 
ASVD1. 
   A transposed matrix (A+)T corresponding to A+ is 
placed in the area containing matrix A through use of 

( ) TT
VUA ++ = ΣΣΣΣ  (4.12) 

   This subroutine tests the zero criterion for singular 
value σ i  when producting ΣΣΣΣ +. 
   The zero criterion is σ1  EPS, where σ1  is the 
maximum singular value. 
   If a singular value is less than the zero criterion, it is 
regarded as zero.  If EPS contains 0.0, this subroutine 
assumes a value of 16u as the standard value, where u 
is the unit round off. 

 
For further information, see Reference [11] and an 
explanation of the subroutine ASVD1. 
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B22-10-0402 GSBK, DGSBK 

Back transformation of the eigenvectors of the standard 
form to the eigenvectors of the real symmetric generalized 
eigenproblem 
CALL GSBK (EV, K, N, M, B, ICON) 

 
Function 
m number of eigenvectors y1, y2, ..., ym, of n order real 
symmetric matrix S are back transformed to eigenvectors 
x1, x2, ..., xm for the generalized eigenproblem Ax = λBx, 
where S is a matrix given by 

S=L-1AL-T (1.1) 

B = LLT, L is a lower triangular matrix and n ≥ 1. 
 
Parameters 
EV..... Input.  m number of eigenvectors of real 

symmetric matrix S. 
Output.  Eigenvectors for the generalized 
eigenproblem Ax = λBx.  Two dimensional 
array, EV (K, m) (See “Comments on use”). 

K..... Input.  Adjustable dimension of input EV. 
N..... Input.  Order n of real symmetric matrix S, A 

and B. 
M..... Input.  The number of eigenvalue, |M| (See 

“Comments on use”). 
B..... Input.  Lower triangular matrix L.  (See Fig. 

GSBK-1).  One dimensional array of size 
n(n+1)/2 (See “Comments on use”). 

ICON.. Output.  Condition code.  See Table GSBK-1. 
 
Table GSBK-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 EV (1, 1) = 1.0 / 
B(1) 

30000 N < |M|, K < N or M = 0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... IABS 

 
• Notes 

Output parameter B of subroutine GSCHL can be used 
as input parameter B of this subroutine. 
If input vectors y1, y2, ..., ym are normalized in such a 
way that Y TY = I is satisfied, then eigenvectors x1, 
x2, ..., xm are output in such a way that X TBX = I is 
satisfied, where Y = [y1, y2, ..., ym] and X = [x1, x2, ..., 
xm]. 
When parameter M is negative, its absolute value is 
used. 
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Note: Lower triangular matrix L must be stored into array B in the 

compressed storage mode for a symmetric matrix. 

Fig. GSBK-1  Correspondence between matrix L and array B 

• Example 
All eigenvalues and corresponding eigenvectors of the 
generalized eigenproblem with n order real symmetric 
matrix A and n order positive definite symmetric 
matrix B are obtained using subroutines GSCHL, 
TRID1, TEIG1, TRBK and GSBK.  n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(5050), 
     *          SD(100),E(100), 
     *EV(100,100),D(100) 
   10 READ(5,500) N,M,EPSZ,EPST 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      READ(5,510) (B(I),I=1,NN) 
      WRITE(6,600) N,M,EPSZ,EPST 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      WRITE(6,620) 
      NE=0 
      DO 30 I=1,N 
      NI=NE+1 
      NE=NE+I 
   30 WRITE(6,610) I,(B(J),J=1,NI,NE) 
      CALL GSCHL(A,B,N,EPSZ,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL TRID1(A,N,D,SD,ICON) 
      CALL TEIG1(D,SD,N,E,EV,100,M,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL TRBK(EV,100,N,M,A,ICON) 
      CALL GSBK(EV,100,N,M,B,ICON) 
      MM=IABS(M) 
      CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
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  500 FORMAT(2I5,2E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'**ORIGINAL ', 
     * 'MATRIX A**',11X,'** ORDER =',I5, 
     * 10X,'** M =',I3/46X,'EPSZ=',E15.7, 
     * 'EPST=',E15.7) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('1',10X,'**ORIGINAL ', 
     * 'MATRIX B**') 
  630 FORMAT(/11X,'** CONDITION CODE =',I5/) 
      END 
 
   Subroutine SEPRT in this example is used to print 
eigenvalues and eigenvectors of a real symmetric matrix.  
For details, refer to the example of subroutine SEIG1. 
 
Method 
Eigenvector y of n order real symmetric matrix S is back 
transformed to eigenvector x of the generalized 
eigenvalue problem. 

Ax = λBx (4.1) 

  where A is a symmetric matrix and B is a positive 
definite symmetric matrix.  In this case, reduction of eq. 
(4.1) to the standard form (4.2) must be done in advance. 

Sy = λy (4.2) 

   This process is shown in eqs. (4.3) to (4.6).  
Decomposing positive symmetric matrix B into 

B = LLT (4.3) 

  and substituting this into eq. (4.1), we get 

( )
( ) ( )xLxLALL

xL=xLLAL

xL=AxL

xLL=Ax

TTT1-

TTT1-

T1-

T

λ

λ

λ

λ

=-

-
 (4.4) 

  therefore, 

S = L-1AL-T (4.5) 
y = LTx (4.6) 

Since L is known, x can be obtained from eq. 
(4.6) as follows: 

yL=x T-  (4.7) 

For details see Reference [13] pp. 303-314. 



GSCHL 

345 

B22-21-0302 GSCHL, DGSCHL 

Reduction of a real symmetric matrix system Ax = λBx to 
a standard form 
CALL GSCHL (A, B, N, EPSZ, ICON) 

 
Function 
For n order real symmetric matrix A and n order positive 
definite symmetric matrix B, the generalized eigenvalue 
problem 

Ax = λBx (1.1) 

is reduced to the standard form. 

Sy = λy (1.2) 

where S is a real symmetric matrix and n ≥ 1. 
 
Parameter 
A..... Input.  Real symmetric matrix A. 

Output.  Real symmetric matrix S.  In the 
compressed storage mode for a symmetric 
matrix.  One dimensional array of size 
n(n+1)/2. 

B..... Input.  Positive definite symmetric matrix B. 
Output.  Lower triangular matrix L (See Fig. 
GSCHL-1).  In the compressed storage mode 
for a symmetric matrix.  One dimensional 
array of size n(n+1)/2. 

N..... Input.  The order n of the matrices. 
EPSZ.. Input.  A tolerance for relative accuracy test of 

pivots in LLT decomposition of B.  When 
specified 0.0 or negative value, a default value 
is taken (See “Comments on use”). 

ICON.. Output.  Condition code.  See Table GSCHL-1. 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, UCHLS, and MGSSL  
FORTRAN basic function ... SQRT 
 

• Note 
The default value for parameter EPSZ is represented as 
EPSZ = 16･u where u is the unit round-off.  (Refer to 
subroutine LSX) 
If EPSZ is set to 10-s, when a pivot has cancellation of 
more than s decimal digits in LLT decomposition of 
positive definite symmetric matrix B, the subroutine 
considers the pivot to be  relative zero, sets condition 
code ICON to 29000 and terminates the processing.  
To continue the processing even when the pivot 
becomes smaller, set a very small value into EPSZ.  
When the pivot becomes negative in LLT 
decomposition of B, B is considered not to be a  

Table GSCHL-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 A(1) = A (1) / B(1) 
B(1)=SQRT (B(1)) 

28000 Pivot became negative in 
LLT decomposition of matrix 
B.  Input matrix B is not 
positive-definite. 

Bypassed 

29000 Pivot was regarded as 
relatively zero in LLT 
decomposition of matrix B. 
The input matrix B is 
possible singular. 

Bypassed 

30000 N < 1 Bypassed 
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Note: The lower triangular portion of matrix L is stored into one-

dimensional array B in the compressed storage mode for a 
symmetric matrix. 

Fig. GSCHL-1  Correspondence between matrix L and array B 

positive definite matrix.  This subroutine, in this case, 
sets condition code ICON to 28000 and terminates the 
processing. 
 

• Example 
The generalized eigenvalue problem Ax = λBx with n 
order real symmetric matrix A and n order positive 
definite symmetric matrix B is reduced to a standard 
form for the eigenvalue problem using the subroutine 
GSCHL, and the standard form is reduced to a real 
symmetric tridiagonal matrix using subroutine TRID1.  
After that, the m number of eigenvalues are obtained by 
using the subroutine BSCT1.  This is for n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(5050),VW(300), 
     *     E(100),D(100),SD(100) 
   10 CONTINUE 
      READ(5,500) N,M,EPSZ,EPST 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      READ(5,510) (B(I),I=1,NN) 
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      WRITE(6,600) N,M,EPSZ,EPST 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      WRITE(6,620) 
      NE=0 
      DO 30 I=1,N 
      NI=NE+1 
      NE=NE+I 
   30 WRITE(6,610) I,(B(J),J=1,NI,NE) 
      CALL GSCHL(A,B,N,EPSZ,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL TRID1(A,N,D,SD,ICON) 
      CALL BSCT1(D,SD,N,M,EPST,E,VW,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,640) 
      MM=IABS(M) 
      WRITE(6,650) (I,E(I),I=1,MM) 
      GO TO 10 
  500 FORMAT(2I5,2E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX A'/ 
     *11X,'** ORDER =',I5,10X,'** M =',I3, 
     *10X,'** EPSZ =',E15.7,10X,'EPST =', 
     *E15.7) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0',10X,'** ORIGINAL MATRIX B') 
  630 FORMAT(/11X,'** CONDITION CODE =',I5/) 
  640 FORMAT('0'/11X,'** EIGENVALUES') 
  650 FORMAT(5X,'E(',I3,')=',E15.7) 
      END 
 
Method 
When A is an n order symmetric matrix and B is a 
positive definite symmetric matrix, the generalized 
engenvalue problem 

Ax = λBx (4.1) 

is reduced to the standard form 

Sy = λy (4.2) 

as shown in eqs. (4.3) to (4.6) 
Since B is a positive definite symmetric matrix, it can be 
decomposed to 

B = LLT (4.3) 

  where L is a lower triangular matrix.  This 
decomposition can be uniquely determined if the 
diagonal elements of L are chosen positive.  From (4.1) 
and (4.3) 

( ) ( )xL=xLALL TTT-1 λ−  (4.4) 

  where L-T means (L-1)T or (LT)-1 
  Therefore, putting 

T-1 −ALL=S  (4.5) 
xL=y T  (4.6) 

  then eq. (4.2) can be derived. 
  The decomposition in (4.3) is done by the Cholesky 
method, that is , the elements of matrix L are successively 
obtained for each row as shown in eqs. (4.7) and (4.8) 

( )2
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1111 bl =  (4.7) 
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 (4.8) 

where L = (lij), B = (bij) 
 
For details, see Reference [13] PP.303-314. 
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B22-21-0201 GSEG2, DGSEG2 

Eigenvalues and corresponding eigenvectors of a real 
symmetric generalized eigenproblem Ax= λBx (bisection 
method and inversed iteration method) 
CALL GSEG2 (A, B, N, M, EPSZ, EPST, E, EV, K, 
VW, ICON) 

 
Function 
The m largest or m smallest eigenvalues of the 
generalized eigenvalue problem 

Ax = λBx (1.1) 

are obtained by bisection method, and the corresponding 
m number of eigenvectors x1, x2, ..., xm are obtained by 
the inverse iteration method, where A is an n order real 
symmetric matrix and B an n order positive definite 
symmetric matrix.  The eigenvectors satisfy. 

XTBX = I (1.2) 

where X = [x1, x2, ..., xm] and n ≥ m ≥ 1. 
 
Parameters 
A..... Input.  Real symmetric matrix A in the 

compressed mode storage for a symmetric 
matrix.  One dimensional array of size n (n + 
1)/2.  The contents will be altered on output. 

B..... Input.  Positive definite matrix B in the 
compressed storage mode for a symmetric 
matrix.  One dimensional array of size n (n + 
1)/2.  The contents will be altered on output. 

N..... Input.  Order n of real symmetric matrix A and 
positive definite symmetric matrix B. 

M..... Input.  The number m of eigenvalues obtained. 
M = + m .... The number of largest 
eigenvalues desired. 
M = − m .... The number of smallest 
eigenvalues desired. 

EPSZ.. Input.  A tolerance for relative accuracy test of 
pivots in LLT decomposition of B.  If 
specifying 0.0 or negative value, a default 
value is taken.  (See “Comments on use”). 

EPST... Input.  An absolute error tolerance used as a 
convergence criterion for eigenvalues.  If 
specifying 0.0 or negative value, a default 
value is taken.  (See “Comments on use”). 

E..... Output.  m eigenvalues, Stored in the 
sequences as specified by parameter M.  One 
dimensional array of size m. 

EV..... Output.  Eigenvectors.  The eigenvectors are 
stored in columnwise direction.  Two 
dimensional array, EV (K, m) 

K.... Input.  Adjustable dimension of array EV. 
VW.... Work area.  One dimensional array of size 7n. 
ICON.. Output.  Condition code.  See Table GSEG2-1. 
 
Table GSEG2-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 E(1)=A(1)/B(1) 
X(1, 1)=1.0/SQRT 
(B(1)) 

15000 Some eigenvectors could 
not be determined. 

The eigenvectors 
are set to zero 
vectors. 

20000 Eigenvectors could not be 
obtained. 

All the 
eigenvectors are 
set to zero 
vectors. 

28000 Pivot became negative in 
LLT decomposition of B.  
Input matrix B is not positive-
definite. 

Discontinued. 

29000 Pivot was regarded as 
relative zero in LLT 
decomposition of B.  Input 
matrix B is possible singular. 

Discontinued. 

30000 M = 0 or N < IMI or K < N Bypassed. 
 
Comments on use 
• Subprogram used 

SSL II ... GSCHL, TRID1, UTEG2, TRBK, GSBK, 
AMACH, UCHLS, and MGSSL 
FORTRAN basic functions ... IABS, SQRT, SIGN, 
ABS, AMAX1, and DSQRT 
 

• Notes 
The default value for parameter EPSZ is represented as 
EPSZ = 16･u where u is the unit round-off. 
  If EPSZ is set to 10-s, when a pivot has cancellation 
of more than s decimal digits in LLT decomposition of 
positive definite symmetric matrix B, the subroutine 
considers the pivot to be relative zero, sets condition 
code ICON to 29000 and terminates the processing.  If 
the processing is to proceed even at a low pivot value, 
EPSZ has to be given the minimum value but the result 
is not always guaranteed.  When the pivot becomes 
negative in LLT decomposition of B, B is considered 
not to be positive definite. 
  This subroutine, in this case, sets condition code 
ICON to 28000 and terminates the processing. 
  The default value for parameter EPST is  

( ),,max =EPST minmax λλu  

where u is the unit round-off, and λmax and λmin  
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are upper and lower limits, respectively, of the existing 
range (given by the Gershgorins theorem) of 
eigenvalues obtained from Ax = λBx.  When both very 
large and small eigenvalues exist, it may be difficult to 
obtain the smaller eigenvalues with good accuracy.  It 
is possible, though, by setting a small value into EPST, 
but the computation time may increase. 
For details of the method to enter a value into EPST, 
refer to subroutine BSCT1. 

 
• Example 

This example obtains the m largest or m smallest 
eigenvalues and corresponding eivenvectors for the 
generalized eigenproblem Ax = λBx which has n order 
real symmetric matrix A and n order positive definite 
symmetric matrix B.  n ≤ 100, m ≤ 100 

 
C     ** EXAMPLE** 
      DIMENSION A(5050),B(5050),E(10), 
     *EV(100,10),VW(700) 
   10 CONTINUE 
      READ(5,500) N,M,EPSZ,EPST 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      READ(5,510) (B(I),I=1,NN) 
      WRITE(6,600) N,M,EPSZ,EPST 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
      WRITE(6,610) I,(A(J),J=NI,NE) 
   20 CONTINUE 
      WRITE(6,620) 
      NE=0 
      DO 30 I=1,N 
      NI=NE+1 
      NE=NE+I 
      WRITE(6,610) I,(B(J),J=1,NI,NE) 
   30 CONTINUE 
      CALL GSEG2(A,B,N,M,EPSZ,EPST, 
     *E,EV,100,VW,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      MM=IABS(M) 
      CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
  500 FORMAT(2I5,2E15.7) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1','OROGINAL MATRIX A',5X, 
     * 'N=',I3,' M=',I3,' EPSZ=', 
     * E15.7,' EPST=',E15.7) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('1','OROGINAL MATRIX B') 
  630 FORMAT('0',20X 'ICON=',I5) 
      END 
 
Subroutine SEPRT in this example is used to print 
eigenvalues and eigenvectors of a real symmetric matrix.  
For details, refer to the Example of subroutine SEIG1. 
 

Method 
Eigenvalues and eigenvectors of the generalized 
eigenvalue problem 

Ax = λBx (4.1) 

  which has n order real symmetric matrix A and n order 
positive definite symmetric matrix B are obtained as 
follows: 
• Reduction of the generalized eigenvalue problem into 

the standard form. 
  Since B in eq. (4.1) is a positive definite symmetric 
matrix, it can be decomposed as follows: 

B = LLT (4.2) 

where L is an n order lower triangular matrix.  This 
decomposition can be uniquely determined when the 
diagonal elements of L are chosen positive values.  
From eqs. (e.1) and (4.2), if eq. (4.1) is multiplied by 
L-1 from the left of A and by L−TLT from the right, the 
following eq. 

( ) ( )xLxLALL TTT1 λ=−−  (4.3) 

can be obtained.  Where L−T is used instead of (LT) −1 
or (L−1)T.  Putting 

T1 -ALL=S −  (4.4) 
xL=y 1−  (4.5) 

then S becomes a real symmetric matrix and eq. (4.3) 
becomes 

Sy = λy (4.6) 

which is the standard form for the eigenvalue problem. 
• Eigenvalues and eigenvectors of a real symmetric 

matrix. 
Real symmetric matrix S is reduced to real symmetric 
tridiagonal matrix, and eigenvlalue λ and 
corresponding eigenvector y ′ of T are obtained by the 
bisection method and inverse iteration method. y ′ is 
further back transformed to eigenvector y of S. 

• Eigenvectors of a generalized eigenvalue problem. 
Eigenvector x in eq. (4.1) can be obtained from the 
eigenvector y determined above, such as 

x = L−Ty (4.7) 
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  The above processing are accomplished using 
subroutine GSCHL for the 1-st step., TRID1 and UTEG2 
for the 2nd step and GSBK for the last step. 
For details see Reference [13] pp. 303-314. 
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H11-20-0121 HAMNG, DHAMNG 

A system of first order differential equations (Hamming 
method) 
CALL HAMNG (Y, N1, H, XEND, EPS, SUB, 
OUT, VW, ICON) 

 
Function 
This subroutine solves a system of first order differential 
equations: 

( ) ( )
( ) ( )
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 (1.1) 

with initial values y1(x0), y2(x0), ..., yn(x0) throughout the 
interval [x0, xe], by Hamming’s method. 
  Initially a specified stepsize is used, however it may be 
made smaller to achieve the specified accuracy, or larger 
so that the computation will proceed more rapidly, while 
still meeting the desired accuracy. 
 
Parameters 
Y..... Input.  Initial values x0, y10, y20, ..., yn0.  One-

dimensional array of size n+1.  The contents 
of Y are altered on exit. 

N1... Input.  n+1, where n is the number of 
equations in the system. 

H..... Input.  Initial step size H ≠ 0.0.  The value of 
H is changed during the computations. 

XEND.. Input.  Final value xe, of independent variable 
x.  Calculation is finished when the 
approximation at xe is obtained. 

EPS... Input.  The relative error tolerance.  If 0.0 is 
specified, the standard value is used.  (See the 
Comments and Method sections.) 

SUB... Input.  The name of subroutine subprogram 
which evaluates fi (i = 1, 2, ..., n) in (1.1).  The 
subprogram is provided by the user as follows: 
SUBROUTINE SUB (YY, FF) 
Parameters 
YY: Input.  One-dimensional array of size 

n + 1, where 
YY(1) = x, YY(2) = y1, YY(3) = y2, ..., 
YY(n+1) = yn 

FF: Output.  One-dimensional array of size 
n + 1, where 
FF(2) = f1, FF(3) = f2, 
FF(4) = f3, ..., FF(n+1) = fn 

(See the example.) 

Nothing may be substituted in FF(1). 
OUT... Input.  The name of subroutine subprogram 

which receives the approximations.  In other 
words, at each integration step with stepsize 
HH (not necessarily the same as the initial 
stepsize), subroutine HAMNG transfers the 
results to this subprogram.  This subprogram 
is provided by the user as follows: 
SUBROUTINE OUT (YY, FF, N1, HH, IS) 
Parameters 
YY: Input.  Calculated results of x, y1, ..., yn 

One-dimensional array of size n+1 
where 
YY(1) = x, 
YY(2) = y1, ...,  
YY(n+1) = yn 

FF: Input.  Calculated results of y’1, ..., yn 
..., y’2, ..., 

FF(n+1) = y’nFF(1) is usually set to 1. 
N1: Input.  n+1. 
HH: Input.  The stepsize with which yi and y’i 
were determined. 
IS: Input.  Indicator that gives relative 
magnitude of HH to the initial stepsize H. i.e. 
HH is related to H as HH = 2IS*H (See the 
Comments section.) 
If IS is set equal to -11 in the subprogram, 
calculation can terminate at that moment.  In 
this subprogram, except for parameter IS, the 
contents of the parameters must not be 
changed. 

VW..... Work area.  One-dimensional array of size 
18(n+1). 

ICON.. Output.  Condition code. 
See Table HAMNG-1. 

 
Table HAMNG-1  Condition codes 

Code Meaning Processing 
        0 No error  
10000 0.0 < EPS < 64 u, where u is 

the unit round off. 
The standard 
value (64u) is 
used for EPS, 
and processing 
is continued. 

20000 Calculation was performed 
with a stepsize 2-10 times the 
specified stepsize H, 
however, a relative error less 
than or equal to EPS could 
not be achieved. 

Terminated 

30000 N1 < 2, EPS < 0.0,  1.0 < 
EPS, or (XEND-Y(1))*H≤0.0. 

Bypassed 
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Comments 
• Subprogram used 

SSL II...RKG,AMACH 
FORTRAN basic functions...ABS,AMAX1 

 
• Note 

SUB and OUT must be declared as EXTERNAL in the 
program from which this subroutine is called. 
  If IS becomes less than -10, ICON is set to 20000 and 
calculation is terminated. ICON is set to 0 when the 
user sets IS = -11 in subroutine OUT.EPS must satisfy 
the condition 64u≤EPS<1 

 
• Example 

Initial value problem (3.1) is obtained for H=0.1, 
XEND=5.0 and EPS=10-4 

( )
( ) 





==+=′
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31,24
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yyy
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x
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yyyy
 (3.1) 

C     **EXAMPLE** 
      DIMENSION Y(3),VW(54) 
      EXTERNAL SUB,OUT 
      Y(1)=1.0 
      Y(2)=5.0 
      Y(3)=3.0 
      H=0.1 
      EPS=1.0E-4 
      WRITE(6,600) 
      CALL HAMNG(Y,3,H,5.0,EPS,SUB,OUT,VW, 
     *           ICON) 
      WRITE(6,610) ICON 
      STOP 
  600 FORMAT('1'/' ',17X,'X',15X,'Y1',14X, 
     *'Y2',14X,'F1',14X,'F2',14X,'HH',12X, 
     *'IS'//) 
  610 FORMAT(' ',20X,'ICON=',I5) 
      END 
      SUBROUTINE SUB(YY,FF) 
      DIMENSION YY(3),FF(3) 
      FF(2)=YY(3) 
      FF(3)=4.0*YY(2)/(YY(1)*YY(1))+2.0 
     *      *YY(3)/YY(1) 
      RETURN 
      END 
      SUBROUTINE OUT(YY,FF,N1,HH,IS) 
      DIMENSION YY(N1),FF(N1) 
      WRITE(6,600) (YY(I),I=1,N1),(FF(I), 
     *             I=2,N1),HH,IS 
      RETURN 
  600 FORMAT(' ',10X,6E16.8,I10) 
      END 
 
Method 
Considering the independent variables as a function; 

( ) ( )y x x y y x x0 00 0 0 0= = =,  (4.1) 

initial value problem of a system of first order ordinary 
differential equations (1.1) can be rewritten as: 
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  Then, the following vectors are introduced to simplify 
notations 
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  Let the vector whose elements are yi (i=0,1,......,n) be 
represented as y'. Then (4.2) can be simplified to 

( ) ( )00 xfy,yfy ==′  (4.4) 

• Hamming's formula 
Let the approximation and true solution at x=xj, be yj 
and y(x), respectively, and their corresponding 
derivatives be y'j = f(yj) and y'(xj) = f(y(xj). 
2h,xk, the calculated solutions and derivatives 

kkkk
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yyyy
yyyy
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123  

are known. yk+1 is determined from quantities pk+1,mk+1 
and ck+1 through the following procedures. 

 
• Calculating pk+1 

( )2131 22
3

4
−−−+ ′+′−′+= kkkkk

h yyyyp  (4.5) 

In(4.5), value Pk+1 roughly predicts yk+1,to a degree and 
is called the predictor. By the Taylor theorem, it can be 
expanded as: 
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where, n1 depends on the elements of y and it lies 
between xk-3and xk+1. In (4.6), the term (14/45)h5y(5)(ηηηη1) is 
called the truncation error of pk+1. This means that even if 

iy′  and yi were true solution and derivative and there 
were no round-off errors, pk+1 has an error 
of(14/45)h5y(5)(η1). 
 
• Calculation mk+1 

( )kkkk pcpm −+= ++ 121
112

11  (4.7) 

(ck will be described later.) 
In(4.7), mk+1 is a "modified" value of pk+1, called the 
modifier. The second term on the right hand side of 
(4.7) is the estimated truncation error of pk+1(its 
derivation is not shown here.). 

 
• Calculating ck+1 

With 
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ck+1 is the finally corrected value of pk+1 called the 
corrector. Using the same rationale as in (4.6), 
truncation error in ck+1 can be derived as  
(-1/40)h5y(5)(η2). 
  If ck+1 has the specified accuracy, it is used as the 
approximation yk+1 

 
• Calculating the starting values 

In the above method, the previously-described four 
points are required. Therefore, to start the calculation, 
the values 

3210

3210

,,,
,,,
yyyy
yyyy
′′′′
′′′′
 

  must be calculated using another method. This is 
performed in this subroutine using the Runge-Kutta-Gill 
method (subroutine RKG). In calculating m4, the quantity 
c3-p3 is required, but only in this case c3-p3=0 is assumed. 
 
• Estimating the error in ck+1 

Since the truncation errors in predictor pk+1 and 
modifier ck+1 are respectively (-1/40)h5y5(η22), if the 
round-off error can be disregarded in comparison with 
these errors, it can be seen that 
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  Furthermore, if it can be assumed that y(5)(x) does not 
change greatly been η1 and η2, from (4.9) we obtain 

( ) ( ) ( )112
(5)5

1
(5)5

121
360

++ −≈≈ kkhh pcyy ηη  

  and finally the truncation error of ck+1 can be expressed 
as 

( )( ) ( )112
55

121
9

40
1

++ −−≈− kkh pcy η  (4.10) 

• Step size control 
If calculation is made with a constant stepsize, the 
desired accuracy may not be achieved at certain points. 
On the other hand, the accuracy of the results can be so 
much higher than the required accuracy that the effect 
of round-off errors is greater than that of truncation 
errors. As a result, the lower digits of yi will oscillate, 
unless the stepsize is properly controlled. Since 
truncation error of modifier ck+1 use as the 
approximation, is given in (4.10), the stepsize is 
controlled as follows: 

 
(a) If (4.11) holds with respect to all elements, ck+1 is 

used as the approximation. 

( )111 ,maxEPS
121
9

+++ ⋅≤− kkkk cypc  (4.11) 

 where, EPS is the specified tolerance for the relative 
error. Its standard value is 64u. 

  
(b) If (4.12) holds with respect to all elements, ck+1 is 

used as the approximation. 

( )111 ,maxTOL
121
9

+++ ⋅≤− kkkk cypc  (4.12) 

 where TOL=EPS/32 
 And also, the stepsize is doubled for the next step. At 

this time, the value of the previous yk-5 is needed 
again. Thus, the informations prior to yk-5 are kept as 
long as possible. 

  
(c) If (4.13) holds for a particular elements,ck+1 is not 

used as the approximation. 

( )111 ,maxEPS>
121
9

+++ ⋅− kkkk cypc  (4.13) 
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   In this case, the current stepsize is halved, and 
calculations for the step are made again. 

   At this time, yk-1/2 and yk-3/2 are needed. Using yk-1 
and yk-2 as the starting values, the Runge-Kutta-Gill 
method is used to calculated them. 

   If the stepsize is changed due to (b) or (c), the 
quantity ck-pk is recalculated as 

(
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kk

kkkkkk
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yy

yyyypc
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−
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   where h, yi, and h'i on the right side are all quantities 
after the stepsize has been changed. 

 
• Calculating the solution at XEND 

If the previously described method is used, the 
approximation at XEND may not necessarily be 
obtained. To make sure that it is obtained at XEND, 
this subroutine uses the following algorithm. 

 
  Assume the state just before the independent variable x 
exceeds XEND and let the value of x at that time be xi 
and the stepsize be h (Fig. HAMG-1) 

xi−1

h

XENDxi

 
Fig.HAMNG-1  Last stage(h>0) 

  The following relation exists among XEND, xi and h. 

[XEND-(xi+h)]h<0 

  When this state is reached, the Hamming method is no 
longer used. Instead, the Runge-Kutta-Gill method is 
applied using xi as the starting point. 
Calculating two approximate solutions with 
stepsize(XEND-xi)/2 and (XEND)-xi), solution ye at 
XEND is obtained as 

( ) ( ) ( )( ) 15122
eeee yyyy −+=  (4.15) 

where 
 
  ye

(2) is approximate solution at XEND with stepsize 
h=(XEND-xi)/2 
  ye

(1) is approximate solution at XEND with stepsize 
h=(XEND-xi). 
 
  For further information, see Reference[70]. 
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B21-11-0602 HBK1, DHBK1 

Back transformation and normaliazation of the 
eigenvectors of a real Hessenberg matrix. 
CALL HBK1(EV,K,N,IND,M,P,PV,DV,ICON) 

 
Function 
Back transformation is performed on m eigenvectors of 
an n-order real Hessenberg matrix H to obtain the 
eigenvectors of a real matrix A. Then the resulting 
eigenvectors are normalized such that x

2
1= . H is 

obtained from A using the Householder method. 
1≤m≤n. 
 

Parameters 
EV...... Input. m eigenvectors of real Hessenberg 

matrix H(see "Comments on use"). 
EV is a two-dimensional array, EV(K,M) 
Output. Eigenvectors of real matrix A. 

K...... Input. Adjustable dimension of array EV and P. 
N...... input. Order n of real Hessenberg matrix H. 
IND...... Input. Specifies, for each eigenvector, whether 

the eigenvector is real or complex. If the J-th 
column of EV is a real eigenvector, then 
IND(J)=1,; if it is the real part of a complex 
eigenvector, then IND(J)=-1, if it is the 
imaginary part of a complex eigenvector, then 
IND(J)=0. 
IND is a one-dimensional array of size M. 

M...... Input. Size of array IND. 
P...... Input. Transformation matrix provided by 

Householder method (see "Comments on use"). 
P(K,N) is a two-dimensional array. 

PV...... Input. Transformation matrix provided by 
Householder method (see "Comments on use"). 

DV...... Input. Scaling factor used for balancing of 
matrix A. DV is a one-dimensional array of 
size n. 
If matrix A was not balanced, DV=0.0 can be 
specified since it need not be a one-
dimensional array. 

ICON...... Output. Condition code. See Table HBK1-1. 
 
Table HBK1-1  Condition codes 

Code Meaning Processing 
        0 No error  
10000 N=1 EV(1,1)=1.0 
30000 N<M,M<1orK<N Bypassed 

 
Comments on use 
• Subroutines used 

SSL II......NRML, and MGSSL 
FORTRAN basic functions......ABS and SQRT 

• Notes 
Eigenvectors are stored in EV such that each real 
eigenvector occupies one column and each complex 
eigenvector occupies two columns (one for the real part 
and one for the imaginary part). 
Refer to Fig. HBK1-1. After subroutine HVEC is 
executed, parameters EV, IND, and M can be used as 
input parameters to this routine. 

1

EV

IND −1 −1 0101

1

Real eigenvector
Real part of a complex
eigenvector

Imaginary part of a
complex eigenvector

Real eigenvector

Number of eigenvectors

2 3

2

MM−14

m3

Real part of a
complex
eigenvector

Imaginary part
of a complex
eigenvector

 
Fig. HBK1-1  Relationship between IND and EV 
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Note: × is not used. 

Fig. HBK1-2  Input format of P and PV 

  Parameters A and PV of subroutine HES1 correspond to 
P and PV of this routine and can be used as input 
parameters to this routine. 
The information of the transformation matrix in the 
Householder method should be entered in P and PV as 
shown in Fig. HBK1-2. 
aij

(k) are elements of Ak used in  

2,...,2,1,T
1 −==+ nkkkkk PAPA  (3.1) 

σσσσk are determined by 

( )( ) ( )( ) ( )( )22
2

2
1 ... k

kn
k

kk
k

kkk aaa +++= ++σ  (3.2) 
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  For further information, refer to the section on HES1. 
  Refer to the section on BLNC for the contents of scaling 
factor DV. 
 
• Example 

Eigenvalues and eigenvectors of an n-order real matrix 
are calculated using the following subroutines. 
Eigenvectors are calculated in the order that the 
eigenvalues are determined. 
BLNC... balances an n-order real matrix 
HES1... reduces a balanced real matrix to a real 

Hessenberg matrix 
HSQR... determines eigenvalues of a real Hessenberg 

matrix. 
HVEC... determines eigenvectors of a real 

Hessenberg matrix 
HBK1... back transforms eigenvectors of a real 

Hessenberg matrix into eigenvectors of a 
real matrix, then normalizes the resultant 
eigenvectors. 

 
n≤100, m≤10 
 
C     **EXAMPLE** 
      DIMENSION A(100,100),DV(100), 
     *PV(100),IND(100),ER(100),EI(100), 
     *AW(100,104),EV(100,100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL BLNC(A,100,N,DV,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      CALL HES1(A,100,N,PV,ICON) 
      MP=N 
      DO 35 II=1,N 
      I=1+N-II 
      DO 30 J=1,MP 
   30 AW(J,I)=A(J,I) 
   35 MP=I 
      CALL HSQR(AW,100,N,ER,EI,M,ICON) 
      WRITE(6,620)ICON 
      IF(ICON.EQ.20000) GO TO 10 
      DO 40 I=1,M 
   40 IND(I)=1 
      CALL HVEC(A,100,N,ER,EI,IND,M,EV,100, 
     *AW,ICON) 
      WRITE(6,620)ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL HBK1(EV,100,N,IND,M,A,PV,DV,ICON) 
      CALL EPRT(ER,EI,EV,IND,100,N,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX' 
     * //11X,'** ORDER =',I5) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     *E14.7)) 
  620 FORMAT(/11X,'** CONDITION CODE =',I5/) 
      END 
  In this example, subroutine EPRT is used to print the 
eigenvalues and corresponding eigenvectors of the real 
matrix.  For further information see the example in the 
EIG1 section. 
 

Method 
Back transformation of the eigenvectors of a real 
Hessenberg matrix H to the eigenvectors of the balanced 
real matrix ~A  and back transformation of the 
eigenvectors of ~A  to the eigenvectors of the real matrix 
A are performed.  The resulting eigenvectors are 
normalized such that x

2
1= . 

  The real matrix A is balanced using the diagonal 
similarity transformation shown in (4.1).  The balanced 
real matrix ~A  is reduced to a real Hessenberg matrix 
using the Householder method which performs the (n-2) 
orthogonal similarity transformations shown in (4.2). 

~A D AD= −1  (4.1) 

(where D is a diagonal matrix.) 

221
T

1
T

2
T

2 ...~... −−= nn PPPAPPPH  (4.2) 

(where iiii hTuuIP −= ) 
 
  Let eigenvalues and eigenvectors of H be λ and y, then 
obtain 

Hy = λy (4.3) 

  From (4.1) and (4.2),(4.3) becomes: 

yyPPADPDPPP λ=−
−

− 221
1T
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T
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2 ...... nn  (4.4) 

  If both sides of (4.4) are premultiplied by DP1P2 ... Pn-2, 

yPPDLPyPPADP 221221 ...... −− = nn λ  (4.5) 

  results, and eigenvectors x of A becomes 

yPPDPx 221 ... −= n  (4.6) 

  which is calculated as shown in (4.7) and (4.8). 
However, y=xn-1. 
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xPx
 (4.7) 

x Dx= 1  (4.8) 

  For further information on the Householder method and 
balancing, refer to the sections on HES1 and BLNC. 
NRML is used to normalize the eigenvectors.  For details, 
see Reference [13] pp339-358 
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B21-25-0201 HEIG2, DHEIG2 

Eigenvalues and corresponding eigenvectors of a 
Hermitian matrix (Householder method, bisection method 
and inverse iteration method) 
CALL HEIG2(A,K,N,M,E,EVR,EVI,VW,ICON) 

 
Function 
The m largest or m smallest eigenvalues of an n-order 
Hermitian matrix A are obtained using the bisection 
method, where 1≤m≤n.  Then the corresponding 
eigenvectors are obtained using the inverse iteration 
method.  The eigenvectors are normalized such that 
x

2
1= . 

 
Parameters 
A...... Input.  Hermitian matrix A in the compressed 

storage mode.  Refer to "2.8 Data Storage".  A 
is a two-dimensional array, A(K,N).   The 
contents of A are altered on output. 

K...... Input. Adjustable dimension of array A,EVR, 
and EVI(≥n). 

N...... Input. Order n of the Hermitian matrix. 
M...... Input. 

M=+m... The number of largest eigenvalues 
desired. 
M=-n... The number of smallest eigenvalues 
desired. 

E...... Output. Eigenvalues. 
One dimensional array of size m. 

EVR,EVI 
Output. The real part of the eigenvectors are 
stored into EVR and the imaginary part into 
EVI both in columnwise direction. The l-th 
element of the eigenvector corresponding to 
the j-th eigenvalue E(J) is represented by 
EVR(L,J)+i⋅EVI(L,J), where i= −1 . EVR and 
EVI are two dimensional arrays EVR(K, m), 
and EVI(K, m). 

VW...... Work area. One dimensional array of size 9n. 
ICON...... Output. Condition code. See Table HEIG2-1. 
 
Comments on use 
• Subprograms used 

SSL II...TRIDH, TEIG2, TRBKH, AMACH, MGSSL, 
and UTEG2 
FORTRAN basic functions ... IABS,SQRT,ABS, and 
AMAX1. 

 
• Note 

This subroutine is provided for a Hermitian matrix and 
not for a general complex matrix. 
  This subroutine should be used to obtain both eigen 
values and eigenvectors. For determining only 
eigenvalues, subroutines TRIDH and BSCT1 

Table HEIG2-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N=1 E(1)=A(1,1) 
EVR(1,1)=1.0 
EVI(1.1)=0.0 

15000 Some eigenvectors could 
not be determined. 

The 
eigenvectors 
are set to zero 
vectors. 

20000 None of eigenvectors could 
be determined. 

All the 
eigenvectors 
are set to zero 
vectors. 

30000 M=0,N<|M| or K<N Bypassed 
 
  should be used. 
 
• Example 

The m largest (or smallest) eigen values of n-order 
Hermitian matrix A as well as the corresponding 
eigenvectors are obtained in this example for n≤100 
and m≤ 10. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),E(10), 
     * EVR(100,10),EVI(100,10),VW(900) 
   10 CONTINUE 
      READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,M 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL HEIG2(A,100,N,M,E,EVR,EVI,VW, 
     *           ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      MM=IABS(M) 
      CALL HEPRT(E,EVR,EVI,100,N,MM) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'///40X,'**ORIGINAL MATRIX**' 
     * 5X,'N=',I3,5X,'M=',I3//) 
  610 FORMAT(/4(4X,'A(',I3,',',I3,')=', 
     * E15.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 
Subroutine HEPRT used in above example is for printing 
eigenvalues and eigenvectors of a Hermitian matrix, 
shown as follows: 
 
      SUBROUTINE HEPRT(E,EVR,EVI,K,N,M) 
      DIMENSION E(M),EVR(K,M),EVI(K,M) 
      WRITE(6,600) 
      DO 10 I=1,M 
   10 WRITE(6,610) I,E(I) 
      KAI=(M-1)/3+1 
      LST=0 
      WRITE(6,620) 
      DO 20 I=1,KAI 
      INT=LST+1 
      LST=LST+3 
      IF(LST.GT.M) LST=M 
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      WRITE(6,630) (J,J=INT,LST) 
      WRITE(6,640) 
      DO 20 J=1,N 
   20 WRITE(6,650) J,(EVR(J,L),EVI(J,L), 
     *             L=INT,LST) 
      RETURN 
  600 FORMAT('1'///5X,'**HERMITIAN ', 
     * 'MATRIX**',///5X,'**EIGENVALUES**'/) 
  610 FORMAT(5X,'E(',I3,')=',E20.8) 
  620 FORMAT('0',///5X,'**EIGENVECTORS**'//) 
  630 FORMAT('0',3X,3(20X,'X(',I3,')', 14X)) 
  640 FORMAT(//13X,3('REAL PART',10X, 
     * 'IMAG. PART',11X)) 
  650 FORMAT(1X,I3,6E20.8) 
      END 
 
Method 
Eigenvalues and eigenvectors of n order Hermitian 
matrix A are obtained through the following procedures: 
• Reduction of the Hermitian matrix to a real symmetric 

tridiagonal matrix. 
This is done first by reducting the Hermitian matrix A 
to Hermitian tridiagonal matrix H using the 
Householder method, 

H=P *AP (4.1) 

 then by reducing it further to a real symmetric 
tridiagonal matrix T by diagonal unitary transformation, 

T=V *HV (4.2) 

 where P is a unitary matrix and V is a diagonal unitary 
matrix. 

 
• Eigenvalues and eigenvectors of the real symmetric 

tridiagonal matrix 
m eigenvalues of T are obtained by the bisection 
method, then the corresponding eigenvector y is 
obtained using the inverse iteration method. The 
inverse iteration method solves 

( ) ,...2,1,1 ==− − ryyIT rrµ  (4.3) 

 repeatedly to get eigenvector y, where µ is the 
eigenvalue obtained by the bisection method and y0 is 
an appropriate initial vector. 

• Eigenvectors of the Hermitian matrix Eigenvector x of 
A can be obtained using eigenvector y obtained in (4.3) 
as 

x=PVy (4.4) 

  Eq. (4.4) is the back transformation of eqs. (4.1) and 
(4.2). The above three are performed with subroutines 
TRIDH,TEIG2 and TRBKIH respectively. For details, 
see references[12], [13] pp. 259-269, and [17]. 
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B21-11-0302  HES1,DHES1 

Reduction of a real matrix to a real Hessenberg matrix 
(Householder method) 
CALL HES1(A,K,N,PV,ICON) 

 
Function 
An n-order real matrix A is reduced to a real Hessenverg 
matrix H using the Householder method (orthogonal 
similarity method). 

H=P TAP 

P is the transformation matrix n≥1. 
 
Parameters 
A...... Input. Real matrix A. 

Output. Real Hessenberg matrix H and 
transformation matrix P. (See Fig. HES1-1) 
A is a two-dimensional array A (K, N) 

K...... Input. Adjustable dimension of array A(≥n) 
N...... Input. Order n of real matrix A. 
PV...... Output. Transformation matrix P (See Fig. 

HES1-2). 
PV is a one-dimensional array of size n. 

ICON... Output. Condition code. 
See Table HES1-1. 
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Note: The section indicated with * is the Hessenberg matrix; the 
rest contains some information for the transformation 
matrix. X indicates work areas. 

Fig HEW1-1  A and PV after Householder transformation 

Table HES1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N=1 or N=2 Transformation 
is not 
performed. 

30000 K<N or N<1 Bypassed 

Comments on use 
• Subprograms used 

SSL II ... AMACH, and MGSSL 
FORTRAN basic functions ... ABS, DSQRT, and 
SIGN 

 
• Notes 

Output arrays A and PV are necessary for determining 
the eigenvalues and corresponding eigenvectors of real 
matrix A. 
  The precision of eigenvalues is determined in the real 
Hessenberg matrix transformation process. For that 
reason, this subroutine has been implemented so that 
real Hessenberg matrices can be determined at as high 
a precision as possible; however, in case of matrix 
containing very large and very small eigenvalues, the 
precision of the smaller values, some of which are 
difficult to precisely determine tends to be more 
affected by the reduction process. 

 
• Example 

After an n-order real matrix is reduced to a real 
Hessenberg matrix, subroutine HSQR is used to 
determine the eigenvalues. n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),PV(100), 
     *          ER(100),EI(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL HES1(A,100,N,PV,ICON) 
      WRITE(6,620) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,610) ((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      CALL HSQR(A,100,N,ER,EI,M,ICON) 
      WRITE(6,640) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.20000) GO TO 10 
      WRITE(6,650) (I,ER(I),I,EI(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX' 
     * //11X,'** ORDER =',I5/) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     * E14.7)) 
  620 FORMAT('0'/11X,'** HESSENBERG MATRIX') 
  630 FORMAT(/11X,'** CONDITION CODE =',I5/) 
  640 FORMAT('0'/11X,'** EIGENVALUES') 
  650 FORMAT(5X,'ER(',I3,')=',E14.7, 
     * 5X,'EI(',I3,')=',E14.7) 
      END 
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Method 
An n-order real matrix A is reduced to a real Hessenberg 
Matrix through n-2 iterations of the 
orthogonal similarity transformation. 

2,...,2,1,T
1 −==+ nkkkkk PAPA  (4.1) 

  where, A1=A.Pk is the transformation (and orthogonal) 
matrix. 
  When transformation is completed, An-1 is in the real 
Hessenberg matrix. 
  The k-th transformation is performed according to the 
following procedure: Let   ( )( )k

ijk a=A  

( )( ) ( )( ) ( )( )22
2

2
1 ... k

kn
k

kk
k

kkk aaa +++= ++σ  (4.2) 
( ) ( ) ( )( )k

kn
k

kkk
k

kkk aaa ...,,,,0...,,0 2
21

1
T

++ ±= σu  (4.3) 
( ) 21

1 k
k

kkkk ah σσ +±=  (4.4) 

kkkk hTuuIP −=  (4.5) 

  By applying Pk in (4.5) to (4.1), ( )k
kka 2+  to  ( )k

kna  of Ak 
can be eliminated. The following precatuions are taken 
during the transformation. To avoid possible underflow 

and overflow in the computations of (4.2) to (4.4), the 
elements on the right side of (4.2) are scaled by   

( )∑
+=

n

ki

k
kia

1

 

 
• When determining uk

T of (4.3), to insure that 
cancellation cannot take place in computation of   

( ) 21
1 k

k
kka σ±+ , the sign of   21

kσ±  is taken to be that 

of   ( )k
kka 1+  

 
• Instead of determining Pk for the transformation of 

(4.1), Ak+1 if determined by (4.7) and (4.8). 

( ) kkkkkkkk hAuuAAPB TT
1 −==+

 (4.7) 

( ) T
1111 kkkkkkkk h uuBBPBA ++++ −==  (4.8) 

  The elements of uk obtained from (4.3) are stored in 
array A and one-dimensional array PV in the form shown 
in Fig.HES1-2, because transformation matrix is needed 
for determining the eigenvectors of real matrix Pk. When 
n=2 or n=1, transformation is not performed. For further 
information see Reference[13]pp.339-358. 
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F20-02-0201 HRWIZ,DHRWIZ 

Judgment on Hurwitz polynomials 
CALL HRWIZ(A,NA,ISW,IFLG,SA,VW,ICON) 

 
Function 
This subroutine judges whether the following polynomial 
of degree n with real coefficients is a Hurwitz polynomial 
(all zeros lies in the lefthalf plane 
Re(s)<0: 

( ) 1
1

21 +
− ++⋅⋅⋅++= nn

nn asasasasP  

  If P(s) is not a Hurwitz polynomial, the subroutine 
searches for α0 such that P(s+α) becomes a Hurwitz 
polynomial for α >α0 (≥0) 
 
Parameters 
A...... Input. Coefficents of P(s). 

One-dimensional array of size n+1, assigned 
in the order of A(1) = a1, A(2) = a2, ... ,A(n+1) 
= an+1. 

NA...... Input. Degree n of P(s). 
ISW...... Input. Control information. 

0: Only judges whether P(s) is a Hurwitz 
polynomial. 

1: Judges whether P(s) is a Hurwitz 
polynomial, and if it is not a Hurwitz 
polynomial, searches for α0. 

Others: 1 is assumed. 
IFLG...  Output Result of judgment. 

0: P(s) is Hurwitz polynomial. 
1: P(s) is not a Hurwitz polynomial. 

SA...... Output. The value of α0:0.0 if P(s) is a 
Hurwitz polynomial. 

VW...... Work area: One-dimensional array of size n+1. 
ICON...... Output. Condition code. (See Table HRWIZ-

1.) 
 
Table HRWIZ-1  Condition codes 

Code Meaning Processing 
0 No error.  

20000 Value α0 has not been found. Bypassed. 
30000 NA<1 or A(1)=0. Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II...MGSSL,AMACH 
FORTRAN basic functions...ABS,ALOG10 

• Notes 
Since the function of this subroutine relates to 
obtaining the inverse Laplace transform f(t) of a 
rational function F(s) = Q(s)/P(s), it can also be used to 
roughly check the characteristic of f(t). This means that 
F(s) has singularities in the domain of Re(s)≥0 if P(s) 
is not Hurwitz polynomial, and the value of the inverse 
transform function f(t)increases exponentially as the 
value of t approaches infinity. 
  To obtain the inverse Laplace transform f(t) of a 
rational function F(s), use subroutine LAPS1 or LAPS2 
depending on whether F(s) is known to be regular in 
the domain of Re(s)>0. (See Chapter 8 for details about 
numerical calculation of the inverse Laplace 
transforms.) 
 

• Example 
Given a polynomial P(s) = s4-12s3+54s2 -108s+81, the 
following judges whether it is a Hurwitz polynomial. 

 
C     **EXAMPLE** 
      DIMENSION A(5),VW(5) 
      NA=4 
      NA1=NA+1 
      A(1)=1.0 
      A(2)=-12.0 
      A(3)=54.0 
      A(4)=-108.0 
      A(5)=81.0 
      ISW=1 
      WRITE(6,600) NA,(I,A(I),I=1,NA1) 
      CALL HRWIZ(A,NA,ISW,IFLG,SA,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0)STOP 
      WRITE(6,620)ISW,IFLG,SA 
      STOP 
  600 FORMAT(//24X,'NA=',I3// 
     *(20X,'A(',I3,')=',E15.8/)) 
  610 FORMAT(/24X,'ICON=',I6) 
  620 FORMAT(/24X,'ISW=',I2,5X, 
     *'IFLG=',I2,5X,'SA=',E15.8) 
      END 
 
Method 
See 8.6 for details about judgment on Hurwitz 
polynomials. 
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B21-11-0402  HSQR,DHSOR 

Eigenvalues of a real Hessenberg matrix (two-stage QR 
method) 
CALL HSQR(A,K,N,ER,EI,M,ICON) 

 
Function 
All eigenvalues of an n-order real Hessenberg matrix are 
determined using the double QR method. n≥1. 
 
Parameters 
A...... Input. Real Hessenberg matrix. 

The contents of A are altered on output. 
A is a two-dimensional array, A(K,N). 

K...... Input. Adjustable dimensions of array A. 
N...... Input. Order n of the real Hessenberg matrix. 
ER,EI...... Output. Eigenvalues. The Jth eigenvalue is 

ER(J)+i･EI(J) (J=1,2, ...,M); 1−=i  
ER and EI are one-dimensional arrays of size 
n. 

M...... Output. The number of determined 
eigenvalues. 

ICON...... Output. Condition code. See Table HSQR-1. 
 
Table HSQR-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N=1 ER(1)=A(1,1) 
and EI(1)=0.0 

15000 Some of the eigenvalues 
could not be determined. 

M is set to the 
number of 
eigenvalues that 
were obtained.  
1≤M<N. 

20000 No eigenvalues could be 
determined. 

M is set to 0. 

30000 K < N or N <1 Bypassed 
 
Comments on use 
• Subprograms used 

SSLII...AMACH and MGSSL 
FORTRAN basic functions...ABS,SQRT and SIGN 

 
• Notes 

Normally, after executing subroutine HES1, this 
routine is used to determine all eigenvalues. 
If eigenvectors are also needed, array A should be 

copied onto another area before calling this routine. 
 

• Example 
After reducing an n-order real matrix to a real 
Hessenberg matrix using HES1, the eigenvalues are 
determined. n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),PV(100), 
     *          ER(100),EI(100) 
   10 READ(5,500) N 

      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL HES1(A,100,N,PV,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      CALL HSQR(A,100,N,ER,EI,M,ICON) 
      WRITE(6,630) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.20000) GO TO 10 
      WRITE(6,640) (I,ER(I),I,EI(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX' 
     * //11X,'** ORDER =',I5/) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     * E14.7)) 
  620 FORMAT(/11X,'** CONDITION CODE =',I5/) 
  630 FORMAT('0'/11X,'** EIGENVALUES') 
  640 FORMAT(5X,'ER(',I3,')=',E14.7, 
     * 5X,'EI(',I3,')=',E14.7) 
      END 
 
Method 
In the QR method, the diagonal elements become 
eigenvalues by making the subdiagonal elements of 
Hessenberg matrix A converge to zero. To accomplish 
this the orthogonal similarity transformation shown in 
(4.1) is applied repeatedly. 

As+1 = Qs
TAsQs (4.1) 

Qs is the orthogonal matrix which is uniquely determined 
in the QR decomposition shown in (4.2). Rs is an upper 
triangular matrix whose diagonal elements are positive 
real numbers. 

As = QsRs (4.2) 

  By applying Qs determined in (4.2) to (4.1), the lower 
subdiagonal elements of A gradually converge to zero. 
  Normally, to improve the rate of convergence, QR 
decomposition is applied to origin-shifted matrix (As-ksl) 
instead of As. Then orthogonal similarity transformation 
is performed. ks is the origin shift. Since both real and/or 
complex numbers are present in the eigenvalues of a real 
matrix, it is necessary to select a complex number as ks. 
As a result, complex arithmetic throughout the process is 
required. To avoid this problem, the double QR method, 
in which arithmetic is kept real, is adopted in the 
subroutine. In this case, (4.1) and (4.2) become (4.3) and 
(4.4) respectively. 

( ) ( )1
T

12 +++ = ssssss QQAQQA  (4.3) 
( )( ) ( )( )ssssssss kk RRQQIAIA 111 +++ =−−  (4.4) 
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  The left side of (4.4) is always treated as a real matrix, if 
ks and ks+1 are a pair of complex conjugate. Since product 
of orthogonal matrices is also an orthogonal matrix, 
assuming that 

1211 −+ ⋅⋅⋅== nss PPPQQQ  (4.5) 

(4.3) is converted to 

121
T

1
T

2
T

12 −−+ ⋅⋅⋅⋅⋅⋅= nsns PPPAPPPA  (4.6) 

  Pl is the transformation matrix which determines the 
element of the first column of upper triangular matrix 
Rs+1Rs during the QR decomposition in (4.4). 
Pi(i=2,3,...,n-1) is a series of transformation matrices 
determined when using the Householder method to 
transform PlAsPltoAs+2 in (4.6). 
  The process for the double QR method is described 
below. 
1) (4.7) determines whether there any elements which 

can be regarded as relative zero among lower 
subdiagonal elements an n-1,......,a21

(s) of As 

( ) ( ) ( )( )
2...,,1,

,111

−=

+≤ −−−

nnl

aaua s
ll

s
ll

s
ll  (4.7) 

 u is the unit round-off. 
  
   ( )s

lla 1−  is relative zero if it satisfies (4.7). If not, step 2 
is performed. 

(a) If ( )l n an n
s= ,  is adopted as an eigenvalue, order n of 

the matrix is reduced to n-1, and the process returns 
to step 1). If n=0, the process is terminated. 

(b) If l=n-1, two eigenvalues are obtained from the 
lowest 2×2 principal submatrix, order n of the 
matrix is reduced to n-2, and the process returns to 
step 1. 

(c) When 2≤ l <n-1, the matrix is split as shown in 
Fig.HSOR-1, the process proceeds to step 2, in this 
case, submatrix D is used for As. 
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Note: Element ε is regarded as zero. 
Fig. HSQR-1  A direct sum of submatrices for a Hassenberg 
matrix 

2) The two eigenvalues of the lowest 2×2 principal 
submatrix are used for origin shifts. Ks and ks+1 are set 
to these values. 

3) The first column of ( )( )IAIA 1+−− ssss kk  on the left 
side of (4.4) is obtained. Since A, is Hessenberg 
matrix, its first column m1 is 

m1 = (x1, y1, x1, 0,......,0)T (4.8) 

where 

( ) ( )( ) ( ) ( )
( ) ( ) ( )( )
( ) ( )
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 (4.9) 

4) P1 is determined. If the first column of upper 
triangular matrix Rs+1Rs is given by (4.10) and (4.11), 
P1 can be determined as shown in (4.12). 

( )T11 0...,,0,σ=r  (4.10) 
2

1
2

1
2

11 zyx ++±=σ  (4.11) 
T

111 2 wwIP −=  (4.12) 
( ) 211111where, rmrmw −−=  (4.13) 

   To avoid cancellation the sign of 1σ  is taken to be 
the opposite of the sign of x1. 

5) P1
TAsP1 is computed. The form of P1

TAsP1 is shown 
in Fig. HSQR-2. 

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗























 

Fig. HSQR-2  Form of  P1
T As P1 

6) P1
TAsP1 is reduced to a Hessenberg matrix using the 

Householder method. The process then returns to step 
1. (Refer to the method section HSE1 for more about 
the Householder method.) By repeating this process, 
the lowest subdiagonal elements will converge to zero, 
and eigenvalues should be obtained using (a) and (b) 
of 1. If eigenvalues can not be obtained. In (a), (b) of 
1 after 30 iterations, ICON is set to 15000 or 20000. 
For further information see References [12],[13] 
PP.359-371 and [16] PP.177-206. 
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B21-11-0502  HVEC,DHVEC  

Eigenvectors of a real Hessenberg matrix (inverse iteration 
method) 
CALL HVEC(A,K,N,ER,EI,IND,M,EV,MK,AW,ICON)  

 
Function 
Eigenvectors x which correspond to selected eigenvalues 
µ of an n-order real Hessenberg matrix A are obtained 
using the inverse iteration method.  Eigenvectors are not 
normalized. n≥1.  
 
Parameters 
A...... Input. Real Hessenberg matrix.  

A is a two-dimensional array, A(K,N) 
K...... Input. Adjustable dimension of arrays A, EV, 

and AW.  
N...... Input. Order n of the real Hessenberg matrix. 
ER,EI.. Input. Eigenvalues µ.  

The real parts of µ are stored in ER and the 
imaginary parts are stored in EI. The jth 
eigenvalue µj is represented as: 

µj=ER(j)+i⋅EI(j) 

If the j-th eigenvalue µj is complex, µj and µj+1 
should be a pair of complex conjugate 
eigenvalues. See Fig. HVEC-1. ER and EI are 
one-dimensional array of size M.  

Array EI

Array ER α 4α 3

−β2β2

α 2α 1

0.00.0

M−1
( )µ M −1

M
( )µ M

4
( )µ4

3
( )µ3

2
( )µ2

1
( )µ1

α M −1

− −β M 1βM −1

α M−1

 
Eignevalue µj=α j+iβj 

Fig. HVEC-1  Storage of eigenvalues  

IND... Input. Indicate whether or not eigenvectors are 
to be determined. When the eigenvector which 
corresponds to the jth eigenvalue µj is to be 
determined, IND(J)=1. If it is not to be 
determined, IND(J)=0. See "Comments on 
use". IND is a one-dimensional array of size M. 

M... Input. The number of eigenvalues stored in 
arrays ER and EI. 

EV... Output. Eigenvectors x. 
Eigenvectors are stored in columns of EV.  
Real eigenvectors of real eigenvalues are 
stored in one column in EV. Complex 
eigenvectors of complex eigenvalues are split 
into the real and imaginary parts and stored in 

two consecutive column. See "Comments on 
use". EV is a two-dimensional 
array,EV(K,MK). 

MK... Input. The number of columns of array EV. 
See "Comments on use". 

AW...  Work area. 
AW(K,N+4) is a two-dimensional array.  

ICON... Output. Condition code. 
See Table HVEC-1.  

 
Table HVEC-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N=1 EV(1,1)=1.0 
15000 The engenvector of some 

eigenvalue could not be 
determined. 

The IND 
information of 
eigenvectors that 
could not be 
determined is 
cleared to zero. 

16000 There are not enough 
columns in array EV to store 
all eigenvectors that were 
requested. 

Only as many 
eigenvectors as 
can be contained 
in array EV are 
computed. The 
IND information 
of those 
eigenvectors 
which could not 
be computed is 
set to zero. 

20000 No eigenvectors could be 
determined. 

All of the IND 
information is set 
to zero. 

30000 M<1,N<M or K<N Bypassed 
 
Comments on use  
• Subprograms used 

SSL II...AMACH and MGSSL.  
FORTRAN basic functions...ABS,SQRT,and SIGN  
 

• Notes  
Parameter IND and storage of eigenvectors. If arrays 
ER, EI, and IND are specified as shown in Fig. HVEC-
2, the eigenvectors which correspond to µ1, µ2, µ3, µ4, 
µ5, µ6, and µ8 are computed and then stored in array EV 
as shown in the same figure. 
Since the eigenvectors which correspond to µ3 and µ7 
are not computed, IND(3) and IND (7) are set to 0 by 
this routine. Also, since µ2 and µ6 are complex 
eigenvalues, IND(2) and IND(6) are set to -1.  
  When IND is specified as shown in Fig. HVEC-3, the 
eigenvectors are successively stored in array EV from 
the first column. In this case, note that the eigenvectors 
are closely stored in order from the first column in EV. 
  Based on the eigenvector storage described above, 
parameter MK should be set to the number of column 
required to contain the eigenvectors. If the actual 
number of columns required for the  
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eigenvectors is larger than the number specified in MK, 
as many eigenvectors as can be stored in the number of 
columns specified in MK are computed, the rest are 
ignored and ICON is set to 16000. 
  The eigenvalues used by this routine can be 
determined by subroutine HSQR. The parameters ER, 
EI and M provided by subroutine HSQR can be input 
as the parameters for this subroutine. 
  When selected eigenvectors of a real matrix are to be 
determined:  
− A real matrix is first transformed into a real 

Hessenberg matrix using subroutine HES1; 
− Eigenvalues are determined using subroutine HSQR; 
− Selected eigenvectors are determined using this 

routine; and  
− Back transformation is applied to the above 

eigenvectors using subroutine HBK1 to obtain the 
eigenvectors of a real matrix. 

Note that subroutine EIG1 can be applied in order to 
obtain all the eigenvectors of a real matrix for 
convenience. 

Array IND
(on output)

Array IND
(on input)

Array EI

Real eigenvector for λ8.

Real eigenvector for λ5.
Real eigenvector for λ4.

Imaginary part of the
complex eigenvector for λ2.

Real part of the complex
eigenvector for λ2.

Real eigenvector for λ1.

ignoredignored

Array ER

−β2 0.00.00.00.0 β2

11111111

N
K

MK

M=8

α1 α2 α3 α4 α5 α6 α7 α8

8
(µ8)

7
(µ7)

6
(µ6)

5
(µ5)

4
(µ4)

3
(µ3)

2
(µ2)

1
(µ1)

−β6β6

10−1110−11

Imaginary part of the
complex eigenvector for λ6.

Real part of the complex
eigenvector for λ6.

 
Fig. HVEC-2  IND information and eigenvectors storage (Example 1)  

− The resulting eigenvectors by this routine have not 
been normalized yet. Subroutine NRML should be 
used, if necessary, to normalize the eigenvectors. 

− When using subroutines HBK1 or NRML, 
parameters IND, M, and EV of this subroutine can be 
used as their input parameters.  

Real eigenvector for λ8.

Real eigenvector for λ5.

Imaginary part of the
complex eigenvector for λ2.

Real part of the complex
eigenvector for λ2.

(Note) The corresponding
eigenvalues appear
in Fig. HVEC-2

Array IND
(on output)

Array EV

Array IND
(on input)

100100−10

N
K

MK

0 00 001 11

1 2 3 4 5 6 7 8

 
Fig. HVEC-3  IND information and eigenvectors storage (Example 2)  

• Example  
The eigenvalues of an n-order real matrix are first 
obtained by subroutines HES1 and HSQR, then 
eigenvectors are obtained using this subroutine and 
HBK1. n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),AW(100,104), 
     *ER(100),EI(100),IND(100),EV(100,100), 
     *PV(100) 
   10 CONTINUE 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510)((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL HES1(A,100,N,PV,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      MP=N 
      DO 35 II=1,N 
      I=1+N-II 
      DO 30 J=1,MP 
   30 AW(J,I)=A(J,I) 
   35 MP=I 
      CALL HSQR(AW,100,N,ER,EI,M,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      DO 40 I=1,M 
   40 IND(I)=1 
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      CALL HVEC(A,100,N,ER,EI,IND,M,EV,100, 
     *     AW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL HBK1(EV,100,N,IND,M,A,PV,0.0, 
     *     ICON) 
      CALL EPRT(ER,EI,EV,IND,100,N,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX',5X, 
     * 'N=',I3) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     * E14.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 

  Subroutine ERPT used in this example is for printing 
the eigenvalues and eigenvectors of the real matrix. For 
details, see the example in section EIG1.  

 
Method 
The inverse iteration method is used to determine 
eigenvectors x which correspond to eigenvalues of an n-
order real Hessenberg matrix A. In the inverse iteration 
method, if matrix A and approximation µj for eigenvalue 
of A are given, an appropriate initial vector x0 is used to 
solve equation (4.1) iteratively. When convergence 
conditions have been satisfied, xr is determined as the 
resultant eigenvector. 

( ) ,...3,2,1,1 ==− − rx rrj xIA µ  (4.1)  

Where, r is the number of iterations, xr is the vector 
determined at the r-th iteration. 
 
  Now let the eigenvalues of an n-order matrix A be 
i(i=1,2,...,n), and the eigenvectors which correspond to λi 
be ui.  
  Since the appropriate initial vector x0 can be expressed, 
as shown in (4.2) by linear combination of ur, xr can be 
written as shown in (4.3) if all eigenvalues λi are different.  

∑
=

=
n

i
ii

1
0 ux α  (4.2) 

( ) [

( ) ( ) ]r
jj

r
jj

n

ji
i

ii

ii
r

jjr

µλµλα

αµλ

−−+

−=

∑
≠
=1

1

u

ux

 (4.3) 

  Since 1/(λj-µµµµj)r is a constant, it can be omitted and (4.3) 
is rewritten as: 

( ) ( )rjj

n

ji
i

r
jjiiiir µλµλαα −−+= ∑

≠
=1

uux  (4.4) 

Since in general   ( ) ( )λ λj j j ju u− − <<10. , (4.4) 

indicates that, if αj≠0 , as r grows greater, xr tends rapidly 
to αjµj. 

  The system of linear equations shown in (4.1) are solved 
using (4.5) after decomposition of (A-µjI) to a lower 
triangular matrix L and an upper triangular matrix U.  

1−= rr PxLUx  (4.5) 

  Where, P is the permutation matrix used for pivoting. 
(4.5) can be solved as follows.  

on)substituti(forward11 −− = rr PxLy  (4.6)  
on)substituti(backward1−= rr yUx  (4.7)  

  Since any vector may be used for initial vector x0, x0 
may be given such that y0 of (4.8) has a form such as  
y0 = (1,1,1,...,1)T.  

0
1

0 PxLy −=  (4.8)  

  Therefore, for the first iteration, the forward substitution 
in (4.6) can be omitted. In general, the eigenvectors can 
be obtained by repeating forward substitution and 
backward substitution for the second and following 
iterations. The following apply to this routine:  
1) Selection of the initial vector 

y0 in (4.10) is used for the initial vector. 

  ( )T
0 EPS1EPS1,...,EPS1,=y  (4.10)  

where  

∞Au=EPS1  (4.11)  

 And u is the unit round-off  
 
2) Method for convergence criterion  

After backward substitution, the condition in (4.12) is 
tested to determine whether the eigenvectors have 
been accepted.  

nr 1.01 ≥x  (4.12)  

 If (4.12) is satisfied, xr is accepted as the eigenvectors. 
If (4.12) is not satisfied, the initial vector is regarded 
inappropriate. A new initial vector is substituted and 
backward substitution is continued.  

3) When eigenvalues have multiple roots or close roots 
If eigenvalue µj whose eigenvector is to be 
determined and eigenvalue uj whose eigenvector has 
already been computed satisfy the condition in (4.13), 
correct eigenvectors will not be determined no matter 
how many iterations are performed.  

( )1...,,2,1EPS1 −=≤− jiij µµ  (4.13)  
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 if ij λλ =  then from (4.4) we have:  

( ) ( )
( )jik

jk

n

k
jjkkiijj

,
1

1

≠

−−++= ∑
=

µλµλααα uuux

 (4.14)  

  Therefore, as long as the same initial vector is used, 
eigenvectors x1

(j) and x1
(i) which are computed 

corresponding to jµ  and iµ  will be approximately  

equal. 
in such situations, this routine adjusts jµ  in EPS1 units, 

and when (4.15) is satisfied, jµ~ is used to compute the 
eigenvectors.  

( )1...,,2,1EPS1~ −=>− jiij µµ  (4.15)  

For further information, see References [12] and [13]. 
PP.418-439. 
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E51-30-0401  ICHEB, DICHEB 

Indefinite integral of a Chebyshev series  
CALL ICHEB(A,B,C,N,ICON) 

 
Function 
Given an n-terms Chebyshev series defined on interval 
[a,b]  

( ) ( )∑
−

=







−
+−=

1

1

2n

k
kk ab

abxTc'xf  (1.1) 

this subroutine computes its indefinite integral in a 
Chebyshev series 

( ) ( )∫ ∑
=








−
+−=

n

k
kk ab

abxTc'dxxf
0

2  (1.2) 

and obtains its coefficient  { kc }. Where arbitrary 
constant  { 0c } is assumed to be zero. Σ' denotes to make 
sum but the first term only is multiplied by factor 1/2. 
  Where a≠b and n≥1. 
 
Parameters 
A...... Inputs. Lower limit a of the interval for the 

Chebyshev series. 
B...... Input. Upper limit b of the interval for the 

Chebyshev series.  
C...... Input. Coefficients{ck}.  

Stored as C(1)=c0,C(2)=c1,..., 
C(N)=cn-1. 
Output. Coefficients   { kc } for the indefinite 
integral. 
Stored as C(1)=0.0, C(2)= 1c ,..., 
C(N+1)= nc . 
One-dimensional array of size N+1. 

N...... Input.  Number of terms n. 
Output. Number of terms  n+1 of the indefinite 
integral.  

ICON... Output. Condition code. See Table ICHEB-1.  
 
Table ICHEB-1  Condition codes  

Code Meaning Processing 
0 No error  

30000 Either of the following 
occurred. 
1     N<1 
2     A=B 

Bypassed 

 
Comments on use  
• Subprograms used 

SSL II.....MGSSL 
FORTRAN basic function...FLOAT  

 

• Notes  
When a indefinite integral of an arbitrary function is 
required, this subroutine can be used together with the 
subroutine FCHEB for Chebyshev series expansion.  
The ECHEB subroutine used for evaluation of 
Chebyshev series can be subsequently called to obtain 
the integral value at point   ν∈ [a,b] in an interval. 
 
Determination of arbitrary constant  0c  of an integral  
this subroutine outputs zero as arbitrary constant  0c . If 
a constant is defined so that an indefinite integral at 
point  ν∈ [a, b]  in an interval is yv, it should be 
computed by using the subroutine ECHEB use for 
evaluation of Chebyshev series as follows: 

 
: 

CALL ICHEB(A,B,C,N,ICON) 
CALL ECHEB(A,B,C,N,V,Y,ICON) 
C(1)=(YV-Y)*2.0  

: 
 

where C(1) corresponds to c0, V corresponds to v and 
YV corresponds to yv respectively. To obtain the 
definite integral  

( ) [ ] mibaxdttf i
x

a

i
,...,2,1,,, =∈∫  (3.1) 

by changing the upper limit of the integral interval for 
function f(x), it should determines at first the value of 
arbitrary constant  0c . So that the value of the 
indefinite integral at end point a is zero and then should 
calls the subroutine ECHEB m times repeatedly. (See 
Example).  

 
  The error in an indefinite integral can be estimated by 
the absolute sum of the last two term coefficients.  

 
• Example  

The value of function  

( ) [ ]10,
10014

1~
0 2 ,x

t
dtxf

x
∈

+
+= ∫  (3.2) 

is obtained with increment 0.05 starting from x=0  
The subroutine FCHEB expands the integrand in 
Chebyshev series (required accuracy: absolute error  
5･10-5). Then this subroutine obtains an indefinite 
integral. Integral constant is determined so that the 
value of an indefinite integral where x=0 is 1/4 
The subroutine ECHEB obtains the function value at 
each step and computes the error for true value 
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( ) xxf 10tan
10
1

4
1 1−+=  (3.3) 

 
C     **EXAMPLE** 
      DIMENSION C(258),TAB(255) 
      EXTERNAL FUN 
      EPSA=5.0E-5 
      EPSR=5.0E-5 
      NMIN=9 
      NMAX=257 
      A=0.0 
      B=1.0 
      CALL FCHEB(A,B,FUN,EPSA,EPSR,NMIN, 
     *           NMAX,C,N,ERR,TAB,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,600) N,ERR,ICON 
      WRITE(6,601) (C(K),K=1,N) 
      CALL ICHEB(A,B,C,N,ICON) 
      IF(ICON.NE.0) GO TO 20 
      WRITE(6,602) 
      WRITE(6,601) (C(K),K=1,N) 
      CALL ECHEB(A,B,C,N,A,F,ICON) 
      IF(ICON.NE.0) GO TO 20 
      C(1)=(0.25-F)*2.0 
      WRITE(6,603) 
      H=0.05 
      X=A 
   10 CALL ECHEB(A,B,C,N,X,Y,ICON) 
      IF(ICON.NE.0) GO TO 20 
      ERROR=G(X)-Y 
      WRITE(6,604) X,Y,ERROR 
      X=X+H 
      IF(X.LE.B) GO TO 10 
      STOP 
   20 WRITE(6,604) ICON 
      STOP 
  600 FORMAT('0',3X,'EXPANSION OF', 
     1' FUNCTION FUN(X)',3X,'N=',I4,3X, 
     2'ERROR=',E13.3,3X,'ICON=',I6) 
  601 FORMAT(/(5E15.5)) 
  602 FORMAT('0',5X,'INTEGRATION OF', 
     1' CHEBYSHEV SERIES') 
  603 FORMAT('0',10X,'X',7X, 
     1'INTEGRATION ',6X,'ERROR'/) 
  604 FORMAT(1X,3E15.5) 
  605 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
      FUNCTION FUN(X) 
      FUN=1.0/(1.0+100.0*X*X) 
      RETURN 
      END 
      FUNCTION G(X) 
      G=0.25+ATAN(10.0*X)/10.0 
      RETURN 
      END 

Method 
This subroutine performs termwise indefinite integral of 
an n-terms Chebyshev series defined on interval [a,b] and 
expresses it in a Chebyshev series. 
Given  

( ) ( )∑∫∑
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k
kk ab

abxTcdx
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 (4.1) 

Substituting the following to the left side of (4.1),  

( ) ( )

( ) ( )

( ) ( ) ( )
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where the integral constant is omitted and  
( )

ab
abxy

−
+−= 2 , the following relation is established for 

coefficients{ck}and { kc }. 

( )
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11
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=
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nnk
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c

kkk

nn

n

 (4.3) 

This subroutine obtains  { kc } by using an integral 
formula for Chebyshev polynomial in (4.3).  
Zero is used for arbitrary constant  0c . 
n times multiplications and divisions are required for 
obtaining an indefinite integral of n-terms series.  
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I11-71-0301  IERF, DIERF 

Inverse error function erf-1(x)  
CALL IERF (X,F,ICON) 

 
Function 
This subroutine evaluates the inverse function erf -1(x) of 

the error function ( ) dtex
x t∫ −=

0

22erf
π

, using the 

minimax approximation formulas of the form of the 
polynomial and rational functions. 
Limited x <1. 
 
Parameters 
X...... Input. Independent variable x.  
F...... Output. Function value erf -1(x).  
ICON... Output. Condition code. See Table IERF-1. 
 
Table IERF-1  Condition codes  

Code Meaning Processing 
0 No error  

30000 |X|≥1 F is set to 0.0. 
 
Comments on use 
• Subprograms used 

SSL II...IERFC,MGSSL 
FORTRAN basic functions...ABS,SQRT,ALOG 

 
• Notes  

The range of argument X is limited as  |X|<1. 
  This range is the definition area of this function.  
  When considering the relationship erf -1(x)=erfc-1(1-x) 
the inverse error function may be evaluated by 
subroutine IERFC. But, if values of x are within the 
range   x ≤0.8, higher accuracy and less computation 
time are accomplished by the IERF subroutine.  

 
• Example  

A table of function values computed at x from 0 to 0.99 
with step-size 0.01 is made for erf -1(x).  

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      X=FLOAT(K-1)/100.0 
      CALL IERF(X,F,ICON) 
      IF(ICON.EQ.0)WRITE(6,610)X,F 
      IF(ICON.NE.0)WRITE(6,620)X,F,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF INVERSE ERROR', 
     * ' FUNCTION'///6X,'X',7X,'IERF(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     * E17.7,5X,'IERF=',E17.7,5X, 
     * 'CONDITION=',I10) 
      END 
 
Method 
Some approximation formulas are used for evaluation of 
the inverse error function erf -1(x), corresponding if   
x ≤0.8 or not. 

 
• x ≤0.8 

The minimax approximation in the sense of relative 
error based on the Taylor series expansion (See 
Reference[87]) of erf -1(x) at x=0 is used. 
Single precision: 

( )

( )( )2

4

0

3

0

1

8.0/1

erf

xt

tbtaxx
k

k
k

k

k
k

−=

⋅= ∑∑
==

−

 (4.1)  

Theoretical precision = 9.2 digits  
Double precision:  

( )

( )( )2

8

0

7

0

1

8.0/1

erf

xt

tbtaxx
k

k
k

k

k
k

−=

⋅= ∑∑
==

−

 (4.2)  

Theoretical precision=18.8 digits  
 
• x >0.8 

Considering the relationship erf -1(1-x)= erfc-1(1-x), it is 
computed by subroutine IERFC. For details refer to the 
descriptions of IERFC.  
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I11-71-0401  IERFC,DIERFC  

Inverse complementary error function erfc-1(x) 
CALL IERFC(X,F,ICON) 

 
Function 
This subroutine evaluates the inverse function erfc-1(x) of 
the complementary error function ( ) dtex

x

t∫
∞ −=

22erfc
π

 

using the minimax approximations of the form of the 
polynomial and rational functions.  
Limited 0<x<2. 
 
Parameters 
X...... Input. Independent variable x.  
F...... Input. Function value erfc-1(x).  
ICON... Output. Condition code. See Table IERFC-1.  
 
Table IERFC-1  Condition codes 

Code Meaning Processing 
        0 No error  
30000 X≤0 or X≥2 F is set to 0.0. 

 
Comments on use  
• Subprograms used 

SSL II...IERF,MGSSL  
FORTRAN basic functions...ABS, SQRT, ALOG  

 
• Notes  

The range of argument X is limited as 0<X<2. This 
range is the definition area of this function. When 
considering the relationship erfc-1(x)=erf-1(1-x) the 
inverse complementary error function may be evaluated 
by subroutine IERF. But, if values of x are within the 
range 0<x<0.2, higher accuracy and less computation 
time are accomplished by this IERFC. 

 
• Example  

A table of function values computed at x from 0.01 to 
1.00 with stepsize 0.01 is made for erfc-1(x)  

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,100 
      X=FLOAT(K)/100.0 
      CALL IERFC(X,F,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,F 
      IF(ICON.NE.0) WRITE(6,620) X,F,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF INVERSE', 
     * ' COMPLEMENTARY ERROR FUNCTION', 
     * ///6X,'X',6X,'IERFC(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     * E17.7,5X,'IERFC=',E17.7,5X, 
     * 'CONDITION=',I10) 
      END 
 

Method 
Some approximation formulas are used for evaluation of 
inverse complementary error function erfc -1(x), 
corresponding if 0<x<0.2 or if 1.8<x<2, or other. 
 
• 0<x<0.2 or 1.8<x<2 
Placing ( )( )xx −−= 2logβ  and ( ) ( )ββ Rx ⋅=−1erfc , 
the auxiliary function R(β) is evaluated using the 
minimax approximation in the sense of relative error base 
on the Strecok theory (See Reference [87]). 
 

(a) 0<x<5.10-16 or (2-5･10-16)<x<2 
Letting  dc +β  
Single precision:  

( ) ∑
=

− ⋅=
7

0

1erfc
k

k
k tax β  (4.1) 

 Theoretical precision=9.7 digits 
 where c = -4.5999961 
 d = 1.8974954 
  
 Double precision:  

( ) ∑
=

− ⋅=
16

0

1erfc
k

k
k tax β  (4.2) 

 Theoretical precision -18.9 digits 
 where c = -4.59999617941507552 
 d = 1.89749541006229975  
  
(b) 5.10-16≤x<2.5･10-3 or 2-2.510-3<x≤2-5･10-16 
 t = c･β +d  
 Single precision:  

( ) ∑∑
==

− ⋅=
4

0

4

0

1erfc
k

k
k

k

k
k tbtax β  (4.3) 

 Theoretical precision = 8.4 digits 
 where c = 0.27972881 
 d = -0.64395786  
  
 Double precision:  

( ) ∑∑
==

− ⋅=
11

0

11

0

1erfc
k

k
k

k

k
k tbtax β  (4.4) 

 Theoretical precision=18.7 digits  
 where c = 0.279728815664916161 
 d = -0.643957858131678820  
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(c) 2.5 10-3≤x<0.2 or 1.8<x≤1.9975  
 Letting t = c･b+d 
 Single precision:  

( ) ∑
=

− ⋅=
7

0

1erfc
k

k
k tax β  (4.5) 

 Theoretical precision = 8.9 digits 
 where c = -0.77440652  
 d = 1.7827451  

 Double precision:  

( ) ∑
=

− ⋅=
20

0

1erfc
k

k
k tax β  (4.6) 

 Theoretical precision = 18.5 digits  
 where c = -0.774406521186630830  
 d = 1.78274506157390808  

 
• 0.2≤x≤1.8  

Considering the relationship erfc-1(x) = erf-1(1-x), it is 
computed by subroutine IERF. For details refer to the 
descriptions of IERF. 
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I11-61-0101 IGAM1, DIGAM1 

Incomplete Gamma Function of the first kind γ(v,x) 
CALL IGAM1(V,X,F,ICON) 

 
Function 
This subroutine computes incomplete Gamma function of 
the first kind,  

( ) dttex
x t∫ −−=

0

1, ννγ  

by series expansion, asymptotic expansion, and numerical 
integration, where v>0, x≥0. 
 
Parameters 
V...... Input. Independent variable v.  
X...... Input. Independent variable x.  
F...... Output. Value of γ (v, x).  
ICON... Output. Condition code. See Table IGAM1-1 
 

Table IGAM1-1  Condition codes 

Code Meaning Processing 
        0 No error  
30000 V≤0 or X<0 F=0.0 

 
Comments on use  
• Subprograms used 

SSL II...AFMAX,AMACH,EXPI,IGAM2,MGSSL,and 
ULMAX  
FORTRAN basic functions...FLOAT,EXP, and 
GAMMA 

 
• Notes  

When X≥23.0(for single precision) or X≥46.0(for 
double precision), the value of γ (v, x) may be obtained 
simply by the complete GAMMA(v) function in the 
FORTRAN basic function, because γ (v,x) ≈ Γ  (v) in 
the above ranges.  

 
• Example  

The following example generates a table of γ (v,x) for 
v,x=a+b, where a=0,1,2 and b=0.1,0.2,0.3.  

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 20 IV=1,9 
      V=FLOAT(IV+7*((IV-1)/3))/10.0 
      DO 10 IX=1,9 
      X=FLOAT(IX+7*((IX-1)/3))/10.0 
      CALL IGAM1(V,X,F,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) V,X,F 
      IF(ICON.NE.0) WRITE(6,620) V,X,F,ICON 
   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF', 
     *' INCOMPLETE GAMMA FUNCTION' 
     *//5X,'V',9X,'X',10X,'FUNC'/) 
  610 FORMAT(' ',2F10.5,E17.7) 
  620 FORMAT(/' ','** ERROR **',5X,'V=', 
     *F10.5,5X,'X=',F10.5,5X,'IGAM1=', 
     *E17.7,5X,'CONDITION=',I10/) 
      END 
 
Methods  
  Two different approximation formulas are used 
depending upon the ranges of x divided at x1=3.5(or 5.5 
for double precision). 
 
• For x≤2(v+1) or x<x1 

The computation is based on  

( ) ( )( ) ν
ννν

νγ ν
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2xxexx x  (4.1) 

  The value of γ (v,x) is computed as a partial sum of the 
first N terms with N being taken large enough so that the 
last term no longer affects the value of the partial sum 
significantly.  
 
• For x>2(v+1)and x≥x1 

The computation is based on  

( ) ( ) ( )xx ,, νΓνΓνγ −=  (4.2) 

  where Γ(v) is computed by calling GAMMA, which is 
one of the FORTRAN basic functions, and F(v,x) is 
computed by subroutine IGAM2.  
  For further information, see Reference [85] pp.14-16 
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I11-61-0201  IGAM2, DIGAM2 

Incomplete Gamma Function of the second kind Γ(v,x)  
CALL IGAM2(V,X,F,ICON) 

 
Function 
This subroutine computes incomplete Gamma function of 
the second kind  

( ) ( ) dttxeedttex tx

x

t ∫∫
∞ −−−∞ −− +==

0

11, νννΓ  

by series expansion, asymptotic expansion, and numerical 
integration, where v≥0,x≥0(x≠0 when v=0). 
 
Parameters 
V...... Input. Independent variable v.  
X...... Input. Independent variable x.  
F...... Output. Value of Γ  ( v.x).  
ICON... Output. Condition code. See Table IGAM2-1 
 
Table IGAM2-1  Condition codes 

Code Meaning Processing 
        0 No error  
20000 xv-1e-x>flmax F=flmax 
30000 V<0,X<0 or V=0 and X=0 F=0.0 

 
Comments on use  
• Subprograms used 

SSL II...AFMAX,AMACH,MGSSL,EXPI, and 
ULMAX  
FORTRAN basic functions...FLOAT,EXP,GAMMA, 
and ATAN  

 
• Notes  

For X≥log(flmax), the value or Γ  (v,x) becomes smaller 
enough to underflow.  
The condition, xv-1e-x>log(flmax) will hold when x>1 and 
v is very large. Then, the value of Γ  (v,x) overflows. 

 
• Example  

The following example generates a table of Γ  (v,x) for 
v,x=a+b, where a=0,1,2 and b=0.1,0.2,0.3.  

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 20 IV=1,9 
      V=FLOAT(IV+7*((IV-1)/3))/10.0 
      DO 10 IX=1,9 
      X=FLOAT(IX+7*((IX-1)/3))/10.0 
      CALL IGAM2(V,X,F,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) V,X,F 
      IF(ICON.NE.0) WRITE(6,620) V,X,F,ICON 

   10 CONTINUE 
   20 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF', 
     *' INCOMPLETE GAMMA FUNCTION' 
     *//5X,'V',9X,'X',10X,'FUNC'/) 
  610 FORMAT(' ',2F10.5,E17.7) 
  620 FORMAT(/' ','** ERROR **',5X,'V=', 
     *F10.5,5X,'X=',F10.5,5X,'IGAM2=', 
     *E17.7,5X,'CONDITION=',I10/) 
      END 
 
Methods  
  Since Γ  (v,x) is reduced to an exponential integral when 
v=0 and x>0, subroutine EXPI is used; where as it is the 
complete Gamma function when v>0 and x=0, so the 
FORTRAN basic function GAMMA is used. The 
calculation procedures for v>0 and x>0 are described 
below.  
Two different approximation formulas are used 
depending upon the ranges of x divided at x1=20.0(or 
40.0 for double precision). 
 
• When v=integer or x>x1 

The computation is based on the following asymptotic 
expansion:  

( ) ( )( )

( ) ( )
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  The value of Γ  (v,x) is computed as a partial sum of the 
first n terms, either with n being taken large enough so 
that the last term no longer affects the value of the partial 
sum significantly, or with n being take as the largest 
integer to satisfy n≤v+x.  
 
• When v≠integer and x≤x1 

The computation is based on the following 
representation:  

( )

( )( ) ( )

( )( ) ( ) ( )xmm
x

m
x

exx

m

x

,21

121

11,

1

1

−−⋅⋅⋅−−+


+−⋅⋅⋅−−+⋅⋅⋅



 +⋅⋅⋅+−+=

−

−−

νΓννν

ννν

ννΓ ν

 (4.2) 

  Where m is the largest integer to satisfy m≤v. When v<1, 
the firt term is regarded as 0, and (v-1)(v-2)......(v-m)=1. 
And, because 0<v-m<1, Γ  (v-m,x), in the second term can 
be expressed as:  



IGAM2 

374 

( ) ( ) dttxeexmv mvtx ∫
∞ −−−− +=−
0

1,Γ  (4.3) 

This integral, since function(x+1)v-m-1 has a certain 
singularity, can be calculated efficiently by the double 
exponential formula for numerical integration. (See 
Reference [68].) For further information, see Reference 
[85]. 
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I11-91-0301  INDF, DINDF 

Inverse normal distribution function φ-1(x)  
CALL INDF(X,F,ICON)  

 
Function 
This subroutine computes the value of inverse function  
φ -1(x) of normal distribution  

function   ( ) ∫ −=
x t dtex

0

22

2
1
π

φ  by the relation, 

( ) ( )φ− −=1 12 2x xerf  (1.1) 

where  x <1 2 .  
 
Parameters 
X...... Input. Independent variable x 
F...... Output. Function value φ -1(x) 
ICON... Output. Condition code  

See Table INDF-1 
 
Table INDF-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 |x| ≥ ½ F=0.0 
 
Comments on use  
• Subprograms used 

SSL II...IERF,IERFC,MGSSL  
FORTRAN basic functions...ABS,SQRT,ALOG 

 
• Notes  

x <1 2  
  The value of φ -1(x) can be obtained by the subroutine 
INDFC if the following relation is used. 

( ) ( )φ ψ− −= −1 1 1 2x x  (3.1)  

  Note that in the range of  x ≤ 0 4. , however, this leads 
to less accurate and less efficient computation than 
calling INDF.  

• Example  
The following example generates a table of φ -1(x) in 
which x varies from 0.0 to 0.49 with increment 0.01.  

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,50 
      X=FLOAT(K-1)/100.0 
      CALL INDF(X,F,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,F 
      IF(ICON.NE.0) WRITE(6,620) X,F,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF INVERSE NORMAL' 
     *,' DISTRIBUTION FUNCTION' 
     *//6X,'X',7X,'INDF(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=',E17.7 
     *,5X,'INDF=',E17.7,5X,'CONDITION=',I10) 
      END 
 
Method 
There exists the relation (4.1) between φ (t) and erf(t), the 
error function. 

( ) ( )φ t t t= −∞ < < ∞erf 2 2 ,  (4.1) 

Letting both sides of (4.1) be x, we see t=φ-1(x) from 
φ(t)=x, or   ( )xt 1erf2 −=  from   ( )erf 2t x2 = .  

Therefore  

( ) ( )φ− −=1 12 2x xerf  (4.2) 

This subroutine computes φ -1(x) based on (4.2) by using 
the subroutine IERF. 
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I11-91-0401  INDFC, DINDFC 

Inverse complementary normal distribution function  
ψ-1(x)  
CALL INDFC(X,F,ICON) 

 
Function 
This subroutine computes the value of inverse function ψ-

1(x) of complementary normal distribution  

function   ( ) dtex
x

t∫
∞

= 22

2
1
π

ψ  by the relation, 

( ) ( )ψ − −=1 12 2x xerfc  (1.1) 

0<x<1  
 
Parameters 
X...... Input. Independent variable x 
F...... Output. Function value ψ-1(x) 
ICON... Output. Condition code  

See Table INDFC-1  
 
Table INDFC-1  Condition codes  

Code Meaning Processing 
0 No error  

30000 X≤0 or X≥1 F=0.0 
 
Comments on use  
• Subprograms used 

SSL II...IERFC,IERFC,MGSSL 
FORTRAN basic functions...ABS,SQRT,ALOG 

 
• Notes  
0<x<1. 
  The value of ψ -1(x) can be obtained by the subroutine 
INDF if the following relation is used.  

( ) ( )ψ φ− −= −1 1 1 2x x  (3.1)  

  Note that in the range of 0<x<0.1, however, this leads to 
less accurate and less efficient computation than calling 
INDFC. 
 
• Example  

The following example generates a table of ψ -1(x) in 
which x varies from 0.01 to 0.50 with increment 0.01. 

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,50 
      X=FLOAT(K)/100.0 
      CALL INDFC(X,F,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,F 
      IF(ICON.NE.0) WRITE(6,620) X,F,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF INVERSE COMPL', 
     * 'EMENTARY NORMAL DISTRIBUTION ', 
     * 'FUNCTION'//6X,'X',7X,'INDFC(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     * E17.7,5X,'INDFC=',E17.7,5X, 
     * 'CONDITION=',I10) 
      END 
 
 
Method 
There exists the relation (4.1) between ψ(t) and erf(t), the 
error function. 

( ) ( )ψ t t t= −∞ < <∞erfc 2 2,  (4.1) 

Letting both sides of (4.1) be x, we see t=ψ -1(x) from 
ψ(t)=x or ( )xt 2erfc2 1−=  from ( ) xt =22erfc .  
Therefore  

( ) ( )ψ − −=1 12 2x xerfc  (4.2) 

This subroutine computes ψ-1(x) based on (4.2) by using 
the subroutine IERFC subroutine. 
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E12-21-0101 INSPL, DINSPL 

Cubic spline interpolation coefficient calculation 
CALL INSPL(X,Y,DY,N,C,D,E,ICON) 

 
Function 
Given discrete points x1, x2, ..., xn (x1<x2<...<xn), their 
corresponding function values yi=f(xi), i=1,...,n, and the 
second derivatives at both ends y1'' and ym'', this 
subroutine obtains the interpolating cubic spline 
represented as (1.1) below to f(x). 
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( ) ( )

( ) ( )
( )
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Parameters 
X ..... Input. Discrete points xi. 

One-dimensional array of size n. 
Y ..... Input. Function values yi. 

One-dimensional array of size n. 
DY .... Input. 2nd order derivatives y1'' and yn'' at both 

ends. 
One-dimensional array of size 2. 
DY(1) is set to y1'' and DY(2) is set to yn''. 
(See Comments) 

N ..... Input. Number (n) of discrete points. n≥2. 
C ..... Output. Coefficients ci of (1.1) 

One-dimensional array of size n. 
D ..... Output, Coefficients di of (1.1)  

One-dimensional array of size n. 
E ..... Output. Coefficients ei of (1.1) 

Usually E(N)=0.0 
One-dimensional array of size n. 

ICON .. Output. Condition code. 
See Table INSPL-1. 

 
Table INSPL-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 n<2 or Xi≥Xi+1 Aborted 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... none 

• Notes 
There are no restrictions on specifying 2nd order 
derivatives y"i and y"n at both ends. However, when 
those values are unknown it is possible to specify 
yi''=0.0 and yn''=0.0. In that case the integral 

( )[ ] dxxS
nx

x

2

1
∫ ′′  will be minimized. Where S"(x)s 2nd 

order derivative of the cubic spline that is to be 
determined. 
If the function f(x) to be interpolated can be assumed to 
have periodic intervals of xn-xl, it is best to specify 2nd 
derivatives such that y"i=y"n. 

 
• Example 

The number of discrete points n, discrete points xi, and 
function values yi, i=1,...,n are input. The cubic spline 
function is determined in order to interpolate a value at 
x=ν in the interval [xi,xi+1]. 
y"i=0.0, y"n=0.0, n≤10. 

 
C     **EXAMPLE** 
      DIMENSION X(10),Y(10),DY(2),C(10), 
     *          D(10),E(10) 
      READ(5,500) N 
      READ(5,510) (X(I),Y(I),I=1,N) 
      DY(1)=0.0 
      DY(2)=0.0 
      CALL INSPL(X,Y,DY,N,C,D,E,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.GT.10000) STOP 
      READ(5,520) I,V 
      XX=V-X(I) 
      YY=Y(I)+(C(I)+(D(I)+E(I)*XX)*XX)*XX 
      WRITE(6,610) YY 
      STOP 
  500 FORMAT(I2) 
  510 FORMAT(2E16.8) 
  520 FORMAT(I2,E16.8) 
  600 FORMAT('1',10X,'ICON=',I5) 
  610 FORMAT('0',10X,'INTERPOLATED VALUE=', 
     * E16.8) 
      END 
 
Method 
Consider obtaining the interpolating function shown in 
(1.1) when given discrete points x1,x2...,xn (x1<x2<...<xn) 
and their corresponding function values yi=f(xi), i=1,...,n. 
In (1.1) for each interval [xn,xi+1], different polynomials 
of degree three or less (for (-∞,x1) and (xn, ∞) 
polynomials of degree two or less) are shown. 
  Let the interpolating function to be obtained be 
represented function to be obtained be represented by 
S(x), which is expressed separately as 
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Where S0(x) and Sn(x) are polynomials of degree two or 
less and S1(x),...,Sn-1(x) are polynomials of degree three or 
less. 

In this routine S(x) is determined so that the derivatives 
of S(x) up to 2nd order should be continuous over (-∞,∞). 
For this to be true Si(x) must satisfy 
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The coefficients ci, di and ei of (1.1) are determined by 
the conditions in (4.2). This is shown in (4.3). 
When i=1,...,n-1 
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where hi=xi+1-xi, y"i=S"(xi). From the second condition 
of (4.2), y"i satisfies the three term relation. 
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If y"i, y"n are given, (4.4) becomes a system of linear 
equations with respect to y"2, y"3, ..., y"n-1. 
Since the coefficient matrix is a positive definite 
symmetric matrix, this routine uses the modified 
Cholesky method. 
 
• Characteristics of S(x) when y"i = y"n = 0 

If y"i = y"n = 0 is given, S(x) becomes linear over  
(-∞,x1), (xm, ∞). At this time it becomes a cubic natural 
spline with the following characteristics. 

Let g(x) be any interpolating function which satisfies 

( ) niyxg i ,...,1, ==  (4.5) 

g(x), g'(x), g"(x) are continuous in [xl, xn]. 
If S(x) is the interpolating cubic spline corresponding 
to y"1=y"n=0, then 

( ){ } ( ){ } dxxSdxxg
x

x

x

x

n

∫∫ ′′≥′′
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22  (4.6) 

  (The equality occurs only when g(x)=S(x).) 
In the sense that S(x) minimizes 

( ){ } dxxg
nx

x∫ ′′
1

2  

it can be considered the "smoothest" interpolating 
function. For further information, see References [48], 
[49] and [50] pp.349 - 356. 
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F20-01-0101 LAPS1, DLAPS1 

Inversion of Laplace transform of a rational function 
(regular in the right-half plane) 
CALL LAPS1(A,NA,B,NB,T,DELT,L,EPSR,FT, 
T1,NEPS,ERRV,ICON) 

 
Function 
Given a rational function F(s) expressed by (1.1), this 
subroutine calculates values of the inverse Laplace 
transform f(t0), f(t0+∆t), ..., f(t0+∆t(L-1)): 
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where F(s) must be regular in the domain of Re(s)>0. 
 
Parameters 
A ..... Input. Coefficients of P(s). 

One-dimensional array of size n+1, assigned in 
the order of A(1)=a1, A(2)=a2, ..., A(n+1)=an+1. 

NA .... Input. Degree n of P(s). 
B ..... Input. Coefficients of Q(s). 

One-dimensional array of size m+1, assigned 
in the order of B(1)=b1, B(2)=b2, ...., 
B(m+1)=bm+1. 

NB .... Input. Degree m of Q(s). 
T ..... Input. Initial value t0(≥0) from which the 

values of f(t) are required. 
DELT .. Input. Increment ∆t(≥0) of variable t. If 

DELT=0.0, only f(t0) is calculated. 
L ..... Input. The number (L≥1) of points at which 

values of f(t) are required. 
EPSR ... Input. The relative error tolerance for the 

values of f(t): 10-2 to 10-4 for single precision 
and 10-2 to 10-7 for double precision will be 
typical. If EPSR=0.0, the default value 10-4 is 
used. 

FT .... Output. A set of values f(t0), f(t0+∆t),..., 
f(t0+∆t(L-1)). 
One-dimensional array of size L. 

T1 .... Output. A set of values t0, t0+∆t, ..., t0+ ∆t(L-1). 
One-dimensional array of size L. 

NEPS ... Output. The number of terms: N in the 
truncated expansion. 

 (See "Method"). 
One-dimensional array of size L. The number 
of terms N used to calculate FT(I) is stored in 
NEPS(I). 

ERRV .. Output. Estimates of the relative error of 
resultant value FT. 
One-dimensional array of size L. The relative 
error of FT(I) is stored in ERRV(I). 

ICON .. Output. Condition code. (See Table LAPS1-1.) 
 
Table LAPS1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Some of the results did not 
meet the required accuracy. 

Continued. 
Values 
representing 
accuracy for  
 
are output to 
array ERRV. 

30000 One of the following 
conditions: 
(1) NB<0 or NB>NA 
(2) T<0 or DELT<0 
(3) L<1 
(4) EPSR<0 
(5) A(1) = 0 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, AFMAX 
FORTRAN basic functions ... FLOAT, ALOG, 
ALOG10, CMPLX, AIMAG, EXP, ABS, INT, ATAN 

 
• Notes 

Rational function F(s) must be regular in the domain 
for Re(s)>0. 

If F(s) is singular or if its regularity is not known, use 
subroutine LAPS2. 

If t0=0, the value of f(0) is calculated according to the 
theorem on initial values as 
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Inverse transform f1(t) of F1(s) is given as 

( ) ( )t
a
btf δδδδ

1

1
1 =   where δδδδ(t) is the delta function. 

Since F2(s) satisfies the condition of (8.20) in Chapter 
8, inverse transform f2(t) of F2(s) can be calculated from 
(8.22). Therefore, when NA=NB the subroutine 
calculates the inverse of F2(s) for t>0. When t=0, the 
maximum value of the floating point numbers is returned. 
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• Example 
Given a rational function F(s) regular (non-singular) in 
the area for Re(s)>0: 

( )
811085412

4
234

2

++++
+=

ssss
ssF  

the inverse Laplace transform f(t) is obtained at points, 
i=1,2,...,9, with EPSR=10-4. 

 
C     **EXAMPLE** 
      DIMENSION A(5),B(3),T1(9),FT(9), 
     *ERRV(9),NEPS(9) 
      NB=2 
      NB1=NB+1 
      B(1)=1.0 
      B(2)=0.0 
      B(3)=4.0 
      NA=4 
      NA1=NA+1 
      A(1)=1.0 
      A(2)=12.0 
      A(3)=54.0 
      A(4)=108.0 
      A(5)=81.0 
      T=0.2 
      DELT=0.2 
      L=9 
      EPSR=1.0E-4 
      WRITE(6,600) NB,(I,B(I),I=1,NB1) 
      WRITE(6,610) NA,(I,A(I),I=1,NA1) 
      WRITE(6,620) EPSR 
      CALL LAPS1(A,NA,B,NB,T,DELT,L,EPSR, 
     *FT,T1,NEPS,ERRV,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,640) (T1(I),FT(I),ERRV(I), 
     *NEPS(I),I=1,L) 
      STOP 
  600 FORMAT(//24X,'NB=',I3// 
     *(20X,'B(',I3,')=',E15.8/)) 
  610 FORMAT(/24X,'NA=',I3// 
     *(20X,'A(',I3,')=',E15.8/)) 
  620 FORMAT(22X,'EPSR=',E15.8/) 
  630 FORMAT(22X,'ICON=',I6//) 
  640 FORMAT(15X,'F(',F8.5,')=',E15.8,2X, 
     *'ERROR=',E15.8,2X,'N=',I3/) 
      END 
 

Method 
The method for obtaining the inverse Laplace transform 
is explained in Chapter 8, where f(t) is approximated as: 
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  In this subroutine, σ0, N, and p are determined as 
follows: 
Since f(t,σ0) satisfies 

( ) ( ) ( ) ( ) ⋅⋅⋅−+−= −− tfetfetftf 53, 00 42
0

σσσ  
σ0 is determined as 

( ) 2
2

EPSRlog
0 +



−=σ  

where [• ] is the Gaussian notation, so that the user 
specified relative error tolerance (EPSR) may be 
expressed as: 

( ) ( )
( )

02

0

010

,
,,EPSR σ

σ
σσ −− =−≈ e

tf
tftf

N

NN  (4.2) 

Since value N that satisfies the condition of (4.2) 
depends on the value of t, it is adaptively determined 
from the following empirical formula 

[ ] [ ]5.25= 00 tN ⋅+ σσ  (4.3) 

and value p is chosen as 
5 for σ0 ≤4 

[σ0+1] for 4  <σ0≤9, 
9 for 9  <σ0 

Then relative errors of results fN(t,σ0) 
are output to array ERRV, which are estimated as 
follows: 
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F20-02-0101 LAPS2, DLAPS2 

Inversion of Laplace transform of a general rational 
function  
CALL LAPS2(A,NA,B,NB,T,DELT,L,EPSR,FT, 
T1,NEPS,ERRV,IFLG,VW,ICON) 

 
Function 
Given a rational function F(s) expressed by (1.1), this 
subroutine calculates values of the inverse Laplace 
transform f(t0), f(t0+∆t), ..., f(t0+∆t(L-1)): 
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In this case, F(s) need not be regular in the domain for 
Re(s)>0. 
 
Parameters 
A ..... Input. Coefficients of P(s). 

One-dimensional array of size n+1, assigned in 
the order of A(1)=a1, A(2)=a2, ..., A(n+1)=an+1. 

NA .... Input. Degree n of P(s). 
B ..... Input. Coefficients of Q(s). 

One-dimensional array of size m+1, assigned 
in the order of B(1)=b1, B(2)=b2, ...., 
B(m+1)=bm+1. 

NB .... Input. Degree m of Q(s). 
T ..... Input. Initial value t0(≥0.0) from which the 

values of f(t) are required. 
DELT .. Input. Increment ∆t(>0.0) of variable t. If 

DELT=0.0, only f(t0) is calculated. 
L ..... Input. The number (≥1) of points at which 

values of f(t) are required. 
EPSR ... Input. The relative error tolerance for the 

values of f(t): 10-2 to 10-4 for single precision 
and 10-2 to 10-7 for double precision will be 
typical. If EPSR=0.0, the default value 10-4 is 
used. 

FT .... Output. A set of values f(t0), 
f(t0+∆t),...,f(t0+∆t(L-1)). 
One-dimensional array of size L. 

T1 .... Output. A set of values t0, t0+∆t, ..., t0+∆t(L-1). 
One-dimensional array of size L. 

NEPS ... Output. The number of terms: N in the 
truncated expansion. 
(See "Method"). 

 One-dimensional array of size L. The number 
of terms N used to calculate is stored in 
NEPS(I). 

ERRV .. Output. Estimates of the relative error of result 
FT. One-dimensional array of size L. The 
relative error of FT(I) is stored in ERRV(I). 

IFLG .. Output. Regularity judgment result. 
IFLAG=0 if F(s) is regular in the domain of 
Re(s)>0, IFLAG=1 otherwise. (See "Notes on 
Use".) 

VW .... Work area. One-dimensional array of size 
n+m+2 

ICON .. Output. Condition code. (See Table LAPS2-1.) 
 
Table LAPS2-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Some of the results did 
not meet the required 
accuracy. 

Continued. Values 
representing accuracy 
for f(t0+∆t･i): i=0,1,...,L-
1 are output to array 
ERRV. 

20000 The subroutine failed to 
obtain the non-negative 
real value γ 0 such that 
the F(s) is regular in the 
domain of Re(s)>γ 

0. 

Bypassed 

30000 One of the following 
conditions: 
(1) NB<0  
(2) NB>NA 
(3) T<0  
(4) DELT<0 
(5) L<1 

EPSR<0 
A(1) = 0 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II ... LAPS1, HRWIZ, MGSSL, AMACH, 
AFMAX 
FORTRAN basic functions ... FLOAT, ALOG, 
ALOG10, CMPLX, AIMAG, EXP, ABS, INT, ATAN 

 
• Notes 

Rational function F(s) need not be regular in the 
domain for Re(s)>0. However, if it is known that F(s) 
is regular, use subroutine LAPS1 for efficiency. 

If IFLG=1 is output, F(s) is not regular in the domain 
of Re(s). This means that f(t) increases exponentially as 
t approaches infinity. 

If t0=0, the value of f(0) is calculated according to the 
theorem on initial values as 
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For NA=NB, (1.1) is written as  
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Inverse transform f1(t) of F1(s) becomes 

( ) ( )t
a
btf δδδδ

1

1
1 =  

where δ(t) is the delta function. 
Since F2(s) satisfies the condition of (8.20) in Chapter 

8, inverse transform f2(t) of F2(s) can be calculated from 
(8.22). Therefore, when NA=NB the subroutine 
calculates the inverse of F2(s) for t>0. When t=0, the 
maximum value of the floating point numbers is returned. 
 
• Example 

Given a rational function F(s): 
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the inverse Laplace transform f(t) is obtained at points, 
ti=0.2+0.2(i-1),where i=1,2,...,9 with EPSR=10-4. 

 
C     **EXAMPLE** 
      DIMENSION A(5),B(3),T1(9),FT(9), 
     *ERRV(9),NEPS(9),VW(8) 
      NB=2 
      NB1=NB+1 
      B(1)=1.0 
      B(2)=0.0 

      B(3)=4.0 
      NA=4 
      NA1=NA+1 
      A(1)=1.0 
      A(2)=-12.0 
      A(3)=54.0 
      A(4)=-108.0 
      A(5)=81.0 
      T=0.2 
      DELT=0.2 
      L=9 
      EPSR=1.0E-4 
      WRITE(6,600) NB,(I,B(I),I=1,NB1) 
      WRITE(6,610) NA,(I,A(I),I=1,NA1) 
      WRITE(6,620) EPSR 
      CALL LAPS2(A,NA,B,NB,T,DELT,L,EPSR, 
     *FT,T1,NEPS,ERRV,IFLG,VW,ICON) 
      WRITE(6,630) ICON,IFLG 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (T1(I),FT(I),ERRV(I), 
     *NEPS(I),I=1,L) 
      STOP 
  600 FORMAT(//24X,'NB=',I3// 
     *(20X,'B(',I3,')=',E15.8/)) 
  610 FORMAT(/24X,'NA=',I3// 
     *(20X,'A(',I3,')=',E15.8/)) 
  620 FORMAT(22X,'EPSR=',E15.8/) 
  630 FORMAT(22X,'ICON=',I6,20X,'IFLG=',I2) 
  640 FORMAT(15X,'F(',F8.5,')=',E15.8,2X, 
     *'ERROR=',E15.8,2X,'N=',I3/) 
      END 
 
Method 
The method for obtaining the inverse Laplace transform 
is explained in Chapter 8. This subroutine proceeds as 
follows: 

Obtain real value γ 
0 for which F(s+γ 

0) becomes 
regular in the domain of Re(s)>0 using subroutine 
HRWIZ. 
Calculate inverse Laplace transform g(t) of G(s) ≡ 
F(s+γ 0) by using subroutine LAPS1. 
Calculate f(t) from f(t)= tre 0 g(t) 
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F20-03-0101 LAPS3, DLAPS3 

Inversion of Laplace transform of a general function  
CALL LAPS3(FUN,T,DELT,L,EPSR,R0,FT,T1, 
NEPS,ERRV,ICON) 

 
Function 
Given a function F(s) (including non-rational function), 
this subroutine calculates values of the inverse Laplace 
transform f(t0), f(t0+∆t), ..., f(t0+∆t(L-1)) 

In this case, F(s) must be regular in the domain of 
Re(s)>γ 

0: Convergence coordinate). 
 
Parameters 
FUN ... Input. The name of the function subprogram 

which calculates the imaginary part of function 
F(s) for complex variable s. 
The form of the subprogram is as follows: 
FUNCTION FUN(S) 
where S stands for a complex variable. 
(See Example.) 

T ..... Input. Initial value t0(>0.0) from which the 
values of f(t) are required. 

DELT .. Input. Increment ∆t(≥0.0) of variable t. If 
DELT=0.0, only f(t0) is calculated. 

L ..... Input. The number (≥1) of points at which 
values of f(t) are required. 

EPSR ... Input. The relative error tolerance for the 
values of f(t) (≥0.0): 10-2 to 10-4 for single 
precision and 10-2 to 10-7 for double precision 
are typical. If EPSR=0.0 or EPSR≥1.0 is input, 
the default value 10-4 is used. 

R0 .... Input. The value of γ which satisfies the 
condition of γ ≥ γ 

0 when function F(s) is 
regular in the domain of Re(s)>γ 0. If a 
negative is input as the value of R0, this 
subroutine assumes R0=0.0. 

FT .... Output. A set of values f(t0), 
f(t0+∆t),...,f(t0+∆t(L-1)). One-dimensional 
array of size L. 

T1 .... Output. A set of values t0, t0+∆t,..., t0+∆t (L-1). 
One-dimensional array of size L. 

NEPS ... Output. The number of truncation items. One-
dimensional array of size L. The number of 
terms N used to calculate FT(I) is stored in 
NEPS(I). 

ERRV .. Output. Estimates of the relative error of the 
result. One-dimensional array of size L. The 
relative error of FT(I) is stored in ERRV(I). 

ICON .. Output. Condition code. (See Table LAPS3-1.) 
 

Table LAPS3-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Some of the results did 
not meet the required 
accuracy. 

Continued. Values 
representing 
accuracy for 
f(t0+∆t･i), i=0,1,..., 
L-1 are output to 
array ERRV. 

20000 The value of 
EXP(R0*T1(I)+σ0)/T1(I) 
may overflow for a 
certain value of I. 

Bypassed. The 
result may not be 
guaranteed. 

30000 One of the following 
conditions: 
(1) T≤0 or DELT<0 
(2) L<1 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic functions ... FLOAT, ALOG, 
CMPLX, EXP, INT, ATAN, ABS 

 
• Notes 

When F(s) is a rational function, use subroutine LAPS2 
for efficiency. 
  When F(s) is regular in the domain for Re(s)>γ 

0, 
input γ ≥ γ 

0 as parameter R0. 
When γ 

0≤0.0, simply set R0=0.0. If a negative value is 
input as parameter R0, R0=0.0 is assumed in the 
subroutine. 

If function f(t) for R0=0.0 and function f(t) for 
R0>0.0 are significantly different, it is possible because 
of γ 

0 >0.0. To estimate value γ 
0 using this subroutine, 

perform the following procedure: 
Calculate f(t) using appropriate values (e.g. R0=0.0, 
R0=0.5) as R0. Estimate the value of t at which the 
values of f(t) are not the same with R0=0.0, 0.5, and 
1.0. Let this value be ta. If the singular point of F(s) is 
s0=ν0+iµ 

0(ν0 > 0) (if more than one singular point 
exists, use the largest value of the real part as the value 
of s0), f(t) varies with the values of R0 in the domain of 

( )000 Rtt a −≈> νσ , where value σ0 is as follows: 

( ) 2
2

EPSRlog
0 +



 −=σ  

Therefore, γ 0(=ν0) can be estimated from: 

at
R 0

0 0
σγ +≈  (3.1) 
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An example of the above procedure is given below. 
Example: 

( ) 841 2 +−= sssF  (3.2) 

The results of f(t) with R0=0.0, R0=0.5, and R0=1.0 on 
the assumption that EPSR=10-2 are shown by the solid 
lines in (a), (b), and (c), respectively of Fig. LAPS3-1. 
The dotted lines show the correct results. These figures 
show that each f(t) largely varies with the values of R0. 
 
f(t) sharply varies at the point of 2≈at , 5.3≈at , and 

5≈at  for R0=0.0, R0=0.5, and R0=1.0. Since σ0=5 for 
EPSR=10-2, the values of γ 

0 are estimated by using (3.1). 
The estimated values are as follows: 
For R0=0.0, 5.20 ≈γ  
For R0=0.5, 93.10 ≈γ  
For R0=1.0, 0.20 ≈γ  

Since F(s) in (3.2) has the singular point at 3220 is ±= , 
the values of γ 

0 above are proper estimates. The dotted 
lines in the figure show the results for input of 2.0 as the 
value of R0. 

Since the factor te 0σ  is included in the expression for 
calculating f(t) ((4.4) in method), f(0.0) cannot be 
calculated. Use the value of f(0.01), f(0.0001) or so 
instead of the value of f(0.0). Note that an overflow may 
occur for an excessively small value of t. 

In this subroutine, the value of the imaginary part of 
function F(s) is evaluated at the following points: 

( )
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When, for such a point, function F(s) is a multi-valued 
function, a proper branch for F(s) must be calculated in 
the function subprogram. For example, suppose the 
following: 

( ) 11 2 += ssF  

12 +s  generates the branches for the above sn in 
Quadrants 1 and 3. In this case, the branch in Quadrant 1 
should be employed. 

Suppose the following functions: 

( ) sssF 


 +−= 14exp 2  (3.4) 

( ) 


 += 1cosh1 2sssF  (3.5) 

50
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(a) EPSR=10−2, R0=0.0 

 

f(t)

 200

 0

−200

 2

 4  6  8  10  12
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(b) EPSR=10−2, R0=0.5 

f(t)
10000

 0

−10000

 2  4  6  8  10  12
 t

 
(c) EPSR=10−2, R0=1.0 

Fig. LAPS3-1 Estimotion of γ0 for F(s)= 841 2 +− ss  
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In each of the above, the delay factor exp(-as) (a>0) is 
included in ( )F s sfor → ∞ .In such a case, the function 
subprogram should be carefully defined. For example, if 
(3.4) is employed without any modification, the result of 
f(t) is as shown in 1) in Fig. LAPS3-2. In this case, for 
t<2, f(t)≠0.0, and vibration occurs between 2 and 4. This 
is because the valid condition for the Euler 
transformation ((8.25) in Section 8.6) may not be 
satisfied. This is called the Gibbs phenomenon. 

EPSR=10−4

R0=0.0

 f(t)

1.00

0.80

0.60

0.40

0.20

0.00  t
10.08.006.004.002.000.00

1)

2)

 
Fig. LAPS3-2 Conversion of F(s)=exp( 14 2 +− s /s) 

For (3.4), if t<2, f(t)=0 is theoretically derived. Thus, the 
following expression can be sufficiently manipulated: 

( ) ( ) ( )
sss

sFssG
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142exp

2exp
2  (3.6) 

Note that the above function is the image function of: 

( ) ( )2+′≡′ tftg  0>′t  

G(s) gives a more accurate result than F(s). However, 

since 


 +− 142 2ss  may cause numerical cancellation, 

it should be transformed to the following: 
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2) in Fig. LAPS3-2 is the result of G(s) above. F(s) in 
(3.5) should be expanded into the following, then 
transformed by terms as in (3.4): 
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• Example 
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Suppose that f(t), inversion of Laplace transform is to be 
calculated at each point of (ti-X) = 0.2+0.2(i-1),  
i = 1,2,...,800. Use EPSR=10-4. Instead of F(s), the 
following expression is employed in the function 
subprogram: 
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f(t) is derived by using inverse transform of G(s), g(t) as 
follows: 

( ) ( )



≥−
<
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XtXtg
Xt

tf
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,0

 

Figure LAPS3-3 shows the result of g(t-X) in which t-X 
is used as the axis of abscissas. (Refer to [101] in 
References.) 

 f(t)

1.00

0.80

0.60

0.40

0.20

0.00
0.00 16.00 32.00 48.00 64.00 80.00

 t−X

 
Fig. LAPS3-3 Result of the example 
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C     **EXAMPLE** 
      DIMENSION FT(800),T1(800),NEPS(800), 
     *          ERRV(800) 
      EXTERNAL FUN 
      T=0.2 
      DELT=0.2 
      L=800 
      EPSR=1.0E-4 
      R0=0.0 
      CALL LAPS3(FUN,T,DELT,L,EPSR,R0,FT, 
     *T1,NEPS,ERRV,ICON) 
      WRITE(6,600) ICON 
      WRITE(6,610) (T1(I),FT(I),NEPS(I), 
     *             ERRV(I),I=1,L) 
  600 FORMAT('1',20X,'ICON=',I5//) 
  610 FORMAT(6X,'F(',F8.3,')=',E16.7,3X, 
     *'N=',I3,3X,'ERR=',E16.7) 
      STOP 
      END 
      FUNCTION FUN(S) 
      COMPLEX*8 S,SR 
      SR=CSQRT(S*S+1.0) 
      IF(REAL(SR).LT.0.0) SR=-SR 
      SR=CEXP(40.0/(S+SR))*(S*S+2.0) 
      FUN=AIMAG(1.0/SR) 
      RETURN 
      END 
 
Method 
Calculation of inverse Laplace transform is described in 
Section 8.6. Let the value of R0 be γ, then for γ >0, 
G(s)=F(s+γ ) is regular in the domain of Re(s)>0. By 
calculating inverse transform g(t), function f(t) can be 
derived as: 

)()( tgetf tγ=  (4.1) 

In the following description, a function which is regular 
in the domain of Re(s)>0, will be set to F(s) again. Then 
determination of parameters σ0, p, and N described in 
Section 8.6, will be described. 
 
• Value of σ0 (truncation error) 

From (8.23) in Section 8.6, σ0 approximation f(t,σ0) of 
f(t) can be expressed as 

( ) ( ) ( ) ( ) ⋅⋅⋅−+−= −− tfetfetftf 53, 00 42
0

σσσ  (4.2) 

The value of σ0 is determined so that the required 
relative error tolerance EPSR may be as follows: 
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This leads to 

( ) 0.2
2

EPSRlog
0 +



 −=σ  (4.3) 

where [• ] is the Gaussian notation. 
2.0 is added to the second term of the right part in (4.3) 
to produce σ0=3 even for EPSR=10-1. The value of σ0 
is almost the same as the number of significant digits of 
fN (t,σ0). 

• Value of p 
Approximation of f(t), fN (t,σ0) is calculated by using 
the following expression, derived from equation (8.28) 
in Section 8.6. 
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where (p+1) stands for the number of terms of the 
Euler transformation. In this subroutine, p is 
determined from experience as 

20 += σp  (4.5) 

When F(s)=O(sα) as s → ∞, and if σ0, that is, EPSR is 
given so that the value of p satisfies the condition: 

( )p ≥ +α 5  (4.6) 

then, (4.4) can also be applied to F(s) for which f(t) 
may be a distribution. Below is an example in which 
f(t) may be distribution. Inverse transform of 

( ) ssF = , can be written as 

( ) ( ) ( )
( )232 t

tU
t

ttf
ππ

δ −=  

where δ(t) stands for the Dirac delta function, and U(t) 
stands for the following: 

( )U t t
t= ≥
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1 0
0 0

,
,  

Because ( ) 0lim ≠
∞→

sF
s

, the above method cannot be 

applied to ( )F s s=  theoretically. However, when p 
is set to 6(>1/2+5) or more in the range of t>0, this 
subroutine can be used for this function as usual. 

 
• Value of N (number of truncation terms) 

With k and p used in (4.4): 

N k p= +  

Stands for the number of truncation terms and is equal 
to the evaluation count for function F(s). The value of k 
must be determined so that the valid condition for the 
Euler transformation ((8.25) in Section 8.6) may be 
satisfied. Such a value of k depends upon t, and can be 
expressed by: 

tkkk 21 +=  (4.7) 

(where k1 and k2 are constants.) 
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This subroutine calculates f(t) for the range of 
( )1L00 −+≤≤ tttt ∆  with use of the following method, 

which determines the values of k1 and k2. First, by 
setting t=t0, define k which allows truncation error 
ERRV(1) to in the range of ERRV(1)<EPSR. Let this 
be k'. 

Next, by setting t=t0+∆t(L-1), define k which allows 
ERRV(L)<EPSR. Let this be k". From these, the 
following simultaneous equations are obtained: 

( ){ }1L021

021

−++=′′
+=′

ttkkk
tkkk

∆
 (4.8) 

Determine the value of k1 and k2 by solving these 
equations. Then, calculate k by applying these values to 
equation (4.7) (For the fraction part, round up to the 
integer part.) The value of N is output to array NEPS. 
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A22-11-0101 LAX, DLAX 

A system of linear equations with a real general matrix 
(Crout's method) 
CALL LAX(A,K,N,B,EPSZ,ISW,IS,VW,IP,ICON) 

 
Function 
This subroutine solves a real coefficient linear equations 
(1.1) using the Crout's method. 

Ax b=  (1.1) 

Where A is an n×n regular real matrix, b is an n-
dimensional real constant vector, and x is the n-
dimensional solution vector. n≥1. 
 
Parameters 
A ..... Input. Coefficient matrix A. 

The contents of A are altered on output. 
A is a two-dimensional array, A(K,N). 

K ..... Input. Adjustable dimension of array A (≥N). 
N ..... Input. Order n of the coefficient matrix A. 
B ..... Input. Constant vector b. 

Output. Solution vector x. 
B is a one-dimensional array of size n. 

EPSZ .. Input. Tolerance for relative zero test of pivots 
in decomposition process of A (≥0.0). 
If EPSZ is 0.0, a standard value is used. 

ISW ... Input. Control information. 
When l (≥1) systems of linear equations with 
the identical coefficient matrix are to be solved, 
ISW can be specified as follows: 
ISW=1, the first system is solved. 
ISW=2, the 2nd to lth systems are solved. 
However, only parameter B is specified for 
each constant vector b of the systems of 
equations, with the rest unchanged. 
(See Notes.) 

IS .... Output. Information for obtaining the 
determinant of matrix A. 
If the n elements of the calculated diagonal of 
array A are multiplied by IS, the determinant is 
obtained. 

VW .... Work area. VW is a one-dimensional array of 
size n. 

IP .... Work area. IP is a one-dimensional array of 
size n. 

ICON .. Output. Condition code. Refer to Table LAX-1. 

Table LAX-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 Either all of the elements of 
some row were zero or the 
pivot became relatively zero. 
It is highly probable that the 
coefficient matrix is singular. 

Discontinued 

30000 K<N, N<1, EPSZ<0.0 or 
ISW≠1,2 

Bypassed 

 
Comments on use 
• Subprogram used 

SSL II ..... ALU, LUX, AMACH, MGSSL 
FORTRAN basic functions ..... ABS 
 

• Notes 
The solution x obtained by this subroutine may be 
refined in accuracy by calling subroutine LAXR 
successively. 

If EPSZ is set to 10-s, this value has the following 
meaning; while performing the LU-decomposition by 
Crount's method, if the loss of over s significant digits 
occurred for the pivot, the LU-decomposition should 
be discontinued with ICON=20000 regarding the pivot 
to be relatively zero. The standard value of EPSZ is 
16u, u being the unit round off.  If the processing is to 
proceed at a lower pivot value, EPSZ will be given the 
minimum value but the result is not always guaranteed. 

When solving successive systems of linear equations 
with the identical coefficient matrix, computation can 
be performed by setting ISW=2 after the first system of 
equations are processed. By setting ISW=2, LU-
decomposition of coefficient matrix A is bypassed so 
the computation time is reduced. In this case, the value 
of IS is the same as when ISW=1. 

 
• Example 

In this example, l systems of linear equations in n 
unknown with the identical coefficient matrix are 
solved. n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(100), 
     *          VW(100),IP(100) 
      READ(5,500) N 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      READ(5,500) L 
      M=1 
      ISW=1 
      EPSZ=1.0E-6 
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   10 READ(5,510) (B(I),I=1,N) 
      WRITE(6,610) (I,B(I),I=1,N) 
      CALL LAX(A,100,N,B,EPSZ,ISW,IS,VW,IP, 
     *ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,630) (I,B(I),I=1,N) 
      IF(L.EQ.M) GOTO 20 
      M=M+1 
      ISW=2 
      GOTO 10 
   20 DET=IS 
      DO 30 I=1,N 
      DET=DET*A(I,I) 
   30 CONTINUE 
      WRITE(6,640) DET 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',10X,'** COEFFICIENT MATRIX' 
     */12X,'ORDER=',I5/(10X,4('(',I3,',',I3, 
     *')',E16.8))) 
  610 FORMAT(///10X,'CONSTANT VECTOR' 
     */(10X,5('(',I3,')',E16.8))) 
  620 FORMAT('0',10X,'CONDITION CODE=',I5) 
  630 FORMAT('0',10X,'SOLUTION VECTOR' 
     */(10X,5('(',I3,')',E16.8))) 
  640 FORMAT(///10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=', 
     *E16.8) 
      END 
 

Method 
A system of linear equations 

Ax b=  (4.1) 

is solved using the following procedure. 
• LU-decomposition of coefficient matrix A (Crout's 

method) 
The coefficient matrix A is decomposed into the 
product of a lower triangular matrix L and a unit upper 
triangular matrix U. To reduce rounding off errors, the 
partial pivoting is performed in the decomposition 
process. 

PA LU=  (4.2) 

P is the permutation matrix which performs the row 
exchanges required in partial pivoting. 
Subroutine ALU is used for this operation. 

• Solving LU=Pb (forward and backward substitutions) 
Solving equation (4.1) is equivalent to solving the 
linear equation (4.3). 

PbLUx =  (4.3) 

Equation (4.3) is decomposed into two equations 

Ly Pb=  (4.4) 
 yUx =  (4.5) 

then the solution is obtained using forward substitution 
and backward substitution. 

Subroutine LUX is used for these operations. For more 
information, see References [1], [3], and [4]. 
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A25-11-0101 LAXL, DLAXL 

Least squares solution with a real matrix (Householder 
transformation) 
CALL LAXL(A,K,M,N,B,ISW,VW,IVW,ICON) 

 
Function 
This subroutine solves the overdetermined system of 
linear equations (1.1) for the least squares solution ~x  
using Householder transformation, 

Ax b=  (1.1) 

Given m×n real matrix A of rank n and m-dimensional 
constant vector b where m is not less than n. That is, this 
subroutine determines the solution vector x such that 

2Axb −  

is minimized. where n≥1. 
 
Parameters 
A ..... Input. Coefficient matrix A. 

The contents of A are altered on output. 
The matrix A is a two-dimensional array, 
A(K,N). 

K ..... Input. Adjustable dimension of array A (≥M). 
M ..... Input. Number of rows, m, in matrix A. 
N ..... Input. Number of columns, n, in matrix A. 
B ..... Input. Constant vector b. 

Output. The least squares solution ~x . One-
dimensional array of size m. (Refer to Notes.) 

ISW ... Input.  Control information. 
When solving l ( ≥ 1) systems of linear 
equations with the identical coefficient matrix, 
specify as follows: 
ISW = 1 ... The first system is solved. 
ISW = 2 ... The 2nd to l th systems are solved. 

however, the values of B are to be 
replaced by the new constant 
vector b with the rest unchanged. 
(Refer to Notes) 

VW ... Work area. 
One-dimensional array of size 2n. 

IVW ... Work area. 
One-dimensional array of size n. 

ICON .. Output. Condition code. 
Refer to Table LAXL-1. 

Table LAXL-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 Rank (A)<n Discontinued 
30000 K<M, M<N, N<1 or ISW≠1,2 Bypassed 

 
Comments on use 
• Subprogram used 

SSL II ..... ULALH, ULALB, AMACH, MGSSL 
FORTRAN basic functions ..... SQRT 

 
• Notes 

The least squares solution ~x  is stored in the first n 
elements of array B. 

When solving successive systems of linear equations 
with the identical coefficient matrices, ISW=2 should 
be specified after the first system. Then reducing the 
coefficient matrix to an upper triangular matrix is 
bypassed by setting ISW=2, hence computation time is 
reduced. Refer to "Method" for reducing to an upper 
triangular matrix. 

 
• Example 

This example shows the method to solve l 
overdetermined systems of linear equations with the 
identical coefficient matrix where m, the number of 
equations, is not less than n, the number of unknowns. 
m≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(100), 
     *          VW(200),IVW(100) 
      READ(5,500) M,N,L 
      READ(5,510) ((A(I,J),I=1,M),J=1,N) 
      WRITE(6,600) M,N,((I,J,A(I,J),J=1,N), 
     *             I=1,M) 
      LL=1 
      ISW=1 
   10 READ(5,510) (B(I),I=1,M) 
      WRITE(6,610) (I,B(I),I=1,M) 
      CALL LAXL(A,100,M,N,B,ISW,VW,IVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,630) (I,B(I),I=1,N) 
      IF(L.EQ.LL) GO TO 20 
      ISW=2 
      LL=LL+1 
      IF(LL.LE.L) GO TO 10 
   20 WRITE(6,640) 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',5X, 
     *'LINEAR LEAST SQUARES SOLUTION'/6X, 
     *'ROW NUMBER=',I4,5X,'COLUMN NUMBER=' 
     *,I4/6X,'COEFFICIENT MATRIX='/ 
     *(10X,4('(',I3,',',I3,')',E17.8,3X))) 
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  610 FORMAT(///10X,'CONSTANT VECTOR=' 
     */(10X,4('(',I3,')',E17.8,3X))) 
  620 FORMAT(' ',10X,'CONDITION CODE=',I6) 
  630 FORMAT(' ',10X,'SOLUTION VECTOR=' 
     */(10X,4('(',I3,')',E17.8,3X))) 
  640 FORMAT('0',5X, 
     *'LINEAR LEAST SQUARES SOLUTION END') 
      END 
 
Method 
Let A be an m × n real matrix with m ≥ n and of rank n 
and b be an m-dimensional constant vector. This 
subroutine determines the vector ~x  (the least squares 
solution) so that 

2Axb −  (4.1) 

is minimized. 
Since the Euclidean norm is invariant with the 

orthogonal transformation. 

222 RxCQAxQbAxb −=−=−  (4.2) 

where Q is an orthogonal matrix, C = Qb and R = QA. 
Choosing Q such that 

( ) nnm ×−







==

}0

~RRQA  (4.3) 

where ~R  is an n × n upper triangular matrix, clearly the 
equation (4.2) is represented by the equation (4.4) as 
follows: 

2
2

~~

1C
xRCRxC −=−  (4.4) 

where ~C  denotes the first n-dimensional vector of C, and 
C1 is the (m - n)-dimensional vector of C except for ~C . 
Therefore, the equation (4.4) is minimum when 
~ ~C Rx 0− = . In other words, if matrix A can be reduced 

to an upper triangular matrix by an orthogonal 
transformation as shown in the equation (4.3), the least 
squares solution ~x  of the equation (4.1) can be obtained 
by the following the equation (4.5). 

CRx ~~~ 1−=  (4.5) 

In this subroutine, the least squares solution is determined 
by the following procedures: 
 

• Reducing a matrix A to an upper triangular matrix ... 
Transforming a matrix A to an upper triangular matrix 
with the Householder transformation, matrix R is 
obtained using the equation (4.3). 

 
• Obtaining a solution ... The least squares solution ~x  is 

obtained using the equation (4.5). 
The actual procedure is performed as follows. 

− Transforming a matrix A into a triangular matrix- 
In transforming a matrix A into an upper triangular matrix, 
let a(k)

ij be the elements of a matrix A(k). 
Then the transformation is as follows: 

( )

( ) ( ) ( ) nkk ,...,1,1

1

==

=
+ kk APA

AA
 (4.7) 

is accomplished by orthogonal matrix P(k) as shown in 
equation (4.8) such that )1( +k

ika =0, i=k+1,...,m. 
(Refer to Fig. LAXL-1) 

( ) ( ) ( )Tkk
k

k uuIP β=−  (4.8) 
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The orthogonal matrix P is chosen
so that the elements marked by ○○○○
become zeros in the
transformation Ak+1=P kAk.
 The elements surrounded by
are all changed by the
transformation.

A k

 k

 k
 0

Fig. LAXL-1  Process of transforming a matrix into an upper triangular 
matrix 

Consequently, R is given by the following equation: 

( ) ( ) ( ) ( ) QAAPPPAR nnn =⋅⋅⋅== −+ 111  

This is called the Householder transformation. In this 
subroutine the following items are taken into 
consideration: 
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• Previous to the k -th transformation, the k -th column is 
chosen in such a way that σk value becomes maximum 
in equation (4.8) in order to minimize calculation errors. 
In other words, let the l -th column be chosen out of the 
equation (4.9) so that )(

1
kS =max )(k

jS  and then the l-th 
column is exchanged with k -th column. 

( ) ( )( ) ,...,,
2

kias
m

ki

k
ij

k
j == ∑

=

 (4.9) 

If sl
(k) value satisfies the following condition, 

( ) )1(

1
max i

ni

k
l su

≤≤
⋅≤s  

where u is a unit round off. 
Then rank (A) < n is assumed and the processing is 
discontinued with ICON = 20000. 

 
• In order to reduce the calculation for the transformation,  

P(k)  is not computed explicitly, but rather the 
transformation (4.7) is done by way of the following 
transformation: 

( ) ( ) ( )( ) ( )

( ) ( ) T

T1

k
kk

kkk
k

k

yuA

AuuIA

−=

⋅−=+ β

( ) ( )kk
kk Auy TT, where β=  

taking into consideration the fact that the first (k-1) 
elements of u(k) are all zeros when the vector y(k) and the 
matrix A(k+1) are computed. 
 
Obtaining a solution 
Since 

( ) ( ) ( )APPPR nn 11 ⋅⋅⋅= −  (4.10) 

  the constant vector is also transformed in the same way. 

( ) ( ) ( )bPPPQbC n 11 ⋅⋅⋅== −n  (4.11) 

Solving the system of linear equations (4.12) by using 
this ~C , the least squares solution for the equations (4.1) 
can be obtained as follows: 

Rx C~ ~=  (4.12) 

Taking into consideration that the matrix ~R  is an upper 
trangular matrix, the equation (4.12) can be solved using 
backward substitution. 



LAXLM 

393 

A25-21-0101 LAXLM, DLAXLM 

Least squares minimal norm solution of a real matrix 
(singular value decomposition method) 
CALL LAXLM(A,KA,M,N,B,ISW,EPS,SIG,V,KV, 
VW,ICON) 

 
Function 
This subroutine obtains least squares minimal norm 
solution x+ for a system of linear equations with an m × n 
real matrix A. 

Ax = b (1.1) 

where b is an m-dimensional real constant vector, this 
subroutine determines the n order solution vector x so 
that 

2x  

is minimized while 

2Axb −  

is minimized. 

m≥1, n≥1 

Parameters 
A ..... Input. Coefficient matrix A. 

The contents of A are altered on output. 
Two-dimensional array, A(KA,N). 

KA ..... Input. Adjustable dimension of array A (≥M). 
M ..... Input. Number of rows in coefficient matrix A, 

m. 
N ..... Input. Number of columns in coefficient 

matrix A and number of rows in matrix V, n. 
B ..... Input. Constant vector b. 

Output. Least squares minimal norm solution 
x+. 
One-dimensional array of size max(m,n). (See 
Notes.) 

ISW ... Input. Control information. 
Specify depending upon the conditions that 
one system of linear equations is solved or 
some systems of linear equations with the 
identical coefficient matrix is solved as 
follows: 
ISW=0: One system is solved. 
ISW=1: The first system is solved and the 
information to solve the subsequent systems 
are left. 
ISW=2: The second and subsequent systems 
are solved. However the values of B are to be 
replaced by the new constant vector b with the 
rest specifying ISW=1. (See Notes.) 

EPS... Input. Tolerance for relative zero test of 
singular values (≥0.0). 
When EPS=0.0 is specified, the default value 
is used. (See Notes.) 

SIG ... Output. Singular values. 
One-dimensional array of size n. (See Notes.) 

V ..... Work area. 
Two-dimensional array, V(KV,K) where 
K=min(M+1,N). (See Notes.) 

KV ... Input. Adjustable dimension of array V (≥N). 
VW ... Work area. One-dimensional array of size n. 
ICON .. Output. Condition code. See Table LAXLM-1. 
 
Table LAXLM-1  Condition codes 

Code Meaning Processing 
0 No error  

15000 Any singular values could 
not be obtained. 

Discontinued 

30000 KA<M, M<1, N<1, KV<N, 
EPS<0.0 or ISW≠1,2 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ..... ASVD1, AMACH, MGSSL 
FORTRAN basic functions ..... MIN0, SIGN, SQRT, 
AMAX1, ABS 

 
• Notes 

The least squares minimal norm solution x+ is stored in 
the first n elements of array B. 
  When only one least squares minimal norm solution is 
required, if ISW=0 is specified, this subroutine does 
not compute transformation matrix U by singular value 
decomposition. Therefore computational time is 
reduced. Matrix V is returned in the first l columns of 
array V with l=min(m,n). This matrix V can be 
obtained on array A. 
  To obtain the least squares minimal norm solutions of 
a number of systems of linear equations with identical 
coefficient matrices, specify ISW=1 for the first system. 
Next specify ISW=2 for the second and subsequent 
system. Since the singular value decomposition for 
coefficient matrices is omitted in the second and 
following systems, the computational time is reduced. 
Matrices U and V are stored in the first l columns of A 
and first l columns of V respectively. 
See Method. 
  All singular values are non-negative and are stored in 
descending order. When ICON=15000, unobtained 
singular values are defined -1 and are not arranged in 
descending order. 
  This subroutine should be used when rank deficient of 
A is or may be found (rank (A) in (m,n)). When rank 
(A) = min(m,n), the subroutine LAXL should be used. 
Input parameter EPS is used for determining the rank 
of A. It must be carefully specified. See Method. 
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• Example 
This example shows the method to solve the least 
squares minimal norm solutions for systems of linear 
equations Ax = b associated with m × n coefficient 
matrix A. Matrix V is obtained on A. 

1≤m≤100, 1≤n≤100. 
 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(100), 
     *SIG(100),VW(100) 
   10 READ(5,500) M,N 
      IF(M.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,M),J=1,N) 
      WRITE(6,600) M,N, 
     *((I,J,A(I,J),J=1,N),I=1,M) 
      READ(5,510) (B(I),I=1,M) 
      WRITE(6,610) (I,B(I),I=1,M) 
      CALL LAXLM(A,100,M,N,B,0,0.0,SIG, 
     *           A,100,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      CALL SVPRT(SIG,A,100,N,N) 
      WRITE(6,630)(I,B(I),I=1,N) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',5X, 
     *'LEAST SQUARES AND MINIMAL', 
     *' NORM SOLUTION'/6X, 
     *'ROW NUMBER=',I4,5X, 
     *'COLUMN NUMBER=',I4/6X, 
     *'COEFFICIENT MATRIX='/ 
     *(10X,4('(',I3,',',I3,')', 
     *E17.7,3X))) 
  610 FORMAT(///10X, 
     *'CONSTANT VECTOR=' 
     */(10X,4('(',I3,')',E17.7,3X))) 
  620 FORMAT(' ',10X,'CONDITION CODE=', 
     *I6) 
  630 FORMAT('1',10X, 
     *'SOLUTION VECTOR=' 
     */(10X,4('(',I3,')',E17.7,3X))) 
      END 
 

  The subroutine SVPRT in this example prints the 
singular values and eigenvectors. The subroutine 
SVPRT is described in the example of the subroutine 
ASVD1. 

 
Method 
Given m × n matrix A and m-dimensional constant vector 
b, this subroutine solves least squares minimal norm 
solution x+ for a system of linear equations 

Ax b=  (4.1) 

  This subroutine obtains the solution x which minimizes 
the norm of x 

2x  (4.3) 

in solution x to minimize the residual norm 

2Axb −  (4.2) 

This subroutine can handle matrix A independent of the 
size of m and n. m ≥ n is assumed to make the 
explanation easy in the following example. 
 
• Singular value decomposition and least squares 

minimal norm solution 
Given a singular value decomposition of A 

TVUA ΣΣΣΣ=  (4.4) 

where U is an m × n matrix as shown in (4.5) 

IUU =T  (4.5) 

V is an n × n orthogonal matrix 

IVVVV == TT  (4.6) 

ΣΣΣΣ  is an n × n diagonal matrix 

( )nσσσ ,...,,diag 21=ΣΣΣΣ  

where 

021 ≥≥⋅⋅⋅≥≥ nσσσ  

If m × m orthogonal matrix Uc is produced by adding m 
- n column vectors in the right of U and ΣΣΣΣc is produced 
by adding m - n × n zero matrix below ΣΣΣΣ, the singular 
value decomposition can be represented like following: 

TVUA ccΣΣΣΣ=  (4.8) 

Suppose 







=
=

xVx
bUb

T

T

~
,

~
cc  (4.9) 

Since transformation by orthogonal matrix Uc does not 
change the value of 

2
 norm, (4.10) can be obtained 

based upon (4.8) and (4.9) 

( )
22

T
2

~~ xbAxbUAxb ccc ΣΣΣΣ−=−=−  (4.10) 

  Therefore to minimize 2Axb −  is reduced to 

minimize 
2

~~ xb cc ΣΣΣΣ− . The last m - n rows of ΣΣΣΣc is a zero 

matrix, then (4.10) is represented by 

212
~

~~
~~

b
xb

xb cc
ΣΣΣΣ

ΣΣΣΣ
−

=−  (4.11) 
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Where ~b  is an n-dimensional vector consisting of the 
first n elements of ~b . It can be given by 

bUb T~ =  (4.12) 

  1
~b  is m-n dimensional vector reducing b~  from cb~ . 

Thus, it is conclusion to minimize 

2
~~ xb ΣΣΣΣ−  (4.13) 

  Suppose the rank of matrix A to be r, that is  
0,0 11 ==⋅⋅⋅=>≥⋅⋅⋅≥ + nrr σσσσ  

  ( )T1
~,...,~~Let   nxx=x , 

( )T1
~,...,~~

nbbb = , the first r components of the least 
squares minimal solution can be given by 

rix iii ...,,2,1,~~ == σb  (4.14) 

and the other are arbitrary. 
  That is, the least squares solution is not unique. If the 
condition that the norm of the least squares solution is 
minimized is added to the condition, the solution will be 
obtained uniquely. For this purpose, components 
excepting those given in (4.14) must be 

nrixi ...,,1,0~ +==  (4.15) 

  Taking (4.9) into consideration, since V is orthogonal 
transformation matrix which makes 2  norm in variable, 

then x+ obtained by 

x V x+ = ~  (4.16) 

is the least squares minimal norm solution. 
  Next, let x+ represented by using a matrix. 
  ΣΣΣΣ + which is the generalized inverse of ΣΣΣΣ can be 
represented by 

( ),,...,,diag ++++ = nσσσΣΣΣΣ  (4.17) 

where 





=
>

=+

0,0
0,1

i

ii
i σ

σσ
σ  (4.18) 

When this ΣΣΣΣ + is used, 
bx ~~ += ΣΣΣΣ  (4.19) 

can be obtained from (4.14) and (4.15). 
  From (4.16), (4.19) and (4.12), least squares minimal 
norm solution x+ is given as 

bUVx T++ = ΣΣΣΣ  (4.20) 

(4.20) can be represented by x+ = A+b by using the 
generalized inverse A+. 
See Method of the subroutine GINV. 
• Computational procedures 
1) A is reduced to upper bidiagonal matrix J0 by 

performing the Householder transformation 
alternatively from left and right. 

22111 −− ⋅⋅⋅⋅⋅⋅= nnn0 QQAQPPPJ  (4.21) 

   For details, see Method of the subroutine ASVD1. 
2) J0 is reduced to diagonal matrix ΣΣΣΣ by performing 

orthogonal transformation alternatively from left and 
right. 

qq TTJSS ⋅⋅⋅⋅⋅⋅= 10
T
1

TΣΣΣΣ  (4.22) 

 Each Si and Ti are given as products of two-
dimensional rotational transformation represented by 

ni LLLS ⋅⋅⋅= 32  (4.23) 

ni RRRT ⋅⋅⋅= 32  (4.24) 

   For details, see Method of the subroutine ASVD1. 
3) Matrices U T and V are given from (4.4), (4.21) and 

(4.22) as follows: 

1
T
1

TT PPSSU ⋅⋅⋅⋅⋅⋅= nq  (4.25) 

qn TTQQV ⋅⋅⋅⋅⋅⋅= − 121  (4.26) 

   U and V are obtained on array A and V respectively 
by multiplying a transformation matrix sequentially 
from the right. 

 The above discussion is adapted when ISW=1 is 
specified. When ISW=0 is specified, this subroutine 
directly computes U T b  without producing U. For this 
purpose, the transformation matrix constructing U T 
should be sequentially multiplied from the left of b. 

4) bUVx T++ = ΣΣΣΣ  
 is produced by sequentially multiplying U T, ΣΣΣΣ +, and 

V from the left of b. When ISW=0 is specified, U T is 
not multiplied. 
At multiplying ΣΣΣΣ +, relative zero test is carried out for 
σi using ∞0J  EPS as tolerance. If the singular value 
is less than the tolerance, it is assumed to be zero. 
When EPS=0.0 is specified, EPS=16u is assumed, 
where u is the unit round off. 
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  When ISW=0, this subroutine directly processes these 
procedures. When ISW=1 is specified, this subroutine 
performs the singular value decomposition by using 
subroutine ASVD1. 

 
  For details, see Method of the subroutine ASVD1 and 
Reference [11]. 
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A25-11-0401 LAXLR, DLAXLR 

Iterative refinement of the least squares solution with a 
real matrix 
CALL LAXLR(X,A,K,M,N,FA,FD,B,IP,VW,ICON) 

 
Function 
Given an approximate least squares solution ~x  to the 
linear equations with an m × n real matrix A (rank (A)=n) 
such as 

Ax b=  (1.1) 

  This subroutine refines the solution by the method of 
iterative modification, where b is an m-dimensional real 
constant vector, and x is an n-dimensional solution vector. 
  The coefficient matrix A must have been decomposed 
using the Householder transformation with partial 
pivoting which exchanges columns of the matrix as 
shown in Eq. (1.2), 

R QA=  (1.2) 

  where R is an upper triangular matrix, and Q is an 
orthogonal matrix, also m≥n≥1. 
 
Parameters 
X ..... Input. Approximate least squares solution x. 

Output. Iteratively refined least squares 
solution ~x . 
One-dimensional array of size n. 

A ..... Input. Coefficient matrix A. 
Two-dimensional array such as A(K,N) 

K ..... Input. Adjustable dimension of array A (≥M). 
M ..... Input. Number of rows m in matrix A. 
N ..... Input. Number of columns n in matrix A. 

(See Notes.) 
FA .... Input. Upper triangular portion of matrix R, 

and matrix Q. 
Two-dimensional array such as FA(K,N). 
(See Notes.) 

FD .... Input. Diagonal portion of matrix R. 
One-dimensional array of size n. 
(See Notes.) 

B ..... Input. Constant vector b. 
One-dimensional vector of size m. 

IP .... Input. Transposition vector which indicates the 
history of exchanging rows of the matrix A 
required in partial pivoting. 
One-dimensional array of size n. 
(See Notes.) 

VW .... Work area. One-dimensional array of size m. 
ICON .. Output. Condition code. See Table LAXLR-1. 

Table LAXLR-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 Rank(A)<n was found. Discontinued 
25000 The convergence condition 

was not met because of 
very ill-conditioned 
coefficient matrix. 

Discontinued (Refer 
to "Method" for the 
convergence 
condition.) 

30000 K<M, M<N or N<1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... ULALB, MAV, AMACH, and MGSSL 
FORTRAN basic functions ... IABS, ABS and SQRT. 
 

• Notes 
This subroutine repeatedly corrects the approximate 
least squares solution ~x  obtained by the subroutine 
LAXL, and improves its accuracy. 
  Therefore, prior to calling this subroutine to obtain 
the refined least squares solution approximate least 
squares solution ~x  must have been obtained by calling 
subroutine LAXL and then the results, B, A, VW and 
IVW, of the subroutine LAXL must be input as the 
parameters X, FA, FD and IP to be used for this 
subroutine. In addition, this subroutine needs both the 
coefficient matrix A and the constant vector b, 
therefore they must be saved before calling the 
subroutine LAXL in order not to lose them. 
  Refer to the example shown below for a more 
practical use. By specifying N=-n, and Euclidean norm 
of the residual vector ( )2

~xAb −  for the approximate 
least squares solution obtained by the subroutine LAXL. 
  When specified, this subroutine does not perform 
iterative refinement for the solution, but only computes 
the Euclidean norm of the residual vector and outputs it 
to the parameter VW(1). 

 
• Example 

A least squares solution ~x  to linear equations with m 
unknowns and n equations (with m ≥ n) is obtained by 
calling the subroutine LAXL. The least squares 
solution ~x  is iteratively refined by this subroutine. 
Here m≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(50,50),FA(50,50),X(50), 
     *   B(50),VW(100),IVW(50),FD(100) 
      CHARACTER*4 NT1(6),NT2(4),NT3(4) 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/ 
      READ(5,500) M,N 
      WRITE(6,600) M,N 
      READ(5,510) ((A(I,J),I=1,M),J=1,N) 
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      CALL PGM(NT1,6,A,50,M,N) 
      READ(5,510) (B(I),I=1,M) 
      CALL PGM(NT2,4,B,M,M,1) 
      DO 20 I=1,M 
      X(I)=B(I) 
      DO 10 J=1,N 
      FA(I,J)=A(I,J) 
   10 CONTINUE 
   20 CONTINUE 
      ISW=1 
      CALL LAXL(FA,50,M,N,X,ISW,FD,IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      CALL LAXLR(X,A,50,M,N,FA,FD,B,IVW, 
     * VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) STOP 
      CALL PGM(NT3,4,X,N,N,1) 
      STOP 
  500 FORMAT(2I5) 
  510 FORMAT(10F8.3) 
  600 FORMAT('1', 
     *  /6X,'LINEAR LEAST SQUARES SOLUTION' 
     *  /6X,'ROW NUMBER=',I4 
     *  /6X,'COLUMN NUMBER=',I4) 
  610 FORMAT(' ',5X,'ICON OF LAXL=',I6) 
  620 FORMAT(' ',5X,'ICON OF LAXLR=',I6) 
      END 
 
  The subroutine PGM is used in this example only to 
print out a real general matrix, it is described in the 
example for the subroutine MGSM. 
 
Method 
Given the approximate least squares solution 
(approximate solution, hereafter), ~x  to the linear 
equations 

Ax b=  (4.1) 

the approximate solution is iteratively refined as follows: 
 
• Principle of iterative refinement 

The iterative refinement is a method to obtain a 
successive improved approximate solution x(s+1) 
(s=1,2,...) to the linear equations (4.1) through use of 
the following equations starting with x(1)=x 

( ) ( )ss Axbr −=  (4.2) 
( ) ( )ss rAd =  (4.3) 

( ) ( ) ( )sss dxx +=+1  (4.4) 
  s=1,2,... 

  where x(s) is the s-th approximate solution to equation 
(4.1). 
  If Eq. (4.2) is accurately computed, a refined solution of 
the approximate solution x(1) is numerically obtained. 
  If, however, the condition of the coefficient matrix A is 
not suitable, an improved solution is not obtained. (Refer 
to "Iterative refinement of a solution" in Section 3.4.) 
 
• Procedure performed in this subroutine 

Suppose that the first approximate solution x(1) has 
already been obtained by the subroutine LAXL. 
− The residual r(s) is computed by using Eq. (4.2). This 

is performed by calling the subroutine MAV. 
− The correction d(s) is obtained by using Eq. (4.3). 

This is performed by calling the subroutine ULALB. 
− Finally, the modified approximate solution x(s+1) is 

obtained by using Eq. (4.4). 
 
  The convergence of iteration is tested as follows: 
  Considering u as a unit round off, the iteration 
refinement is assumed to converge if, at the s-th iteration 
step, the following relationship is satisfied. 

( ) ( ) uss ⋅<
∞

+
∞

21xd  (4.5) 

The obtained x(s+1) is then taken as the final solution. 
However, if the relationship, 

( )

( )

( )

( )
∞

∞
−

∞
+

∞ ⋅>
s

s

s

s

x

d

x

d 1

1 2
1  

results, this indicates that the condition of the coefficient 
matrix A is not suitable. The iteration refinement is 
assumed not to converge, and consequently the 
processing is terminated with ICON=25000. 
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A22-11-0401 LAXR, DLAXR 

Iterative refinement of the solution to a system of linear 
equations with a real general matrix 
CALL LAXR(X,A,K,N,FA,B,IP,VW,ICON) 

 
Function 
When an approximate solution ~x  is given to linear 
equations with an n × n real matrix A such as 

Ax b=  (1.1) 

  This subroutine refines the approximate solution by the 
method of iterative modification, where b is an n-
dimensional real constant vector, and x is an n-
dimensional solution vector. 
  Prior to calling this subroutine, the coefficient matrix A 
must be LU-decomposed as shown in Eq. (1.2), 

PA LU=  (1.2) 

  where L and U are an n × n lower triangular matrix and 
unit upper triangular matrix, respectively, and P is a 
permutation matrix which exchanges rows of the matrix 
A required in partial pivoting. n≥1. 
 
Parameters 
X ..... Input. Approximate solution vector x. 

Output. Refined solution vector. 
One-dimensional array of size n. 

A ..... Input. Coefficient matrix. 
Two-dimensional array,  A(K,N) 

K ..... Input. The adjustable dimension of array A 
(≥N). 

N ..... Input. The order n of matrix A (See Notes.) 
FA .... Input. Matrices L and U. See Fig. LAXR-1. 

Two-dimensional array, FA(K,N). See Notes. 
B ..... Input. Constant vector b. 

One-dimensional vector of size n. 
IP .... Input. The transposition vector which indicates 

the history of the rows exchange in partial 
pivoting. 
One-dimensional array of size n. Refer to 
Notes. 

VW .... Work area. 
One-dimensional array of size n. 

ICON .. Output. Condition code. See Table LAXR-1. 

Diagonal and lower
triangular portions only

Arrary FA

Upper triangular portion only

Lower triangular
matrix L

Unit upper triangular
matrix U

u1nu13

K
N

0

0

1

1
1

1 u12

un-1 n

u2n

ln1

l31

l21

l11

u23

ln2  lnn−1     lnn

ln−1n−1

l32

l22 l21 u23 u2n

u1nu13u12l11

l22

ln1 ln2  lnn−1          lnn

ln−1n−1  un−1 n

 
Fig. LAXR-1  Storage of elements of L and U in array FA 

Table LAXR-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The coefficient matrix was 
singular. 

Discontinued 

25000 The convergence condition 
was not met because of very 
ill-conditioned coefficient 
matrix. 

Discontinued 
(Refer to 
"Method" for the 
convergence 
condition.) 

30000 K<N or N<1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... LUX, MAV, AMACH, and MGSSL 
FORTRAN basic functions ... ABS 

 
• Notes 

This subroutine iteratively corrects the approximate 
solution ~x  obtained by subroutine LAX to get solution 
x with refined precision. Therefore prior to calling this 
subroutine, ~x  must be obtained by LAX and the 
results must be input as the parameters X, FA and IP to 
be used for this subroutine. In addition, because this 
subroutine also requires the coefficient matrix A and 
constant vector b, they must also be prepared 
separately before calling LAX. Refer to the example 
for details. If N=−n is specified, an estimated accuracy 
(relative error) for the approximate solution ~x  that is 
given by the subroutine LAX can be obtained. When 
specified, this subroutine calculates the relative error 
and out- 
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puts it to work area VW(1) without performing the 
iterative refinements of accuracy. Refer to "method" 
for estimation of accuracy. 

 
• Example 

An approximate solution vector ~x  for a system of 
linear equations in n unknowns is obtained by 
subroutine LAX, then ~x  is refined to x. 
n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),FA(100,100), 
     *  X(100),B(100),VW(100),IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,610) (I,B(I),I=1,N) 
      DO 20 I=1,N 
      X(I)=B(I) 
      DO 20 J=1,N 
      FA(J,I)=A(J,I) 
   20 CONTINUE 
      EPSZ=0.0E0 
      ISW=1 
      K=100 
      CALL LAX(FA,K,N,X,EPSZ,ISW,IS,VW,IP, 
     * ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LAXR(X,A,K,N,FA,B,IP,VW,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (I,X(I),I=1,N) 
      DET=IS 
      DO 30 I=1,N 
      DET=DET*FA(I,I) 
   30 CONTINUE 
      WRITE(6,650) DET 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',10X,'**COEFFICIENT MATRIX' 
     * /12X,'ORDER=',I5/(10X,4('(',I3,',', 
     * I3,')',E17.8))) 
  610 FORMAT(///10X,'CONSTANT VECTOR' 
     * /(10X,4('(',I3,')',E17.8))) 
  620 FORMAT('0',10X,'LAX  ICON=',I5) 
  630 FORMAT('0',10X,'LAXR ICON=',I5) 
  640 FORMAT('0',10X,'SOLUTION VECTOR' 
     * /(10X,4('(',I3,')',E17.8))) 
  650 FORMAT(///10X, 
     * 'DETERMINANT OF COEFFICIENT MATRIX=', 
     * E17.8) 
      END 
 

Method 
Given the approximate solution ~x , to the linear 
equations, 

Ax b=  (4.1) 

the solution is iteratively refined as follows: 
 
• Principle of iterative refinement 

The iterative refinement is a method to obtain a 
successively improved approximate solution x(s+1) 
(s=1,2,...) to the linear equations (4.1) through use of 
the following equations starting with xx ~)1( =  

( ) ( )ss Axbr −=  (4.2) 
( ) ( )ss rAd =  (4.3) 

( ) ( ) ( )sss dxx +=+1  (4.4) 
  s=1,2,... 

  where x(s) is the s-th approximate solution to equation 
(4.1). If Eq. (4.2) is accurately computed, a refined 
solution of the approximate solution x(1) is numerically 
obtained. 
If, however, the condition of the coefficient matrix A is 
not suitable, an improved solution is not obtained. 
  (Refer to "Iterative refinement of a solution" in Section 
3.4.) 
 
• Procedure performed in this subroutine 

Suppose that the first approximate solution x(1) has 
already been obtained by the subroutine LAX. 
  Then this subroutine repeats the following steps: 
The residual r(s) is computed by using Eq. (4.2). 
This is performed by calling the subroutine MAV. 
The correction d(s) is obtained next by using Eq. (4.3). 
This is performed by calling the subroutine LUX. 
Finally the modified approximate solution x(s+1) is 
obtained by using Eq. (4.4). 

 
The convergence of iteration is tested as follows: 
Considering u as a unit round off, the iterative refinement 
is assumed to converge if, as the s-th iteration step, the 
following relationship is satisfied. 

( ) ( ) uss 21 <
∞

+
∞

xd  (4.5) 

  The obtained x(s+1) is then taken as the final solution. 
However, if the relation, 

( )

( )

( )
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∞

∞
−

∞
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  results, this indicates that the condition of coefficient 
matrix A is not suitable.  The iterative refinement is 
assumed not to converge, and consequently the 
processing is terminated with ICON = 25000. 
 
Accuracy estimation for approximate solution 

Suppose the error for the approximate solution x(1) is 
e(1) ( = x(1) − x ), its relative error is represented by 

( ) ( )
∞∞

11 xe   If this iteration method converges, e(1) 

is assumed to be almost equal to d(1).  The relative error 
for the approximate solution is therefore estimated by 

( ) ( )
∞∞

11 xd  (Refer to "Accuracy estimation for 

approximate solution" in Section 3.4.) 
  For further details, see to References [1], [3], and [5]. 
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A52-11-0101 LBX1,DLBX1 

A system of linear equations with a real general band 
matrix (Gaussian elimination method) 
CALL LBX1(A,N,NH1,NH2,B,EPSZ,ISW,IS,FL, 
VW,IP,ICON) 

 
Function 

Ax = b (1.1) 

  This subroutine solves a system of linear equations(1.1) 
by using the Gaussian elimination method. 
  Where A is an n×n real general band matrix with lower 
band width h1, and upper band width h2, b is an n-
dimensional real constant vector, and x is an n-
dimensional solution vector.  n>h1≥0, n>h2≥0. 
 
Parameters 
A..... Input. Coefficient matrix A. 

The contents of A are altered on output. 
Matrix A is stored in one-dimensional array of 
size n⋅min(h1+h2+1,n) in the compressed mode 
for real general band matrices. 

N..... Input. Order n of coeffcient matrix A. 
NH1..... Input. Lower band width h1. 
NH2..... Input. Upper band width h2. 
B..... Input. Constant vector b. 

Output. Solution vector x. 
One-dimensional array of size n. 

EPSZ... Input. Tolerance for relative zero test of pivots 
in decomposition process of matrix 
A(≥0.0).When this is 0.0, the standard value is 
used. 
(See Notes.) 

ISW... Input. Control informaltion 
When solving l (≥1) systems of linear 
equations with the identical coefficient matrix, 
ISW can be specifled as follows:  
ISW=1... The first system is solved. 
ISW=2... The 2nd to l th systems are solved. 

However, only parameter B is 
specified for each constant vector b 
of the systems with the rest 
unchanged. 

(See Motes.) 
IS.... Output. Information for obtaining the 

determinant of the matrix A . (Refer to Notes.) 
FL.... Work area. 

One-dimensional array of size (n−1)⋅h1. 
VW.... Work area. One-dimensional array of size n. 
IP.... Work area. One-dimensional array of size n. 

ICON.. Output. Condition code. Refer to Table  
LBX1-1. 

 
Table LBX1-1. Condition codes 

Code Meaning Processing 
0 No error  

20000 The relatively zero pivot 
occured. It is highly probable 
that the coefficient matrix is 
singular. 

Discontinued 

30000 N≤NH1,N≤NH2,NH1<0,NH2<0,
EPSZ<0.0 or ISW≠1,2. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II..... BLU1, BLUX1, AMACH, MGSSL 
FORTRAN basic functions..... ABS, MIN0 

 
• Notes 

This subroutine assumes that the relatively zero pivot 
occurs when the absolute value of the pivot is smaller 
than the largest absolute value of the elements, in the 
coefficient matrix, multiplied by EPSZ in the LU-
decomposition using the Gaussian elimination method. 
In such a case, the processing is discontinued with 
ICON = 20000. The standrd value of EPSZ is 16 u, 
where u is the unit round off. 
   If the processing is to proceed at a lower pivot value, 
EPSZ will be given the minimum value but the result is 
not always guaranteed. 
  When solving successive systems of linear equations 
with the identical coefficient matrix, ISW=2 should be 
given for the second time and subsequently. By setting 
ISW = 2,LU-decomposed coefficient matrix A is 
bypassed so that the execution time is reduced. In this 
case, the IS value is the same as when ISW=1. 
  The determinant of the coefficient matrix A can be 
obtained by multiplying the product of the n array 
elements A ( i･h+1) , i= 0,1,...,n−1 by the IS value, 
where h = min (h1+h1+1,n). 
   This subroutine, by making use of band matrix 
characteristics, saves data storage area.  In some cases, 
however, depending on the size of the band width, a 
larger data storage area may be required (including 
work area) than used by subroutine LAX provided for 
real general matrices. If that is the case, subroutine 
LAX may be used to save more data storage area. This 
subroutine is especially useful for the case where the 
upper and lower band widths of the coefficient matrix 
of order n are approximately less than n / 3, provided 
both the band widths are equal. 
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• Example 
In this example, l systems of linear equations in n 
unknown with the identical matrix are solved.  n ≤ 100, 
h1 ≤ 20 and h2 ≤ 20. 

 
C     ** EXAMPLE ** 
      DIMENSION A(4100),B(100),IP(100), 
     *   FL(1980),VW(100) 
      CHARACTER*4 NT1(6),NT2(4),NT3(4) 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/ 
      READ(5,500) N,NH1,NH2,L 
      WRITE(6,600) N,NH1,NH2 
      NT=N*MIN0(N,NH1+NH2+1) 
      READ(5,510) (A(I),I=1,NT) 
      M=1 
      ISW=1 
      EPSZ=1.0E-6 
      CALL PBM(NT1,6,A,N,NH1,NH2) 
   10 READ(5,510) (B(I),I=1,N) 
      CALL PGM(NT2,4,B,N,N,1) 
      CALL LBX1(A,N,NH1,NH2,B,EPSZ,ISW,IS, 
     *          FL,VW,IP,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.EQ.0) GOTO 20 
      WRITE(6,620) 
      STOP 
   20 CALL PGM(NT3,4,B,N,N,1) 
      M=M+1 
      ISW=2 
      IF(L.GT.M) GO TO 10 
      WRITE(6,630) 
      STOP 
  500 FORMAT(4I4) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1' 
     * ///5X,'LINEAR EQUATIONS  AX=B' 
     * /5X,'ORDER=',I4 
     * /5X,'SUB-DIAGONAL LINES=',I4 
     * /5X,'SUPER-DIAGONAL LINES=',I4) 
  610 FORMAT(' ',4X,'ICON=',I5) 
  620 FORMAT(' '/5X, 
     * '** ABNORMAL END **') 
  630 FORMAT(' '/5X,'** NORMAL END **') 
      END 
 
C     ** MATRIX PRINT (REAL BAND) ** 
      SUBROUTINE PBM(ICOM,L,A,N,NH1,NH2) 
      DIMENSION A(1) 
      CHARACTER*4 ICOM(1) 
      WRITE(6,600) (ICOM(I),I=1,L) 
      M=MIN0(NH1+NH2+1,N) 
      IE=0 
      IB=1 
      DO 10 I=1,N 
      J=MAX0(1,I-NH1) 
      KIB=IB 
      KIE=IE+MIN0(NH1+1,I)+MIN0(NH2,N-I) 
 

      WRITE(6,610) I,J,(A(K),K=KIB,KIE) 
      IE=IE+M 
      IB=IB+M 
   10 CONTINUE 
      RETURN 
  600 FORMAT(/10X,35A2) 
  610 FORMAT(/3X,'(',I3,',',I3,')', 
     *3(2X,E16.7)/(12X,3(2X,E16.7))) 
      END 
 
  Subroutines PGM and PBM are used to print out a real 
matrix and a real band matrix, respectively.  The 
description on subroutine PGM is shown in the example 
for subroutine MGSM. 
 
Method 
A system of linear equations (4.1) with a real general 
band matrix A as 

Ax = b (4.1) 

are solved using the following procedure. 
 
• LU-decomposition of the coefficient matrix A 

(Gaussian elimination method) 
   The coefficient matrix A is decomposed into the unit 
lower band matrix L and the upper band matrix U. 

A = LU (4.2) 

Subroutine BLU1 is used for this operation. 
 
• Solving LUx = b (Forward and backward substitutions) 

   Solving the linear equations (4.1) is equivalent to 
solving the next linear equations (4.3) . 

LUx = b (4.3) 

   This equation (4.3) is resolved into two equations 
(4.4) and (4.5) 

Ly = b (4.4) 
Ux = y  (4.5) 

   and then solution is obtained using forward and 
backward substitutions.  Subroutine BLUX1 is used for 
this procedure.  For more information, see Reference 
[1], [3],[4] and [8]. 
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A52-11-0401  LBX1R, DLBX1R 

Interrative refinement of the solution to a system of linear 
equations with a real band general band matrix. 
CALL LBX1R (X, A, N, NH1, NH2, FL, FU, B, IP, 
VW, ICON) 

 
Function 
Give an approximate solution ~x  to linear equations with 
n × n real band matrix A of lower band width h1 and 
upper band width h2 such as 

Ax = b (1.1) 

  this subroutine refines the approximate solution by the 
method of iterative modification, where b is an  n-
dimensional real constant vector and x is an n-
dimensional solution vetor. 
  Befor this subroutine is called, the coeffcient matrix A 
must be LU-decomposed as shown is Eq.  (1.2) 

A = LU (1.2) 

where L and U are an n × n unit lower band matrix and 
upper band matrix, repectively.  Also n > h1 ≥ 0 and n > 
h2 ≥ 0. 
 
Parameters 
X..... Input.  Approximate solution vector ~x . 

Output.  Iteratively refined solution vector x 
One-dimensional array of size n. 

A..... Input.  Coefficient matrix A. 
Compressed mode for a band matirx. 
One-dimensional array of size 
n⋅min(h1+h2+1,n) 

N..... Input.  Order n of the coefficient matrix A. 
(see "Notes") 

NH1... Input.  Lower band width h1 of the coefficient 
matrix A. 

NH2... Input. Upper band width h2 of the coefficient 
matirx A. 

FL.... Input. Matrix L 
Refer to Fig.  LBX1R-1 
One-dimensional arrary of size (n−1)⋅h1.  (See 
"Notes".) 

FU.... Input.  Matrix U 
Refer to Fig.  LBX1R-2 
One-dimensional array of size 
n⋅min(h1+h2+1,n).  (see"Notes".) 

B.... Input. Constant vector b. 
One-dimensional array of size n. 

IP.... Input.  Transposition vector indicating the 
history of exchangeing rows in partial pivoting. 
One-dimensional array of size n. 
(See "Notes".) 

VW.... Work area.  One-dimensional arrary of size n. 

ICON.. Output.  Condition code.  See Table LBX1R-1. 
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Fig. LBX1R-1 Storing method for each element of L into array FL. 
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Fig. LBX1R-2 Storing method for each element of U into array FU 

Comments on use 
• Subprograms used  

SSL II ...BLUX1, MBV, AMACH, and MGSSL 
FORTRAN basic functions ..ABS and MIN0 
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Table LBX1R-1  Condition codes 

code Meaning Processing 
0 No error  

20000 Coefficient matrix was 
singular. 

Discontinued 

25000 The convergence condition 
was not met because of very 
illconditioned coefficient 
matrix. 

Discontinued 
(Refer to 
"Method" for 
convergence 
condition.) 

30000 N=0,N ≤ NH1,N ≤ NH2,NH1<0 
or NH2<0 

Bypassed 

 
• Notes 

This subroutine repeatedly corrects the approximate 
solution ~x  obtained by subroutine LBX1 and 
improves its accuracy. 
  Therefore, subroutine LBX1 must have been called to 
obtain the approximate solution ~x  before calling this 
subroutine to obtain the iteratively refined solution.  In 
this case, the parameters X, FL, FU and IP must be 
each assigned values of the parameters B, FL, A and 
IP ,of subroutine LBX1.  (Refer to descriptions of 
subroutine LBX1.)  In addition, this subroutine needs 
both the coefficient matrix A and the constant vector b.  
Therefore they must be saved before calling subroutine 
LBX1 so as not to lose them.  For a practical use, refer 
to the example shown below. 
By specifying N = −n, an estimated accuracy (relative 
error) for the approximate solution ~x  obtained by 
subroutine LBX1 can be obtained. 
  This subroutine does not carry out iterative refinement 
of the solution, but only computes the relative error and 
outputs it to the parameter VW(1).  For the accuracy 
estimation, refer to Method. 

 
• Example 

An approximate solution ~x  to n-dimensional linear 
equations is obtained by calling subroutine LBX1, and 
after that the ~x  is iteratively refined by using this 
subroutine.  Here n ≤ 50, h1 ≤ 10 and h2 ≤ 10. 

 
C     **EXAMPLE** 
      DIMENSION A(1050),FL(490),FU(1050), 
     *  X(50),B(50),VW(50),IP(50) 
      CHARACTER*4 NT1(6),NT2(4),NT3(4) 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/ 
      READ(5,500) N,NH1,NH2 
      WRITE(6,600) N,NH1,NH2 
      NT0=MIN0(NH1+NH2+1,N) 
      NT=N*NT0 
      READ(5,510) (A(I),I=1,NT) 
      CALL PBM(NT1,6,A,N,NH1,NH2) 
      READ(5,510) (B(I),I=1,N) 
      CALL PGM(NT2,4,B,N,N,1) 
 

      DO 10 I=1,N 
   10 X(I)=B(I) 
      DO 20 I=1,NT 
   20 FU(I)=A(I) 
      CALL LBX1(FU,N,NH1,NH2,X,0.0,1,IS,FL, 
     *  VW,IP,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      CALL LBX1R(X,A,N,NH1,NH2,FL,FU,B,IP, 
     *  VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      CALL PGM(NT3,4,X,N,N,1) 
      DET=IS 
      IC=1 
      DO 30 I=1,N 
      DET=DET*FU(IC) 
   30 IC=IC+NT0 
      WRITE(6,630) DET 
      STOP 
  500 FORMAT(3I4) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1' 
     * /6X,'LINEAR EQUATIONS AX=B' 
     * /6X,'ORDER=',I4 
     * /6X,'SUB-DIAGONAL LINES=',I4 
     * /6X,'SUPER-DIAGONAL LINES=',I4) 
  610 FORMAT(' ',5X,'ICON OF LBX1=',I4) 
  620 FORMAT(' ',5X,'ICON OF LBX1R=',I6) 
  630 FORMAT(' ',5X,'DETERMINANT=',E15.7) 
      END 
 
  Subroutines PBM and PGM are used only to print out a 
band matrix and a real general matrix, respectively. 
  The descriptions on those programs are shown in the 
examples of the subroutines LBX1 and MGSM, 
respectively. 
 
Method 
Given an approximate solution ~x  to the linear equations 

Ax = b (4.1) 

the solution is iteratively refined as follows: 
 
• Principale of iterative refinement 

The iterative refinement is a method to obtain a 
successively improved approximate solution x (s+1) to 
the linear equations (4.1) through use of the following 
equations starting with x(1) = ~x  : 

)()( ss Axbr −=  (4.2) 
)()( ss rAd =  (4.3) 

)()()1( sss dxx +=+  (4.4) 
,...2,1=s  
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  where x(s) is the s-th approximate solution to equation 
(4.1).  If Eq. (4.2) is accurately computed, a refined 
solution of x(1) is obtained.  If, however, the condition of 
coefficient matrix A is not suitable, no improved solution 
is obtained. (See "Iterative refinement of a solution" in 
Section 3.4.) 
 
• Procedure performed in this subroutine 

Suppose that the first approximate solution x(1) has 
already been obtained by subroutine LBX1. 
This subroutine repeats the following steps: 
  The residual r(s) is computed by using Eq. (4.2). 
Subroutine MBV is used for this operation.  The 
correction d(s) is obtained next by using Eq. (4.3).  
Subroutine BLUX1 is used for this operation. 
  Finally, the modified approximate solution x(s+1) is 
obtained by using Eq. (4.4). 
 
The convergence of iteration is tested as follows: 
Considering u as a unit round off, the iteration 

refinement is assumed to converge if, at the s-th iteration 
step, the following relationship is satisfied. 

uss ⋅<
∞

+
∞

2)1()( xd  (4.5) 

  The obtained x(s+1) is then taken as the final solution. 
However, if the relationship. 

∞

∞
−

∞
−

∞ ⋅>
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)1(

)1(

)(

2
1

s

s

s

s

x

d

x

d
 

  results, this indicates that the condition of the coefficient 
matrix A is not suitable.  The iteration refinement is 
assumed not to converge, and consequently the 
processing is terminated with ICON = 25000. 
 
• Accuracy estimation for approximate solution 

Suppose that the error for the approximate solution x(1) 
is e(1) (=x(1)−x ), its relative error is represented by 

∞∞
)()1( sxe  .  If this iteration method converges 

e(1) is assumed to be almost equal to d(1) .Therefore the 
relative error for the approximate solution is estimated 
by 

∞∞
)1()1( xd  (See "Accuracy estimation for 

approximate solution" in Section 3.4.)  For further 
details, refer to References [1], [3] and [5]. 
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A22-15-0101 LCX,DLCX 

A system of linear equations with a complex general 
matrix (Crout's method). 
CALL LCX (ZA, K, N, ZB, EPSZ, ISW, IS, ZVW, 
IP,ICON) 

 
Function 
This subroutine solves a system of linear equations, as 
shown in (1.1) using the Crout's method. 

Ax =b (1.1) 

A is an n × n non-singular complex general matrix, 
b is an n-dimensional complex constant vector, and x is 
an n-dimensional solution vector. n≥1. 
 
Parameter 
ZA .... Input. Coefficient matrix A. 

The contents of ZA are overridden after 
operation. 
ZA is a complex two-dimensional array, 
ZA (K, N). 

K .... Input. Adjustable dimension of the array 
ZA ( ≥ N) 

N .... Input.  Order n of the coefficient matrix A. 
ZB .... Input. Constant vector b. 

Output. Solution vector x. 
ZB is a complex one-dimensional array of size 
n. 

EPSZ .... Input. Tolerance for relative zero test of pivots 
in decomposition of A ( ≥ 0.0). 
If EPSZ is 0.0, a standard value is used. 
(Refer to Notes.) 

ISW .... Input. Control information 
When l ( ≥ 1) systems of linear equations with 
the identical coefficient matrix are to be solved, 
ISW can be specified as follows: 
ISW = 1 .... The first system is solved. 
ISW = 2 .... The 2nd to l-th systems are solved. 
However, only parameter ZB is specified for 
each constant vector b of the systems of 
equations, with the rest unchanged. (Refer to 
Notes.). 

IS .... Output. Information for obtaining the 
determinant of the matrix A.  If the n elements 
of the calculated diagonal of array ZA are 
multiplied by IS, the determinant is obtained. 

ZVW .... Work area. ZVW is a complex one-
dimensional array of size n. 

IP .... Work area. IP is a one-dimensional array of 
size n. 

ICON .. Output. Condition code. Refer to Table LCX-1. 

Table LCX-1 Condition codes 

Code Meaning Processing 
0 No error  

20000 Either all of the elements of 
some row were zero or the 
pivot became relatively zero. 
It is highly probable that the 
coefficient matrix is singular. 

Discontinued 

30000 K<N, N<1, EPSZ<0.0  
or ISW ≠ 1,2 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ..... CLU, CLUX, AMACH, CSUM, MGSSL 
FORTRAN basic functions ..... REAL, AIMAG, ABS 

 
• Notes 

If EPSZ is set to 10−s, this value has following 
meaning: while performing the LU-decomposition by 
Crout's method, if the loss of over s significant digits 
occured for both real and imaginary parts of the pivot, 
the LU-decomposition should be discontinued with 
ICON = 20000 regarding the pivot to be relatively zero. 
  Let u be the unit round off, then the standard value of 
EPSZ is 16u.  If the processing is to proceed at a low 
pivot value, EPSZ will be given the minimum value but 
the result is not always guaranteed. 
  When solving successive systems of linear equations 
with the idenficial coefficient matrix, computation can 
be performed by setting ISW = 2 after the first system 
of equations. By setting ISW = 2, the LU 
decomposition of the coefficient matrix A is bypassed 
so the computation time is reduced. In this case, the 
value of IS is the same as when ISW = 1. 

 
• Example 

l systems of linear equations in n unknown with the 
identical complex coefficient matrix are solved. n ≤ 
100. 

 
C     **EXAMPLE** 
      DIMENSION ZA(100,100),ZB(100), 
     *          ZVW(100),IP(100) 
      COMPLEX ZA,ZB,ZVW,ZDET 
      READ(5,500) N,L 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,ZA(I,J),J=1,N), 
     *             I=1,N) 
      M=1 
      ISW=1 
      EPSZ=1.0E-6 
   10 READ(5,510) (ZB(I),I=1,N) 
      WRITE(6,610) (I,ZB(I),I=1,N) 
      CALL LCX(ZA,100,N,ZB,EPSZ,ISW,IS, 
     *         ZVW,IP,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,630) (I,ZB(I),I=1,N) 
      IF(L.EQ.M) GOTO 20 
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      M=M+1 
      ISW=2 
      GOTO 10 
   20 ZDET=CMPLX(FLOAT(IS),0.0) 
      DO 30 I=1,N 
      ZDET=ZDET*ZA(I,I) 
   30 CONTINUE 
      WRITE(6,640) ZDET 
      STOP 
  500 FORMAT(2I5) 
  510 FORMAT(5(2F8.3)) 
  600 FORMAT('1',10X,'** COMPLEX MATRIX **' 
     * /12X,'ORDER=',I5/(3X,2('(',I3,',',I3, 
     * ')',2E15.8,2X))) 
  610 FORMAT(///10X,'COMPLEX CONSTANT ', 
     * 'VECTOR',/(5X,3('(',I3,')',2E15.8, 
     * 2X))) 
  620 FORMAT('0',10X,'CONDITION CODE=', I5) 
  630 FORMAT('0',10X,'SOLUTION VECTOR', 
     * /(5X,3('(',I3,')',2E15.8,2X))) 
  640 FORMAT(///10X,'DETERMINANT OF MATRIX', 
     * 2E15.8) 
      END 
 
Method 
A system of linear equations (4.1). 

Ax = b (4.1) 

is solved using the following procedure. 

• LU decomposition of the coefficient matrix A 
(Crout's method) 
The coefficient matrix A is decomposed into a lower 
triangular matrix L and a unit upper trangular matrix U.  
To reduce the rounding error, partial pivoting is 
performed in the decomposition process. 

PA = LU (4.2) 

  P is the permutation matrix which performs the row 
exchanges required in partial pivoting. 
Subroutine CLU is used for this operation. 
 
• Solving LUx = Pb (forward and backward substitution) 

To solve equation (4.1) is equivalent to solving the 
next system of linear equations 

LUx = Pb (4.3) 

Equation (4.3) is resolved into two equations 

Ly = Pb (4.4) 
Ux = y (4.5) 

   Then the solution is obtained using forward substitution 
and backward substitution. Subroutine CLUX is used for 
these operations.  For more information, see References 
[1], [3], and [4]. 
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A22-15-0401 LCXR,DLCXR 

Iterative refinement of the solution to a system of linear 
equation with a complex general matrix 
CALL LCXR(ZX, ZA, K, N, ZFA, ZB, IP, ZVW, 
ICON) 

 
Function 
When an approximate solution ~x  is given to linear 
equations with an n × n complex matrix, 

Ax = b (1.1) 

  this subroutine refines the approximate solution by the 
method of iterative modificton, where b is an n-
dimensional complex constant vector and x is an n-
dimensional solution vector. 
  Prior to calling this subroutine, the coefficient matrix A 
must be LU-decomposed as shown in Eq.(1.2), 

PA = LU (1.2) 

where L and U are n × n lower triangular matrix and unit 
upper triangular matrix respectively, and P is a 
permutation matrix which exchanges rows of the matrix 
A required in partial pivoting. 
Also, n≥1. 
 
Parameters 
ZX .... Input. Approximate solution vector ~x . 

Output. Iteratively refined solution vector x. 
Complex one-dimensional array of size n. 

ZA .... Input. Coefficient matrix A. 
Complex two-dimensional array, ZA (K,N). 

K .... Input. Adjustable dimension of the array ZA, 
ZFA ( ≥ N) 

N .... Input.  Order n of the coefficient matrix A. 
(See “Comments on use”.) 

ZFA .... Input. Matrices L and U. 
Refer to Fig.  LCXR-1. 
Complex two-dimensional array, ZFA (K,N). 
(See “Comments on use”.) 

ZB .... Input. Constant vector b. 
Complex one-dimensional array of size n. 

IP .... Input. Transposition vector which indicates the 
history of exchanging rows required in partial 
pivoting.  One dimensional array of size n. 
(See “Comments on use”.) 

ZVW .... Work area.  Complex one-dimensional array of 
size n. 

ICON .. Output. Condition code. See Table LCXR-1. 
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Fig. LCXR-1 Storing method for each elements of L and U in array 
ZFA 

Table LCXR-1 Condition codes 

Code Meaning Processing 
0 No errors  

20000 Coefficient matrix was 
singular. 

Discontinued 

25000 Convergence condition was 
not met because of very 
illconditioned coefficient 
matrix. 

Discontinued 
(Refer to the 
paragraph 
"Method" for the 
convergence 
condition.) 

30000 Either K<N or N<1. Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... CLUX,MCV,AMACH,CSUM,MGSSL 
FORTRAN basic functions ... REAL,AIMAG,ABS,IABS 

 
• Notes 

This subroutine iteratively corrects the approximate 
solution ~x  obtained by the subroutine LCX, and 
refines its precision.  Therefore , the subroutine LCX 
must be called in advance to obtain the approximate 
solution ~x  prior to calling this subroutine to obtain the 
refined solution.  In this case, the parameters ZX, ZFA 
and IP must be each assigned the outputs of subroutine 
LCX that was called prior to this subroutine.  In 
addition, this subroutine requires both the coefficient 
matrix A and the constant vector b, so that they must be 
saved before calling subroutine LCX in order not to 
lose them.  Refer to the example below for detail.  By 
specifying N = − n, an estimated accuracy (relative 
error) for the approximate solution ~x  obtained in the 
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subroutine LCX can be obtained. When specified, this 
subroutine does not perform iterative refinement for the 
solution, but only computes a relative error and outputs 
it to the parameter ZVW(1). For details about the 
accuracy estimation, refer to the following paragraph 
"Method". 
 

• Example 
An approximate solution ~x  to n-dimensional linear 
equations is obtained first by calling the subroutine 
LCX and after that it is iteratively refined by using this 
subroutine.  Here n≤100. 
 

C     **EXAMPLE** 
      DIMENSION ZA(100,100),ZFA(100,100), 
     *  ZX(100),ZB(100),ZVW(100),IP(100) 
      COMPLEX ZA,ZFA,ZX,ZB,ZVW,ZDET 
      READ(5,500) N 
      IF(N.LE.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,ZA(I,J),J=1,N), 
     *             I=1,N) 
      READ(5,510) (ZB(I),I=1,N) 
      WRITE(6,610) (I,ZB(I),I=1,N) 
      DO 10 I=1,N 
      ZX(I)=ZB(I) 
      DO 10 J=1,N 
      ZFA(I,J)=ZA(I,J) 
   10 CONTINUE 
      K=100 
      CALL LCX(ZFA,K,N,ZX,0.0,1,IS,ZVW,IP, 
     * ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      CALL LCXR(ZX,ZA,K,N,ZFA,ZB,IP,ZVW, 
     * ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (I,ZX(I),I=1,N) 
      ZDET=IS 
      DO 20 I=1,N 
      ZDET=ZDET*ZFA(I,I) 
   20 CONTINUE 
      WRITE(6,650) ZDET 
      STOP 
  500 FORMAT(I3) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',5X,'COEFFICIENT MATRIX' 
     * /6X,'ORDER=',I5/(6X,2('(',I3,',',I3, 
     * ')',2E15.8,1X))) 
  610 FORMAT(' ',5X,'CONSTANT VECTOR' 
     * /(6X,3('(',I3,')',2E15.8))) 
  620 FORMAT(' ',5X,'ICON OF LCX=',I5) 
  630 FORMAT(' ',5X,'ICON OF LCXR=',I5) 
  640 FORMAT(' ',5X,'IMPROVED SOLUTION' 
     * /(6X,3('(',I3,')',2E15.8,1X))) 
  650 FORMAT(' ',5X,'DETERMINANT=',2E15.8) 
      END 
 

Method 
Given an approximate solution, ~x , to the linear 
equations 

Ax = b (4.1) 

the solution is iteratively refined as follows: 
 

• Principle of iterative refinement 
The iteratile refinement is a method to obtain a 
successively improved approximate solution x(s+1) to 
the linear equations(4.1) through use of the following 
equations starting with x(1)= ~x  

r(s) = b − Ax(s) (4.2) 
Ad(s)=r(s) (4.3) 
x(s+1)=x(s)+d(s) (4.4) 
s=1,2,.... 

where x(s) is the s-th approximate solution to equation 
(4.1).  If Eq.  (4.2) is accurately computed, an refined 
solution of the approximate solution x(1) is numerically 
obtained.  If the conditions of coeffcient matrix A are not 
suitable, however, no improved solution is obtained.  
(See “Iterative refinement of a solution” in Section 3.4.) 

 
• Procedure performed in this subroutine 

Suppose that the first approximate solution x(1) 
has already been obtained by the subroutine LCX. 
Then this subroutine repeats the following steps:  The 
residual r(s) is computed by using Eq.(4.2). 
The residual r(s) is computed by using Eq.(4.2) 
this is done by calling subroutine MCV. 
The correction d(s) is obtained next by using Eq.(4.3) 
and calling subroutine CLUX. 
Finally the modified approximste solution x(s+1) is  
obtained by using Eq.(4.4). 
 
The iteration convergence is tested as follows. 

Considering  u as a unit round off, the itereative refinement is 
assumed to converge if, in the s-th iteration step, the following 
relationship is satisfied 

uss 2)1()( <
∞

+
∞

xd  (4.5) 

The obtained x(s+1) is then taken as a final solution. 
However, if the relation, 
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results, this indicates that the condition of the 
coefficient matrix A are not suitable.  The iterative 
refinement is assumed not to converge, and consequently 
the processing is terminated with ICON=25000. 
 
• Accuracy estimation for approximate solution Suppose 

the error for the approximate solution 
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x(1) is e(1) (=x(1) − x), its relative error is represented by 

∞∞
)1()1( xe .  If this iteration method converges, 

e(1) is assumed to be almost equal to d(1).  The relative 
error for the approximate solution is therefore 

estimated by 
∞∞

)1()1( xd . 

(See "Accuracy estimation for approximate solution" in 
Section 3.4.)  For further details, see References [1], 
[3] and [5] 
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A22-51-0702 LDIV, DLDIV 

The inverse of a positive-definite symmetric matrix 
decomposed into the factors L,D and LT 
CALL LDIV (FA, N, ICON) 

 
Function 
The inverse matrix A−1 of an n × n positive-definite 
symmetric matrix A given in decomposed form A=LDLT 
is computed. 

( ) 111T1 −−−− = LDLA  (1.1) 

L and D are, respectively, an n × n unit lower triangular 
and a diagonal matrices. n≥1. 
 
Parameters 
FA........ Input.  Matrices L and D−1. 

See Fig. LDIV-1. 
Output.  Inverse A−1. 
FA is a one-dimensional array of size n(n+1)/2 
that contains L and D−1 in the compressed 
mode for symmetric matrices. 

N......... Input.  Order n of the matrices L and D. 
ICON. Output.  Condition code. 

See Table LDIV-1. 
 

Unit lower
triangular matrix L

triangular
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-Diag-
onal
elements
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inverted
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n nnl l −

d
d

d

l

n nn nn
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1

21 22
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1 1
1

0
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−
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d
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dnn
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22 0

0

0

0

0

0

 
Note: The diagonal and lower triangular portions of the matrix 

D−1+(L−I) are stored in the one-dimensional array FA in the 
compressed mode for symmetric matrices. 

Fig. LDIV-1 Storage of matrices L and D 

Table LDIV-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Matrix was not a positive-
definite. 

Continued 

30000 N<1 Bypassed 

Comments on use 
• Subprograms used 

SSL II........MGSSL 
FORTRAN basic function........none 

 
• Notes 

Prior to calling this subroutine, LDLT-decomposed 
matrix must be obtained by subroutine SLDL and must 
be input as the parameter FA to be used.  (Refer to the 
example).  In this routine, the diagonal elements of the 
array D must be given as D−1.  D−1 is output by the 
subroutine SLDL.  The subroutine LSX should be used 
for solving a system of linear equations.  Solving a 
system of linear equations by first obtaining the inverse 
matrix should be avoided since more steps of 
calculation are required.  This subroutine should be 
used only when the inverse matrix is inevitable. 

 
• Example 

The inverse of an n × n positive symmetric matrix is 
obtained.  n ≤ 100 

 
C     **EXAMPLE** 
      DIMENSION A(5050) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,620) 
      L=0 
      LS=1 
      DO 20 I=1,N 
      L=L+1 
      WRITE(6,600) I,(A(J),J=LS,L) 
   20 LS=L+1 
      CALL SLDL(A,N,0.0,ICON) 
      IF(ICON.GE.20000) STOP 
      CALL LDIV(A,N,ICON) 
      WRITE(6,630) 
      L=0 
      LS=1 
      DO 30 I=1,N 
      L=L+1 
      WRITE(6,600) I,(A(J),J=LS,L) 
   30 LS=L+1 
      WRITE(6,610) ICON 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E10.2) 
  600 FORMAT(' ',I5/(10X,5E16.8)) 
  610 FORMAT(/10X,'ICON=',I5) 
  620 FORMAT(/10X,'INPUT MATRIX') 
  630 FORMAT(/10X,'INVERSE MATRIX') 
      END 
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Method 
Given the LDLT decomposed matrices L and D of an n × 
n positive-definite symmetric matrix A, the inverse A−1 is 
computed. 
Since 

TLDLA =  (4.1) 

  Then, the inverse A−1 can be represented using (4.1) as 
follows:  The inverse of L and D are computed and then 
the inverse A−1 is computed as (4.2). 

( ) ( ) 11T1111T1 −−−−−−− == LDLLDLA  (4.2) 

Let L and D−1 be represented as shown in Eq. (4.3) for 
the following explanation. 

( ) ( )11 diag, −− == iij dl DL  (4.3) 

• Calculating L−1 
Since the inverse L−1 of a unit lower triangular matrix L 
is also a unit lower triangular matrix, if we represent 
L−1 by 

)~(1
ijl=−L  (4.4) 

  then the Eq. (4.5) is obtained based on the relation 
LL−1=I. 





≠
=

==∑
= ji

ji
ll ijij

n

k
kjik ,0

,1
,

~

1

δδ  (4.5) 

  Since lii=1,(4.5) can be rewritten with respect to 
~
lij  as 

shown in (4.6). 

∑
−

=

−=
1 ~~ i

jk
kjikijij lll δ  (4.6) 

  Then considering that ~lii = 1  and ~ljj = 1, the elements 
~
lij  of the ith row (i=2,...,n) of L−1 can be obtained 
successively using 

1,...,1,
~~ 1

1

−=−−= ∑
−

+=

ijllll
i

jk
kjikijij  (4.7) 

• Calculation of (L−1)TD−1L−1 
If we represent the inverse A−1 by 

( )ija~1 =−A  (4.8) 

Then equation (4.9) is derived based on A−1=(L−1)TD−1L−1 

∑
=

−=
n

k
kjkkiij ldla

1

1~~~  (4.9) 

Considering that 1~
=iil , the elements ija~  of the i-th row 

(i = 1,...,n) of A−1 are successively obtained using 

ijldllda
n

ik
kjkkiijiij ,...,1,

~~~~
1

11 =+= ∑
+=

−−  (4.10) 

  The precision of the inner product calculation in (4.7) 
and (4.10) has been raised to minimize the effect of 
rounding errors. 
  For further information, see Reference [2]. 
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A22-51-0302 LDLX, DLDLX 

A system of linear equations with a positive-definite 
symmetric matrix decomposed into the factors L, D and LT 
CALL LDLX (B, FA, N, ICON) 

 
Function 
This subroutine solves a system of linear equations 

bxLDL =T  (1.1) 

Where L and D are, respectively, n×n unit lower 
triangular and diagonal matrices, b is an n-dimensional 
real constant vector, and x is an n-dimensional solution 
vector.  n≥1. 
 
Parameters 
B.......... Input.  Constant vector b. 

Output.  Solution vector x. 
One-dimensional array of size n. 

FA........ Input.  Matrices L and D−1. 
See Fig. LDLX-1. 
One-dimensional array of size n(n+1)/2. 

N........... Input.  Order n of the matrices L and D. 
ICON.... Output.  Condition code. 

See Table LDLX-1. 
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Note: The diagonal and lower triangular portions of the matrix 

D−1+(L−I) are contained in the one-dimensional array A in the 
compressed mode for symmetric matrices. 

Fig. LDLX-1  Storage method of matrices L and D−1 

Table LDLX-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The coefficient matrix was not 
positive-definite. 

Discontinued 

30000 N<1 Bypassed 

Comments on use 
• Subprograms used 

SSL II .....MGSSL 
FORTRAN basic function........None 

 
• Notes 

Notes that the diagonal elements of D−1 instead of D 
are required in this subroutine.  A system of linear 
equations can be solved by calling this subroutine after 
the subroutine SLDL.  D−1 is output by subroutine 
SLDL.  However, subroutine LSX can be usually 
called to solve such equations in one step. 
   For a positive-definite symmetric band matrix, the 
subroutine BDLX processes faster than this subroutine 
because the operation for elements out of the band is 
omitted. 

 
• Example 

A system of linear equations is solved after first LDLT 
decomposition of the n×n coefficient matrix using 
subroutine SLDL.  n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NTOT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NTOT) 
      WRITE(6,640) 
      L=0 
      LS=1 
      DO 20 I=1,N 
      L=L+1 
      WRITE(6,600) I,(A(J),J=LS,L) 
   20 LS=L+1 
      CALL SLDL(A,N,1.0E-6,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      READ(5,510) (B(I),I=1,N) 
      CALL LDLX(B,A,N,ICON) 
      WRITE(6,610) ICON 
      DET=A(1) 
      L=1 
      DO 30 I=2,N 
      L=L+I 
   30 DET=DET*A(L) 
      DET=1.0/DET 
      WRITE(6,620) (B(I),I=1,N) 
      WRITE(6,630) DET 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E10.2) 
  600 FORMAT(' ',I5/(10X,5E16.8)) 
  610 FORMAT(/10X,'ICON=',I5) 
  620 FORMAT(/10X,'SOLUTION VECTOR' 
     *//(10X,5E16.8)) 
  630 FORMAT(/10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=', 
     *E16.8) 
  640 FORMAT(/10X,'INPUT MATRIX') 
      END 
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Method 
To solve a system of linear equations (4.1) is equivalent 
to solve equations (4.2) and (4.3). 

bxLDL =T  (4.1) 
Ly b=  (4.2) 

yDxL 1T −=  (4.3) 

• solving Ly=b (forward substitution) 
Ly=b can be consecutively solved using equation (4.4). 

niylby
i

k
kikii ,...,1,

1

1

=−= ∑
−

=

 (4.4) 

where, L=(lij), yT=(y1,...,yn), bT=(b1,...,bn) 
• Solving LTx =D−1y (backward substitution) 

LTx =D−1y can be consecutively solved using equation 
(4.5). 

1,...,,
1

1 nixldyx
n

ik
kkiiii =−= ∑

+=

−  (4.5) 

where, D−1 = diag(di
−1), xT=(x1,...,xn). 

For more information, see Reference [2]. 
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E21-20-0101  LESQ1, DLESQ1 

Polynomial least squares approximation 
CALL LESQ1 (X, Y, N, M, W, C, VW, ICON) 

 
Function 
Given n observed data (x1,y1), (x2,y2),..., (xn,yn) and a 
weight function w(xi) i=1, 2, .., n, this subroutine obtains 
polynomial least squares approximations. 
  Let a polynomial of degree m be ( )y xm  as 

( ) m
mm xcxccxy +⋅⋅⋅++= 10  (1.1) 

this subroutine determines coefficients c0, c1,..., cm such 
that (1.2) is minimized. 

( ) ( ){ }2

1

2
imi

n

i
im xyyxw −= ∑

=

δ  (1.2) 

where m is selected so as to minimize (1.3) in the range 0 
≤ m ≤ k. 

mn m 2logAIC 2 += δ  (1.3) 

  When (1.3) is minimized, m is considered the optimum 
degree for the least squares approximation. 
  Where, 0 ≤ k < n−1.  Also, the weight function w(xi) 
must satisfy 

( )
2

,...,2,1,0
≥

=≥
n

nixw i  (1.4) 

Parameters 
X .... Input.  Discrete points xi, 

One-dimensional array of size n. 
Y .... Input.  Observed data yi. 

One-dimensional array of size n. 
N .... Input.  Number (n) of discrete points. 
M .... Input. Upper limit k of the degree of the 

approximation polynomial to be determined.  
If M = −k (k > 0), the approximation 
polynomial of degree k is unconditionally 
obtained. 
Output.  The degree k of the approximation 
polynomial that was determined. 
Hence, when M = −k, output M is always 
equal to k. 

W .... Input.  Weight function values w(xi). 
One-dimensional array of size n. 

C .... Output.  Coefficient ci of the determined 
approximation polynomial.  C is a one-
dimensional array of size k+1.  Letting the 
output value of M be m (0 ≤ m ≤ k), the 
coefficients are stored in the following order: 
c0,c1,..., cm 
Then, m < k,elements C(I+1), I=m+1,..., k, are 
set 0.0. 

VW .... Work area.  One dimensional array of size 7n. 
ICON .. Output.  Condition code. 

See Table LESQ1-1. 
 
Table LESQ1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 When M=−k, (k>0) the 
polynomial of order k could 
not be determined uniquely. 

A uniquely 
determined 
polynomial of 
order less than k 
is output. 

30000 n < 2,k > n-1 or there was a 
negative value in w(xi). 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ..... MGSSL, AMACH 
FORTRAN basic functions ..... IABS, DABS, DLOG, 
FLOAT, and AMAX1 

 
• Notes 

Use of single or double precision subroutines 
The degree m of the approximation polynomial to be 
output may be different between single and double 
precision subroutines for some data. 
   Therefore, it is preferable to use a double precision 
subroutine when handling a large number of observed 
data. 
 
Specifying weight function values w(xi) 
When observed data have nearly the same order, 
w(xi)=1.0,i= 1,2,...,n may be used.  But, when they are 
ordered irregularly, the weight function should be 
specified as w(xi)=1/yi

2 (when yi=0 specify, w(xi)=1.0). 
The number of discrete points, n should be as high as 
possible compared to the upper limit k. 
Theoretically, n, is recommended to be equal to or 
greater than 10k. 

 
• Example 

The number (n) of discrete points, the discrete points xi, 
and the observed values yi,i=1,2,...,n are input, then the 
coefficients of the least squares approximation 
polynomial are determined. 
Where 10 ≤ n ≤ 50,and w(xi) = 1 (i = 1,2,...,n). 

 
C     **EXAMPLE** 
      DIMENSION X(50),Y(50),W(50), 
     *          C(6),VW(350) 
      READ(5,500) N 
      READ(5,510) (X(I),Y(I),I=1,N) 
      WRITE(6,600) (I,X(I),Y(I),I=1,N) 
      DO 10 I=1,N 
   10 W(I)=1.0 
      M=5 
      MI=M 
      CALL LESQ1(X,Y,N,M,W,C,VW,ICON) 
      WRITE(6,610) MI,ICON 
      IF(ICON.EQ.30000) STOP 
      M1=M+1 
      WRITE(6,620) M,(I,C(I),I=1,M1) 
      STOP 
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  500 FORMAT(I5) 
  510 FORMAT(2F10.0) 
  600 FORMAT('1'//10X,'INPUT DATA'// 
     *20X,'NO.',10X,'X',17X,'Y'// 
     *(20X,I3,3X,E15.7,3X,E15.7)) 
  610 FORMAT(10X, 
     *'THE UPPER LIMIT OF THE DEGREE', 
     *5X,I5/10X,'ICON=',I5) 
  620 FORMAT(//10X, 
     *'THE RESULTANT DEGREE',14X,I5/ 
     *10X,'THE RESULTANT COEFFICIENTS'/ 
     *(20X,'C(',I2,')=',E15.7)) 
      END 
 
Method 
• Least squares approximation polynomial 

Assume that observed data yi, i=1,2,...,n, are given for 
discrete points xi, i=1,2,...,n, and they include some 
errors. 
Then, the least squares approximation polynomial for 
the observed data is the polynomial of degree m, ( )y xm  
which minimizes 

( ) ( ){ } 2

1

2
imi

n

i
im xyyxw −= ∑

=

δ  (4.1) 

where w(xi),i=1,2,...,n is the weights. 
Let us express ( )y xm  as 

( ) ( )∑
=

=
m

j
j

m
jm xPbxy

0

)(  (4.2) 

   Where Pj(x) is a polynomial of degree j(explained later). 
To determine bj

(m), ( )xym  in (4.2) is substituted into (4.1), 
then we take the partial derivative of δm

2 in (4.1) with 
respect to bj

(m) and set it equal to zero, thereby obtaining. 

( ) ( ) ( )
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   where

,...,1,0,

ω

ω

 (4.3) 

   Equation (4.3) is a system of m+1 linear equations for 
the m+1 unknown bj

(m).  This system is called the normal 
equations and bj

(m) can be obtained by solving the system. 
   Now, if polynomials {Pj(x)} in (4.3) are chosen as that 
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   then, elements of the coefficient matrix of the normal 
equations become zero except the diagonal elements, so 
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)(

   where γ

γω
 (4.5) 

Thus, bj
(m) can be obtained from (4.5). 

The {Pj(x)} which satisfies (4.4) can be obtained from 
the following recurrence formula 

( ) ( ) ( ) ( )

( ) ( )
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• Selecting the optimum degree 
In obtaining the least squares approximation 
polynomial, selecting an optimum degree is of 
importance.  This subroutine selects the optimum 
degree using a quantity AIC as the means to evaluate 
the optimum condition of degree m.  Letting δm

2 be 

( ) ( )∑ ∑
= = 
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1

2

0

2δ  (4.7) 

then AIC is defined as 

mn m 2log=AIC 2 +δ  (4.8) 

   In general, the smaller value of AIC shows the more 
optimum degree.  Thus, this subroutine determines the 
optimum value which will minimize AIC within the range, 
0≤m≤k, then output a least squares approximation 
polynomial of that degree.  The output polynomial is, 
using {bj} and {Pj(x)}(j=0,1,...,m), expressed as 

( ) ( ) m
m

m

j
jjm xcxcxccxPbxy +⋅⋅⋅+++== ∑

=

2
210

0

 (4.9) 

   in the standard form of polynomials with coefficients c0, 
c1, c2,..., cm. 
For more details, see Reference [46] pp. 228 to 250. 



LMINF 

418 

D11-30-0101 LMINF, DLMINF 

Minimization of function with a variable 
(Quadratic interpolation using function values only) 
CALL LMINF (A, B, FUN, EPSR, MAX, F, ICON)

 
Function 
Given a real function f(x) with a variable, the local 
minimum point x* and the function value f(x*) are 
obtained in interval [a,b], where f(x) is assumed to have 
up to the second continuous derivative. 
 
Parameters 
A.......... Input.  End point a of interval [a,b]. 

Output.  Minimum point x*. 
B.......... Input.  End point b of interval [a,b]. 
FUN..... Input.  Name of function subprogram which 

calculates f(x). 
The form of subprogram is as follows: 
FUNCTION FUN (X) 
Parameters 
X.... Input.  Variable x. 
Substitute values of f(x) in function FUN.  
(See “Example”.) 

EPSR.. Input.  Convergence criterion (≥0.0). 
The default value is assumed if 0.0 is specified.  
(See “Comments on Use”.) 

MAX.. Input.  The upper limit (≠0) of number of 
evaluations for the function. 
(See “Comments on use”.) 
Output.  The number (>0) of actual 
evaluations. 

F.......... Output.  The value of function f(x*). 
ICON.. Output.  Condition code.  (See Table LMINF-

1.) 
 
Table LMINF-1  Condition codes 

Code Meaning Processing 
0 No error.  

10000 The convergence 
condition has not been 
satisfied within the 
specified function 
estimation count. 

The last values obtained 
are stored in A and F. 

30000 EPSR < 0.0 or MAX=0. Bypassed. 
 
Comments on use 
• Subprograms used 

SSL II .... AMACH, MGSSL 
FORTRAN basic functions .... ABS, SQRT, AMAX1 

• Notes 
An EXTERNAL statement is necessary to declare the 
subprogram name correspond to parameters FUN in 
the calling program. 
 
EPSR 
In this subroutine, the convergence condition is 
checked as follows:  During iteration, if 

( )x x x1 2 10− ≤ ⋅max . , ~ EPSR  
is satisfied at two points x1, and x2, between which x* 
exists, point ~x  is assumed to be minimum point x* and 
iteration is stopped, where ~x x= 1  for f(x1)≤f(x2) and 
~x x= 2  for f(x1)>f(x2). 
  Since f(x) is assumed to be approximately a quadratic 
function in the vicinity of point x*, it is appropriate to 
specify EPSR as EPSR ≈ u , where u is the unit 
round off to obtain value x* as accurate as the rounding 
error. 
   The default value of EPSR is 2 u . 
MAX 
The number of function evaluation is incremented by 
one every time f(x) is evaluated. 
This is the same as the call count of subprogram FUN. 
   The number depends on characteristics of function 
f(x), interval [a,b], and convergence criterion. 
   Generally, when an appropriate interval [a,b] is 
specified and the default value is used for the 
convergence criterion, it is adequate to specify MAX = 
400. 
  Even if the convergence condition is not satisfied 
within the specified evaluation count and the 
subroutine is returned with ICON = 10000, iteration 
can be resumed by calling this subroutine again.  In 
this case, the user must specify a negative value as the 
additional evaluation count in the parameter MAX and 
retain other parameters unchanged. 
A and B 
If there is only one minimum point of f(x) in interval 
[a,b], this subroutine obtains the value of the point 
within the specified error tolerance.  If there are 
several minimum points, it is not guaranteed to which 
point the result converges.  This means that it is 
desirable to set a and b, end points of the interval 
containing minimum point x*, in the vicinity of 
minimum point x*. 

 
• Example 

Given the following function, 

( ) 41664 234 +−−−= xxxxxf  

a minimum value in interval [−5, 5] is obtained, 
assuming that the default value is used for the 
convergence criterion. 
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C     **EXAMPLE** 
      EXTERNAL FUN 
      A=-5.0 
      B=5.0 
      EPSR=0.0 
      MAX=400 
      CALL LMINF(A,B,FUN,EPSR, 
     *MAX,F,ICON) 
      WRITE(6,600) ICON,MAX,A,F 
  600 FORMAT('1'//1X,'ICON=',I6,2X, 
     *'MAX=',I5,2X,'A=',E15.7,2X, 
     *'F=',E15.7) 
      STOP 
      END 
C     OBJECTIVE FUNCTION 
      FUNCTION FUN (X) 
      FUN=(((X-4.0)*X-6.0)*X-16.0)*X+4.0 
      RETURN 
      END 
 
Method 
Given a single variable real function f(x) and interval 
[a,b] in which the minimum value is to be obtained, 
minimum point x* and the value of function f(x*) are 
obtained using the quadratic interpolation. 
It is assumed that −f(x) is unimodal in interval [a,b]. If  
−f(x) is not unimodal, this subroutine obtains one of the 
minimum points. 
   The processing comprises two steps: 

• Obtains two points x1 and x2 between which point x* 
exists. 

• Based on function values f(x1), f(x2) and f(xh) at 
points x1 and x2, and middle point xh, determines the 
minimum point using a quadratic interpolation 
formula which passes through the points (x1, f(x1)), 
(xh, f(xh)), and (x2, f(x2)). 

 
   There steps are repeated until the convegence condition 
is satisfied in the interval containing the minimum point. 
 
Calculation procedures 
For simplicity, let f(x1), f(x2)... be denoted as f1, f2,... 
 
   Procedure step 1 (determination of points x1 and x2) 
1) Assumes the smaller of a and b to be x1, the larger to 

be x2, and ε=max (EPSR, 2 u .) 
2) Determines middle point xh in interval [x1,x2] from 

xh=( x1+ x2)/2 
3) If f1 > fh < f2, computes h=x2−xh and proceeds to step2. 
4) If f1 ≤ fh ≤ f2, assumes x2=xh, and returns to 2).

However, if the convergence condition 
( ) ε⋅≤− 11 ,0.1max xxx h  

is satisfied, assumes x1 to be x*, f1 to be f(x*), and sets 
ICON=0, then stops processing. 

5) If  f1 ≥ fh ≥ f2,, assumes x1= xh, and returns to 2).  
However, if the convergence condition  

( ) ε⋅≤− 22 ,0.1max xxxh  
 is satisfied, assumes x2 to be x* and f2 to be f(x*), and 
sets ICON=0, then stops processing. 

6) If  f1 < fh > f2, assumes x2= xh (for  f1 ≤  f2)or x1= xh (for 
f1 >f2 ), and returns to 2).  However, if the 
convergence condition 

( ) ( )x x x f fh1 1 1 210− ≤ ⋅ ≤max . , ε for  
or 

( ) ( )x x x f fh2 2 1 210− ≤ ⋅ >max . , ε for  
is satisfied, assumes x1 or x2 to be x*, f1 or f2 to be f(x*), 
and sets ICON=0, then stops processing. 

 
Procedure step2 
7) Obtains minimum point xm using the quadratic 

interpolation by means of following calculation: 

( ) ( )
hxx

fffffhh

hm

h

∆

∆

−=

+−−= 2112 2
2  

8) If the convergence condition 
( ) 2,0.1max ε∆ ⋅≤ hxh  

is satisfied, proceeds to 9); otherwise, assumes 
x x f fm m h1 = ≤( )for  or x1=xh and 
x x f fh m m h= ≥( )for , and obtains two points 
between which point x* exists, then returns to 7). 

9) For the following two points in the vicinity of point 
~ ( )x x f fm m h= <for  or ~ ( )x x f fh m h= ≥for  which 
minimizes the function value, 

( )
( )

~ ~ max . , ~

~ ~ max . , ~
x x x

x x x
1

2

10 2

10 2

= + ⋅

= − ⋅

ε

ε
 

if ( ) ( )hm ffxf ,min~
1 <  and 

 ( ) ( )hm ffxf ,min~
2 <  

are satisfied, assumes ~x  to be x* and f( ~x ) to be f(x*), 
and sets ICON=0, then stops processing. 
If these conditions are not satisfied, obtains two 
points between which point x* exists, then return to 7). 
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D11-40-0101 LMING, DLMING 

Minimization of function with a variable 
(Cubic interpolation using function values are its 
derivatives) 
CALL LMING (A, B, FUN, GRAD, EPSR, MAX, 
F, ICON) 

 
Function 
Given a single variable real function f(x) and its 
derivative g(x), the local minimum point x* and the 
function value f(x*) are obtained in interval [a, b], where 
f(x) is assumed to have up to the third continuous 
derivative. 
 
Parameters 
A ........ Input.  End point a of interval [a, b]. 

Output.  Minimum point x*. 
B ........ Input.  End point b of interval [a, b]. 
FUN ... Input.  Name of function subprogram which 

calculates f(x). 
The form of subprogram is as follows: 
FUNCTION FUN (X) 
Parameters 
X ... Input.  Variable x. 
Substitute values of f(x) in function FUN.  
(See “Example”.) 

GRAD .. Input.  Name of function subprogram which 
calculates g(x). 
The form of subprogram is as follows: 
FUNCTION GRAD (X)  
Parameters X ... Input.  Variable x. 
Substitute the value of g(x) in function GRAD.  
(See “Example”.) 

EPSR .. Input.  Convergence criterion (≥0.0). 
The default value is assumed if 0.0 is specified.  
(See “Comments on use”.) 

MAX .. Input.  The upper limit (≠0) of number of 
evaluations for f(x) and g(x).  (See “Comments 
on use”.) 
Output.  The number (>0) of actual 
evaluations. 

F ........ Output.  The value of function f(x*). 
ICON .. Output.  Condition code.  (See Table LMING-

1.) 

Table LMING-1 Condition codes 

Code Meaning Processing 
0 No error.  

10000 The convergence condition 
has not been satisfied within 
the specified function 
evaluation count. 

The last values 
obtained are 
stored in A and F.

20000 The value of EPSR is too 
small. 

Bypassed.  (The 
last values 
obtained are 
stored in A and F.)

30000 EPSR<0.0 or MAX=0. Bypassed. 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MGSSL 
FORTRAN basic functions ... ABS, SQRT, AMAX1 

 
• Notes 

An EXTERNAL statement is necessary to declare the 
subprogram names correspond to parameters FUN and 
GRAD in the calling program. 
 
EPSR 
In this subroutine, the convergence condition is 
checked as follows: During iteration, if 

( ) EPSR~,0.1max21 ⋅≤− xxx  

is satisfied for two points x1 and x2 between which x* 
exists, point ~x  is assumed to be minimum point x* and 
iteration is stopped, where ~x x= 1  for f(x1) ≤ f(x2) and 
~x x= 2 for f(x1) > f(x2). 
   Since f(x) is assumed to be approximately a cubic 
function in the vicinity of point x*, it is appropriate to 
specify EPSR as u≈EPSR , where u is the unit 
round off to obtain value x* as accurate as the rounding 
error.  The default value of EPSR is 2 u . 
 
MAX 
The number of function evaluation count is 
incremented by one every time f(x) or g(x) is evaluated.  
This is the same as the call count of subprogram FUN 
and GRAD. 
   The number depends on characteristics of function 
f(x) and g(x), interval [a, b], and convergence criterion. 
   Generally, when an appropriate interval [a,b] is 
specified and the default value is used for the 
convergence criterion, it is adquate to specify 
MAX=400. 
   Even if the convergence condition is not satisfied 
within the specified evaluation count and the 
subroutine is returned with ICON=10000, iteration can 
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be resumed by calling this subroutine again.  In this case, the 
user must specify a negative value as the additional 
evaluation count in the parameter MAX and retain other 
parameters unchanged. 

 
A and B 
If there is only one minimum point for ( )f x  in interval 
[ ]a b, , this subroutine obtains the value of the point within 
the specified error tolerance.  If there are several minimum 
points, it is not guaranteed to which point the result 
converges.  This means that it is descrable to set a  and b , 
end points of the interval containing minimum point *x , in 
the vicinity of minimum point *x . 

 
• Example 

Given the following function, 
 ( ) 41664 234 +−−−= xxxxxf   

 a minimum value is obtained in interval [ ]5,5− .  Where 
derivative ( )g x of function ( )f x  is  

 ( ) 1612124 23 −−−= xxxxg  
 and the default value is used for the convergence 

criterion. 
 
C     **EXAMPLE** 
      EXTERNAL FUN,GRAD 
      A=-5.0 
      B=5.0 
      EPSR=0.0 
      MAX=400 
      CALL LMING(A,B,FUN,GRAD,EPSR, 
     *           MAX,F,ICON) 
      WRITE(6,600) ICON,MAX,A,F 
  600 FORMAT('1'//1X,'ICON=',I6,2X, 
     *'MAX=',I5,2X,'A=',E15.7,2X, 
     *'F=',E15.7) 
      STOP 
      END 
C     OBJECTIVE FUNCTION 
      FUNCTION FUN(X) 
      FUN=(((X-4.0)*X-6.0)*X-16.0)*X+4.0 
      RETURN 
      END 
C     DERIVATIVE 
      FUNCTION GRAD(X) 
      GRAD=((4.0*X-12.0)*X-12.0)*X-16.0 
      RETURN 
      END 
 
Method 
Given a single variable real function ( )f x , its derivative 

( )g x , and interval [ ]a b,  in which the minimum value is 

to be obtained, minimum point x*  and the value of 
function ( )*xf  are obtained using cubic interpolation.  
  It is assumed that ( )− f x  is unimodal in interval [ ]a b, .  

If ( )− f x  is not unimodal, this subroutine obtains one of 
minimum points. 
 

The processing comprises two steps: 
Obtains two points 1x  and 2x  between which point *x  
exists. 
 Based on function values ( )1xf

 
and ( )2xf

 
at points x1

 
and 2x  and their derivatives ( )1xg  and ( )2xg , determines 
the minimum point using a cubic interpolation formula which 
passes through points ( )( )11, xfx

 
and ( )( )22 , xfx . 

These steps are repeated until the convergence condition is 
satisfied in the interval containing the minimum point.  

 
Calculation procedures 
For simplicity, let ( )1xf , ( )2xf ,...be expressed as 1f , 

2f , ... 
 
Procedure step 1 (determination of two points 1x  and 2x ) 
1) Assumes the smaller of a and b to be x1, the larger to 

be 2x , and ε =max(EPSR, 2 u )   
If 1g <0 and 2g >0, proceeds to step 2. 

2) Determines middle point xh in interval [ ]x x1 2,  from 
( ) 2/21 xxxh += . 

3) If 21 fff h ≤≤ , assumes hxx =2 and returns to 2).  
However, if the convergence condition 

( ) ε⋅≤− 11 ,0.1max xxx h  

is satisfied, assumes x1 to be *x  and f1 to be 
( )*xf ,and sets ICON = 0, then stops processing. 

4) If 21 fff h ≥≥ , assumes hxx =1 , and returns to 2).  
However, if the convergence condition 

( ) ε⋅≤− 22 ,0.1max xxxh  

is satisfied, assumes x2  to be *x  and 2f  to be ( )*xf , 
and sets ICON =0, then stops processing. 

5) If 21 fff h >< , assumes hxx =2  (for 21 ff ≤ ) or 

hxx =1  (for 21 ff > ), and returns to 2).  However, if 
the convergence condition 

( ) ε⋅≤− 11 ,0.1max xxx h  (for 21 ff ≤ ) 
or 

( ) ε⋅≤− 22 ,0.1max xxx h  
(for 21 ff > ) 

is satisfied, assumes x1  or x2  to be x*  and 1f  or 2f  to be 

( )*xf , and sets ICON=0, then stops processing. 
6) If 21 fff h <>  and 

If 0<hg  and 02 >g , assumes hxx =1 , then 
proceeds to step 2); 
If 01 <g  and 0>hg , assumes hxx =2 , then 
proceeds to step 2); 
If 01 ≥g  and 0≥hg , assumes hxx =2 , then  
returns to 2); 
If 0≤hg and 02 ≤g , assumes hxx =1 , then  
returns to 2); 
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Step 2 (cubic interpolation) 
7) Obtains minimum point xm using cubic interpolation  

by means of following calculation: 
h x x= −2 1 ,  ( ) 2121 /3 gghffz ++−= , 

( ) 21
21

2 ggzw −= , 

( ) ( )wgggzwhh 2/ 121 +−−+=∆ , 
hxxm ∆+= 1  

8) If 2xxm ≥ , assumes 1x  to be *x  and sets 
ICON=20000, then stops processing. 

9) If  xm<x2and if the convergence condition 
( ) ε⋅≤ mxh ,0.1max

 
 

is satisfied, or if 0=mg , assumes xm  to be *x  and mf  

to be ( )*xf , and sets ICON=0, then stops processing. 
If the convergence condition is not satisfied, assumes 

( )01 <= mm gxx  or ( )02 >= mm gxx , then returns to 2). 
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C21-41-0101 LOWP, DLOWP 

Zeros of a low degree polynomial with real coefficients 
(fifth degree or lower) 

CALL LOWP (A, N, Z, ICON) 

 
Function 
This subroutine finds zeros of a fifth or less degree 
polynomial with real coefficients; 

( )0,50... 0
1

10 ≠≤=+++ − anaxaxa n
nn  

by the successive substitution method, Newton method, 
Ferrari method, Bairstom method, and the root formula 
for quadratic equations. 
 
Parameters 
A...... Input.  Coefficients of the equations.  A is a one-

dimensional array of size n +1 .  Where A(1)=a0, 
A(2)=a1, ..., A(N+1)=an . 

N...... Input. Degree of the equation. 
Z....... Output. n roots 

Z is a complex one-dimensional array of size n. 
ICON.. Output.  Condition code. 

See Table LOWP-1. 
 
Table LOWP-1 Condition codes 

Code Meaning Processing 
0 No error  

10000 When determining a real 
root of a fifth degree 
equation, after 50 
successive substitutions 
fkfk+1<0 was not satisfied. 

xk+1 is used as 
the initial value in 
Newton's method 
and processing 
continues.  Refer 
to equation (4.16) 
in the method. 

30000 a0=0.0, n≤0 or n>5 Bypassed 
 
 
Comments on use 
• Subprograms used 

SSL II ... RQER, U3DEG, AMACH, UREDR, and 
MGSSL 
FORTRAN basic functions ... SQRT, ABS, and 
CMPLX 

• Example 
Order n and coefficient ai( i = 0 , 1, ..., n) are entered 
and n roots are determined. 

 
C     **EXAMPLE** 
      DIMENSION A(6),Z(5) 
      COMPLEX Z 
      READ(5,500) N 
      N1=N+1 
      READ(5,510)(A(I),I=1,N1) 
      CALL LOWP(A,N,Z,ICON) 
      WRITE(6,600) N,ICON 
      WRITE(6,610)(A(I),I=1,N1) 
 

      IF(ICON.EQ.30000) STOP 
      WRITE(6,620)(Z(I),I=1,N) 
      STOP 
  500 FORMAT(I1) 
  510 FORMAT(6F10.0) 
  600 FORMAT(10X,'N=',I1,5X,'ICON=',I7) 
  610 FORMAT(10X,'A=',E20.8/(12X,E20.8)) 
  620 FORMAT(10X,'Z=',2E20.8/(12X,2E20.8)) 
      END 
 
Method 
In the explanations below the coefficient of the highest 
power of the polynomial is assumed to be 1 (there is no 
loss of generality) 
• When n = 2 (quadratic equations) 

The root formula is used.  This is done by calling 
subroutine RQDR. 

• For n = 3 (third degree equations) 
If one real root x1 of ( ) 032

2
1

3 =+++= cxcxcxxf  is 
obtained, the equation becomes. 

( ) ( )( )2
2

1 pxpxxxxf i ++−=′  (4.1) 

where,
1122

111





+=
+=

pxcp
xcp

 

 
and the problem is reduced to solving a quadratic 

equation.  The single real root x1 is obtained using 
Newton's method.  The initial value xa is determined after 
examining the characteristics of f (x).  Namely, let 

( ) 023 21
2 =++=′ cxcxxf  (4.2) 

the following three cases are considered when 
determining xa. 
(a) When f' (x) = 0 has two different real roots xm1 and 

xm2(xm1) and a minimum value f (xm2). 
  If  f (xm1) f (xm2)< 0, the point of inflection of f (x) is 
used for xa.  If f (xm1) f (xm2)> 0, the following cases 
are considered for determining xa. 
When  f (xm1) > 0 
  A quadratic equation in h, which is obtained by 
setting the Taylor series expansion of f (xm1+h) up to 
h2 equal to zero, is considered.  Let its positive real 
root be h again, then  

hxx ma −= 1  (4.3) 

When  f (xm1) < 0 
  A quadratic equation in h, which is obtained by 
setting the Taylor series expansion of f (xm2+h) up to 
h2 equal to zero, is considered. Let its positive real 
root be h again, and then  
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hxx ma += 2  (4.4) 

(b) When ( ) 0=′ xf has multiple roots 
This occurs when the maximum value and then 
minimum value match the inflection point. Let the 
inflection point be xi and perform the successive 
substitution method once, then 
 

)( iia xfxx −=  (4.5) 
 

(c) When  f' (x) = 0 does not have any real roots The 
inflection point of  f (x) is used for xa. 

  
• When n = 4 (fourth degree equation) 

Generally, a fourth degree equation 

0)( 43
2

2
3

1
4 =++++= cxcxcxcxxf  (4.6) 

can be factored into two quadratic factors using 
Ferrari's method. 

))(()( 21
2

21
2 qxqxpxpxxf ++++=  

If one real root µ   of the following third degree 
equation is determined 

( )µµµ 431
2

2
3 4cccc −+−  ( ) 04 4

2
1

2
342 =−−+ ccccc  (4.8) 

p2 and q2 can be determined as the two roots of  

04
2 =+− cvv µ  (4.9) 

and p1 and q1 can be determined as the two roots of  
( ) 021

2 =−+− µcvcv  (4.10) 

It p2 and q2 are complex roots, the remaining real roots 
of (4.8) are examined and real roots within a certain 
allowable quantity range are used for p2 and q2.  Later, p1, 
q1, p2 and q2 are modified using Bairstow's method.  Of 
the following quantities 

q c p
q c p q p
q c p q p q
q c p q p q

1 1 1

2 2 1 1 2

3 1 1 2 2 1

4 0 1 3 2 2

= −
= − −
= − −
= − −










 (4.11) 

d q p
d q p d p
d p d p d

1 1 1

2 2 1 1 2

3 1 2 2 1

= −
= − −
= − −






 (4.12) 

q1 to q4 are calculated first, then d1 to d3 are calculated.  
Then the systems of linear equation in (4.13) are solved 
for 11 pp∆  and 2p∆ . 

32112 qpdpd =+ ∆∆  (4.13) 
42213 qpdpd =+ ∆∆  

11 pp ∆+ , and 22 pp ∆+  are used as the new values 
for p1 and p2, and the corresponding q1 and q2 are 
obtained using (4.11). 

 
• When  n = 5  (fifth degree equation) Let one of the real 

roots of the following fifth degree equation. 

0)( 54
2

3
3

2
4

1
5 =+++++= cxcxcxcxcxxf  

 (4.14) 

be  x1, then  f (x) can be rewritten as 

0))(()( 432
3

1
4

1 =′+′+′+′+−= cccxcxxxxf  (4.15) 

where 

111 xcc +=′  

1122 cxcc ′+=′  

2133 cxcc ′+=′  

3114 cxcc ′+=′  

Therefore once x1 has been obtained, the problem is 
reduced to solving a fourth degree equation. x1 is 
determined as follows:  First, using the successive 
substitution method 

500 ,0 cfx ==  

kkk fxx −=+1  (4.16) 
( ),kk xff =   50 ..., 1, 0,=k  

kx  and 1+kx  are determined such that 01 <+kk ff   
Next, using the method of regular falsi 

( ) ( )kkkkkka fffxxxx −−−= ++++ 1111 /  

ax  is determined.  Newton's method is then applied 
using xa as the initial value.  The upper limit of iteration 
by (4.16) is set to 50.  If f k f k+1 < 0 is not satisfied when 
that limit is reached the last xk+1 is used as the initial 
value in Newton's method. 
 
Convergence criterion 
For third and fifth degree equations, Newton's method is 
used to obtaine one real root.  The method used to 
examine convergence is discussed below.  Let third and 
fifth degree equations be represented in the following 
general form. 

0......1
10 =+++ −

n
nn cxcxc  (4.17) 

(where c0 =1, n =3 or 5) 
and let the k-th approximate value obtained when 

Newton's method is applied to (4.17) be xk , xk  is 
accepted as a root of (4.17) if it satisfies 

∑∑
=

−

=

− ≤
n

j

jn
kj

n

j

jn
kj xcuxc

00

 (4.18) 

Where u  is the round-off unit. 
For futher details, see Reference [25]. 
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D21-10-0101 LPRS1, DLPRS1 

Linear programming (Revised simplex method) 
CALL LPRS1 (A, K, M, N, EPSZ, IMAX, ISW, 
NBV, B, VW, IVW, ICON) 

 
Function 
This subroutine solves linear programming problem 
shown below by using the revised simplex method; 
Minimize (or maximize) the objective function of linear 

∑
=

+=
n

j
jj cxcz

1
0  

subject to 

i

n

j
jij dxa ≤∑

=1

, i = 1,2, ... , lm  , 

i

n

j
jij dxa ≥∑

=1

 , 1+= lmi , 2+lm , ... , gl mm + , 

i

n

j
jij dxa =∑

=1

 , 1++= gl mmi , 2++ gl mm , ... , 

egl mmm ++ , 

0≥jx  , j = 1, 2 , ... , n  

 
This subroutine solves this problem in the following 

two phase: 
• Phase 1 .... obtaining basic feasible solution. 
• Phase 2 .... obtaining the optimal solution. 
 

This subroutine allows entry of the initial feasible basis.  
There is no constraint on sign of id . 

Assume eg mmmm ++= 1 . 

• m × n matrix consisting of elements }{ ija : called 
coefficient matrix A . 

• d = ( 1d  , 2d  , ... , md )T : called a constant vector. 
• c = ( 1c  , 2c  , ... , mc )T : called a coefficient vector. 
• c0  : called a constant term. 
n ≥ 1 , 0≥lm , 0≥gm , 0≥em  1≥m  
 
Parameters 
A.... Input.  Coefficient matrix A , Constant vector d , 

coefficient vector c  and constant term c0 . 
See Table LPRS1-1. 
Two-dimensional array of size A(K, N+1). 

n+1
n

K

A
m+1

m

C0

d

-cT

 
Fig. LPRS1-1 Contents of array A 

K ..... Input.  Adjustable dimension of arrays A and 
B ( ≥ +m 1 ). 

M ..... Input.  Number of constraints. 
One-dimensional array of size 3. 
M(1), M(2), and M(3) contain ml, ms and me, 
respectively. 

N ..... Input. Number of variables n  
EPSZ ..  The relative zero criterion for elements 

(coefficient and constant term) to be used 
during iteration and the pivot to be used when 
basic inverse matrix B-1 is obtained. 
EPSZ ≥ 0.0. 
A default value is used when EPSZ=0.0. 
See Notes. 

IMAX .. Input.  Maximum number of iterations ( 0≠ ). 
See Notes. 
Output.  Number of iterations actually 
executed  
( >0 ). 

ISW .. Input.  Control information. 
ISW specifies whether the objective function 
is to be minimized or maximized and whether 
the initial feasible basis is given. 
ISW is expressed as 10 d d1 0+ .  Where  

10 0 ≤≤ d  and 10 1 ≤≤ d . 
When 00 =d , the objective function is to be 
minimized. 
When 10 =d , the objective function is to be 
maximized. 
When 01 =d , a basis is not given. 
When 11 =d , a basis is given. 
Output.  When an optimal solution or basic 
feasible solution is obtained, ISW contains a 
value of 11 =d . 
Otherwise the input value remains. 
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NBV .. Input.  (When ISW = 10 or 11 is specified.) 
Initial feasible basis. 
Output.  Optimal or feasible basis.  
One-dimensional array of size m . 
See Notes. 

B ..... Output.  Basic inverse matrix B−1  for an 
optimal solution or basic feasible solution, 
optimal solution or basic feasible solution g , 
simplex multiplier π  and objective function 
value q . 
Two-dimensional array B(K, m+1). 
See Fig. LPRS1-2. 

B1

m+1
m

K
m+1

m

q

g

π

 
Fig. LPRS1-2  Contents of array B 

VW .. Work area.  One-dimensional array of size 
2n+m+ml+mg+1. 

IVW .. Work area.  One-dimensional array of size 
n+ml+mg. 

ICON .. Output.  Condition code. 
See Table LPRS1-1. 

 
Comments on use 
• Subprograms used 

SSL II ... ALU, LUIV, AMACH, MGSSL  
FORTRAN basic functions ... ABS, IABS 

 
• Notes 
− Contents of NBV 

When the number of basic variable is specified by 
NBV (when ISW=10 or ISW=11), the number of the 
slack variable corresponding the i-th ( )gl mmi +≤  

unequality constraint must be n i+ .  When the 
computed basic solution contains the i-th slack 
variable, the slack variable number is assumed to be 
n i+ . 

An artificial variable cannot be specified as a basic 
variable at entry time.  When an  

Table LPRS1-1  Condition codes 

Code Meaning Processing 
0 An optimal solution was 

obtained. 
 

10000 A basic feasible solution was 
obtained but the problem has 
no optimal solution. 

11000 The number of iterations 
reached to the specified upper 
limit during phase 2. The basic 
feasible solution was obtained. 

The basic feasible 
solution and 
corresponding 
basic inverse 
matrix, simplex 
multiplier and 
objective function 
value are stored 
in array B. 

20000 The problem is infeasible.  The 
value EPSZ might not be 
appropriate. 

Bypassed 

21000 When ISW=10 or ISW=11, the 
set of the given variables is not 
a basis. 

Bypassed 

22000 When ISW=10 or ISW=11, the 
set of the given variables is 
infeasible. 

Bypassed 

23000 The basic variable could not 
be interchanged during phase 
1.  The value EPSZ might not 
be appropriate. 

Bypassed 

24000 The number of iterations 
reached to the upper limit 
during phase 1. 

Bypassed 

30000 One of the following conditions 
occurred:   
1 Negative value was  

contained in M(1), M(2) or 
M(3). 

2 N<1   
3  IMAX=0   
4 EPSZ<0.0   
5 M(1)+M(2)+M(3)<1   
6 M(1)+M(2)+M(3)≥K   
7 Zero or negative number 

was contained in the 
elements of NBV.   

8 The number exceeding 
N+M(1)+M(2) was 
contained in the elements 
of NBV.   

9 The same basic variable 
number appeared in the 
elements of NBV.   

10  ISW was incorrectly given. 

Bypassed 

 
 
artificial variable is combined with the computed 
basic solution,NBV contains value of zero. 

If the i-th basic variable is an artificial variable, 
NBV(i) contains a value of zero.  When the basic 
feasible solution has been obtained (when ICON=0, 
10000 or 11000), NBV(i)=0 indicates that the i-th 
constraint is redundant 

B-1 
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(which is derived form other constraints with NBV 
( i ) ≠ 0). 

Moreover, the content of NBV is ginven 
corresponding in storage order of the optimal 
solution or basic feasible solution g (See Fig LPRS 
1-2).  It is x3=0 against number j which is not stored 
in NBV. 

− Giving IMAX 
The number of iterations is that of criterions of the 
optimality standards (See Method 4.7) assciated with 
a basic fesible solution (at phase 1, the basic feasible 
solution contains artificial variables).  The standard 
value for IMAX is 10m 

   If the optinal solution could not be obtained within 
the specified number of iterations and ICON contains 
a condition code of 11000, this subroutine can be 
called again to continue iteration.  In this case, a 
negative value for the number of additional iterations 
must be specified in the parameter IMAX, While 
other parameters remaim unchanged. 

− Giving EPSZ 
Suppose the maximum abolute value of the input 
date (contents of array A) elements to be amax.  Zero 
is assumed for the element in which the absolute 
value for the elements during iteration is less than 
amax ⋅EPSZ. 

 When a basic inverse matrix B-1 is obtained by using 
ALU or LUIV sobroutinc, EPSZ is used as the 
relative zero criterrion value (Refer to Comments on 
use of the subroutine ALU) . 

 The standard value for EPSZ is 16 u (u:unit round 
off).  It is desirable that the absolute value must be 
adjusted as far as possible by multiplying each 
column or row by constants. When ICON=20000 or 
23000, the value of EPSZ may not be appropriate.  In 
this case, use the standard value for EPSZ or change 
the value for retry. 

− When varibale xj is negative  
This subroutine principally used the condition 
xj ≥0, j=1,2,...,n 

 Therefore if xj is negative, the subroutine can be used 
after transformation of the problem as listed below: 
• Replce xj by −+ − jj xx  

• Add the constraints of 0,0 ≥≥ −+
jj xx  

 
• Example 

This example solves a linear programming problem 
when the maximum number of variables is 10 and the 
maximum number of constraints is 20: 

 
C     **EXAMPLE** 
      DIMENSION A(21,11),B(21,21),M(3), 
     *          NBV(20),VW(61),IVW(30) 
      READ(5,500) N,M,ISW 
      N1=N+1 
 

      MM=M(1)+M(2)+M(3) 
      M1=MM+1 
      DO 10 I=1,M1 
      READ(5,510) (A(I,J),J=1,N1) 
   10 CONTINUE 
      WRITE(6,600) (J,J=1,N) 
      IF(M(1).EQ.0) GOTO 30 
      WRITE(6,610) 
      DO 20 I=1,M(1) 
      WRITE(6,620) I,(A(I,J),J=1,N1) 
   20 CONTINUE 
   30 IF(M(2).EQ.0) GOTO 50 
      WRITE(6,630) 
      IS=M(1)+1 
      IE=M(1)+M(2) 
      DO 40 I=IS,IE 
      WRITE(6,620) I,(A(I,J),J=1,N1) 
   40 CONTINUE 
   50 IF(M(3).EQ.0) GOTO 70 
      WRITE(6,640) 
      IS=M(1)+M(2)+1 
      DO 60 I=IS,MM 
      WRITE(6,620) I,(A(I,J),J=1,N1) 
   60 CONTINUE 
   70 IF(MOD(ISW,10).EQ.0) GOTO 80 
      WRITE(6,650) (A(M1,J),J=1,N1) 
      GOTO 90 
   80 WRITE(6,660) (A(M1,J),J=1, N1) 
   90 READ(5,520) EPSZ,IMAX 
      WRITE(6,670) EPSZ,IMAX 
      IF(ISW.LT.10) GOTO 100 
      READ(5,500) (NBV(I),I=1,MM) 
      WRITE(6,680) (NBV(I),I=1,MM) 
  100 CALL LPRS1(A,21,M,N,EPSZ,IMAX, 
     *           ISW,NBV,B,VW,IVW,ICON) 
      WRITE(6,720) B(M1,M1) 
      WRITE(6,690) ICON,IMAX 
      IF(ICON.GE.20000) STOP 
      IF(ICON.EQ.0) WRITE(6,700) 
      IF(ICON.GE.10000) WRITE(6,710) 
      WRITE(6,720) B(M1,M1) 
      WRITE(6,730) (NBV(I),B(I,M1),I=1,MM) 
      STOP 
  500 FORMAT(10I4) 
  510 FORMAT(11F6.0) 
  520 FORMAT(E10.2,I5) 
  600 FORMAT('1','INITIAL TABLEAU' 
     *      /'0',10X,11(I6,4X)) 
  610 FORMAT(' ','LHS.LE.RHS') 
  620 FORMAT(' ',I6,4X,11F10.3) 
  630 FORMAT(' ','LHS.GE.RHS') 
  640 FORMAT(' ','LHS.EQ.RHS') 
  650 FORMAT(' ','OBJ.FUNC.(MAX)' 
     *      /' ',10X,11F10.3) 
  660 FORMAT(' ','OBJ.FUNC.(MIN)' 
     *      /' ',10X,11F10.3) 
  670 FORMAT('0','EPSZ=',E12.4,5X, 
     *       'IMAX=',I4) 
  680 FORMAT('0','INITIAL BASIS' 
     *      /' ',20I4) 
  690 FORMAT('0','ICON=',I5,12X,'IMAX=',I4) 
  700 FORMAT('0','OPTIMAL SOLUTION') 
  710 FORMAT('0','FEASIBLE SOLUTION') 
  720 FORMAT(' ','OBJ.FUNC.',F15.4) 
  730 FORMAT(' ',I6,3X,F15.4) 
      END 
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Method 
First, the following standard linear programming problem 
is explained. 

Minimize the objective function 

0
T cz += xc  (4.3) 

subject to 

Ax d=  (4.1) 
x o≥  (4.2) 

Assume an m n×  matrix A  where 
rank A = m n≤  
and assume 

( )T
21 ,...,, nxxx=x , 

( )mddd ,...,, 21=d   and 

( )T21 ,...,, nccc=c . 
The j-th column of  A is expressed by aj when m column 
of A: 

mkkk aaa ,...,,
21

 

are linearly independent, the corresponding 
1kx , 

2kx ,..., 

mkx  are called bases and 
ikx  is colled the i-th basic 

variable. 
Suppose a set of non-basic variable numbers to be L, a 
system of linear equations which is equivalent to (4.1) 
and (4.3) can be expressed below: 

migxfx
Lj

ijijki
...,,2,1, ==+ ∑

∈

 

∑
∈

=+
Lj

jj qxpz  (4.4) 

This is called a basic form and one of its solutions 

migx iik ...,,2,1, ==   

=jx 0 ,     Lj ∈  (4.5) 
qz =  

is colled a basic solution. 
When 

gi≥0,    i=1, 2, ... ,m (4.6) 

holds, the basic solution shown in (4.5) satisfies (4.2).  
The solution shown in (4.5) is a basic feasible solution In 
the basic feasible form, if a certain s  which satisfies 
(4.8) exisits,  

≤jp 0, Lj ∈  (4.7) 

holds, (4.5) is the optimal solution.  (4.7) is the optimality 
criterion for the basic feasible solution.  In the basic 
feasible form, if a certain s whic satisfies (4.8) exists, 

>sp 0 , Ls ∈  (4.8) 

it may be possible to get a better basic feasible solution 
which minimizes the value of z  further by replacing any 
basis, by xs .  Let a null set be φ , and  

{ }0| >=+
isfiI  

holds, if φ≠+I and 
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(4.9) 

holds, the basis in which 
rkx  is replaced by sx  is a 

feasible basis.  And the basic solution for a new basis is 
as follows: 

rs

r
k f

gx
r

=′
, 

rs

r
isik f

gfgx
i

−=′  , ri ≠  (4.10) 

=jx 0 , Lj ′∈ , 

rs

r
s f

gpqz −=  

When ik ′  is of a new basic variable number and L′  is a 
set of new non-basic variable numbers.  Therefore the 
following relationships can be established: 

skr =′ , 
,, rikk ii ≠=′  

{ } { }rksLL +−=′  
The value z  in this new basic feasible solution is smaller 
than the old value if rg  > 0. 

When ,φ=+I   the problem has no optimal solution.  If 

],...,,[
21 mkkk aaaB =  

],...,,[
21 mkkkB ccc=C  (4.11) 

1−= BCBππππ  

are give, the values of coefficients of a basic form shown 
in (4.4) and the right side are expressed as follows: 

jj aBf 1−= , Lj ∈  

dBg 1−=  (4.12) 
Ljcp jjj ∈−= ,aππππ  

0cq −= dππππ  

Where ( )T21 ,...,, mjjj fff=jf  and  ( )T21 ,...,, mggg=g  
hold. B , B-1 and π are called a basic matrix, basic 
inverse matrix and simplex multiplier (vector) 
respectively.   

The following summarizes the computational  
procedures for a standard linear progromming problem: 
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• Basic inveerse matrix B-1 for a fesible basis and 

simplex multiplier ππππ are computed. 
• pj is computed by using the formula shown in (4.12). 
• The optimality criterion shown in (4.7) is tested.  If the 

standards are satisfied, the g is assumed as an optimal 
solution.  If they are not satisfied, fs is computed based 
on (4.12). 

• The variable to be replaced by xs is selected based on 
(4.9) and a new fesible base is produced.  

 
The revised simplex method obtains the optiml solution 

by repeating these procedures. 
 
Soulution for non-standard linear programming 
problem 
When unequality constraints are contained, they must be 
adjusted to the following equality constraints to transform 
them to a stndard linear programming problem. 
Given 

l

n

j
ijij midxa ,...,2,1,

1

=≤∑
=

 

where 

l

in

n

j
iinjij mi

x

dxxa
,...,2,1,

0
1 =









≥

=+

+

=
+∑  (4.13) 

is assumed to be held. 
Given 

glll

n

j
ijij mmmmidxa +++=≤∑

=

,...,2,1,
1

 

where 
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iinjij
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...,
,2,1,

0
1  (4.14) 

is assumed to be held. 
 
The varibles added in (4.13) and (4.14) are called slack 
variables.  The maximization problem is transformed to 
the minization problem by multiplying objective 
functions by -1. 
 
Obtaining the initial basic solution 
When the initial feasible basic solution has not been 
obtained, the following problem must be solved before 
the given problem is solved: 
Minimize the objective function 

( )∑
=

=
m

i

a
ixz

1
1  

subfect to: 
( ) ( ) dxAxA =+ aa** , (4.15) 

0* ≥x , 
( ) 0≥ax  

where x* is an ( )gl mmn ++ -dimensional vector contains 

slack variables and A* is the corrsponding coefficient 
matrix. 
x(a) is an m-dimensional vector,  

T)()(
2

)(
1

)( ),...,,( a
m

aaa xxx=x  and ( )aA  is a diagonal matrix 

of order m, ( ) ( ))(a
ij

a a=A  

where =)(a
ija





<−
≥

0when  1
0when  1

i

i

d
d

 (4.16) 

)( a
ix  are called artificial variables. 
When the optimal solution is obtained of this problem, 

if, 01 =z , that is ( ) ox =a
 holds, the basic feasible 

solution for the given problem has been obtained.  When 
01 >z , the original problem is infeasible.  If 01 =z , an 

artificial variable may remain in the basis.  In this case, it 
must be handled so that the articial variable value is 
always zero when the subsequent problem is to be solved. 
 
Computational procedures 
When the initial fesible basis can be given (ISW=10 or 
ISW=11), this subroutine immediately executes 
procedure 2). 
1) Initialization of phase 1 

Assuming ( )ax  as a basis in (4.15) this subroutine 
defines the basic inverse matrix B −1 , which is equal 
to (4.16).   
This subroutine determines the corresponding basic 
solution g , simplex multiplier π  and objective 
function value q  form (4.11) and (4.12): 

 ii dg =  

=iπ mi
d
d

i

i ,...,2,1,
0when
0when

1
1

=








<
≥

−
 (4.17) 

∑
=

=
m

i
idq

1

 

 This subroutine immediately executes procedure 4) 
2) The basic inverse matrix corresponding to the initial 

feasible basis is computed by using the subroutines 
ALU and LUIV.  If the inverse matrix cannot be 
obtained, this subroutine terminates abnormally after 
it sets a condition code of 20000 to ICON. 

3) Initalizain of phase 2 
Simplex multiplier π  is computed by using (4.11).  
Objective function value q  is computed based on 
relationship shown in (4.12): 

0cq += gCB  

Where the element of CB is assumed to be 0 
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corresponding to a slack variable and artificial 
variable. 

4) Testing the optimality criterion 
This suborutine obtains the jp  corresponding to the 
non-basic variables containing slack variables by 
using (4.12) and tests the optimality criterion shown 
in (4.7).  If (4.8) is satisfied, this subroutine executes 
procedure 5) immediately. 

 If the optimality criterion is safisfied: 
• when ISW ≥ 10, the optimal solution has been 

obtained.  This subroutine terminates normally after 
it set a condition code of 0 to ICON. 

• when ISW<10 and q > 0 , the problem has no basic 
feasible solution.  This suborutine terminates after it 
sets condition code of 20000 to ICON. 

• when ISW<10 and q = 0 , an initial basic feasible 
solution has been obtained.  This subroutine 
completes phase 1 at this stage.  This subroutine 
increments the contents of ISW by 10 and executes 
procedure 3) again. 

5) Testing the number of iterations If the number of 
terations has not reached the upper limit, this 
subroutine executes procedure 6) and continue 
iterations. When it has reahed the upper limit during 
phase 1, this subroutine terminates abnormally after it 
sets a condition code of 24000 to ICON.  When it has 
reached the upper limit during phase 2, this 
subroutine terminates after it sets a condition code of 
11000 to ICON. 

6) Replacing bases  
This subroutine computes sf  corresponding to xs  by 
using (4.12). If 0≤isf ( )mi ...,,2,1=  is satisfied, no 
optimal solution exists.  When such a condition 
occurs during  phase 1, this subroutine sets a 
condition code of 10000 to ICON and terminates.  
When it occurs during phase 2, this subroutine sets a 
condition code of 23000 to ICON and terminates.  If 

0>isf , this subroutine determines base krx  to be 
changed by using (4.9). 

7) Computing basic inverse matrices for new bases 
When the i-th row ( )1...,,2,1 += mi  of a matrix 











 −

qππππ
gB 1

 

is expressed by iββββ , the matrix for new bases can be 
obtained as shown below: 

rr
rsf

ββββββββ →1  (4.17) 

rif irisi ≠→− ,ββββββββββββ  

This is called pivot operation in which rsf  is assumed to 
be a pivot.  This subroutine executes procedure 4) again 
after this procedure. 
 
Convergence criterion 
When a variable to be stored into a base is sx  and a 
variable to be fetched form the base during replacement 
of the base, the value of the objective function decreases 
by  

( )0>
rs

r
s f

gp  

as seen from (4.10) if  

0>rg  (4.18) 

is satisfied. 
The same basic feasible solution does not appear as far as 
(4.18) is satisfied during iteration.  Since the number of 
basic feasible solutions is limited this subroutine can 
obtain the optimal soution while replacing base by the 
other - or it can find out that no optimal solution exists.  
If  gr = 0 is satisfied, the value of the objective function 
does not vary.  If this condition occurs repeatedly, a basic 
feasible solution which has appeared once may appear 
again - some feasible solution appear periodically.  As a 
result no optimal solution cannot be obtained normally.  
To avoid such a condition this subroutine imposed certain 
restriction on r and s : 
• The minimum-valued j is regarded as s if pj > 0 in (4.8) 
• The r0 which makes the minimum value of (4.9) zero, 

minimizes 
0rk  and satisfies 







=

+∈ is

i

Iisr

r

f
g

f
g

min
0

0  

is regarded as r. 
 
For further information, see Reference [41]. 



LSBIX 

431 

A52-21-0101 LSBIX, DLSBIX 

A system of simultaneous linear equations with a real 
indefinite symmetric band matrix (block diagonal 
pivoting method) 
CALL LSBIX (A, N, NH, MH, B, EPSZ, ISW, 
VW, IVW, ICON) 

 
Function 
This subroutine solve a system of linear equations 

Ax b=  (1.1) 

using the block diagonal pivoting method, where A is an 
n n×  indefinite symmetric band matrix with band width 
h, b is an n -dimensional real constant vector, and  x is 
an n-dimensional solution vector (n>h≥0).(there are two 
similar methods, the one is analogous to Gaussian 
elimination method and the other is analogous to Crout 
method ;this subroutine uses the former.) 
 
Paramters 
A ....... Input.  Coefficinet matrix A . 

Compressed storage mode for symmetric band 
matrix.  One-dimensional array of size 
n(h+1)−h(h+1)/2 . 

N ....... Input.  The order n  of coefficient matrix A, 
constant vector b, and solution vector x. 

NH .... Input.  Band width h of A.  
The content is altered on output.   
(See“Comments on Use.”) 

MH .... Input  Maximum tolerable band width hm 

(N>MH≥NH)  
(See “Comments on Use.”) 

B ....... Input.  Constant vector b. 
Output.  Solution vector x. 
One-dimensional array of size n. 

EPSZ .. Input.  Tolerance (≥0.0) for relative zero test 
of pivots.  The default value is used if 0.0 is 
specified.  (See "Comments on Use.") 

ISW.... Input.  Control information.  When  l(≥1) 
systems of linear equations with the identical 
coefficient matirx are to be solved, ISW can 
be specified as follows: 
ISW=1 ... The first system is solved. 
ISW=2 ... The 2nd to l-th systems are solved.  
However, only parameter 2: B is specified for 
each consstant vector b of the systems, with 
the rest unchanged.   
(See "Notes".) 

VW .... Work area, One-dimensional array of size 
n(hm+1)−hm(hm+1)/2.  
(See"Comments on Use.") 

IVW ... Work area. One-dimensional array of size 2n. 
ICON . Output.  Condition code.  (See Table LSBIX-1.) 
 
Table LSBIX-1 Condition codes 

Code Meaning Processing 
        0 No error.  
20000 A relative zero pivot has 

been found.  It is highly 
probale that the coefficient 
matrix is singular. 

Bypassed. 

25000 The bandwidth was 
exceeded the tolerable 
range during operation. 

Bypassed. 

30000 NH<0, NH>MH, MH≥N, 
EPSZ<0.0 or  
ISW ≠  1 or 2. 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II...SBMDM, BMDMX, AMACH, MGSSL 
FORTRAN basic functions...AMAX1, ABS, IDIM 
 

• Notes 
If 10−s  is specified as EPSZ, this is interperted as 
follows: 
If the loss of significant digits exceeds s decimal digits 
for the pivot value (a determinat of (1×1 or 2×2 matrix 
of the pivot) during the MDMT decomposition by the 
block diagonal pivoting method, the pivot value is 
assumed to be relative zero, and ICON=20000 is set, 
then the processing is stopped.   

Let u  be the unit round off, then the standard value 
of EPSZ is 16u . 

It is posible to continue the decomposition, even if 
the pivot takes small value by specifying extreme small 
value, for the parameter EPSZ.   

In such case, however the result is not guarnteed. 
In case to solve several system of linear equations 

with identical coefficient matrix, the second and 
subsequent system can be solved efficiently by 
specifying as ISW = 2.  Because this subroutine 
bypasses the procedure for MDMT decomposition.  
When ISW=2. 
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For the method to obtain the determinant of matrix A, 
see "Example" and explanations of subroutine 
SBMDM which is called in this subroutine. 

If rows and columns are exchanged by pivoting, 
generally the band width of the matrix is increased.  It 
is desirable to specify the maximum tolerable band 
width hm so that the increment of band width can be 
allowed.  If the band width exceeds hm during MDMT 
decompositon, processing is stopped assuming that 
ICON=25000. 

This subroutine permit to allocate the array A and 
VW to the same area. 

 
• Example 

Given l systems of linear equations with the identical 
coeffcient matrix, the solutions and the determinant are 
obtained as follows, where n ≤100 and h ≤ hm ≤ 50 . 

 
C     **EXAMPLE** 
      DIMENSION A(3825),B(100),IVW(200) 
      READ(5,500) N,NH,MH 
      WRITE(6,600) N,NH,MH 
      NHP1=NH+1 
      NT=(N+N-NH)*NHP1/2 
      READ(5,510) (A(J),J=1,NT) 
      READ(5,520) L 
      EPSZ=1.0E-6 
      ISW=1 
      DO 10 K=1,L 
      IF(K.GE.2) ISW=2 
      READ(5,510) (B(I),I=1,N) 
      CALL LSBIX(A,N,NH,MH,B,EPSZ,ISW,A, 
     *           IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,620) (B(I),I=1,N) 
   10 CONTINUE 
      DET=1.0 
      J=1 
      I=1 
   20 M=IVW(I) 
      IF(M.NE.I) GO TO 30 
      DET=A(J)*DET 
      J=MIN0(I,MH)+1+J 
      I=I+1 
      GO TO 40 
   30 JJ=MIN0(I,MH)+1+J 
      DET=(A(J)*A(JJ)-A(JJ-1)*A(JJ-1))*DET 
      J=MIN0(I+1,MH)+1+JJ 
      I=I+2 
   40 IF(I.LE.N) GO TO 20 
      WRITE(6,630) DET 
      STOP 
  500 FORMAT(3I4) 
  510 FORMAT(4E15.7) 
  520 FORMAT(I4) 
  600 FORMAT('1'/10X,'N=',I3,5X,'NH=',I3,5X, 
     *'MH=',I3) 
  610 FORMAT('0',10X,'ICON=',I5) 
  620 FORMAT(11X,'SOLUTION VECTOR' 
     */(15X,5E15.6)) 
  630 FORMAT('0',10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=', 
     *E15.6) 
      END 
 

Method 
This subroutine solves a system of linear equation 

Ax = b (4.1) 

as follows: 
 
• MDMT decompositon of  the coefficient matrix A (the 

block diagonal pivoting method) 
The MDMT decomposition of coefficient matrix  A is 
obtained by the block diagonal pivoting method as 

PAP T = MDM T (4.2) 

where P denotes the permutation matrix to exchange 
rows in the pivoting operation, M is a unit lower-band 
matrix, and D is a symmetric block diagonal matrix 
comprising blocks at most of order 2.  Subroutine 
SBMDM is used for this calculation. 

 
• Solution 

A system of linear equations (4.1) is equivalent to 

P −1MDM TP −Tx = b (4.3) 

This can be solved by forward and backward 
substitutions and other minor computations as follows: 

PbxM =)1(  (4.4) 
)1()2( xDx =  (4.5) 

)2()3(T xxM =  (4.6) 
)3(T xxP =−  (4.7) 

Subroutine BMDMX is used for these calculations.  
(See references [9] and [10] for details.) 
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A52-31-0101 LSBX, DLSBX 

A system of linear equations with a positive-definite 
symmetric band matrix (Modified Cholesky's method) 
CALL LSBX (A, N, NH, B, EPSZ, ISW, ICON) 

 
Function 
This subroutine solves a system of linear equations (1.1) 
by using the modified Cholesky's method,  

Ax = b 

Where A is an n n×  real positive-definite symmetric 
band matrix with lower and upper band widths h, b is an 
n-dimensional real constant vector, x is an n-dimensional 
solution vector, and n > h ≥ 0. 
 
Parameters 
A ...... Input.  Coefficient matrix A.  The contents of 

A are altered on output. A is stored in one-
dimensional array of size n(h+1)−h(h+1)/2 in 
the compressed mode for symmetric band 
matrices. 

N ...... Input. Order n of coefficient matrix A. 
NH .... Input. Lower and upper band width h. 
B ..... Input.  Constant vector b. 

Output.   Solution vector x. 
One dimensional array of size n. 

EPSZ.. Input.  Tolerance for relative zero test of 
pivots in decomposition process of matrix 
A(≥0.0).  When this is 0.0, the standard value 
is used.  (Refer to "Notes") 

ISW... Input. Control information.  When solving 
l(≥1) systems of linear equations with an 
identical coefficient matrix, ISW can be 
specified as follows: 
ISW=1...The first system is solved. 
ISW=2...The 2nd to lth system are solved. 

However, only parameter B is 
specified for each constant vector b of 
the systems with the rest unchanged.  
(Refer to "Notes".) 

ICON .. Output.  Condition code. Refer to Table 
LSBX-1. 

Table LSBX-1 Condition codes 

Code Meaning Processing 
0 No error  

10000 The negative pivot occurred.  
The coefficient matrix is not 
positive-definite. 

Continued 

20000 The relatively zero pivot 
occurred.  It is highly 
probable that the coefficient 
matrix is singular. 

Discontinued 

30000 NH<0, NH≥N, EPSZ<0.0 or 
ISW ≠ 1,2. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ....SBDL, BDLX, AMACH, MGSSL 
FORTRAN basic function....ABS 

  
• Notes 

The solution obtained by this subroutine can be refined 
in accuracy by successively calling subroutine LSBXR. 
  Since this subroutine omits the operations concerning 
the elements out of the band, the processing speed is 
faster than subroutine LSX provided for positive-
definite symmetric matrices. 
If EPSZ is set to 10-s, this value has the following 
meaning; while performing the LU-decomposition by 
Crount's method, if the loss of over s significant digits 
occurred for the pivot, the LU-decomposition should 
be discontinued with ICON = 20000 regarding the 
pivot to be relatively zero.  The standard value of 
EPSZ is 16u, where u being the unit round off. If the 
processing is to proceed at a lower pivot value, EPSZ 
will be given the minimum value but the result is not 
always guaranteed. 
  When successively solving systems of linear 
equations with an identical coefficient matrix, 
computation can be performed by setting ISW = 2, the 
LDLT decomposition process for the coefficient matrix 
is bypassed so that the computation time can be 
reduced. 
  If the negative pivot occured in the decomposition, 
the coefficient matrix is not positive-definite.  In this 
case, this subroutine is continued with ICON=10000.  
However, it should be noted large calculation errors 
may occur since the pivoting is not performed. 
  The determinant of the coefficient matrix can be 
obtained by multiplying all the n diagonal elements in 
array A after the subroutine has been executed and then 
by inverting the multiplied value.  Note that array A is 
in the compressed mode for symmetric band matrices. 
  The contents of the resultant A are identical to those 
on output of subroutine SBDL. 
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• Example 
l systems of linear equations in n unknown with an 
identical coefficient matrix are solved. n≥100 and h≤50. 

 
C     **EXAMPLE** 
      DIMENSION A(3825),B(100) 
      READ(5,500) N,NH 
      WRITE(6,600) N,NH 
      NH1=NH+1 
      NT=N*NH1-NH*NH1/2 
      READ(5,510) (A(I),I=1,NT) 
      READ(5,500) L 
      K=1 
      ISW=1 
      EPSZ=1.0E-6 
   10 READ(5,510) (B(I),I=1,N) 
      CALL LSBX(A,N,NH,B,EPSZ,ISW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,620) (B(I),I=1,N) 
      IF(K.EQ.L) GO TO 20 
      K=K+1 
      ISW=2 
      GO TO 10 
   20 DET=A(1) 
      K=1 
      DO 30 I=2,N 
      K=K+MIN0(I,NH1) 
      DET=DET*A(K) 
   30 CONTINUE 
      DET=1.0/DET 
      WRITE(6,630) DET 
      STOP 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'N=',I3,'NH=',I3) 
  610 FORMAT('0',10X,'ICON=',I5) 
  620 FORMAT(11X,'SOLUTION VECTOR' 
     */(15X,5E17.8)) 
  630 FORMAT('0',10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=' 
     *, E17.8) 
      END 
 

Method 
A system of linear equations (4.1) with a real positive-
definite symmetric band matrix A are solved in the 
following procedure. 

Ax = b (4.1) 

• LDLT decomposition of the coefficient matrix A 
(Modified Cholesky's method) LDLT 

decomposion is performed on coefficient matrix A by 
modified Cholesky's method. 

A = LDLT (4.2) 

where L is a unit lower band matrix and D is a 
diagonal matrix.  Subroutine SBDL is used for this 
operation. 

 
• Solving LDLTx = b (Forward and backward 

substitutions) 
A system of linear equations 

LDLTx = b (4.3) 

is solved using subroutine BDLX.  For details, see 
Reference [7]. 
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A52-31-0401 LSBXR, DLSBXR 

Iterative refinement of the solution to a system of linear 
equations with a positive-definite symmetric band matrix 
CALL LSBXR (X, A, N, NH, FA, B, VW, ICON) 

 
Function 
Given an approximate solution to linear equations with an 
n × n positive definite symmetric band matrix of upper 
and lower band width h, 

Ax = b (1.1) 

this subroutine refines the approximate solution by the 
method of iterative modification, where b is an n-
dimensional real constant vector, and x is an n-
dimensional solution vector. 

Prior to calling this  subroutine, the coefficient matrix 
A must be LDLT-decomposed as shown in Eq.  (1.2), 

A = LDLT (1.2) 

where L and D are an n n×  unit lower band matrix 
with lower band width h and an n n×  diagonal matrix 
respectively.  Also n h> ≥ 0 . 
 
Parameters 
X..... Input.  Approximate solution vector x.  
 Output.  Refind solution vector x.   
 One dimensional array of size n. 
A.... Input.  Coefficient matrix A. 

Matrix A is stored in one-dimensional array of 
the size n(h+1)-h(h+1)/2 in the compressed 
mode for a symmetric band matrix. 

N.... Input. Order n of the matrix A.  (Refer to 
notes.) 

NH.... Input.  Lower band width h. 
FA.... Input.   Matrices L and D-1.   
 Refer to Fig.  LSBXR-1. 

Matrices are stored in one -dimensional array 
of size n(h+1)-h(h+1)/2 in the compressed 
mode for a symmetric band matrix. 

B.... Input.  Constant vector b. 
One-dimensional array of size n. 

VW.... Work area. One-dimensional array of  
 size n. 
ICON.. Output.  Condition code. Refer to Table 

LSBXR-1. 
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Note: The diagonal and the lower band portions in the matrix D-1+(L-I)  

are contained in array FA in the compressed mode for a 
symmetric band matrix. 

Fig .LSBXR-1 Storage of matrices L and D-1 

Table LSBXR-1 Condition Codes 

Code Meaning  Processing 
        0 No error  
10000 Coefficient matrix was not 

positive-definite 
Discontinued 

25000 The convergence condition 
was not met because of an 
ill-conditioned coefficient 
matrix. 

 (Refer to 
Method (4) d for 
the 
convergence 
condition.) 

30000 N=0,NH<0 or NH≥|N| Bypassed 
 
Comments on use 
• subprograms used 

SSL II ... BDLX, MSBV, AMACH, MGSSL 
FORTRAN basic function ... ABS 

 
• Notes 

This subroutines iteratively improves the approximate 
solution ~x  obtained by subroutine LSBX to get 
solution x with refined accuracy. 
Therefore, prior to calling this subroutine, ~x  must be 
obtained by subroutine LSBX and the results must be 
input as the parameters X and FA for this subroutine.  
In addition, the coefficient matrix A and constant 
vector b whitch are required for this subroutine must 
also be prepared and stored separately before valling 
subroutine LSBX. 
Refer to the example for details 
By specifying N = -n, an estimated accuracy (relative 
error) for the approximate solution ~x  given by the 
subroutine LSBX can be obtained. 
When specified, this subroutine calculates the relative 
error and outputs it to work area VW(1) without 
performing the iterative refinement of accuracy.Refer 
to method for estimation of the accuracy. 

 
• Example 

An approximate solution ~x  for a system of linear  
equations in n unkowns is obtained by subroutine  
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LSBX, then it is iteratively refined by this  
subroutine. n ≤ 100 and h ≤ 50  

 
C     **EXAMPLE** 
      DIMENSION A(3825),FA(3825),X(100), 
     *B(100),VW(100) 
   10 READ(5,500) N,NH 
      IF(N.EQ.0) STOP 
      NH1=NH+1 
      NT=N*NH1-NH*NH1/2 
      READ(5,510) (A(I),I=1,NT) 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,610) (I,B(I),I=1,N) 
      DO 20 I=1,N 
   20 X(I)=B(I) 
      DO 30 I=1,NT 
   30 FA(I)=A(I) 
      EPSZ=0.0E0 
      ISW=1 
      CALL LSBX(FA,N,NH,X,EPSZ,ISW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LSBXR(X,A,N,NH,FA,B,VW,ICON) 
      WRITE (6,630) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (I,X(I),I=1,N) 
      DET=FA(1) 
      L=1 
      DO 40 I=2,N 
      L=L+MIN0(I,NH1) 
   40 DET=DET*FA(L) 
      DET=1.0/DET 
      WRITE(6,650) DET 
      STOP 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  610 FORMAT(///10X,'CONSTANT VECTOR' 
     */(10X,4('(',I3,')',E17.8))) 
  620 FORMAT('0','LSBX  ICON=',I5) 
  630 FORMAT('0','LSBXR ICON=',I5) 
  640 FORMAT('0',10X,'SOLUTION VECTOR' 
     */(10X,4('(',I3,')',E17.8))) 
  650 FORMAT(///10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=', 
     *E17.8) 
      END 
 
Method 
Given an approximate solution, x~  to the linear 
equations, 

Ax b=  (4.1) 

the solution is iteratively refined as follows: 
 
• Principle of iterative refinement 

The iterative refinement is a method to obtain a  
successively, improved approximate solution ( )1+sx  
to the linear equations (4.1) through use of the  
following euqtions starting with ( ) xx ~1 = . 

( ) ( )r b Axs s= −  (4.2) 
( ) ( )Ad rs s=  (4.3) 

( ) ( ) ( )x x ds s+ = +1 s  (4.4) 
      s=1,2,... 

where xs is the s-th approximate solution to equa- 
tion(4.1). 

If Eq.(4.2)is accurately computed ,a refined solu- 
tion of the approximate solution ( )x 1  is numerically 
obtained. 

If, however, the condition of coefficient matrix A is  
not suitable, an improved solution is not obtained. 
(Refer to 3.4(2)e.Iterative refinement of a solution.) 
 
• Procedure performed in this subroutine 

Suppose that the first approximate solution ( )x 1   
has already been obtained by subroutine LSBX. 
  Then -this subroutine repeats the following 
steps: 
− The residual ( )sr  is computed by using Eq. 

(4.2).  Subroutine MSBV is used for this  
operation. 

− The correction ( )sd  is obtained next by using  
Eq.(4.3). Subroutine BDLX is used for this  
operation. 

− Finally the modified approximate solution ( )1+sx  
is obtained by using Eq.(4.4). 

 
The convergence of the iteration is tested as  

follows: 
Considering u as a unit round off, the iteration refinement 
is assumed to converge if, at the s-th  
iteration step, the following relationship is satisfied 

( ) ( ) us ⋅<
∞

+
∞

2/ 1xd s  (4.5) 

The obtained ( )x s+1  is then taken as the final  
solution. 
However, if the relationship, 
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  results, this indicates that the condition of the  
coefficient matrix A is not suitable.  The iteration  
refinement is assumed not to converge, and  
consequently the processing is terminated with ICON =  
25000. 
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• Accuracy estimation for approximate solution  
Suppose that the error for the approximate solu- 
tion ( )x 1  is ( )e 1 ( )( )= −x x1  ,its relative error  

is represented by ( ) ( )
∞∞

11 / xe  .  If this iteration 

method converges, ( )e 1  is assumed to be  

almost equal to d(1) , therefore the relative error  
for the approximate solution is estimated by  

( ) ( )
∞∞

11 / xd  .(Refer to ’’Accuracy estimation  

for approximate solution’’ in Section 3.4.) 
For further details, see References[1],[3]and[5]. 
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A22-21-0101 LSIX,DLSIX 

A system of linear equations with a real indefinite sym- 
metric matrix (Block diagnoal pivoting method) 
CALL LSIX (A,N,B,EPSZ,ISW,VW,IP,IVW,ICON) 

 
Function 
This subroutine solves a system of linear equations  

Ax = b 

using the block diagonal pivoting method(there are  
two similar methods which are called Croutlike  
method and Gaussianlike method respectively. 
This subroutine uses the former method.),where A 
is an n× n real indefinite symmetric matrix,  b is an  
n-dimensional real constant vector,  x is an n- 
dimensional solution vector, and n ≥ 1 . 
 
Parameters 
A ..... Input.  Coefficient matrix A. 

The contents of A may be overridden after  
operation. 
Compressed mode for symmetric matrix. 
One-dimensional array of size n (n+n)/2. 

N ..... Input.  Order n of the coefficient matrix A, 
constant vector b and solution vector x. 

B ..... Input. Constant vector b. 
Output.  Solution vector x. 
One-dimensional array of size n. 

EPSZ .. Input.  Tolerance for relative zero test of  
pivots in decomposition process of A (≥0.0). 
If EPSZ = 0.0, a standard value is used. 
(See Notes.) 

ISW ... Input.  Control information 
When l (≥1) systems of linear equations  
with the identical coefficient matrix are to  
be solved, ISW can be specified as follows: 
ISW=1 ... The first system is solved. 
ISW=2 ... The 2-nd to n-th systems are  
solved.  However, only parameter B is  
specified for each constant vector b of the  
systems, with the rest unchanged. 
(See Notes.) 

VW .... Work area.  One-dimensional array of size 2n. 
IP .... Work area.  One-dimensional array of size n. 
IVW ... Work area.  One-dimensional array of size n. 
ICON ..... Output.  Condition code.  Refer to Table LSIX-1. 

Table LSIX-1  Condition codes 

Code Meaning Processing 
        0 No error  
20000 The relatively zero pivot oc- 

curred.  It is highly probable  
that the coefficient matrix is  
singular. 

Aborted 

30000 N<1, EPSZ<0.0 or ISW≠1, 2 Aborted 
 
Comments on use 
• Subprograms used 

SSL II ... SMDM, MDMX, AMACH,  MGSSL 
USCHA  
FORTRAN basic functions ... ABS,SQRT, 
IABS,ISIGN 

 
• Notes 

If EPSZ is set to 10-s, this value has the following  
meaning: while performing the MDMT -decomposition  
by the block diagonal pivoting method,  
if the loss of over s significant digits occurred for  
the pivot value(i.e., determinant of a 1 × 1 or 2 × 2 
matrix of the pivot), the MDMT -decomposition should 
be discontinued with ICON = 20000 regarding the 
pivot value as relatively zero. 

Let u be the unit round off, then the standard  
value of EPSZ is 16 u. 

If the processing is to proceed at a low pivot value, 
EPSZ will be given the minimum value but the result is 
not always guaranteed. 
When successively solving systems of linear equations  
with the identical coefficient matrix, after solving the  
first system, ISW should be set to 2. 

With ISW=2, calculation time is reduced since the  
process in which the coefficient matrix A is MDMT  
decomposed is bypassed. 

For how to obtain the determinant of matrix A, refer 
to the example shown below or the corresponding 
description on the subroutine SMDM  
which is used in this subroutine. 

This subroutine makes use of symmetric matrix 
characteristics also while decomposing in order to save 
the data storage area. 
 

• Example 
l systems of linear equations with the identical  
coefficient matrix are solved as well as the determinant 
of the coefficient matrix, where n≤100. 
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C     **EXAMPLE** 
      DIMENSION A(5050),B(100),VW(200), 
     *IP(100),IVW(100) 
      CHARACTER*4 IA,IB,IX 
      DATA IA,IB,IX/'A   ','B   ','X   '/ 
      READ(5,500) N,L 
      NT=(N*(N+1))/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,600) N 
      CALL PSM(IA,1,A,N) 
      M=1 
      ISW=1 
      EPSZ=1.0E-6 
   10 READ(5,510) (B(I),I=1,N) 
      CALL PGM(IB,1,B,N,N,1) 
      CALL LSIX(A,N,B,EPSZ,ISW,VW,IP,IVW, 
     *          ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      CALL PGM(IX,1,B,N,N,1) 
      IF(M.GE.L) GO TO 20 
      M=M+1 
      ISW=2 
      GO TO 10 
   20 DET=1.0 
      I=1 
      J=1 
   30 IF(IP(J+1).GT.0) GO TO 40 
      DET=DET*(A(I)*A(I+J+1)-A(I+J)*A(I+J)) 
      J=J+2 
      I=I+J-1+J 
      GO TO 50 
   40 DET=DET*A(I) 
      J=J+1 
      I=I+J 
   50 IF(J.LT.N) GO TO 30 
      IF(J.EQ.N) DET=DET*A(I) 
      WRITE(6,620) DET 
      STOP 
  500 FORMAT(2I3) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1', 
     * /6X,'LINEAR EQUATIONS AX=B' 
     * /6X,'ORDER=',I4) 
  610 FORMAT(' ',5X,'ICON OF LSIX=',I6) 
  620 FORMAT(' ',5X,'DETERMINANT OF A=', 
     * E14.7) 
      END 
 

The subroutines PSM and PGM that are both called in 
this example are used for printing a real symmetric matrix 
and a read general matrix, respectively. The descriptions 
on those subroutines can be found in the example for the 
subroutine MGSM. 
 

Method 
The linear equations 

Ax b=  (4.1) 

is solved using the following procedure: 
 
• MDMT - decomposition of the coefficient matrix A 

(block diagonal pivoting method).  
The coefficient matrix A is decomposed by the block 

diagonal pivoting method as follows. 

TT MDMPAP =  (4.2) 

where P is a permutation matrix that exchanges rows of 
the matrix A required in its pivoting,  M is a unit lower 
triangular matrix, and D is a symmetric block diagonal 
matrix which consists only of the blocks, each at most of 
order 2. The subroutine SMDM is used for this operation. 

• Solving ( ) bxPMDMP =
−− 1TT1   

solving the linear equations (4.1)is reduced to solving 

( ) bxPMDMP =
−− 1TT1  (4.3) 

this equation (4.3) can be also reduced to equation  
(4.4) to (4.7). 

( ) PbMx =1  (4.4) 
( ) ( )12 xDx =  (4.5) 

( ) ( )23T xxM =  (4.6) 

( ) ( )31T xxP =
−

 (4.7) 

Consequently, the solution is obtained using forward 
substitution and backward substitution, in addition to 
minor computation.  The subroutine MDMX is used for 
this operation. For more details, see References [9] and 
[10]. 
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A22-21-0401 LSIXR, DLSIXR 

Iterative refinement of the solution to a system of linear  
equations with a real indefinite matrix 
CALL LSIXR (X, A, N, FA, B, IP, VW, ICON) 

 
Function  
When an approximate solution ~x  is given to linear 
equations with an n n×  symmetric matrix. 

Ax b=  (1.1) 

This subroutine refines the approximate solution by the 
method of iterative modification, where b is an n-
dimensional real constant vector, and x is an  
n-dimensional solution vector.  

Prior to calling this subroutine, the coefficient matrix A 
must be MDMT  decomposed as shown in(1.2), 

TT MDMPAP =  (1.2) 

where, P is a permutation matrix which exchanges rows 
of the matrix A required in pivoting, M is a unit lower 
triangular matrix and D is a symmetric block diagonal 
matrix consist of a symmetric blocks of maximum order 2, 
furthermore, if 

0,0 ,1,1 =≠ ++ kkkk md .Where )( ijm=M , )( ijd=D and
n ≥ 1.  
 
Parameters 
X ..... Input .Approximate solution vector ~x . 

Output.  Refined solution vector x. 
One-dimensional array of size n. 

A ..... Input.  Coefficient matrix A. 
Matrix A is stored in a one-dimensional 
array of size n(n+1)/2 in the compressed  
mode for a symmetric matrix. 

N ..... Input.  Order n of matrix A. 
See Notes. 

FA ..... Input. Matrices M and D. 
See Fig. LSIXR-1.Matrices are stored in a  
one-dimensional array of size n(n+1)/2. 

B ..... Input. Constant vector b. 
One-dimensional array of size n. 

IP ..... Input. Transposition vector indicating the  
history of exchanging rows of the matrix A  
required in pivoting. 
One-dimensional array of size n. 
(See Notes.) 

VW ..... Work area.  One-dimensional array of size n 
 
ICON .. Output.  Condition code.   

See Table LSIXR-1. 
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Note:  The diagonal and the lower triangular portions of the 

matrix D+(M-I) are stored in one-dimensional array FA 
in the compressed mode for a symmetric matrix. 
In this case D consists of block of order 2 and 1. 

Fig. LSIXR-1  Storage method of matrices D and M 

Table LSIXR-1  Condition codes 

Code Meaning Processing 
        0 No error  
20000 Coefficient matrix was 

singular 
Discontinued 

25000 The convergence condition 
was not satisfied because of 
an ill-conditioned coefficient 
matrix. 

Discontinued.( 
See “Method” 
for the 
convergence 
condition. 

30000 N = 0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MDMX,MSV,AMACH, MGSSL 
FORTRAN basic functions ... IABS, ABS 

 
• Notes 

This subroutine iteratively improves to get solution 
 the approximate solution ~x  obtained by subroutine  
LSIX ~x  with refined precision.  

Therefore, prior to calling this subroutine, ~x  must be 
obtained by subroutine LSIX and the results must be 
input as the parameters X, FA and IP for this 
subroutine.  In addition, the coefficient matrix A and 
constant vector b which are required for this subroutine  
must also be prepared and stored separately before 
calling subroutine LSIX. 

 See the Example for details. 
 By specifying N = n, an estimated accuracy 

(relative error) for the approximate solution ~x  given 
by subroutine LSIX can be obtained.  

When specified, this subroutine calculates the 
relative error and outputs it to work area VW(1) 
without performing the iterative refinement of accuracy.  

See the Method for estimation of the accuracy. 
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• Example 
An approximate solution ~x  for a system of linear 
equations of order n is obtained by subroutine LSIX, 
then it is iteratively refined by this subroutine. 

n ≤100 . 

C     **EXAMPLE** 
      DIMENSION A(5050),FA(5050),X(100), 
     *B(100),VW(200),IP(100),IVW(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      READ(5,510) (B(I),I=1,N) 
      DO 20 I=1,N 
      X(I)=B(I) 
   20 CONTINUE 
      DO 30 I=1,NT 
   30 FA(I)=A(I) 
      EPSZ=0.0E0 
      ISW=1 
      CALL LSIX(FA,N,X,EPSZ,ISW,VW,IP,IVW, 
     *          ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LSIXR(X,A,N,FA,B,IP,VW,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (I,X(I),I=1,N) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  620 FORMAT('0',10X,'LSIX  ICON=',I5) 
  630 FORMAT('0',10X,'LSIXR ICON=',I5) 
  640 FORMAT('0',10X,'SOLUTION VECTOR' 
     */(10X,4('(',I3,')',E17.8))) 
      END 
 
Method 
Given an approximate solution ~x  to the linear equations 

Ax b=  (4.1) 

the solution is iteratively refined as follows: 
• Principle of iterative refinement 

The iterative refinement method is to obtain a 
succesively improved approximate solution ( )sx  to the 
linear equations (4.1) through use of the following 
equations starting with ( ) xx ~1 =  

( ) ( )sAxbr s −=  (4.2) 
( ) ( )srAd =s  (4.3) 

( ) ( ) ( )sss dxx +=+1  (4.4) 
s = 1,2, ... 

where ( )sx  is the s-th approximate solution to (4.1). 
If (4.2) is accurately computed, a refined solution of 

the approximate solution ( )1x  is numerically obtained.  
If, however, the condition of coefficient matrix A  is 
not suitable, an improved solution is not obtained.  (See 
Section 3.4 “Iterative refinement of a solution.”) 

 
• Procedure performed in this subroutine 

Suppose that the first approximate solution ( )1x  has 
already been obtained by subroutine LSIX. 
Then this subroutine repeats the following steps: 
• The residual ( )sr  is computed by using (4.2).  

Subroutine MSV is used for this operation. 
• The correction ( )sd  is obtained next by using (4.3).  

Subroutine MDMX is used for this operation. 
• Finally the modified approximate solution ( )1+sx  is 

obtained by using (4.4). 
  

The convergence of the iteration is tested as follows: 
Considering u  as a unit round-off, the iteration 
refinement is assumed to converge if, at the s-th iteration 
step, the following relationship is satisfied. 

( ) ( ) uss ⋅<
∞

+
∞

2/ 1xd  (4.5) 

The obtained ( )1+sx  is then taken as the final solution. 
However, if the relationship, 
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results, this indicates that the condition of the 
coefficient matrix A  is not suitable.  The iteration 
refinements is assumed not to converge, and 
consequently the processing is terminated with 
ICON=25000. 

• Accuracy estimation for approximate solution 
Suppose that the error for the approximate solution 

( )1x is ( )1e  ( )( )xx −= 1 ,its relative error is represented 

by ( ) ( )
∞∞

11 / xe  

If this iteration method converges, ( )1e  is assumed to 
be almost equal to ( )1d , therefore the relative error for 
the approximate solution is estimated by ( ) ( )d x1 1

∞ ∞
/ . 

(See Section 3.4 for details.) 
 
For further details, see References [1], [3], and [5]. 
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A52-31-0501  LSTX, DLSTX 

A system of linear equations with a positive-definite 
symmetric tridiagonal matrix (Modified Cholesky’s 
method) 
CALL LSTX (D, SD, N, B, EPSZ, ISW, ICON) 

 
Function 
A system of linear equations 

Ax b=  (1.1) 

is solved by using the modified Cholesky’s method, 
where A is an n n× positive definite symmetric 
tridiagonal matrix, b is an n-dimentional real constant 
vector and  x is an n-dimentional solution vector. 
Also n≥1. 
 
Parameters 
D ..... Input. Diagonal portion of the coefficient 

matrix A. 
After computation, the contents are destroyed.  
Refer to Fig. LSTX-1. 
One-dimensional array of size n. 

SD ..... Input. Subdiagonal portion of the coefficient 
matrix A. 
After computation, the contents are destroyed.  
Refer to Fig. LSTX-1. 
One-dimensional array of size n−1. 

N ..... Input. Order n of the coefficient matrix A, the 
constant vector b and the solution vector x. 

B ..... Input. Constant vector b. 
Output. Solution vector x. 
One-dimensional array of size n. 

EPSZ ..... Input. Tolerance for relative zero test of pivots 
(≥0.0).  If EPSZ=0.0, a standard value is used.  
See “Notes”. 

ISW ..... Input. Control information 
When l(≥1) systems of linear equations with 
the identical coefficient matrix are to be solved, 
ISW can be specified as follows: 
ISW = 1 ... The first system is solved 
ISW = 2 ... The 2nd to l-th systems are solved.  
However, only parameter B is specified for the 
new constant vector b of the systems, with the 
rest unchanged.  See “Notes”. 

ICON ..... Output.  Condition code.  See Table LSTX-1. 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MGSSL 
FORTRAN basic function ... ABS 

  
• Notes 

If EPSZ is set to 10-s, this value has the following  

0

0

a11 a12

a21 a22 a23

a32

an n−1,

annan n, −1

Matrix A

Array SD Array D

a11a21

a32

an n, −1

a22

a33

ann  
Fig. LSTX-1  Storing method for each element of matrix A into arrays 
SD and D 

Table LSTX-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 A negative pivot occurred.  The 
coefficient matrix is not positive-
definite. 

Continued 

20000 The zero pivot occurred.  It is 
highly probable that the coefficient 
matrix is singular. 

Discontinued 

30000 N<1, EPSZ<0.0 or ISW ≠ 1, 2 Bypassed 

 
meaning; while performing the LDLT-decomposition 
using the modified Cholesky method, if the loss of over 
s significant digits occurs for the pivot value, the 
LDLT-decomposition is discontinued with 
ICON=20000 and the pivot is regarded as zero.  Let u 
be the unit round off, then the standard value of EPSZ 
is 16 ⋅u . 

If the processing is to proceed even at a low pivot 
value, EPSX has to be given the minimum value but 
the result is not always guaranteed. 

When successively solving systems of linear 
equations with the identical coefficient matrix, ISW 
should be set to 2 after solving the first system.  With 
ISW=2, calculation time is reduced since the LU-
decomposition of the matrix A is bypassed. 

The determinant of matrix A can be obtained by 
multiplying n array elements, D(i), i=1, ...,n. 

When the negative pivot occurs in the decomposition, 
the calculation error may possibly be large since no 
pivoting is performed in this subroutine. 
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This subroutine make use of the characteristics of a 
matrix when repetitive computations are carried out.  
As a result this subroutine has a faster processing speed 
compared to the normal modified Cholesky method 
although the number of computations are the same. 

• Example 
This example solves l systems of linear equations in n  
unknown with an identical coefficient matrix, n ≤ 100 . 

 
C     **EXAMPLE** 
      DIMENSION D(100),SD(99),B(100) 
      CHARACTER*4 IA,IB,IX 
      DATA IA,IB,IX/'A   ','B   ','X   '/ 
      READ(5,500) N,L 
      NM1=N-1 
      READ(5,510) (D(I),I=1,N),(SD(I), 
     *            I=1,NM1) 
      WRITE(6,600) N 
      CALL PTM(IA,1,SD,D,SD,N) 
      ISW=1 
      M=1 
   10 READ(5,510) (B(I),I=1,N) 
      CALL PGM(IB,1,B,N,N,1) 
      CALL LSTX(D,SD,N,B,0.0,ISW,ICON) 
      IF(ICON.EQ.0) GO TO 20 
      WRITE(6,610) ICON 
      STOP 
   20 CALL PGM(IX,1,B,N,N,1) 
      IF(M.EQ.L) GO TO 30 
      M=M+1 
      ISW=2 
      GO TO 10 
   30 WRITE(6,620) 
      STOP 
  500 FORMAT(2I3) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',5X, 
     *  'LINEAR EQUATIONS AX=B(TRIDIAGONAL)' 
     *  /6X,'(POSITIVE,SYMMETRIC)' 
     *  /6X,'ORDER=',I5) 
  610 FORMAT(' ',5X,'ICON OF LSTX=',I6) 
  620 FORMAT(' ',5X,'* NORMA END *') 
      END 
 
Subroutines PTM and PGM used in this example print 

out a real tridiagonal matrix and a real general matrix, 
respectively.  The descriptions of those programs are 
given in the examples for subroutines LTX and MGSM. 
 
Method 
A linear equations with a positive-definite symmetric 
tridiagonal matrix, 

Ax = b (4.1) 

is solved by using the modified Cholesky’s method.  
Since matrix A is a positive-definite symmetric 

tridiagonal matrix, the matrix can always be decomposed 
into the LDLT form by using the modified  

Cholesky method as shown in Eq. (4.2). 

A = LDLT 

where L is a unit lower band matrix with band width 1 
and D is a positive definite diagonal matrix. 

Therefore, solving Eq. (4.1) results is solving Eqs. 
(4.3) and (4.4), 

Ly = b (4.3) 
LTx = D−1y (4.4) 

Eqs. (4.3) and (4.4) can be readily solved by using 
forward and backward substitutions. 
 
• Modified Cholesky method 

If matrix A is positive-definite, the LDLT-
decomposition as shown in (4.2) is always possible.  
The decomposition using the modified Cholesky 
method is given by 

∑
−

=

−=−=
1

1

1,...,1,
j

k
jkkikijjij ijldladl  (4.5) 

∑
−

=

=−=
1

1

,...,1,
i

k
ikkikiii nildlad  (4.6) 

where A = (aij), L = (lij) and D = diag(di).  Furthermore, 
since matrix A  is a tridiagonal matrix,  
Eqs. (4.5) and (4.6) can be rewritten into 

1,11, −−− = iiiii adl  (4.7) 

1,11, −−−−= iiiiiiii ldlad  (4.8) 

• Procedure performed in this subroutine 
This subroutine obtains the solution by considering the 
characteristics of the matrix. 
− LDLT-decomposition 

Normally, when matrix A is LDLT-decomposed using 
the modified Cholesky method, elements 1, −iil  and 

( )nidi ,...,1=  are successively obtained from Eqs. 
(4.7) and (4.8).  However, this subroutine considers 
the characteristic of a symmetric tridiagonal matrix, 
and obtains the elements of matrices L and D 
recursively, starting with the upper left hand elements 
together with the lower right hand elements, ending with 
the middle elements.  This fact reduces the number of 
iterations. 
Elements 2,11, ,, +−+−− ininiii ldl  and 

( )[ ]( )2/1,...,11 +=+− nid in   
are successively obtained by 

1,11, −−− = iiiii adl  (4.9) 

111, −−−−= ijiiiiii ldlad  (4.10) 

2,122,1 +−+−+−+−+− = ininininin adl  (4.11) 
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1,21,11 +−+−+−+−+− −= ininininin lad  

1,22 +−+−+− ininin ld  (4.12) 

− Solving Ly b=  (forward and backward 
substitutions) 
Normally, the solution is obtained successively by 

∑
−

=

=−=
1

1

,...,1,
i

k
kikii niylby  (4.13) 

where ( )nyy ,...,1
T =y , and ( )nbb ,...,1

T =b .  This 
subroutine successively obtains the solution by Eqs. 
(4.14) and (4.15). 

11, −−−= iiiii ylby  (4.14) 

22,111 +−+−+−+−+− −= ininininin ylby  (4.15) 

( )[ ]2/1,...,1 += ni  

− Solving LTx=D−1y (forward and backward 
substitutions) 
Normally, the solution is obtained successively by 

∑
+=

=−= −

n

ik
kkiii nixldyx

1

1,...,,1  (4.16) 

where, ( )nxx ,...,1
T =x , and =−1D diag (di

-1).  This 
subroutine successively obtains the solution by Eqs. 
(4.17), (4.18) and (4.19). 

x[(n+1)/2] = y[(n+1)/2] d-1
[(n+1)/2] (4.17) 

1,1
1

++
− −= iiiiii xldyx  (4.18) 

inininininin xldyx −−+−
−

+−+−+− −= ,1
1

111  
           i= [(n+1)/2]-1, …, 1 (4.19) 
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A22-51-0101  LSX, DLSX 

A system of linear equations with a positive-definite 
symmetric matrix (Modified Cholesky’s method) 
CALL LSX (A, N, B, EPSZ, ISW, ICON) 

 
Function 
This subroutine solves a system of linear equations (1.1) 
using the modified (square root free) Cholesky’s method. 

Ax b=  (1.1) 

A is an n n×  positive-definite symmetric matrix, b is 
an n -dimentional real constant vector, and x is the n-
dimentional solution vector. n ≥ 1. 
Parameters 
A ..... Input.  Coefficient matrix  A. 

The contents of A are overridden after 
operation. A is stored in a one-dimensional 
array of size n(n+1)/2 in the compressed mode 
for symmetric matrices. 

N ..... Input.  Order n of the coefficient matrix A. 
B ..... Input.  Constant vector b. 

Output.  Solution vector x. 
B is a one-dimensional array of size n. 

EPSZ ..... Input.  Tolerance for relative zero test of 
pivots in decomposition process of A(≥0.0). 
When EPSZ is 0.0, a standard value is used. 
(See Notes.) 

ISW ..... Input.  Control information 
When l(≥1) systems of linear equations with 
the identical coefficient matrix are to be solved, 
ISW can be specified as follows: 
ISW=1 ... The first system is solved. 
ISW=2 ... The 2nd to  l-th systems are solved.  
However, only parameter B is specified for 
each constant vector b of the systems, with the 
unchanged (See Note.) 

ICON ..... Output.  Condition code. 
See Table LSX-1. 

 
Table LSX-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The negative pivot occured.  
The coefficient matrix is not 
positive-definite. 

Continued 

20000 The relatively zero pivot 
occurred.  It is highly probable 
that the coefficient matrix is 
singular. 

Discontinued 

30000 N<1, EPSX<0.0 or  
ISW ≠ 1, 2 

Bypassed 

Comments on use 
• Subprograms used 

SSL II ... SLDL, LDLX, AMACH, and MGSSL 
FORTRAN basic function ... ABS 

• Notes 
The solution obtained with this subroutine can be 
refined in accuracy by successively calling subroutine 
LSXR. 

If EPSZ is set to 10-s, this value has the following 
meaning: while performing the LDLT decomposition by 
modified Cholesky’s method, if the loss of over s 
significant digits occurred for the pivot, the LDLT 
decomposition should be discontinued with 
ICON=20000 regarding the pivot to be relatively zero. 

Let u be the unit round off, then the standard value of 
EPSZ is 16u.  If the processing is to proceed even at a 
low pivot value, EPSZ has to be given the minimum 
value but the result is not always guaranteed. 

When successively solving systems of linear 
equations with the identical coefficient matrix, after 
solving the first system, ISW. should be set to 2.  With 
ISW=2, calculation time is reduced since the process in 
which the coefficient matrix A is LDLT decomposed is 
bypassed. 

If the negative pivot occurs in the decomposition, the 
coefficient matrix is not a positive-definite.  In this 
subroutine the condition code is set accordingly 
(ICON=10000) and processing is continued.  However, 
it should be noted that large calculation error may 
occur since the pivoting is not performed. 

The determinant of the coefficient matrix can be 
obtained by multiplying the n diagonal elements (the 
diagonal elements of D−1) of the array A after the 
subroutine has been executed and then by determining 
the inverse number.  Note that array A is in the 
compressed mode for symmetric matrices. 

When for a positive definite symmetric band matrix, 
subroutine LSBX processes faster than this subroutine 
because the operation for the element out of the band is 
omitted. 

• Example 
   l systems of linear equations in n unknown with the 

identical coefficient matrix are solved. n ≤ 100 . 
 
C     **EXAMPLE** 
      DIMENSION A(5050),B(100) 
      READ(5,500) N 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,600) N 
      READ(5,500) L 
      M=1 
      ISW=1 
      EPSZ=1.0E-6 
   10 READ(5,510) (B(I),I=1,N) 
      CALL LSX(A,N,B,EPSZ,ISW,ICON) 
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      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,620) (B(I),I=1,N) 
      IF(L.EQ.M) GOTO 20 
      M=M+1 
      ISW=2 
      GOTO 10 
   20 DET=A(1) 
      L=1 
      DO 30 I=2,N 
      L=L+I 
      DET=DET*A(L) 
   30 CONTINUE 
      DET=1.0/DET 
      WRITE(6,630) DET 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'ORDER=',I5) 
  610 FORMAT('0',10X,'ICON=',I5) 
  620 FORMAT(11X,'SOLUTION VECTOR' 
     */(15X,5E16.8)) 
  630 FORMAT('0',10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=' 
     *,E16.8) 
      END 
 

Method 
A system of linear equations (4.1) which has a real 
positive-definite symmetric coefficient matrix is solved 
using the following procedure. 

Ax b=  (4.1) 

• LDLT decomposition of coefficient matrix A (Modified 
Cholesky’s method) 
The coefficient matrix A is LDLT decomposed into the 
form (4.2). 

TLDLA =  (4.2) 

where L is a unit lower triangular matric and D is a 
diagonal matrix.  Subroutine SLDL is used for this 
operation. 

 
• Solving bxLDL =T  (Forward and backward 

substitution) 
A system of linear equations 

bxLDL =T  (4.3) 

is solved using subroutine LDLX. 
For more information, see Reference [2]. 
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A22-51-0401  LSXR, DLSXR 

Iterative refinement of the solution to a system of linear 
equations with a positive-definite symmetric matrix 
CALL LSXR (X, A, N, FA, B, VW, ICON) 

 
Function 

When an approximate solution ~x  is given to linear 
equations with an n n× positive-definite symmetric 
matrix A such as 

Ax b=  (1.1) 

this subroutne refines the approximate solution by the 
method of iterative modification, where b is an n -
dimensional real constant vector and x is an n-
dimensional solution vector. 

Prior to calling this subroutine, the coefficient matrix 
A must be LDLT decomposed as shown in Eq. (1.2), 

TLDLA =  (1.2) 

where L and D are an n n×  unit lower triangular matrix 
and a diagonal matrix respectively, also n ≥ 1. 
 
Parameters 
X ..... Input.  Approximate solution vector x  

Output.  Refined solution vector x 
One-dimensional array of size n. 

A ..... Input.  Coefficient matrix A. 
Matrix A is stored in one-dimensional array of 
size n(n+1)/2 in the compressed mode for a 
symmetric matrix. 

N ..... Input.  Order n of matrix A.  (See Notes.) 
FA ..... Input.  Matrices L and D−1. 

Refer to Fig. LSXR-1. 
One-dimensional array of size n(n+1)/2 to 
contain symmetric band matrices in the 
compressed mode. 

B ..... Input.  Constant vector b. 
One-dimensional array of size n. 

VW ..... Work area. 
One-dimensional array of size n. 

ICON ..... Output.  Condition code.  See table LSXR-1. 
 
Comments on use 
• Subprograms used 

SSL II ..... LDLX, MSV, AMACH, MGSSL 
FORTRAN basic function ..... ABS 

  
• Notes 
This subroutine iteratively improves the approximate 
solution x obtained by subroutine LSX to get solution x 
with refined precision.  Therefore, prior to calling this 
subroutine, x must be obtained by subroutine 

Unit lower
triangular matrix L

triangular
portion
only

-Lower

inverted
are

Element
Array FAMatrix  {D-1+(L−I)}Diagonal matrix D

d11

d22

dnn

l21

ln1 ln n−1 dnn
-1

ln1 ln n−1

l21

1
1

1

d11
-1

d22
-1

d11
-1

l21

d22
-1

ln1

ln n−1

dnn
-1

00

0

0

n(n+1)/2

 
Note: The diagonal and lower triangular sections of the 

matrix D-1+(L-I) are contained in the one-dimensional 
array FA in the compressed mode for symmetric 
matrices. 

Fig. LSXR-1  Storage of matrices L and D 

Table LSXR-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The coefficient matrix was not 
positive-definite. 

continued 

25000 The convergence condition 
was not met because of a very 
ill-conditioned coefficient 
matrix. 

Discontinued 
(Refer to 
“method” for 
convergence 
condition.) 

30000 N=0 By passed 
 

LSX and the results must be input as the parameters X 
and FA to be used for this subroutine.  In addition, the 
coefficient matrix A and constant vector b which are 
required for this subroutine must also be prepared and 
stored separately before calling subroutine LSX.  Refer 
to the example for details. 
   If N= −n is specified, an estimated accuracy (relative 
error) for the approximate solution x given by the 
subroutine LSX can be obtained.  When specified, this 
subroutine calculates the relative error and outputs it to 
work area VW(1) without performing the iterative 
refinement of precision.  See “Method” for estimation 
of accuracy. 
 

• Example 
An approximate solution x for a system of linear 
equations in n unknowns is obtained by subroutine 
LSX, then it is iteratively refined by this subroutine. 
n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),FA(5050),X(100), 
     *B(100),VW(100) 
   10 READ(5,500) N 
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      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      READ(5,510) (B(I),I=1,N) 
      DO 20 I=1,N 
      X(I)=B(I) 
   20 CONTINUE 
      DO 30 I=1,NT 
   30 FA(I)=A(I) 
      EPSZ=0.0E0 
      ISW=1 
      CALL LSX(FA,N,X,EPSZ,ISW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LSXR(X,A,N,FA,B,VW,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,640) (I,X(I),I=1,N) 
      DET=FA(1) 
      L=1 
      DO 40 I=2,N 
      L=L+1 
   40 DET=DET*FA(L) 
      DET=1.0/DET 
      WRITE(6,650) DET 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  620 FORMAT('0',10X,'LSX  ICON=',I5) 
  630 FORMAT('0',10X,'LSXR ICON=',I5) 
  640 FORMAT('0',10X,'SOLUTION VECTOR' 
     */(10X,4('(',I3,')',E17.8))) 
  650 FORMAT(///10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=', 
     *E17.8) 
      END 
 
Method 
Given an approximate solution, x to the linear equations 

Ax b=  (4.1) 

the solution is iteratively refined as follows: 
• Principle of iterative refinement 

The iterative refinement is a method to obtain a 
successively improved approximate solution )1( +sx  to 
the linear equations (4.1) through use of the following 
equations starting with x x( ~1) =  

( ) ( )ss Axbr −=  (4.2) 
( ) ( )ss rAd =  (4.3) 

( ) ( ) ( )sss dxx +=+1  (4.4) 
s = 1, 2, … 

where ( )sx  is the s-th approximate solution to equation 
(4.1).  If Eq. (4.2) is accurately computed, a refined 
solution of the approximate solution ( )1x  is numerically 
obtained.  If, however, the condition of the coefficient 
matrix A is not suitable, no improved solution is obtained.  
(See Section 3.4 “Iterative refinement of a solution”.) 

 
• Procedure performed in this subroutine 

Suppose that the first approximate solution ( )1x  has 
already been obtained by the subroutine repeats the 
following steps: 
− The residual ( )sr  is computed by using Eq. (4.2) 

This is done by calling the subroutine MSV. 
− The correction ( )sd  is obtained next by using Eq. 

(4.3). by calling subroutine LDLX. 
− Finally, the modified approximate solution ( )1+sx  is 

obtained by using Eq. (4.4). 
  

The convergence of the iteration is tested as follows: 
Considering u as a unit round off, the iteration refinement 
is assumed to converge if, at the s-th iteration step, the 
following relationship is satisfied. 

uss ⋅<
∞

+
∞

2/ )1()( xd  (4.5) 

The obtained ( )1+sx  is then taken as the final solution. 
However, if the relationship, 

( )

( )

( )

( )
∞

∞
−

∞
+

∞ ⋅>
s

s

s

s dd

xx

1

1 2
1  

results, this indicates that the condition of the 
coefficient matrix A is not suitable.  The iteration 
refinement is assumed not to converge, and consequently 
the processing is terminated with ICON = 25000. 

 
• Accuracy estimation for approximate solution 

Suppose the error for the approximate solution ( )1x  is 
( ) ( )( )xxe −= 11 , its relative error is represented by 
( ) ( )

∞∞
11 / xe   If this iteration method converges, ( )1e  

is assumed to be almost equal to ( )1d .  The relative 
error for the approximate solution is therefore 
estimated by ( ) ( )

∞∞
11 / xd   (See Section 3.4 

“Accuracy estimation for approximate solution”.) 
For further details, see References [1], [3], and [5]. 
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A52-11-0501  LTX, DLTX 

A system of linear equations with a real tridiagonal 
matrix (Gaussian elimination method) 
CALL LTX (SBD, D, SPD, N, B, EPSZ, ISW, IS, 
IP, VW, ICON) 

 
Function 
A system of linear equations 

Ax b=  (1.1) 

is solved by using the Gaussian elimination method, 
where A is an n × n  real tridiagonal matrix, b is an n-
dimensional real constant vector, and x is an n-
dimensional solution vector.  Here n ≥1. 

 
Parameters 
SBD ..... Input.  Lower sub-diagonal portion of the 

coefficient matrix A. 
The contents are destroyed after computation.  
Refer to Fig. LTX-1.  One-dimensional array 
of size n−1. 

D ..... Input.  Diagonal portion of the coefficient 
matrix A.  The contents are destroyed after 
computation. 
See Fig. LTX-1.  One-dimensional array of 
size n . 

SPD ..... Input.  Upper sub-diagonal portion of the 
coefficient matrix A. 
The contents are destroyed after computation.  
See Fig. LTX-1. 
One-dimensional array of size n -1. 

N ..... Input.  Order n of the coefficient matrix A 
B ..... Input.  Constant vector b. 

Output.  Solution vector x. 
One-dimensional array of size n. 

EPSZ ..... Input.  Tolerance for relative zero test of 
pivots (≥0.0) 
If EPSZ = 0.0, a standard value is used.  (See 
“Notes”.) 

ISW ..... Input.  Control information. 
When l(≥1) systems of linear equations with 
the identical coefficient matrix are to be solved, 
ISW can be specified as follows: 
ISW=1 ... The first system is solved 
ISW=2 ... The 2nd to l-th systems are solved. 

However, only parameter B is 
specified for the new constant 
vector b of the system, with the rest 
unchanged. 
(See “Notes”.) 

IS ..... Output.  Information used to obtain a 
determinant of matrix A. 
(See “Notes”.) 

IP ..... Work area.  One-dimensional array of size n. 

0

0
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a12
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Fig. LTX-1  Storing method for each element of matrix A into arrays 
SBD, D and SPD 

VW ..... Work area.  One-dimensional array of size n. 
ICON ..... Output. Condition code. Refer to Table LTX-1. 
Table LTX-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The negative pivot occurred.  
It is highly probable that the 
coefficient matrix is singular. 

Discontinued 

30000 N<1, or EPSZ<0.0 By passed 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MGSSL 
FORTRAN basic functions ... AMAX1, ABS 

• Notes 
This subroutine makes decisions on the relative zero of 
pivots by using a relational equation containing the 
value of EPSZ.  For details, see “Method”. 
 Let u be the unit round off.  The standard value of 
EPSZ is then 16･u. 
 If the processing is to proceed even at a low pivot 
value, EPSZ has to be given the minimum value but the 
result is not always guaranteed. 
When successively solving systems of linear equations 
with the identical coefficient matrix, after solving the 
first system, ISW should be set to 2. 
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With ISW=2, the calculation time is reduced since 
the process in which the coefficient matrix A is LU-
decomposed is bypassed.  The value of IS the same as 
when ISW=1. 

The determinant of the matrix A is obtained by 
multiplying the n elements, D(i), i=1, ..., n by the value 
of IS. 

• Example 
L systems of linear equations with an identical 
coefficient matrix of order n are solved.  n≤100. 

 
C     **EXAMPLE** 
      DIMENSION SBD(99),D(100),SPD(99), 
     *B(100),IP(100),VW(100) 
      CHARACTER*4 NT1(6),NT2(4),NT3(4) 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/ 
      READ(5,500) N,L 
      NM1=N-1 
      READ(5,510) (SBD(I),I=1,NM1), 
     *   (D(I),I=1,N),(SPD(I),I=1,NM1) 
      WRITE(6,600) N 
      CALL PTM(NT1,6,SBD,D,SPD,N) 
      ISW=1 
      M=1 
   10 READ(5,510) (B(I),I=1,N) 
      CALL PGM(NT2,4,B,N,N,1) 
      CALL LTX(SBD,D,SPD,N,B,0.0,ISW, 
     *  IS,IP,VW,ICON) 
      WRITE(6,610)ICON 
      IF(ICON.NE.0)STOP 
      CALL PGM(NT3,4,B,N,N,1) 
      IF(M.EQ.L) GO TO 20 
      M=M+1 
      ISW=2 
      GO TO 10 
   20 WRITE(6,620) 
      STOP 
  500 FORMAT(3I2) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',5X, 
     *  'LINEAR EQUATIONS(TRIDIAGONAL)' 
     *  /6X,'ORDER=',I5) 
  610 FORMAT(' ',5X,'ICON OF LTX=',I5) 
  620 FORMAT(' ',5X,'** NORMAL END') 
      END 
 
      SUBROUTINE PTM(ICOM,L,SBD,D,SPD,N) 
      DIMENSION SBD(1),D(N),SPD(1) 
      CHARACTER*4 ICOM(L) 
      WRITE(6,600) (ICOM(I),I=1,L) 
      DO 30 I=1,N 
      IF(I.NE.1) GO TO 10 
      IC=1 
      WRITE(6,610) I,IC,D(I),SPD(I) 
      GO TO 30 
   10 IC=I-1 
      IF(I.NE.N) GO TO 20 
      WRITE(6,610) I,IC,SBD(IC),D(I) 
      GO TO 30 
   20 WRITE(6,610)I,IC,SBD(IC),D(I),SPD(I) 
   30 CONTINUE 
      RETURN 
  600 FORMAT(/10X,35A2) 
  610 FORMAT(/5X,2(1X,I3),3(3X,E14.7)) 
      END 
 

The subroutines PTM and PGM are used only to print 
out a real tridiagonal matrix and a real general matrix.  
The subroutine PGM is described in the example for the 
subroutine MGSM. 

 
Method 
A system of linear equations with a real tridiagonal 
matrix A 

Ax b=  (4.1) 

is solved by using the Gaussian elimination method 
based on partial pivoting. A matrix can be normally 
decomposed into the product of a unit lower triangular 
matrix L and an upper triangular matrix U with partial 
pivoting. 

A LU=  (4.2) 

Consequently, solving Eq. (4.1) is equal to solving 

Ly b=  (4.3) 
Ux y=  (4.4) 

Since both L and U are triangular matrices, Eqs. (4.3) and 
(4.4) can be readily solved by using back-ward and 
forward substitutions. 
• Guassian elimination method 

Let ( )kA  represent the matrix at the k-th step 
( )1,...,1 −= nk  of the Gaussian elimination method, 

where ( ) AA =1 .  The k-th step of elimination process 
is represented by 

( ) ( )k
kk

k APMA =+1  (4.5) 

where  Pk is a permutation matrix to select a pivot row 
of the k-th column of the matrix ( )A k .  The Mk is a matrix 
to eliminate the element below the diagonal in the k-th 
column of the permuted matrix, and is given by 



























−
=

+

1
0

1
1

0
1

,1 kkmkM  (4.6) 
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( ) ( ) ( ) ( )( )k
ij

kk
kk

k
,kk,kk a/aam == ++ A,11  

After the elimination process is finished, by setting 

( ) ( )1
1111 APMPMAU ⋅⋅⋅== −− nn

n  (4.7) 

( ) 1
1111

−
−− ⋅⋅⋅= PMPML nn  (4.8) 

matrix A  is rewritten as 

A LU=  

where L and U are a unit lower triangular matrix and an 
upper triangular matrix, respectively. 
 
• Procedure performed in this subroutine 

[Forward substitution] 
Eq. (4.9) results from Eq. (4.3) based on Eq. (4.8) 

bPMPMy 1111 ⋅⋅⋅= −− nn  (4.9) 

Eq. (4.9) is repeatedly calculated as follows: 

( ) by =1  
( ) ( )1

11
2 yPMy =  

: 
( ) ( )1

11
−

−−= n
nn

n yPMy  
( )nyy =  

This subroutine, at the k-th (k = 1,...,n−1) elimination 
step, obtains each element of the k-th column of matrix L 
and k-th row of matrix U by using Eqs. (4.10) and (4.11). 

( ) ( )k
kk

k
,kk,kk /aam 11 ++ =  (4.10)

( ) 2,1,, ++== kkkjau k
kjkj  (4.11) 

The elements of the (k+1)-th row of matrix A(k+1) are 
given by Eq. (4.12).  The other elements of matrix A(k+1)  
to which the (k+1)-th elimination step is applied are equal 
to the corresponding element of matrix A(k). 

)(
1

)()(
1

1
,1

k
,kk

k
k,j

k
k

k
jk maaa ++

+
+ −=  

                     , j=k+1, k+2 (4.12) 

The pivot element ( )k
kka  is Eq. (4.10) is selected as 

follows to minimize the computational errors before this 
elimination process. ( )k

lka  that reflects scaling factor Vl as 
( ) ( )( )k

lkl
k

lkl aVaV ⋅=⋅ max  is chosen as the pivot element, 

whereVl  is an inverse of the maximum absolute value 
element in the l -th row of coefficient matrix A . 

If the selected pivot element ( )k
lka  satisfies 

( ) ( ) uaa ij
k

lk ⋅< max  

where ( )ija=A , u unit round off then matrix A is 
assumed to be numerically singular and the processing is 
terminated with ICON=20000. 
[Backward substitution] 
Eq. (4.4) is obtained iteratively by 

1,...,,
2

1

nkuxuyx kk

k

kj
jkjkk =











−= ∑

+

+=

 (4.13) 

where ( )iju=U , and ( )T
21 ,...,, nxxx=x  
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A22-11-0602  LUIV, DLUIV 

The inverse of a real general matrix decomposed into the 
factors L and U 
CALL LUIV (FA, K, N, IP, ICON) 

 
Function 
This subroutine computes the inverse A−1 of an n n× real 
general matrix A given in decomposed form PA LU=  

PLUA 111 −−− =  

L and U are respectively the n n×  lower triangular and 
unit upper triangular matrices, and P is the permutation 
matrix which performs the row exchanges in partial 
pivoting for LU decomposition. n ≥ 1 . 
Parameters 
FA ..... Input.  Matrix L and matrix U. 

Output.  Inverse A−1. 
FA is a two-dimensional array, FA (K, N). 
Refer to Fig. LUIV-1. 

K ..... Input.  Adjustable dimension of array FA (≥N). 
N ..... Input.  Order n of the matrices L and U. 
IP ..... Input.  Transposition vector which indicates 

the history of row exchanges in partial 
pivoting.  One-dimensional array of size n. 

ICON ..... Output.  Condition code.  See Table LUIV-1. 
 

Diagonal and lower
triangular portions only

Array FA

Upper triangular portion only

Lower triangular
matrix L

Unit upper triangular
matrix U

l31 l32

l22l21

l11

un−1n

u23 u2n

u1nu13u12

0

0

1

1

1
1

ln1 ln2

l22l21

l11

ln1

K
N

un−1nln−1n−1 ln−1n−1

lnnlnn−1 lnn−1 lnnln2

u23 u2n

u1nu13u12

Fig. LUIV-1  Storage of the elements of L and U in array FA 

Table LUIV-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 A real matrix was singular. Discontinued 
30000 K<N or N<1 or there was an 

error in IP. 
Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ..... MGSSL 
FORTRAN basic function ..... None 

  
• Notes 

Prior to calling this subroutine, LU-decomposed matrix 
must be obtained by subroutine ALU and must be input 
as the parameters FA and IP to be used for this 
subroutine.  The subroutine LAX should be used for 
solving linear equations.  Obtaining the solution by first 
computing the inverse matrix requires more steps of 
calculation, so subroutine LUIV should be used only 
when the inverse matrix is inevitable.  The 
transposition vector corresponds to the permutation 
matrix P of 

PA LU=  

When performing LU decomposition with partial 
pivoting.  Refer to the notes of the subroutine ALU. 
• Example 

The inverse of an n n×  real general matrix is obtained.  
n ≤ 100 . 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),VW(100),IP(100) 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      CALL ALU(A,100,N,0.0,IP,IS,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      CALL LUIV(A,100,N,IP,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,630) ((I,J,A(I,J),I=1,N), 
     *             J=1,N) 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(//11X,'**INPUT MATRIX**'/12X, 
     * 'ORDER=',I5/(2X,4('(',I3,',',I3,')', 
     * E16.8))) 
  610 FORMAT('0',10X,'CONDITION ', 
     * 'CODE(ALU)=',I5) 
  620 FORMAT('0',10X,'CONDITION ', 
     * 'CODE(LUIV)=',I5) 
  630 FORMAT('0',10X,'**INVERSE MATRIX**', 
     * /(2X,4('(',I3,',',I3,')',E16.8))) 
      END 
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Method 
This subroutine computes the inverse of an n n×  real 
general matrix, giving the LU-decomposed matrices L, U 
and the permutation matrix P which indicates row 
exchanges in partial pivoting. 

PA LU=  (4.1) 

then, the inverse of A can be represented using (4.1) as 
follows: 
The inverse of L and U are computed and then the 
inverse of A is obtained as (4.2). 

( ) PLULUPA 11111 −−−−− ==  (4.2) 

L and U are as shown in Eq. (4.3) for the following 
explanation. 

L = (lij) , U = (uij) (4.3) 

• Calculating L−1 
Since the inverse L−1 of a lower triangular matrix L is 
also a lower triangular matrix, if we represent L−1 by 

( )ijl
~1 =−L  (4.4) 

then Eq. (4.5) is obtained based on the relation 
ILL =−1 . 

,
~

1
ij

n

k
kjik ll δ=∑

=

 





≠
=

=
ji
ji

ij ,0
,1

δ  (4.5) 

(4.5) is rewritten as 

ijijii

i

jk
kjik llll δ=+∑

−

=

~~1
 

and the elements ijl
~

 of the j-th column ( j=1,...,n) of the 

matrix L−1 are obtained as follows: 

nji/llll ii

i

jk
kjikij ,...,1,

~~ 1

+=











−= ∑

−

=

 

jjjj ll /1
~

=  (4.6) 

where, ( )njilii ,...,0 =≠  

• Calculation U −1 
Since the inverse U −1 of a unit upper triangular matrix 
U is also a unit upper triangular matrix, if we represent 
U −1 by 

( )iju~1 =−U  (4.7) 

then Eq. (4.8) is obtained based on the relation 
IUU =−1 . 

,~
1

ij

n

k
kjik uu δ=∑

=

 





≠
=

=
ji
ji

ij ,0
,1

δ  (4.8) 

Since 1=iiu , (4.8) can be rewritten 

ij

j

ik
kjikij uuu δ=+ ∑

+= 1

~~  

Considering 1~ =jju , the elements iju~  of the j-th 

column (j = n,...,2)  of U −1 are obtained as follows: 

1,...,1,~~
1

1

−=−−= ∑
−

+=

jiuuuu
j

ik
kjikijij  (4.9) 

• Calculating PLU 11 −−  
Let the product of matrices U −1  and L −1  be B, then its 
elements ijb  are obtained by 

1,...,1,
~~ −== ∑

=

jilub
n

jk
kjikij  

njilub
n

ik
kjikij ,...,,

~~ == ∑
=

 

Considering 1~ =iiu , the element ijb  of the j-th column  

( j=1,...,n) of B are obtained by 

1,...,1,
~~ −== ∑

=

jilub
n

jk
kjikij  

 (4.10) 

njilulb
n

ik
kjikijij ,...,,

~~~

1

=+= ∑
+=

 

Next, matrix B is multiplied by the permutation matrix 
to obtain the inverse A−1.  Actually however, based on the 
values of the transposition vector IP, the elements of A−1 
are obtained simply by exchanging the column in the 
matrix B.  The precision of the inner products in (4.6), 
(4.9)m and (4.10) has been raised to minimize the effect 
of rounding errors.  For more information, see Reference 
[1]. 



LUX 

454 

A22-11-0302  LUX, DLUX 

A system of linear equations with a real general matrix 
decomposed into the factors L and U 
CALL LUX (B, FA, K, N, ISW, IP, ICON) 

 
Function 
This subroutine solves a system of linear equations 

LUx Pb=  (1.1) 

L and U are, respectively, the lower triangular and unit 
upper triangular matrices, P is a permutation matrix 
which performs row exchange with partial pivoting for 
LU decomposition of the coefficient matrix, b is an n-
dimentional real constant vector, and x is  an n-
dimentional solution vector.  Instead of equation (1.1), 
one of the following can be solved. 

Ly Pb=  (1.2) 
Uz b=  (1.3) 

Parameters 
B ..... Input.  constant vector b 

Output.  One of solution vector x, y or z 
B is a one-dimensional array of size n . 

FA ..... Input.  Matrix L and matrix U. 
See Fig. LUX-1. 
FA is a two-dimensional array, FA (K, N). 

K .....  Input.  Adjustable dimension of array FA 
(≥N) 

N ..... Input.  The order n of matrices L and U. 
ISW ..... Input.  Control information. 

ISW=1 ... x is obtained. 
ISW=2 ... y is obtained. 
ISW=3 ... z is obtained. 

IP ..... Input.  The transposition vector which 
indicates the history of the row exchange in 
partial pivoting.  IP is a one-dimensional array 
of size n  (See Notes of subroutine ALU). 

ICON ..... Output.  Condition code.  See Table LUX-1. 
 
Table LUX-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 The coefficient matrix was 
singular. 

Discontinued 

30000 K<N, N<1, ISW≠1,2,3, or 
there was an error in IP. 

Bypassed 

Diagonal and lower
triangular portions only

Array FA

Upper triangular portion only

Lower triangular
matrix L

Unit upper triangular
matrix U

l31 l32

l22l21

l11

un−1n

u23 u2n

u1nu13u12

0

0

1

1

1
1

ln1 ln2

l22l21

l11

ln1

K
N

un−1nln−1n−1 ln−1n−1

lnnlnn−1 lnn−1 lnnln2

u23 u2n

u1nu13u12

 
Fig. LUX-1  Storage of elements of L and U in array FA 

Comments on use 
• Subprograms used] 

SSL II ..... MGSSL 
FORTRAN basic function ..... none 

 
• Notes 

A system of linear equations can be solved by first 
calling the subroutine ALU to decompose the 
coefficient matrix into L and U and by then calling this 
subroutine.  However, instead of both these 
subroutines, the subroutine LAX can be called to solve 
such equations in one step. 

 
• Example 

A system of linear equations is solved by first using 
subroutine ALU to decompose the n × n coefficient 
matrix into L and U, n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(100), 
     *          VW(100),IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N), 
     *             I=1,N) 
      WRITE(6,610) (I,B(I),I=1,N) 
      CALL ALU(A,100,N,1.0E-6,IP,IS,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL LUX(B,A,100,N,1,IP,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,640) (I,B(I),I=1,N) 
      GO TO 10 
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  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(///10X,'**COEFFICIENT MATRIX**' 
     * /12X,'ORDER=',I5,/(10X,4('(',I3,',', 
     * I3,')',E16.8))) 
  610 FORMAT('0',10X,'CONSTANT VECTOR' 
     * /(10X,5('(',I3,')',E16.8))) 
  620 FORMAT('0',10X,'CONDITION(ALU)' 
     * ,I5) 
  630 FORMAT('0',10X,'CONDITION(LUX)' 
     * ,I5) 
  640 FORMAT('0',10X,'SOLUTION VECTOR' 
     * /(10X,5('(',I3,')',E16.8))) 
      END 
 
Method 
A system of linear equations 

LUx Pb=  (4.1) 

can be solved by solving following equations 

Ly Pb=  (4.2) 
Ux y=  (4.3) 

• Solving Ly Pb=  (forward substitution) 
Ly Pb=  can be serially solved using equation (4.4). 

nilylb'y ii

i

k
kikii ,...,1,

1

1

=









−= ∑

−

=

 (4.4) 

where L=(lij), yT = (y1, … , yn), (Pb)T=(b1, … , b’n).  

• Solving Ux y=  (backward substitution) 
Ux y=  can be serially solved using equations (4.5). 

1,...,,
1

nixuyx
n

ik
kikii =−= ∑

+=

 (4.5) 

where, U=(uij), xT=(x1, … ,xn) . 

Precision of the inner products in (4.4) and (4.5) has 
been raised to minimize the effect of rounding error.  For 
more information, see References [1], [2], [3], and [4]. 
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A21-13-0101  MAV, DMAV 

Multiplication of a real matrix and a real vector. 
CALL MAV (A, K, M, N, X, Y, ICON) 

 
Function 
This subroutine performs multiplication of an m × n real 
matrix A and a vector x. 

y Ax=  

where, x is an n-dimensional vector and y is an m-
dimensional vector, m and n≥1. 
 
Parameters 
A ..... Input.  Matrix A, two-dimensional array, A(K, 

N). 
K ..... Input.  The adjustable dimension of array A, 

(≥M). 
M ..... Input.  The number of rows of matrix A. 
N ..... Input.  The number of columns of matrix A. 
X ..... Input.  Vector x, one dimensional array of size 

n. 
Y ..... Output.  Multiplication y of matrix A and 

vector x, one-dimensional array of size m. 
ICON ..... Output.  Condition codes.  See Table MAV-1. 
 
Table MAV-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 M<1, N=0 or K<M Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ..... MGSSL 
FORTRAN basic function ... IABS 

• Notes 
This subroutine mainly consists of the computation. 

y = Ax (3.1) 

but it can be changed to another type of computation, 

y = y' − Ax (3.2) 

by specifying N= − n  and giving an arbitrary vectory 
y' to the parameter Y. 

This method can be used to compute a residual 
vector of linear equations such as 

r = b − Ax (3.3) 

See the example in “Comments on use” below. 
• Example 

This example shows the program that solves a linear 
equations (3.4) with subroutine LAX and that obtains a 
residual vector b −Ax through the solution, when 
n ≤ 100 . 

Ax = b (3.4) 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),X(100),Y(100), 
     * VW(100),IP(100),W(100,100) 
      READ(5,500) N 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      READ(5,510) (X(I),I=1,N) 
      WRITE(6,600) N 
      WRITE(6,610) ((I,J,A(I,J),J=1,N), 
     * I=1,N) 
      WRITE(6,620) (I,X(I),I=1,N) 
      EPSZ=1.0E-6 
      ISW=1 
      DO 10 I=1,N 
      Y(I)=X(I) 
      DO 10 J=1,N 
      W(J,I)=A(J,I) 
   10 CONTINUE 
      CALL LAX(A,100,N,X,EPSZ,ISW,IS,VW,IP, 
     *ICON) 
      WRITE(6,630) (I,X(I),I=1,N) 
      CALL MAV(W,100,N,-N,X,Y,ICON) 
      IF(ICON.NE.0) GOTO 30 
      WRITE(6,640) (I,Y(I),I=1,N) 
      DN=0.0 
      DO 20 I=1,N 
      DN=DN+Y(I)*Y(I) 
   20 CONTINUE 
      DN=SQRT(DN) 
      WRITE(6,650) DN 
   30 WRITE(6,660) ICON 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1','COEFFICIENT MATRIX' 
     * /' ','ORDER=',I5) 
  610 FORMAT(/4(' ','(',I3, ',',I3, ')', 
     * E17.8)) 
  620 FORMAT(/' ','CONSTANT VECTOR' 
     * /(10X,4('(',I3,')',E17.8))) 
  630 FORMAT(/' ','SOLUTION VECTOR' 
     * /(10X,4('(',I3,')',E17.8))) 
  640 FORMAT(/' ','RESIDUAL VECTOR' 
     * /(10X,4('(',I3,')',E17.8))) 
  650 FORMAT(/' ','NORM=',E17.8) 
  660 FORMAT(/' ','ICON=',I5) 
      END 
 
Method 
This subroutine performs multiplication  y = (yi) of an 
m n×  real matrix A = (aij) and an n-dimensional vector x 
= (xj) through using the equation (4.1). 
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mixay
n

j
jiji ,...,1,

1

==∑
=

 (4.1) 

In this subroutine, precision of the sum of products in 
(4.1) has been raised to minimize the effect of rounding 
errors. 
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A51-11-0101  MBV, DMBV 

Multiplication of a real band matrix and a real vector. 
CALL MBV (A, N, NH1, NH2, X, Y, ICON) 

 
Function 
This subroutine performs multiplication of an n × n  band 
matrix A with lower band width h1 and upper band width 
h2 by a vector x 

y = Ax (1.1) 

where x and y are both an n-dimensional vectors. 
Also, n > h1 ≥ 0 and n > h2 ≥ 0. 
 
Parameters 
A ..... Input.  Matrix A. 

Compressed mode for a band matrix. 
One-dimensional array of size n･min(h1+h2+1, 
n) . 

N ..... Input.  Order n of the matrix A. 
(See Notes.) 

NH1 ..... Input Lower band width h1. 
NH2 ..... Input Upper band width h2. 
X ..... Input.  Vector x. 

One-dimensional array of size n. 
Y ..... Output.  Vector y 

One-dimensional array of size n. 
ICON ..... Output.  Condition code.  See the Table MBV-

1. 
 
Table MBV-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N=0, 

NH2NNH1,N ≤≤ , 

NH1 < 0 or NH2 < 0 

Bypassed 

 
Comments on use 
• Subprograms used 

SSLII ... MGSSL 
FORTRAN basic functions ... IABS, MIN0 

• Notes 
This subroutine mainly consists of the computation 

y = Ax (3.1) 

but it can be changed to another type of computation 

y = y' − Ax 

by specifying N= n and giving an arbitary vector  y'  to 
the parameter Y. 

In practice, this method can be used to compute a 
residual vector of linear equations (Refer to the example 
shown below). 

 
• Example 

The linear equations with an nn ×  matrix of lower 
band with h1 and upper band width h2. 

Ax = b 

is solved by calling the subroutine LBX1, and then the 
residual vector b − Ax is computed with the resultant.  
Here n ≤ 100 , h1 ≤ 20 and h2 ≤ 20. 

 
C     **EXAMPLE** 
      DIMENSION A(4100),X(100),IP(100), 
     *     FL(1980),VW(100),Y(100),W(4100) 
      CHARACTER*4 NT1(6),NT2(4),NT3(4), 
     *     NT4(4) 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/, 
     *     NT4/'RE  ','SI  ','DU  ','AL  '/ 
      READ(5,500) N,NH1,NH2 
      WRITE(6,600) N,NH1,NH2 
      IF(N.LE.0.OR.NH1.GE.N.OR.NH2.GE.N) 
     * STOP 
      NT=N*MIN0(N,NH1+NH2+1) 
      READ(5,510) (A(I),I=1,NT) 
      CALL PBM(NT1,6,A,N,NH1,NH2) 
      READ(5,510) (X(I),I=1,N) 
      CALL PGM(NT2,4,X,N,N,1) 
      DO 10 I=1,NT 
   10 W(I)=A(I) 
      DO 20 I=1,N 
   20 Y(I)=X(I) 
      CALL LBX1(A,N,NH1,NH2,X,0.0,1,IS, 
     *  FL,VW,IP,ICON) 
      IF(ICON.GE.20000) GO TO 30 
      CALL PGM(NT3,4,X,N,N,1) 
      CALL MBV(A,-N,NH1,NH2,X,Y,ICON) 
      IF(ICON.NE.0) GO TO 30 
      CALL PGM(NT4,4,Y,N,N,1) 
      RN=0.0 
      DO 25 I=1,N 
   25 RN=RN+Y(I)*Y(I) 
      RN=SQRT(RN) 
      WRITE(6,610) RN 
      STOP 
   30 WRITE(6,620) ICON 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(10F8.3) 
  600 FORMAT('1','BAND EQUATIONS' 
     *  /5X,'ORDER=', I5 
     *  /5X,'SUB-DIAGONAL,LINES=',I4 
     *  /5X,'SUPER-DIAGONAL,LINES=',I4) 
  610 FORMAT(' ',4X,'RESIDUAL NORM=',E17.8) 
  620 FORMAT(' ',4X,'ICON=',I5) 
      END 
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The subroutines PBM and PGM are used in this 
example only to print out a band matrix and a real general 
matrix respectively. 

The description of the two programs are shown in the 
example for the subroutines LBX1 and MGSM, 
respectively. 

 
Method 
This subroutine performs multipuliation  y = (yi), of an 
n n×  band matrix A = (aij) with lower band width h1 and 
upper band width h2 by an n-dimentional vector x = (xj) 
through using the Eq. (4.1). 

nixay
n

j
jiji ,...,1,

1

==∑
=

 (4.1) 

However, this subroutine recognizes that the matrix is a 
band matrix and the actual computation is done by 

( )

( )
nixay

nhi

hij
jiji 1,...,,

,min

1,max

2

1

== ∑
+

−=

 (4.2) 

This subroutine performs the product sum calculation in 
Eq. (4.2) with higher precision in order to minimize the 
effect of rounding errors. 
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A21-15-0101  MCV, DMCV 

Multiplication of a complex matrix and complex vector x 
CALL MCV (ZA, K, M, N, ZX, ZY, ICON) 

 
Function 
This subroutine performs multiplication of an m × n 
complex matrix A by a complex vector x 

y = Ax (1.1) 

where, x is an n-dimensional complex vector, y is an m-
dimensional complex vector and m, n ≥ 1 . 
 
Parameters 
ZA ..... Input.  Matrix A 

A complex two-dimensional array, ZA (K, N) 
K ..... Input.  Adjustable dimension of array ZA 

(≥M) 
M ..... Input.  Row number m of matrix A 
N ..... Input.  Column number n of matrix A. 

(Refer to “Comments on use”.) 
ZX ..... Input.  Complex vector x 

A complex one-dimensional array of size n. 
ZY ..... Output.  Multiplication y of matrix A complex 

vector x 
A complex one-dimensional array of size m 

ICON ..... Output.  Condition code.  Refer to Table 
MCV-1. 

 
Table MCV-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 M<1, n=0 or K<M Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... IABS 

 
• Notes 

This subroutine mainly consists of the computations, 

y = Ax (3.1) 

but it can be changed to another type of computation, 

y = y' − Ax (3.2) 

by specifying N= − n  and giving an arbitrary vector y' 
to the parameter ZY. 

This method can be used to compute a residual vector 
of linear equations. 

Refer to the example in ‘Comments on use’ below. 
 

• Example 
In this example, the n -dimensional linear equations 
with complex coefficients. 

Ax = b 

are solved by calling the subroutine LCX, and then the 
residual vector b − Ax is obtained through the solution.  
Here n ≤ 50 . 
 
C     **EXAMPLE** 
      DIMENSION ZA(50,50),ZX(50),ZY(50), 
     *  ZVW(50),IP(50),ZW(50,50) 
      CHARACTER*4 NT1(6),NT2(4), 
     *            NT3(4),NT4(4) 
      COMPLEX ZA,ZX,ZY,ZVW,ZW 
      DATA NT1/'CO  ','EF  ','FI  ','CI  ', 
     *         'EN  ','T   '/, 
     *     NT2/'CO  ','NS  ','TA  ','NT  '/, 
     *     NT3/'SO  ','LU  ','TI  ','ON  '/, 
     *     NT4/'RE  ','SI  ','DU  ','AL  '/ 
      READ(5,500) N 
      IF(N.LE.0) STOP 
      READ(5,510) ((ZA(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      CALL PCM(NT1,6,ZA,50,N,N) 
      ISW=1 
      EPSZ=1.0E-6 
      READ(5,510) (ZX(I),I=1,N) 
      CALL PCM(NT2,4,ZX,N,N,1) 
      DO 10 I=1,N 
      ZY(I)=ZX(I) 
      DO 10 J=1,N 
      ZW(J,I)=ZA(J,I) 
   10 CONTINUE 
      CALL LCX(ZA,50,N,ZX,EPSZ,ISW,IS, 
     *ZVW,IP,ICON) 
      IF(ICON.GE.20000) GO TO 30 
      CALL PCM(NT3,4,ZX,N,N,1) 
      CALL MCV(ZW,50,N,-N,ZX,ZY,ICON) 
      IF(ICON.NE.0) GO TO 30 
      CALL PCM(NT4,4,ZY,N,N,1) 
      RN=0.0 
      DO 20 I=1, N 
      CR=REAL(ZY(I)) 
      CI=IMAG(ZY(I)) 
      RN=RN+CR*CR+CI*CI 
   20 CONTINUE 
      RN=SQRT(RN) 
      WRITE(6,610) RN 
      STOP 
   30 WRITE(6,620) ICON 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(5(2F8.3)) 
  600 FORMAT('1','COMPLEX LINEAR EQUATIONS' 
     *  /5X,'ORDER=',I5) 
  610 FORMAT(' ',4X,'RESIDUAL NORM=',E17.8) 
  620 FORMAT(' ',4X,'ICON=',I5) 
      END 
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      SUBROUTINE PCM(ICOM,L,ZA,K,M,N) 
      DIMENSION ZA(K,N) 
      CHARACTER*4 ICOM(L) 
      COMPLEX ZA 
      WRITE(6,600) (ICOM(I),I=1,L) 
      DO 10 I=1,M 
      WRITE(6,610) I,(J,ZA(I,J),J=1,N) 
   10 CONTINUE 
      RETURN 
  600 FORMAT(' ',35A2) 
  610 FORMAT(' ',1X,I3,2(I3,2E17.7) 
     */(5X,2(I3,2E17.7))) 
      END 
 

The subroutine PCM is used in this example only to 
print out a complex matrix. 

Method 
Elements of  y = (yi), that is a resultant product of m n×  
complex matrix A = (aij) by n-dimensional complex 
vector x = (xi), are computed as shown in Eq. (4.1), 

mixa
n

j
jiji ,...,1,

1

==∑
=

y  (4.1) 

This subroutine reduces rounding errors as much as 
possible by performing the inner product computation, 
Eq. (4.1), with higher precision. 
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A22-21-0302  MDMX, DMDMX 

A system of linear equations with a real indefinite 
symmetric matrix decomposed into the factors  
M, D and M 
CALL MDMX (B, FA, N, IP, ICON) 

 
Function 
This subroutine solves a system of linear equations with 
an MDMT-decomposed real indefinite symmetric matrix, 
where M is a unit lower triangular matrix, D is a 
symmetric block diagonal matrix consisting of symmetric 
blocks at most of order 2, P is a permutation matrix 
(which exchanges rows of the coefficient matrix based on 
pivoting for MDMT-decomposition), b is an n-
dimensional real constant vector, and x  is an n-
dimensional solution vector.  If 0,1 ≠+ kkd , then, 

0,1 =+ kkm , and n ≥ 1 . 
 
Parameters 
B ..... Input.  Constant vector b. 

Output.  Solution vector x. 
One-dimensional array of size n . 

FA ..... Input.  Matrices M and D 
See Fig. MDMX-1 
One-dimensional array of size n(n+1)/2. 

N ..... Input.  Order n of the matrices M and D, 
constant vector b and solution vector x. 

IP ..... Input.  Transposition vector that indicates the 
history exchanging rows based on pivoting. 
One-dimensional array of size n. 

ICON ..... Output.  Condition code. 
See Table MDMX-1. 
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Note: The diagonal portion and the lower triangular portion of 

the  
matrix D+(M-I) are stored in the one-dimensional array 
FA in compressed mode for a symmetrical matrix.  In 
this case D consists of blocks of order 2 and 1. 

Fig. MDMX-1  Storing method for matrices L and D 

Table MDMX-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 Coefficient matrix was 
singular. 

Discontinued 

30000 N<1, or an error was found 
in IP. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... IABS 

 
• Notes 

A system of linear equations can be solved by calling 
the subroutine SMDM first to MDMT-decompose the 
coefficient matrix prior to calling this subroutine.  
However, such equations can be solved by calling the 
subroutine LSIX in one step.  The input parameters FA 
and IP to this subroutine are the same as the output 
parameters A and IP of the subroutine SMDM. 

 
• Example 

A system of linear equations is solved after MDMT-
decomposing an n n×  real symmetric matrix by calling 
the subroutines SMDM.  Where n ≤ 100 . 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(100), 
     * VW(200),IP(100),IVW(100) 
      CHARACTER*4 IA,IB,IX 
      DATA IA,IB,IX/'A   ','B   ','X   '/ 
      READ(5,500) N 
      NT=(N*(N+1))/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,600) N 
      CALL PSM(IA,1,A,N) 
      EPSZ=0.0 
      CALL SMDM(A,N,EPSZ,IP,VW,IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      READ(5,510) (B(I),I=1,N) 
      CALL PGM(IB,1,B,N,N,1) 
      CALL MDMX(B,A,N,IP,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      CALL PGM(IX,1,B,N,N,1) 
      STOP 
  500 FORMAT(I3) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1' 
     *  /6X,'LINEAR EQUATIONS AX=B' 
     *  /6X,'ORDER=',I4) 
  610 FORMAT(' ',5X,'ICON OF SMDM=',I6) 
  620 FORMAT(' ',5X,'ICON OF MDMX=',I6) 
      END 
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The subroutines PSM and PGM in this example are 
used only to print out a real symmetric matrix and a real 
general matrix, respectively.  These programs are 
described in the example for subroutine MGSM. 
 
Method 
Solving a system of linear equations with an MDMT-
decomposed real symmetric matrix. 

( ) bxPMDMP =
−− 1TT1  (4.1) 

is reduced into solving the following four equations: 

( ) PbMx =1  (4.2) 
( ) ( )12 xDx =  (4.3) 

( ) ( )23T xxM =  (4.4) 

( ) ( )31T xxP =
−

 (4.5) 

where M is a unit lower triangular matrix, D is a 
symmetric block diagonal matrix consisting of symmetric 
blocks at most of order 2, b is a constant vector, and x is 
a solution vector.  This subroutine assumes that M and D 
are both decomposed by the block diagonal pivoting 
method, and P is a permutation matrix. 
(For details, see “Method” for the subroutine SMDM.) 
• Solving ( )Mx Pb1 =  (back substitution) 

For a 1×1 pivot (i.e., if the order of the block of D is 1), 
it can be serially solved using Eq. (4.6). 

( ) ( ) nixmbx
i

k
kikii ,...,1,

1

1

11 =−= ∑
−

=

 (4.6) 

If, however, the i-th ineration uses a 2×2 pivot (i.e., the 
order of matrix D block is 2), ( )1

1+ix  is obtained using Eq. 

(4.7), preceded by ( )1
ix , and after that (i+2)-th step is 

computed. 

( ) ( )∑
−

=
++ −′=

1

1

1
1

1
1

i

k
kikii xmbx  (4.7) 

where ( ) ( ) ( ) ( )( ) ( ) ( )nnij bbxxxm ′′=== ,...,,,...,, 1
T11

1
T1 PbM  

• Solving ( ) ( )12 xDx =  
For a 1×1 pivot, it can be serially solved using eq. (4.8). 

( ) ( ) ni/dxx iiii ,...,1,12 ==  (4.8) 

If, however, the i-th iteration uses a 2×2 pivot, ( )2
ix and 

( )2
1+ix  are both obtained using Eq. (4.9) and after that 

(i+2)-th step is computed. 

( ) ( ) ( )( )/DETdxdxx ,iii,iiii 1
1

111
12

++++ −=  
( ) ( ) ( )( )/DETdxdxx ,iiiiiii 1

11
1

2
1 +++ −=  (4.9) 

where ( )ij
,ii,ii

i,iii d
dd
dd

DET =





=

+++

+ D,det
111

1 , 

and ( ) ( ) ( )( )22
1

T2 ,..., nxxx =  

• Solving ( ) ( )23T xxM =  (forward substitution) 
For a 1×1 pivot, it is serially solved using eq. (4.10) 

( ) ( ) ( ) 1,...,,
1

323 nixmxx
n

ik
kkiii =−= ∑

+=

 (4.10) 

If, however, the  i-th iteration uses a 2×2 pivot, ( )3
2−ix   is 

obtained using Eq. (4.11), preceeded by ( )3
ix , and after 

that the (i−2)-th step is computed. 

( ) ( ) ( )∑
+=

−−− −=
n

ik
kk,iii xmxx

1

3
1

2
1

3
1  (4.11) 

where ( ) ( ) ( )),...,( 33
1

T3
nxx=x  

• Solving ( ) ( )31T xxP =
−

 
The vector x (3) is multipled by the permutation 

matrix to obtain the element x1 of the solution vector x. 
In practice, however, the elements of the vector x (3) 
have only to be exchanged by referencing the value of 
the transposition vector IP. 
Precision of the inner products in this subroutine has 
been raised to minimize the effect of rounding errors. 
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A21-11-0301  MGGM, DMGGM 

Multiplication of two matrices (real general by real general) 
CALL MGGM (A, KA, B, KB, C, KC, M, N, L, VW, 
ICON) 

 
Function 
This subroutine performs multiplication of an m × n  real 
general matrix A by an n × l  real general matrix B. 

C = AB 

where, C  is an m × l  real matrix. m, n, l ≥ 1. 
 
Parameters 
A ..... Input.  Matrix A, two-dimensional array, 

A(KA, N). 
KA ..... Input.  The adjustable dimension of array A, 

(≥M). 
B ..... Input.  Matrix B, two-dimensional array, B(KB, 

L). 
KB ..... Input.  The adjustable dimension of array B, 

(≥N). 
C ..... Output.  Matrix C, two-dimensional array, 

C(KC, L).  (Refer to “Comments on use.”) 
KC ..... Input.  The adjustable dimension of array C, 

(≥M). 
M ..... Input.  The number of rows m in matrix A and 

C. 
N ..... Input.  The number of columns n in matrix A 

and the number of rows n in matrix B. 
L ..... Input.  The number of columns l in matrices B 

and C. 
VW ..... Work area.  A one-dimensional array of size n. 
ICON ..... Output.  Condition codes.  Refer to Table 

MGGM-1. 
 
Table MGGM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 M<1, N<1, L<1, KA<M, 
KB<N, or KC<M 

Bypassed 

Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... None 

  
• Notes 

Saving the storage area. 
The contents of array A are not required to be reserved, 
the subroutines can be called to save the storage area as 
follows: 
CALL MGGM (A, KA, B, KB, A, KA, M, N, L, VW, 
ICON) 
 
In this case, matrix C is stored in array A.  However, 

user must declare the array A as A (KA, L) instead of A 
(KA, N). 
  
• Example 

The following shows an example of obtaining the 
multiplication of matrices A and B.  Here, m ≤ 50,  
n ≤ 60, and l ≤ 30. 

 
C     **EXAMPLE** 
      DIMENSION A(50,60),B(60,30),C(50,30), 
     *VW(60) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
      DATA KA/50/,KB/60/,KC/50/ 
   10 READ(5,100) M,N,L 
      IF(M.EQ.0) STOP 
      WRITE(6,150) 
      READ(5,200) ((A(I,J),I=1,M),J=1,N) 
      READ(5,200) ((B(I,J),I=1,N),J=1,L) 
      CALL MGGM(A,KA,B,KB,C,KC,M,N,L,VW, 
     *ICON) 
      IF(ICON.NE.0) GOTO 10 
      CALL PGM(IA,1,A,KA,M,N) 
      CALL PGM(IB,1,B,KB,N,L) 
      CALL PGM(IC,1,C,KC,M,L) 
      GOTO 10 
  100 FORMAT(3I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** MATRIX MULTIPLICATION **') 
      END 
 
Subroutine PGM in the example is for printing a real 
matrix.  This program is shown in the example for 
subroutine MGSM. 
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A21-11-0401  MGSM, DMGSM 

Multiplication of two matrices (real general by real 
symmetric) 
CALL MGSM (A, KA, B, C, KC, N, VW, ICON) 

 
Function 
This subroutine performs multiplication of an n × n  real 
general matrix A by an n × n  real symmetric matrix B. 

C = AB 

where, C is an  n × n  real matrix, n ≥ 1. 
 
Parameters 
A ..... Input.  Matrix A, two-dimensional array,  

A(KA, N). 
KA ..... Input.  The adjustable dimension of array A, 

(≥N). 
B ..... Input.  Matrix B stored in the compressed 

mode, one dimensional array of size n(n+1)/2. 
C ..... Output.  Matrix C two-dimensional array, 

C(KC, N).  (See “Comments on use.”) 
KC ..... Input.  The adjustable dimension of array C, 

(≥N). 
N ..... Input.  The number of columns n of matrices A, 

B and C. 
VW ..... Work area. One dimensional array of size n. 
ICON ..... Output.  Condition codes.  See Table MGSM-

1. 
Table MGSM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N<1,KA<N or KC<N Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... none 

  
• Notes 

Saving the storage area: 
When the contents of array A is not required to be 
reserved, the subroutines can be called to save the 
storage area as follows: 

  
CALL MGSM(A, KA, B, A, KA, N, VW, ICON) 

 
In this case, matrix C is stored in the general mode in 

array A. 

• Example 
The following shows an example of obtaining the 
multiplication C of a real matrix A by a real symmetric 
matrix B.  Now, the matrix C is overwritten in the same 
area for A.  n<100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),B(5050),VW(100) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
   10 READ(5,100) N 
      IF(N.EQ.0) STOP 
      WRITE(6,150) 
      NT=N*(N+1)/2 
      READ(5,200) ((A(I,J),J=1,N),I=1,N) 
      READ(5,200) (B(I),I=1,NT) 
      CALL PGM(IA,1,A,100,N,N) 
      CALL PSM(IB,1,B,N) 
      CALL MGSM(A,100,B,A,100,N,VW,ICON) 
      WRITE(6,250) ICON 
      IF(ICON.NE.0) GOTO 10 
      CALL PGM(IC,1,A,100,N,N) 
      GOTO 10 
  100 FORMAT(I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** C=A*B  GENERAL BY SYMMETRIC **') 
  250 FORMAT(//10X,'** MGSM ICON=',I5) 
      END 
 
C     ** MATRIX PRINT(REAL NON-SYMMETRIC) ** 
      SUBROUTINE PGM(ICOM,L,A,K,M,N) 
      DIMENSION A(K,N) 
      CHARACTER*4 ICOM(L) 
      WRITE(6,600) (ICOM(I),I=1,L) 
      DO 10 I=1,M 
      WRITE(6,610) I,(J,A(I,J),J=1,N) 
   10 CONTINUE 
      RETURN 
  600 FORMAT(/10X,35A2) 
  610 FORMAT(/5X,I3,3(4X,I3,E17.7), 
     *(/8X,3(4X,I3,E17.7))) 
      END 
 
C     ** MATRIX PRINT(REAL SYMMETRIC) ** 
      SUBROUTINE PSM(ICOM,L,A,N) 
      DIMENSION A(1) 
      CHARACTER*4 ICOM(L) 
      WRITE(6,600) (ICOM(I),I=1,L) 
      LS=1 
      LE=0 
      DO 10 I=1,N 
      LE=LE+I 
      WRITE(6,610) I,(A(J),J=LS,LE) 
   10 LS=LE+1 
      RETURN 
  600 FORMAT(/10X,35A2) 
  610 FORMAT(/5X,I3,3(4X,E17.7), 
     *(/8X,3(4X,E17.7))) 
      END 
 

Subroutines PGM and PSM in the example are for 
printing the real and real symmetric matrices. 
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D11-10-0101  MINF1, DMINF1 

Minimization of a function with several variables 
(Revised quasi-Newton method, using function values 
only) 
CALL MINF1 (X, N, FUN, EPSR, MAX, F, G, 
H, VW, ICON) 

 
Function 
Given a real function  f (x) of n variables and an initial 
vector x0, the vector x* which gives a local minimum of  
f (x) and its function value  f (x*) are obtained by using 
the revised quasi-Newton method. 
The  f (x) is assumed to have up to the second continuous 
partial derivative, and n≥1. 
 
Parameters 
X ..... Input.  Initial vector x0. 

Output.  Vector x*. 
One-dimensional array of size n. 

N ..... Input. Number of variables n. 
FUN ... Input.  Name of function subprogram which 

calculates  f (x). 
The form of subprogram is as follows: 
FUNCTION FUN(X) 
where 
X .....Input.  Arbitrary variable vector x. 
One-dimensional array of size n. 
The function FUN should be assigned with the 
value of  f (x). 
(See the example below.) 

EPSR ... Input.  Convergence criterion (≥0.0) 
When EPSR=0.0, a standard value is used. 
See “Note”. 

MAX ... Input.  Upper limit or number of evaluations 
for the function (≠0).  See “Note”. 
Output.  Number of times actually evaluated 
(>0). 

F ..... Output.  Value of the function f (x*). 
G ..... Output.  Gradient vector at x*. 

One-dimensional array of size n. 
H ..... Output.  Hessian matrix at x*. 

This is decomposed as LDLT and stored in 
compressed storage mode for a symmetric 
matrix.  See Fig. MINF1-1. 
One-dimensional array of size n(n+1)/2. 

VW ..... Work area.  One-dimensional array of size 
3n+1. 

ICON ..... Output.  Condition code. 
See Table MINF1-1. 
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Note: The approximate Hessian matrix is decomposed as LDLT, 

and after computation, the diagonal and lower triangular 
portions of the matrix, D-1+(L-I), are stored into the one-
dimensional array H in compressed storage mode for a 
symmetric matrix. 

Fig. MINF1-1  Storage Hessian matrix 

Table MINF1-1  Condition codes 

Code Meaning Processing 
 0 No error  
10000 Convergence condition was 

not satisfied within the 
specified number of 
evaluations of the function. 

Parameters X, 
F, G and H 
each contains 
the last value 
obtained. 

20000 During computation, gk
Tpk≥0 

occurred, so the local 
decrement of the function 
was not attained.  See Eq. 
(4.5) in “Method”. 
EPSR was too small or the 
error of difference 
approximation for a gradient 
vector exceeded the limit. 

Discontinued 
(Parameters X 
and F each 
contains the 
last value 
obtained.) 

30000 N<1, EPSR<0.0 or MAX=0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... LDLX, UMLDL, AMACH and MGSSL 
FORTRAN basic functions  ...  ABS, SQRT, AMAX1 
and AMIN1 

• Notes 
− The program which calls this subroutine must have 

an EXTERNAL statement for the function program 
name that corresponds to the argument FUN. 

− Giving EPSR 
The subroutine tests convergence by 

)( EPSR,01max1 ⋅≤− ∞∞+ kkk . xxx  
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  for the iteration vector xk and if the above condition 
is satisfied, xk+1 is taken as the local minimum point 
x* and the iteration is terminated. 
The subroutine assumes that function f (x) is 
approximately quadratic in the region of the local 
minimum point x*.  If the function value  f (x*) is to 
be obtained as accurate as the unit round off, 

EPSR = u , u is the unit round off 

is satisfactory. 
The standard value of EPSR is 2･ u  

− Giving MAX 
The number of evaluations of a function is calculated 
by the number of f (x) for variable vector x. 
It corresponds to the number of calling subprogram 
FUN. 
The number of evaluations of a function depends on 
characteristics of the function in addition to the 
initial vector and a convergence criterion.  Generally, 
for good initial vector, if a standard value is used as 
the convergence criterion, MAX=400･n is 
appropriate. 
If the convergence condition is not satisfied within 
the specified number of evaluations and the 
subroutine is returned with ICON=10000, the 
iteration can be continued by calling the subroutine 
again. 
In this case parameter MAX is specified with a 
negative value for an additional evaluation number, 
and the contents of other parameters must be kept 
intact. 

• Example 
The global minimum point  x* for 

22
12

2
1 )(100)1()( xxxf −+−=x  is obtained with the 

initial vector ( )T
0 0.1,2.1−=x  given. 

 
C     **EXAMPLE** 
      DIMENSION X(2),G(2),H(3),VW(7) 
      EXTERNAL ROSEN 
      X(1)=-1.2 
      X(2)=1.0 
      N=2 
      EPSR=1.0E-3 
      MAX=400*2 
      CALL MINF1(X,N,ROSEN,EPSR,MAX, 
     *           F,G,H,VW,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,610) F,MAX 
      WRITE(6,620) (I,X(I),I,G(I),I=1,N) 
      STOP 
  600 FORMAT('1','*ICON=',I5) 
  610 FORMAT(' ','*F=',E15.7,' MAX=',I5/) 
  620 FORMAT(/' X(',I2,')=',E15.7,2X, 
     *        ' G(',I2,')=',E15.7) 
      END 
 
 

C     OBJECTIVE FUNCTION 
      FUNCTION ROSEN(X) 
      DIMENSION X(2) 
      ROSEN=(1.0-X(1))**2+100.0* 
     *      (X(2)-X(1)*X(1))**2 
      RETURN 
      END 
 
Method 
Given a real function  f (x) of n variables and an initial 
vector x0, the vector x* which gives a local minimum of  
f (x) and its function value  f (x*) are obtained by using 
the revised quasi-Newton method. 

The subroutine obtains the gradient vector g of  f (x) by 
using difference formula. 

 
• Revised quasi-Newton method 

When the function  f (x) is quadratic, its Taylor series 
expansion in the region of the local minimum point x* 
is given by 

( ) ( ) ( ) ( )*T**

2
1 xxBxxxx −−+= ff  (4.1) 

where B is a Hessian matrix of  f (x) at the point x*.  If 
the matrix B is positive definite, Eq. (4.1) has a global 
minimum.  Let  xk be an arbitrary point in the region of x* 
and let  gk be the gradient vector of f(x) at the point xk 
then x* can be obtained by using Eq. (4.1) as follows: 

kk gBxx 1* −−=  (4.2) 

Even when function  f (x) is not quadratic, it can be 
assumed to approximate a quadratic function in the 
region of x* and a iterative formula can be derived based 
on Eq. (4.2). 
However, since obtaining an inverse of matrix B directly 
is not practical because of the great amount of 
computation, an approximate matrix to B is generally set 
and is modified while the iteration process is being 
carried out. 
The revised quasi-Newton method obtains a local 
minimum point  x* by letting Bk be an approximation of 
the matrix B and using the following iterative formulae: 

,...1,0

1

1 =







+=
+=

−=

+

+ k

kkk

kkkk

kkk

EBB
pxx

gpB
α  (4.3) 

where, ( )00 xg f∇=  and B0 are an arbitrary positive 
definite matrix, pk is a vector denoting the search 
direction from xk toward the local minimum point, and  
αk is a (linear search) constant which is set so  
f (xk +αk pk) is the smallest locally. 
 Ek is a matrix of rank two which is used to improve the 
approximate Hessian matrix Bk + Ek is defined assuming 
that function  f (x) is quadratic in the region of the local 
minimum point x*, and the secant condition is satisfied. 
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( ) ( )kkkkk xxBgg −=− +++ 111  (4.4) 

For the search direction pk to be downwards (i.e., the 
function  f (x).  decreasing locally along the pk direction 
at point xk) during the iteration process shown in (4.3), 
the following relation 

( ) 0TT <−= kkkkk pBppg  (4.5) 

must be satisfied based on the sufficient condition of the 
second order that the function  f (x) has a minimum value 
at the point x*

. 
In other words, the iterative calculation requires that the 
approximate Hessian matrix Bk is positive definite. 
In the revised quasi-Newton method, the approximate 
Hessian matrix Bk is expressed as being decomposed as 
LDLT and the refinement by the Ek is accomplished as 
follows. 

kkkkkkk ELDLLDL +=+++
TT

111  (4.6) 

The characteristic of the revised quasi-Newton method 
is to guarantee that Dk+1 is positive definite by keeping all 
the diagonal elements of Dk+1 positive. 
• Computational procedure in the subroutine 

(a) Initializing the Hessian matrix (B0 = In) 
(b) Computation of the gradient vector gk 
(c) Determining the search vector 

)( T
kkkkkk gpLDLp −=

 
This equation is solved 

by calling the subroutine LDLX. 
(d) Linear search ( xk+1 = xk + α k pk ) 
(e) Improvement of the approximate Hessian matrix 

)( TT
111 kkkkkkk ELDLLDL +=+++  

The above steps, (b) to (e), are repeated for k=0, 1, ... 
• Notes on each algorithm 

(a) Computation of the gradient vector gk 
The subroutine approximates gk  by using the 
forward difference (4.7) and the central difference 
(4.8), 

( ) ( )( ) hffg kik
i
k /xhex −+≈  (4.7) 

( ) ( )( ) hffg ikik
i
k 2/hexhex −−+≈  (4.8) 

Where, 

( )T21 ,..., n
kkkk g,gg=g  

( )T21 ,...,, n
kkki xxx=x  

ei is the i-th coordinate vector 
h = u , u  unit round off 

At the beginning of the iteration, gk is 
approximated by using Eq. (4.7), but when the 
iteration is close to the convergence area, the 
approximation method is changed to (4.8). 
 

(b) Linear search (selection of α k ) 
The linear search obtains the minimum point of 
function  f (x) along the search direction pk i.e. it 
obtains α k which minimizes the function 

0),()( ≥+= αααψ kkf px  (4.9) 

The subroutine approximates )(αψ  by the quadratic 
interpolation and assumes α k as follows: 

}))/()((2,1min{ T
1 kkkk ff pgxxk −−≈α  (4.10) 

The above equation makes use of the quadratic 
convergency of the Newton method, setting α k=1 in the 
final step of the iteration.  In addition, the second term of 
Eq. (4.10) guarantees that  f (xk+1) < f (xk) to prevent it 
being divergent during the initial iteration process.  The 
second term of Eq. (4.10) assumes. 

( ) ( ) ( ) ( )11 −+ −≈− kkkk ffff xxxx  (4.11) 

in the initial iteration step, and it is not an exact 
approximation made by the quadratic interpolation. 
Therefore the subroutine searches for the minimum point 
by using extrapolation and interpolation described as 
follows (linear search): 
let  f0,  f1 and  f2 be the function values for the points 

kkkkkk pxxxx α+== ++
)1(
1

)0(
1 ,  and 

kkkk pxx α2)2(
1 +=+ , respectively, then 
(a) If  f0 > f1  and  f1 < f2 , the search is terminated 

setting )1(
1+kx as the minimum point. 

F

f1f1

f2
f0

αk 2αk

α

ϕ (α)

 
(b) If  f0 > f1 > f2 , α min  which gives the minimum 

point is extrapolated by using the quadratic 
interpolation based on those three points as 
follows: 
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• If ,42 min kk ααα <<  the search is terminated 

setting )2(
1+kx  as the minimum point. 

ϕ (α)

f0

f1

f2

αk 2αk 4αkαmin

α

 
• If min4 αα <k  the search goes back to the 

beginning after setting kk αα 2=  
ϕ (α)

f0

f1

f2

f3

αk 2αk 4αk αmin
α

 
(c) If  f0 < f1 , the function value  f1/2  corresponding to 

kkkk pxx α⋅+=+ 2
1)2/1(

1  is obtained, and 
• If  f0 > f1/2  and  f1/2 < f1, the search is terminated 

setting )2/1(
1+kx  as the minimum point. 

 

ϕ (α)
f0

f1/2

f1

αk/2 αk

α

 
• If  f0 < f1/2 < f1 , the search goes back to the 

beginning after interpolating α min  which gives a 
minimum point by using the quadratic 
interpolation based on those three points and 
then setting  α k = max(α k /10, α min) 

ϕ (α)

f0

f1/2

f1

αmin αk

α

 

As described above, the linear search based on α k is 
terminated, but if the function  f (x) keeps decreasing 
further at the point  xk+1, i.e., 

kkkk pgpg TT
1 <+  (4.12) 

then the new search direction  pk+1 as well as α k+1 are 
determined to repeat the linear search. 
If Eq. (4.12) is not satisfied, the process moves to the 
next step to improve the approximate Hessian matrix. 
(c) Convergence criterion 

The subroutine terminates the iteration when Eq. 
(4.13) is satisfied in the iteration process (linear 
search) performed after the calculation of gk is 
changed to the approximation by the central 
difference (4.8).  The obtained xk+1 is assumed to be 
the local minimum point x*

. 

( ) EPSR,0.1max1 ⋅≤− ∞∞+ kkk xxx  (4.13) 

(d) Improving approximate Hessian matrix 
The BFGS (Broyden - Fletcher - Goldfarb - Shanno) 
furmula (4.14) is used for the improvement. 

kkk

kkkk

kk

kk
kk δδδδδδδδ

δδδδδδδδ
δδδδ B

BB
r

rrBB T

T

T

T

1 −+=+

 (4.14) 

Where,
 kkk

kkk

xx
ggr

−=
−=

+

+

1

1

δδδδ
 

The subroutine starts the iteration by setting a unit matrix 
to the initial approximate Hessian matrix B0.  The i-th 
step improvement for the Hessian matrix Bk is carried out 
in the form of being decomposed as LDLT. 

kkk

kk
kkkkkk rp

rrLDLLDL
α

T
TT~~~ +=  (4.15) 

kk

kk
kkkkkk gp

ggLDLLDL
T

TT
111

~~~ +=+++  (4.16) 

Where the second terms of both (4.15) and (4.16) are 
rank one matrices. 
For further details, refer to Reference [34]. 
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D11-20-0101  MING1, DMING1 

Minimization of a function with several variables 
(Quasi-Newton method, using function values and its 
derivatives) 
CALL MING1 (X, N, FUN, GRAD, EPSR, 
MAX, F, G, H, VW, ICON) 

 
Function 
Given a real function  f (x) of n variables, its derivative 
g(x) and an initial vector x0, the vector x* which gives a 
local minimum of  f (x) and its function value  f (x*) are 
obtained by using the quasi-Newton method. 
 f (x) is assumed to have up to the second continuous 
partial derivative, where x = (x1, x2,..., xn)T and  n ≥ 1. 
 
Parameters 
X ..... Input.  Initial vector x0. 

Output.  Vector x* 
One-dimensional array of size n. 

N ..... Input.  Number of variables n. 
FUN ..... Input.  Name of function subprogram which 

calculates f (x). 
The form of subprogram is as follows: 
FUNCTION FUN(X) 
where, 
X ..... Input.  Variable vector x. 

One-dimensional array of size n. 
The function FUN should be assigned with the 
value of  f (x). 
(See Example.) 

GRAD .. Input.  Name of subroutine subprogram which 
computes g(x). 
The form of subprogram is as follows: 
SUBROUTINE GRAD(X, G) 
where, 
X ..... Input.  Variable vector x. 

One-dimensional array of size n. 
G ..... Output.  One-dimensional array of size 

n which has a correspondence 
nxfxf ∂∂∂∂ /)N(G,...,/)1(G 1 ==  

(See Example.) 
EPSR ..... Input.  Convergence criterion (≥0.0) 

When EPSR=0.0, a default value is used. 
(See Notes.) 

MAX ..... Input.  The upper limit (≠0) of the number of 
evaluations of functions  f (x) and  g(x). 
(See Notes.) 
Output.  The number of evaluations in which   
f (x) and  g(x) are actually evaluated (>0). 

F ..... Output.  Function value  f (x*). 
G ..... Output.  Gradiant vector  g(x*). 

One-dimentional array of size n. 

H ..... Output. Inverse matrix of a Hessian matrix at 
x*. 
This is stored in the compressed mode for 
symmetric matrix. 
One-dimensional array of size n(n+1)/2. 

VW ..... Work area.  One-dimensional array of size 
3n+1. 

ICON .... Output.  Condition code. 
See Table MING1-1. 

 
Table MING1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Convergence condition was 
not satisfied within the 
specified number of 
evaluations. 

The last value 
is stored in 
parameters X, 
F, G, and H. 

20000 During computation, 
g p 0k

T
k ≥  occurred, so the 

local decrement of the 
function was not attained 
(See (4.5) in Method). 
EPSR was too small. 

Discontinued 
(The last value 
is stored in 
parameters X, 
and F). 

25000 The function is 
monotonically decreasing 
along searching direction. 

Discontinued 

30000 N<1, EPSR<0.0 or MAX=0 Bypassed. 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MGSSL, MSV, 
AFMAX 
FORTRAN basic functions ... ABS, SQRT 

• Notes 
The program which calls this subroutine must have an 
EXTERNAL statement for the subprogram name that 
corresponds to the arguments FUN and GRAD. 
 
Giving EPSR: 
The subroutine tests convergence of the iteration 
vector xk by 

( ) EPSR,0.1max1 ⋅≤−
∞∞+ kkk xxx  

and if the above condition is satisfied, xk+1 is taken as 
the local minimum point x* and the iteration is 
terminated. 

The subroutine assumes that function  f (x)  is 
approximately quadratic in the region of the local 
minimum point x*. 

If the function value  f (x*) is to be obtained as accurate 
as the unit round off, EPSR = u , where u is the unit 
round off is satisfactory.  The default value is u / .8 0  
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Giving MAX: 
For a variable vector x, the total number of evaluations is 
calculated by adding the number of computation for  f (x), 
(i.e., 1), and the number of computations for  g(x), (i.e., 
n). 

The number of evaluations of functions depends on 
characteristics of the functions in addition to the initial 
vector and the convergence criterion.  Generally, if the 
default value is used as the convergence criterion and a 
good initial vector are used, MAX=400･n is appropriate.  
If the convergence condition is not satisfied within the 
specified number of evaluations and the subroutine 
returned with ICON=10000, the iteration can be 
continued by calling the subroutine again.  In this case, 
parameter MAX is specified with a negative value for an 
additional evaluation number, and the contents of other 
parameters must be kept intact. 

 
• Example 

The global minimum point x* for 
22

12
2

1 )(100)1()( xxxf −+−=x  is obtained with the 
initial vector x0 = (−1.2, 1.0)T. 

 
C     **EXAMPLE** 
      DIMENSION X(2),G(2),H(3),VW(7) 
      EXTERNAL ROSEN,ROSENG 
      X(1)=-1.2 
      X(2)=1.0 
      N=2 
      EPSR=1.0E-4 
      MAX=400*2 
      CALL MING1(X,N,ROSEN,ROSENG,EPSR, 
     *           MAX,F,G,H,VW,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,610) F,MAX 
      WRITE(6,620) (I,X(I),I,G(I),I=1,N) 
      STOP 
  600 FORMAT('1','*ICON=',I5) 
  610 FORMAT(' ','*F=',E15.5,' MAX=',I5/) 
  620 FORMAT(/' X(',I2,')=',E15.7,2X, 
     *        ' G(',I2,')=',E15.7) 
      END 
 
C     OBJECTIVE FUNCTION 
      FUNCTION ROSEN(X) 
      DIMENSION X(2) 
      ROSEN=(1.0-X(1))**2+100.0* 
     *      (X(2)-X(1)*X(1))**2 
      RETURN 
      END 
C     GRADIENT VECTOR 
      SUBROUTINE ROSENG(X,G) 
      DIMENSION X(2),G(2) 
      G(1)=-2.0*(1.0-X(1)) 
     *-400.0*X(1)*(X(2)-X(1)*X(1)) 
      G(2)=200.0*(X(2)-X(1)*X(1)) 
      RETURN 
      END 

Method 
Given a real function  f (x) of n variables, its derivative  
g(x) and initial vector x0, the vector x* which gives a 
local minimum of  f (x) and its function value  f (x*) are 
obtained by using the quasi-Newton method. 
 
• Quasi-Newton method 

When the function  f (x) is quadratic, its Taylor series 
expansion in the region of the local minimum point x* 
is given by 

( ) ( ) ( ) ( )*T**

2
1 xxBxxxx −−+= ff  (4.1) 

where B is a Hessian matrix of  f (x) at the point x*.  If the 
matrix B is positive definite, (4.1) has a global minimum.  
Let xk be an arbitrary point in the region of x* and let gk 
be the gradient vector of  f (x) at the point xk then x* can 
be obtained using (4.1) as follows: 

kk Hgxx −=*  (4.2) 

where, H is an inverse matrix of Hessian matrix B. 
Even when function  f (x) is not quadratic, it can be 
assumed to approximate a quadratic function in the 
region of x* and a iterative formula can be derived based 
on (4.2).  However, since obtaining an inverse of matrix 
B directly is not practical because of the great amount of 
computation, an approximate matrix to B is generally set 
and is modified while the iteration process is being 
carried out. 
The quasi-Newton method obtains a local minimum point 
x* by letting Hk be an approximation of the matrix H and 
using the following iterative formula (4.3) and (4.4) 

kkkk pxx α+=+1  (4.3) 

( )( )kkkk
k

k
kk

kkk rrrHrHH TTTT
1 //1 δδδδ++=+

( ) kkkkkkkk rHrrH TTT /δδδ +−  (4.4) 

where,  
,, 1 kkkkkk ggrgHp −=−= +  

,1 kkk xx −= +δ  
,...2,1,0=k  

where, H0 is an arbitary positive definite matrix, in (4.3) 
pk is a vector denoting the search direction from xk, 
toward the local minimum point and α k is a (linear 
search) constant which is set so that  f ( xk + α k pk ) is 
locally smallest. 
For the search direction pk to be downwards (the function 
f (x) decreasing locally along the pk direction) during the 
iteration process shown in (4.3) and (4.4), the following 
relation 

0T <kk pg  (4.5) 
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must be satisfied. 
• Computational procedure in the subroutine 
1) Initializing the approximate inverse matrix of the 

Hessian matrix (H0 =In). 
2) Computation of gradient vector gk 
3) Computation of search vector pk( pk = −Hk gk ) 
4) Linear search ( xk+1 = xk + α k pk )  
5) Improvement of the approximate inverse matrix Hk 

(Hk+1 is obtained from (4.4)) 
The above steps 2 through 5 are repeated for k=0, 1, ... 

• Note on each algorithm 
− Initializing the approximate inverse matrix 

This subroutine uses unit matrix In as initial 
approximate inverse matrix H0 corresponding to a 
Hessian matrix.  Inverse matrix Hk is improved by 
(4.4) each time it is iterated. 
H1, however, is obtained by (4.4) after resetting 

H0 = sIn 

where 

0
T

00
T / rrrδδδδ=s  

− Linear search (selection of α k ) 
The linear search obtains the minimum point of 
function  f (x) along the search direction  pk that is α k 
which minimizes the function )(αϕ  

0),()( ≥+= αααϕ kkf px  (4.6) 

The subroutine approximates )(αϕ  by quadratic 
interpolation and assumes α k to be: 

( ){ }kkkkk ff pgxx T
1)()(2,1min −−≈α  (4.7) 

The above equation makes use of the quadratic 
convergency of the Newton method, setting α k= 1 in the 
final step of the iteration.  In addition, the second term of 
(4.7) guarantees that  f (xk+1) < f (xk)  to prevent it from 
diverging during the initial iteration process. 
The second term of (4.7) assumes variable ratio of the 
function as 

( ) ( ) ( ) ( )11 −+ −≈− kkk ffff xxxx  (4.8) 

in the initial iteration step, and it is not an exact 
approximation made by the quadratic interpolation.  
Therefore the subroutine searches for the minimum point 
by using extrapolation and interpolation described as 
follows (linear search): 
(a) α k is obtained from (4.7). 

(b) The function values corresponding to points 

kkkkkkkkkk pxxpxxxx αα 2,, )2(
1

)1(
1

)0(
1 +=+== +++  are 

obtained and they are assumed to be  f 0, f 1  and f 2 
respectively. 

(c) If  f 0 > f 1 and  f 1 < f 2 , point α min is interpolated by 
using a quadratic interpolation based on these three 
points by 

210

02
min 22 fff

ffk
k +−

−
⋅−=

ααα  (4.9) 

The search is terminated by setting α min as the final α k 
and the function value is assumed to be a minimum value. 

ϕ (α)

f0

f1
fmin

f2

αk αmin 2αk

α

 
 

(d) If  f 0 > f 1 > f 2 , the function values corresponding to 

kkk pxx α4)4(
1 +=+  is obtained and assumed to be  f 4. 

• If  f 2 < f 4 , α min is extrapolated by using quadratic 
interpolation (4.9) based on these three points  f 0, f 1 
and  f 2. 

If 4α k < α min , the search goes back to (b) after 
setting α k = 2α k . 

If 2α k < α min < 4α k , this subroutine terminates 
the search assuming this α min to be final α k and 
function value  f min to be the minimum value. 

 
ϕ (α)

f0

f1

f2

fmin

f4

αk 2αk αmin 4αk

α

 
• If  f 2 > f 4 , this subroutine goes back to (b) after 

setting α k = 2α k . 
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ϕ (α)
f0

f1

f2

f4

αk 2αk 4αk

α

 
(e) If  f 0 ≤  f 1, the function value corresponding to point 

kkkk pxx α
2
1)21(

1 +=+  is obtained and sets it as  f 1/2 . 

• If  f 0 > f 1/2 and  f 1/2 < f 1 , α min  is interpolated by 
using the quadratic interpolation based on these 
three points. 

α α α
min

/

= − ⋅ −
− +

k k f f
f f f2 4 2

1 0

0 1 2 1

 (4.10) 

The search is terminated setting α min as  α k  and 
function value  f min is assumed to be the minimum 
value. 

 
ϕ (α)

f0

f1/2 fmin

f1

α
αkαmin1/2⋅αk

 

• If  f 0 < f 1/2, this subroutine goes back to the 
beginning of (e) after setting   f 1 = f 1/2 and 

kk αα
2
1= . 

Thus, this subroutine terminates the linear search 
based on α k .  If function  f (x) continues to 
decrement at xk+1, that is, if 

kkkk pgpg TT
1 <+  (4.11) 

a new search direction pk+1 and α k+1 are determined 
and the linear search is iterated. 
If(4.11) is not satisfied, this subroutine goes the next 
step in which approximate inverse matrix of a Hessian 
matrix is improved. 

− Convergence criterion 
This subroutine terminates the iteration when the 
iterative vector xk and xk+1 satisfy 

( ) EPSR,0.1max1 ⋅=− ∞∞+ kkk xxx  

The obtained xk+1 is assumed to be the minimum 
point  x*. 

For further details, see Reference [35]. 
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A51-14-0101  MSBV, DMSBV 

Multiplication of a real symmetric band matrix and a 
real vector. 
CALL MSBV (A, N, NH, X, Y, ICON) 

 
Function 
This subroutine performs multiplication of an n × n  real 
symmetric band matrix A with upper and lower band 
widths h by a vector x 

y = Ax (1.1) 

where x and y are both n-dimensional vectors, and  
n > h ≥ 0. 
 
Parameters 
A .... Input.  Matrix A. 

Matrix A is stored in one-dimensional array of 
size n(h+1)−h(h+1)/2 in the compressed mode 
for symmetric band matrices. 

N .... Input.  Order n of the matrix A. 
(See Notes.) 

NH .... Input.  Upper and lower band widths h. 
X .... Input.  Vector x. 

One-dimensional array of size n. 
Y .... Output. Vector y.  One-dimensional array of 

size n. 
ICON .... Output.  Condition code.  

See Table MSBV-1. 
 
Table MSBV-1  Condition codes 

Code Meaning  Processing 
0 No error  

30000 N = 0, NH < 0 or NH ≥ |N| Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ..... MGSSL 
FORTRAN basic function .... IABS 

• Notes 
This subroutine mainly consists of the computation 

y = Ax (3.1) 

but it can be changed to another type of computation, 

y = y' − Ax (3.2) 

by specifying N = -n and giving an arbitrary vector  y' 
to the parameter Y. 

In practice, this method can be used to compute a 
residual vector of linear equations.  (Refer to the  

example shown below.) 

r = b − Ax (3.3) 

• Example 
The linear equations with an n × n real positive-definite 
symmetric band matrix 

Ax = b (3.4) 

is solved using subroutine LSBX and then the residual 
vector b − Ax is compute with the resultant. n ≤ 100. 
 
C     **EXAMPLE** 
      DIMENSION A(5050),X(100), 
     *          Y(100),W(5050) 
      READ(5,500) N,NH 
      IF(N.EQ.0) STOP 
      NH1=NH+1 
      NT=N*NH1-NH*NH1/2 
      READ(5,510) (A(I),I=1,NT) 
      READ(5,510) (X(I),I=1,N) 
      WRITE(6,600) N,NH 
      L=1 
      LE=0 
      DO 10 I=1,N 
      LE=LE+MIN0(I,NH1) 
      JS=MAX0(1,I-NH1) 
      WRITE(6,610) I,JS,(A(J),J=L,LE) 
      L=LE+1 
   10 CONTINUE 
      WRITE(6,620) (I,X(I),I=1,N) 
      EPSZ=1.0E-6 
      ISW=1 
      DO 20 I=1,N 
      Y(I)=X(I) 
   20 CONTINUE 
      DO 30 I=1,NT 
      W(I)=A(I) 
   30 CONTINUE 
      CALL LSBX(A,N,NH,X,EPSZ,ISW,ICON) 
      IF(ICON.GE.20000) GOTO 50 
      WRITE(6,630) (I,X(I),I=1,N) 
      CALL MSBV(W,-N,NH,X,Y,ICON) 
      IF(ICON.NE.0) GOTO 50 
      WRITE(6,640) (I,Y(I),I=1,N) 
      DN=0.0 
      DO 40 I=1,N 
      DN=DN+Y(I)*Y(I) 
   40 CONTINUE 
      DN=SQRT(DN) 
      WRITE(6,650) DN 
      STOP 
   50 WRITE(6,660) ICON 
      STOP 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1','COEFFICIENT MATRIX' 
     */' ','N=',I5,3X,'NH=',I5) 
  610 FORMAT(/5X,'(',I3,',',I3,')',4E17.8 
     */(10X,4E17.8)) 
  620 FORMAT(/' ','CONSTANT VECTOR' 
     */(5X,4('(',I3,')',E17.8,5X))) 
  630 FORMAT(/' ','SOLUTION VECTOR' 
     */(5X,4('(',I3,')',E17.8,5X))) 
  640 FORMAT(/' ','RESIDUAL VECTOR' 
     */(5X,4('(',I3,')',E17.8,5X))) 
  650 FORMAT(/' ','NORM=',E17.8) 
  660 FORMAT(/' ','ICON=',I5) 
      END 
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Method 
The multiplication ( )ijyY =  of a matrix A by a vector X 
is computed: 

∑
=

==
n

j
jiji nixay

1

,...,1,  (4.1) 

where A is n × n real symmetric band matrix with lower 
and upper band widths h and x is an n dimensional vector. 
While, this subroutine computes the multiplication using 
equation (4.2) instead of equation (4.1) by making use of 
symmetric band matrix characteristics. 

( )

( )
∑

+

−=

==
nhi

hij
iiji nixay

,min

,1max

,...,1,  (4.2) 

This subroutine increases the precision of the inner 
products in equation (4.2) so that the effects of running 
error are minimized. 
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A-21-12-0401  MSGM, DMSGM 

Multiplication of matrices (real symmetric by real 
general) 
CALL MSGM (A, B, KB, C, KC, N, VW, ICON) 

 
Function 
This subroutine performs multiplication of an n × n real 
symmetric matrix A and an n × n real matrix B. 

C AB=  

where, C is an n × n real matrix n ≥ 1. 
 
Parameters 
A .... Input.  Matrix A, in the compressed mode, 

one-dimensional array of size n(n+1)/2. 
B .... Input.  Matrix B, two-dimensional array,  

B(KB, N) 
KB .... Input.  The adjustable dimension of array B,  

( ≥ N). 
C .... Output.  Matrix C, two-dimensional array,  

C(KC, N). (See “Comment on use”.) 
KC .... Input.  The adjustable dimension of array C,  

(≥ N). 
N .... Input.  The order n of matrices A, B and C. 
VW .... Work area.  One-dimensional array of size n 
ICON .... Output.  Condition codes.  See Table MSGM-1. 
 
Table MSGM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N<1, KB<N or KC<N Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... CSGM, MGGM, MGSSL 
FORTRAN basic function ... None 

• Notes 
Saving the storage area: 
If there is no need to keep the contents on the array A, 
more storage area can be saved by using the 
EQUIVALENCE statement as follows: 
 
EQUIVALENCE (A(1), C(1.1)) 
 
Refer to the example shown in “Comments on use” 

below. 
• Example 

The following shows an example of obtaining the 
multiplication of a real symmetric matrix A by a real 
matrix B,  Here, n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(100,100), 
     *C(100,100),VW(100) 
      EQUIVALENCE (A(1),C(1,1)) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
   10 READ(5,100) N 
      IF(N.EQ.0) STOP 
      WRITE(6,150) 
      NT=N*(N+1)/2 
      READ(5,200) (A(I),I=1,NT) 
      READ(5,200) ((B(I,J),J=1,N),I=1,N) 
      CALL PSM(IA,1,A,N) 
      CALL PGM(IB,1,B,100,N,N) 
      CALL MSGM(A,B,100,C,100,N,VW,ICON) 
      WRITE(6,250) ICON 
      IF(ICON.NE.0) GOTO 10 
      CALL PGM(IC,1,C,100,N,N) 
      GOTO 10 
  100 FORMAT(I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** MATRIX MULTIPLICATION **') 
  250 FORMAT(//10X,'** MSGM ICON=',I5) 
      END 
 
Subroutines PSM and PGM in the example are for 
printing the real symmetric and real matrices. These 
programs are shown in the example for subroutine 
MGSM. 
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A21-12-0301  MSSM, DMSSM 

Multiplication of two matrices  
(real symmetric by real symmetric) 
CALL MSSM (A, B, C, KC, N, VW, ICON) 

 
Function 
The subroutine performs multiplication of two n × n real 
symmetric matrices A and B. 

C AB=  

where, C is an n × n real matrix, n ≥ 1. 
Parameters 
A .... Input.  Matrix A, in the compressed mode, 

one-dimensional array of size n(n+1)/2. 
B .... Input.  Matrix B, in the compressed mode, 

one-dimensional array of size n(n+1)/2. 
C .... Output.  Matrix C, two-dimensional array,  

C(KC, N). (See “Notes”.) 
KC .... Input.  The adjustable dimension of array C, 

(≥ N). 
N .... Input.  The order n of matrices A, B and C. 
VW .... Work area.  One-dimensional array of size n. 
ICON .... Output.  Condition codes.  See Table MSSM-1. 
 
Table MSSM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N<1 or KC<N Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... CSGM, MGSM, and MGSSL. 
FORTRAN basic function ... None 

• Notes 
Saving the storage area: 
If there is no need to keep the contents on the array A, 
more storage area can be saved by using the 
EQUIVALENCE statement as follows: 
 
EQUIVALENCE (A(1), C(1,1)) 
 
Refer to the example shown in “Comments on use” 

below. 
 

• Example 
The following shows an example of obtaining the 
multiplication real symmetric matrices A and B. 
Here, n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(5050),C(100,100), 
     *VW(100) 
      EQUIVALENCE (A(1),C(1,1)) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
   10 READ(5,100) N 
      IF(N.EQ.0) STOP 
      WRITE(6,150) 
      NT=N*(N+1)/2 
      READ(5,200) (A(I),I=1,NT) 
      READ(5,200) (B(I),I=1,NT) 
      CALL MSSM(A,B,C,100,N,VW,ICON) 
      IF(ICON.NE.0) GOTO 10 
      CALL PSM(IA,1,A,N) 
      CALL PSM(IB,1,B,N) 
      CALL PGM(IC,1,C,100,N,N) 
      GOTO 10 
  100 FORMAT(I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** MATRIX MULTIPLICATION **') 
      END 
 

The subroutines PSM and PGM in the example are for 
printing the real symmetric and real matrices.  These 
programs are shown in the example for subroutine 
MGSM. 
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A21-14-0101  MSV, DMSV 

Multiplication of a real symmetric matrix and a real 
vector. 
CALL MSV (A, N, X, Y, ICON) 

 
Function 
This subroutine performs multiplication of an n × n real 
symmetric matrix A and a vector x. 

y = Ax (1.1) 

where, x and y are n-dimensional vectors, n ≥ 1. 
 
Parameters 
A .... Input.  Matrix A, in the compressed mode, 

one-dimensional array of size n(n+1)/2. 
N .... Input.  The order n of matrix A. 
X .... Input.  Vector x, one-dimensional array of size 

n. 
Y .... Output.  Multiplication y of matrix A and 

vector x, one-dimensional array of size n. 
ICON .... Output.  Condition codes.  See Table MSV-1. 
 
Table MSV-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N = 0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II .... MGSSL 
FORTRAN basic function ....IABS. 

• Notes 
This subroutine mainly consists of the computation, 

y = Ax (3.1) 

but it can be changed to another type of computation, 

y = y' − Ax (3.2) 

by specifying N = – n and giving an arbitrary vector y'  to 
the parameter Y. 
This method can be used to compute a residual vector of 
linear equations such as 

r = b − Ax (3.3) 

Refer to the example in “Comments on use” below. 
• Example 

This example shows the program to solve a system of 
linear equations (3.4) by subroutine LSX and to obtain 
a residual vector  b − Ax based on the solution.  Where 
n ≤ 100. 

Ax = b (3.4) 

C     **EXAMPLE** 
      DIMENSION A(5050),X(100), 
     *          Y(100),W(5050) 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      READ(5,510) (X(I),I=1,N) 
      WRITE(6,600) N 
      L=1 
      LE=0 
      DO 10 I=1,N 
      LE=LE+I 
      WRITE(6,610) I,(A(J),J=L,LE) 
      L=LE+1 
   10 CONTINUE 
      WRITE(6,620) (I,X(I),I=1,N) 
      EPSZ=1.0E-6 
      ISW=1 
      DO 20 I=1,N 
      Y(I)=X(I) 
   20 CONTINUE 
      DO 30 I=1,NT 
      W(I)=A(I) 
   30 CONTINUE 
      CALL LSX(A,N,X,EPSZ,ISW,ICON) 
      WRITE(6,630) (I,X(I),I=1,N) 
      CALL MSV(W,-N,X,Y,ICON) 
      IF (ICON.NE.0) GO TO 50 
      WRITE(6,640) (I,Y(I),I=1,N) 
      DN=0.0 
      DO 40 I=1,N 
      DN=DN+Y(I)*Y(I) 
   40 CONTINUE 
      DN=SQRT(DN) 
      WRITE(6,650) DN 
   50 WRITE(6,660) ICON 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1','COEFFICIENT MATRIX' 
     */' ','ORDER=',I5) 
  610 FORMAT(/5X,'(',I3,')',4E17.8/ 
     *(10X,4E17.8)) 
  620 FORMAT(/' ','CONSTANT VECTOR' 
     */(5X,4('(',I3,')',E17.8,5X))) 
  630 FORMAT(/' ','SOLUTION VECTOR' 
     */(5X,4('(',I3,')',E17.8,5X))) 
  640 FORMAT(/' ','RESIDUAL VECTOR' 
     */(5X,4('(',I3,')',E17.8,5X))) 
  650 FORMAT(/' ','NORM=',E17.8) 
  660 FORMAT(/' ','ICON=',I5) 
      END 
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Method 
This subroutine performs multiplication y = (yi) of an 
 n × n real matrix A = (aij) and an n dimensional vector x 
= (xj) through using the equation (4.1). 

nixa
n

j
jiji ,...,1,

1

==∑
=

y  (4.1) 

In this subroutine, precision of the inner products in (4.1) 
has been raised to minimize the effect of rounding errors. 
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I11-91-0101  NDF, DNDF 

Normal distribution function )(xφ  

CALL NDF (X, F, ICON) 
 
Function 
This subroutine computes the value of normal 

distribution function dtex
x

t

∫
−

=
0

2

2

2
1)(
π

φ  by the 

relation. 

( ) 22erf)( xx =φ  (1.1) 

Parameters 
X ..... Input.  Independent variable x. 
F ..... Output.  Function value )(xφ  
ICON .. Output.  Condition code 

See Table NDF-1. 
 

Table NDF-1  Condition code 

Code Meaning Processing 
0 No error  

 
Comments on use 
• Subprograms used 

SSL II ...MGSSL 
FORTRAN basic function ...ERF 

 
• Notes 

There is no restriction with respect to the range of 
argument X. 

Using the relationship between normal distribution 
function )(xφ  and complementary normal distribution 
function )(xψ  

)(2/1)( xx ψφ −=  (3.1) 

the value of )(xφ  can be computed by using 
subroutine NDFC.  Note that in the range of x > 2 , 
however, this leads to less accurate and less efficient 
computation than calling NDF. 

• Example 
The following example generates a table of )(xφ  in 
which x varies from 0.0 to 10.0 with increment 0.1. 

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,101 
      X=FLOAT(K-1)/10.0 
      CALL NDF(X,F,ICON) 
      WRITE(6,610) X,F 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF NORMAL DISTRI', 
     *'BUTION FUNCTION'// 
     *6X,'X',7X,'NDF(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
      END 
 
Method 
Normal distribution function: 

dtex
x

t

∫
−

=
0

2

2

2
1)(
π

φ  (4.1) 

can be written with variable transformation ut =2  
as 

due
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x
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∫
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φ

 

Therefore from  duex
x u∫ −=

0

22)(erf
π

 

the following holds. 

( )2erf
2
1=)( xxφ  (4.2) 

This subroutine computes )(xφ  from (4.2) by using 
FORTRAN function ERF. 
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I11-91-0201  NDFC, DNDFC 

Complementary normal distribution function )(xψ  

CALL NDFC (X, F, ICON) 
Function 
This subroutine computes the value of complementary 
normal distribution function. 

dtex
x

t

∫
∞ −

= 2

2

2
1)(
π

ψ  

by the relation ship, 

( ) 22erfc)( xx =ψ  (1.1) 

Parameters 
X .... Input.  Independent variable x. 
F ..... Output.  Function value )(xψ  
ICON .. Output.  Condition code. 

See Table NDFC-1. 
 
Table NDFC-1  Condition code 

Code Meaning Processing 
0 No error  

 
Comments on use 
• Subprogram used 

SSL II ... MGSSL 
FORTRAN basic function ... ERFC 

 
• Notes 

There is no restrictions in the range of argument X. 
Using the relationship between normal distribution 

function )(xφ  and complementary normal distribution 
function )(xψ . 

)(
2
1)( xx φψ −=  (3.1) 

the value of )(xψ  can be computed by using subroutine 
NDF.  Note that in the range of x > 2  , however, this 
leads to less accurate and less efficient computation that 
calling NDFC. 

• Example 
The following example generates a table of )(xψ  in 
which x varies from 0.0 to 10.0 with increment 0.1. 

 
C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,101 
      X=FLOAT(K-1)/10.0 
      CALL NDFC(X,F,ICON) 
      WRITE(6,610) X,F 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF COMPLEMENTARY', 
     *' NORMAL DISTRIBUTION FUNCTION' 
     *//6X,'X',7X,'NDFC(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
      END 
 
Method 
Complementary normal distribution function: 

dtex
x

t

∫
∞ −

= 2

2

2
1)(
π

ψ  (4.1) 

can be written with variable transformation ut =2 , as 

duex x
u 2

2
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∫
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Therefore from duex
x

u∫
∞ −=

22)( erfc
π

 the following 

holds. 

( )2 erfc
2
1)( xx =ψ  (4.2) 

This subroutine computes )(xψ  from (4.2) by using 
FORTRAN function ERFC. 
 



NLPG1 

482 

D31-20-0101-NLPG1, DNLPG1 

Nonlinear programming 
(Powell’s method using function values and its 
derivatives) 
CALL NLPG1 (X, N, FUN, GRAD, FUNC, JAC, 
M, EPSR, MAX, F, VW, K, IVW, ICON) 

 
Function 
Given an n-variable real function  f (x), its derivative g(x), and initial vector x0, vector x* which minimizes   
f (x) and the value of function  f (x*) are obtained subject 
to the constrains 

ci(x) = 0,   i = 1, 2,...,m1 (1.1) 
ci(x) ≥ 0,   i = m1+1, m1+2,..., m1+m2 (1.2) 

The Jacobian J(x) of {ci(x)} is given as a function and   
f (x) is assumed to have up to the second continuous 
derivative. 
Further, x = (x1, x2,...,xn)T and m1 and m2 are the number 
of the equality and inequality constraints, where n ≥ 1,  
m1 ≥ 0, m2 ≥ 0, and  m ≥ 1 (m = m1 + m2) . 
 
Parameters 
X ..... Input.  Initial vector x0. 

Output.  Vector x*. 
One-dimensional array of size n. 

N ..... Input. Number n of variables. 
FUN ..... Input.  Name of function subprogram which 

calculates  f (x) 
The form of subprogram is as follows: 
FUNCTION FUN (X) 
Parameters 
X ... Input.  Variable vector x. 
 One-dimensional array of size n. 
 Substitute the value of  f (x) in function 
 FUN. 
(See “Example.”) 

GRAD. Input.  Name of subroutine subprogram which 
calculates g(x). 
The form of subprogram is as follows: 
SUBROUTINE GRAD (X, G) 
Parameters 
X ... Input. Variable vector x. 
 One-dimensional array of size n. 
G ... Output.  One-dimensional array of size n, 
 where  G(1) = 1xf ∂∂ ,..., G(N) = 
 nxf ∂∂  
(See “Example.”) 

FUNC. Input.  Name of subroutine subprogram which 
calculates ci(x). 
The form of subprogram is as follows: 
SUBROUTINE FUNC (X, C) 
Parameters

X ... Input. Variable vector x. 
 One-dimensional array of size n. 
C ... Output.  One-dimensional array of size m, 
 where C(1) = c1(x), ..., C(M(1)) = 
 cm1

(x) , ...,  C(M(1) + M(2)) = cm(x). 
(See “Example.”) 

JAC .... Input.  Name of subroutine subprogram which  
calculates J(x). 
The form of subprogram is as follows: 
SUBROUTINE JAC (X, CJ, K) 
Parameters 
X … Input. Variable vector x. 

One-dimensional array of size n. 
CJ ... Output. Jacobian matrix. 

Two-dimensional array, CJ (K, N), where 
CJ(I,J) = ji xc ∂∂  

K ... Input.  Adjustable dimension of array CJ. 
(See “Example.”) 

M ..... Input.  The number of constraints. 
One-dimensional array of size 2, where M(1) = 
m1 and M(2) = m2. 

EPSR .. Input.  Convergence criterion (≥ 0.0). 
The default value is used if 0.0 is specified.  
(See “Comments on Use.”) 

MAX .. Input.  The upper limit (≠0) of number of 
evaluations for functions  f (x), g(x), c(x), and 
J(x). 
(See “Comments on Use.”) 
Output.  The number (>0) of actual evaluations 

F ..... Output.  The value of function  f (x*) 
VW ..... Work area.  VW is two-dimensional array, 

VW(K, M(1)+M(2)+2×N+12). 
K .... Input.  Adjustable dimension  

(≥ M(1)+M(2)+N+4) of array VW. 
IVW ..... Work area.  One-dimensional array of size  

2×(M(1)+M(2)+N+4). 
ICON ..... Output.  Condition code.   

(See Table NLPG1-1) 
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Table NLPG1-1  Condition codes 

Code Meaning Processing 
0 No error.  

10000 The convergence condition 
has not been satisfied within 
the specified function 
evaluation count. 

The last values 
obtained are 
stored in X and 
F. 

20000 Local decrement of the 
function was not satisfied 
during the calculation. (See 
“Method.”)  The value of EPSR 
is too small. 

Bypassed.  (The 
last values 
obtained are 
stored in X and 
F.) 

21000 There may not be a solution 
that satisfies the constraints, 
or the initial value x0, is not 
appropriate.  Retry with a 
different initial value x0. 

Bypassed. 

30000 N < 1, EPSR < 0.0, M(1) < 0, 
M(2) <0, K < M (1) + M(2) + 
N + 4, MAX = 0. 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, UQP, UNLPG, MGSSL 
FORTRAN basic functions ... ABS, AMAX1, 

 
• Notes 

An EXTERNAL statement is necessary to declare the 
subprogram names correspond to parameters FUN, 
GRAD, FUNC and JAC in the calling program. 
 
EPSR 
In this subroutine, the convergence condition is 
checked as follows:  During iteration, if 

( ) EPSR,0.1max1 ⋅≤− ∞∞+ kkk xxx  

is satisfied, point xk+1 is assumed to be minimum point 
x* and iteration is stopped. 

Since  f (x) is assumed to be approximately a 
quadratic function in the vicinity of point x*, it is 
appropriate to specify EPSR as EPSR ≈ u , where u 
is the unit round off to obtain the value of function f(x*) 
as accurate as the rounding error.  The default value of 
EPSR is 2 u  
 
MAX 
The number of function evaluation is incremented by 
one every time  f (x) is evaluated, by n every time g(x) is evaluated, by m every time c(x) is evaluated, and by 
mn every time J(x) is evaluated. 
The number depends on characteristics of the functions, 
initial vector, and convergence criterion. 
Generally, when an appropriate initial vector is 
specified and the default value is used for the 
convergence criterion, it is adequate to specify MAX = 
800･mn. 

Even if the convergence condition is not satisfied 
within the specified evaluation count and the 
subroutine is returned with ICON = 10000, iteration 
can be resumed by calling this subroutine again.  In this 
case, the user must specify a negative value as the 
additional evaluation count in the parameter MAX and 
retain other parameters unchanged. 

 
• Example 

Given the following 2-variable real function 

( ) 21
2
221

2
121 1022, xxxxxxxxf +−+−=  

the vector which minimizes function and the value of   
f (x*) are obtained subject to the following constraints: 

( ) 025.15.0, 2
2

2
1211 =−+= xxxxc  

( ) 0, 21211 ≥+−= xxxxc  

where the initial vector is x0 = (−2, 2)T  
 
C     **EXAMPLE** 
      DIMENSION X(2),M(2),VW(8,18), 
     *          IVW(16) 
      EXTERNAL TEST,GRAD,TESTC,JAC 
      X(1)=-2.0 
      X(2)=2.0 
      N=2 
      M(1)=1 
      M(2)=1 
      EPSR=1.0E-3 
      MAX=800*2*2 
      K=8 
      CALL NLPG1(X,N,TEST,GRAD,TESTC, 
     *     JAC,M,EPSR,MAX,F,VW,K,IVW,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,610) F,MAX 
      WRITE(6,620) (I,X(I),I=1,N) 
      STOP 
  600 FORMAT('1','*ICON=',I5) 
  610 FORMAT(' ','*F=',E15.7,1X,'MAX=',I5) 
  620 FORMAT('0',(/2X,'X(',I2,')=',E15.7)) 
      END 
C     OBJECTIVE FUNCTION 
      FUNCTION TEST(X) 
      DIMENSION X(2) 
      TEST=(X(1)-2.0*X(2)-10.0)*X(1)+ 
     *    (2.0*X(2)+1.0)*X(2) 
      RETURN 
      END 
C     DERIVATIVE 
      SUBROUTINE GRAD(X,G) 
      DIMENSION X(2),G(2) 
      G(1)=2.0*X(1)-2.0*X(2)-10.0 
      G(2)=-2.0*X(1)+4.0*X(2)+1.0 
      RETURN 
      END 
C     CONSTRANTS 
      SUBROUTINE TESTC(X,C) 
      DIMENSION X(2),C(2) 
      C(1)=0.5*X(1)*X(1)+1.5*X(2)*X(2)-2.0 
      C(2)=-X(1)+X(2) 
      RETURN 
      END 
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C     JACOBIAN 
      SUBROUTINE JAC(X,CJ,K) 
      DIMENSION X(2),CJ(K,2) 
      CJ(1,1)=X(1) 
      CJ(2,1)=-1.0 
      CJ(1,2)=3.0*X(2) 
      CJ(2,2)=1.0 
      RETURN 
      END 
 
Method 
This subroutine solves a nonlinear programming problem 
given as 

( ) minimize→xf  (4.1) 

subject to the constraints 

ci(x) = 0 ,   i = 1, 2, ...,m1 (4.2) 
(equality constraints) 
ci(x) ≥ 0 ,   i = m1+1,...,m1+m2 (4.3) 
(inequality constraints) 

using Powell’s variable metric method. Let us introduce 
the following symbols for simplicity: 
M1 ..... Set (1,2,...,m1) of subscripts of the equality 

constraints.  (This may be an empty set.) 
M2 ..... Set (m1+1,...,m1+m2) of subscripts of the 

inequality constraints.  (This may be and 
empty set.) 

M ..... Set (1, 2,...,m1+m2) of subscripts of constraints. 
(This must not be an empty set.) 

g ..... Gradient vector of f 
ic∇  .. Gradient vector of ci. 

 
Let us explain outline of the algorithm for the problem 

by comparing with that for unconstrained minimization 
problem. 

The revised quasi-Newton method, that is, the variable 
metric method to minimize the objective function f(x) 
without constraints such as (4.2) and (4.3), is described 
as follows. Function f(x) can be approximated by 
quadratic function at an arbitrary point xk, in the region 
of the minimum point as follows: 

( ) ( ) ( ) Byyxgyxx kk
TT

2
1+≈ ff  (4.4) 

where 

y = x − xk (4.5) 

B is the Hessian matrix of  f (x) for xk.  The value of y 
that minimizes function (4.4) is computed and the 
solution is defined as yk.  Then, the linear search is a 
applied to obtain the value of a that satisfies 

( )kkf yx α
α

+min  (4.6) 

this value is defined as α k   Substituting this value α k , 
in expression 

kkkk yxx α+=+1  (4.7) 

the better approximation  xk+1 is obtained.  
On such process, Hessian matrix B is not calculated 
directly but is approximated using vectors g(xk+1) − g(xk)  
and α k yk during iteration. 

On the other hand, for the minimization with 
constraints such as (4.2) and (4.3), the value of y is 
obtained under the constraints.  For (4.2), the condition 
of the linear approximation. 

1
T ,0)()()( Miccc kikii ∈=+= xyxx ∇  (4.8) 

is imposed, whereas for (4.3), the condition 

2
T ,0)()()( Miccc kikii ∈≥+= xyxx ∇  (4.9) 

is imposed. 
It is therefore necessary to obtain the value y that 

minimizes (4.4) satisfying the conditions of (4.8) and 
(4.9) in order to solve the nonlinear programming 
problem given by (4.1), (4.2), and (4.3).  This is a 
quadratic programming problem with respect to y. 
Concerning the linear search, the penalty function 

( ) ( ) ( )[ ]xcxx PfW +=  (4.10) 

should be applied instead of (4.6), namely the value of α 
that minimizes W(x) is obtained.  Where the function 
P[c(x)] takes zero if all constraints are satisfied; 
otherwise, it takes a positive value.  This will be 
explained precisely later.  Further, information about not 
only  f (x) but also c(x) are incorporated to update 
approximation matrix Bk of the Hessian matrix. 
   If only the equality constraint is imposed, the following 
must be satisfied at the minimum point: 

( ) ( ) 0
1

=− ∑
∈ Mi

ii c xxg ∇λ  (4.11) 

where λ i , is the Lagrange multiplier. 
To solve (4.11) which is a simultaneous nonlinear equations 
of order n+m1, the second partial derivatives of 

( ) ( ) ( )∑
∈

−=
1

,
Mi

iicf xxx λλφ  (4.12) 

are necessary.  This means that (4.11) cannot be solved 
with only the partial derivatives of  f (x). 
Updating of Bk is therefore performed based on the 
matrix of rank 2 obtained from vectors αkyk and 
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( ) ( )λλλλλλλλγγγγ ,,1 kxkxk xx φ∇φ∇ −= +  (4.13) 

Where φ∇ x  is the gradient vector of φ  with respect to 
x.  If the problem has nonlinear equality constraints, the 
exact linear search for W(x) causes extreme slow step 
size of xk, as a result, it does not converge to the actual 
minimum point in some cases; therefore, a watchdog 
should be introduced to watch behavior of solution xk. 

Explanations about calculation procedures of this 
subroutine are given in the next subsection, where the 
functions are used which are defined as follows: 

 
• Penalty function 

( ) ( ) ( )

( )( )∑

∑

∈

∈

+

+=

2

1

,0min

W

Mi
ii

Mi
ii

c

cf

x

xxx

µ

µ

 (4.14) 

The function increases effect of the penalty term as the 
point x takes out of the constraints.  Coefficient µi  is 
determined according to the method explained later. 

• Linear approximation of the penalty function this is 
defined as linear approximation at an arbitrary point xk, 
in the region of the minimum point 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )∑

∑

∈

∈

−++

−++

−+=

2

1

T

T

T

,0min
Mi

kikkii

Mi
kikkii

kkkk

cc

cc

fW

xxxx

xxxx

xgxxxx

∇µ

∇µ

 (4.15) 

Lagrangian function 

( ) ( ) ( )∑
∈

−=
1Mi

iik cfL xxx λ  (4.16) 

where λ i  is the Lagrange multiplier determined from xk, 
as explained later. 

 
Calculation procedures 
Step 1 (initial value setting) 
1) Sets the following values: 

k = 0 (iteration count) 
H0 = In 
l = 0 (watchdog location) 
lt = 5 (interval to check watchdog location) 

25.0=θ  

ε =
≠












EPSR,  EPSR 0   (conversion   judg -

2  EPSR = 0       ment criterion)u ,
 

Step 2 (quadratic programming problem) 

2) Solves the quadratic programming problem QPk with 
respect to y as follows: 

( )

( ) ( )
( ) ( ) 













∈≥+

∈=+

→+

2
T

1
T

TT

,0

,0

sconstrainttoSubject

Minimize
2
1

Micc

Micc

kiki

kiki

kk

xxy

xxy

xgyyBy

∇

∇
 (4.17) 

3) When there is an optimal solution yk for QPk, if 

( ) ε⋅< ∞∞ kk xy ,0.1max  (4.18) 

is satisfied, where xk, is a feasible point, assumes xk to 
be x* and  f (xk) to be  f (x*), and sets ICON = 0, then 
stops processing; otherwise, the linear search for W(x) 
is performed to obtain 

kkk yxx ∗
+ += α1  (4.19) 

in the yk direction. 
If ky*α  is small enough to be considered as 

convergence and if xk is a feasible point, ICON = 
20000 is set and processing is stopped.  This is 
because the convergence criterion ε  is too small, but 
the point can be considered to be the minimum point.  
If xk is not a feasible point, ICON = 21000 is set and 
processing is stopped. 
If ky*α  is large, proceeds to step 3. 

4) When there is no feasible solution for QPk: The 
problem is modified to the following quadratic 
programming problem: 

QPk: 

( )

( ) ( )
( ) ( )

( )
( ) 
























<
>

=

≤≤

∈≥+

∈=+

→−+

,0,z
,0,1

z

,1z0
where,

,0z

,0z

sconstraint Subject to

Minimize
2
1

2
T

1
T

TT

ki

ki
i

ikiki

kiki

kk

c
c

Micc

Micc

zB

x
x

xxy

xxy

xgyyy

∇

∇

β
 (4.20)

 

β  is a sufficiently large positive value 
Denotes the optimal solution as yk and z . 

If z < ε  and if xk is a feasible point assumes xk to 
be x* and  f (xk) to be  f (x*) and sets ICON =0, then 
stops processing. 
If z < ε  and if xk is not a feasible point, there is no 
feasible solution for the nolinear programming 
problem given as (4.1), (4.2), and (4.3) (constraints 
conflict with each other), or the initial value x0 is 
not appropriate, thus ICON = 21000 is set and 
processing is stopped. 
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If z ≥ ε  and if 

( ) ε⋅< ∞∞ kk xy ,0.1max  (4.21) 

is satisfied, and if xk is a feasible point; assumes xk to 
be x* and  f (xk) to be  f (x*), and sets ICON = 0, then 
stops processing. If (4.21) is not satisfied, proceeds to 
step 3. 

Step 3 (watchdog processing) 
5) Assume k = k + 1 

Checks behavior of solution xk to judge whether the 
step size of xk is appropriate. 
If 

( ) ( ) ( ) ( )( )1+−−≤ llllk WWWW xxxx θ  (4.22) 

is satisfied, proceeds to step 5. 
Step 4(watchdog and Bk updating) 
6) If 

( ) ( )lk WW xx ≤  

is satisfied, assumes l = k and xl = xk. 
7) If the value of k is a multiple of lt, assumes xk = xl and 

l =k. 
8) Updates Bk as follows.  Using 

( )

( ) ( )( )











−−

−=
=−=

∑
∈

−

−

−−

Mi
kikii

kk

kkk

cc 1

1

1
*

1

xx

gg
yxx

∇∇λ

α
γγγγ
δδδδ

 (4.23) 

determines 









<
−

≥
=

−
−

−

−

δδδδδδδδγγγγδδδδ
γγγγδδδδδδδδδδδδ

δδδδδδδδ
δδδδδδδδγγγγδδδδ

1
TT

T
1

T
1

T
1

TT

2.0,8.0

2.0,1

k
k

k

k

B
B

B
B

ξ  (4.24) 

with the value obtained as ξ  , calculates ηηηη  as 
follows: 

δδδδγγγγηηηη 1)1( −−+= kBξξ  (4.25) 

Substituting these values in (4.26), Bk is obtained 
from 

ηηηηδδδδ
ηηηηηηηη

δδδδδδδδ
δδδδδδδδ

T

T

1
T

1
T

1
1 +=

−

−−
−

k

kk
kk B

BBBB  (4.26) 

Then, returns to step 2. 
Step 5 (modification of step size) 
9) Checks the value of α* obtained at 3) as follows: 

Obtains x that satisfies the following in the yk 
direction: 









≥

≤

−

−

)()(       
or

)()(        
       

1

1

k

k

LL

WW

xx

xx
 (4.27) 

If there is no x that satisfies (4.27), returns to step 4. 
If there is an x that satisfies (4.27),  

xk+1 = xk  + ~α yk is assumed. 
If *=αα~ , returns to step 4; otherwise returns to step 3. 
 

Notes on algorithm 
1) Determination of λi  

Determines λi , from solutions of QPk using the 
Lagrange multiplier for the constraints. 

2) Determination of µi  
3) The initial value is specified as µi=2|λi|, then µi=2|λi| 

is set for µi , that satisfies µi<1.5|λi| (the current value 
is used for λi ) thereafter. 

 
(See references [94] and [95] for details.) 
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C24-11-0101  NOLBR, DNOLBR 

Solution of a system of nonlinear equations (Brent’s 
Method) 
CALL NOLBR (X, N, FUN, EPSZ, EPST, FC, 
M, FNOR, VW, ICON) 

 
Function 
This subroutine solves a system of nonlinear equations 
(1.1) by Brent’s method. 

( )
( )

( ) ⎪
⎪
⎭

⎪
⎪
⎬

⎫

=

=
=

0,...,,
:

0,...,,
0,...,,

21

212

211

nn

n

n

xxxf

xxxf
xxxf

 (1.1) 

That is, let  f (x) = (f1(x), f2(x),..., fn(x))T and  x = (x1, 
x2, ..., xn)T, then eq. (1.2) is solved from the initial value 
x0. 

f (x) = 0 (1.2) 

where 0 is an n-order zero vector. 
Parameters 
X ..... Input.  An initial vector x0 to solve equation 

(1.2). 
Output.  Solution vector.  One dimensional 
array of size n. 

N ..... Input.  Dimension n of the system. 
FUN ..... Input. The name of the function subprogram 

which evaluates the function  fk(x).  FUN must 
be declared as EXTERNAL in the program 
from which this subroutine is called. Its 
specification is: 
FUNCTION FUN (X, K) 
Parameters 
X ..... Input. Vector variable, x  One 

dimensional array of size n. 
K ..... Input.  An integer such that  fk(x) is 

evaluated (1 ≤ K ≤ n).  (See example) 
EPSZ ..... Input.  The tolerance (≥ 0.0).  The search for a 

solution vector is terminated when 
( )f xi ∞

≤ EPSZ  (Refer to notes) 

EPST ..... Input.  The tolerance (≥ 0.0).  The iteration is 
considered to have converged when 

∞∞− ⋅≤− iii xxx EPST1  (Refer to notes) 

FC ..... Input.  A value to indicate the range of search 
for the solution vector (≥ 0.0). 
The search for a solution vector is terminated 
when ( )x xi ∞ ∞

> ⋅FC max 0 10, .  (Refer to 

notes) 
M ..... Input.  The upper limit of iterations (> 0) (See 

notes) 

Output.  The number of iterations executed. 
FNOR … Output.  The value of ( )

∞ixf  for the 

solution vector obtained. 
VW ..... Work area.  One dimensional array of size  

n (n + 3) 
ICON ..... Output.  Condition codes.  See table NOLBR-1. 
 

Table NOLBR-1  Condition codes 

Code Meaning Processing 
 1 Convergence criterion 

( )f x Ei ≤ PSZ  was satisfied. 
Normal 

 2 Convergence criterion 

∞∞− ⋅≤− iii xxx EPST1  was 

satisfied. 

Normal 

 10000 The specified convergence 
conditions were not satisfied 
during the given number of 
iterations. 

The last xi is 
returned in X. 

 20000 A solution vector was not 
found within the search 
range (See parameter FC.). 

Bypassed. 

 25000 The Jacobian of f(x) reduced 
to 0 during iterations. 

The last xi is 
returned in X. 

 30000 N≤0, EPSZ<0, EPST<0, 
FC≤0, or M≤0 

Bypassed 

 
Comments on use 
• Subprogram used 

SSL II ... AMACH and MGSSSL 
FORTRAN basic functions ... ABS, AMAX1, SIGN, 
SQRT 

 
• Notes 

ZFUN must be declared as EXTERNAL in the 
program from which this subroutine is called. 

Setting of EPSZ and EPST 
Two convergence criteria are used in this subroutine.  
When either of two is met, the iteration terminates.  If 
the user wishes to cancel one of the criteria, he has 
only to set the corresponding tolerance equal to 0.0.  
That is, when: 
a) ( )EPSZ  and EPST = 0.= >ε A 0  

Unless x xi i− =− ∞1 0  is satisfied, the iteration is 

repeated until ( ) Aif ε≤
∞

x  is satisfied, or until M 

times iterations have been completed. 
b) ( )EPSZ = 0 and EPST = εB > 0  

Unless ( )f xi ∞
= 0  is satisfied, the iteration is 

repeated until 
∞∞− ≤− iBii xxx ε1  is satisfied 

until M times iteration have been completed. 
c) EPSZ = 0 and EPST = 0 

Unless ( )f x x xi i i∞ − ∞
= − =0 01 or , the 

iteration is repeated M times.  This setting c) is 
useful for executing M times-iterations. 
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[The meaning of FC] 
Sometimes a solution vector cannot be found in the 
neighbourhood of the initial vector x0.  When this 
happens, xi diverges from x0, as a result, numerical 
difficulties such as overflows may occur in evaluating   
f (x).  Parameter FC is set to make sure that these 
anomalies may not occur by limiting the range of search 
for solution.  Standard value of FC is around 100.0. 
[Setting of M] 
The number of iterations needed for convergence to the 
solution vector depends on the nature of the equations 
and the magnitude of tolerances.  When an initial vector 
is improperly set or the tolerances are too narrowly set, 
parameter M should be set to a large number.  As a rule 
of thumb, M is set to around 50 for n = 10. 
   Single precision/double precision setting 
Usually, double precision subroutine can often solve 
those nonlinear equation.  While single precision 
subroutine may fail. 
 
• Example 

Non-linear simultaneous equations with two unknowns 

( )
( )

x x

x x
1 2

2

1 2
3

1 2 25

1 2 625

⋅ − =

⋅ − =







.

.  

are solved with initial vector x0 = (5.0, 0.8)T 
The solutions are x = (3.0, 0.5)T and x = (81/32,−1/3)T 
 
C     **EXAMPLE** 
      DIMENSION X(2),VW(10) 
      EXTERNAL FUN 
      X(1)=5.0 
      X(2)=0.8 
      N=2 
      EPSZ=1.0E-5 
      EPST=0.0 
      FC=100.0 
      M=20 
      CALL NOLBR(X,N,FUN,EPSZ,EPST,FC, 
     *           M,FNOR,VW,ICON) 
      WRITE(6,600) ICON,M,FNOR,(I,X(I), 
     *             I=1,N) 
      STOP 
  600 FORMAT(' ','ICON=',I5/' ','M=',I5/ 
     *       ' ','FNOR=',E15.7/ 
     *      (' ','X(',I2,')=',E15.7)) 
      END 
 
      FUNCTION FUN(X,K) 
      DIMENSION X(2) 
      GO TO(10,20),K 
   10 FUN=X(1)*(1.0-X(2)**2)-2.25 
      RETURN 
   20 FUN=X(1)*(1.0-X(2)**3)-2.625 
      RETURN 
      END 
 

Method 
A system of non-linear equations 

f (x) = 0 (4.1) 

is solved by Brent’s method in this subroutine.  At a 
typical step, starting from y1 = xi-1, a set of intermediate 
approximations y2, y3, ... yn, yn+1 are calculated and yn+1 is 
taken as xi which can be considered as better 
approximation than xi-1.  Each of yk+1 (1 ≤ k ≤ n) is 
selected in the way that the Taylor expansion of  fi(y) up 
to the first order term at yi should be zero. 

( ) ( ) ( )

j
n

jj
j

jjjjj

ff

kjff

yxxx
g

yygyy

=






=

=−+≈

∂
∂

∂
∂

,...,

 where,

,...,2,1,

1

T

T

 (4.2) 

• Procedure of Brent’s method 
The procedure to obtain xi from xi–1 is discussed here.  
Assume that an orthogonal matrix Q1 is given (Q1 = I 
when x1 is to be obtained from x0) 
(a) First step 

Let y1 = xi–1 and expand f1(y) at y1 in Taylor’s series 
and approximate it by taking up to the first order 
term. 

( ) ( ) ( )1
T
1111 yygyy −+≈ ff  (4.3) 

The first step is to obtain y which satisfies the equation 

( ) ( ) 01
T
111 =−+ yygyf  

and to let it be y2. 
This is performed according to the following procedure.  
Let T

11
T
1 wQg = then an orthogonal matrix. 

P1, is obtained by Householder method to satisfy the 
following condition 

( )0,...,0,1,, T
1211

T
111

T
1 =±== ewePw αα  

where one of the double sign is selected to be equal to 
that of the first element of T

1w .  The, y2 is calculated as 
follows; 

( )
11212

1

11
12 , Pf QQeQyyy =−=

α
 (4.4) 

(b) Second step 
: 
: 

(c) k-th step 
Again using Taylor’s series of ( )f k y  at yk: 
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( ) ( ) ( )kkkkk ff yygyy −+≈ T  (4.5) 

From the row vector kk QgT , we obtain vector T
kw  by 

replacing the first(k-1) elements in kk QgT  with zeros 

)*,*,...,*(0,...,0,T

1

=

−

k

k

w
 

Next, we obtain an orthogonal matrix Pk by Householder 
method to satisfy the following condition. 

)0,...,0,1(0,...,0,

,,

T

1
2

TT

=

±==
−

k

k

kkkkkk

e

wePw αα

 

Here, the double sign is selected to be the same sign as 
the k-th element in T

kw .  The matrix Pk has the form: 
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Then yk+1 is calculated as follows. 

( )
kkkkk

k

kk
kk

f PQQeQyyy =−= +++ 111 ,
α

 (4.6) 

It can be shown that yk+1, according to (4.6), satisfies 
the conditions (4.7) 

( ) ( )
( ) ( )

( ) ( ) 
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 (4.7) 

Letting yn+1, which is obtained at n-th step (k= n), be xi, 
if xi satisfies the convergence criterion, the iteration 
terminates and xi is taken as the solution vector. 

If not, the above steps are repeated from the first step 
with the next starting value of iteration vector y1 = xi and 
Q1 = Qn+1. 

• Considerations on Algorithm 
(a) Approximation of partial derivatives 

In calculating wk, the j-th element (k≤j≤n) of wk is 

jkk eQgT .  This is equal to the derivative of fk at yk 

along the direction indicated by Qkej (the j-th 
column of Qk).  This subroutine approximates this 
derivative by the divided difference as follows: 

( ) ( )

( ) ( )
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0
:
0

1
1  (4.8) 

uh ii ⋅= ∞−1 where x  (4.9) 
and u is the round-off unit. 
 

(b) When α k = 0   
In the k-th step above, if 

α k = 0  (4.10) 

it is impossible to calculate yk+1.  In this case, the 
subroutine automatically sets yk+1 = yk.  This means that yk 
will not be modified at all.  If, further 

nkk ,...,2,1,0 ==α  (4.11) 

then, y1 (= xi–1) will never be modified during the steps.  
This can happen when the Jacobian of f(x). 

J f
x

i

j

=










∂
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 (4.12) 

is nearly singular.  In this case, processing fails with 
ICON = 25000.  The condition in (4.10) is determined by 
testing if the following condition is satisfied. 

( ) ( ) ( )
nkkj

fufhf kkkkjkikk

,...,1,, +=

⋅≤−+ ∞∞
yyeQy

 (4.13) 

Further details should be referred to Reference [33]. 
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D15-10-0101  NOLF1, DNOLF1 
Minimization of the sum of squares of functions. 
(Revised Marquardt method, using function values 
only) 
CALL NOLF1 (X, N, FUN, M, EPSR, MAX, F, 
SUMS, VW, K, ICON) 

 
Function 
Given m real functions ( ) ( ) ( )xxx mfff ,...,, 21  of n 
variables and initial vector x0, this subroutine obtains 
vector x* which gives a local minimum of  

( ) ( ){ }∑
=

=
m

i
ifF

1

2xx  (1.1) 

and its function value F(x*) by using the revised 
Marquardt method (Levenberg-Marquardt-Morrison 
method (LMM method)).  This subroutine does not 
require derivative of F(x).  However, the fi(x) is assumed 
to have up to the first continuous partial derivative, and m 
≥ n ≥ 1. 
 
Parameters 
X .... Input.  Initial vector x0. 

Output.  Vector x*. 
One-dimensional array of size n. 

N ..... Input.  Number of variables n. 
FUN ..... Input.  Name of subroutine subprogram which 

calculates  fi(x). 
The form of subprogram is as follows: 
SUBROUTINE FUN (X, Y) 
where, 
X ..... Input.  Variable vector x. 

One-dimensional array of size n. 
Y .... Output.  Function value  fi(x)  

corresponding to variable vector x. 
One-dimensional array of size m, with 
correspondence, 

F(1)= f1(x),...,F(M)= fm(x) 

M ..... Input.  Number of functions m. 
EPSR .. Input.  Convergence criterion (≥ 0.0). 

When EPSR = 0.0 is specified, a default value 
is used.  (See Notes.) 

MAX ... Input.  The upper limit ( ≠0) of the number of 
evaluations of function (See Notes.)  
Output.  Number of evaluation actually 
performed (> 0). 

F ..... Output.  Function value  fi(x*) 
One-dimensional array of size m, with 
correspondence, 

F(1)= f1(x*),...,F(M)= fm(x*) 

SUMS .. Output.  Value of the sum of squares F(x*) 
VW ..... Work area.  Two-dimensional array, VW  

(K, N + 2). 
K ..... Input. Adjustable dimension (≥ m + n) of array 

VW. 

ICON ..... Output.  Condition code. 
See Table NOLF1-1. 

 
Table NOLF1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The convergence condition 
was not satisfied within the 
specified number of 
evaluations. 

The last value 
is stored in 
parameters X, 
F and SUMS. 

20000 During computation, 
Marquardt number vk 
exceeded the upper limit 
(See (4.14) in Method). 
EPSR was too small or the 
error of difference 
approximation of a Jacobian 
matrix exceeded the limit of 
computation. 

Discontinued 
(The last value 
is stored 
parameters X, 
F and SUMS.) 

30000 N < 1, M < N, EPSR < 0.0, 
MAX = 0 or K< m+n 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MGSSL  
FORTRAN basic functions ... ABS, SQRT, FLOAT 

 
• Notes 

The program which calls this subroutine must have an 
EXTERNAL statement for the subprogram name that 
correspondents to the argument FUN. 
[Giving EPSR] 
This subroutine assumes that F(x) is approximately 
quadratic in the region of the local minimum point x*.  
To obtain F(x*) as accurate as the unit round off, EPSR 
should be given as EPSR ≈ u  when u is the unit 
round-off. The default value is 2 ⋅ u  
[Giving MAX] 
The number of evaluations of a function is counted by 
the number of computation of  fi(x) for a variable 
vector x, i = 1, ..., m.  This corresponds to the number 
of callings of subprogram FUN. 

The number of evaluations of a function depends on 
characteristics of equation { fi(x)} in addition to the 
initial vector and a convergence criterion. 

Generally, if the default values is used as the 
convergence criterion, and a good initial vector is used, 
MAX = 100･n･m is appropriate. 

If the convergence condition is not satisfied within 
the specified number of evaluations and the subroutine 
is returned with ICON = 10000, the iteration can be 
continued by calling the subroutine again.  In this case, 
parameter MAX is specified with a negative  
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value for an additional evaluation number and the 
contents of other parameters must be kept intact. 
 

• Example 
The minimum point x* for 

( ) ( ) ( )21
2

221
2

121, ,xxf,xxfxxF +=  

where 

( )
( ) ( )2

12212

1211

10,

1,

xxxxf

xxxf

−=

−=
 

is obtained with the initial vector x0 = ( – 1.2, 1.0)T. 
 
C     **EXAMPLE** 
      DIMENSION X(2),F(2),VW(4,4) 
      EXTERNAL ROSEN 
      X(1)=-1.2 
      X(2)=1.0 
      N=2 
      M=2 
      EPSR=1.0E-3 
      MAX=100*2*2 
      CALL NOLF1(X,N,ROSEN,M,EPSR,MAX, 
     *           F,SUMS,VW,4,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,610) SUMS,MAX 
      WRITE(6,620) (I,X(I),I=1,N) 
      WRITE(6,630) (I,F(I),I=1,M) 
      STOP 
  600 FORMAT('1','*ICON=',I5) 
  610 FORMAT(' ',' SUM OF SQUARES= ', 
     *E15.7,' MAX= ',I5/) 
  620 FORMAT(1X,' X(',I2,')=',E15.7) 
  630 FORMAT(1X,' F(',I2,')=',E15.7) 
      END 
C     OBJECTIVE FUNCTION 
      SUBROUTINE ROSEN (X,Y) 
      DIMENSION X(2),Y(2) 
      Y(1)=1.0-X(1) 
      Y(2)=(X(2)-X(1)*X(1))*10.0 
      RETURN 
      END 
 
Method 
This subroutine obtains vector x* which gives a local 
minimum of 

( ) ( ) ( ) ( )

( ){ }∑
=

=

==
m

i

i

T

f

F

1

2

2

       x

xfxfxfx

 (4.1) 

and function value F(x*) corresponding to m real 
functions ( ) ( ) ( )xxx mfff ,...,, 21  of n variables. 
Where, 

( ) ( ) ( ) ( )( )
( )T

21

T
21

,...,,

,...,,

n

m

xxx

fff

=

=

x

xxxxf
 (4.2) 

This subroutine solves this problem by using the LMM 
method.  The Levenberg-Marquardt method, the Newton-
Gauss method and the steepest descent method are 
explained below. 
 
Suppose that the approximate vector xk of vector x* 
which gives a local minimum is obtained and following 
relation is satisfied. 

kk xxx ∆+=*  (4.3) 

 f (x) is expanded up to the first order in the region of xk 
by using the Taylor series which results in (4.4). 

( ) ( ) ( ) kkkkk xxJxfxxf ∆∆ +=+  (4.4) 

where J(xk) is a Jacobian matrix of  f (x) shown in (4.5) 

( )

k
n

mm

n

k

x
f

x
f

x
f

x
f

xx

xJ

=
























∂
∂

∂
∂

∂
∂

∂
∂

..........
  :                :
  :                :

..........

1

1

1

1

 (4.5) 

J(xk) is subsequently expressed as Jk. 
From (4.4), the value of ( )kkF xx ∆+  can be 
approximated by (4.6) if ( )kF x  is sufficiently small. 

( )
( ) ( )
( ) ( ) ( )
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++=
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 (4.6) 

The value of kx∆  which minimizes this value is given as 
the solution of the system of linear equations (4.7) 
obtained when the right side of (4.6) is differentiated for 

kx∆ . 

( )kkkkk xfJxJJ TT −=∆  (4.7) 

(4.7) is called a normal equations. 
In the Newton-Gauss method, kx∆  is used for iterations 
as 

kkk xxx ∆+=+1  

In this method, kx∆  denotes the descent direction of F(x), 
but kx∆  may diverge itself. 
On the other hand, the gradient vector ( )kF x∇  of F(x) at 
xk can be given by 

( ) ( )kkkF xfJx T2=∇  (4.8) 
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( )kF x∇−  is the direction of the steepest descent of F(x) 
at xk.  In the steepest descent method, kx∆  is used as 

( )kk xFx ∇∆ −=  (4.9) 

Although kx∆  in (4.9) surely guarantees a decrement of 
F(x), it is noted that if iteration is repeated, F(x) starts to 
zigzag, as many computational practices have been 
reported. 

Therefore, to decrease these demerits, Levenberg, 
Marquardt and Morrison proposed to determine kx∆  by 
the following equations: 

{ } ( )kkkkkk v xfJxIJJ T2T −=+ ∆  (4.10) 

where, vk is a positive value (called the Marquardt 
number). kx∆  which is determined by (4.10) depends on 
the value of vk.  As vk → 0 , the direction of kx∆  is that 
of the Newton-Gauss method.  On the other hand, the 

kx∆  decreases monotonically in proportion as vk 
increases from 0, and the angle between kx∆  and the 

steepest descent direction ( )kk xfJ T−  decreases 
monotonically along with the increment of vk.  As 
vk → ∞ , the direction of kx∆  is that of the steepest 
descent method. 

The characteristics of the Levenberg-Marquardt 
method is to determine the value of vk adaptively during 
iteration and to minimize F(x) efficiently. 
• LMM method 

In the method by (4.10), normal equations are 
explicitly constructed, so it is not numerically stable.  
Equation (4.10) is equivalent to the least squares 
problem corresponding to the following: 

( )
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 (4.11) 

That is, the minimization of sum of squares of residual in 
(4.11) can be expressed by (4.10). 
   In the LMM method, the normal equations are not 
explicitly constructed.  The LMM method obtains kx∆  
by the least squares method applying the orthogonal 
transformation which is numerically stable, to (4.11). 
   This subroutine obtains x∆  by (4.11), and then 

kkk xxx ∆+=+1  

and iterates to satisfy 

F(xk+1) < F(xk) 

to obtain minimum point x*. 

• Computational procedures in this subroutine 
1) Initialization 

Set Marquardt number v0. 
Obtains ( )f x0  and F(x0). 
Set k = 0 

2) Obtain Jk by difference approximation. 
3) Solve (4.11) by the least squares method to obtain 

kx∆  
Let kkk xxx ∆+=+1  and obtain 

f(xk+1),  F(xk+1) 

4) Test whether or not F(xk+1) < F(xk) is satisfied. 
When satisfied, go to step 8). 

5) Convergence criterion 
When the convergence condition is satisfied, the 
subroutine terminates processing with ICON = 0 
assuming xk to be minimum point x*. 

6) Increase the Marquardt value, that is, let 

vk = 1.5 vk 

7) Test the upper limit of the Marquardt number by 

vk ≤ 1/u, where u is the unit round off. (4.14) 

When (4.14) is satisfied, go to step 3) and continue 
iteration. When not satisfied, this subroutine 
terminates processing with ICON = 20000. 

8) Convergence criterion 
When the convergence condition is satisfied, this 
subroutine terminates processing with ICON = 0 
assuming xk+1 to be minimum point x*. 

9) If this subroutine does not execute step 6), the 
Marquardt number is decreased, that is, let, 

vk = 0.5 vk 

Then setting k as k = k + 1 and proceed to step 2) to 
continuation. 

• Notes on each algorithm 
1) Setting Marquardt number v0 

The norm of the Jacobian matrix at x0 is used as the 
initial value of the Marquardt number, 

( ) ( )∑∑
= =

⋅=
m

i

n

j
ji nmxfv

1 1

2
0 //∂∂  (4.15) 
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2) To compute the difference approximation of Jacobian 
matrix Jk, 
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 (4.16) 

the forward difference (4.17) are used. 

( ) ( ){ } h/fhf
x
f

kijki
j

i xex −+≈
∂∂∂∂
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 (4.17) 

where, ej is the j-th coordinate vector h u= , where 
u is the unit round off. 

3) Computing kx∆  by the least squares method 
This subroutine uses the Householder method to 
obtain kx∆  solving (4.11) by the least squares 
method. 

That is, the left side of (4.11) is multiplied from the 
left by the orthogonal matrix Q of the Householder 
transformation to obtain upper triangular matrix. 
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Where, R is the upper triangular matrix of n × n. 
The orthogonal transformation is performed for the 
right side of (4.11). 

( )
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O
xf

Q k  (4.19) 

Where, g1 is the n-dimensional vector and g2 is the 
m-dimensional vector.  Since the norm is unitarily 
invariant for orthogonal transformation, least squares 
solution kx∆  in (4.11) is obtained by (4.20). 

1gxR −=k∆  (4.20) 

Since R is an upper triangular matrix, (4.20) can be 
computed by backwards substitution. 

4) Convergence criterion 
This subroutine test the convergence during iteration 
as follows: 
• When F(xk+1) < F(xk) and 

( ) EPSR,0.1max1 ⋅≤− ∞∞+ kkk xxx  

as satisfied, xk+1 is 
assumed to be minimum point x*. 

• When F(xk+1) ≥ F(xk) and 
( ) EPSR,0.1max1 ⋅≤− ∞∞+ kkk xxx  

are satisfied, xk is assumed to be minimum point x*. 
 
For further details, refer to References [36] and [37]. 
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D15-20-0101  NOLG1, DNOLG1 

Minimization of the sum of squares of functions 
(Revised Marquardt method using function values and 
their derivatives) 
CALL NOLG1 (X, N, FUN, JAC, M, EPSR, 
MAX, F, SUMS, VW, K, ICON) 

 
Function 
Given m real functions  f1(x),  f2(x),..., fm(x) with n 
variables, its Jacobian J(x), and initial vector x0, this 
subroutine obtains vector which gives a local minimum of 

( ) ( ){ }∑
=

=
m

i
i xfxF

1

2  (1.1) 

and its function value F(x*) using the revised Marquardt 
method, that is, Levenberg-Marquardt-Morrison (LMM) 
method: 

In this subroutine,  fi(x), i = 1 ,..., m is assumed to have up to 
the first continuous partial derivative, and m≥ n ≥ 1. 
 
Parameters 
X ..... Input.  Initial vector x0. 

Output.  Vector x*. 
One-dimensional array of size n. 

N ..... Input.  Number of variables n. 
FUN..... Input.  Name of subroutine subprogram that 

calculates  fi(x) 
The form of subprogram is as follows: 
SUBROUTINE FUN (X, Y) 
Parameters 
X ..... Input.  Variable vector x. 

One-dimensional array of size n. 
Y ..... Output.  Function values  fi(x) for  

variable vector x. 
One-dimensional array of size m where 
F(1)= f1(x), ... , F(M) = fm(x) 

JAC ... Input.  Name of subroutine subprogram that 
calculates J(x) 
The form of subprogram is as follows: 
SUBROUTINE JAC (X, G, K) 
Parameters 
X ..... Input.  Variable vector x. 

One-dimensional array of size n. 
G ..... Output.  Jacobian matrix for variable  

vector x. 
Two-dimensional array G (K, N) where 

( )G I, J f / xi j= ∂ ∂  
K ..... Input.  Adjustable dimension of array G. 

M ..... Input.  Number m of the functions. 
EPSR .. Input.  Convergence criterion (≥ 0.0). 

The default value is used if 0.0 is specified. 
(See “Comments on Use.”) 

MAX ..... Input.  The upper limit (≠0) of the count of 
function evaluation. 
Output.  The count (> 0) of actual evaluation 

F ..... Output.  The value of function  fi(x*). 
One-dimensional array of size m, 
where F(1)=f1(x*), …., F(M)=fm(x*). 

SUMS . Output.  The value of the sum of squares F(x*). 
VW ..... Work area.  Two-dimensional array of VW (K, 

N + 2) 
K ..... Input.  The adjustable dimension (≥ m + n) of 

array VW. 
ICON ..... Condition code. (See Table NOLG1-1.) 
 
Table NOLG1-1  Condition codes 

Code Meaning Processing 
0 No error.  

10000 The convergence condition 
was not satisfied within the 
specified number of 
interation. 

The last values 
obtained are 
stored in X, F 
and SUMS. 

20000 Marquardt number (vk) 
exceeded the upper limit 
during calculation.  (See 
(4.14) in “Method.”)  EPSR 
was too small or the error of 
the difference approximation 
of the Jacobian matrix 
exceeded the limit of 
calculation. 

Bypassed.  
(The last values 
obtained are 
stored in X, F 
and SUMS.) 

30000 N < 1, M < N, EPSR < 0.0, 
MAX = 0, or K < m+n 

Bypassed. 
 

 
Comments on use 
• Subprograms used 

SSL II .. AMACH, MGSSL 
FORTRAN basic functions ... ABS, SORT, FLOAT 

 
• Notes 

An EXTERNAL statement is necessary to declare the 
subprogram names correspond to parameters FUN and 
JAC in the calling program. 
EPSR 

Since F(x) is assumed to be approximately a 
quadratic function in the vicinity of point x*, it is 
appropriate to specify EPSR as u≈EPSR , where u is 
the unit round off to obtain the value of function F(x*) 
as accurate as the rounding error. 

The default value of EPSR is 2 u  
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MAX 
The function evaluation count is incremented by one 
every time  fi(x), i = 1,...,m is calculated and by n every 
time J(x) is calculated for variable vector x. 

The function evaluation count depends on 
characteristics of function { fi(x)}, initial vector, and 
convergence criterion. 

Generally, when an appropriate initial value is 
specified and the default value is used for the 
convergence criterion, it is adequate to specify MAX = 
100･n m. 

Even if the convergence condition is not satisfied 
within the specified evaluation count and the subroutine 
is returned with ICON = 10000, iteration can be resumed 
by calling this subroutine again.  In this case, the user 
must specify a negative value as the additional evaluation 
count in the parameter MAX and retain other parameters 
unchanged. 

 
• Example 

Given the following function: 
( ) ( ) ( )21

2
221

2
121 ,,, xxfxxfxxF +=  

where   ( )
( ) ( )2

12212

1211

10,

1,

xxxxf

xxxf

−=

−=
 

minimum point x* is obtained using value x0 = ( – 1,2, 
1.0)T as the initial value 

 
C     **EXAMPLE** 
      DIMENSION X(2),F(2),VW(4,4) 
      EXTERNAL ROSEN,ROSENJ 
      X(1)=-1.2 
      X(2)=1.0 
      N=2 
      M=2 
      EPSR=1.0E-3 
      MAX=100*2*2 
      CALL NOLG1(X,N,ROSEN,ROSENJ,M,EPSR, 
     *           MAX,F,SUMS,VW,4,ICON) 
      WRITE(6,600) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,610) SUMS,MAX 
      WRITE(6,620) (I,X(I),I=1,N) 
      WRITE(6,630) (I,F(I),I=1,M) 
      STOP 
  600 FORMAT('1','*ICON=',I5) 
  610 FORMAT(' ',' SUM OF SQUARES= ', 
     * E15.7,' MAX= ',I5/) 
  620 FORMAT(1X,' X(',I2,')=',E15.7) 
  630 FORMAT(1X,' F(',I2,')=',E15.7) 
      END 
C     OBJECTIVE FUNCTION 
      SUBROUTINE ROSEN (X,Y) 
      DIMENSION X(2),Y(2) 
      Y(1)=1.0-X(1) 
      Y(2)=(X(2)-X(1)*X(1))*10.0 
      RETURN 
      END 
 

C     JACOBIAN 
      SUBROUTINE ROSENJ(X,G,K) 
      DIMENSION X(2),G(K,2) 
      G(1,1)=-1.0 
      G(2,2)=-20.0*X(1) 
      G(1,2)=0.0 
      G(2,2)=10.0 
      RETURN 
      END 
 
Method 
Given m real functions  f1(x),  f2(x), ...,  fm(x) with n 
variable: 
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vector x* which gives a local minimum of function F(x) 
and its function value F(x*) are obtained.  Where, 
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This subroutine uses the revised Marquardt method, 
that is, the Levenberg-Marquardt-Morrison (LMM) 
method.  To explain this method, let us review the 
Levenberg-Marquardt, Newton-Gauss, and steepest 
descent methods. 

Suppose that the approximate vector xk of vector x* 
that gives a local minimum is given and expressed as 

kk xxx ∆+=*  (4.3) 

Expanding  f (x) to a Taylor series of the first order in the 
vicinity of xk, we obtain 

( ) ( ) ( ) kkkkk xxJxfxxf ∆∆ +=+  (4.4) 

where J(xk) is the Jacobian matrix 
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J(xk) is referred to as Jk hereafter. 
From (4.4), the function ( )kkF xx ∆+  is approximated 

by (4.6) if ( )kF x  is sufficiently small: 
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The value of kx∆  which minimizes ( )kkF xx ∆+  is the 
solution of the system of linear equations (4.7) obtained by 
differentiating the right side of (4.6) with respect to kx∆ : 

( )kkkkk xfJxJJ TT −=∆  (4.7) 

This is called as the normal equation. 
In the Newton-Gauss method, kx∆  is used for iterations as 

kkk xxx ∆+=+1  

The kx∆  direction indicates the descent direction, but 

kx∆  may diverge in some case. 
Gradient vector ( )kF x∇  of F(x) for xk is 

( ) ( )kkkF xfJx T2=∇  (4.8) 

and ( )kF x∇−  is the steepest descent direction of F(x) 
for xk.  In the steepest descent method, 

( )kk F xx ∇∆ −=  (4.9) 

is used.  Although decrement of F(x) is guaranteed by 
kx∆  of (4.9), many computational practices have shown 

that the value of F(x) starts oscillation during iterations. 
To eliminate these disadvantages, that is, divergence of 

kx∆  and oscillation of F(x), Levenberg, Marquardt, and 
Morrison have proposed to obtain kx∆  using 

{ } ( )kkkkkk v xfJxIJJ T2T −=+ ∆  (4.10) 

where vk is a positive number called a Marquardt number. 
The value of kx∆  obtained from (4.10) apparently 

depends on the value of vk : The direction of kx∆  
for 0→kv is that used in the Newton-Gauss method, 
where kx∆  monotonically decreases as the value of vk 
increases beginning from 0 and the angle between 

kx∆ and the steepest descent direction ( )kk xfJ T−  
monotonically decreases as vk further increases. 
If vk approaches infinity, the direction of kx∆  becomes 
equal to that used in the steepest descent method. 
Advantageous features of the Levenberg-Marquardt 
method are to determine the most suitable value of vk 
dynamically during iterations to minimize the value of 
F(x) efficiently. 
 
LMM method 
The method in which expression (4.10) is used does not 
have sufficient numerical stability because the normal 
equation system is explicitly constructed. Equation (4.10) 
is equivalent to the least squares problem for 
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This means that the minimization of sum of squares of 
residual in (4.11) can be expressed by (4.10). 

The LMM method obtains kx∆  without generating a 
normal equation system, but it includes the least squares 
method in which the orthogonal transformation having a 
high numerical stability is applied to (4.11). 

In this subroutine, x∆  is obtained from (4.11); then 
using 

kkk xxx ∆+=+1  

minimum point x* is obtained through iterations in which 

F(xk+1) < F(xk) 

is satisfied. 
Computational procedures 
1) Initialization 

Sets Marquardt number v0. 
Obtains f(x0)  and F(x0). 
Sets k = 0. 

2) Obtains Jk. 
3) Solves (4.11) using the least squares method to obtain 

kx∆  
Sets kkk xxx ∆+=+1  
Obtains f(xk+1) and F(xk+1). 

4) Checks whether F(xk+1) < F(xk) is satisfied; 
if so, proceeds to 8) 

5) Checks convergence; if the convergence condition is 
satisfied, assumes xk as to be minimum point x*, sets 
ICON = 0, then stops processing. 

6) Increases Marquardt number as 

vk = 1.5 vk 

7) Checks upper limit of Marquardt number. If 

vk ≤1/u, where u is the unit round off  (4.14) 

is satisfied, returns to 3) to continue iterations; 
otherwise, sets ICON = 20000, then stops processing. 

8) Checks convergence; if the convergence condition is 
satisfied, assumes xk+1 as to be minimal point x*, sets 
ICON = 0, then stops processing. 

9) If 6) has been bypassed, decreases Marquardt 
number: vk = 0.5vk. 
Sets k = k + 1, then returns to 2). 

 
Notes on algorithms 
1) Marquardt number v0 setting 

The norm of the Jacobian matrix for x0 is used as the 
initial value of Marquardt number. 
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2) Calculation of kx∆  by the least squares method 
The Householder method is used to solve (4.11) and 
obtain kx∆  by the least squares method. 
The orthogonal matrix Q of the Householder 
transformation is multiplied by the left side of (4.11) 
to obtain the upper triangular matrix. 
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where R is the n×n upper triangular matrix.  The 
orthogonal transformation is also multiplied on the 
right side of (4.11) to obtain 
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where g1 is an n-dimensional vector and g2 is an m-
dimensional vector.  Since the norm is invariant for 
the orthogonal transformation, the least squares 
solution of kx∆  for (4.10) is obtained from 

1gxR −=k∆  (4.18) 

Since R is an upper triangular matrix, (4.18) is solved 
using backward substitution. 

3) Convergence check 
The convergence condition is checked as follows: 

If F(xk+1) < F(xk) and 
( ) EPSR,0.1max1 ⋅≤− ∞∞+ kkk xxx  

are satisfied, assumes xk+1 to be minimum point x*. 
If F(xk+1) ≥ F(xk) 
and ( )⋅≤− ∞∞+ kkk xxx ,0.1max1 EPSR 

are satisfied, assumes xk to be minimum point x*.  (See 
reference [36] and [37] for details.) 
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B21-11-0702 NRML, DNRML 

Normalization of eigenvectors of a real matrix 
CALL NRML (EV, K, N, IND, M, MODE, 
ICON) 

 
Function 
Eigenvectors yi are formed by normalizing m 
eigenvectors xi (i = 1, ... , m) of an n-order real matrix. 
Either (1.1) or (1.2) is used. 

yi = xi/ xi ∞
 (1.1) 

yi = xi/ xi 2
 (1.2) 

n ≥ 1. 

Parameters  
EV..... Input.  m eigenvectors xi ( i = 1, ... , m ). 

(See “Comments on use”) 
EV (K,M) is a two-dimensional array.   
Output  Normalized eigenvectors yi. 

K..... Input.  Adjustable dimenson of array EV.  ( ≥ 
n ) 

N..... Input.  Order n of the real matrix. 
IND..... Input.  For each eigenvector in EV, indicates 

whether eigenvector is real or complex. 
If the Jth column of EV contains a real 
eigenvector, IND(J) = 1; if it contains the real 
part of a complex eigenvector, IND(J) = −1, 
and if it contains the imaginary part of a 
complex eigenvector, IND(J) = 0. 
IND is a one-dimensional array of size M. 

M..... Input.  Size of the array IND. 
MODE.....Input.  Indicate the method of normalization 

MODE = 1... (1.1) is used. 
MODE = 2... (1.2) is used. 

ICON..... Output.  Condition code  
See Table NRML-1. 

 
Comments on use 
• Subprograms used 

SSL II.....MGSSL 
FORTRAN basic functions..... ABS and SQRT 

 
Table NRML-1 Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 EV (1,1) =1.0 
30000 N<M, M<1, K<N, MODE was 

not 1 and 2 or an error was 
found in IND 

Bypassed 

 
  When the eigenvectors of a real symmetric matrix are to 
be normalized, all of IND informations are 1. 

• Notes 
Eigenvectors are stored in EV such that each real 
eigenvector occupies one column and each complex 
eigenvector occupies two consecutive columns (one 
for the real part and one for the imaginary part).  
Refer to Fig.  NRML-1. 
  If subroutine HVEC or HBK1 are called before this 
subroutine, parameters EV, IND, and M can be used 
as input parameters to this routine. 

 
Number of eigenvectors

0

EV

IND 0

MM-1

m

4

3

32

2

-11-11

1

1

Real eigenvector

Imaginary
part of a
complex
eigenvector

Imaginary part of a
complex eigenvector

Real part of a
complex
eigenvector

Real part of a complex
eigenvector

Real eigenvector

 
Fig.  NRML-1  Relationship between IND and EV 

• Example 
Subroutine EIG1 is called to obtain the eigenvectors of 
an n-order real matrix, and then this routine is used to 
normalize the resultant eigenvalues such that 
x

∞
= ≤1 100. .n  

 
C     **EXAMPLE** 
      DIMENSION A(100,100),ER(100),EI(100), 
     *EV(100,100),VW(100),IND(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N 
      DO 20 I=1,N 
      WRITE(6,610) (I,J,A(I,J),J=1,N) 
   20 CONTINUE 
      CALL EIG1(A,100,N,0,ER,EI,EV,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GT.10000) GO TO 10 
      DO 30 I=1,N 
   30 IND(I)=1 
      DO 40 I=1,N 
      IF(EI(I).EQ.0.0) GO TO 40 
      IF(IND(I).EQ.0) GO TO 40 
      IND(I)=-1 
      IND(I+1)=0 
   40 CONTINUE 
      CALL NRML(E,V,100,N,IND,N,1,ICON) 
      CALL EPRT(ER,EI,EV,IND,100,N,N) 
      GO TO 10 
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  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX', 
     *5X,'N=',I3/) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     *E14.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 

In this example, subroutine EPRT is used to print the 
eigenvalues and corresponding eigenvectors of the real 
matrix. For details refer to the Example in section EIG1. 

Method 
Given m eigenvectors xi(i = 1, ..., m) of an n-order real 
matrix, normalized eigenvectors yi are computed.  Where 
xi =(x1i, ..., xni)T.  When MODE = 1 is specified, each 
vector xi is normalized such that the maximum absolute 
value among its elements becomes 1. 

kikiiii xmax,/ == ∞∞ xxxy  (4.1) 

When MODE = 2 is specified, each vector xi is 
normalized such that the sum of the square of absolute 
values corresponding to its elements is 1. 

∑
=

==
n

k
kiiiii x

1

2
22,/ xxxy  (4.2) 
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H11-20-0141  ODAM, DODAM 
A system of first order ordinary differential equations 
(variable-step, variable-order Adams method, step 
output, final value output). 
CALL ODAM (X, Y, FUN, N, XEND, ISW, 
EPSA, EPSR, VW, IVW, ICON) 

 
Function 
This subroutine solves a system of first order ordinary 
differential equations of the form: 

( ) ( )
( ) ( )

( ) ( ) 
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 (1.1) 

by the Adams method, when function 

N21 ,...,, fff  

and initial values x0, y10, y20, ..., yN0, , and the final value 
of x, (xe), are given. 
That is, it obtains the solutions 

( )mmm yyy N21 ,...,,  

at points emhxx
m

j
jm ,...,2,1;

1
0 =+= ∑

=

 

(See Fig. ODAM-1). 
The step size hj is controlled so that solutions satisfy 

the desired accuracy. 
This subroutine provides two types of output mode as 

shown below. The user can select the appropriate mode 
according to his purpose. 
• Final value output:  Returns to the user program when 

the solution at final value xe is obtained. 
• Step output:  Returns to the user program each time the 

solution at x1, x2, ...is obtained. 

he
h3h2h1

xex3x2x1x0

Fig. ODAM-1  Solution output point xm (x0< xe) 

Parameters 
X ..... Input.  Starting point x0. 

Output.  Final value xe.  When the step output 
is specified, an interim point xm to which the 
solutions are advanced a single step. 

Y ..... Input.  Initial values y10, y20, ...,yN0.  They must 
be given in order of Y(1) = y10, Y(2) = y20, ..., 
Y(N) = yN0. 
One-dimensional array of size N. 

Output.  Solution vector at final value xe. 
When the step output is specified, the solution 
vector at x = xm. 

FUN ..... Input.  The name of the subprogram which 
evaluates  fi(i=1, 2, ...,N) in (1.1). 
The form of the subroutine is as follows: 
SUBROUTINE FUN (X, Y, YP) 
Where 
X: Input.  Independent variable x. 
Y: Input,  One-dimensional array of size 

N, with corresponding Y(1) = y1, Y(2) 
= y2, ... , Y(N) = yN. 

YP: Output.  One-dimensional array of size 
N, with corresponding  

( ) ( )
( ) ( )
( ) ( )N21N

N212

N211

,...,,,NYP
,...,,...,,,2YP

,,...,,,1YP

yyyxf
yyyxf

yyyxf

=
=
=

 

N ..... Input.  Number of equations in the system. 
XEND ... Input.  Final point xe to which the system 

should be solved. 
ISW ..... Input.  Integer variable to specify conditions in 

integration. 
ISW is non-negative integer having three 
decimal digits, which can be expressed as 

ISW = 100d3 + 10d2 + d1 

Each di should be specified as follows 
d1: Specifies whether or not this is the first call. 

0 ....First call 
1 ....Successive call  

The first call means that this subroutine is 
called for the first time for the given differential 
equations. 

d2: Specifies the output mode. 
0 ...Final value output 
1 ...Step output 

d3: Indicates whether or not functions  f1, f2,...,fN  can be 
evaluated beyond the final value xe. 
0 ....Permissible 
1 ....Not permissible 

The situation in which the user sets d3 = 1 is 
when derivatives are not defined beyond xe, or 
there is a discontinuity there. However, the user 
should be careful that if this is not the case 
specifying d3 = 1 leads to unexpectedly 
inefficient computation. 

Output.  When this subroutine returns to the user 
program after obtaining the solutions at xe or the 
solutions at each step, d1 and d3 are altered as follows: 
d1: Set to 1.  On subsequent calls, d1 should not be  

altered by the user.  Resetting d1 = 0 is needed only 
when the user starts to solve another equations. 

d3: When d3 = 1 on input, change it to d3 = 0 when the 
solution at xe is obtained. 
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EPSA ..... Input.  Absolute error tolerance. (≥ 0.0) 
Output.  If a value smaller than the allowable 
value EPSA is specified at entry time, this 
value is appropriately changed.  (See Notes.) 

EPSR ..... Input.  Relative error tolerance. 
Output.  If EPSR is too small, the value is 
changed to an appropriate value.  (See Notes.) 

VW ..... Work area. One-dimensional array of size 21N 
+ 110.  When calling this subroutine 
repeatedly, the contents should not be changed. 

IVW ..... Work area.  One-dimensional array of size 11.  
When calling this subroutine repeatedly, the 
contents should not be changed. 

ICON ..... Output.  Condition code. 
See Table ODAM-1. 

 
Table ODAM-1  Condition Codes 

Code Meaning Processing 
0 (In step output)  A single 

step has been taken. 
Subsequent 
calling is possible. 

10 Solution at XEND was 
obtained. 

Subsequent 
calling is possible 
after changing 
XEND. 

100 A single step has been 
taken.  It is detected that 
more than 500 steps are 
required to reach XEND. 

To continue, just 
call again.  The 
function counter 
will be reset to 0. 

200 A single step has been 
taken.  However it is 
detected the equations 
being processed have 
strong stiffness. 

Although 
subsequent 
calling is possible, 
it is better to use 
a subroutine for 
stiff equations. 

10000 EPSR and EPSA were too 
small for the arithmetic 
precision. 

EPSR and EPSA 
were set to larger, 
acceptable 
vaiues.  
Subsequent 
calling is possible.  
(The increased 
values of EPSR 
and EPSA should 
be checked by 
the user) 

30000 One of the following 
occurred: 
1 N≤ 0 
2 X = XEND 
3 An erroneous ISW was 

specified. 
4 EPSA < 0 or EPSR < 0 
5 The contents of IVW 

was changed (in 
subsequent calling). 

Processing 
terminates. 

Comments on use 
• Subprograms used 

SSL II ... MGSSL, AMACH, UDE, USTE1, UNIT1 
FORTRAN basic functions ... MOD, AMAX1, AMIX1, 
AMINI, ABS, SQRT, SIGN 

 
• Notes 

This subroutine is a standard program to solve non-stiff 
and mildly stiff differential equations along with 
Runge-Kutta subroutine ODRK1. 
If in the following situation, this subroutine can be used 
more effectively. 
− It takes much time for computing function  f1, f2,...,fN 
− Highly accurate solution is required. 
− The solutions at many points are required, for 

example to make a table of the solutions. 
− Derivatives,  f1, f2,...,fN  have discontinuities. 

If it is known beforehand, that the equations are stiff 
subroutine ODGE should be used. 

The name of the subroutine associated with 
parameter FUN must be declared as EXTERNAL in 
the calling program. 
[Judgment by ICON] 
When the user specifies the final value output by 
setting the second digit of ISW to 0, he can obtain the 
solution at xe only when ICON is 10.  However, this 
subroutine may return the control to the user program 
when ICON is 100, 200 or 10000 before reaching xe. 

When the step output is specified by setting the 
second digit of ISW to 1, the user can receive the 
solution at each step not only when ICON is 0, but also 
when ICON is 100 or 200.  ICON = 10 indicates that 
the solution at xe has been obtained. 
[EPSA and EPSR] 
Suppose the elements of the solution of differential 
equations are Y(L) and the error (local error) is le(L), 
this subroutine controls the error to satisfy the 
following for L = 1, 2, ...., N. 

( ) ( ) EPSALYEPSRL +×≤el  (3.1) 

When EPSA = 0.0 is specified in (3.1), the relative 
error is tested. When EPSR = 0.0 is specified in (3.1), 
the absolute error is tested.  The user should read the 
following notes in using these criterions: 
− It is desirable to use the relative error criterion for 

the problem in which the magnitude of the solution 
varies substantially. 

− The absolute error criterion may be used for the 
problem in which the magnitude of the solution does 
not vary so much or the small solution is not required. 

− Specifying EPSA≠0 and EPSA≠0 result in stable and 
useful criterion.  In this case, relative errors are 
tested for the larger solution and absolute errors are 
tested for the smaller solution. 
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If the maximum accuracy attainable by this 
subroutine is desired, specify EPSA and EPSR smaller 
than required.  Then their values are appropriately 
increased in the subroutine. 
ICON = 10000 notifies the user of this behavior.  The 
user should call the subroutine successively after 
receiving ICON = 10000.  When EPSA = EPSR = 0.0 
is specified, it should be changed to EPSR = 16u. u is a 
unit of round-off errors. 
[Parameter XEND] 
If the solutions at a sequence of output points are 
required, this subroutine should be successively called 
changing XEND sequentially.  It is assumed that this 
subroutine is called repeatedly and thus it sets the value 
of parameters required for subsequent calls when 
returning to the user program. 
Therefore, the user can call the subroutine only by 
changing XEND.  Only EPSA and EPSR can be 
changed on an as-required basis. 

 
Discontinuous points of derivatives and non-defined 

domain. 
If the solution or its derivatives has discontinuous 
points the points have to be detected to obtain 
satisfactory accuracy. 

 
Example: 
The equation, 

( ) 10,
21,
10,

=




≤<−
≤≤

=′ y
xy
xy

y  

has the solution y = ex for 0 ≤ x ≤ 1, and y = e2-x for 
1 ≤ x ≤ 2.  Therefore, first-order derivative has a 
jump at x = 1. 
 

This subroutine automatically detects discontinuous 
points and performs appropriate computation.  The user 
needs not recognize the discontinuous points.  However, 
if the user specifies the location of the discontinuous 
points in a way below, the time required for detection is 
shortened and computation may be accurate. 
− Call this subroutine with XEND set to a 

discontinuous point and with setting the third digit of 
ISW to 1.  Setting the third digit of ISW to 1 without 
changing the lower two digits of ISW can be 
performed by: 

ISW = MOD (ISW, 100) + 100 

− When the solution at the discontinuous point has 
been obtained, the subroutine returns the control to 
the user program after setting the third digit to 0.  Set 
the first digit of ISW to 0 on the next call, after 
advancing XEND appropriately. 
This can be performed by: 

ISW = (ISW / 10)*10 

By setting ISW in this way, the subroutine is told as if 
the solution at discontinous points were a new initial 
value and other differential equations were to be 
solved. 
 

• Example 
Simultaneous second-order ordinary differential 
equations 

( ) ( )

( ) ( )
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are solved, where ( )r y y= +1
2

2
2

1 2/

.  These second-order 
equations can be rewritten into first-order equations by 
replacing y′1by y3 and y′2 by y4 as follows: 
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 (3.2) 

The following example shows the solution on interval 
[0,2π] with EPSA =10-8 and EPSR = 10-5 in (3.2). 
The solutions are to be output at each point of the 
following: 

64,...,2,1,
64
2 =⋅= jjx j
π  

Therefore, this subroutine is called repeatedly increasing 
the value of parameter XEND by 2π/64. 
 
C     **EXAMPLE** 
      DIMENSION Y(4),VW(200),IVW(11) 
      EXTERNAL FUN 
      X=0.0 
      Y(1)=1.0 
      Y(2)=0.0 
      Y(3)=0.0 
      Y(4)=1.0 
      N=4 
      EPSA=1.0E-8 
      EPSR=1.0E-5 
      ISW=0 
      PAI=4.0*ATAN(1.0) 
      DX=PAI/32.0 
C 
      WRITE(6,600) 
C 
      DO 30 I=1,64 
      XEND=DX*FLOAT(I) 
   10 CALL ODAM(X,Y,FUN,N,XEND,ISW,EPSA, 
     *EPSR,VW,IVW,ICON) 
      IF(ICON.EQ.10) GO TO 20 
      IF(ICON.EQ.100) WRITE(6,620) 
      IF(ICON.EQ.200) WRITE(6,630) 
      IF(ICON.EQ.10000) WRITE(6,640) EPSA, 
     *EPSR 
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      IF(ICON.EQ.30000) STOP 
      GO TO 10 
   20 WRITE(6,610) X,(Y(L),L=1,4) 
   30 CONTINUE 
      STOP 
  600 FORMAT('1',12X,'X',22X,'Y(1)', 
     *16X,'Y(2)',16X,'Y(3)',16X,'Y(4)'/) 
  610 FORMAT(6X,E15.8,10X,4(E15.8,5X)) 
  620 FORMAT(10X,'TOO MANY STEPS') 
  630 FORMAT(10X,'THE EQUATIONS', 
     *1X,'APPEAR TO BE STIFF') 
  640 FORMAT(10X,'TOLERANCE RESET', 
     *5X,'EPSA=',E12.5,5X,'EPSR=',E12.5) 
  650 FORMAT(10X,'INVALID INPUT') 
      END 
 
      SUBROUTINE FUN(X,Y,YP) 
      DIMENSION Y(4),YP(4) 
      R3=(Y(1)*Y(1)+Y(2)*Y(2))**1.5 
      YP(1)=Y(3) 
      YP(2)=Y(4) 
      YP(3)=-Y(1)/R3 
      YP(4)=-Y(2)/R3 
      RETURN 
      END 
 
Method 
This subroutine uses the Adams method with step-size 
control and order control.  It is a standard subroutine to 
solve non-stiff or mildly-stiff initial value problems. This 
subroutine is most suitable for problems in which 
derivatives  f1, f2,...,fN  in(1.1)are complicated and it takes 
much time to evaluate them. 
  For convenience, we consider a single equation for 
some time, and we write it as 

( ) ( ) 00,, yxyyxfy ==′  (4.1) 

The solution at xm is expressed by ym and the exact 
solution is expressed by y(xm).  The value of ( )mm yxf ,  is 
expressed by fm to distinguish from ( )mm yxf , . 
1) Principle of the Adams method 

Suppose solution y0, y1, ..., ym have already been obtained, 
and we are going to obtain the solution ym+1 at 

xm+1 = xm+hm+1 

From (4.1), the following equation holds: 

( ) ( ) ( )∫ ++=+
1 ,1

m

m

x
x dxyxfxyxy mm  (4.2) 

If the integrand  f(x, y) in the right side is 
approximated by the polynomial interpolation using 

some derivatives already computed we can get a 
formula. 

Now, we consider a interpolation polynomial 
Pm,k(x) based on k derivatives, which satisfies: 

( ) kjfxP jmjmmk ,...,2,1,11, == −+−+  (4.3) 

If this Pk,m(x) is used for approximation to f(x,y) in 
(4.2) and ym is used instead of y(xm), we get a solution 
pm+1: 

( )∫ ++=+
1

,1
m

m
mk

x
x dxxPmm yp  (4.4) 

This is called k th-order Adams-Bashforth formula.  
Among various forms to represent Pk,m(x), the Newton 
form is used here.  Interpolation points, generally, xm+1–j (j = 
1,2, ..., k) are unequally spaced because of step-size control.  
But, for simplicity, we suppose they are equally spaced 
with the interval of h. 
  Newton backward difference representation for 
Pk,m(x) is expressed by: 
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Substituting this into (4.4), we get 
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 (4.5) 

When k is 1, ( ) mm fxP =,1  and the following is 
obtained: 

mmm hfyp +=+1  

This is Euler’s method. 
When ( )11, ++ mm pxf  is computed using pm+1 in 

(4.4), the approximation to derivative at xm+1 can be 
obtained.  Using this, if we integrate again the 
approximation after correcting Pk,m(x) in (4.4), a more 
accurate solution can be obtained.  Based upon this 
idea, pm+1 in (4.4) is called a predictor and the 
corrected solution is called a corrector which is 
expressed by cm+1. Suppose P*

k,m(x) to be a k-1 order 
polynomial interpolation satisfying the following: 



ODAM 

504 

( )
( ) ( )111

*
,

11
*
,

,

1,...,2,1,

+++

−+−+

=

−==

mmmmk

jmjmmk

pxfxP

kjfxP
 

In this interpolation, ( )11, ++ mm pxf  is used and the 
oldest fm k+ −1  is removed.  The corrector cm+1 is computed 
by: 

( )∫ ++=+
1 *

,1
m

m

x
x dxxP mkmm yc  (4.6) 

This is called the k th order Adams-Moulton formula. If 
P*

k,m(x) is expressed in the form of Newton backward 
difference interpolation, (4.6) can be expressed as 
follows: 
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 (4.7) 

In particular, in the case k = 1, since ( ) 1*
,1

+= m
pm fxP , the 

following holds: 

p
mmm hfyc 11 ++ +=  (4.8) 

This is called the Backward Euler’s method. 
These are the principles of the Adams method. 
Since, in actual computation, points {xm+1-j} are spaced 

unequally due to step-size control Pk,m(x) and P*
k,m(x) are 

expressed in the form of a modified divided difference 
instead of using (4.5) an (4.7). 
  The error of the corrector cm+1 is estimated as indicated 
below. 

Note that fm+1-k was not used in constructing Pk,m(x). If, 
however, we use fm+1-k and integrate the resulting 
interpolation polynomial of degree higher by one, which 
we donote by P*

k+1,m(x), we can obtain another corrector, 
say cm+1(k+1), of order higher by one.  According to the 
error analysis, 

( ) 111 1 +++ −+≡ mmm ckcE  (4.9) 

can be used as an estimate of the local error of cm+1.  
Consequently, if the magnitude of Em+1 is within a 
tolerance, this subroutine consider cm+1 to meet the 
required accuracy, and take cm+1 (k + 1), instead of cm+1, 
as a solution to be output. 
  In what follows, ym+1(k) stands for cm+1, and ym+1 for cm+1 
(k + 1). 

  The procedures to obtain the solution at xm+1 are 
summarized as follows: 
• Prediction ... pm+1 
• Evaluation ... f(xm+1,pm+1) 
• Correction ... ym+1 
• Evaluation... f(xm+1,ym+1) 

This is often called the PECE method. 
2) Adams method based upon modified divided 

differences 
Since points{xm+1-j} are unequally spaced, the 
computation for a predictor (4.4) and corrector (4.6) 
in that situation are described concretely. 
Pk,m(x) can be expressed using divided differences as 
follows: 
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where, 
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In the integration formula based upon the expression 
in (4.10), points {xm+1-j} and divided differences are 
used in the program.  However, this subroutine uses a 
sequence of step sizes{hm+1-j} instead of {xm+1-j}, and 
modified devided differences instead of divided 
differences.  The formula to be described below is 
reduced to (4.5) if the step size is constant.  We 
introduce notations to be used later. 
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 (4.11) 

Here, ( )miΦ  is called a modified divided difference.  
When the step size is constant, 

( ) ( ) imihm ii /11,1 =+=+ αΨ  and ( ) 11 =+miβ  
therefore ( ) m

i
i fm 1−=∇Φ  

Using above notations, the general term in (4.10) can 
be expressed by: 
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To simplify the right hand side of this equation we 
introduce 

( ) ( ) ( )mmm iii ΦβΦ 1* +=  
and 
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Then (4.12) can be expressed by ( ) ( )msc imi
*

, Φ . 
Therefore we get 

( ) ( ) ( )∑
=

=
k

i
imimk mscxP

1

*
,, Φ  (4.13) 

where ci,m(s) is a polynomial with respect to s of 
degree i -1, which is determined depending upon only 
the distribution of points {xm+1-j}. 
Substituting (4.13) into (4.4), and changing the 
integration variable x to s, the following can be 
obtained. 
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This corresponds to (4.5) in which the step size is 
constant.  The integral for ci,m(x) can be obtained by 
repeated integration by parts.  The results are 
mentioned below, where sequence {gi,q} is produced 
by (4.15) for i ≥ 1 and q ≥ 1. 
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The following shows the triangular table for gi,q in 
(4.15) when the step size is constant. 

1 2 3 4 …
1 1 1/2 5/12 3/8
2 1/2 1/6 1/8
3 1/3 1/12
4 1/4
:

q

i

 
The values placed on the first row in this table 
correspond to {gi,1}. 
Therefore (4.14) is reduced to 

  ( )∑
=

++ +=
k

i
iimmm mghyp

1

*
1,11 Φ  (4.16) 

Next, the computation of corrector is described. 
For corrector ym+1, the formula of order k + 1 which is 
one order higher than the predictor is used.  The 
corrector ym+1 is based upon: 

  ( )∫ +
++ += 1 *

,11
m

m

x
x dxxP mkmm yy  (4.17) 

Where, P*
k+1,m(x) is the interpolation polynomial 

satisfying not only the interpolation conditions for 
Pk,m(x) but also 

( ) ( )1111
*

,1 , +++++ == mm
p

mmmk pxffxP  

Using a divided difference we can write. 
( ) ( ) ( )( ) ( )kmmmmkmk xxxxxxxPxP −+−+ −−−+= 11,

*
,1 ...  

[ ]kmm
p xxf −++⋅ 11,...,  (4.18) 
The index p indicates that in the divided difference 
fm

p
+1  should be used instead of ( )111 , +++ = mmm yxff  .  

Substituting (4.18) into (4.17), we get,  

( )111,1111 ++= +++++ mghpy p
kkmmm Φ  (4.19) 

So the corrector can be expressed by adding the 
correction term to predictor pm+1.  Here, the index p also 
indicates that in the divided difference of 

( ) p
mk fm 11 ,1 ++ +Φ should be used instead of 

( )111 , +++ = mmm yxff  .  The k th order corrector ym+1(k) 
can be computed in the same way as follows: 

( ) ( )111,111 ++= ++++ mghpky p
kkmmm Φ  (4.20) 

3) Solution at any point 
Since the step size is taken as long as the error is 
within a tolerance generally the output point xe 
satisfies 

xm < xe ≤ xm+1 (4.21) 
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In obtaining the solution at xe, although we could 
restrict the step size so as to h it xe, this subroutine 
integrates beyond xe with a step size optimally 
determined to get the solution at xm+1, unless a 
particular situation is posed on the problem, e.g. when 
f (x,y) is not defined beyond xe.  Then the solution at 
xe is obtained as follows.  Let Pk+1,m+1(x) be an 
interpolation polynomial of degree k satisfying: 

( ) 1,...,2,1,221,1 +== −+−+++ kjfxP jmjmmk  

The solution at xe is computed by 

( )∫
+

+++ += e

m

x
x dxxP mkme yy

1
1,11  (4.22) 

If the solution at xm+1 satisfies the required accuracy, 
ye also satisfies the required accuracy. 

To compute (4.22), Pk+1,m+1(x) should be expressed 
using modified divided differences. 
First letting, 

( ) ImmeI hxxsxxh /, 11 ++ −=−=  

Pk+1,m+1(x)  can be expressed as: 
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The general term is: 
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After expressing  Pk+1,m+1(x) using modified divided 
differences and substituting it into (4.22), the 
following is obtained: 
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where gi
I
,1  are generated by the following recurrence 

equation: 
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4) Acceptance of solutions 

Suppose local error of k th order corrector ym+1(k) to 
be lem+1(k) 
It can be estimated by the difference between(k + 1)th 
order corrector ym+1 and ym+1(k). 
From (4.19) and (4.20), we can see the following: 

( ) ( ) ( )111,1,111 +−≈ ++++ mgghkle p
kkkmm Φ  (4.25) 

Defining the right side of the equation as ERR, if for a 
given tolerance ε . 

ERR ≤ ε  (4.26) 

is satisfied, the subroutine accepts ym+1 as the solution 
at xm+1, then evaluates f(xm+1,ym+1).  
This completes the current step. 

5) Order control 
Control of the order is done at each step by selecting 
the order of the formula of the Adams method.  This means 
to select the degree of the interpolation polynomial which 
approximates f (x,y).  This selection is performed before the 
selection of the step size. 

Suppose the solution ym+1 at xm+1 has been accepted by 
the k th order Adams method and the order for the next step 
is going to be selected.  The local error at xm+2 can be 
determined according to the step size hm+2 to be selected 
later and the derivative at xm+2.  Since these are not known 
when the order is selected, the error cannot be known 
correctively.  Therefore using only those values which are 
available so far, the subroutine estimates the local errors at 
xm+2 of order k –1, k, and k + 1 as ERKM1, ERK, and 
ERKP1 below. 
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where, 
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iγ is the coefficient defined in (4.7). 

ERKP1 is estimated only when the preceding k + 1 
steps have been taken with a constant step size h.  
This is because if the step size is not constant, the 
value of ERKP1 may not be reliable. 

In addition to (4.27), the local error of order k −2 is 
also estimated as ERKM2 below. 

( ) ( )11ERKM2 11
*

2 ++= −−− mmh p
kkk Φσγ  

The order is controlled based on the above introduced 
values. 
a) When one of the following is satisfied, reduce the 

order to k-1. 
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− k > 2 and max (ERKM1, ERKM2) ≤ ERK 
− k = 2 and ERKM1 ≤ 0.5ERK 
− The preceding k + 1 steps have been taken with a 

constant step size and ERKM1 ≤ min (ERK, 
ERKP1) 

b) When the preceding k + 1 steps have been taken 
with a constant step size and one of the following is 
satisfied, increase the order to k + 1. 

− 1 < k < 12 and ERKP1 < ERK< max (ERKM1, 
ERKM2) 

− k = 1 and ERKP1 < 0.5ERK 
c) The order is not changed at all if neither a) or b) 

above are satisfied. 
At each step, the above mentioned a), b) and c) are 
tested sequentially. 

6) Step size Control 
The step size is controlled at each step after the order 
has been selected. Suppose order k for the next step 
has been selected and the most recently used step size 
is h.  If the next step is processed by step size r･h, the 
local error can be estimated by: 

rk+1 ERK (4.28) 

Therefore, the ratio r may be taken a value as large as 
possible while the value in (4.28) does not exceed the 
error tolerance εεεε .  However, for safety, 0.5 εεεε  is used 
instead of εεεε , and r is determined with the following 
conditions; 

rk+1 ERK≤0.5 ε  (4.29) 

  If the step size varies, it will after the coefficients of 
predictor and corrector formulas. If the step size varies 
much, it will possibly cause undesirable error 
propagation property of the formula.  Taking this into 
consideration, when increasing the step size, it should 
be increased by a factor of two at most, and when 
decreasing the step size, it should be halved at most.  
The step size is controlled as follows: 
a) When increasing the step size, if 

2k+1 ERK≤0.5 ε  

the step size is increased by a factor of 2. 
b) When decreasing the step size, if 

ERK>0.5 ε  

the actual rate is determined with r = (0.5 / 
ERK)1/(k+1) according to 

r′ = min (0.9, max(1/2, r)) 

c)  If neither a) nor b) are satisfied, the step size is not 
changed at all. 

 
7) When the solution could not be accepted 

When the criterion (4.26) for accepting the solution 

is not satisfied, the step is retried.  The order is 
selected by testing a) in item 5, that is, the order will 
either be decreased or not be changed at all.  On the 
other hand, the step size is halved unconditionally. 

If the step is tried three times and (4.26) has still not 
been satisfied, the first order Adams method, that is, 
Euler’s method, is used and the step size is halved 
until (4.26) is satisfied. 

8) Stating procedure 
At the first step in solving the given initial value 
problem, the first order Adams method is used.  Here, 
the method of determining the initial step size and the 
method of increasing the order and step size are 
described. 

When we assume the initial step size is h1, the local 
error in Euler’s method at points x1 ( = x0 + h1) is 
estimated by 

( )00
2
1 , yxfh  

h1 can be selected so as not to exceed 0.5 ε .  
However, taking into consideration the possibility of 
f(x0,y0) = 0, and also for safety, the following is used: 

( ) 












= H

yxf
h ,

,
5.025.0min

2
1

00
1

ε  (4.30) 

where, 
( )00 ,4max xxxuH e −=  

u: unit of round-off error 
 

At starting step, the order and step-size is controlled 
as follows: 
The order is increased by one for subsequent steps 
and the step size is increased twice each time a step is 
processed.  This is because the order should be 
increased rapidly for effectiveness, and also because 
h1 of (4.30) tends to be conservative when ε  is small.  
This control is terminated when the solution at a 
certain step does not meet the criterion, or when the 
order comes to 12, or a) in item 5) is satisfied.  The 
subsequent orders and step sizes are controlled 
according to the previously mentioned general rules. 

9) Extension to a system of differential equations  
For a system of differential equations, the above 
mentioned procedures can be applied to each 
component of the solution vector. 

However, each error estimate of ERR, ERK, 
ERKM1, ERKM2 and ERKP1 is defined as follows 
instead of defining to each component: From the user 
specified EPSA and EPSR, we introduce 

( )
( ) ( )( ) 
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/EPSEPSAEPSRIYIW
EPSR,EPSAmaxEPS

 (4.31) 
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then ERR is defined as 

( )
( )

2
1

1

2

ERR 

















= ∑

=

N

I IW
Ile  (4.32) 

where, Y(I) and le(I) are the I-th component of the 
solution vector and its local error respectively.  ERK 
and ERKM1 are defined similarly.  The criterion used 
for accepting the solution is 

ERR ≤ EPS 

Note that when this is satisfied, from (4.31) and (4.32), 
we can see 

( ) ( )
N,...,2,1,                      

EPSAEPSR
=

+≤

I
IYIle

 

This subroutine is based on the code (Reference 
[71]) by L.F.  Shampine and M.K. Gordon. 
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H11-20-0151  ODGE, DODGE 

A stiff system of first order ordinary differential equations 
(Gear’s method) 
CALL ODGE (X, Y, FUN, N, XEND, ISW, EPSV, 
EPSR, MF, H, JAC, VW, IVW, ICON) 

 
Function 
This subroutine solves a system of first order ordinary 
differential equations of the form: 

( ) ( )
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 (1.1) 

by Gear’s method or Adams method, when functions  f1, 
f2,...,fN  and initial values x0, y10, y20, ..., yN0 and the final 
value of x, xe are given.  That is, it obtains the solutions 

(y1m, y2m, ..., yNm) at points emhxx
m

j
jm ,...,2,1;

1
0 =+= ∑

=

 

(See fig. ODGE-1).  The step size is controlled so that 
solutions satisfy the desired accuracy. 

Gear’s method is suitable for stiff equations, whereas 
Adams method is suitable for nonstiff equations. The user 
may select either of these methods depending on stiffness 
of the equations.  This subroutines provides two types of 
output mode as shown below.  The user can select the 
appropriate mode according to his purpose: 

Final value output ... Returns to the user program when 
the solution at final value xe is obtained. 
   Step output ... Returns to the user program each time 
the solution at x1, x2, ... is obtained. 

he
h3h2h1

xex3x2x1x0

 

Fig. ODGE-1  Solution output point xm (in the case x0 < xe) 

Parameters 
X ..... Input.  Starting point x0. 

Output.  Final value xe.  When the step output 
is specified, an interim point to which the 
solution is advanced a single step. 

Y ..... Input. 
Initial values y10,y20, ..., yN0.  They must be 
given in the order of Y(1) = y10, Y(2) = y20, ..., 
Y(N) = yN0 
One-dimensional array of size N 
Output:  Solution vector at final value xe.  
When the step output is specified, the solution 

vector at x = xm. 
FUN ..... Input.  The name of subroutine subprogram 

which evaluates  fi, i=1, 2,...,N in (1.1). 
The form of the subroutine is as follows: 
SUBROUTINE FUN (X, Y,YP) 
where 
X ..... Input.  Independent variable x. 
Y ..... Input.  One-dimensional array of size N, 

with the correspondence Y(1) = y1, 
Y(2) = y2, ..., Y(N) = yN 

YP ..... Output.  One-dimensional array of size 
N, with the correspondence 

( ) ( ),,...,,,1YP 211 Nyyyxf=  
( ) ( ),...,,...,,,2YP 212 Nyyyxf=  
( ) ( )NN yyyxf ,...,,,NYP 21=  

N ..... Input.  Number of equations in the system. 
XEND. Input.  Final point xe to which the system 

should be solved. 
ISW ..... Input.  Integer variable to specify conditions in 

integration.  ISW is a nonnegative integer 
having four decimal digits, which can be 
expressed as 
ISW= 1000d4 + 100d3 + 10d2 + d1 
Each di should be specified as follows. 
d1 ..... Specifies whether or not this is the first 

call 
0 ..... First call. 
1 ..... Successive call 
The first call means that this subroutine 
is called for the first time for the given 
differential equations. 

d2 ..... Specifies the output mode. 
0 ..... Final value output. 
1 ..... Step output. 

d3 ..... Indicates whether or not functions  
 f1, f2,...,fN  can be evaluated beyond the 
final value xe. 
0 ..... Permissible. 
1 ..... Not permissible. The situation in 
which the user sets d3 = 1 is when 
derivatives are not defined beyond xe, 
or there is a discontinuity there.  
However, the user should be careful 
that if this is not the case specifying d3 
= 1 leads to unexpectedly inefficient 
computation. 

d4 ..... Indicates whether or not the user has  
altered some of the values of MF, 
EPSV, EPSR and N: 
0 .... Not altered. 
1 ..... Altered. See 6 and 7 in 
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“Comments on Use” for specification. 
 
Output.  When the solutions at xe or at an 
interim point are reterned to the user program, 
the values of d1, d3, and d4 are altered as 
follows. 
d1 ..... Set to 1:  On subsequent calls, d1  

should not be altered by the user.  
Resetting d1 = 0 is needed only when 
the user starts solving another system of 
equations. 

d3 ..... When d3 = 1 on input, change it to d3  
= 0 when the solution at xe is obtained. 

d4 ..... When d4 = 1 on input, change it to d4  
= 0. 

EPSV ..... Input.  Absolute error tolerances for 
components of the solution.  One-dimensional 
array of size N, where EPSV(L) ≥ 0.0, L = 
1,2, ..., N 
Output.  If EPSV(L) is too small, the value is 
changed to an appropriate value.  (See 4 in 
“Comments on Use.”) 

EPSR ..... Input Relative error tolerance. 
Output.  If EPSR is too small, the value is 
changed to an appropriate value.  (See 4 in 
“Comments on Use.”) 

MF ..... Input.  Method indicator.  MF is an integer 
with two decimal digits represented as MF = 
10*METH + ITER. 
METH and ITER are the basic method 
indicator and the corrector iteration method 
respectively, with the following values and 
meanings. 

METH... 1 for Gear’s method. This is suitable 
for stiff equations  

2 for Adams method. This is suitable 
for nonstiff equations. 

ITER ... 0 for Newton method in which the  
analytical Jacobian matrix ( )J /= ∂ ∂f yi j  is 
used.  The user must prepare a subroutine to 
calculate the Jacobian matrix.  (See 
explanations about parameter JAC.) 
1 for Newton method in which the Jacobian 
matrix is internally approximated by finite 
difference. 
2 for Same as ITER = 1 except the Jacobian 
matrix is approximated by a diagonal matrix. 
3 for Function iteration in which the Jacobian 
matrix is not used. 
For stiff equations, specify ITER = 0, 1 or 2. 
0 is the most suitable value, but if the 
analytical Jacobian matrix cannot be prepared, 
specify 1.  Specify ITER = 2 if it is known that 
the Jacobian matrix is a diagonally dominant 
matrix. 

For nonstiff equations, specify ITER = 3 
H ..... Input.  Initial step size (H≠0) to be attempted 

for the first step on the first call 
The sign of H must be the same as that of xe – 
x0.  A typical value of |H| is 

( )( )00
45 ,10max,10minH xxx e −= −−  

The value of H is controlled to satisfy the 
required accuracy. 
Output. The step size last used. 

JAC ... Input.  The name of subroutine subprogram 
which evaluates the analytical Jacobian matrix: 
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The form of the subroutine is as follows. 
SUBROUTINE JAC (X, Y, PD, K) 

where, 
X ..... Input.  Independent variable x. 
Y ..... Input.  One-dimensional array of size N, 

with the correspondance Y(1) = y1, 
Y(2) =y2, ..., Y(N) = yN 

PD ... Output.  Jacobian matrix stored in a 
two-dimensional array PD (K, K), 
where 

( )PD i j f
y

i

j

, =
∂
∂

 

1 ≤ i ≤ N , 1 ≤ j ≤ N 
K ..... Input.  Adjustable dimension of array 

PD.  (See “Example.”) 
Even if the user specifies ITER ≠ 0, he must 
prepare a dummy subroutine for the JAC 
parameter as follows: 
SUBROUTINE JAC (X, Y, PD, K) 
RETURN 
END 

VW ..... Work area.  One-dimensional array of size 
N(N +17) + 70.  The contents of VW must not 
be altered on subsequent calls. 

IVW ..... Work area.  One-dimensional array of size N + 
25.  The contents of IVW must not be altered 
on subsequent calls. 

ICON .... Output.  Condition code. 
(See Table ODGE-1.) 
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Table ODGE-1  Condition codes 

Code Meaning Processing 
0 A single steg has been 

taken (in step output). 
Subsequent calls 
are possible. 

10 Solution at XEND was 
obtained. 

Subsequent calls 
are possible after 
changing XEND. 

10000 EPSR and EPSV(L): L = 
1, 2, .., N are too small for 
the arithmetic precision. 

 

15000 The requested accuracy 
could not be achieved 
even with a step size 10-10 
times the initial step size. 

 

16000 The corrector iteration did 
not converge even with a 
step size 10-10 times the 
initial step size. 

The methods 
specified through 
parameter MF 
may not be 
appropriate for 
the given 
equations.  
Change the MF 
parameter, then 
retry. 

30000 One of the following 
occurred, 
1) N≤ 0 
2) X = XEND. 
3) ISW specification  

error. 
4) EPSR < 0 or there 

exists I such that 
EPSV(I) < 0. 

5) (XEND – X)∗ H≤0. 
6) The IVW was changed 

(on the second or 
subsequent calls). 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL ... MGSSL, AMACH, USDE, UNIT2, USTE2, 
USETC, USETP, USOL, UADJU, UDEC 

FORTRAN basic functions ... MOD, FLOAT, AMAX1, 
AMIN1, ABS, SORT 

 
• Notes 

This subroutine can be effectively used for stiff 
equations or those which is initially nonstiff but change 
to be stiff in the integration interval.  For nonstiff 
equations, use subroutine ODAM or ODRK1 for 
efficiency. 

The names of the subroutines associated with 
parameter FUN and JAC must be declared as 
EXTERNAL in the calling program. 
 
Judgement by ICON 
When the user specifies the final value output, he can 
obtain the solution at xe only when ICON = 10. 

When the step output is specified, the user can obtain 
the solution at each step when ICON = 0.  ICON = 10 
indicates that the solution at xe has been obtained. 

Parameters EPSV and EPSR 
Let Y(L) be the L-th component of the solution vector 
and le(L) be its local error, then this subroutines 
controls the error so that 

( ) ( ) ( )LEPSVLYEPSR +×≤Lle  (3.1) 

is satisfied for L = 1, 2, ..., N.  When EPSV(L) = 0 is 
specified, the relative error is tested.  If EPSR = 0, the 
absolute error is tested with different tolerances 
between components. 
Note the following in specifying EPSV(l) and EPSR: 

Relative error test is suitable for the components 
which range over different orders in the 
integration interval. 
Absolute error test may be used for the 
components which vary with constant orders or so 
small as to be of no interest. 
However, it would be most stable and economical 
to specify: 

EPSV(L)≠0, L=1, 2, ...,N 
EPSR≠0 

In this case, relative errors are tested for the large 
components and absolute errors are tested for the 
small components.  In the case of stiff equations 
the orders of magnitude of the components might 
be greatly different, it is recomendable to specify 
different EPSV(L) between the components. 

If EPSR = 0 and some of the elements of EPSV are 
zero on input, the subroutine after EPSR to 16u, where 
u is the round off unit. 
 
Parameter XEND 
If the solutions at a sequence of values of the 
independent variable are required, this subroutine 
should be successively called changing XEND.  For 
this purpose, the subroutine sets the values of 
parameters required for the next call when returning to 
the user program. Therefore the user can call the 
subroutine only by changing XEND. 
 
Changing MF during the solution 
If the given equations are non-stiff initially and stiff 
later in the integration interval, it is desirable to change 
the value of MF from 23 to 10 (or 11 or 12) as follows 
when the equations become stiff: 

Set d4 of ISW to 1. This can be done with the 
statement ISW = ISW + 1000. 
Change the value of MF. 
Set XEND to the value of the next output point, 
then call this subroutine. 
This subroutine clears the d4 of ISW by 

ISW= MOD (ISW, 1000) 

EPSR and EPSV(L): 
L = 1, 2, ..., N were 
increased to proper 
values.  (Check the 
in EPSR and EPSV.) 
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indicating that the user’s request has been completely 
accomplished on return to the user program. 

However, if the solution at XEND can be readily 
obtained without changing MF, MF is not changed on 
return.  This means that the value of MF is changed 
only when the value of XEND reaches a value where 
the method should be changed. 

 
Changing parameters N, EPSV, and EPSR during the 
solution 
The user can change the values of parameters N, EPSV, 
and EPSR during the solution. 
However, considerable knowledge about the behavior 
of the solution would be required for changing the 
value of N as follow: 

In the solution of stiff equations, some components 
of the solution do not change so much as compared 
with the other components or some components 
become small enough to be neglected.  If these 
components are of no interest to the user it will be 
practical to regard these components as constants 
thereafter then to integrate only the remainder.  This 
reduces the amount of computations.  To change the 
value of parameter N means to reduce the number of 
components to be intergrated.  In this subroutine, some 
of the last components of the system (1.1) are removed.  
Therefore, the user must arrange the components prior 
to the solution. 

Based on the above, reduction of parameter N can be 
done in the manner described below: 

Suppose that initial value of N is N0 and changed to 
Nc (<N0) during the solution, (N0 – Nc) equations of the 
last potion of the system are removed, so the reduced 
system of equations are solved.  In this case, the 
components Y(L): L = Nc + 1, Nc + 2, ..., N0, are kept 
constant in the system reduced. 

In the user-prepared subroutines, FUN and JAC, 
derivatives and Jacobian matrices only for Nc equations 
need be calculated.  To identify the change of N in 
these routines, specify parameter N in COMMON 
statements.  

Values of EPSV and EPSR can also be changed if 
necessary in the same way as parameter MF explained 
above. 

• Example 
The following example solves the system: 
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in the interval [0, 100].  The system is stiff because the 
eigenvalues of the Jacobian matrix are –1 and –10.  In 

the following example, MF = 10, EPSR = 10-4 and 
EPSV(1) = EPSV(2) = 0 are used.  The solution at the 
following points are to be obtained. 

xj =10-3+j, j = 1, 2, ...., 5 

For this purpose, this subroutine is called repeatedly by 
setting XEND to xj. 

 
C     **EXAMPLE** 
      DIMENSION Y(2),EPSV(2),VW(110),IVW(30) 
      EXTERNAL FUN,JAC 
      X=0.0 
      Y(1)=1.0 
      Y(2)=-1.0 
      N=2 
      EPSR=1.0E-4 
      EPSV(1)=0.0 
      EPSV(2)=0.0 
      MF=10 
      ISW=0 
      H=1.0E-5 
C 
      WRITE(6,600) 
C 
      XEND=1.0E-3 
      DO 40 I=1,5 
      XEND=XEND*10.0 
   10 CALL ODGE(X,Y,FUN,N,XEND,ISW,EPSV, 
     *EPSR,MF,H,JAC,VW,IVW,ICON) 
      IF(ICON.EQ.10) GO TO 30 
      IF(ICON.EQ.10000.OR.ICON.EQ.15000) 
     *GO TO 20 
      IF(ICON.EQ.16000) WRITE(6,630) 
      STOP 
   20 WRITE(6,620) EPSR,EPSV(1),EPSV(2) 
      GO TO 10 
   30 WRITE(6,610) X,Y(1),Y(2) 
   40 CONTINUE 
      STOP 
  600 FORMAT('1',12X,'X',22X,'Y(1)', 
     *16X,'Y(2)'/) 
  610 FORMAT(6X,E15.8,10X,2(E15.8,5X)) 
  620 FORMAT(10X,'TOLERANCE RESET',5X, 
     *'EPSR=',E12.5,5X,'EPSV(1)=',E12.5, 
     *5X,'EPSV(2)=',E12.5) 
  630 FORMAT(10X,'NO CONVERGENCE IN', 
     *' CORRECTOR ITERATION') 
  640 FORMAT(10X,'INVALID INPUT') 
      END 
 
      SUBROUTINE FUN(X,Y,YP) 
      DIMENSION Y(2),YP(2) 
      YP(1)=Y(2) 
      YP(2)=-11.0*Y(2)-10.0*Y(1) 
      RETURN 
      END 
 
      SUBROUTINE JAC(X,Y,PD,K) 
      DIMENSION Y(2),PD(K,K) 
      PD(1,1)=0.0 
      PD(1,2)=1.0 
      PD(2,1)=-10.0 
      PD(2,2)=-11.0 
      RETURN 
      END 
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Method 
Both Gear’s and Adams methods with step size and order 
controls are used in this subroutine. 
Gear’s method is suitable for stiff equations, whereas 
Adams method is suitable for non-stiff equations. 

Both methods are multistep methods.  The subroutine 
employs the identical strategies for storing the solutions 
at the past points and for controling the step size and 
order between the two methods.  Gear’s method will be 
described below first, then the step size control and order 
control will follow.  The modifications necessary to be 
made when Adams method is used are also presented. 

For simplicity, consider a single equation 

y’=f(x,y) , y(x0)=y0 

for which the computed solution at xm (referred to as the 
solution hereafter) is denoted by ym and the true solution 
is referred to as y(xm).  The value of f(xm, ym) is 
represented shortly as fm,  which must be distinguished 
from f(xm, y(xm)). 
1) Principle of Gear’s method 

Assume that y0, y1, ..., ym are known and the solution 
ym+1 at 

xm+1 = xm + hm+1 

is being obtained. 
The fundamental ideas of Gear’s method are best 
stated as follows: 
Now, we consider the interpolation polynomial 
πm+1 (x) of degree k satisfying k + 1 conditions 

( )
kj

yx jmjmm

,...,2,1,0,
111

=

= −+−++π
 (4.1) 

Equation (4.1) contains solution ym+1 as an unknown 
parameter.  The value of ym+1 is determined so that the 
derivative of the polynomial 1+mπ (x)  at xm+1 is equal 
to f(xm+1, ym+1), that is, to satisfy 

( ) ( )1111 , ++++ =′ mmmm yxfxπ  (4.2) 

If we represent πm+1 (x) as a Lagrangian form, and 
differentiate it at x = xm+1, (4.2) gives 

( ) ∑
=

−+++++ −=
k

j
jmjmmmm yyxfh

0
1,1111 , α  (4.3) 

where αm+1,j are constants determined by the 
distribution of {xm+1-j}.  Generally, since  
f(xm+1, ym+1)is nonlinear with respect to ym+1, (4.3) 

becomes nonlinear with respect to ym+1; therefore, ym+1 
is calculated using an iteration method with an 
appropriate initial value.  An initial value can be 
determined as follows: 
Suppose the polynomial πm(x)to be an interpolation 
polynomial of degree k satisfying. 

( )
( ) ( ) 
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 (4.4) 

Then,  pm+1 obtained from 

( )11 ++ = mmm xp π  (4.5) 

is regarded as an approximation at xm+1 and is used as 
the initial value for the iteration. 
In Gear’s method explained above, pm+1 is referred to 
as the predictor and ym+1 obtained in the iteration 
method is referred to as the corrector.  Especially, in 
the Gear’s method when k = 1, that is, of order one 

( )mmmmm yxfhyp ,11 ++ +=  (4.6) 

is used as the predictor, and the solution ym+1 is 
obtained from 

( ) mmmmm yyyxfh −= ++++ 1111 ,  (4.7) 

(4.6) and (4.7) are called the Euler method and the 
backward Euler method, respectively. 
Since Gear’s method is based on the backward 
differentiation formula as expressed in (4.3), it is 
referred to as the backward differentiation formula 
(BDF) method. 

2) Nordsieck form for Gear’s method 
The predictor is calculated from πm(x), whereas the 
corrector is calculated from 1+mπ (x)  as explained above.  
Since the corrector obtained determines the 1+mπ (x), the 
calculation of the corrector means to generate 1+mπ (x).  
The determined 1+mπ (x)  is used to calculate the 
predictor in the next step.  This means that one 
integration step consists of generating 1+mπ (x)  from 
πm(x); πm(x)  can be expanded into a Taylor series as 

( ) ( ) ( )
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!
...

!2

 (4.8) 

In this subroutine, coefficients of (4.8) and step size h = 
hm+1 = xm+1 –xm are used to express the row vector 

( )!,...,, )( kyhyhyz k
m

k
mmm ′=  (4.9) 
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This is referred to as the Nordsieck expression for the 
history of solution and is used to express πm(x); 
therefore, the problem to generate 1+mπ (x) from 
πm(x) is reduced to obtain the following from zm: 

( )!,...,, )(
1111 kyhyhyz k

m
k

mmm ++++ ′=  (4.10) 

Using (4.8), we can express predictor pm+1 as 

( ) ∑
=

++ ==
k

i

i
m

i
mmm iyhxp

0

)(
11 !π  (4.11) 

The right-hand side is the sum of elements of zm.  To 
simplify conversion from zm to zm+1 in the prediction, 
the following is calculated for (4.11) 

Azz mm =+ )0(1  (4.12) 

where A is the (k + 1) × (k + 1) unit lower triangular 
matrix defined as 

( )
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where A = (aij).  For example, A is expressed as 
follows when k = 5: 

A =























1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

0
 

Since the lower triangular portion of A is the Pascal’s 
triangle, this is referred to as the Pascal’s triangle 
matrix. 
Let the first element of zm+1(0) obtained from (4.12) be 
ym+1(0), then pm+1 

!... )(
)0(1 kyhyhyy k

m
k

mmm ++′+=+   

which is equal to pm+1.  So ym+1(0) is used hereafter for 
pm+1.  The (i + 1)-th element of zm+1(0)is equal to 

!)/( 1
)( ixh m

i
m

i
+π , so calculation of (4.12) means to predict 

the solution and higher order derivatives at xm+1. 
On the other hand, the corrector is calculated from a 
relation between zm+1(0) and zm+1, which is derived below: 
The (i + 1) -th element of zm+1 –zm+1(0) is obtained from 
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Since the polynomial ∆m+1 (x) ≡πm+1(x) − πm (x) has 
degree k and satisfies conditions 

( )
( )
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1+m∆ (x) is determined uniquely and can be expanded 
at xm+1 in to a Taylor series 

( ) ( )( ) ( )∑
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0
10111∆  (4.14) 

where lq is determined depending on the distribution 
of {xm+1-j}and more precisely, it is the coefficient of tq 
in the expression 
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where sj = (xm+1 –xm+1-j)/h.  Although lq also depends on 
values k and m, they are omitted in this expression.  From 
(4.14), we can reduce the right-hand side of (4.13) to (ym+1–
ym+1(0))li, therefore, by introducing 

( )klll ,...,, 10=l  (4.16) 

the relation between zm+1 and zm+1(0) is expressed as 

( ) ( )( )lzz 011011 ++++ −+= mmmm yy  (4.17) 

This gives how zm+1 is generated after the corrector ym+1 is 
determined.  The ym+1 can be calculated based on the 
relation between the second elements of both sides of 
(4.19), that is, 

( ) ( )( )
( ) 
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This can be written as 

( )( ) ( ) ( )( ) 0, 0111
1

011 =′−−− +++++ mmmmm yyxf
l
hyy

 (4.19) 

This means that ym+1 is just the zero of 

( ) ( )( ) ( ) ( )( )011
1

01 , +++ ′−−−≡ mmm yuxf
l
hyuuG  (4.20) 

, so it is obtained using the Newton’s method (See later). 
3) Solutions at an arbitrary value of the independent 

variable 
Since the step size is taken as large as possible within 
the tolerable error, the following situation is typical 
about the point xe at which the solution is to be 
obtained 

xm < xe ≤ xm+1 (4.21) 

In this subroutine, after solution ym+1 at 
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xm+1  is determined, solution ye at xe is calculated using 
elements of zm+1 as follows: 
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4) Acceptance of solutions 
Let lem+1(k) denote the local error of the corrector ym+1, 
then the subroutine estimate it as follows using the 
difference between the corrector and the predictor: 

( ) ( )( )011

1

2 1

11

1
1 11

++

−

= −+

−++
+ −
























−
−

+−= ∏ mm

k

j jmm

jmm
m yy

xx
xx

l
kle

 (4.23) 

If, for some tolerance ε 

( ) ε≤+ klem 1  (4.24) 

is satisfied ym+1 is accepted as the solution at xm+1, 
then zm+1 is generated from (4.17), to proceed to the 
next step. 

5) Order and step size controls 
This subroutine uses Gear’s method of order1), 2), 3), 
4), or 5) depending on the behavior of the solution.  
Suppose the order of Gear’s method used at the 
previous step to be k, then the order at the current 
stop is either k – 1, k or k + 1. 
Suppose that solution ym+1 at xm+1 has been accepted 
by the method of order k, and the order for the next 
step is to be determined.  For that purpose, the 
subroutine estimates the local errors lem+1(k), lem+1(k – 
1) as well as lem+1(k), where lem+1(k – 1) lem+1(k + 1) 
means the local errors at xm+1 if the methods of order k 
– 1, k + 1 respectively would have been used. 
This subroutine estimates lem+1(k – 1) and lem+1(k + 1) 
from  

( ) ( )( )!...1 )(
11,11211 kyhlssskle k

m
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where lk-1,1 and lk+1,1 are coefficients of t1 with k replaced 
by k – 1 and k + 1 in (4.15), and  
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Using the lem+1(q), q = k – 1, k, k + 1, the order is 
selected as follows.  First from the tolerance ε, we 
calculate 

( )( ) ( )
1,,1,

11
1 +−==

+
+ kkkqqle

q
mq εη  (4.27) 

where ηq means the tolerable scaling factor of the step 
size when order q is to be used for the next step. 
Suppose 

( )q
q

q ηη max=′  (4.28) 

then q’ is adopted as the order for the next step.  This 
means that the step that results in the largest step size 
is adopted. 
So, the next step size is determined as 

hq ⋅′η  
If the solution is not accepted because the 
condition(4.24) is not satisfied, the step is retaken by 
reducing the step size to ηk･h without changing the 
order. 

6) Adams method 
Although Adams method is explained under 
“Method” of subroutine ODAM, this subroutine 
employs other computational procedures than those of 
ODAM.  That is, while Adams method is represented 
in terms of the modified divided differences in 
subroutine ODAM, the Nordsieck form is used in this 
subroutine.  Much of computational procedures are 
shared between Gear’s and Adams methods in this 
subroutine. 
In Adams method, however, values introduced above 
in Gear’s method are modified as follows: 
 
Nordsieck form in Adams method 

In Adams method, the true solution y(x) is 
approximated by the interpolation polynomial 
Pm+1(x) of degree k given by the conditions 
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(4.29) contains ym+1 as an unknown parameter, and 
ym+1 is determined so that  
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Since(4.30) contains f(xm+1, ym+1) on the right-hand 
side, it generally becomes a nonlinear equation 
with respect to ym+1. 
To solve this equation, an initial value is 
calculated from the polynomial Pm(x) of degree k 
given by the conditions
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as 

( ) ( )∫ + ′+== ++
1

11
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x
x dxxPmmmmm yxPp  (4.32) 

From the above, it follows that Adams method 
consists of generating Pm+1(x) from Pm(x).  Pm(x) 
can be expanded to a Taylor series at xm 

( ) ( ) ( ) !... )( kyxxyxxyxP k
m

k
mmmmm −++′−+=

 
 (4.33) 

where ym
q( )  q=0,1,..., k means Pm

q( ) (xm).  Using 
coefficients of (4.33) and step size h = hm+1 = xm+1 
– xm, we introduce a row vector 

( )!,...,, )( kyhyhyz k
m

k
mmm ′=  (4.34) 

This is the Nordsieck form of polynomial Pm(x) in 
Adams method. 

 
Calculation of zm+1(0) 
The zm+1(0) can be calculated in the same way by 
(4.12) using zm obtained from (4.34). 
 
Relation between zm+1(0) and zm+1 
The (i +1)-th element of zm+1 – zm+1(0) is 

( ) ( ){ } 11! +=+ −
mxxmmi

ii
xPxP

dx
d

i
h  (4.35) 

Expanding the polynomial 
( ) ( ) ( )xPxPx mmm −≡ ++ 11∆  to a Taylor series, we 

get 
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10111∆ (4.36) 

and by substituting this into (4.35), we can express 
(4.35) as (ym+1–ym+1(0))li, where lq is the coefficient 
of tq of the polynomial of degree k given by 
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j
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j dusudusu  (4.37) 

where sj = (xm+1 –x m+1-j)/hm+1.  Using lq, we obtain 
the relation between zm+1(0) and zm+1 which has the 
same from as (4.17). 
 
Local error 
Also, in Adams method, local errors at order k – 1, 
k, and k + 1 are estimated for the acceptance of the 
solution, step size and order control.  Let these 
errors be lem+1 (k – 1), lem+1(k), lem+1 (k + 1), then 
these values are estimated as follows: 

( ) ( ) ( )( )!1 1
2

0
1

0

1
kyhdusukkle k

m
kk

jm +
−

+ 





 ∏ +=− ∫−  (4.38) 

( ) ( ) 1
1

0
1

0

1 +
−

+ 





 ∏ += ∫− mk

k
jkm esdusuklkle  (4.39) 

( ) ( ) ( )mmmk
k

jkm eQeLsdusuklkle 11
0

1
0

1
1 +++ −







 ∏ +=+ ∫−

 (4.40) 

where 
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In (4.41), sk(m) and lk(m) are obtained by 
substituting m for m+1 in their definitions. 
Equations (4.38) to (4.40) are used to check the 
solution and to control the order and step size in 
the same way as Gear’s method. 

7) Extension to a system of differential equations 
The above discussion can be applied to each 
component of the solution in the case of systems of 
differential equations; however, the error estimates, 
such as lem+1(k), must be defined as the norms of 
vector as follows. 
From the user-specified EPSV(I), I = 1, 2, ..., N and 
EPSR we introduce 

EPS = max (EPSR, max (EPSV(I))) 
W(I)=(|Y(I)|･EPSR+EPSV(I))/EPS 

and define ERK as 

( )
( )
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N

I

le  (4.42) 

where Y(I) and le(I) are the I-th component of the 
solution and its local error respectively.  Under these 
conditions, the subroutine tests 

ERK ≤ EPS 

If this is satisfied, 

( ) ( ) ( ) N,...,2,1I,IEPSVEPSRIYI =+⋅≤le  

is automatically satisfied. 
Moreover, norms ERKM1 and ERKP1 which 
correspond to lem+1(k–1) and lem+1(k + 1) respectively in 
the case of single equations are defined in the same way 
as (4.42).  The order and step size are controlled based 
on (4.27) but with the following substitutions: 
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8) Corrector iteration 
This subroutine calculates the corrector as a zero of a 
nonlinear algebraic equation as mentioned above.  
This section summanzes how to obtain the zero in the 
case of systems of differential equations.  In this case 
(4.20) is expressed as 

( ) ( )( ) ( ) ( )( )011
1

01 , +++ ′−−−≡ mmm x
l
h yufyuuG  (4.43) 

This subroutine solves (4.43) by the Newton’s method 
expressed as 
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In the subroutine, Pm+1.r is not evaluated at each 
iteration, but 

( )01
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01 where
+

=−= +++
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mm,m l
h

yu
fJJIP

∂
∂  (4.45) 

is used instead. 
This subroutine contains several methods for 
evaluating Pm+1,0, For Pm+1,0 calculation, there are 
several methods, one of which the user can select 
through the parameter MF.  Let MF = 10*METH + 
ITER, then ITER is the indicator on how to evaluate 
Pm+1,0, with the following values and meanings: 
0: to evaluate Pm+1,0 by the analytical Jacobian  

matrix Jm+1.  In this case, the user must prepare 
subroutine JAC to evaluate Jm+1. 

1. to approximate Pm+1,0 by finite differences. 
2: to approximate Pm+1,0 with a diagonal matrix by 

finite differences 

Dm+1 = diag (d1, d2, ..., dN) (4.46) 

where 

di=[fi(xm+1, ym+1(0)+v) − fi(xm+1, ym+1(0) )] /vi 

v = − 0.1 G(ym+1(0)) 
   = (v1, v2, ..., vN)T 

The approximation is effective only when Jm+1 is 
diagonally dominant matrix. 

3: to approximate Pm+1,0 with the identity matrix I.  
In this case (4.44) becomes a simple recurrence 
formula 

ur+1 = ur – G(ur) (4.47) 

This is sufficient to solve nonstiff equations.  
Convergence of (4.44) is tested by 
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I
r

I
r uu  (4.48) 

where uI is the I-th element of vector u and c* is a 
constant specific to the problem. 
This subroutine is based on the code written by 
A.C.  Hindmarsh and G.D.Byrne (References [76] 
and [77]). 
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H11-20-0131  ODRK1, DODRK1 

A system of first order ordinary differential equations 
(Runge-Kutta-Verner method, step output, final value 
output) 
CALL ODRK1 (X, Y, FUN, N, XEND, ISW, EPSA, 
EPSR, VW, IVW, ICON) 

 
Function 
This subroutine solves a system of first order ordinary 
differential equations of the form: 

( ) ( )
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 (1.1) 

by Rung-Kutta-Verner method, when functions f1, 
f2 , ... ,fN  and initial values x0, y10,y20, ..., yN0 and the final 
value xe are given, i.e. obtains the solution (y1m, y2m, ..., 

yNm) at xm= x0+∑
=

m

j
jh

1

 (m=1,2,..., e) 

(See Fig. ODRK 1-1).  The step size hj is controlled so 
that solutions satisfy the desired accuracy. 

This subroutine provides two types of output mode as 
shown below.  The user can select the appropriate mode 
according to this purposes. 
• Final value output ... Returns to the user program when 

the solution at final value xe is obtained. 
• Step output ... Returns to the user program each time 

the solutions at x1, x2, ... are obtained. 
 heh3 h2 h1 

xex3 x2 x1 x0  
Fig. ODRK1-1 Solution output point xm (in the case x0 < xe) 

Parameters 
X ..... Input. Starting point x0. 

Output.  Final value xe.  When the step output 
is specified, an interim point xm to which the 
solutions are advanced a single step. 

Y ..... Input.  Initial values y10, y20, ... yN0.  They must 
be given in order of Y(1) = y10, Y(2) = y20, ..., 
Y(N) = yN0. 
One-dimensional array of size N. 
Output.  Solution vector at final value xe. 
When the step output is specified, the solution 
vector at x = xm. 

FUN ..... Input.  The name of the subprogram which 
evaluates fi (i = 1, 2, ..., N) in (1.1). 
The form of the subroutine is as follows: 
  SUBROUTINE FUN (X, Y, YP) 

where 
X: Input.  Independent variable x. 
Y: Input.  One-dimensional array of size N, 

with corresponding Y(1) = y1,  
Y(2) = y2, ... , Y(N) = yN. 

YP: Output.  One-dimensional array of size 
N, with corrosponding YP(1)=f1(x, y1, 
y2, ..., yN), YP(2)=f2(x, y1, y2, ..., yN), 
YP(N)=fN(x, y1, y2, ..., yN). 

N ..... Input.  Number of equations in the system. 
XEND .. Input.  Final point xe to which the system 

should be solved. 
ISW ... Input. Integer variable to specify conditions in 

integration. 
ISW is a non-negative integer having two 
decimal digits, which can be expressed as 

ISW = 10d2 + d1 

Each di should be specified as follows: 
d1: Specifies whether or not this is the first 

call. 
0: First call 
1: Successive call 
The first call means that this subroutine 
is called for the first time for the given 
differential equations. 

d2: Indicator for the output mode 
0: Final value output 
1: Step output 

Output.  When this subroutine returns to the user 
program after obtaining the solutions at xe or the 
solutions at each step, d1 is set as d1 = 1. 

When this subroutine is called repeatedly, d1 
should not be altered. 

The user has to set d1 = 0 again only when 
he starts to solve other equations. 

EPSA ..... Input.  Absolute error tolerance See Method. 
EPSR ..... Input.  Relative error tolerance. 

Output.  If EPSR is too small, the value is 
changed to an appropriate value. (See Notes.) 

VW ..... Work area. One-dimensional array of size 9 N 
+ 40. 
When calling this subroutine repeatedly, the 
contents should not be changed. 

IVW .... Work area. One-dimensional array of size 5.  
When calling this subroutine repeatedly, the 
contents should not be changed. 

ICON .. Output.  Condition code.  See Table ODRK1-1. 
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Table ODRK1-1  Condition codes 

Code Meaning Processing 
0 (In step output) A single 

step has been taken. 
Normal. 
Successive 
calling is possible.

10 Solution at XEND was 
obtained. 

Normal. 
Successive 
calling is possible 
after changing 
XEND 

10000 Integration was not 
completed because EPSR 
was too small in 
comparison with the 
arithmetic precision of the 
computer used (See 
Comments on use.) 

Return to user 
program before 
continuing the 
integration.  
Successive 
calling is possible.

11000 Integration was not 
completed because more 
than 4000 derivative 
evaluations were needed 
to reach XEND. 

Return to user 
program before 
continuing the 
integration.  The 
function counter 
will be reset to 0 
on successive 
call. 

15000 Integration was not 
completed because 
requested accuracy could 
not be achieved using 
smallest alloable stepsize. 

Return to user 
program before 
continuing the 
integration.  The 
user must 
increase EPSA or 
EPSR before 
calling again. 

16000 (When EPSA = 0)  
Integration was not 
completed because 
solution vanished, making 
a pure relative error test 
impossible. 

Return to user 
program before 
continuing the 
integration.  The 
user must 
increase EPSA 
before calling 
again. 

30000 Some of the following 
occurred: 
1. N ≤ 0 
2 X = XEND 
3 ISW was set to an 

improper value. 
4 EPSA < 0 or EPSR < 0 
5 After ICON = 15000 or 

16000 is put out, 
successive calling is 
done without changing 
EPSA or EPSR. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... AMACH, MGSSL, URKV, UVER 
FORTRAN basic functions ... ABS, SIGN, AMAX1, 
AMIN1 

• Notes 
This subroutine may be used to solve non-stiff and 
mildly stiff differential equations when derivative 
evaluations are inexpensive but cannot be used if high 
accuracy is desired. 

The name of the subroutine associated with 
parameter FUN must be declared as EXTERNAL in 
the calling program. 

Solutions may be acceptable only when ICON is 0 or 
10. 

When ICON = 10000 to 11000, the subroutine 
returns control to the user program before continuing 
the integration. The user can call this subroutine 
successively after identifying occurrences.  When 
ICON = 15000 to 16000, the subroutine returns control 
to the user program before continuing the integration.  
In these cases, however, the user must increase EPSA 
or EPSR then he can call this subroutine successively 
(See the example). 

Relative error tolerance EPSR is required to satisfy 

ur 210EPSR 12
min +=≥ −ε  

where u is the round-off unit.  When EPSR does not 
satisfy the above condition, the subroutine increases 
EPSR as 

minEPSR rε=  

and returns control to the user program with ICON = 
10000.  To continue the integration, the user may call 
the subroutine successively. 

In this subroutine, the smallest stepsize hmin is 
defined to satisfy 

( )dxuh ,max26min ⋅=  

, where x is independent variable, and d = (xe – x0)/100.  
When the desired accuracy is not achieved using the 
smallest stepsize, the subroutine returns control to the 
user program with ICON = 15000.  To continue the 
integration, the user may call the subroutine again after 
increasing EPSA or EPSR to an appropriate value. 
 

• Example 
A system of first order ordinary differential equations 

( )
( )⎪⎩

⎪
⎨
⎧

=−=′
==′

0.10,1
0.10,

212

12
2
11

yyy
yyyy  

is integrated from x0 = 0.0 to xe = 4.0, under EPSA = 
0.0, EPSR = 10-5.  Solutions are put out at each step. 
 
C     **EXAMPLE** 
      DIMENSION Y(2),VW(58),IVW(5) 
      EXTERNAL FUN 
      X=0.0 
      Y(1)=1.0 
      Y(2)=1.0 
      N=2 
      XEND=4.0 
      EPSA=0.0 
      EPSR=1.0E-5 
      ISW=10 
   10 CALL ODRK1(X,Y,FUN,N,XEND,ISW,EPSA, 
     *EPSR,VW,IVW,ICON) 
      IF(ICON.EQ.0.OR.ICON.EQ.10) GO TO 20 
      IF(ICON.EQ.10000) GO TO 30 
      IF(ICON.EQ.11000) GO TO 40 
      IF(ICON.EQ.15000) GO TO 50 
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      IF(ICON.EQ.16000) GO TO 60 
      IF(ICON.EQ.30000) GO TO 70 
   20 WRITE(6,600) X,Y(1),Y(2) 
      IF(ICON.NE.10) GO TO 10 
      STOP 
   30 WRITE(6,610) 
      GO TO 10 
   40 WRITE(6,620) 
      GO TO 10 
   50 WRITE(6,630) 
      EPSR=10.0*EPSR 
      GO TO 10 
   60 WRITE(6,630) 
      EPSA=1.0E-5 
      GO TO 10 
   70 WRITE(6,640) 
      STOP 
  600 FORMAT('0',10X,'X=',E15.7,10X, 
     *'Y(1)=',E15.7,10X,'Y(2)=',E15.7) 
  610 FORMAT('0',10X,'RELATIVE ERROR', 
     *' TOLERANCE TOO SMALL') 
  620 FORMAT('0',10X,'TOO MANY STEPS') 
  630 FORMAT('0',10X,'TOLERANCE RESET') 
  640 FORMAT('0',10X,'INVALID INPUT') 
      END 
      SUBROUTINE FUN(X,Y,YP) 
      DIMENSION Y(2),YP(2) 
      YP(1)=Y(1)**2*Y(2) 
      YP(2)=-1.0/Y(1) 
      RETURN 
      END 
 
Method 
Defining solution vector y(x), function vector f(x,y), 
initial vector y0 as 

( ) ( )
( ) ( ) ( ) ( )( )
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 (4.1) 

the initial value problem of a system of first order 
ordinary differential equations (1.1) can be rewritten as: 

y’(x) = f(x,y),  y(x0) = y0 (4.2) 

• Runge-Kutta-Verner method 
This subroutine uses the Runge-Kutta-Verner method 
with estimates of the truncation error as shown below 
(The excellence of this method are described in 
Reference [73]). 

Solutions at point xm+1 = xm + hm+1 are obtained by 
using the formulas below 
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 (4.3) 

  In the above formula, y*
m+1 and ym+1 are approximations 

with 5th and 6th order truncation error respectively, and 
T is an estimate of the local truncation error in y*

m+1.  In 
this subroutine, the approximation ym+1 with higher 
accuracy is accepted as the solution when y*

m+1 satisfies 
the desired accuracy. 
 
• Stepsize control 

Initial stepsize determination: 
Since y*

m+1 given by (4.3) is a 5th order approximation, 
the local truncation error at x1 = x0 + h is estimated by 
h5 times hf(x0,y0) which is the term of degree one in h 
in the Taylor expansion of the solution y(x0 + h) at x0.  
So the initial stepsize h1 is determined by 

( ){ }dxuhh ,max26,max 011 ⋅′=  (4.4) 

where 
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( ) uxxd e 210EPSR,100 -12
0 +≥−=  (4.6) 

 (u is the round-off error unit) 
 
Solution acceptance and rejection: 
When an estimate T of local truncation error given by 
(4.3) satisfies the following condition, the solution ym+1 
is accepted. 

( ) ( )

Ni

xyxy
T mimi

,...,2,1,
2

EPSR+EPSA 1

=

+
⋅≤ −

i  (4.7) 

This test becomes a relative error test when EPSA = 0.  
Such pure relative error test is recommendable if the 
user wants to be sure of accuracy.  If EPSR = 0.0, it is 
corrected to EPSR = 10-12+2u automatically in the 
subroutine.  At this time, unless the absolute value of 
the solution is so large,  EPSA becomes the upper 
bound of the absolute error.  If the absolute value of the 
solution is large, the second term of the right hand side 
in (4.7) becomes the upper bound of the absolute error, 
so (4.7) is essentially relative error test. 
Stepsize control: 
The dominant term of the truncation error term in i-th 
component of y*

m+1 can be expressed as h6Ci with h 
being a stepsize, Ci being a constant.  If h is sufficiently 
small, 

ii TCh ≈6  (4.8) 

holds.  If the stepsize h is changed to sh, the estimated 
truncation error changes from Ti to s6 Ti. 
• If the previous stepsize is unsuccessful i.e., if 

( ) ( )
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⋅> mimi

i
xyxy

T  (4.9) 

holds for some integer i0, the stepsize for the next 
trial is determined as follows.  In order that i-th 
component of the solution may be accepted, the 
magnifying rate si for stepsize must satisfy the 
condition 
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xyxy

Ts  (4.10) 

Taking the minimum of si for i = 1, ..., N and then 
multiplying it by a safety constant 0.9, the rate can be 
obtained as 
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If s determined by (4.11) is equal to or less than 0.1, 
s = 0.1 is assumed.  If s < 0.1, that is, 
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 (4.12) 

s is calculated from (4.11). 
• If the previous stepsize is successful 

i.e. if s determined by (4.11) is equal to or greater than 
5, s = 5.0 is assumed.  If s < 5.0, that is, 
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s is calculated from (4.11). 
 

For a detailed description of the Runge-Kutta-Verner 
method, see Reference [72]. 
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F12-15-0402  PNR, DPNR 

Permutation of data (reverse binary transformation 
CALL PNR (A, B, NT, N, NS, ISN, ICON) 

 
Function 
When complex data {αk} of dimension n is given, this 
subroutine determines { kα~ } using reverse binary 
transformation.  Also if { kα~ } is given, determines {αk}.  
n must be a number expressed as n = 21 (l: 0 or a positive 
integer). 
  The reverse binary transformation means that the 
element of {αk} or { kα~ } located 

k = k0 + k1･2 + .... + kl-1･2l–1 (1.1) 

is moved to location 

1
021 2...2

~ −
−− ⋅++⋅+= l

ll kkkk  (1.2) 

This routine performs the data permutation required in 
Fast Fourier Transform method. 
 
Parameters 
A ..... Input.  Real parts of {αk} or { kα~ }. 

Output.  Real parts of { kα~ } or {αk}. 
One-dimensional array of size NT. 

B ..... Input.  Imaginary parts of {αk} or{ kα~ }. 
Output.  Imaginary parts of { kα~ } or {αk}. 
One-dimensional array of size NT. 

NT ..... Input.  Total number of data (≥N) including 
the {αk} or { kα~ } to be permuted. 
Normally, NT = N is specified. 
(See “Notes”.) 

N ..... Input.  Dimension n. 
NS ..... Input.  The interval of the consecutive data 

{αk} or { kα~ } to be permuted of dimension n 
in the NT data (≥ 1 and ≤ NT). 
Normally, NS = 1 is specified. 
(See “Notes”.) 

ISN ..... Input.  Interval (≠0) of the NT data.  
Normally, ISN = 1 is specified. 
(See “Notes”.) 

ICON ..... Output.  Condition code.  See Table PNR-1. 
 
Table PNR-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 ISN = 0, NS < 1, NT < N, NT 
< NS, or N≠2l ( l : 0 or a 
positive integer) 

Bypassed 
 

One-dimensional array
A(NT) which contains {xJ1,J2}

NT
(=N1×N2)

x1,2

x0,2

x1,1

x0,1

x1,0

x0,0

xN1−1,N2−1

xN−1,1

xN−1,0

 
Fig. PNR-1  Storage of {xJ1,J2} 

Comments on use 
• Subprograms used 

SSL II ..... MGSSL 
FORTRAN basic functions ..... ALOG and IABS 

  
• Notes 

Use I: 
This subroutine is usually used with subroutine CFTN 
or subroutine CFTR.  Discrete complex Fourier 
transform and inverse Fourier transform are defined 
generally 
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In CFTN, the transform in (3.3) or (3.4), corresponding 
to (3.1) or (3.2), is performed. 
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  In CFTR, the transform in (3.5) or (3.6), corresponding 
to (3.1) or (3.2) is performed. 
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Thus, this subroutine is used with CFTN, after the 
transformation of (3.3) or (3.4), to permute { kα~ } or 

}~{ jx  into {αk} or {xj}. 
When used with CFTR, just before the transformation of 
(3.5) or (3.6) is performed, this routine permutes {xj} or 
{αk} into }~{ jx  or{ kα~ }.  Since the parameters of this 
subroutine are essentially the same as with CFTN and 
CFTR, their specifications are the same. 
Refer to Examples (a) and (b). 
Use II: 
This subroutine can be also used when performing a 
multi-variate Fourier transform or inverse Fourier 
transform with CFTN or CFTR. 
A multi-variate discrete complex Fourier transform is 
defined generally for two variate 
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With CFTN, the transform in (3.8), corresponding to 
(3.7) can be done. 
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  With CFTR, the transform in (3.9), corresponding to 
(3.7) can be done. 
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For an inverse transform, a transform similar to a one-
variable transform can be performed.  When this 
subroutine is used with CFTN, after the transformation of 
(3.8) is performed, {N1.N2 2.1

~
kkα } is permuted.  If used 

with CFTR, just before the transformation of (3.9),{xj1.j2} 
is permuted. 
Refer to Example (c). 
Specifying ISN: 
If NT real parts and imaginary parts of {αk} or { kα~ } are 
each stored in areas of size NT･I in intervals of I, the 
following specification is made. 

ISN = I 

  The permuted results are also stored in intervals of I. 
 
• Examples 

(a) Permutation after a one-variable transform Given 
complex time series data {xj} of dimension n, after 
a Fourier transform is performed using 

subroutine CFTN, the results {n kα~ } are permuted 
with this subroutine and scaled to obtain{αk}. 
In case of n ≤ 1024 (= 210). 

 
C     **EXAMPLE** 
      DIMENSION A(1024),B(1024) 
      READ(5,500) N,(A(I),B(I),I=1,N) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,N) 
      CALL CFTN(A,B,N,N,1,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      CALL PNR(A,B,N,N,1,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      DO 10 I=1,N 
      A(I)=A(I)/FLOAT(N) 
      B(I)=B(I)/FLOAT(N) 
   10 CONTINUE 
      WRITE(6,620) (I,A(I),B(I),I=1,N) 
      STOP 
  500 FORMAT(I5/(2E20.7)) 
  600 FORMAT('0',10X,'INPUT DATA N=',I5/ 
     *      /(15X,I5,2E20.7)) 
  610 FORMAT('0',10X,'RESULT ICON=',I5) 
  620 FORMAT(15X,I5,2E20.7) 
      END 
 

(b) Permutation before a one-variable transform  
Given complex time series data {xj} of dimension n, 
before performing a Fourier transform, the data is 
permuted using this subroutine, and a transform is 
performed on the results }~{ jx  using subroutine 

CFTR, and then scaling is performed to obtain {αk}. 
In case of n ≤ 1024 ( = 210). 

 
C     **EXAMPLE** 
      DIMENSION A(1024),B(1024) 
      READ(5,500) N,(A(I),B(I),I=1,N) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,N) 
      CALL PNR(A,B,N,N,1,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      CALL CFTR(A,B,N,N,1,1,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      DO 10 I=1,N 
      A(I)=A(I)/FLOAT(N) 
      B(I)=B(I)/FLOAT(N) 
   10 CONTINUE 
      WRITE(6,620) (I,A(I),B(I),I=1,N) 
      STOP 
  500 FORMAT(I5/(2E20.7)) 
  600 FORMAT('0',10X,'INPUT DATA N=',I5/ 
     *      /(15X,I5,2E20.7)) 
  610 FORMAT('0',10X,'RESULT ICON=',I5) 
  620 FORMAT(15X,I5,2E20.7) 
      END 
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(c) Permutation after a two-variate transform  
Given complex time series data {xj1,j2} of dimension 
N1 and N2, a Fourier transform is performed with 
the subroutine CFTN, then the results {N1⋅N2 

2.1
~

kkα } are permuted by this subroutine and scaled 
to obtain { 2.1 kkα }. 
In case of N1･N2 ≤ 1024 ( = 210).  The data {xj1,j2} 
can be stored as shown in Fig. PNR-1. 

 
C     **EXAMPLE** 
      DIMENSION A(1024),B(1024),N(2) 
      READ(5,500) (N(I),I=1,2) 
      NT=N(1)*N(2) 
      READ(5,510) (A(I),B(I),I=1,NT) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,NT) 
      NS=1 
      DO 10 I=1,2 
      CALL CFTN(A,B,NT,N(I),NS,1,ICON) 
      IF(ICON.NE.0) STOP 
      CALL PNR(A,B,NT,N(I),NS,1,ICON) 
      NS=NS*N(I) 
   10 CONTINUE 
      DO 20 I=1,NT 
      A(I)=A(I)/FLOAT(NT) 
      B(I)=B(I)/FLOAT(NT) 
   20 CONTINUE 
      WRITE(6,610) (I,A(I),B(I),I=1,NT) 
      STOP 
  500 FORMAT(2I5) 
  510 FORMAT(2E20.7) 
  600 FORMAT('0',10X,'INPUT DATA N=',2I5/ 
     *      /(15X,I5,2E20.7)) 
  610 FORMAT('0',10X,'OUTPUT DATA'/ 
     *      /(15X,I5,2E20.7)) 
      END 
 
Method 
As is necessary with the radix 2 Fast Fourier Transform, 
this subroutine performs permutation such that the result 
is in reverse binary order against input order. 

First, let a discrete complex Fourier transform be 
defined as 
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In (4.1) the scaling factor 1/n is omitted. 
The use of Fast Fourier Transform method is considered 
for n = 2l.  (Refer to the section on subroutine CFT for 
the principles of the Fast Fourier Transform method).   

When transforming in an area with only {xj} specified, 
data must be permuted immediately before or after 
transformation.  In other words, when k and j of (4.1) are 
expressed as 
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the Fast Fourier Transform results become ~α  (k0 + kl･

2+ ... + kl–1･2l–l) against ~α (kl–1+ kl–2･2+...+k0･2l–1 ) 
  In this case α (k0 + kl･2+ ...+ kl–1･2l–l)≡αk0+k12+…kl-12l-1 

can be understood to be the order of data {αk} expressed 
in reverse binary order.   

Therefore, the data order of { kα~ } against {αk} is in 
reverse binary order, and final data permutation becomes 
necessary.  On the other hand, if { kα~ } and j are 
expressed as 
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  the results of the Fast Fourier Transform are in normal 
order without permutation as 

( )1
110 2...2 −

− ⋅++⋅+ l
lkkkα  

  If the order of the data {xj} is permuted in a reverse 
binary order as shown in j of (4.3) before transformation, 
final data permutation is not needed.  As previously 
mentioned, with the Fast Fourier Transform for certain 
data{α}, transposition of data in location shown in (4.4) 
and (4.5) is required. 

1
110 2...2 −

− ⋅++⋅+= l
lkkkk  (4.4) 

1
021 2...2~ −

−− ⋅++⋅+= l
ll kkkk  (4.5) 

  Given {αk} or{ kα~ }, this subroutine permutes the data 
by reverse binary order of transformation to obtain { kα~ } 
or {αk}. 
Basic conditions for permutation are: 
• For k= ~k , transposition is unnecessary 
• For k≠ ~k , α(k) and )

~
(kα (or, )

~
(kα and )

~
(~ kα )are 

permuted. 
 
  For further information, refer to References [55], [56], 
[57]. 
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J12-20-0101  RANB2 

Generation of binomial random integers 
CALL RANB2 (M, P, IX, IA, N, VW, IVW, ICON) 

 
Function 
This subroutine generates a sequence of n pseudo random 
integers from the probability density function (1.1) of 
binomial distribution with moduli m and p. 

( )

,...2,1,,...,1,0,10,
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−





= −

mmkp

pp
k
m

P kmk
k  (1.1) 

where n ≥ 1. 
 
Parameters 
M ..... Input.  Modulus m. 
P ..... Input.  Modulus p. 
IX ..... Input.  Starting value of non-negative integer 

(must be INTEGER*4) 
Output.  Starting value for next call of RANB2. 
See Notes. 

IA ..... Output.  n binomial pseudo random integers. 
N ..... Input.  Number of n of binomial pseudo 

random integers to be generated. 
VW ..... Work area.  One-dimensional array of size m + 

1. 
IVW ..... Work area.  One-dimensional array of size m + 

1. 
ICON ..... Output.  Condition code. 

See Table RANB2-1. 
 
Table RANB2-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 M < 1, P ≤ 0, P ≥ 1, IX < 0 or 
N < 1 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic functions .... ALOG, EXP, DMOD, 
FLOAT 

  
• Note 

− Starting value IX 
This subroutine transforms uniform pseudo random 
numbers into binomial random integers.  Parameter 
IX is given as the starting value to generate uniform 
pseudo random numbers.  It is handled in the same 
way as RANU2. 
  See comments on use for RANU2. 

− The contents of VW and IVW should not be 

changed as long as the same value has been specified 
in parameter M and P. 

  
• Example 

Generating 10000 pseudo random numbers from a 
binomial distribution with m = 20 and p = 0.75, the 
frequency distribution histogram is plotted. 

 
C     **EXAMPLE** 
      DIMENSION IA(10000),VW(21),IVW(21), 
     *          HSUM(21) 
      INTEGER*4 IX 
      DATA X1,X2/-0.5,20.5/ 
      DATA NINT,XINT/21,1.0/ 
      DATA M,P,IX,N/20,0.75,0,10000/ 
      DO 10 I=1,21 
   10 HSUM(I)=0.0 
      CALL RANB2(M,P,IX,IA,N,VW,IVW,ICON) 
C     SUM NOS. IN HISTGRAM FORM 
      ISW=1 
      DO 20 I=1,N 
      X=IA(I) 
   20 CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
C     PLOT DISTRIBUTION 
      WRITE(6,600) 
      ISW=2 
      CALL HIST(X,X1,X2,NINT,HINT,HSUM, 
     *         ISW) 
      STOP 
  600 FORMAT('1',10X,'BINOMIAL RANDOM', 
     *' NUMBER DISTRIBUTION'//) 
      END 
 

For detailed information on subroutine HIST, see the 
Example in subroutine RANU2. 

 
Method 
Binomial random integers are generated as indicated 
below.  When integer l is determined so that a pseudo 
random number u generated from uniform distribution in 
the interval (0, 1) satisfies equation (4. 1) l is a binomial 
random integer. 

ll FuF <≤−1  (4.1) 

where Fl is a binomial cumulative distribution function 
shown in (4.2). 
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Figure RANB2-1 represents(4.1) where m = 6 and p = 
0.5.  For example when u = 0.74321, l = 4. 
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6543210−1
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Fl

 
Fig. RANB2-1  Binomial cumulative distribution function Fl 

Since this cumulative distribution is unique when m 
and p are determined, it is time consuming to compute 
(4.2) each time for a binomial random integer.  Therefore 
if the cumulative distribution table is generated once, it 
can be used for reference for the subsequent computation.  
Parameter VW is used for these reference.  If u is a value 
close to 1, checking l = 1, 2, ... in (4.1) is also time 
consuming.  Parameter IVW is used as an index table to 
start l at an appropriate value depending upon value u. 
 

For further information, see Reference [93].
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J11-30-0101 RANE2 

Generation of exponential pseudo random numbers 
CALL RANE2 (AM, IX, A, N, ICON) 

 
Function 
This subroutine generates a sequence of n pseudo random 
numbers form the probability density function (1.1) of 
exponential distribution with mean value m. 

( )
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Parameters 
AM..... Input.  Mean value of exponential distribution, 

m. 
IX..... Input.  Starting value of non-negative integer 

(must be INTEGER *4). 
Output.  Starting value for next call of RANE2.  
See Comments on use below. 

A..... Output.  n random numbers. 
One-dimensional array of size, n. 

N..... Input.  Number of pseudo-random numbers to 
be generated. 

ICON.. Output.  Condition codes.  See Table RANE2-1. 
 
Table RANE2-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 AM ≤ 0, IX < 0 or N < 1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... RANU2 and MGSSL 
FORTRAN basic functions ... ALOG and DMOD 

  
• Note 

Starting value IX 
This subroutine transforms uniform pseudo random 
numbers generated by RANU2 into exponential pseudo 
random numbers.  Parameter IX is given as the starting 
value to generate uniform pseudo random numbers. 
See comments on use for RANU2. 

  
• Example 

10,000 exponential pseudo random numbers from 
exponential distribution with mean value 1.0 are 
generated and the frequency distribution histogram is 
plotted. 

 

C     **EXAMPLE** 
      DIMENSION A(10000),HSUM(12) 
      INTEGER*4 IX 
      DATA X1,X2,NINT,XINT/0.0,6.0,12,0.5/ 
      DATA AM,IX,N/1.0,0,10000/ 
      DO 10 I=1,12 
   10 HSUM(I)=0.0 
      CALL RANE2(AM,IX,A,N,ICON) 
C     SUM NOS. IN HISTGRAM FROM 
      ISW=1 
      DO 20 I=1,N 
      X=A(I) 
   20 CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
C     PLOT DISTRIBUTION 
      WRITE(6,600) 
      ISW=2 
      CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
      STOP 
  600 FORMAT('1',10X,'EXPONENTIAL', 
     * ' RANDOM NUMBER DISTRIBUTION'//) 
      END 
 
See the example in RANU2 for subroutine HIST. 
 
Method 
Exponential pseudo random numbers {y} are generated 
by 

y m u= − log  (4.1) 

where, {u} is a sequence of uniform (0, 1) pseudo 
random numbers generated and m is the mean value. 

The function, (4.1), can be derived as follow: 
The cumulative exponential distribution function F(y) 

will be obtained from (1.1) 

( ) ( ) y
my x

my edxe
m

dxxgyF
1

0

1

0
11 −−

−=== ∫∫  (4.2) 

Let u1 be one of the uniform pseudo random numbers, 
(4.3) is obtained from (4.2) based on the relation u = F(y). 

( )y m u1 11= − −log  (4.3) 

  Thus, exponential pseudo random numbers y1, y2, y3, ..... 
can be transformed one to one from uniform pseudo 
random numbers, u1, u2, u3, ..... . 
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J11-20-0301 RANN1 

Fast normal pseudo random numbers 
CALL RANN1 (AM, SD, IX, A, N, ICON) 

 
Function 
This subroutine generates n pseudo random numbers 
from a given probability density function (1.1) of normal 
distribution with mean value m and standard deviation σ: 

( ) ( ) 22 2

2
1 σ

σπ
mxexg −−=  (1.1) 

where n ≥ 1 
 
Parameters 
AM..... Input.  Mean value m of the normal 

distribution. 
SD..... Input.  Standard deviation σ of the normal 

distribution. 
IX..... Input.  Initial value of nonnegative integer 

(must be INTEGER*4). 
Output.  Initial value for the next call of this 
subroutine.  (See “Comments on Use”.) 

A..... Output.  n pseudo random numbers.  One-
dimensional array of size n. 

N..... Input.  Number of pseudo random numbers n 
to be generated. 

ICON.. Output.  Condition code.  (See Table RANN-
1). 

 
Table RANN-1 Condition codes 

Code Meaning Processing 
0 No error  

30000 IX < 0 or N < 1. Bypassed. 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic functions ... SQRT, ALOG, ABS,  

     SIGN, DFLOAT, DINT 
 
• Notes 

Initial value IX 
This subroutine generates uniform pseudo random 
numbers and then transforms them to normal pseudo 
random numbers. 

Parameter IX is specified as the initial value to 
generate uniform pseudo random numbers and is 
processed in the same way as for RANU2.  (See 
“Comments on Use” for RANU2.) 

  This subroutine generates normal pseudo random 
numbers faster than subroutine RANU2. 

 
• Example 

Given a normal distribution having mean value 0 and 
standard deviation 1.0, this subroutine generates 
10,000 pseudo random numbers and a frequency 
distribution histogram is plotted. 

 
C     **EXAMPLE** 
      DIMENSION A(10000),HSUM(12) 
      INTEGER*4 IX 
      DATA X1,X2/-3.0,3.0/ 
      DATA NINT,XINT/12,0.5/ 
      DATA AM,SD,IX,N/0.0,1.0,0,10000/ 
      DO 10 I=1,12 
   10 HSUM(I)=0.0 
      CALL RANN1(AM,SD,IX,A,N,ICON) 
C     SUM NOS. IN HISTGRAM FORM 
      ISW=1 
      DO 20 I=1,N 
      X=A(I) 
   20 CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
C     PLOT DISTRIBUTION 
      WRITE(6,600) 
      ISW=2 
      CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
      STOP 
  600 FORMAT('1',10X,'NORMAL RANDOM', 
     *' NUMBER DISTRIBUTION'//) 
      END 
 

See “Example” for subroutine RANU2 for subroutine 
HIST in this example. 

 
Method 
The inverse function method is used to generate normal 
pseudo random numbers.  For uniform pseudo random 
numbers ui (i = 1, 2, ..., n) in interval (0, 1) 
transformation. 

( ) muGz ii += − σ1  (4.1) 

is applied to generate normal pseudo random numbers zi 
(i = 1, 2, ..., n), where G-1(u) is an inverse function of 
cumulative normal distribution function 

( ) ( )∫ ∞−= x dxxgzG  

This subroutine uses Ninomiya’s best approximation to 
realize high-speed G-1 (u) calculation. 
1) For u − ≤0 5 0 46875. .  

( ) ( )( )bxdxecxuG +++=− 221  

where x= u − 0.5 and the theoretical absolute error is 7.9･
10-4. 



RANN1 

529 

2) For 46875.05.0 >−u  

G-1(u) = sign(u-0.5)･p(v+q+r/v) 

where ( )5.05.0log −−−= uv  

and the theoretical absolute error is 9.3･10-4. 

Since the formula of 1) is used in most cases 
(probability is 15/16), high-speed calculation is realized. 
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J11-20-0101 RANN2 

Generation of normal pseudo random numbers 
CALL RANN2 (AM, SD, IX, A, N, ICON) 

 
Function 
This subroutine generates a sequence of n pseudo random 
numbers from the probability density function (1.1) of 
normal distribution with mean value m and standard 
deviation σ. 

( ) ( )

1where
2
1 22 2

≥

= −−

n

exg mx σ

σπ  (1.1) 

Parameters 
AM..... Input.  Mean value of the normal distribution, 

m. 
SD..... Input.  Standard deviation of the normal 

distribution, σ. 
IX..... Input.  Starting value of non-negative integer 

(must be INTEGER*4) 
Output.  Starting value for the next call of 
RANN2. 
See comments on use below. 

A..... Output.  n pseudo random numbers.  One-
dimensional array of size n. 

N..... Input.  Number of pseudo-random numbers to 
be generated. 

ICON.. Output.  Condition codes.  See Table RANN2-1. 
 
Table RANN2-1  Condition codes 

Code Meaning  Processing 
0 No error  

30000 IX < 0 or N < 1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... RANN2 and MGSSL 
FORTRAN basic functions ... SQRT, ALOG, SIN, 
COS and DMOD 

  
• Notes 

Starting value IX 
This subroutine transforms uniform pseudo random 
numbers generated by RANU2 into normal pseudo 
random numbers.  Parameter, IX is given as the starting 
value to generate uniform pseudo random numbers. 
See Comments on use for RANU2. 

• Example 
10,000 normal pseudo random numbers are generated 
from normal distribution with mean value 0 and 
standard deviation 1.0 and the frequency distribution 
histogram is plotted. 

 
C     **EXAMPLE** 
      DIMENSION A(10000),HSUM(12) 
      INTEGER*4 IX 
      DATA X1,X2/-3.0,3.0/ 
      DATA NINT,XINT/12,0.5/ 
      DATA AM,SD,IX,N/0.0,1.0,0,10000/ 
      DO 10 I=1,12 
   10 HSUM(I)=0.0 
      CALL RANN2(AM,SD,IX,A,N,ICON) 
C     SUM NOS. IN HISTGRAM FORM 
      ISW=1 
      DO 20 I=1,N 
      X=A(I) 
   20 CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
C     PLOT DISTRIBUTION 
      WRITE(6,600) 
      ISW=2 
      CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
      STOP 
  600 FORMAT('1',10X,'NORMAL RANDOM', 
     *' NUMBER DISTRIBUTION'//) 
      END 
 

Refer to the example in RANU2 for subroutine HIST. 
 

Method 
Normal pseudo random numbers are generated using the 
Box and Müller method, according to (4.1) and (4.2): 

( ) muuz iii +−= +12
1

2coslog2 πσ  (4.1) 

( ) muuz iii +−= ++ 12
1

1 2sinlog2 πσ  (4.2) 

Where m and σ are the mean value and standard 
deviation of normal distribution respectively. 

Thus, normal pseudo random number (z1, z2, z3, ...) are 
calculated from as many uniform pseudo random number 
(u1, u2, u3, ...).  Here, when the odd number of normal 
pseudo random number is to be generated, a pair of 
uniform random numbers is required for the last one. 
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J12-10-0101 RANP2 

Generation of Poisson pseudo random integers 
CALL RANP2 (AM, IX, IA, N, VW, IVW, ICON) 

 
Function 
This subroutine generates a sequence of n pseudo random 
integers from the probability density function (1.1) of 
Poisson distribution with mean value m. 

!k
mep

k
m

k
−=  (1.1) 

where, m < 0, k is non-negative integer, and n ≥ 1. 
(Refer to Fig. RANP2-1) 
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Fig. RANP2-1 Polission probability distribution function, Pk 

Parameters 
AM..... Input.  Mean value of Poisson distribution, m.  

See Comments on use below. 
IX..... Input.  Starting value of non-negative integer 

(must be INTEGER*4). 
Output.  Starting value of next call of RANP2. 
See Comments on use below. 

IA..... Output.  Poisson pseudo random integers.  
One-dimensional array of size n. 

N..... Input.  Number n of Position pseudo random 
integers to be generated. 

VW.... Work area.  One-dimensional array of size [2m 
+ 10]. 

IVW... Work area.  One-dimensional array of size [2m 
+ 10]. 

ICON.. Output.  Condition codes.  See Table RANP2-
1. 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic functions ... EXP and DMOD 

Table RANP2-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 AM ≤ 0, AM > log(flmax) IX < 0 
or N < 1 

Aborted 

 
• Notes 

AM ≤log(flmax) 
Because, for AM > log(flmax), the value e-m underflows 
in computation of Fn in (4.2). 
For a large AM (≥ 20), the Poisson pseudo random 
integers may be approximated by the normal pseudo 
random numbers with the mean value m and standard 
deviation m. 
See Methods. 
Starting value IX 
This subroutine transforms uniform pseudo random 
numbers generated by RANU2 into Poisson Pseudo 
random integers.  Parameter, IX is given as the starting 
value to generate the uniform pseudo random numbers.  
See Comment on use for RANU2. 
Both VW and IVW must not be altered while 
parameter AM remains the same. 

 
• Example 

10,000 Poisson pseudo random integers from Poisson 
distribution with mean value 1.0 are generated and the 
frequency distribution histogram is plotted. 

 
C     **EXAMPLE** 
      DIMENSION IA(10000),VW(12), 
     *          IVW(12),HSUM(6) 
      INTEGER*4 IX 
      DATA X1,X2/-0.5,5.5/ 
      DATA NINT,XINT/6,1.0/ 
      DATA AM,IX,N/1.0,0,10000/ 
      DO 10 I=1,6 
   10 HSUM(I)=0.0 
      CALL RANP2(AM,IX,IA,N,VW,IVW,ICON) 
C     SUM NOS. IN HISTGRAM FORM 
      ISW=1 
      DO 20 I=1,N 
      X=IA(I) 
   20 CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
C     PLOT DISTRIBUTION 
      WRITE(6,600) 
      ISW=2 
      CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
      STOP 
  600 FORMAT('1',10X,'POISSON RANDOM', 
     *' NUMBER DISTRIBUTION'//) 
      END 
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Refer to the example in RANU2 for subroutine HIST. 
 
Methods 
Poisson pseudo random integer is determined as l when 
pseudo random number l generated from uniform 
distribution on the range (0, 1) satisfies the relationship. 

ll FuF <≤−1  (4.1) 

where F1 is the Poisson cumulative distribution function 
defined in (4.2) 

01 =−F
 (4.2) 

=== ∑∑
=

−
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k
mepF
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k
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!00
0,1,2,... 

Fig. RANP2-2 demonstrates the generation of Poisson 
random integers according to the transformation in (4.1) 
where, u = 0.84321 and l = 2. 

Since m determines the form of cumulative distribution 
function Fl if a table of cumulative distribution function 
for given value of m is once determined, repetitive 
computations of (4.2) will be eliminated. 

Parameter VW is used to support this table. 
Further, u gets closer to 1, it would be of no use to 

search this table step by step starting from 0 in ascending 
order.  Here again, parameter IVW is used to give a 
proper index to search this table depending upon the 
value of u. 

[The effect of truncation in computation of Fl] 
Since Poisson distribution (4.2) continues infinitively, 
computation of Fl must be stopped at an appropriate 
value of n. 
This value depends upon the precision of computation in 
(4.2).  Once Fl-1 for l = 1, 2, 3, ..., further computation in 
(4.2) is meaningless.  When m ≥ 20, because of the above 
affection, Poisson pseudo-random integers may be better 
approximated by the normal pseudo-random integers with 
(mean value m and standard deviation m). 
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Fig. RANP2-2 Poissons cumulative distribution functionFl 
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J11-10-0101 RANU2 

Generation of uniform (0, 1) pseudo random numbers 
CALL RANU2 (IX, A, N, ICON) 

 
Function 
This subroutine generates, by the congruence method, a 
sequence of n pseudo random numbers based on a stating 
value from a uniform distribution on the range (0, 1). n≥ 
1. 
 
Parameters 
IX.... Input.  Starting value.  A non-negative integer.  

(must be INTEGER*4) 
 Output.  Starting value for the next call of 

RANU2. 
See comments on use. 

A..... Output.  n pseudo random numbers.  One-
dimensional array of size n. 

N..... Input.  Number of pseudo random numbers to 
be generated. 

ICON.. Output.  Condition codes.  
See Table RANU2-1. 

 
Table RANU2-1  Condition codes 

Code Meaning Processing 
0 No error   

30000 IX < 0 or N ≤ 0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL 
FORTRAN basic function ... DMOD 

 
• Notes 

Starting value IX 
When a sequence of pseudo random integers, {IXj} is 
to be obtained by the congruence method (3.1), the user 
must give an starting value IX0 (usually zero is given). 

IX IXi ia c+ ≡ × +1 (mod m),i =0,1,...,n−1 (3.1) 

where IXi, a, c and m are all non-negative integers.  
This sequence {IXi} is normalized into (0, 1) and a 
sequence of pseudo random numbers is generated in 
parameter A.  After generation of n pseudo random 
numbers IXn is given to parameter IX.  Thus, when next n 
pseudo random numbers are to be generated successively, 
they will be generated with the current starting value IXn 
in parameter IX, unless it is changed. 
When this subroutine is repeatedly called n times with 
parameter N set to 1, n uniform pseudo random integers 
{IXn} are obtained. 

  Test for uniform random numbers 
Uniform random numbers have two main properties: 
probability unity and randomness.  It is important to 
understand these properties when using this subroutine. 
  Table RANU2-2 shows the results of testing of 
statistical hypothesis on pseudo random numbers 
generated by this subroutine with IX = 0.  Generally 
speaking, we cannot generate pseudo random numbers 
suitable for all cases and expect them to pass all the tests.  
However, as Table RANU2-2 shows, this subroutine has 
been implemented with the values of “a” and “c” (refer to 
“method”), properly selected such that the resultant 
pseudo random numbers have passable properties to 
stand the tests of frequency and randomness. 
 
• Example 

10,000 uniform pseudo random integers are generated 
and a histogram of their frequency distribution is 
plotted. 

 
C     **EXAMPLE** 
      DIMENSION A(10000),HSUM(10) 
      INTEGER*4 IX 
      DATA X1,X2,NINT,XINT/0.0,1.0,10,0.1/ 
      DATA IX,N/0,10000/ 
      DO 10 I=1,10 
   10 HSUM(I)=0.0 
      CALL RANU2(IX,A,N,ICON) 
C     SUM NOS. IN HISTGRAM FORM 
      ISW=1 
      DO 20 I=1,N 
      X=A(I) 
   20 CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
C     PLOT DISTRIBUTION 
      WRITE(6,600) 
      ISW=2 
      CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
      STOP 
  600 FORMAT('1',10X,'UNIFORM RANDOM', 
     *' NUMBER DISTRIBUTION'//) 
      END 
 
  Subroutine HIST in this example computes the 
frequency distribution and plots the histogram.  The 
contents are shown below. 
 
      SUBROUTINE HIST(X,X1,X2,NINT,XINT, 
     *                HSUM,ISW) 
      DIMENSION HSUM(1) 
      CHARACTER*4 IMAGE(31),II,IBLK,IAST 
      DATA II,IBLK,IAST/'I   ','    ', 
     *     '*   '/ 
      IF(ISW.NE.1) GO TO 30 
C     TO SET UP HISTGRAM FOR RANDOM NOS. 
      J=0 
      IF(X.GT.(X1+X2)/2.0) J=NINT/2 
      BK=X1+J*XINT 
   10 J=J+1 
      BK=BK+XINT 
      IF(X.LT.X1) RETURN 
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      IF(X.LT.BK) GO TO 20 
      IF(X.LT.X2) GO TO 10 
      RETURN 
   20 HSUM(J)=HSUM(J)+1.0 
      RETURN 
C     TO GET MAX X FOR PLOTTING 
   30 Y=HSUM(1) 
      DO 40 I=2,NINT 
   40 Y=AMAX1(HSUM(I),Y) 
      IMAGE(1)=II 
      DO 50 I=2,31 
   50 IMAGE(I)=IBLK 
      BK=X1-XINT 
      WRITE(6,600) 
      DO 60 I=1,NINT 
      BK=BK+XINT 
      WRITE(6,610) BK 
      J=30.0*HSUM(I)/Y+1.5 
      IMAGE(J)=IAST 
      WRITE(6,620) HSUM(I),IMAGE 
      IMAGE(J)=IBLK 
      IMAGE(1)=II 
   60 CONTINUE 
      BK=BK+XINT 
      WRITE(6,610) BK 
      RETURN 
  600 FORMAT(2X,'BREAK PT',3X,'PT SUM', 
     *11X,'GRAPH OF DISTRIBUTION') 
  610 FORMAT(2X,F5.1,1X,48('-')) 
  620 FORMAT(12X,F7.1,5X,31A1) 
      END 
 

Method 
Nowadays, almost all the pseudo uniform random 
numbers are generated according to Lehmer’s congruence 
method. 

ca ii +×≡+ IXIX 1  (mod m) (4.1) 

where IXi, a, c and m are non-negative integers.  Since 
the congruence method relates two numbers in a certain 
definite association, it is foreign to the idea of probability, 
but if a sequence of pseudo random numbers, properly 
generated from the method, stands satistical tests, we can 
rely the congruence method as the pseudo random 
number generator. 

If values are given to IX0, “a” and “c” in (4.1), {IXi} 
forms a sequence or residues with modules m and all the 
elements of {IXi} satisfy IXi < m. 

Letting ri = IXi / m for {IXi}, we can obtain a pseudo 
random number sequence {ri} which distributes on the 
interval (0, 1). 

Here, for h such that IXh = IX0, h is called the period of 
the sequence {IXi}.  This follows from the fact that IXh+1 
= IX1, IXh+2 = IX2, ...  

 
 
 
 

 
Table RANU2-2  χ2-tests of RANU2 

   Number of samples not 
rejected at the level of 
significance a%. 

 

   10% 5% 1%  
 1000 100 94 99 99 10 equal subintervals 
 2000 50 45 48 50 10 equal subintervals 
 10000 10 10 10 10 10 equal subintervals 
Two-dimensional 10000x2 20 18 19 20 10x10 equal subintervals 
Three-dimensional 5000x3 20 19 19 20 5x5x5 equal subintervals 
Serial correction 1000 100 100 100 100 lag k = 60 
 10000 10 10 10 10 lag k = 600 
Gap 1000 100 68 84 91 The gaps of width longer than 

7 were grouped into one class. 
 10000 10 6 6 10 The gaps of width longer than 

8 were grouped into one class. 
Run up and down 1000 100 91 94 97 The runs of length longer than 

3 were grouped into one class. 
 10000 10 10 10 10 The runs of length longer than 

4 were grouped into one class. 
Run above and 
below the average 

1000 100 92 94 100 The runs of length longer than 
6 were grouped into one class. 

 10000 10 10 10 10 The runs of length longer than 
9 were grouped into one class. 

* Number of random numbers contained in one sample. 
** Test was done on the first successive sequences of samples. 

 

Remarks Size of samples* Test items Number of samples** 

One-dimensional 
frequency 
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There is a theory that such a period h always exists in any 
sequence of pseudo random numbers and its largest value 
relates to m. 

This simply means that a pseudo random number 
sequence without period cannot be obtained with the 
congruence method. 

In practice, if we assign a sufficiently large number to 
m we can make h long enough to make the sequence 
{IXi} like random numbers. 

In this subroutine, m was assigned to 

312=m  (4.2) 

The value for a is assigned according to Greenberger’s 

formula, which shows that a value close to m
1
2  minimizes 

the 1st order serial correlation among 

pseudo-random numbers. 
Thus, from (4.2) 

32771323 2
31

2
1

=+=+= ma  (4.3) 

The value of c is selected so that c and m are prime 
each other. 

Thus, c = 1234567891 
To tell the truth, a and c were not simply determined, 

they are selected as a best pair among several other 
combinations of a and c through repetitive testing.  This 
shows that the selection depends largely on empirical 
data. 

Further details should be referred to Reference [89] 
pp.43-57. 
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J11-10-0201 RANU3 

Generation of shuffled uniform (0, 1) pseudo random 
numbers 
CALL RANU3 (IX, A, N, ISW, IVW, ICON) 

 
Function 
This subroutine generates, by the congruence method 
with shuffling, a sequence of n pseudo random numbers 
based on a starting value from a uniform distribution on 
the range (0, 1).  Where n ≥ 1. 
 
Parameters 
IX..... Input.  Starting value.  A non-negative integer 

(must be INTEGER*4) 
Output.  Starting value for the next call of 
RANU3.  See “Comments on use”. 

A..... Output.  n uniform random numbers.  One-
dimensional array of size n. 

N..... Input.  The number of uniform random 
numbers to be generated. 

ISW... Input.  Specify 0 for the first call. 
Specify 1 for the subsequent calls. 

IVW... Work area.  One-dimensional array of size 128 
(must be INTEGER*4) 

ICON.. Output.  Condition code. 
See Table RANU3-1. 

 
Table RANU3-1    Condition codes 

Code Meaning Processing 
0 No error  

30000 IX < 0, N≤0, ISW < 0 or ISW > 
1. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, RANU2 
FORTRAN basic function ... DMOD 

 
• Notes 

This subroutine enhances randomness which is one of 
two properties, probability unity and randomness, of 
random numbers.  Therefore, the property of random 
numbers in this subroutine is superior to that in 
subroutine RANU2 (particularly for multiple 
dimensional distribution), but the processing speed is 
rather slow. 

If the random number should be generated quickly, it 
is advisable to use subroutine RANU2. 
[Starting value IX] 
Using the congruence method in (3.1), the starting 
value IX0 when requiring uniform random integer 
sequence {IXi} is specified in parameter IX. 

( ) ...,1,0,mod1 =+×=+ imcIXaIX ii  (3.1) 

where, IXi, a, c and m are non-negative integers. 

After generating random numbers, final IXi is given 
to parameter IX.  If generating random numbers in 
succession, IXi can be used as a starting value. 
[Successive generation of random numbers] 
Random numbers can be generated in succession by 
calling this subroutine repeatedly. 

To perform this, ISW = 1 is entered for the 
subsequent calls. 

In this case, the contents of parameter IX and IVW 
should not be altered. 

If ISW = 0 is entered for the subsequent calls, 
another series of random numbers may be generated 
using the value of parameter IX at that time value. 

• Example 
10000 pseudo random numbers are generated from 
uniform distribution in the range (0, 1) and a histogram 
of their frequency distribution is plotted. 

 
C     **EXAMPLE** 
      DIMENSION A(10000),HSUM(10),IVW(128) 
      INTEGER*4 IX,IVW 
      DATA X1,X2,NINT,XINT/0.0,1.0,10,0.1/ 
      DATA IX,N/0,10000/,ISW /0/ 
      DO 10 I=1,10 
   10 HSUM(I)=0.0 
      CALL RANU3(IX,A,N,ISW,IVW,ICON) 
C     SUM NOS. IN HISTGRAM FORM 
      ISW=1 
      DO 20 I=1,N 
      X=A(I) 
   20 CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
C     PLOT DISTRIBUTION 
      WRITE(6,600) 
      ISW=2 
      CALL HIST(X,X1,X2,NINT,XINT,HSUM, 
     *          ISW) 
      STOP 
  600 FORMAT('1',10X,'UNIFORM RANDOM', 
     *' NUMBER DISTRIBUTION'//) 
      END 
 

For detailed information on subroutine HIST, see the 
Example in subroutine RANU2. 

 
Method 
Uniform random number have two main properties: 
probability unity and randomness. 
  The pseudo random number sequence generated using 
the Lehmer method 

( ) ,...2,1,0,  mod1 =+×=+ imcIXaIX ii  (4.1) 

increases in regularity as its order becomes higher in 
multiple-dimensional distribution and thus the 
randomness of pseudo random numbers is decreased.  
For example, if we construct points so that each point 
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is coupled such as Pi (IXi, IXi+1) and plot Pi on the x-y 
coordinate, these points will be located on several 
parallel lines. 

This subroutine uses the method with shuffling to 
decrease the demerit of the Lehmer method. 

The way of generating random numbers is the same as 
that of the Lehmer method.  However it enhances the 
randomness by determining the order of a random 
number sequence by using random numbers. 

Random number sequence is generated as follows: 
 
1) Generation of basic random number table 

Using the Lehmer method, ordered uniform random 
integers of length 128 are generated.  Let express as: 

B
iIX , i=1, 2, ...,80 (4.2) 

2) Generation of random number sequence 
Using the Lehmer method, one subsequent random 
number is generated which we call IX0.  The 
following procedure is repeated using l = 1, 2, ..., n to 
generate n pseudo random numbers. 

  
− Using l-1-th random number, one random number is 

chosen from a basic random number table.  This 
number is called IXl. 

( ) 180IX,IXIX 1 +== − modj l
B
jl  (4.3) 

IXl is normalized in the interval (0, 1) and stored in 
A(l) as the l-th pseudo uniform random number. 
 

− Subsequently, the l + 1-th random number, IXl+1 is 
generated and stored in the j-th position in the basic 
random number table. 

1IXIX += l
B
j  (4.4) 
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J21-10-0101 RATF1 

Frequency test of uniform pseudo random numbers (0, 1) 
CALL RATF1 (A, N, L, ALP, ISW, IFLG, VW, 
IVW, ICON) 

 
Function 
This subroutine performs the one-dimensional frequency 
test for n pseudo uniform (0, 1) random number sequence 
{xi}  based upon the test of statistical hypothesis. 

On the null hypothesis that pseudo uniform random 
numbers are uniform random numbers, this subroutine 
divides the range (0, 1) into l intervals and performs chi-
square test using the actual frequency and the expected 
frequency of the random numbers failing in each interval. 

Then it judges whether or not to accept this hypothesis 
on significance level α%. 

When the number of random numbers is great, they can 
be tested in succession by calling this subroutine 
repeatedly by dividing the random number sequence into 
parts. 

Where, n≥ l ≥ 2 and 100 > α > 0. 
 
Parameters 
A..... Input.  Pseudo uniform random number 

sequence {xi}. 
One-dimensional array of size n. 

N..... Input.  The number of uniform random 
numbers.  See Notes. 

L..... Input.  The number of intervals.  See Notes. 
ALP.. Input.  Significance level α.  See Notes. 
ISW... Input.  Control information. 

Specifies whether or not the test is performed 
independently for several random number 
sequences by calling this subroutine repeatedly.  
When ISW = 0 is specified, the test is 
performed independently for each random 
number sequence. 
When ISW = 1 is specified, the test is 
performed continuously. 
However ISW = 0 is specified for the first call. 
See Notes. 

IFLG... Output.  Test results. 
When IFLG = 0 is specified, the hypothesis is 
accepted. 
When IFLG = 1 is specified, the hypothesis is 
rejected. 

VW..... Work area.  One-dimensional array of size 2. 
IVW.... Work area.  One-dimensional array of size L + 

1 (must be INTEGER*4). 
ICON... Output.  Condition code. 

See Table RATF1-1. 

Table RATF1-1 Condition codes 

Code Meaning Processing 
0 No error  

10000 Some expected frequency Fi is 
small and the approximation of 
chi-square distribution is poor. 
Increase n or decrease l. 

Continued. 
Resultant of test 
is not so reliable. 

30000 N < L, L < 2, ALP ≥ 100, ALP 
≤ 0, ISW < 0 or ISW > 1. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... UX2UP, MGSSL 
FORTRAN basic functions ... SQRT, EXP, ALOG, 
FLOAT, ABS, ERFC, ATAN 

 
• Notes 

[Standard for setting the number of random numbers 
(n) and the number of subrange (l)] 
To enhance the reliability of testing, it is desirable to make 
the number of random numbers (n) large enough. 

Generally, the expected frequency Fi should satisfy 

( ) 10>= lnFi  (3.1) 

This subroutine sets ICON = 10000 when (3.1) is not 
satisfied. 

When m is large enough, the value of l is generally by: 

[ ]l n= +1 3322 10. log  (3.2) 

  For example, when n = 10000, l = 10 is adequate and 
when n = 1000, l = 14 is adequate.(3.2) is empirical 
formula based on the sense of sight appropriateness for 
the frequency distribution of random numbers falling in 
each interval. 
[Standards for setting significance level α] 
Significance level can be optionally specified 
according to the theory of statistical hypothesis test. 

The significance level, however, indicates the 
probability of error of the first kind which means to 
reject the hypothesis although it is true, the value 
specified should lie between 1% and 10% 

Generally either 5% or 1% is used. 
[Testing in successing] 
Suppose uniform random number sequence {yi} of size 
m is divided into s sets of random number sequences. 

Letting 

{ } { } { } { }
siiii yyyy +++= ...

21
 

and letting numbers in each random number sequence be 
m1, m2, ..., ms that is, 
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m = m1 + m2 + ... + ms 

One call of this subroutine enables the testing of 
random number sequence {yi}.  By calling repeatedly 
for each random number sequence it is possible to 
obtain the final test results for {yi}, also. 

Table RATF1-2 shows the relationship between the 
contents of parameters and the object of the test for 
repeated calling of random number sequences. 

 
Table RATF1-2  Testing in succession 

Calling sequence A N ISW Object of test 
1 {

1i
y } m1 0 {

1i
y } 

2 {
2i

y } m2 1 {
1i

y } + {
2i

y } 

: : : : : 
S {

si
y } ms 1 {

1i
y } + {

2i
y } 

+ ... + {
si

y } 

Note: The value of parameter L and ALP should be constant. 

If ISW = 0 is specified each time this subroutine is 
called, the random number sequence is tested 
individually. 

When calling this subroutine repeatedly, the contents 
of work areas VW and IVW should not be altered. 
[Contents of work area] 
After executing this subroutine, the following values 
are stored in the work area: 
VW(1): Upper probability of χ2 distribution of 

freedom degree l − 1 at χ 0
2 . 

VW(2): Value of χ 0
2  for the frequency distribution of 

random sequence {xi}. 
IVW(I): The actual frequency of random numbers 

falling in the I-th interval.  I = 1, 2, ..., l. 
 
• Example 

Pseudo uniform random number sequence {xi} of size 
10000 is generated by subroutine RANU2 and divided 
into 10 sets of random number sequence of size 10000 
and the frequency tests for each set are performed. 

Where, l = 10 and α = 5%. 
 
C     **EXAMPLE** 
      DIMENSION A(10000),VW(2),IVW(11) 
      INTEGER*4 IX,IVW 
      DATA IX,N/0,1000/,IOK/10/ 
      DATA L,ALP/10,5.0/,ISW/0/ 
      NS=10 
      LL=L-1 
 

      WRITE(6,600) IX,N,NS,LL,ALP 
      IS=1 
      IE=N 
      DO 20 I=1,NS 
      CALL RANU2(IX,A,N,ICON) 
      CALL RATF1(A,N,L,ALP,ISW,IFLG,VW, 
     *           IVW,ICON) 
      IF(ICON.EQ.0) GOTO 10 
      WRITE(6,610) I,IS,IE 
      IOK=IOK-1 
      GOTO 15 
   10 IOK=IOK-IFLG 
      IF(IFLG.EQ.0) WRITE(6,620) I,IS,IE 
      IF(IFLG.EQ.1) WRITE(6,630) I,IS,IE 
   15 IS=IE+1 
   20 IE=IE+N 
      RATE=IOK*100.0/NS 
      WRITE(6,640) IOK,RATE 
      STOP 
  600 FORMAT('1',60('*')/6X, 
     *'FREQUENCY TEST FOR UNIFORM', 
     *' RANDOM NUMBERS.'/1X,60('*')// 
     *6X,'INITIAL VALUE    IX=',I5/ 
     *6X,'SAMPLING LENGTH   N=',I5/ 
     *6X,'SAMPLE NUMBER      =',I5/ 
     *6X,'FREE DEGREE     L-1=',I5/ 
     *6X,'SIGNIFICANCE LEVEL =',F5.1,'%'/ 
     *6X,'RESULTANTS :'// 
     *9X,'NO.   SAMPLE    JUDGEMENT') 
  610 FORMAT(9X,I2,I7,'-',I5,4X,'ERROR') 
  620 FORMAT(9X,I2,I7,'-',I5,4X,'SAFE') 
  630 FORMAT(9X,I2,I7,'-',I5,4X,'FAIL') 
  640 FORMAT(//6X,'TOTAL CONCLUSION:'// 
     *9X,I2,' (',F5.1, 
     *' %) SAMPLES ARE SAFE.') 
      END 
 
Method 
Divide the interval (0, 1) into l equal intervals and let the 
number of pseudo random numbers falling if n i-th 
interval to be fi.  Also suppose the expected frequency 
corresponding to fi to be Fi. 
  The value 

( )∑
=

−
=

l

i i

ii

F
Ff

1

2
2
0χ  (4.1) 

forms chi-square distribution of freedom degree l - 1 for 
many samples of {xi}. 
This subroutine obtains value χ 0

2  from (4.1) and tests the 
null hypothesis that n pseudo random numbers are 
uniform random numbers on significance level α%. 
  In (4.1), the expected frequency Fi can be obtained by 

Fi = n / l (4.2) 

For details, refer to Reference [93]. 
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J21-10-0201 RATR1 

Runs test of up-and-down of uniform (0.1) pseudo 
random numbers 
CALL RATR1 (A, N, L, ALP, ISW, IFLG, VW, 
IVW, ICON) 

 
Function 
This subroutine performs the runs test of up-and-down 
for n pseudo uniform (0, 1) random number sequences 
{xi} based upon the test of statistical hypothesis. 

On the null hypothesis that pseudo uniform random 
numbers are uniform random numbers, this subroutine 
performs chi-square test using the actual frequency and 
expected frequency of run of length r (1 ≤ r ≤ l, run of 
length greater than l is assumed to be length l) and tests 
whether or not the hypothesis is rejected on significance 
level α%. 

Run of length r means a sub-sequence in which 
continued r elements are incremented ( or decreased) 
monotonically in a random number sequence. 

When the number of random number sequences is great, 
they can be tested in succession by calling this subroutine 
repeatedly. 

Where, n ≥ l + 2, l ≥ 2, 100 > α > 0. 
 
Parameters 
A..... Input.  Pseudo uniform random number 

sequence {xi}. 
One-dimensional array of size n. 

N..... Input.  The number of uniform random 
numbers. 

L..... Input.  The length l of the maximum run.  See 
Notes. 

ALP... Input.  Significance level α. 
See Notes. 

ISW... Input.  Control information. 
Specifies whether or not the test is performed 
independently for several random number 
sequences by calling this subroutine repeatedly. 

When ISW = 0 is specified, the test is 
performed independently for each random 
number sequence. 

When ISW = 1 is specified, the test is 
performed continuously.  However ISW = 0 is 
specified for the first call. 
  See Notes. 

IFLG... Output.  Test results. 
When IFLG = 0 is specified, the hypothesis is 
accepted. 
When IFLG = 1 is specified, the hypothesis is 
rejected. 

VW....... Work area.  One-dimensional array of size 3. 
IVW..... Work area.  One-dimensional array of size L + 

8 (must be INTEGER*4). 
ICON.. Output.  Condition code. 

See Table RATR1-1. 

Table RATR1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 Some expected frequency Fi is 
small and the approximation of 
chi-square distribution is poor. 

Continued. 
Resultant of test 
is not so reliable. 

30000 N < L + 2, L < 2, ALP ≥ 100, 
ALP ≤0, ISW < 0 or ISW > 1. 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II ... UX2UP, MGSSL 
FORTRAN basic functions ... SQRT, EXP, ALOG, 
FLOAT, ATAN, ERFC, MAX0, MIN0 

 
• Notes 

[Standard for setting the length l of maximum run] 
The expected frequency Fr to make the length of run r 
is expressed by: 

( ) ( )
2,...,2,1,
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−−+−
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++=

nr
r

rrr
r

rrnFr  (3.1) 

That is the expected frequency Fr decreases as 

( )11 +≈+ rFF rr  

For example, when n = 10000, F1 = 4160, F2 = 
1834, ..., F5 = 20, F6 = 3. 
Therefor, in this case, should be taken as  

l = 5 
This subroutine sets ICON = 10000 when the expected 

frequency Fi does not satisfy 
Fi > 10 

[Standard for setting significance level] 
The significance level can be optionally specified 
according to the theory of statistical hypothesis test. 

The significance level, however, indicates the 
probability of error of the first kind which means to reject 
the hypothesis although it is true, the value specified 
should lie between 1% and 10%. 

Generally either 5% or 1% is used. 
[Testing in succession] 
Suppose uniform random number sequence {yi} of size m 
is divided into s sets of random number sequences. 
Letting 

{yi} = {yi1} + {yi2} + ... + {yis}  

and letting numbers in each random number sequence be 
m1, m2, ..., ms, that is , 

m = m1 + m2 + ... + ms 
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One call of this subroutine enables the testing of 
random number sequence {yi}.  By calling repeatedly for 
each random numbers sequence it is possible to obtain 
the final test results for {yi},  also. 

Table RATR1-2 shows the relationship between the 
contents of parameters and the object of the test for 
repeated calling of random number sequences. 

 
Table RATR1-2  Successive testing 

Calling sequence A N ISW Object of test 
1 {

1i
y } m1 0 {

1i
y } 

2 {
2i

y } m2 1 {
1i

y } + {
2i

y } 

: : : : : 
S {

si
y } ms 1 {

1i
y } + {

2i
y } 

+ ... + {
si

y } 

Note: The value of parameter L and ALP should be constant. 

If ISW = 0 is specified each time this subroutine is 
called, the random number sequence is tested individually. 

When calling this subroutine repeatedly, the contents of 
work areas VW and IVW should not be altered. 
[Contents of work area] 
After executing this subroutine, the following values are 
stored in the work area: 
VW(1): Upper probability of χ2 distribution of degree of 

freedom, l −1 at χ 0
2 . 

VW(2): Value of χ 0
2  for the frequency distribution of 

random sequence {xi}. 
IVW(I): The actual frequency of runs of length l.  I = 1, 

2, ..., l. 
 
• Example 

Pseudo uniform random number sequence {xi} of size 
10000 is generated by subroutine RANU2 and divided 
into 10 sets of random number sequence of size 1000 
and the runs tests of up-and-down for each set are 
performed. 

Where, l = 4 and α = 5%. 
 

C     **EXAMPLE** 
      DIMENSION A(1000),VW(3),IVW(12) 
      DATA IX,N/0,1000/,IOK/10/ 
      DATA L,ALP/4,5.0/,ISW/0/ 
      NS=10 
      LL=L-1 
      WRITE(6,600) IX,N,NS,LL,ALP 
      IS=1 
      IE=N 
      DO 20 I=1,NS 
      CALL RANU2(IX,A,N,ICON) 
      CALL RATR1(A,N,L,ALP,ISW,IFLG,VW, 
     *           IVW,ICON) 
 

      IF(ICON.EQ.0) GOTO 10 
      WRITE(6,610) I,IS,IE 
      IOK=IOK-1 
      GOTO 15 
   10 IOK=IOK-IFLG 
      IF(IFLG.EQ.0) WRITE(6,620) I,IS,IE 
      IF(IFLG.EQ.1) WRITE(6,630) I,IS,IE 
   15 IS=IE+1 
   20 IE=IE+N 
      RATE=IOK*100.0/NS 
      WRITE(6,640) IOK,RATE 
      STOP 
  600 FORMAT('1',60('*')/6X, 
     *'RUNS TEST FOR UNIFORM', 
     *' RANDOM NUMBERS.'/1X,60('*')// 
     *6X,'INITIAL VALUE    IX=',I5/ 
     *6X,'SAMPLING LENGTH   N=',I5/ 
     *6X,'SAMPLE NUMBER      =',I5/ 
     *6X,'FREE DEGREE     L-1=',I5/ 
     *6X,'SIGNIFICANCE LEVEL =',F5.1,'%'/ 
     *6X,'RESULTANTS :'// 
     *9X,'NO.   SAMPLE    JUDGEMENT') 
  610 FORMAT(9X,I2,I7,'-',I5,4X,'ERROR') 
  620 FORMAT(9X,I2,I7,'-',I5,4X,'SAFE') 
  630 FORMAT(9X,I2,I7,'-',I5,4X,'FAIL') 
  640 FORMAT(//6X,'TOTAL CONCLUSION:'// 
     *9X,I2,' (',F5.1, 
     *' %) SAMPLES ARE SAFE.') 
      END 
 
Method 
The up run of length r means a sub-sequence which 
consists of r element satisfies following 

............ 111 ++++− ><<<> rkrkkkk xxxxx  
where the first element of the sub-sequence is xk (1 ≤ k < n). 
However, when k = 1 or k + r = n, the inequality signs 
should not be used at the ends. 
For down run, the similar definition is used. 
Now the number of runs of length r (maximum l, 1 ≤ r ≤ 
l) in {xi} is expressed as fr. 
fl is the total number of runs in which the length is more 
than l.  Letting the expected frequency of length r be Fr, 
the value forms chi-square distribution freedom degree l - 
1 for many samples of {xi}. 
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This subroutine tests the null hypothesis that n pseudo 
random numbers are uniform random numbers on 
significance level α% after obtaining value χ 0

2  from (4.1). 
If (4.1), the expected frequency Fr is  
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rrnFr  (4.2) 

2,...,2,1, −= nr  
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and the total sum is 

( ) 3/72 −=∑ nF
r

r  (4.3) 

Although the following will be supposed in chi-square 
test, 

∑∑ =
r

r
r

r Ff  (4.4) 

actually (4.4) is not satisfied. 

Therefore this subroutine uses F*r instead of Fr as 

∑ ∑
=

r
r

r

r
rr F

F
fF *  (4.5) 

in which expected frequency Fr is modified by the actual 
frequency fr. 

This enhances the accuracy of the testing. 
 
For details, refer to Reference [93].
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F11-31-0101 RFT, DRFT 

Discrete real Fourier transform 
CALL RFT (A, N, ISN, ICON) 

 
Function 
When one-variable real time series data {xj} of 
dimension n is given, this subroutine performs a discrete 
real Fourier transform or its inverse Fourier transform 
using the Fast Fourier Transform (FFT) Method. 
n must be a number expressed as n = 2l (l: positive 
integer). 
 
• Fourier transform 

When {xj} is input, this subroutine performs the 
transform defined in(1.1), and determines Fourier 
coefficients {nak} and {nbk}. 
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• Inverse Fourier transform 
When {ak}, {bk} are input, this subroutine performs the 
transform defined in (1.2), and determines the values 
{2xj} of the Fourier series. 
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j=0,...,n-1 

Parameters 
A..... Input.  {xj} or {ak}, {bk} 

Output.  {nak}, {nbk} or {2xj} 
One-dimensional array of size N. 
See Fig. RFT-1 for the data storage format. 

N..... Input.  Dimension n. 
ISN... Input.  Specifies normal or inverse transform 

(≠ 0). 
For transform: ISN = + 1 
For inverse transform: ISN = - 1 
(See Notes). 

ICON.. Output.  Condition code 
See Table RFT-1 

 
Table RFT-1  Condition codes 

Code Meaning  Processing 
0 No error  

30000 ISN = 0 or N ≠ 2l 
(l: positive integer) 

Bypassed 

{xj}

{ak},{bk}

xn−1xn−2x5x4x3x2x1x0

an/2 b2a2b1a1 bn/2−1an/2−1a0

N

Note: {nak}, {nbk} correspond to {ak}, {bk}.

One-dimensional array A(N)

 
Fig. RFT-1  Data storage method 

Comments on use 
• Subprograms used 

SSL II ... CFTN, PNR, URFT, and MGSSL 
FORTRAN basic functions ... ATAN, ALOG, SQRT, 
SIN, and IABS 

 
• Notes 

General definition of discrete real Fourier transform: 
Discrete real Fourier transforms and inverse Fourier 
transforms are generally defined as: 
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This routine determines {nak}, {nbk}, or {2xj} in place 
of {ak}, {bk} of (3.1) or {xj} of (3.2).  Scaling of the 
resultant values is left to the user. 

Notice that a normal transform followed by an inverse 
transform returns the original data multiplied by the 
value 2n. 

Specifying ISN: 
ISN is used to specify normal or inverse transform.  It is 
also used as follows; 
If {xj} or {ak}, {bk} are stored in an area of size N⋅I in 
intervals of I, the following specification is made. 
For transform: ISN = + I 
For inverse transform: ISN = -I 

In this case, the results of the transform are also stored 
in intervals of I. 
• Example 

Real time series data {xj} of dimension n is put, 
transform is performed using this routine, and the 
results are scaled to obtain {ak}, {bk}. 
In case of n ≤ 1024 (= 210). 
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C     **EXAMPLE** 
      DIMENSION A(1024) 
      READ(5,500) N,(A(I),I=1,N) 
      WRITE(6,600) N,(I,A(I),I=1,N) 
      ISN=1 
      CALL RFT(A,N,ISN,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,620) A(1) 
      N1=N/2-1 
      IF(N1.NE.0)  
     * WRITE(6,630) (I,A(2*I+1),A(2*I+2), 
     *              I=1,N1) 
      N1=N1+1 
      WRITE(6,630) N1,A(2) 
      STOP 
  500 FORMAT(I5/(2E20.7)) 
  600 FORMAT('0',10X,'INPUT DATA N=',I5/ 
     * /(15X,I5,E20.7)) 
  610 FORMAT('0',10X,'RESULT ICON=',I5/) 
  620 FORMAT('0',17X,'K',10X,'A(K)',16X, 
     * 'B(K)'//19X,'0',E20.7) 
  630 FORMAT(/15X,I5,2E20.7) 
      END 
 
Method 
This subroutine performs a discrete real Fourier 
transform (hereafter referred to as real transform) of 
dimension n (=2⋅m) using the radix 8 and 2 Fast Fourier 
Transform (FFT) method. 

By considering real data {xj} to be transformed as 
complex data with the imaginary part zero, a real 
transform can be done by a discrete complex Fourier 
transform (hereafter referred to as complex transform). 
However in such case, the complex transform can be 
done efficiently using the characteristics as described 
below. 
Let the complex transform be defined as 
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  Then, when {xj} is real data, the complex conjugate 
relationship results as shown in (4.2) 

1,...,1,* −==− nkkkn αα  (4.2) 

  where * represents complex conjugates 
  Now, the relationship between the results of a real 
transform {ak}, {bk}, and the results of a complex 
transform {ak} are 
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Therefore, when a complex transform is used for real 
data from (4.2) and (4.3) it can be seen that {ak}, {bk} 
can be determined by determined only ak, k = 0, ..., n/2 
considering (4.2) and (4.3).  This means that complex 
transform on real data has redundancy in calculating 
conjugate elements. 

  In this routine this redundancy is avoided by use of 
inherent complex transform as described below: 

 
• Real transform by the complex Fourier transform 

First, expansion of the complex transform (4.1) 
applying the principles of the Fast Fourier Transform 
(FFT) method is be considered.  Since n = 2⋅m, k and j 
can be expressed as 
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If (4.4) is substituted in (4.1) and common terms 
rearranged, (4.5) results. 
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(4.5) means that a complex transform of dimension 2m 
can be performed by two sets of elementary complex 
transforms of dimension m by ∑

1j
 and m sets of 

elementary complex transforms of dimension 2  by ∑
0j

. 

(Refer to the section on CFT for principle of the Fast 
Fourier Transform method.)  In this routine (4.5) is 
successively calculated for complex data with the 
imaginary parts zero. 

− Transform by ∑
1j

 

Two sets of elementary complex transforms of 
dimension m are performed by ∑

1j
 respect to j0.  

By performing complex transforms on the even-
number data {x1j} and the odd-number data {x2j}, 
{α k

x1 } and {α k
x 2 } can be determined.  Since the 

imaginary Parts of the complex data {x1j} and {x2j} 
are zero, just as in (4.2), the conjugate relationships 
shown in (4.6) exist. 
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The above two sets of elementary complex 
transforms can be performed as a single transform 
plus a few additional operations; that is, the real parts 
of {x1j} and {x2j} are paired as shown in (4.7) to 
form the real and imaginary parts of new complex 
data {zj}. 

1,...,0,21 −=⋅+= mjxixz jjj  (4.7) 

and complex transform of dimension m is done with 
respect to {zj} and {α k

z } is determined.  Then, using 
(4.8), {α k

x1 } and {α k
x 2 } are obtained  
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Transform by ∑
0j

 

m sets of complex transforms of dimension 2 are 
performed by 

j0
∑  with respect to j1. 

The result {αk} is the complex transform of complex data 
whose imaginary parts are zero.  To obtain {ak} and {bk}, 
{αk} needs to be determined only for k = 0, ..., n/2.  In 
complex transforms by ∑

0j
, calculation conjugate terms 

is omitted. 

• Processing in this routine 
The processing for a real Fourier transform in this 
routine is discussed.  Refer to Fig. RFT-2 for specific 
example of dimension 16. 
(a) Let the even number real data of dimension n be 

{x1j} and odd number data be {x2j}, then complex 
transform of dimension m is performed with respect 
to {zj} in (4.7) to determine {α k

z }. 
(b) Using (4.8), the transformed results {α k

x1 } and 

{ 2x
kα } correspond to {x1j} and {x2j} are 

determined from { z
kα }. 

(c) { 2x
kα } is multiplied by the rotation factor. 

(d) Complex transforms of dimension 2 are performed. 
 
In this routine, the complex transform in (a) is 

performed by subroutines CFTN and PNR. 
For further information, refer to References [55], [56], 

and [57]. 
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Procedure (d)Procedure (c)Procedure (b)Procedure (a)

 
Note: Symbol  indicates complex data, symbols  and  indicate real data.  Symbols  and .... indicate operations that 

may be omitted. ξ is the rotation factor; ξ= exp (-2πi/16) 
*1 Separation into two sets of 8 term complex Fourier transforms of dimension 8 
*2 Complex Fourier transform of dimension 2 

Fig. RTF-2  Flowchart of a real Fourier transform of dimension 16 

 



RJETR 

546 

C22-11-0111 RJETR, DRJETR 

Zeros of a polynominal with real coefficients (Jenkins-
Traub method) 
CALL RJETR (A, N, Z, VW, ICON) 

 
Function 
This subroutine finds zeros of a polynomial with real 
coefficients; 
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by Jenkins-Traub’s three-stage algorithm. 
 
Parameters 
A..... Input.  Coefficients of the polynomial equation. 

One-dimensional array of size (n + 1) 
A(1) = a0, A(2) = a1, ..., A(N + 1) = an in order.  
The contents of A are altered on output. 

N..... Input. Degree of the equation. 
Output. The number of roots obtained.  
(See “Comments on use”.) 

Z..... Output.  n roots.  Complex one-dimensional 
array of size n. 
Obtained roots are returned in Z(1), Z(2), ... 
So, if the number of obtained roots is N, those 
roots are returned in Z(1), ..., Z(N). 

VW... Work area.  One-dimensional array of size 6 (n 
+ 1) 

ICON.. Output.  Condition code.  See Table RJETR-1. 
 
Table RJETR-1  Condition codes 

Code Meaning  Processing 
0 No error  

10000 All of n roots were not 
obtained. 

The number of 
obtained roots is 
put into 
parameter N.  
These roots 
themselves are 
put into 
Z(1)∼ Z(N). 

30000 n < 1 of a0 = 0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, AMACH, RQDR, IRADIX, 
AFMAX, AFMIN, and UJET 
FORTRAN basic functions ... ABS, ALOG, EXP, 
SQRT, CMPLX, SIN, ATAN, REAL, AIMAG, and 
AMAX1 

 
• Notes 

A COMPLEX declaration for array Z must be done in 
the program which calls this subroutine.

An n degree polynomial equation has n roots.  All of 
the roots can not always be obtained.  Users should be 
aware of this and make sure of the values of parameters 
ICON and N after calculation. 

 
• Example 

Degree n and real coefficients ai are input and roots are 
calculated for 1 ≤ n ≤ 50. 

 
C     **EXAMPLE** 
      DIMENSION A(51),Z(50),VW(306) 
      COMPLEX Z 
      READ(5,500) N 
      N1=N+1 
      READ(5,510) (A(I),I=1,N1) 
      DO 10 I=1,N1 
      K=I-1 
   10 WRITE(6,600) K,A(I) 
      CALL RJETR(A,N,Z,VW,ICON) 
      WRITE(6,610) N,ICON 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,620) (I,Z(I),I=1,N) 
      STOP 
  500 FORMAT(I2) 
  510 FORMAT(5F10.0) 
  600 FORMAT(10X,'A(',I2,')=',E20.8) 
  610 FORMAT(10X,'N=',I2,5X,'ICON=',I5) 
  620 FORMAT(10X,'Z(',I2,')=',2E20.8) 
      END 
 
Method 
This subroutine employs the Jenkins-Traub’s three-stage 
algorithm. The three-stage algorithm consists of: 
• Using K polynomial (described later) defined 

differently at each of the three stages, the roots are 
pursued so that the smallest root is first found. (state 1) 

• To make sure if the calculation can converge. (stage 2) 
• Finally to speed up the convergence and to obtain the 

roots. (stage 3) 
 

Especially, if a real coefficient polynomial equation is 
given, since the roots are pursued as linear or quadratic 
factors, the discrimination if a linear or a quadratic factor 
is converging is made in the stage 2.  Then accordingly 
the calculation is speeded up in two ways in the stage 3.  
If the second order factors are determined, the roots are 
obtained with the quadratic equation formula. 
• Features 

a. Only real arithmetic is used.  Complex conjugate 
roots are found as quadratic factors. 

b. Roots are calculated in roughly increasing order of 
modulus; this avoids the instability which occurs 
when the polynomial is deflated with a large root. 

c. The rate of convergence of the third stage is 
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faster than second order. 
 

• K polynomials 
Before describing the algorithm two important 
sequences of polynomials are introduced and their 
characteristics are described below.  In equation 
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Let’s assume a0 = 1 and an ≠ 0, but there is no loss of 
generality.  Starting from (n − 1)-th degree arbitrary 
polynomial K(0)(x), for λ= 0, 1, ..., K(λ)(x) is defined as 
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Obviously, every K(λ)(x) are of degree at most n−1.  Let 
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K(λ)(x) is expressed as follows. 
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  From (4.4), if ρ1 exists such that |ρ1 | < |ρi| (i ≥ 2) and c 
≠ 0, 

( ) ( )( ) 1/lim ρλ
λ

−=
∞→

xxKxf  (4.5) 

  holds, where ( ) ( )K xλ  is defined to be ( ) ( )K xλ  divide by 
its leading coefficient.  The rate of convergence of (4.5) 
depends on the ratio of ρ1 and ρ2 (i ≥ 2).  The polynomial 
defined by (4.2) is called a no-sift polynomial.  The 
second polynomials are defined as follow.  Starting from 
(n - 1)-th degree polynomial ( ) ( )K x0 ,for λ = 0, 1, ... , it is 
defined as 

( )( ) ( )
( )( ) ( ) ( )( ) ( )[ ]xfBxAxK

x
xK λλλλ

σ
++=+ 11  (4.6) 

Here σ(x) is a real quadratic x2 + ux + v with roots s1 and 
s2 such that s1 ≠ s2, |s1| = |s2| =β, β ≤ min |ρi|  and f(s1) 
f(s2)≠0.  A(λ) and B(λ) are chosen so that the expression in 
the bracket [  ] of (4.6) can be divided by σ(x) and are 
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  respectively.  The every K(λ)(x) of (4.6) is of degree n - 
1 at most.  Employing (4.3) for K(0)(x) as before, the 
polynomial defined by (4.6) is given as follows: 
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The polynomial defined by (4.6) is called fixed-shift 
polynomial.  It has the following two important 
properties. 
• If there exists ρ1  such that 

σ σ1 2< ≥i i,  (4.9) 

then, ρ1  is real and 

( ) ( )( ) 1/lim ρλ
λ

−=
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xxKxf  (4.10) 

holds, 
where K(λ)(x) is defined to be K(λ)(x) divided by its 

leading coefficient. 
• If there exist ρ1  and ρ2  such that 
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then, by letting 
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v = 0 1,  
and 
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holds. 
 
Three-stage algorithm 
The three-stage algorithm consists of three stages.  (n − 
1)-th degree polynomials K(λ)(x) which play a basic role 
at each step, are generated as different sequences for each 
of the steps.  Polynomial K(M)(x) at the end of stage 1 is 
used as the beginning polynomial for stage 2, and K(L)(x) 
at the end of stage 2 is used as the beginning polynomial 
for stage 3. 
• Stage 1 (no-sift process) 

The algorithm starts with K(0)(x) = f’(x) and 
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the process (4.2) is iterated M, times.  As for M, it is 
described later.  The purpose of this stage is to make the 
term which include pi of small absolute value dominant in 
K(M)(x). 
• Stage 2 (fixed-shift process) 
Applying (4.6) for λ= M, M−1, ..., L−1, a sequence of 
fixed-shift polynomials are produced.  As for L, see 
“Stopping Criterion”.  The purpose of producing fixed-
shift polynomials is to see if (4.9) of (4.11) holds.  
However, since σ k, k = 1, ..., j cannot be calculated, 

( ) ( )( )f x K x/ λ and σ (λ)(x) must be calculated as well as 
finxed-polynomials, then by using both of them, whether 
roots converge on linear or quadratic factors is 
determined.  Which of (4.10) of (4.13) holds depends on 
the choice of s1 and s2.  If any convergence is not met, it 
can be considered to be due to improper choice of s1 and 
s2, and then they would be chosen again.  (See “Notes on 
algorithm”.) 
When ( ) ( )( )f x K x/ λ starts to converge in stage 2, the rate 
of convergence is accelerated by shifting it with current 
approximate.  And when σ (λ)(x) starts to converge, the 
speed is accelerated by replacing σ (x) of (4.6) with 
σ(λ)(x).  This motivates going to the next variable-shift 
process. 
• Stage 3 (variable-shift process)  This step is divided 

into the following two procedures depending on the 
state of convergence (upon linear or quadratic factors) 
in stage 2. 
(a) Iteration for a linear factor 

Letting 
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( ) ( ) ( )( ) ( ) ( )( )λλλλλ sK/sfss −=+1  
,...1, += LLλ  (4.15) 

then the sequences s(λ) converges to ρ 1 
(b) For λ = L + 1, ..., σ (λ+1)(x) are calculated based on 

the following variable-shift polynomial K(λ+1)(x). 
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Where s1
(λ) and s2

(λ) are two roots of ρ (λ)(x). 
Then the sequence ρ (λ)(x) converges to (x−ρ 1)(x−ρ 2).  
As for stopping rule see “Stopping Criterion”. 
 
Notes on algorithm 
• Initial values s1, s2 

Solving the following equation by Newton’s method. 

0... 1
1

1 =−+++ −
−

nn
nn axaxax  

let only one positive root be β, then s1, and s2 are set 
as: 

( ) ( )θθβθθβ sincos,sincos 21 isis +=+=  (4.18) 

where theta ,...2,1,0 ±±=∝≠ kkπθ  
 
• Normalization of K(λ)(x) 

To avoid overflows in operations, it is taken into 
account that K(0)(x) = f'(x)/n, and K(λ)(x) are normalized 
by diving (4.6) with A(λ) in (4.7).  (4.6) with A(λ) in 
(4.7). 

• Calculation of K(λ)(x) and δ(λ)(x) 
Let 
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Then, using these a, b, c, d, u, v, Q1(x) and Qk
(λ)(x), 

K(λ+1)(x) is calculated as follows. 
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In addition, σ(λ)(x) is also calculated using a, b, c, d, u, 
and v, in the same way. 
 
Stopping criterion 
• Stage 1 

The purpose of this stage is to accentuate the smaller 
roots.  In the implementain, M is set to 5, a number 
arrived at by numerical experience. 
 

• Stage 2 
Letting ( ) ( )( )0/0 λ

λ Kft −=  , if 

λλλ ttt
2
1

1 ≤−+ and 112 2
1

+++ ≤− λλλ ttt  

then Stage 2 is terminated and iteration for a linear 
factor in Stage 3 is performed. 
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  Letting ( ) ( )σ λ νλλ x x u x= + +2 , the sequence ( ) ( )σ λ x  is 
monitored by applying the same test to vλ. If the 
condition is satisfied, Stage 2 is terminated and iteration 
for a quadratic factor in Stage 3 is performed. But if both 
tλ and vλ do not converge even after 20 × I times iteration, 
s1 and s2 are reselected by rotationg θ  through 
appropriate degree in (4.18). Where I is the number of 
times s1 and s2 are reselected and its maximum limit is 20. 
When I exceeds 20, processing is terminated with ICON 
= 10000. 
• Stage 3 

(a) Iteration for a linear factor 
Letting s = s(λ), if 
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n
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00
 

is satisfied, s is adopted as the root. Where u is the 
round-off unit. 

(b) Iteration for a quadratic factor 
Letting the quotient produced by dividing 
polynomial f(x) by a quadratic factor x2 + uλx + vλ 
be Q(x), and its remainder be 

( )λuxB + +A 
f(x)=( x2 + uλx + vλ) Q(x)+ ( )λuxB + +A 

where B and A are calculated by synthetic division. 
When both B and A lose their significant digits, 
quadratic factor are judged to have converged. That 
it, letting 

,00 ab =                      00 ac =  

,011 buab ⋅−= λ          { }011 ,max cuac ⋅= λ  

and for k = 2, ..., n−2 

,21 −− ⋅−⋅−= kkkk bvbuab λλ  
{ }21,,max −− ⋅⋅= kkkk cvcuac λλ  

then 

32211 −−−−− ⋅−⋅−⋅−== nnnnn bvbvbuabB λλλ , 

21 −− ⋅−⋅−== nnnn bvbuabA λλ  

and 

{ }3211 ,,max −−−− ⋅⋅== nnnn cvcuacD λλ , 

{ }21,,max −− ⋅⋅== nnnn cvcuacC λλ  

are calculated. If 

B D u≤ ⋅  and uCA ⋅≤  

(u is the round-off unit) 
 

is satisfied, x2+ uλx + vλ is adopted as a quadrate 
factor of f(x). Limit number of iteration is 20 in both 
(a) and (b). If convergence is not met within the limit, 
the stopping condition met within the limit, the 
stopping condition in Stage 2 is made severe and the 
rest of Stage 2 is repeated. 
 
For details, see References [30] and [31]. 
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H11-20-0111 RKG, DRKG 

A system of first order ordinary differential equations  
(Runge-Kutta-Gill method) 
CALL RKG (Y, F, K, N1, H, M, SUB, VW, ICON) 

 
Function 
This subroutine solves a system of first order differential 
equations: 
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on a mesh x0 + h, x0 + 2h, ..., x0 + (m-1)h with initial 
values y1 (x0) y2 (x0) ... yn (x0), by the Runge-Kutta-Gill 
method. 
 
Parameters 
Y..... Input. Initial values x0, y10, y20, ..., yn0 are 

specified as follows: 
Y(1,1) = x0, Y(2,l) = y10, Y(3,1) = y20, ...,  
Y(N1, 1) = yn0 
Y is two-dimensional array, Y(K,M). 
Output. Values y1, y2, ..., yn for xj = x0 + jh 
(j=1, ..., m-1). 
They are output as follows: 
For J = 1, 2, ..., n−1 
Y(1, J + 1): xj 
Y(2, J + 1): y1j = y1(xj) 
        :               : 
Y(N1, J + 1): ynj =  ynj(xj) 

F .... Output.  Values of y’1, y’2, ..., y’n for xj = x0 + 
jh (j = 0, l, ..., m-1), i.e., the values of f1, f2, ..., 
fn. 
F is a two-dimensional array, F(K,M). They 
are output as follows: 
Let 
F(1, J + 1) : 1.0 
F(2, J + 1) : y’1j = y’1(xj)  
        :               : 
F(N1, J + 1) : y’nj=y’n(xj) 

K .... Input. Adjustable dimension of arrays Y and F. 
N1 ... Input. n + 1 where n is the number of 

equations in the system. 
H.... Input. Stepsize h. 
M.... Input. The number of discrete points of 

independent variable x at which 
approximations yi (i=1, ..., n) are to be 
obtained. Starting point x0 is also included in 
this number. m ≥ 2. 

SUB.. Input.  The name of subroutine which 
evaluates fi(i = 1, 2, ..., n) in (1.1). 

The subroutine is provided by the user as 
follows: 
SUBROUTINE SUB (YY,FF) 
Parameters 
YY: Input. One-dimensional array of size n + 
1, where 
YY(1) = x, YY(2) = y1, YY(3)=y2, ..., YY(n 
+1) = yn 
FF: Output. One-dimensional array of size n 
+1, 
where FF(2) = f1, FF(3) = f2, FF(4) = f3, ...., 
FF(n +l) = fn 
(See the example). 
Nothing must be substituted in FF(1). 

VW.... Work area. One-dimensional array of size n+1. 
ICON.. Output. Condition code. See Table RKG-1. 
 
Table RKG-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 N1 < 2, K  < N1, M <2, or H = 
0.0 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II... MGSSL 
FORTRAN basic function... None 

 
• Notes 

SUB must be declared as EXTERNAL in the program 
from which this subroutine is called. 

This subroutine generates approximations at fixed 
intervals using a constant stepsize. As the computation 
proceeds, the errors tend to become larger in general; it is 
usually not advisable to obtain approximations at points very 
far from x0 though it depends on the size of h. 

However, this subroutine has the advantage that it is 
a one step method, i.e., in determining the solution at x0 
+jh only the solution at x0 + (j - 1) h is necessary.  This 
is suitable for calculating a few starting values in the 
multistep method, and should be exclusively used for 
that purpose. 
 

• Example 
The initial value problem (3.1) of a system of 
differential equations is solved. 

( )
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h=0.1,m=10 
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C     **EXAMPLE** 
      DIMENSION Y(3,10),F(3,10),VW(3) 
      EXTERNAL SUB 
      Y(1,1)=1.0 
      Y(2,1)=5.0 
      Y(3,1)=3.0 
      H=0.1 
      CALL RKG(Y,F,3,3,H,10,SUB,VW,ICON) 
      IF(ICON.NE.0) STOP 
      WRITE(6,600) 
      WRITE(6,610) ((Y(I,J),I=1,3), 
     * (F(I,J),I=2,3),J=1,10) 
      STOP 
  600 FORMAT('1'/' ',20X,'X',19X,'Y1',18X, 
     * 'Y2',18X,'F1',18X,'F2'//) 
  610 FORMAT(' ',10X,5E20.8) 
      END 
      SUBROUTINE SUB(YY,FF) 
      DIMENSION YY(3),FF(3) 
      FF(2)=YY(3) 
      FF(3)=4.0*YY(2)/(YY(1)*YY(1))+2.0* 
     *      YY(3)/YY(1) 
      RETURN 
      END 
 
Method 
Considering the independent variable x itself as a 
function; 

y0(x) =x,     y00=y0(x0)=x0 (4.1) 

initial value problem (1.1) of a system of first order 
differential equations, can be written as 
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To simplify the notation, the following vectors are 
introduced. 

( )T
210 ,...,,, nyyyy=y  

( )T02010000 ,...,,, nyyyy=y  

( ) ( ) ( ) ( )( )T10 ,...,, yyyyf nfff=  (4.3) 

( ) ( )T10 ,...,, nii yyyff =y  
ni ,...,1,0=  

Let the vector which has elements yi (i = 0, 1, ..., n) be 
represented as y′′′′ . Then (4.2) can be simplified to 

( ) ( )′ = =y f y , y y x0 0  (4.4) 

With respect to (4.4), the procedure of the Runge-
Kutta-Gill method to approximate y(x0+ h) is shown in 
(4.5) below. In the following expressions, qi and ki 
denote (n+ 1) dimensional vectors just as yi and fi 
Initially assumes a zero vector. 

 
( )k f y1 = h 0  

( )y y 1
2

k 2q1 0 1 0= + −  

( )q q 3 y y 1
2

k1 0 1 0 1= + − −  

( )k f y2 1= h  

( )y y k q2 1 2 11 1
2

= + −








 −  

( )q q 3 y y k2 1 2 1 21 1
2

= + − − −








  

( )k f y3 2= h  

( )y y k q3 2 3 21 1
2

= + +








 −  

( )q q 3 y y k3 2 3 2 31 1
2

= + − − +








  (4.5) 

( )k f y4 3= h  

( )y y k q4 3 4 3

1
6

2= + −  

( )q q 3 y y k4 3 4 3 4

1
2

= + − −  

Then y4 is taken as the approximation to y(x0+ h). 
When determining the solution at x + 2h, setting 

q q0 4=  
y y0 4=  

,(4.5), is repeated. In this way, the approximations 
at x0 + 3h,......,x0 + (m-1) h, are determined. 

For more information, see Reference [69]. 
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C21-11-0101 RQDR, DRQDR 

Zeros of a quadratic with real coefficients 
CALL RQDR (A0, A1, A2, Z, ICON) 

 
Function 
This subroutine finds zeros of a quadratic with real 
coefficients; 

( )1,00 021
2

0 ≥≠=++ naaxaxa  

Parameters 
A0, Al, A2... Input. Coefficients of the quadratic equation. 
Z..... Output. Roots of the quadratic equation. Z is a 

complex one-dimensional array of size 2. 
ICON.. Output. Condition code. See Table RQDR-1. 
 
Table RQDR-l  Condition codes 

Code Meaning Processing 
0 No error  

10000 a0 = 0.0 -a2/a1 is stored in 
the real part of Z 
(1), and 0.0 is 
stored in the 
imaginary part.  Z 
(2) may be 
incorrect. 

30000 a0 = 0.0 and a1 = 0.0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II... AMACII and MGSSL 
FORTRAN basic functions ... CMPLX, SQRT, and 
ABS 
 

• Example 
The coefficients of a quadratic equation are entered and 
roots Z, are determined. 

 
C     **EXAMPLE** 
      DIMENSION Z(2) 
      COMPLEX Z 
      READ(5,500) A0,A1,A2 
      CALL RQDR(A0,A1,A2,Z,ICON) 
      WRITE(6,600) ICON,A0,A1,A2 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,610) (Z(I),I=1,2) 
      STOP 
  500 FORMAT(3F10.0) 
  600 FORMAT(10X,'ICON=',I5/10X,'A=',3E15.6) 
  610 FORMAT(10X,'Z=',2E15.6) 
      END 
 

Method 
The roots of a quadratic equation (a0x2 + a1x + a2 = 0) 
can be obtained from 

2
4 2

2
1 PPP

x
−±−

=  

where, P1 = a1/a0 and P2 = a2/a0 
When 2

2
1 4PP >>  a great loss of precision will result 

in one of the calculations 2
2

11 4PPP −+−  or 

2
2

11 4PPP −−− .  To avoid this problem, root formulas 
with rationalized numerators are used in calculations. 
These are shown below. 

Let D= P P1
2

24−  
For  D≤0, (conjugate complex numbers, multiple roots) 

2/2/11 DiPx −+−=  

2/2/12 DiPx −−−=  (4.1) 

For D > 0 (two real roots) 
If P1 > 0 

)/(2 121 DPPx +−−=  

)(2

2)(

0If
2)(

122

11

1

12

DP/Px

/DP=x

 P
/DPx

+−=

+−

≤
+−=

 (4.2) 

In calculation of discriminant 2
2

1 4PPD −= , if |P1| is 
very large, P1

2  may cause an overflow. In order to avoid 
this situation, the condition |P1|>1035 is checked. If the 
condition is satisfied, the above-described procedure is 
used.  If the condition is satisfied, the roots are 
discriminated using D0 = 1- 4P2/P1/P1 and D  is 

calculated as 01 DP . 
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A52-31-0202 SBDL, DSBDL 

LDLT -decomposition of a positive-definite symmetric 
band matrix (Modified Cholesky's method) 
CALL SBDL (A, N, NH, EPSZ, ICON) 

 
Function 
This subroutine computes LDLT decomposition (1.1). 

A = LDLT (1.1) 

of the n × n real  positive-definite symmetric band 
matrix A with upper and lower band widths h by using 
the modified Cholesky's method, where L is a unit lower 
band matrix with band widths h, D is a diagonal matrix , 
and n > h ≥ 0. 
 
Parameters 
A..... Input. Matrix A. 

Output. Matrices L and D-1. 
Refer to Fig.SBDL-1.   
Matrix A is stored in a one dimensional array 
of size n(h + 1)−h(h + 1)/2 in the compressed 
mode for symmetric band matrices. 

N..... Input. Order n of matrix A. 
NH.... Input. Lower band width h . 
EPSZ.. Input. Tolerance for relative zero test of pivots 

in decomposition process of matrix A ( ≥ 0.0). 
If EPSZ is 0.0, a standard value is used. 

ICON.. Output. Condition code. Refer to Table SBDL-1 
 

( ) ( )
n h

h h
+ −

+
1

1
2

d11

d22

dnn

0

l211

lh+11

1

1

1lnn h−

lh+11

lnn h−

d11
1−

l d21 22
1−

dh h+ +
−

1 1
1

dnn
−1

d11
1−

l21

d22
1−

lh+11

dh h+ +
−

1 1
1

lnn h−

dnn
−1

Diagonal matrix D Matrix D-1+(L-I) Array FA

Diag-
onal
element
s are
inverted

Only
lower
band
portion

Unit lower
band matrix L

0

0

0

0

0

 
Note: On output, diagonal and lower band portions of matrix D-

1+(L-I) are stored in one-dimensional array A in the 
compressed mode for symmetric band matrices. 

Fig. SBDL-1 Storage of the decomposed elements 

Table SBDL-l  Condition codes 

Code Meaning Processing 
0 No error  

10000 The negative pivot occurred.  
The matrix is not positive-
definite. 

Continued 

20000 The relatively zero pivot 
occurred. The matrix is 
possibly singular. 

Discontinued 

30000 NH<0, NH ≥ N or EPSZ < 0.0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II... AMACH, MGSSL 
FORTRAN basic function... ABS 
 

• Notes 
Since this subroutine omits the operations concerning 
the elements out of the band, the processing speed is 
faster than subroutine SLDL provided for positive-
definite symmetric matrices. 

If EPSZ is set to 10−s, this value has the following 
meaning: While performing the LDLT -decomposition 
by modified Cholesky's method, if the loss of over s 
significant digits occurred for the pivot, the LDLT-
decomposition should be discontinued with ICON = 
20000 regarding the pivot to be relatively zero. 

The standard value of EPSZ is 16･u, where u is a 
unit round off, but the result is not always guaranteed. 

If the negative pivot occurred in the decomposition, 
the matrix is not a positive-definite. 
In this case, this subroutine is continued, with ICON = 
10000. However, it should be noted that large 
calculation errors may occur since the pivoting is not 
performed. 

This subroutine performs LDLT decomposition, but it 
should be noted that D-1 is output to the array instead of 
D. 
The determinant of the matrix can be obtained by 
multiplying all the n diagonal elements of array A (the 
diagonal elements of D-1) after the subroutine has been 
executed and then by determining the inverse number. 

Notice that the array A is in the compressed mode for 
symmetric band matrices. 

 
• Example 

The n × n matrix with the lower and upper band width 
h is input and LDLT decomposition is computed.   
n ≤ 100 and h ≤ 50. 

 

Array A 



SBDL 

554 

C     **EXAMPLE** 
      DIMENSION A(3825) 
   10 READ(5,500) N,NH 
      IF(N.EQ.0) STOP 
      NH1=NH+1 
      NT=N*NH1-NH*NH1/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,630) 
      L=0 
      LS=1 
      DO 20 I=1,N 
      L=L+MIN0(I,NH1) 
      JS=MAX0(1,I-NH1) 
      WRITE(6,600) I,JS,(A(J),J=LS,L) 
   20 LS=L+1 
      CALL SBDL(A,N,NH,1.0E-6,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,640) 
      L=0 
      LS=1 
      DET=1.0 
      DO 30 I=1,N 
      L=L+MIN0(1,NH1) 
      JS=MAX0(1,I-NH1) 
      WRITE(6,600) I,JS,(A(J),J=LS,L) 
      DET=DET*A(L) 
   30 LS=L+1 
      DET=1.0/DET 
      WRITE(6,620) DET 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(' ','(',I3,',',I3,')'/ 
     * (10X,5E17.8)) 
  610 FORMAT(/10X,'ICON=',I5) 
  620 FORMAT(//10X, 
     * 'DETERMINANT OF MATRIX=',E17.8) 
  630 FORMAT(/10X,'INPUT MATRIX') 
  640 FORMAT(/10X,'DECOMPOSED MATRIX') 
      END 
 
Method 
• Modified Cholesky's method 

A real positive-definite symmetric matrix A can always 
be decomposed in the following form. 

T~~LLA =  (4.1) 

Where ~L  is a lower triangular matrix. Further, if L is 
defined by ~L L=  diag( Tii equations (4.1) can be 
rewritten to 

TLDLA =  (4.2) 

Where L is a unit lower triangular matrix, and D is a 
positive-definite diagonal matrix. The modified 
Cholesky's method gives the following equations to 
decompose as shown in equations (4.2). 

∑
−

=

−=−=
1

1

1,...,1,
j

k
jkkikijjij ijldladl  (4.3) 

∑
−

=
−=

1

1

i

k
jkkikiii ldlad  (4.4) 

Where i = 1, ..., n. 

(For further details, see the Method for subroutine 
SLDL). If matrix A is a positive-definite symmetric band 
matrix, in equations (4.2), matrix A becomes a lower 
band matrix, with the identical band width as A.  
Therefore, in this subroutine, the calculation concerning 
the elements out of the band are omitted, and the 
decomposition is actually computed using the following 
equations (4.5) and (4.6). 

( )
∑

−

−=
−=

1

,1max
,

j

hik
jkkikijjij ldladl  

nhij ,...,−=  (4.5) 

( )
∑

−

−=
−=

1

,1max
,

j

hik
ikkikiii ldlad  (4.6) 

Where i = 1, ..., n. 
 
For further details, see Reference [7]. 
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A52-21-0202 SBMDM, DSBMDM 

MDMT decomposition of a real indefinite symmetric 
band matrix (block diagonal pivoting method) 
CALL SBMDM (A, N, NH, MH, EPSZ, IP, IVW, 
ICON) 

 
Function 
An n × n nonsingular real symmetric band matrix A  
having band width ~h  is MDMT-decomposed using the 
block diagonal pivoting method.  (There are similar two 
methods, Crout-like and Gaussian-like methods, of which 
the Gaussian-like method is used in this subroutine.) 

PAP T = MDM T (1.1) 

where P is a permutation matrix to be used to exchange 
rows of matrix A  in the pivoting operation, M is a unit 
lower band matrix, and D is a symmetric block diagonal 
matrix comprising symmetric blocks each at most of 
order 2; further dk+1, k ≠ 0  if mk+1,k=0 ,where M = (mij) 
and D = (dij) for n≥ h ≥ 0. 
 
Parameters 
A..... Input.  Matrix A given in compressed mode for 

the symmetric band matrix assuming A to have 
band width hm.  (See “Comments on Use.”) 
Output. Matrices M and D.  (See Figure 
SBMDM-l.) 
One-dimensional array of size n( hm+1)- 
hm( hm+1)/2 

d d11 21
0 Excluding

the upper
triangular
portion

Block diagonal matrix D Array FA

0

d d21 2 2

d33
d

4 4

0

0
m32

1

1

1

1

0

0

m4 3

Diagonal
portion and
band portion
of
the maximum
tolerable band
width

Only the
lower traian-
gular portion

0

0
m d32 33

d11

d d21 22

m d43 4 4

d11

d21

d2 2

0

m32

d33

0

m4 3

d4 4

 
Note: In this example, orders of blocks in D  are 2, 1, and 1; 

band width of M  is 1, and the maximum tolerable band 
width is 2. 

 
Fig.SBMDM-1  Decomposed element storing method 

N..... Input. Order n of matrix A. 
NH.... Input. Band width h of matrix A. 

Output. Band width ~h  of matrix M.  (See 
“Comments on Use.”) 

MH..... Input.  Maximum tolerable band width hm(N > 
MH ≥ NH).(See “Comments on Use.”) 

EPSZ .. Input.  Relative zero criterion (≥ 0.0) for 
pivoting operation. The default value is used if 
0.0 is specified. (See, “Comments on Use.”) 

IP..... Output. Transposition vector indicating the 
history of row exchanges by pivoting operation. 
One-dimensional array of size n. 
(See “Comments on Use.”) 

IVW..... Work area. One-dimensional array of size n. 
ICON.. Output. Condition code.  (See Table SBMDM-

l.) 
 
Table SBMDM-l  Condition codes 

Code Meaning Processing 
0 No error.  

20000 The relatively zero pivot 
occurred. The coefficient 
matrix may be nonsingular. 

Bypassed. 

25000 The band width exceeded the 
maximum tolerable band width 
during processing. 

Bypassed. 

30000 NH < 0, NH > MH, MH ≥ N or 
EPSZ <0.0. 

Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II... AMACH, MGSSL  
FORTRAN basic functions... MAX0, MIN0, ABS, 
AMAX1 

 
• Notes 

When 10-s is set as relative zero criterion EPSZ for 
pivoting operation: 

If loss of significant digits exceeds decimals in the 
pivot (determinant of 1 × 1 or 2 × 2 pivot matrix) 
during the MDMT decomposition in the block diagonal 
pivoting method, the pivot value is regarded as a 
relative zero and ICON = 20000 is set, then processing 
is stopped. 

The default value of EPSZ is 16･u, where u is the 
unit round off. 

If the calculation must not be stopped even if the 
pivot value becomes small, specify a very small value 
in the EPSZ parameter. In this case, however, the result 
is not guaranteed. result is not guaranteed. 
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The transposition vector is considered to be 
analogues to permutation matrix P in 

PAP T = MDM T 

used in the MDMT decomposition in the block diagonal 
pivoting method. In this subroutine, contents of array  
A are actually exchanged and the related historical data 
is stored in IP. Note that data storing methods are 
different between 1 × 1 and 2 × 2 pivot matrices.  At 
step k of the decomposition, data is stored as follows: 

For 1 × 1 pivot matrix, no row is exchanged and k is 
stored in IP(k). For 2 × 2 pivot matrix, − k is stored in 
IP(k)and the negative value of the row (and column) 
number that is exchanged by row (k + 1) (and column 
(k + l)) is stored in IP(k+1). 

The determinant of matrix A is equal to that of 
calculated D.   The elements of matrices M and D are 
stored in array A (Figure SBMDM-l). (See “Example” 
for subroutine LSBIX.) 

Generally, the matrix band width increases when 
rows and columns are exchanged in the pivoting 
operation. This means that the user must specify band 
width hm  greater than actual band width h . If the band 
width exceeds hm , processing is stopped assuming 
ICON = 25000. The output value for NH indicates the 
necessary and sufficient condition for hm 

Simultaneous linear equations are solved by calling 
subroutine BMDMX after this subroutine. In an 
ordinary case, the solution is obtained by the calling 
subroutine LSBIX.  

The numbers of positive and negative eigenvalues of 
matrix A can be obtained. (See “Example.”) 
 

• Example 
Given an n × n real symmetric band matrix having 
width h, the numbers of positive and negative 
eigenvalues are obtained under conditions n ≤ 100 and 
h ≤ hm ≤ 50. 

 
C     **EXAMPLE** 
      DIMENSION A(3825),IP(100),IVW(100) 
      READ(5,500) N,NH,MH 
      WRITE(6,600) N,NH,MH 
      MHP1=MH+1 
      NT=(N+N-MH)*MHP1/2 
      READ(5,510) (A(J),J=1,NT) 
      EPSZ=0.0 
      CALL SBMDM(A,N,NH,MH,EPSZ,IP,IVW, 
     *           ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      INEIG=0 
      IPEIG=0 
      I=1 
      J=1 
 

   10 M=IP(J) 
      IF(M.EQ.J) GO TO 20 
      IPEIG=IPEIG+1 
      INEIG=INEIG+1 
      I=MIN0(MH,J)+MIN0(MH,I+1)+2+I 
      J=J+2 
      GO TO 30 
   20 IF(A(I).GT.0.0) IPEIG=IPEIG+1 
      IF(A(I).LT.0.0) INEIG=INEIG+1 
      I=MIN0(MH,J)+1+I 
      J=J+1 
   30 IF(J.LE.N) GO TO 10 
      WRITE(6,620) IPEIG,INEIG 
      STOP 
  500 FORMAT(3I4) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'N=',I3,5X,'NH=',I3,5X, 
     *'MH=',I3) 
  610 FORMAT(/10X,'ICON=',I5) 
  620 FORMAT('0',5X,'POSITIVE EIGENVALUE=', 
     * I4/6X,'NEGATIVE EIGENVALUE=',I4) 
      END 
 
Method 
• Block diagonal pivoting method 

A positive-definite symmetric matrix A can be 
decomposed as (4.1) using the modified Cholesky 
method: 

T
111 MDMA =  (4.1) 

where M1 is a unit lower triangular matrix and D1 is a 
diagonal matrix. 

If A is not a positive-definite  matrix, this 
decomposition is generally impossible or numerically 
unstable even if it is possible; however, this difficulty is 
resolved by rearranging (4.1) to (4.2): 

PAP T = MDM T (4.2) 

where P is the permutation matrix to be used for 
exchanging rows in the pivoting operation, M is a unit 
lower triangular matrix, and D is a symmetric matrix 
comprising symmetric blocks each at most of order 2. 
Decomposition to the form of (4.2) is referred to as the 
block diagonal pivoting method. 
 
• Procedures in this subroutine 

This subroutine uses Algorithm D (references [9] and 
[10]) to minimize increase of the band width caused by 
exchanging rows (and columns) in the pivoting 
operation. In Algorithm D, elements of the coefficient 
matrix are updated at each decomposition step. The 
coefficient matrix obtained at step k completion is 
expressed as A(k)

 = ( ( )aij
k ), where A(0)=A. In this case, 

processing at step k (k=l,2,..., n) consists of 
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1) Determines 

( ) ( )11 max −

≤<

− == k
iknik

k
mk aaρ  (4.3) 

2) If 

( ) ( )525.0,1 =≥− ααρk
kka  (4.4) 

is satisfied, proceeds to step 5), otherwise, proceeds 
to step 3). 
 

3) Determines 

( )1max −

≤<
= k

mj
njk

aσ  (4.5) 

4) If 

σαρ )1(2 −≤ k
kka  (4.6) 

is satisfied, proceeds to step 5), otherwise, proceeds 
to step 6). 
 

5) If 

( ) ( )EPSZaa ij
k

kk ⋅=<− max,1 εε  (4.7) 

is satisfied, the matrix is considered to be singular, 
then processing is stopped; otherwise, ( )akk

k−1   is used 
as 1 × 1 pivot matrix to calculate 
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kk

k
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nki ,...,1, +=  

Increments k by one, then procees to step 1). 
 

6) Exchange row (and column) k + 1 and m.  If 

( ) ε<−
+

1
,1

k
kka  

is satisfied, the matrix is considered to be singular, 
then processing is stopped; otherwise, 
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is used as the 2 × 2 pivot matrix to calculate 
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( ) ta k
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+
1
1,  (4.18) 

nki ,...,2+=  

Increments k by 2, then proceeds to step 1). 
 

When decomposition is completed, the diagonal block 
portion of A(n) is D and the other portions are M. 

The band structure of the coefficient matrix has been 
ignored for simplifying explanations above, however, the 
band structure is used to efficiently process calculations 
in the actual program. 

Generally, the band width increases when a 2 × 2 pivot 
matrix is used. This subroutine reduces unnecessary 
calculations by exactly tracing the band width change. 

(See references [9] and [10] for details.) 
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B21-21-0101 SEIG1, DSEIG1 

Eigenvalues and corresponding eigenvectors of a real 
symmetric matrix (QL method) 
CALL SEIG1 (A, N, E, EV, K, M, VW, ICON) 

 
Function 
All eigenvalues and corresponding eigenvectors of an n-
order real symmetric matrix A are determined using the 
QL method. The eigenvectors are normalized such that 
x

2
1= .  n ≥ 1. 

 
Parameters 
A..... Input. Real symmetric matrix A. 

Compressed storage mode for symmetric 
matrix. 
A is a one-dimensional array of size n (n+1)/2. 
The contents of A are altered on output.  

N..... Input. Order n of matrix A. 
E.. Output. Eigenvalues. 

E is a one-dimensional array of size n. 
EV...... Output. Eigenvectors. 

Eigenvectors are stored in columns of EV. 
EV(K,N) is a two-dimensional array. 

K..... Input. Adjustable dimension of array EV.  
(≥ n) 

M..... Output.  Number of eigenvalues/eigenvectors 
obtained. 

VW.... Work area. 
VW is a one-dimensional array of size 2n.  

ICON.. Output. Condition code 
See Table SEIG1-1. 

 
Table SEIG1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 E(1) = A(1), EV 
(1, 1) = 1.0 

15000 Some of eigenvalues and 
eigenvectors could not be 
determined. 

M is set to the 
number of 
eigenvalues and 
eigenvectors that 
were determined.

20000 None of eigenvalues and 
eigenvectors could be 
determined. 

M = 0 

30000 N < 1 or K < N Bypassed 
 
Comments on use 
• Subprograms used 

SSL II... TRID1, TEIG1, TRBK, AMACH, and 
MGSSL. 
FORTRAN basic functions... SQRT, SIGN, ABS, and 
DSQRT 

• Notes 
All eigenvalues and corresponding eigenvectors are 
stored in the order that eigenvalues are determined. 

Parameter M is set to n when ICON = 0, when ICON 
= 15000, parameter M is set to the number of 
eigenvalues and corresponding eigenvectors that were 
obtained. 

This subroutine is used for a real symmetric matrix. 
When determining all eigenvalues and corresponding 
eigenvectors of a real symmetric tridiagonal matrix, 
subroutine TEIG1 should be used. 

If only the eigenvalues of a real symmetric matrix 
are to be determined, subroutines TRID1 and TRQL 
should be used. 

 
• Example 

All eigenvalues and corresponding eigenvectors of an 
n-order real symmetric matrix A are determined. n ≤ 
100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),E(100),EV(100,100), 
     *          VW(200) 
   10 CONTINUE 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1, NN) 
      WRITE(6,600) N 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      CALL SEIG1(A,N,E,EV,100,M,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL SEPRT(E,EV,100,N,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',20X,'ORIGINAL MATRIX',15X, 
     *       'ORDER=',I3/'0') 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 

This example, subroutine SEPRT is used to print the 
eigenvalues and corresponding eigenvectors of a real 
symmetric matrix. The contents of SEPRT are: 
 
      SUBROUTINE SEPRT(E,EV,K,N,M) 
      DIMENSION E(M),EV(K,M) 
      WRITE(6,600) 
      KAI=(M-1)/5+1 
      LST=0 
      DO 10 KK=1,KAI 
      INT=LST+1 
      LST=LST+5 
      IF(LST.GT.M) LST=M 
      WRITE(6,610) (J,J=INT,LST) 
      WRITE(6,620) (E(J),J=INT,LST) 
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      DO 10 I=1,N 
      WRITE(6,630) I,(EV(I,J),J=INT,LST) 
   10 CONTINUE 
      RETURN 
  600 FORMAT('1',20X, 
     *      'EIGENVALUE AND EIGENVECTOR') 
  610 FORMAT('0',5I20) 
  620 FORMAT('0',5X,'ER',3X,5E20.8/) 
  630 FORMAT(5X,I3,3X,5E20.8) 
      END 
 
Method 
All eigenvalues and corresponding eigenvectors of an n-
order real symmetric matrix A are determined. 

Using the orthogonal similarity transformation in (4.1), 
real symmetric matrix A can be reduced to diagonal 
matrix D. 

AQQD T=  (4.1) 

Where Q is an orthogonal matrix. Diagonal elements of 
diagonal matrix D obtained in (4.1) become all 
eigenvalues of real symmetric matrix A; and the i-th 
column of Q is the eigenvector which corresponds to i-th 
diagonal element of D. In this routine, eigenvalues and 
eigenvectors (Q) are determined as follows. 
• Using the Householder method, real symmetric matrix 

A is reduced to tridiagonal matrix T. 

HH AQQT T=  (4.2) 

where QH is an orthogonal matrix obtained as the 
product of transformation matrices in the Householder 
method. 

221 −⋅⋅⋅⋅= nH PPPQ  (4.3) 

T is obtained using subroutine TRID 1. 
 

• QH is computed from (4.3). 
• Using the QL method, tridiagonal matrix T is reduced 

to diagonal matrix D to determine the eigenvalues. For 
information on the QL method, see the section on 
TRQL. This transformation is 

LLTQQD T=  (4.4) 

QL is an orthogonal matrix obtained as the product of 
transformation matrices in the QL method. 

sL QQQQ ⋅⋅⋅⋅= 21  (4.5) 

From (4.1), (4.2), and (4.4), eigenvector Q can be 
represented as 

LH QQQ =  (4.6) 

By performing the transformation of (4.4) and the 
computation of (4.6) at the same time, all eigenvalues and 
corresponding eigenvectors can be obtained together.  
This is done by subroutine TEIG1. 

The eigenvectors are normalized such that ||x||2 = 1.  
For further information see References [12], [13] pp 191-
195, [13] pp.212-248, and [16] pp.177-206. 



SEIG2 

560 

B21-21-0201 SEIG2, DSEIG2 

Selected eigenvalues and corresponding eigenvectors of 
a real symmetric matrix (Bisection method, inverse 
iteration method) 
CALL SEIG2 (A, N, M, E, EV, K, VW, ICON) 

 
Function 
The m largest or m smallest eigenvalues of an n-order 
real symmetric matrix A are determined using the 
bisection method.  Then the corresponding eigenvectors 
are determined using the inverse iteration method. The 
eigenvectors are normalized such that ||x||2 = 1.  1 ≤ m ≤ 
n. 
 
Parameters 
A..... Input. Real symmetric matrix A 

Compressed storage mode for symmetric 
matrix. 
A is a one-dimensional array of size n(n+1)/2.  
The contents of A are altered on output. 

N..... Input. Order n of real symmetric matrix A. 
M..... Input. 

M = + m ... The m largest eignvalues desired 
M = − m ... The m smallest eigenvalues 
desired 

E..... Output. Eigenvalues. 
E is a one-dimensional array of size m . 

EV .... Output. Eigenvectors. 
Eigenvectors are stored in columns of EV. 
EV(K, m) is a two-dimensionable array 

K..... Input. Adjustable dimension of array EV. 
(≥ n) 

VW..... Work area. One-dimensional array of size 7n. 
ICON .. Output. Condition code. See Table SEIG2-1. 
 
Table SEIG2-l  Condition codes 

Code Meaning Processing 
0 No error  

10000 N = 1 E(1) = A(1), 
EV(1, 1) = 1.0 

15000 Some of eigenvectors could 
not be determined although m 
eigenvalues were determined. 

The eigenvector 
is treated as 
vector 0. 

20000 The eigenvector could not be 
determined. 

The eigenvector 
is treated as 
vector 0. 

30000 M = 0, N < |M| or K < N Processing is 
bypassed. 

 

Comments on use 
• Subprograms used 

SSL II... TRID1, TEIG2, TRBK, AMACH, UTEG2 
and MGSSL. 
FORTRAN basic functions ... IABS, SQRT, SIGN, 
ABS, AMAX1 and DSQRT. 
 

• Notes 
This subroutine is used for real symmetric matrices. 
When m eigenvalues/eigenvectors of a real symmetric 
tridiagonal matrix are to be determined, subroutine 
TEIG2 should be used. 
When determining m eigenvalues of a real symmetric 
matrix without the corresponding eigenvectors, 
subroutines TRID1 and BSCT1 should be used. 
 

• Example 
The m largest or m smallest eigenvalues and 
corresponding eigenvectors of an n-order real 
symmetric matrix A are determined. n≤100, m ≤ 10. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),E(10), 
     *          EV(100,10),VW(700) 
   10 CONTINUE 
      READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N,M 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
      WRITE(6,610) I,(A(J),J=NI,NE) 
   20 CONTINUE 
      CALL SEIG2(A,N,M,E,EV,100,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      MM=IABS(M) 
      CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',20X,'ORIGINAL MATRIX',5X, 
     *       'N=',I3,5X,'M=',I3/'0') 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 

In this example, subroutine SEPRT is used to print 
eigenvalues and corresponding eigenvectors of the real 
symmetric matrix.  For detail on this subroutine, refer to 
the example in section SEIG1. 
 
Method 
The m largest or m smallest eigenvalues of an n order 
real symmetric matrix A are determined using the 
bisection method.  Then, the corresponding
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eigenvectors are determined using the inverse iteration 
method. 

First, real symmetric matrix A is reduced to tridiagonal 
matrix T using the Householder method: 

H
T
H AQQT =   (4.1) 

where QH is an orthogonal matrix. 
 
This is done by subroutine TRID1. 
Next, m eigenvalues are determined using the bisection 

method. Then, corresponding eigenvectors of T are 
determined using the inverse iteration method, which 
determines eigenvectors by solving equation (4.2) 
iteratively. 

( ) 2,1,1 ==− − rrr xxIT µ ,... (4.2) 

Where µ is an eigenvalue determined using the 
bisection method, and x0 is an appropriate initial vector. 
The subroutine TEIG2 performs this operation. 

Let eigenvectors of T be y, then eigenvectors x of A are 
obtained using QH in (4.1) as 

yQx H=  (4.3) 

which is back transformation corresponding the 
Householder's reduction.   This is done by subroutine 
TRBK.  The eigenvectors are normalized such that 

12 =x . For further information, see References [12] 
and [13] pp 418-439. 
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I11-51-0101 SFRI, DSFRI 

Sine Fresnel integral S(x) 
CALL SFRI (X, SF, ICON) 

 
Function 
This subroutine computes Sine Fresnel integral 

( ) ( ) ∫∫
2
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by series and asymptotic expansions, where x≥ 0. 
 
Parameters 
X..... Input. Independent variable x. 
SF...... Output. Value of S(x). 
ICON.. Output. Condition code. See Table SFRI-1. 
 
Table SFRI-1  Condition codes 

Code Meaning Processing 
0 No error  

20000 X ≥ tmax SF = 0.5 
30000 X < 0 SF = 0.0 

 
Comments on use 
• Subprograms used 

SSL II... MGSSL, UTLIM 
FORTRAN basic functions ... SIN, COS, and SQRT 
 

• Notes 
The valid ranges of parameter X are: 
0 ≤ X < tmax 
This is provided because sin(x) and cos(x) lose their 
accuracy if X exceeds the above ranges. 
 

• Example 
The following example generates a table of S (x) from 
0.0 to 100.0 with increment 1.0. 
 

C     **EXAMPLE** 
      WRITE(6,600) 
      DO 10 K=1,101 
      X=K-1 
      CALL SFRI(X,SF,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,SF 
      IF(ICON.NE.0) WRITE(6,620) X,SF,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF FRESNEL ', 
     * 'INTEGRAL',///6X,'X',9X,'S(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     * E17.7,5X,'S=',E17.7,5X,'CONDITION=', 
     * I10) 
      END 
 

Methods 
Two different approximation formulas are used 
depending on the ranges of x divided at x = 4. 
 
• For 0 ≤ x < 4 

The power series expansion of S(x) 
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is calculated with the following approximation 
formulas: 
Single precision: 

( ) 4,
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 (4.2) 

Double precision: 
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k
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• For x ≥ 4 
The asymptotic expansion of S (x) 

( ) ( ) ( ) ( ) ( )S x x P x x Q x= + +1
2

sin cos  (4.4) 

is calculated through use of the following approximate 
expressions of P (x) and Q (x ): 
Single precision: 
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Double precision: 
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A21-11-0201 SGGM, DSGGM 

Subtraction of two matrices (real general) 
CALL SGGM (A, KA, B, KB, C, KC, M, N, ICON) 

 
Function 
This subroutine performs subtraction of an m × n real 
general matrix B from a real general matrix A. 

C = A − B 
where C is an m × n real general matrix. m, n ≥ 1. 
 
Parameters 
A......... Input. Matrix A , two-dimensional array, 

A(KA, N). 
KA....... Input. The adjustable dimension of array A, 

(≥ M). 
B.......... Input. Matrix B , two-dimensional array, 

B(KB, N). 
KB........ Input. The adjustable dimension of array B, 

(≥ N). 
C........... Output. Matrix C, two-dimensional array 

C(KC, N). 
(See Notes.) 

KC......... Input. The adjustable dimension of array C, 
(≥ M). 

M.......... Input. The number of rows m of matrices 
A, B, and C. 

N........... Input. The number of columns n of matrices A, 
B, and C. 

ICON ...  Output. Condition code. 
See Table SGGM-1. 

 
Table SGGM-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 M<1, N<1, KA < M, KB < M or 
KC < M 

Bypassed 

 
Comments on use 
• Subprograms used 

SSL II... MGSSL  
FORTRAN basic function ... None 

• Notes 
Saving the storage area: 
If there is no need to keep the contents on array A or B, 
more storage area can be saved by the following CALL 
statement. 
− When the contents of array A are not needed: 

CALL SGGM (A, KA, B, KB, A, KA, M, N, ICON) 
− When the contents of array B are not needed: 

CALL SGGM (A, KA, B, KB, B, KB, M, N, ICON) 
In the above two cases, matrix C is stored in array A 

or B. 
 

• Example 
The following shows an example of obtaining the 
subtraction of a real general matrix B from A. Here, m, 
n ≤ 50. 

 
C     **EXAMPLE** 
      DIMENSION A(50,50),B(60,60),C(100,100) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
      DATA KA/50/,KB/60/,KC/100/ 
   10 READ(5,100) M,N 
      IF(M.EQ.0) STOP 
      WRITE(6,150) 
      READ(5,200) ((A(I,J),I=1,M),J=1,N) 
      READ(5,200) ((B(I,J),I=1,M),J=1,N) 
      CALL SGGM(A,KA,B,KB,C,KC,M,N,ICON) 
      IF(ICON.NE.0) GOTO 10 
      CALL PGM(IA,1,A,KA,M,N) 
      CALL PGM(IB,1,B,KB,M,N) 
      CALL PGM(IC,1,C,KC,M,N) 
      GOTO 10 
  100 FORMAT(2I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** MATRIX ADDITION **') 
      END 
 

The subroutine PGM in the example is for printing a 
real matrix. This program is shown in the example for 
subroutine MGSM. 
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G21-11-0101 SIMP1, DSIMP1 

Integration of a tabulated function by Simpson's rule 
(equally spaced) 
CALL SIMP1 (Y, N, H, S, ICON) 

 
Function 
Given function values yi = f(xi) at equally spaced points xi 
= x1 + (i-1) h, i=1,..., n this subroutine obtains the 
integral: 

( ) 0.0,3
1

>≥= ∫ hndxxfS nx

x
 

by Simpson's rule, where h is the increment. 
 
Parameters 
Y........... Input. Function values yi . 

One-dimensional array of size n. 
N........... Input. Number of discrete points n. 
H........... Input. Increment h of the abscissas. 
S............ Output. Integral S. 
ICON.. Output. Condition code. See Table SIMP1-1. 
 
Table SIMP1-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 n = 2 Calculation is 
based on the 

trapezoidal rule. 
30000 n < 2 or h ≤ 0.0 S is set to 0.0. 

 
Comments on use 
• Subprograms used 

SSL II ......MGSSL 
FORTRAN basic function......none 

 
• Example 

Function values yi and the increment h are input and the 
integral S is determined. 

C     **EXAMPLE** 
      DIMENSION Y(100) 
      READ(5,500) N,H 
      READ(5,510) (Y(I),I=1,N) 
      CALL SIMP1(Y,N,H,S,ICON) 
      WRITE(6,600) ICON,S 
      STOP 
  500 FORMAT(I3,F10.0) 
  510 FORMAT(6F10.0) 
  600 FORMAT(10X,'ILL CONDITION =',I5 
     *      /10X,'INTEGRAL VALUE =',E15.7) 
      END 
 
Method 
Using function values yi at discrete points in the interval 
[xi, xn], integration is performed using Simpson's rule. 
The first three points are approximated using a second 
degree interpolating polynominal and integration is 
performed over the interval 
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Next, the same calculation is continued for the succesive 
three points; 
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If the number of discrete points is odd this calculation 
is done completely.  However, if it is even the above 
method is used over the interval [x1, xn-3], and the 
Newton-Cotes 3/8 rule is used over the remaining interval 
[xn-3, xn] 
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For n = 2, since the Simpson’s rule cannot be used, the 
trapezoidal rule is used 
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For more information, see Reference [46] pp.114-121. 
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G23-11-0101 SIMP2, DSIMP2 

Integration of a function by adaptive Simpson's rule 
CALL SIMP2 (A, B, FUN, EPS, S, ICON) 

 
Function 
Given a function f(x) and constants a, b, and ε, this 
subroutine obtains an approximation S such that 

( )S f x dx
a
b

− ≤∫ ε  (1.1) 

by adaptive Simpson's rule. f(x) must have finite values 
over the integration interval. 
 
Parameter 
A........... Input. Lower limit a of the interval. 
B........... Input. Upper limit b of the interval. 
FUN ... Input. The name of the function subprogram 

which evaluates the integrand f(x). See the 
example. 

EPS ... Input. The absolute error tolerance ε (≥ 0.0) 
for the integral.  If EPS = 0.0 is specified, the 
integral will be calculated as accurately as this 
subroutine can. 

 Output. The estimated error bound of the 
approximation obtained (See Notes.) 

S........... Output. Approximation to the integral.  
ICON..  Output. Condition code. 

See Table SIMP2-1. 
 
Table SIMP2-l  Condition codes 

Code Meaning Processing 
        0 No error  
10000 For ε > 0.0, an S such that 

(1.1) is satisfied could not be 
obtained 

The approximate 
value that was 
determined and 
its max. absolute  
error are output  
to parameters S 
and EPS. 

30000 ε < 0.0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II... MGSSL, AMACH  
FORTRAN basic function... ABS 

  
• Notes 

FUN must be declared as EXTERNAL in the program 
from which this subroutine is called. This subroutine is 
designed to treat efficiently integrands f(x) having the 
following properties: 
a) f(x) and its first five derivatives are continuous 

in the integration interval, and 
b) f(x) does not have high frequency oscillations. 

Even if f(x) has the form g(x)|x−x0|α, this 
subroutine will work efficiently.  However, g (x) 
must satisfy a) and b), α must be nonnegative, 
and x0 must be a, b, or (a + b)/2. 

If it is know that f(x) or any of its first five 
derivatives are not continuous at any point(s) 
other than a, b, or (a + b)/2, the interval of the 
integration should be divided into smaller 
intervals at that (those) point(s). This subroutine 
can then be used on each of the resulting 
intervals. 

Accuracy of S-that is output 
This subroutine determines S such that (1.1) is 
satisfied. 
However, sometimes S can not be determined 
due to the difficult form of the integrand f(x) or a 
too small.  In such cases, this subroutine 
calculates an approximation with as high an 
accuracy as possible, and estimates the error 
bound and then these values are returned in 
parameters S and EPS with ICON set to 10000. 
The parameter EPS can also be specified as EPS 
= 0.0.  This condition corresponds to the above 
case, however ICON is set to 0 especially in this 
case. 

∫ −+

1

0 62 10
1 dx

x
 

is determined. EPS=0.0 
 

C     **EXAMPLE** 
      EXTERNAL FUN 
      A=0.0 
      B=1.0 
      EPS=0.0 
      WRITE(6,600) A,B,EPS 
      CALL SIMP2(A,B,FUN,EPS,S,ICON) 
      WRITE(6,610) ICON,S,EPS 
      STOP 
  600 FORMAT('1'/' ',30X,'A=',E16.8,5X, 
     * 'B=',E16.8,5X,'INPUT EPS=',E16.8//) 
  610 FORMAT(' ',30X,'***RESULT***'/ 
     * ' ',30X,'ICON=',I5,5X,'S=',E16.8,5X, 
     * 'EPS=',E16.8) 
      END 
      FUNCTION FUN(X) 
      FUN=1.0/(X*X+1.0E-6) 
      RETURN 
      END 
 
Method 
This subroutine is based on adaptive Simpson's rule. In 
the adaptive algorithm, the choice of points at which the 
integrand is evaluated is based on the behaviour of the 
integrand, and as a result the integrand is evaluated at 
many points where the integrand changes rapidly or 
irregularly, but not so 
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many points where the integrand changes smoothly or 
regularly. To simplify the explanation, a < b will be 
assumed. 
 Using the strategy described below, the integration 
intervel [ a, b ] is subdivided, and Simpson's rule is 
apolied to each of the subintervals. 
Some of the subintervals are further subdivided. Finally, 
by summing the integral over the subintervals, the 
integral over the entire interval [a, b] is obtained. This 
subroutine is designed to obtain an approximation to a 
specified absolute accuracy. Hopefully, the 
approximation is within the absolute error tolerance ε. 
 
• Simpson's rule and error estimation 

Let the interval [α,β] be a subinterval in [a, b ], and h= 
β − α. The quadrature rule and error estimation method 
used for the integral: 

( )∫
β

α
dxxf  (4.1) 

are discussed below 
R[α, β] f(x) is defined as 
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This is Simpson's rule based on three points. And 
R(2)[ α, β]f(x) is also defined as 
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This is derived from splitting [α, β] into two 
subintervals and then applying Simpson's rule based on 
three points to each sub-interval. In this subroutine, (4.1) 
is approximated by (4.3). The error of R(2)[α, β]f(x)can 
be estimated using the Euler-MacLaurin expansion 
formula. If f (x) and its first five derivatives are 
continuous in [α, β], then 
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where C4 is a constant which is independent of f(x).  
Similarly, 
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  is also true. From (4.4) and (4.5), if the term O(h6) can 
be ignored, 
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Since the righthand side of (4.6) can be evaluated 
during calculations, it is used for the error estimation of 
R(2)[α,β] f(x). In (4.6) it is assumed that the round-off 
error is small. 

The quantity ε (β − α)/(b − a) is assigned to the 
subinterval [α,β] as the limit such that the error of 
R(2)[α,β]f( x) in (4.6) should not be exceeded; i.e., if 
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 R(2) [ α,β] f(x) is used as an approximation to (4.1). If 
(4.7) is not satisfied, [α,β] is further subdivided. In actual 
calculations, instead of (4.7), the equivalent expression 
(4.8) is used. 
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and 
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E
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ε180=  (4.10) 

• Strategy for subdividing the integration interval[a, b] 
How to subdivide the interval and how to select the 
subinterval to which the quadrature rule (4.3) is applied, 
are described here.  For the sake of explanation, every 
subinterval is assigned its number and level as follows.  
The integration interval [ a, b] is defined as number 1, 
level 0 interval. The interval [a, (a + b) / 2]  is defined 
as number 2, level 1 interval, and the interval [(a + b) / 
2, b] is defined as number 3, level l interval. In general, 
if the interval [α,(α + β)/2]  is number 2 N, level (L+ 1) 
interval,  then the interval [ (α + β)/2, β] is number 
(2N+l), level (L+ 1) interval (See Fig. SIMP2-1). 
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(11, 3)(10, 3)( 9, 3 )( 8, 3 )

( 7, 2 )( 6, 2 )( 5, 2 )( 4, 2 )

( 3, 1 )( 2, 1 )

( 1, 0 )

 
Note: The left member in parentheses is the number and the 

right member is the level. 
 
Fig. SIMP2-1  Numbers and levels 
 

Subdivision is done as follows.  First, (4.3) is applied 
to number 2, level 1 interval.  If (4.8) is satisfied, 
R(2)[a,(a + b) / 2] f(x) is used as an approximation over 
the interval [a,( a + b )/2].  If (4.8) is not satisfied, (4.3) 
is then applied to the number 4, level 2 interval. 

In general, (4.3) is used on an interval of number N, 
level L and then the test (4.8) is applied. If (4.8) is not 
satisfied, the same procedure follows with the interval of 
number 2N, level (L+1). 

 However, if (4.8) is satisfied, the R(2)[α,β]f(x) at that 
time is used as an approximation value over the interval 
[α,β]. That value is then added to a running sum. Then 
the same procedure is applied to number M(K)+1, Level 
L−K interval, where M(K) is the first even integer of the 
sequence. 
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When L−K = 0, the integration over the interval [a, b]  
is complete. Thus, (4.11) is output as the approximation 
over the interval [a, b]. 
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Each R(2)[ai-1, ai]f(x) satisfies (4.8) and, consequently, 
(4.7). 
(4.12) results from (4.6) and (4.7). 
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• Round-off error 
It has been explained that whether or not R(2)[α,β] f(x) 
for a subinterval [α,β] is accepted, is determined by 
whether or not (4.8) is satisfied. If (4.8) is not satisfied, 
[α,β] is subdivided and integration for [α,(β + β)/2 ] is 
considered. 
During these processes of subdivision, from a certain 

point on, it is probable that D[α,β]f(x) of (4.8) will 
have no significant digits. 

This is because the significant digits of the function 
value of f(x) are lost in the calculation of D [α,β] f(x). 
If this condition occurs in a particular sub-interval, the 
subdividing must not be continued, so the following 
considerations are made. 

Theoretically, if in [α,β], f(x) and its first four 
derivatives are continuous, and f (4)(x) is of constant 
sign, then 

( )[ ] ( ) [ ] ( )D f x D f xα α β α β, ,+ ≤2   (4.13) 

Therefore, if (4.13) is not satisfied during the 
calculations, the cause is either that zeros of f (4)(x) 
exist in [α,β], or the round-off error has completely 
dominated the calculation of D[α,β] f(x) or D [α, (α + 
β)/2] f(x) (however, it is difficult to determine which is 
the actual cause). For most cases, if the subinterval is 
small, the cause comes from irregularities caused by 
the round-off error rather than the existence of zeros in 
f (4)(x)  When this type of situation occurs, it is 
advisable to discontinue the subdivision process and 
substitute a different value ε' for ε in (4.7), i.e., 
substitute a different value E' for the E of (4.8). 

In this subroutine, the following is used for the 
control of E'. 
− If for a subinterval [α,β] in level 5 or higher, 

[ ] ( )D f x Eα β, ' ,>  (4.14) 

( )[ ] ( )D f x Eα α β, '+ >2  (4.15) 

and 

( )[ ] ( ) [ ] ( )D f x D f xα α β α β, ,+ ≥2  (4.16) 

occur, E' is changed to 

( )[ ] ( )′ = +E D f xα α β, 2  (4.17) 

Then R(2)[ α, (α, β)/2] f(x) is accepted as the 
approximation over [α, (α + β)/2]. 

 
If in subinterval [α,β] 

[ ] ( )D f x Eα β, ≤ ′  (4.18) 

occurs, R(2)[ α, β]f(x) is accepted as the 
approximation over [α, β], and if |D[α, β]f(x)|≠  0, E' is 
changed as 

[ ] ( )( )′ =E E D f xmax , ,α β  (4.19) 

Even when E' is controlled as explained above, there 
are  still other problems. Even if a zero of f (4)(x) exists 
in [α, β], it is judged as a round-off error, and E' in 
(4.18)  may become a little bit larger
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than necessary. 
Some devices for the problems are taken to a degree 
(the details are omitted). For level 30 intervals, R(2) [α, 
β] f(x) is accepted unconditionally, and E' is not 
changed. 
Due to the control of E', the final approximation (4.11) 
no longer satisfies (4.12), and the error will become 

( )∑
=

−−′
−

=
n

i
ii aa

ab 1
1eff

1 εε  (4.20) 

where ε' corresponds to E' as 

′ = ′
−

E
b a
180ε  (4.21) 

In this subroutine ε eff of (4.20) is output to parameter 
EPS. 

 
For further information, see Reference [61]. 
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I11-41-0101 SINI, DSINI  

Sine integral Si (x) 
CALL SINI (X, SI, ICON) 

 
Function 
This subroutine computes Sine integral 

( ) ( )∫=
x

i dt
t

txS
0

sin  

by the series and asymptotic expansions. 
 
Parameters 
X.......... Input. Independent variable x. 
SI......... Output. Function value of Si(x) 
ICON .. Output. Condition codes. See Table SINI-1. 
 
Table SINI-1  Condition codes 

Code Meaning Processing 
        0 No error  
20000 |X| ≥ tmax SI =  sign (X)⋅π / 2 

 
Comments on use 
• Subprogram used 

SSL II... MGSSL, UTLIM 
FORTRAN basic functions ... ABS, SIN, and COS 

 
• Notes 

The valid ranges of parameter X are: 
|X| < tmax 
This is provided because sin (x) and cos (x) lose their 
accuracy if |X| exceeds the above range. 

 
• Example 

The following example generates a table of Si(x) from 
0.0 to 10.0 with increment 0.1. 

 
C     **EXAMPLE** 
      WRITE (6,600) 
      DO 10 K=1,101 
      A=K-1 
      X=A/10.0 
      CALL SINI(X,SI,ICON) 
      IF(ICON.EQ.0) WRITE(6,610) X,SI 
      IF(ICON.NE.0) WRITE(6,620) X,SI,ICON 
   10 CONTINUE 
      STOP 
  600 FORMAT('1','EXAMPLE OF SINE ', 
     * 'INTEGRAL FUNCTION'///6X,'X',9X, 
     * 'SI(X)'/) 
  610 FORMAT(' ',F8.2,E17.7) 
  620 FORMAT(' ','** ERROR **',5X,'X=', 
     * E17.7,5X,'SI=',E17.7,5X,'CONDITION=', 
     * I10) 
      END 
 

Methods 
Two different approximation formulas are used 
depending on the ranges of x divided at x = ± 4. 
 
• For 0 ≤ |x| < 4 

The power series expansion of Si(x), 

( ) ( )
( ) ( )∑

∞

=

+

++
−=

0

12

12!12
1

n

nn

i nn
xxS  (4.1) 

is evaluated with the following approximation 
formulas: 
Single precision: 

( ) 4,
6

0

12 xzzaxS
k

k
ki == ∑

=

+  (4.2) 

Double precision: 

( ) ∑
=

+=
11

0

12

k

k
ki xaxS  (4.3) 

• For |x| ≥ 4 
The asymptotic expansion of 

( ) ( ) ( ) ( ){[
( ) ( )} ]

S x x P x x

Q x x x

i = ⋅ +

−

sign π 2 cos

sin
 (4.4) 

is calculated through use of the following approximate 
expressions of P (x) and Q (x): 

Single precision: 

( ) xzzaxP
k

k
k 4,

11

0
== ∑

=
 (4.5) 

( ) xzzbxQ
k

k
k 4,

11

0
== ∑

=
 (4.6) 

Double precision: 

( ) xzzbzaxP
k

k
k

k

k
k 4,

11

0

11

0
== ∑∑

==
 (4.7) 

( ) xzzdzcxQ
k

k
k

k

k
k 4,

11

0

10

0
=−= ∑∑

==
 (4.8) 
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A22-51-0202 SLDL, DSLDL 

LDLT-deconmposition of a positive-definite symmetric 
matrix (Modified Cholesky’s method) 
CALL SLDL (A, N, EPSZ, ICON) 

 
Function 
An n × n positive symmetric matrix A is LDLT 
decomposed using the modified Cholesky's method. 

A = LDLT (1.1) 

Where L is a unit lower triangular matrix, D is a diagonal 
matrix, and n ≥ 1. 
 
Parameters 
A..... Input. Matrix A. 

Output. Matrices Land D-1. 
See Fig. SLDL-1. 
A is stored in a one-dimensional array of size n 
( n + 1)/2 in the compressed mode for 
symmetric matrices. 

N..... Input. Order n of the matrix A. 
EPSZ..  Input. Tolerance for relative zero test of pivots 

in decomposition process of A ( ≥ 0.0).  When 
EPSZ = 0.0, a standard value is used. (See 
Notes.) 

ICON..  Output. Condition code. See Table SLDL-1. 
 

Unit lower
triangular matrix L

triangular
portion
only

-Lower

-Diag-
onal
elements
are
inverted

Array AMatrix  D−1+(L−−−−I)Diagonal matrix D

n n( 1)

2

+

dnn
−1

ln n − 1

ln1

d22
1−

l21

d11
1−

1
1

1

21

1 1

0l

n nnl l −

d
d

d

l

n nn nn

11
1

21 22
1

1 1
1

0
−

−

−
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d
d

dnn
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22 0

0

0

0

0

0

 
Note: On output, the diagonal and lower triangular portions 

of the matrix D-1 +(L−I) are stored in the one-
dimensional array A in the compressed mode for 
symmetric matrices. 

Fig. SLDL-1  Storage of the decomposed elements 

Table SLDL-1  Condition codes 

Code Meaning Processing 
0 No error  

10000 The negative pivot occurred. 
Matrix A is not a positive-
definite. 

Continued 

20000 The relatively zero pivot 
occurred.  It is highly probable 
that matrix A is singular. 

Discontinued 

30000 N <1  or EPSZ < 0.0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II... AMACH, MGSSL 
FORTRAN basic function ... ABS 

 
• Notes 

If EPSZ is set to 10-s, this value has the following 
meaning: while performing the LDLT decomposition by 
modified Cholesky's method,if cancellation of over s 
significant digits occured for the pivot, the LDLT 
decomposition should be discontinued with ICON = 
20000 regarding the pivot to be relatively zero. 

Let u be the unit round off, then the standard value of 
EPSZ is 16 u.  If the processing is to proceed at a low 
pivot value, EPSZ will be given the minimum value but 
the result is not always guaranteed. 

If the negative pivot occurs in the decomposition, the 
coefficient matrix is not positive. In this subroutine, the 
condition code is set accordingly (ICON = 10000) and 
processing is continued. However, it should be noted 
that large errors may occur in such cases because 
pivoting was not performed. 

In this subroutine, LDLT decomposition is performed, 
but is should be noted that D-1 is output to the array 
instead of D. 

The determinant of the matrix can be obtained by 
multiplying all the n diagonal elements of the array A 
(the diagonal elements of D-1 ) after the subroutine has 
been executed and then by determining the inverse 
number. Note that the array A is in the compressed 
mode for symmetric matrices. 

For a positive-definite symmetric band matrix, the 
subroutine SBDL processes faster than this subroutine 
because the operation for the elements out of the band 
is omitted. 

 
• Example 

A n × n matrix is input and LDLT decomposition is 
computed. n ≤ 100. 
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C     **EXAMPLE** 
      DIMENSION A(5050) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,630) 
      L=0 
      LS=1 
      DO 20 I=1,N 
      L=L+I 
      WRITE(6,600) I,(A(J),J=LS,L) 
   20 LS=L+1 
      CALL SLDL(A,N,1.0E-6,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GOTO 10 
      WRITE(6,640) 
      L=0 
      LS=1 
      DET=1.0 
      DO 30 I=1,N 
      L=L+I 
      WRITE(6,600) I,(A(J),J=LS,L) 
      DET=DET*A(L) 
   30 LS=L+1 
      DET=1.0/DET 
      WRITE(6,620) DET 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E10.2) 
  600 FORMAT(' ',I5/(10X,5E16.8)) 
  610 FORMAT(/10X,'ICON=',I5) 
  620 FORMAT(//10X, 
     *'DETERMINANT OF MATRIX=',E16.8) 
  630 FORMAT(/10X,'INPUT MATRIX') 
  640 FORMAT(/10X,'DECOMPOSED MATRIX') 
      END 
 
Method 
• Modified Cholesky's method 

A real positive-symmetric matrix A can always be 
decomposed as 

T~~LLA =  (4.1) 

where, ~L  is a lower triangular matrix. Decomposition 
is uniquely defined if all the positive diagonal elements 
of ~L  are required.  In the Cholesky's method, 
decomposition is performed as follows: 
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If L is determined such that ( )iil
~

diag~ LL = , then 

( ) ( )
( ) TT2
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~
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~
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==

==

ii

iiii

l

ll
 (4.4) 

where, L is a unit lower triangular matrix, and D is a 
positive-definite diagonal matrix. While in the modified 
Cholesky's method, the decomposition is performed 
through using the following equations. 

1,...,1,
1

1

−=−= ∑
−

=

ijldladl
j

k
jkkikijjij  (4.5) 

ni

ldlad
i

k
ikkikiii

,...,1,where

1

1

=

−= ∑
−

=  (4.6) 

Although the Cholesky's method needs a square root 
calculation in equation (4.3), the modified Cholesky's 
method does not need it. 

For more information, see Reference [2]. 
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A22-21-0202 SMDM, DSMDM 

MDMT - decomposition of a real indefinite symmetric 
matrix (Block diagonal pivoting method) 
CALL SMDM (A, N, EPSZ, IP, VW, IVW, ICON) 

 
Function 
An n × n real indefinite symmetric matrix A is MDMT-
decomposed 

PAP T = MDM T (1.1) 

by the block diagonal pivoting method (there are two 
similar methods which are called Croutlike method and 
Gaussianlike method, respectively. This subroutine uses 
the format method), where P is a permutation matrix that 
exchanges rows of the matrix A required in its pivoting, 
M is a unit lower triangular matrix, and D is a symmetric 
block diagonal matrix that consists of only symmetric 
blocks, each at most of order 2. In addition, if dk+1,k ≠ 0 
then mk+ 1,k = 0, where M= ( mij) and D = ( dij), and n ≥ 1. 
 
Parameters 
A .... Input. Matrix A 

Compressed mode for a symmetric matrix 
Output. Matrices M and D. 
See Fig. SMDM-1. 
One-dimensional array of size n (n + 1)/2. 

N..... Input. Order n of the matrix A 
EPSZ ..  Input. Tolerance for relative zero test of 

pivots in decomposition process of A (≥ 0.0). 
If EPSZ = 0.0, a standard value is used. (See 
Notes.) 

IP...... Output. Transposition vector that indicates the 
history of exchanging rows of the matrix A 
required in pivoting. 
One-dimensional array of size n.  (See Notes.) 

VW .... Work area. One-dimensional array of size 2n. 
IVW ... Work area. One-dimensional array of size n. 
ICON .. Output. Condition code. See Table SMDM-1. 
 
Table SMDM-1 Condition codes 

Code Meaning Processing 
       0 No error  
20000 The relatively zero pivot 

occurred.  It is highly probable 
that the matrix is singular. 

Discontinued 

30000 N < 1 or EPSZ < 0.0 Bypassed 

1 0

0 1

131 32m m
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Excluding
upper
triangular
portion

Unit lower triangular
matrix M

d

d d

m m d

11

21 22

31 32 3333

2221

2111
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dd
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Block diagonal matrix D
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d33
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d11

0

0

0

[Note] After computation, the diagonal portion and 
lower triangular portion of the matrix D+(M−I) are stored 
in the one-dimensional array A in compressed mode for a 
symmetric matrix. In this case, D consists of blocks of 
order 2 and 1. 
Fig. SMDM-l  Storing method for decomposed elements 

Comments on use 
• Subprograms used 

SSL II... AMACH, MGSSL, USCHA 
FORTRAN basic functions ... ABS, SQRT, IABS, 
ISIGN 

 
• Notes 

If EPSZ is set to 10-s this value has the following 
meaning: while performing the MDMT -decomposition 
by the block diagonal pivoting method, if the loss of 
over s significant digits occurred for the pivot value 
(i.e., determinant of a 1 × 1 or 2 × 2 matrix of the 
pivot), the MDMT- decomposition should be 
discontinued with ICON = 20000 regarding the pivot 
value as relatively zero. 

Let u be the unit round off, then the standard value of 
EPSZ is 16･u 
If the processing is to proceed at a low pivot value, 

EPSZ will be given the minimum value but the result is 
not always guaranteed. 

The transposition vector corresponds to the 
permutation matrix P in the MDMT-decomposition 
with pivoting, 

PAP T = MDM T 

which is done by the block diagonal pivoting method.' 
This subroutine exchanges the elements of array A in its 
pivoting, and records its history in the parameter IP. Note 
that, for a 1 × 1 or 2 × 2 pivot the way of storing in the IP 
is a little different. The storing method at the k-th step of 
the decomposition is as follows: for 1 × 1 pivot, the row 
(and column) number r( ≥ k) that is exchanged by the k-th 
row (and column) is stored in IP(k), and for 2 × 2 pivot, 
the negative value of the row (and column) number s(≥ 
k+ 1) that is exchanged by the ( k+ l)st row (and column) 
is also stored in IP ( k + 1), 
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i.e., -s is stored in IP (k+1). 
The determinant of matrix A is equal to the determinant 

of matrix D created by the computation, and elements of 
matrix D are stored in the array A as shown in Fig. 
SMDM-1. Refer to the example for the subroutine LSIX. 

This subroutine makes use of symmetric matrix 
characteristics also while decomposing in order to save 
the data storage area.  One way to solve a system of 
linear equations is to call this subroutine followed by the 
subroutine MDMX. However, instead of these 
subroutines, subroutine LSIX can be normally called to 
solve such equations in one step. 

The number of positive and negative eigenvalues for 
the matrix A can be obtained.  Refer to the example 
below. 
 
• Example 

Using the subroutine SMDM, this example obtains the 
numbers of both positive and negative eigenvalues, by 
which the characteristics of a matrix can be 
investigated. Here, an n × n real symmetric matrix is 
used, n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),VW(200), 
     *          IP(100),IVW(100) 
      CHARACTER*4 IA 
      DATA IA/'A   '/ 
      READ(5,500) N 
      NT=(N*(N+1))/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,600) N 
      CALL PSM(IA,1,A,N) 
      EPSZ=0.0 
      CALL SMDM(A,N,EPSZ,IP,VW,IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      INEIG=0 
      IPEIG=0 
      I=1 
      J=1 
   10 IF(IP(J+1).GT.0) GO TO 20 
      IPEIG=IPEIG+1 
      INEIG=INEIG+1 
      J=J+2 
      I=I+J-1+J 
      GO TO 30 
   20 IF(A(I).GT.0.0) IPEIG=IPEIG+1 
      IF(A(I).LT.0.0) INEIG=INEIG+1 
      J=J+1 
      I=I+J 
   30 IF(J.LT.N) GO TO 10 
      IF(J.NE.N) GO TO 40 
      IF(A(I).GT.0.0) IPEIG=IPEIG+1 
      IF(A(I).LT.0.0) INEIG=INEIG+1 
   40 WRITE(6,620) IPEIG,INEIG 
      STOP 
  500 FORMAT(I3) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1' 
     *  /6X,'CLASSIFICATION OF EIGENVALUE' 
     *  /6X,'ORDER OF MATRIX=',I4) 
  610 FORMAT(' ',5X,'ICON OF SMDM=',I6) 
  620 FORMAT(' ',5X,'POSITIVE EIGENVALUE=', 
     *  I4/6X,'NEGATIVE EIGENVALUE=',I4) 
      END 

The subroutine PSM that is used in this example is 
used only to print a real symmetric matrix. Its program is 
described in the example for the subroutine MGSM. 
 
Method 
• Block diagonal pivoting method 

A positive-definite symmetric matrix A can be 
decomposed as shown in Eq. (4.1) using the modified 
Cholesky method, 

T
111 MDMA =  (4.1) 

where M1 is a unit lower triangular matrix and D1 is a 
diagonal matrix. A real symmetric matrix A is not 
always decomposed as above. It may be unstable in the 
sense that there is no bound on the element growth in 
decomposition process. Rewrite Eq. (4.1) into the form 
of Eq. (4.2) to overcome this complexity. 

PAP T = MDM T (4.2) 

The method to decompose the matrix into Eq. (4.2) is 
called the block diagonal pivoting method, where P is a 
permutation matrix that exchanges row of the matrix 
based on the pivoting, M is a unit lower triangular matrix, 
and D is a symmetric block diagonal matrix consisting of 
symmetric blocks at most of order 2. 
This subroutine, when the real symmetric matrix A is 
given, obtains the matrices P, D and M, all of which 
satisfy Eqs. (4.3) and (4.4) by using the block diagonal 
pivoting method. 

MSPAP =T  (4.3) 
TDMS =  (4.4) 

• Procedure performed in this subroutine 
At the k-th step ( k = 1, ..., n) of the decomposition in 
this subroutine, the k-th column of the matrices M, S 
and D are each obtained in the following computations 
(in which the elements not defined explicitly are all 
zeros). If a 2 × 2 pivot is chosen, the ( k + 1 )-th 
column is also obtained. For better understanding of 
the following explanation, n-dimensional  vectors   Q 
and R are introduced. The elements of the matrices and 
vectors are A = (aij), M = (mij), D= (dij), S=(sij), Q= (qi), 
R =( ri). 
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Go to step (g). Where a good value of α is 
(1+ 17 )/8. 
(See the reference items.) 
 

(c) The (k + 1)st rows (and columns) of matrices M and 
A are exchanged with the j -th rows (and columns) 
and also qk+1 is exchanged with qj. 
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(d) If σ kk qq ,2αλ≥  is chosen as a 1 × 1 pivot 
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Go to step (g). 
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If |rk+1| 2>ασ, rk+1 is chosen as a 1 × 1 pivot.  
The k-th row (and columns) of matrices M and A 
are exchanged with the (k + 1)-th row (and 
columns), respectively. 
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Go to step (g). 
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(g) The next computational step is defined as the (k + 
l)-th step if the k-th step pivot is 1 × 1 and as the (k 
+2)-th step if 2 × 2. Go to step (a).  
  This algorithm takes into consideration whether or 
not the elements of the matrix D are zeros when 
calculating sik and/or si,k+1.  If the k-th step execution 
has terminated at either step (d) or (e), the values of 
si,k+1, (i =1, ..., k) and qi (i = k + l, ..., n) at the (k + 
1)-th step have already been calculated except for 
one more multiplication and addition yet to be 
performed. 

 
Precision of the inner products in this subroutine has 

been raised to minimize the effect of rounding errors. For 
further information, see References [9] and [10]. 
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E31-11-0101 SMLE1, DSMLE1 

Data smoothing by local least squares polynomials 
(equally spaced data points) 
CALL SMLE1 (Y, N, M, L, F, ICON) 

 
Function 
Given a set of observed data at equally spaced points, this 
subroutine produces the smoothed values based on 
polynomial local least squares fit. 

Each of the data is smoothed by fitting least squares 
polynomial of specified degree, not over all the data, but 
over a subrange of specified data points centered at the 
point to be smoothed. This process is applied to all the 
observed values. A limitation exists concerning m and l. 
 
Table SMLE1-1  Limitation of m and l 

Degree 
(m) 

Number of observed values (l) 

 3 
 5 
 5 
 7 

 
Parameters 
Y..... Input. Observed data yi 

One-dimensional array of size n. 
N.... Input. Number (n) of observed data. 
M.... Input. Degree (m) of local least squares 

polynomials. 
L..... Input. Number (l) of observed data to which a 

least squares polynomials is fit. 
F.... Output. Smoothed values. 

One-dimensional array of size n. 
ICON. Output. Condition code.  See Table SMLE1-2. 
 
Table SMLE 1-2  Condition codes 

Code Meaning processing 
        0 No error  
30000 (1)  m ≠ 1 and m ≠ 3 

(2)  When m = 1,  
 l ≠ 3 and l ≠ 5  
When m = 3,  
 l ≠ 5 and l ≠ 7 

(3)  n < l 

Aborted 

 

Comments on use 
• Called subprograms 

SSL II ..... MGSSL 
FORTRAN basic function ..... none 
 

• Notes 
This subroutine presupposes that the original function 
cannot be approximated by single polynomial, but can 
be approximated locally by a certain degree of 
polynomial. 
The choice of m and l should be done carefully after 
considering the scientific information of the observed 
data and the experience of the user. 

Note that the extent of smoothing increases as l 
increases, but decreases as m increases. 

It is possible to repeat calling this subroutine, that is, 
to apply them m-th degree least squares polynomial 
relevant to l points to smoothed values. But if it is 
repeated too many time, its result tends to approach to 
the one which is produced by applying the m-th degree 
least squares polynomial to overall observed data. So, 
when it is repeated, the user decides when to stop it. 

If the user wants to apply smoothing formulas with m 
and l other than those prepared here, subroutine 
SMLE2 is recommended to use. 

 
• Example 

At equally spaced data points, the number (n) of 
observed data, observed data yi, the degree (m) of local 
least squares approximation and the number (l) of 
observed data which is used in the polynomial are input 
and each observed data is smoothed. (n ≤ 20) 

 
C     **EXAMPLE** 
      DIMENSION Y(20),F(20) 
      READ(5,500) N,M,L 
      READ(5,510) (Y(I),I=1,N) 
      CALL SMLE1(Y,N,M,L,F,ICON) 
      WRITE(6,600) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,620) M,L 
      WRITE(6,630) (I,Y(I),F(I),I=1,N) 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(5F10.0) 
  600 FORMAT('1'////26X, 
     *'**** SMOOTHING BY SMLE1 ****') 
  610 FORMAT('0',37X,'ICON=',I5) 
  620 FORMAT('0',20X,'DEGREE OF ', 
     *'POLYNOMIAL =',I2/ 
     *' ',23X,'POINT OF SUBRANGE =',I2/ 
     *'0',17X,'NO.',10X,'OBSERVED VALUES', 
     *10X,'SMOOTHED VALUES') 
  630 FORMAT(' ',16X,I4,10X,F15.7,10X,F15.7) 
      END 
 

1 

3 
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Method 
This subroutine smoothes n given observed data by 
fitting m-th degree local least squares polynomials 
relevant to l data points instead of fitting a single least 
squares polynomial over all the data. 
  Namely, an observed data yk is smoothed by fitting    m-
th degree least squares polynomial relevant to l (= 2r +1) 
observed data yk-r, ..., yk-l, yk, yk+l, ...,  yk+r and evaluating it 
at k. 
 
Suppose, 

rkirk,kis,yis +≤≤−−==ηηηη  

(See Fig. SMLE1-1) 
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rkkkkrk yyyyy

ηηηηη ...,,,,...,,

...,,,,...,,
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Fig. SMLEI-1  Correspondence between omeωωωωk and fσσσσ 

The m-th degree least squares polynomial relevant to 
these ηs is expressed as follows: 
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where 
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( )( ) ( )( ) ( )121 +−⋅⋅⋅⋅−−= kk ξξξξξ  

(4.1) is called a m-th degree smoothing formula 
relevant to l points. This formula can be derived from the 
least squares polynomial which was described at the 
"Method" of subroutine LESQ1 in case w(xi) an abscissas 
are equally spaced. 

yk is smoothed by (4.3). 
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When yk is either among y1, ..., yr or among yn-r+1, ..., yn, 
yk does not have r observed data equally on both sides 
and can not be smoothed by my  (0).  In case of y1, ..., yr, 
the smoothing is done by my (−r), ..., my (−1) and in case 
of yn-r+1, ..., yn, by my  (1), ..., my  (r). 

And in (4.1) the coefficient of m in l is the same as that 
of m= l in l = 3:(r = 1). 

Smoothing formulas with m and l used in this 
subroutine are show below. 

The smoothing formula concerning m = 1 and l = 3: (r= 
1) 

y1 1 0 11 1
6

2( ) (5 )− = + −−η η η  

y1 1 0 10 1
3

( ) ( )= + +−η η η  

................................................................................. 

The smoothing formula concerning m = 2 and l = 5; (r = 
2) 
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The smoothing formula concerning m = 3 and l = 5; (r= 2) 
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The smoothing formula concerning m = 3 and l = 7; (r= 3) 
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For details, see Reference [46] pp.228 to 254, [51] 
pp.314 to 363. 
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E31-21-0101 SMLE2, DSMLE2 

Data smoothing by local least squares polynomials 
(unequally spaced data points) 
CALL SMLE2 (X, Y, N, M, L, W, F, VW, ICON) 

 
Function 
Given a set of observed data at x1, x2, ..., xn (x1 < x2 < ... < 
xn) and corresponding weights w(xi), i = 1, 2, ..., n, this 
subroutine produces the smoothed values based on 
polynomial local least squares fit. 

Each of the data is smoothed by fitting least squares 
polynomial of specified degree m, not over all the data, 
but over a subrange of specified l data points centered at 
the point to be smoothed. 

Where n ≥ l, w(xi) ≥ 0 (i= 1, ..., n), l ≥ m+ 2, m ≥ 1 and 
l must be an odd integer. 
 
Parameters 
X.... Input. Discrete points xi. 

One-dimensional array of size n. 
Y.... Input. Observed values yi. 

One-dimensional array of size n. 
N....     Input. Number (n) of observed values. 
M.... Input. Degree (m) of local least squares a 

polynomials. 
L..... Input.  Number (l) of observed data to which 

least squares polynomial is fit. 
W..... Input. Weight functions w(xi). 

Normally w(xi) = 1. 
One-dimensional array of size n. 

F .. .. Output. Smoothed values. 
One-dimensional array of size n. 

VW... Working area. 
One-dimensional array of size 2l. 

ICON.. Output.  Condition code.  See Table SMLE2-1. 
 
Table SMLE2-2  Condition codes 

Code Meaning processing 
       0 No error  
30000 One of the following 

happened:  
(1) x1 < x2 < ... < xn-1 < xn is 

not satisfied. 
(2) n < 1 
(3) m < 1 or m+2 > 1 
(4) Some of m (xi) are 

negative. 
(5) 1 is even. 

Bypassed 

 
Comments on use 
• subprograms used 

SSL II... MGSSL 
FORTRAN basic function ... None 

• Notes 
This subroutine presupposes that the original function cannot 
be approximated by single polynomial. but can be 
approximated locally by a certain degree of polynomial. 
The choice of m and l should be done carefully after 
considering the scientific information of the observed 
data and the experience of the user. 
Note that the extent of smoothing increases as l 
increases, but decreases as m increases. 
It is possible to repeat calling this subroutine, that is, to apply 
the m-th degree least squares polynomial relevant to l points 
to smoothed values. But if it is repeated too many times, its 
result tends to approach to the one which is produced by 
applying the m-th degree least squares polynomial to overall 
observed data. So, when it is repeated, the user decides when 
to stop it. 

This subroutine can be used in the case data points 
are not equally spaced. But it takes more processing 
time than the subroutine SMLE1. 

 
• Example 

Number (n) of discrete points, discrete points xi, 
observed values yi, degree m of local least squares 
polynomial and number of observed values l are given 
to smooth the observed values. 

( ) ( )nixwmn i ,...,1,1,17,20 ==≤≤  

C     **EXAMPLE** 
      DIMENSION X(20),Y(20),W(20), 
     *          F(20),VW(40) 
      READ(5,500) N,M,L 
      READ(5,510) (X(I),I=1,N) 
      READ(5,510) (Y(I),I=1,N) 
      DO 10 I=1,N 
   10 W(I)=1.0 
      CALL SMLE2 (X,Y,N,M,L,W,F,VW,ICON) 
      WRITE(6,600) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,620) M,L 
      WRITE(6,630) (X(I),Y(I),F(I),I=1,N) 
      STOP 
  500 FORMAT(3I5) 
  510 FORMAT(5F10.0) 
  600 FORMAT('1'////26X, 
     *'**** SMOOTHING BY SMLE2 ****') 
  610 FORMAT('0',37X,'ICON=',I5) 
  620 FORMAT('0',20X,'DEGREE OF ', 
     *'POLYNOMIAL =',I2/ 
     *' ',23X,'POINT OF SUBRANGE =',I2/ 
     *'0',11X,'ABSCISSA',11X,'OBSERVED ', 
     *'VALUES',10X,'SMOOTHED VALUES') 
  630 FORMAT(' ',10X,F10.0,10X,F15.7,10X, 
     *F15.7) 
      END 
 
Method 
This subroutine smoothes n given observed data at 
unequally spaced points x1, x2, ..., xn by fitting m-th 
degree local least squares polynomials relevant to l 
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points, instead of fitting a single least squares 
polynomial over all the data. 

Namely and observed data yk is smoothed by fitting 
m-th degree least squares polynomial relevant to 
l(=2r+1) observed data yk-r, ..., yk-1, yk, yk+1, ..., yk+r and 
by evaluating it at x = xk. 

Suppose, 

kisxy isis −=== ,, ξη  
k r i k r− ≤ ≤ +  

(See Fig. SMLE2-l) 
The m-th degree least squares polynomial relevant to 
these ηs is expressed as follows: 
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As for (4.1) refer to “Method” of the subroutine 
LESQ1. 
Then yk is smoothed by (4.3). 
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When yk is either among y1, ..., yr among yn-r+1, ..., yn, 
yk does not have r observed data equally on both sides 
and can not be smoothed by my (ξ0).  In case of y1, ..., 
yr the smoothing is done by my (ξ1), ..., my (ξr) 
respectively and in case of yn-r+1, ..., yn at my (ξ-r), ..., 

my (ξ-r) respectively. 
 
For details, see reference [46] pp.228 to 254 and [51] 

pp.314 to 363. 
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yk+1.......yk+r

 0     xk-r ...... xk-1 xk   xk+1 ...... xk+r
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η-r ......... η-1

η0
η1 .......... ηr

 0       ξ-r ........ ξ-1 ξ0      ξ1 ......... ξ r  
Fig. SMLE2-1  (xi,  yi) and (ηs,  ξs) 
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E11-21-0101 SPLV, DSPLV 

Cubic spline interpolation, differentiation 
CALL SPLV (X, Y, N, ISW, DY, V, M, DV, K, 
VW, ICON) 

 
Function 
Given discrete points x1, x2, ..., xn ( x1 < x2 < ... < xn) and 
function values yi = f( xi), i = 1, 2, ..., n this subroutine 
obtains interpolated values, and 1st and 2nd order 
derivatives at x = vi, i = 1, 2, ..., m using a cubic spline 
interpolating function. 

1,,...,,,3 211 ≥≤≤≥ mxvvvxn nm  

The boundary conditions for derivatives at both ends 
of discrete points (x = x1, x = xn) may be specified. 
 
Parameters 
X..... Input. Discrete points xi. 

X is a one-dimensional array of size n. 
Y..... Input. Function values yi. 

Y is a one-dimensional array of size n. 
N..... Input. Number of discrete points n. 
ISW... Input Control information. 

ISW is a one-dimensional array of size 2, and 
denotes the type of boundary conditions. Both 
ISW (1) and ISW (2) must be any one of 1, 2, 
3, or 4.  Accordingly, derivatives must be 
input to DY (1) and DY (2). Details are given 
below. 
How to specify boundary conditions: 
When ISW(1)=1, DY(1)=f" (x1) 

=2, DY(1) = f' (x1)  
=3, DY(1)=f" (x1) / f"(x2) 
=4, DY(1) need not be input. 

When ISW(2)=1, DY(2)=f" (xn) 
=2, DY(2) = f' (xn) 
=3, DY(2) =f′′(xn) /f"(xn-1) 
=4, DY(2) need not be input. 

When ISW(1) = 4 (or ISW(2)=4), f' (x1) 
(or f' (xn)) is approximated using a cubic (or 
quadratic, when n=3) interpolating polynomial 
and the resultant value taken as a boundary 
condition. 

DY.... Input. Derivatives at both end points. DY is a 
one-dimensional array of size 2. (See 
parameter ISW.) 

V..... Input. Points at which interpolated values are 
to be obtained, vi, i = 1,..., m 
V is a one-dimensional array of size m. 

M..... Input. Number of points m at which 
interpolated values are to be obtained. 

DV.... Output. Interpolated value, and derivatives of 

order 1 and 2 at vi. 
Two-dimensional array of DV (K,3) 
For I = 1,2, ..., M, interpolated value, and 
derivatives of order 1 and 2 at V(I) are 
returned respectively in DV (I,1), DV (I,2) 
and DV (I,3). 

K..... Input. Adjustable dimension of array DV (≥ 
M). 

VW...... Work area. VW is a one-dimensional array of 
size 2n. 

ICON.. Output. Condition code. See Table SPLV-1. 
 
Table SPLV-1  Condition codes 

Code Meaning Processing 
        0 No error  
30000 1 N<3 

2 xi ≥ xi+1 
  3 ISW (1) or ISW (2) is 
   not equal to 1.2, 3 or 4 
4 M < 1 
5 vi < x1 or xn < vi 
6 K < M  

Aborted 

 
Comments on use 
• Subprograms used 

SSL II ... MGSSL, USPL 
FORTRAN basic function... None 
 

• Notes 
When the derivatives at both ends are unknown, "4" 
may be specified for both ISW(1) and ISW(2). 
 

• Example 
Discrete point xi, function value yi, i = 1, 2, ..., n, and 
boundary conditions ISW(1), DY(1), ISW(2), and 
DY(2) are input, and the interpolated values, first-
order derivatives and second-order derivatives at 
points: 

( ) 1,...,1,2/
,...,1,

12

12

−=+=
==

+

−

nixxv
nixv

iii

ii  

are determined n ≤10. 
 
C     **EXAMPLE** 
      DIMENSION X(10),Y(10),ISW(2),DY(2), 
     *V(50),DV(50,3),VW(20) 
      READ(5,500) N 
      READ(5,510) (X(I),Y(I),I=1,N) 
      WRITE(6,600) (I,X(I),Y(I),I=1,N) 
      READ(5,520) (ISW(I),DY(I),I=1,2) 
      WRITE(6,610) (ISW(I),DY(I),I=1,2) 
      N1=N-1 
      DO 10 I=1,N1 
      V(2*I-1)=X(I) 
   10 V(2*I)=0.5*(X(I)+X(I+1)) 
      M=2*N-1 
      V(M)=X(N) 
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      CALL SPLV(X,Y,N,ISW,DY,V,M,DV,50, 
     *VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) STOP 
      WRITE(6,630) (I,V(I),(DV(I,J),J=1,3), 
     *I=1,M) 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(2F10.0) 
  520 FORMAT(I5,F10.0) 
  600 FORMAT('1'//10X,'INPUT DATA'// 
     *20X,'NO.',10X,'X',17X,'Y'// 
     *(20X,I3,3X,E15.7,3X,E15.7)) 
  610 FORMAT(/10X,'BOUNDARY COND.'/ 
     *20X,'ISW(1)=',I3,',DY(1)=',E15.7/ 
     *20X,'ISW(2)=',I3,',DY(2)=',E15.7/) 
  620 FORMAT(10X,'RESULTS'/20X,'ICON=',I5/) 
  630 FORMAT(20X,'NO.',10X,'V',17X,'Y(V)', 
     *'Y''(V)',13X,'Y''''(V)'// 
     *(20X,I3,4(3X,E15.7))) 
      END 
 
Method 
Given discrete points x1, x2, ..., xn ( x1 < x2 < ... < xn) and 
function values yi = f(xi), i = 1, 2, ..., n , the interpolated 
values and the 1st and 2nd order derivatives at any point 
v in [x1, xn] are determined using a cubic interpolating 
spline. 
Here, a cubic interpolating spline is an interpolating 
function S (x) defined in interval [x1, xn] and it satisfies 
the following conditions: 
• S(x) is an polynomial of degree three at most in each 

interval [xi, xi+1], i= 1,..., n - 1 
S(x) and its derivatives of up to order 2 are continuous 
on the interval [x1, xn] 
That is, S(x) ∈  C2 [x1, xn] 

• S(xi) = yi, i = 1, 2, ..., n 
Here, S(x) is determined. For the convenience of 
explanation, S (x) is sectionally expressed by (4.1). 
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The above three conditions are represented using Si(x) 
as follows: 
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Accordingly, coefficients ci, di and ei in (4.1) are 
determined by the conditions of (4.2). These coefficients 
are given in (4.3). 

When 
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′′yi  satisfies the three-term relation of (4.4) according to 
the third condition in (4.2). 
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Therefore, ci, di and ei in (4.3) may be determined by 
solving ′′yi   from (4.4).  In (4.4), only (n - 2) equations 
are available for n unknows ′′yi , so that two more 
equations for ′′yi are required to solve (4.4) uniquely.  
This subroutine allows the user to assign such equations 
as boundary conditions. 
 
How to specify boundary conditions 
Assumption is made that equations in the following forms 
(4.5) and (4.6) are given as boundary conditions for 
solving (4.4). 

12111 dyy =′′+′′ µλ  (4.5) 

nnnnn dyy =′′+′′ − µλ 1  (4.6) 

These constants λ1, µ1, d1, λn, µn and dn can be specified 
arbitrarily. In this subroutine, however, the following 
assumptions are made: 
(a) (ISW(1) = 1, DY(1) =f"(x1) specifying f''(x1)). 

Then, (4.5) is reduced to y1" = f'' (x1). 
(b) (ISW(2) =2, DY(1) = f''(x1) specifying f''(x1)). The 

equation corresponding to (4.5) is generated in the 
following manner: Since the derivative ′S1  (x1) as 
determined by (4.1) and (4.3) is expressed by: 
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(c)  (ISW(1) =3,DY (1)=, f"( x1)/f"( x2)) specifying 
f"( x1)/f"( x2) 
By letting ( ) ( )2121 // xfxfyy ′′′′=′′′′  (4.5) can be 
written as 

( ) ( )( ) 0/ 2211 =′′′′′′−′′ yxfxfy  

(d) f'(x1) is approximated using an interpolating 
polynomial (ISW(1) =4, there is no need to input 
DY(1)). f'(xn) is approximated by an interpolating 
polynomial using four points of x1,  x2, x3, and x4, then 
the case (b) is applied. (However, when only three 
discrete points are available, f(x1) is approximated 
using the three points.) 
The abovedescribed four steps describe the procedure 
for assigning an equation corresponding to (4.5).  The 
procedure for assigning an equation corresponding to 
(4.6) is based on a similar idea. 

(e) (ISW(2) = 1, DY(2) = f '' (xn)) specifying f '' (xn) 
(f) (ISW(2) = 2, DY(2) = f ' (xn)) specifying f ' (xn) In this 

situation, (4.6) can be written as 

( ) 




 −
−′=′′+′′

−

−

−
−

1

1

1
1

62
n

nn
n

n
nn h

yyxf
h

yy  

(g) (ISW(2) = 3, DY (2) = f ' (xn)/f ' (xn-1) specifying f'(xn) 
(h) (f) is fitted by approximating f ' (xn) 

(There is no need to input ISW(2) = 4, DY(2).) 
 

(a)through (d) and through (h) can be specified 
combined with each other. 
For example, (a) and (e), (a) and (g) or (b) and (h) might 
be specified. 
 
Interpolated value calculation 
The interpolated value, the derivative of order 1 and 2 at 
any point v in interval [x1, xn] are determined by 
evaluating Si(x) and ′Si (x), ′Si (x) which are defined on 
interval [xi, xi+1] satisfying the condition xi ≤ v < xi+1  For 
further information, see Reference [48]. 
 

 



SSSM 

582 

A21-12-0201 SSSM, DSSSM 

Subtraction of two matrices (real symmetric matrix) 
CALL SSSM (A, B, C, N, ICON) 

 
Function 
These subroutines perform subtraction of n × n real 
symmetric matrices A and B 

C = A − B 
where C is an n × n real symmetric matrix. n ≥ 1. 
 
Parameters 
A..... Input.  Matrix A, in the compressed mode, 

one-dimensional array of size n (n+1)/2. 
B..... Input.  Matrix B, in the compressed mode, 

one-dimensional array of size n (n +1)/2. (See 
Notes.) 

C..... Output. Matrix C, in the compressed mode, 
one-dimensional array of size n (n +1)/2. (See 
Notes.) 

N..... Input. The order n of matrices A, B and C. 
ICON .. Output. Condition codes. 

See Table SSSM-1. 
 
Table SSSM-1  Condition codes 

Code Meaning processing 
        0 No error  
30000 n < 1 Bypassed. 

 
Comments on use 
• Subprograms used 

SSL II... MGSSL 
FORTRAN basic function... None 

• Notes 
Saving the storage area: 
When the contents of array A or B are not required. 

 Save the area as follows: 
− When the contents of array A are not needed. 

CALL SSSM (A, B, A, N, ICON) 
− When the contents of array B is not needed. 

CALL SSSM (A, B, B, N, ICON) 
In the above two cases, matrix C is stored in array A 

or B. 
 
• Example 

The following shows an example of obtaining the 
subtraction f matrix B from matrix A. Here, n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(5050),C(5050) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
   10 READ(5,100) N 
      IF(N.EQ.0) STOP 
      WRITE(6,150) 
      NT=N*(N+1)/2 
      READ(5,200) (A(I),I=1,NT) 
      READ(5,200) (B(I),I=1,NT) 
      CALL SSSM(A,B,C,N,ICON) 
      IF(ICON.NE.0) GOTO 10 
      CALL PSM(IA,1,A,N) 
      CALL PSM(IB,1,B,N) 
      CALL PSM(IC,1,C,N) 
      GOTO 10 
  100 FORMAT(I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** MATRIX SUBTRACTION **') 
      END 

 
Subroutine PSM in the example is for printing the 

real symmetric matrix. This program is shown in the 
example for subroutine MGSM. 
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B21-21-0602 TEIG1, DTEIG1 

Eigenvalues and corresponding eigenvectors of a real 
symmetric tridiagonal matrix (QL method) 
CALL TEIG1 (D, SD, N, E, EV, K, M, ICON) 

 
Function 
All eigenvalues and corresponding eigenvectors of n-
order real symmetric tridiagonal matrix T are determined 
using the QL method. The eigenvectors are normalized 
such that ||x||2=1.n≥1. 
 
Parameters 
D..... Input.  Diagonal elements of real symmetric 

tridiagonal matrix T. 
D is a one-dimensional array of size n.  The 
contents of D are altered on output. 

SD.... Input.  Subdiagonal elements of tridiagonal 
matrix T. The subdiagonal elements are stored 
in SD (2) to SD (N).  The contents of SD are 
altered on output. 

N..... Input. Order n of tridiagonal matrix T. 
E..... Output.  Eigenvalues. 

E is a one-dimensional array of size n. 
EV.... Output. Eigenvectors. 

Eigenvectors are stored in columns of EV.  
EV(K,N) is a two-dimensional array. 

K..... Input. Adjustable dimension of array EV. 
M..... Output.  Number of eigenvalues/eigenvectors 

that were determined. 
ICON .. Output.  Condition code.  See Table TEIG1-1. 
 
Comments on use 
• Subprogram used 

SSL II ..... AMACH and MGSSL 
FORTRAN basic functions .. ABS, SIGN, and SQRT 
 

• Notes 
Eigenvalues and corresponding eigenvectors are stored 
in the order that eigenvalues are determined. 

 
Table TEIG1-1  Condition code 

Code Meaning processing 
        0 No error  
10000 N=1 E(1) = D(1), 

EV(1,1)=1.0 
15000 Some eigenvalues/eingenvect-

ors could not be determined. 
M is set to the 
number of 
eigenvalues/eigen
-vector that were 
determined. 

20000 None of the 
eigenvalues/eigenvectors 
could be determined. 

M = 0 

30000 N < 1 or K < n Bypassed 
 
 

Parameter M is set to n when ICON=0: parameter M is 
set to the number of eigenvalues/eigenvectors that were 
determined when ICON = 15000. 

This routine is used for real symmetric tridiagonal 
matrices. For determining all eigenvalues and 
corresponding eigenvectors of a real symmetric matrix, 
subroutine SEIG1 should be used. 

For determining all eigenvalues of a real symmetric 
tridiagonal matrix, subroutine TRQL should be used: 
 
• Example 

All eigenvalues and corresponding eigenvectors of n-
order real symmetric tridiagonal matrix T are 
determined.  n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION D(100),SD(100), 
     *          EV(100,100),E(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) (D(I),SD(I),I=1,N) 
      WRITE(6,600) N,(I,D(I),SD(I),I=1,N) 
      CALL TEIG1(D,SD,N,E,EV,100,M,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL SEPRT(E,EV,100,N,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(2E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX',5X, 
     * 'ORDER=',I3/'0',20X,'***DIAGONAL***', 
     * 5X,'**SUBDIAGONAL*'//(13X,I3,5X, 
     * 2(E14.7,5X))) 
  610 FORMAT('0',20X,'ICON=',I5) 
      END 
 

In this example, subroutine SEPRT is used to print 
eigenvalues and corresponding eigenvectors of real 
symmetric matrices. For details see the example in 
section SEIG1. 

 
Method 
All eigenvalues and corresponding eigenvectors of n-
order real symmetric tridiagonal matrix T are determined 
using the QL method. 

The QL method used to determine eigenvalues is 
explained in the SEIG1 section, the QL method of 
determining eigenvectors will be explained. In the 
orthogonal similarity transformation of (4.1), orthogonal 
matrix Q reduces T to diagonal matrix D. The column 
vectors of Q are the eigenvectors of T. 

D=QTTQ (4.1) 

By repeatedly executing the orthogonal similarity 
transformation in (4.2), the QL method reduces T to D, 
and obtains all eigenvalues as the diagonal elements of D. 
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,...3,2,1,T
1 ==+ sssss QTQT  (4.2) 

Qs is the orthogonal matrix obtained by QL 
decomposition of 

( ) ssss k LQIT =−  (4.3) 

Where ks is the origin shift and Ls is a lower triangular 
matrix.  If T converges to a diagonal matrix on the m-th 
iteration from (4.2). 

mmmm QQQQTQQQQD 1211
T
1

T
2

T
1

T
−− ⋅⋅⋅⋅⋅⋅=  (4.4) 

Where Tl = T 
From (4.1) and (4.4), eigenvectors are obtained as the 

column vectors of 

mm QQQQQ 121 −⋅⋅⋅=  (4.5) 

If ( )1−sQ  is defined as 

( )
121

1
−

− ⋅⋅⋅= s
s QQQQ  (4.6) 

The product ( )Q s  of transformation matrices up to the 
s-th iteration is 
 

( ) ( )
s

ss QQQ 1−=  (4.7) 

Qs of (4.7) is calculated in the QL method as 

( ) ( ) ( ) ( )sss
n

s
ns 1221 PPPPQ ⋅⋅⋅= −−  (4.8) 

If (4.7) is substituted in (4.8). 

( ) ( ) ( ) ( ) ( ) ( )sss
n

s
n

ss
1221

1 PPPPQQ ⋅⋅⋅= −−
−  (4.9) 

After all Q can be determined by repeating (4.9) for s = 
1, 2, ..., m. 

In the QL method, if an eigenvalue does not converge 
after 30 iterations, processing is terminated.  However, 
the M eigenvalues and eigenvectors that were determined 
till then can still be used. 

Since matrix Q is orthogonal, the eigenvectors obtained 
in the above method are normalized such that ||x||2=1. 

For further information see References [12], [13] pp. 
227-248 and [16] pp. 177-206. 
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B21-21-0702 TEIG2, DTEIG2 

Selected eigenvalues and corresponding eigenvectors of 
a real symmetric tridiagonal matrix (bisection, method, 
inverse iteration method) 
CALL TEIG2 (D, SD, N, M, E, EV, K, VW, ICON)

 
Function 
The m largest or m smallest eigenvalues and 
corresponding eigenvectors are determined from n-order 
real symmetric tridiagonal matrix T.  The eigenvalues are 
determined using the bisection method, and the 
corresponding eigenvectors are determined using the 
inverse iteration method. The eigenvectors are 
normalized such that ||x||2=1.  1≤m≤n. 
 
Parameters 
D..... Input.  Diagonal elements of real symmetric 

tridiagonal matrix T. 
D is a one-dimensional array of size n. 

SD.... Input. Subdiagonal elements of real symmetric 
tridiagonal matrix T. 
SD is a one-dimensional array of size n. 
The subdiagonal elements are stored in SD(2) 
to SD(N). 

N.... Input. Order n of tridiagonal matrix T. 
M.... Input.   

M = + m ... The m largest eigenvalues desired. 
M = - m .... The m smallest eigenvalues 
desired. 

E..... Output. Eigenvalues. 
E is a one- dimensional array of size m. 

EV..... Output. Eigenvectors. 
 Eigenvectors are stored in columns of EV. EV 

(K, m) is a two-dimensional array. 
K..... Input.  Adjustable dimension of array EV. 
VW...... Work area.  VW is a one-dimensional array of 

size 5n. 
ICON .. Output.  Condition code. 

See Table TEIG2-1. 
 
Table TEIG2-1  Condition codes 

Code Meaning Processing 
        0 No error  
10000 N=1 E(1)=D(1),  

EV (1, 1) = 1.0 
15000 After determining m 

eigenvalues, all of their 
corresponding eigenvectors 
could not be determined. 

The eigenvectors 
that could not be 
obtained become 
zero vectors. 

20000 None of the eigenvectors 
could be determined. 

All of the 
eigenvectors 
become zero 
vectors. 

30000 M = 0, N < |M| or K < N Bypassed 
 

Comments 
• Subprograms used 

SSL II ... AMACH, MGSSL, and UTEG2 
FORTRAN basic functions ... ABS, AMAX1 and 
IABS 

 
• Notes 

This subroutine is used for real symmetric tridiagonal 
matrices. When determining m  
eigenvalues/eigenvectors of a real symmetric matrix, 
subroutine SEIG2 should be used instead. 

When determining m eigenvalues of a tridiagonal 
matrix without their corresponding eigenvectors, 
subroutine BSCT1 should be used. 
 

• Example 
The m largest or m smallest eigenvalues of an n-order 
real symmetric tridiagonal matrix are determined, then 
the corresponding eigenvectors are determined. n ≤ 
100, m ≤ 10. 

 
C     **EXAMPLE** 
      DIMENSION D(100),SD(100),E(10), 
     *          EV(100,10),VW(500) 
   10 CONTINUE 
      READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      READ(5,510) (D(I),SD(I),I=1,N) 
      WRITE(6,600) N,M,(I,D(I),SD(I),I=1,N) 
      CALL TEIG2(D,SD,N,M,E,EV,100,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) GO TO 10 
      MM=IABS(M) 
      CALL SEPRT(E,EV,100,N,MM) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(2E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX',5X, 
     *'N=',I3,'M=',I3/'0',20X, 
     *'***DIAGONAL***','**SUBDIAGONAL*'// 
     *(13X,I3,5X,2(E14.7,5X))) 
  610 FORMAT('0',20X,'ICON=',I5) 
      END 
 

In this example, subroutine SEPRT is used to print 
eigenvalues and corresponding eigenvectors of real 
symmetric matrices.  For details, see the example in 
section SEIG1. 
 
Method 
The m largest or m smallest eigenvalues and 
corresponding eigenvectors of an n-order real symmetric 
tridiagonal matrix are determined. 

The m eigenvalues are determined using the bisection 
method and corresponding eigenvectors are determined 
using the inverse iteration method. 

Refer to the section BSCT1 for a description of the 
bisection method. The inverse iteration method is 
discussed below.  Let the eigenvalues of tridiagonal 
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matrix T are 

nλλλλ >⋅⋅⋅⋅>> 321  (4.1) 

When µj is obtained as an approximation for λj using 
the bisection method, consider the  determination of 
corresponding eigenvectors using the inverse iteration 
method. 

In the inverse iteration method (4.2) is iteratively 
solved.  When convergence condition has been satisfied, 
xr is considered to be an eigenvector. 

( ) ,...2,1,1 ==− − rrrj xxIT µ  (4.2) 

(x0 is an appropriate initial vector) 
Let the eigenvectors which correspond to the 

eigenvalues λ1, λ2, ...,λn be u1, u2, ...,un and the 
appropriate initial vector x0 can be represented as a linear 
combination: 

∑
=

=
n

i
ii

1
0 ux α  (4.3) 

From (4.2) and (4.3), xr is written as 

( ) ( ) ( )
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/1 µλµλαα
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uux

 (4.4) 

Since in general ( ) ( ) 0.1/ <<−− jijj µλµλ , if αj ≠ 0 

in (4.4), as r grows greater, xr tends rapidly to αjuj. 
The system of linear equations of (4.2) are solved using 

(4.5) after decomposition of (T − µjI) lower triangular 
matrix L and upper triangular matrix U. 

1−= rr PxLUx  (4.5) 

(P is a permutation matrix used for pivoting.) (4.5) can 
be solved as follows 

11 −− = rr PxLy     (forward substitution) (4.6) 

1−= rr yUx         (backward substitution) (4.7) 

Since any vector can be used for initial vector x0.   x0 
may be given such that y0 of (4.8) has a form such as y0 = 
(1, 1, ... 1)T. 

0
1

0 PxLy −=  (4.8) 

Therefore, in the first iteration the forward substitution 
of (4.6) can be omitted, and by repeating forward 
substitution and backward substitution for the second and 
following iterations, eigenvectors can be determined. 
• The initial vector and convergence criterion used in the 

inverse iteration method. In this routine, the following 
is used for the initial vector; 

( )T0 ,, TTTy ununun ⋅⋅⋅⋅⋅⋅=  (4.9) 

where u is the unit round-off 

( )
( ) 0, 01

1
1

==

+= ∑
=

−

tt

tt

ij

n

i
iiii

T

T  

At each iteration, xr-1 is normalized such that 

2011 yx =−r  (4.10) 

When xr satisfies 

11 ≥rx  (4.11) 

xr is accepted as an eigenvector. (4.11) can be 
discussed as follows.  From (4.2), by normalization of xr 
(4.12) is obtained 

( ) 111 // rrrrj xxxxIT −=−µ  (4.12) 

The right hand side of (4.12); 
11 / rr xx −  corresponds to 

the residual vector. When the norm of this residual vector 
satisfies. 

20111 / yxx ≤− rr
 (4.13) 

In other words, when this residual vector is considered 
zero vector, xr can be considered to have converged to an 
eigenvector. From (4.10), (4.13) becomes (4.11). In this 
routine, when five iterations are performed and x5 does 
not satisfy (4.11) ICON is set to 15000 to indicate that 
the eigenvector was not determined, and the elements of 
the corresponding column in EV is set to zero. 
 
• Orthogonalization of eigenvectors 

The eigenvectors of a real symmetric tridiagonal matrix 
should be orthogonal. However, a disadvantage of the 
inverse iteration method is that eigenvectors 
corresponding to close eigenvalues may not be 
satisfactorily orthogonal. Therefore to insure 
orthogonal eigenvectors,this routine performs the 
following processing. 

When the eigenvalue µ i is being determined, µ i and 
the previously computed eigenvalue µ i-l are tested to 
see whether they satisfy. 

Tii
3

1 10−
− ≤− µµ  (4.15) 

If (4.15) is satisfied, the approximate eigenvector xi 
obtained from µi is made orthogonal to the eigenvector xi-

l obtained from µi-l so as to satisfy 

( ) 01 =−ii ,xx  (4.16) 

Similarly, if several consecutive eigenvalues satisfy 
(4.15), they are handled as a group, and their 
corresponding eigenvectors orthogoalized. 
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• Direct sum of submatrices 
If T splits a sum of m submatrices T1, T2, ..., Tm, the 
eigenvalues and corresponding eigenvectors of T are 
respectively, the diagonal elements of D and the 
column vectors of Q shown in (4.17). 
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Where D and Q satisfy 

TQQD T=  (4.18) 

From (4.17) and (4.18) the following are obtained; 
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mmmm QTQD
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22
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11
T
11

:
:  (4.19) 

Thus, the eigenvalues and corresponding eigenvectors 
of T can be obtained by determining the eigenvalues and 
corresponding eigenvectors of each submatrix.  For more 
information, see references [12] and [13] pp. 4l8-439. 
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G21-21-0101 TRAP, DTRAP 

Integration of a tabulated function by trapezoidal rule 
(unequally spaced) 
CALL TRAP (X, Y, N, S, ICON) 

 
Function 
Given unequally spaced at points x1, x2, ..., xn (x1 < x2< ...< 
xn) and corresponding function values yi=f(xi), i=1, 2, ..., 
n, this subroutine obtains 

( )∫= nx

x
dxxfS

1
,   n ≥ 2 

using the trapezoidal rule. 
 
Parameters 
X ..... Input. Discrete points xi 

One-dimensional array of size n. 
Y..... Input. Function values yi 

One-dimensional array of size n. 
N....... Input. Number of discrete points n. 
S..... Output. Integral S. 
ICON... Output. Condition code. 

See Table TRAP-1. 
 
Table TRAP-1  Condition codes 

Code Meaning Processing 
        0 No error  
30000 n < 2 or xi ≥ xi+1 S is set to 0.0. 

 
Comments on use 
• Subprograms used 

SSL II ..... MGSSL 
FORTRAN basic function ... none 

• Notes 
Even when discrete points xi are equally spaced, this 
subroutine can be used, however, it is preferable to use 
Simpson's rule (subroutine SIMP1). 
 

• Example 
Discrete points xi and function values yi are input, and 
the integral S is determined. 

 
C     **EXAMPLE** 
      DIMENSION X(20),Y(20) 
      READ(5,500) N 
      READ(5,510) (X(I),Y(I),I=1,N) 
      CALL TRAP(X,Y,N,S,ICON) 
      WRITE(6,600) ICON,S 
      STOP 
  500 FORMAT(I2) 
  510 FORMAT(2F10.0) 
  600 FORMAT(10X,'ILL CONDITION =',I5 
     * /10X,'INTEGRAL VALUE =',E15.7) 
      END 
 
Method 
The integral is approximated, in this subroutine, by 
trapezoidal rule: 

( )
2
1

1

≈∫
nx

x
dxxf { ( ) ( ) ( )( )++− 2112 xfxfxx  

( ) ( ) ( )( ) ( )13223 −−+⋅⋅⋅++− nn xxxfxfxx  

( ) ( )( )1−+ nn xfxf } = 1
2

{ ( ) ( )112 xfxx −  

( ) ( )+−+ 213 xfxx  
( ) ( ) ( ) ( )nnnnnn xfxxxfxx 112 −−− −+−+⋅⋅⋅ } (4.1) 

For further information, refer to [46] pp. 114-121. 
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B21-21-0802 TRBK, DTRBK 

Back transformation of the eigenvectors or a tridiagonal 
matrix to the eigenvectors of a real symmetric matrix 
CALL TRBK (EV, K, N, M, P, ICON) 

 
Function 
Back transformation is applied to m eigenvectors of n-
order real symmetric tridiagonal matrix T to form 
eigenvectors of real symmetric matrix A. T must have 
been obtained by the Householder reduction of A. 
 1 ≤ m ≤ n. 
 
Parameters 
EV..... Input. m eigenvectors of real symmetric 

tridiagonal matrix T.  EV(K, m) is a two 
dimensional array. 
Output. Eigenvectors of real symmetric matrix 
A. 

K..... Input.  Adjustable dimension of array EV  
( ≥ n) 

N.... Input.  Order n of the real symmetric 
tridiagonal matrix. 

M..... Input.  Number |M| of eigenvectors. 
(See  “Comments on use".) 

P..... Input. Transformation matrix obtained by the 
Householder's reduction  
(See  “Comments on use".) 
P is a one-dimensional array of size  
n( n +1)/2. 

ICON... Output.  Condition code.  See Table TRBK-1. 
 
Table TRBK-l  Condition codes 

Code Meaning Processing 
        0 No error  
10000 N = 1 EV (1, 1) = 1.0 
30000 N < |M|,  K < N, or M = 0 Bypassed 

 
Comments on use 
• Subprograms used 

SSL II... MGSSL 
FORTRAN basic function... IABS 

 
• Notes 

This subroutine is called usually after subroutine 
TRID1. 
Parameter A provided by TRID1 can be used as input 
parameter P of this subroutine.  For detailed 
information about array P refer to subroutine TRID1. 
The eigenvectors are normalized when ||x||2 =1, and if 
parameter M is negative, the absolute value is used. 
 

• Example 
TRID1 is first used to reduce an n-order real 
symmetric matrix to a tridiagonal matrix, then TEIG2 

is used to obtain the eigenvalues and corresponding 
eigenvectors from the tridiagonal matrix, and finally 
this subroutine is used to back transform the resultant 
eigenvectors to form the eigenvectors of the real 
symmetric matrix.  n  ≤ l00. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),D(100),SD(100), 
     *          E(100),EV(100,100),VW(500) 
   10 READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N,M 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      CALL TRID1(A,N,D,SD,ICON) 
      IF(ICON.EQ.30000) GOTO 10 
      CALL TEIG2(D,SD,N,M,E,EV,100,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GOTO 10 
      CALL TRBK(EV,100,N,M,A,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GOTO 10 
      MM=IABS(M) 
      CALL SEPRT(E,EV,100,N,MM) 
      GOTO 10 
  500 FORMAT(2I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX' 
     * //11X,'** ORDER =',I5,10X,'** M =', 
     * I3/) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT(/11X,'** CONDITION CODE =',I5/) 
      END 
 

In this example, subroutine SEPRT is used to print the 
eigenvalues and corresponding eigenvectors of real 
symmetric matrices. For details see the example in 
section SEIG1. 
 
Method 
m eigenvectors of n-order real symmetric tridiagonal 
matrix T are back transformed to obtain the eigenvectors 
of real symmetrical matrix A. The reduction of A to T is 
performed using the Householder method which 
performs n-2 orthogonal similarity transformations 
shown in (4.1). 

221
T

1
T

2
T

2 −− ⋅⋅⋅⋅⋅⋅= nn PPAPPPPT  (4.1) 

For more details, refer to "Method" for subroutine 
TRID1. 

Let the eigenvalues and corresponding eigenvectors of 
T be λ and y respectively, then 

yTy λ=  (4.2) 

If (4.1) is substituted in (4,2), then 
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yyPPAPPPP λ=⋅⋅⋅⋅⋅⋅ −− 221
T

1
T

2
T

2 nn  (4.3) 

If both sides of (4.3) are pre-multiplied by P1P2...Pn-2. 

yPPPyPPAP 221221 −− ⋅⋅⋅=⋅⋅⋅ nn λ  (4.4) 

The eigenvectors x of A are then obtained as 

yPPPx 221 −⋅⋅⋅= n  (4.5) 

(4.5) is calculated as shown in (4.6) by setting y = xn-1 

(where x = x1). 

( ) 1,2,,2,/ 1
T

1

1

⋅⋅⋅−=−=

=

++

+

nkh kkkkk

kkk

xuux

xPx
 (4.6) 

Since the eigenvectors x are obtained from (4.5), 
||x||2=1.  For further information reference [13] pp. 
212-226. 
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B21-25-0402 TRBKH, DTRBKH 

Back transformation of the eigenvectors of a tridiagonal 
matrix to the eigenvectors of a Hermitian matrix. 
CALL TRBKH (EVR, EVI, K, N, M, P, PV, ICON)

 
Functions 
m number of eigenvectors y of n order real symmetric 
tridiagonal matrix T is back transformed to the 
eigenvectors x of Hermitian matrix A. 

yPVx *=  

where P and V are transformation matrices when 
transformed from A to T by the Householder's reduction 
and diagonal unitary transformation, respectively,  
and  1 ≤ m ≤ n. 
 
Parameters 
EVR... Input. m eigenvectors y of n order real 

symmetric tridiagonal matrix T. 
Output.  Real part of eigenvector x of n order 
Hermitian matrix A. Two dimensional array, 
EVR (K, m) (See "Comments on use"). 

EVI..... Output. Imaginary part of eigenvector x of n 
order Hermitian matrix A. Two dimensional 
array, EVI (K, m)  (See "Comments on use"). 

K..... Input.  Adjustable dimension of arrays EVR 
and EVI. (≥ n) 

N..... Input. Order n of the real symmetric 
tridiagonal matrix. 

M.... Input. The number |M| of eigenvectors. (See 
"Comments on use"). 

P..... Input. Transformation vector T obtained by 
the Householder's reduction from A to T. In 
the compressed storage mode for a Hermitian 
matrix.  Two dimensional array, P (K, N).  
(See "Comments on use"). 

PV... Input. Transformation matrix V obtained by 
diagonal unitary transformation from A to T.  
One dimensional array of size 2 n. (See 
"Comments on use"). 

ICON.... Output.  Condition code.  See Table  
TRBKH-1. 

 
Table TRBKH-1  Condition codes 

Code Meaning Processing 
        0 No error  
10000 N = 1 EV(1, 1) = 1.0 
30000 N < |M|, K < N or M = 0 Bypassed 

 

Comments on use 
• subprograms used 

SSL II ... MGSSL 
FORTRAN basic function.... IABS 
 

• Notes 
This subroutine is for a Hermitian matrix and not to 

be applied to a general complex matrix. 
Note that array P does not directly represent 

transformation matrix P for reduction of A to T. 
This subroutine, TRBKH, is normally used together 
with subroutine TRIDH.  Consequently the contents of 
A and PV output by subroutine TRIDH can be used as 
the contents of parameters P and PV in this subroutine. 
The contents of array P and PV are explained on 
"Method" for subroutine TRIDH. 
If input eigenvector y is normalized such as ||y||2 = 1,  
then output eigenvector x is normalized as ||x||2 = 1. 
The l-th element of the eigenvector that corresponds to 
the j-th eigenvalue is represented by EVR (L, J) + i･
EVI (L, J), where i= − 1  
When parameter M is negative, its absolute value is 
taken and used. 
 

• Example 
An n order Hermitian matrix is reduced to a real 
symmetric tridiagonal matrix using subroutine TRIDH, 
and m number of eigenvalues and eigenvectors are 
obtained using TEIG2. 
Lastly by this subroutine, TRBKH, the eigenvectors of 
the real symmetric tridiagonal matrix are back 
transformed to the eigenvectors of the Hermitian 
matrix.  n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),D(100),SD(100), 
     * V(200),EVR(100,100),EVI(100,100), 
     * VW(500),E(100) 
   10 CONTINUE 
      READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,M 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL TRIDH(A,100,N,D,SD,V,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      CALL TEIG2(D,SD,N,M,E,EVR,100,VW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      CALL TRBKH(EVR,EVI,100,N,M,A,V,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      MM=IABS(M) 
      CALL HEPRT(E,EVR,EVI,100,N,MM) 
      GO TO 10 
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  500 FORMAT(2I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'///40X,'**ORIGINAL ', 
     * 'MATRIX**',5X,'N=',I3,5X,'M=',I3//) 
  610 FORMAT(/4(5X,'A(',I3,',',I3,')=', 
     * E14.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
      END 
 

Subroutine HEPRT in this example is used to print 
eigenvalue and eigenvectors of a Hermitian matrix. For 
its details, refer to the example for subroutine HEIG2. 
 
Method 
The m number of eigenvectors of n order real symmetric 
tridiagonal matrix T are back transformed to the 
eigenvectors of Hermitian matrix A. Reduction of A to T 
is done by the Householder method and diagonal unitary 
transformation as shown in the eq. (4.1). 

( )VPPAPPPPVT 221
*

1
*
2

*
2

*
−− ⋅⋅⋅⋅⋅⋅= nn  (4.1) 

where P = I − uk uk
∗/hk is a diagonal unitary matrix.  

For detailed information, refer to subroutine TRIDH. 
Letting λ and y be eigenvalue and eigenvector 

respectively of T, then eq. (4.2) is established. 

Ty y= λ  (4.2) 

Substituting eq. (4.1) into (4.2), 

yVyPPAPPPPV λ=⋅⋅⋅⋅⋅⋅ −− 221
*

1
*
2

*
2

*
nn  (4.3) 

Premultiplying P1 P2 ... Pn-2 V to both sides of eq. (4.3) 

VyPPPVyPPAP 221221 −− ⋅⋅⋅=⋅⋅⋅ nn λ  (4.4) 

Therefore eigenvector x of A is obtained such that 

VyPPPx 221 −⋅⋅⋅= n  (4.5) 

The calculation of eq. (4.5) is carried out in the 
sequence shown in eqs. (4.6) and (4.7) 

Vy=z  (4.6) 

kk
*
kkkk /hzzz 11 ++ −= uu  (4.7) 

1,2,...,2−= nk  

where z= zn-1 and x=z1. 
Thus obtained eigenvector x (= z1) is normalized as ||x||2 
= 1 if ||y||2 = 1 in eq. (4.5). Refer to subroutine TRIDH 
for the Householder method and diagonal unitary 
transformation. 
For details, see Reference [17]. 
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B21-25-0302 TRIDH, DTRIDH 

Reduction of a Hermitian matrix to a real symmetric 
tridiagonal matrix (Householder method, and diagonal 
unitary transformation). 
CALL TRIDH (A, K, N, D, SD, PV, ICON) 

 
Function 
An n-order Hermitian matrix A is reduced first to a 
Hermitian tridiagonal matrix H, 

APPH *=  (1.1) 

by the Householder method, then it is further reduced to a 
real symmetric tridiagonal matrix T by diagonal unitary 
transformation. 

HVVT *=  (1.2) 

where P and V are transformation matrices, and n≥1. 
 
Parameters 
A..... Input.  Hermitian matrix A. 

Output. Transformation matrix P. (Refer to Fig. 
TRIDH-1).  In the compressed storage mode 
for Hermitian matrices.  (See "Comments on 
use"). Two dimensional arrays of size A (K, 
N). 

K..... Input. Adjustable dimension of the array A (≥ 
n) 

N..... Input. Order n of the Hermitian matrix. 
D..... Output.  Main diagonal elements of real 

symmetric tridiagonal matrix T. (See Fig. 
TRIDH-2). One dimensional array of size n. 

SD.... Output.  Subdiagonal elements of real 
symmetric tridiagonal matrix T. (Refer to   Fig. 
TRIDH-2). One dimensional array of size n.  
The outputs are stored into SD (2) to SD (N) 
and SD (1) is set to zero. 

PV..... Output. Transformation vector V (Refer to Fig. 
TRIDH-3).  One dimensional array   of size 2 
n. 

ICON.. Output.  Condition code.  See Table TRIDH-1. 
 
Table TRIDH-1  Condition codes 

Code Meaning Processing 
 0 No error  
 10000 N=1 Reduction is not 

performed. 
 30000 K < N or N < 1 Bypassed 

Re( )

(1 / )

( )a32
3

3 3• + σ τ

× ×

××

h1

1
2

h2

1
2

h3

1
2

Re( )(a53
1)Re( )(a52

1)

Re( )( )a42
2

Re( )(a51
1)

Re( )( )a41
2

Re( )( )a31
3

Re( )

( / )

( )a43
2

2 21• + σ τ

Im( )

( / )

( )a32
2

3 31• + σ τ

Im( )

( / )

( )a43
2

2 21• + σ τ

Re( )

( / )

(a54
1)

1 11• + σ τ

Im( )( )a42
2

Im( )( )a31
3 Im( )( )a41

2

Im( )(a53
1)

Im( )(a52
1)

Im( )(a51
1)

Im( )

( / )

(a54
1)

1 11• + σ τ

 
Note: The symbol “×” indicates a work area.  This is for  n=5 

Refer to eq. (4.11) or (4.13) to hk. 

Fig. TRIDH-l  Elements of the array A after reduction 
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Fig. TRIDH-2 Correspondence between real symmetric tridiagonal 
matrix T and arrays D and SD 
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Fig. TRIDH-3  Correspondence  between transformation matrix V and 
Array PV 
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Comments on use 
• Subprograms used 

SSL II ... AMACH, BSUM, and MGSSL 
FORTRAN basic functions... ABS and SQRT 
 

• Notes 
This subroutine is used for a Hermitian matrix, and not 
for a general complex matrix. 

Output arrays A and PV will be needed to obtain 
eigenvectors of the Hermitian matrix A. These A and 
PV correspond respectively to P and PV in subroutine 
TRBKH which is used to obtain eigenvectors of the 
Hermitian matrix. 

The accuracy of the eigenvalues is determined when 
tridiagonalization is made. Consequently, the 
tridiagonal matrix must be obtained as accurately as 
possible, and this subroutine takes this into account. 
However, when there are both very large and small 
eigenvalues, the smaller eigenvalues tend to be more 
affected by the transformation compared to the larger 
ones. Therefore, in this situation, it may be difficult to 
obtain the small eigenvalues with good accuracy. 

 
• Example 

An n-order Hermitian matrix is reduced to a real 
symmetric tridiagonal matrix, then by subroutine 
TRQL, its eigenvalues are computed for n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(100,100),D(100),SD(100), 
     *V(200),E(100) 
   10 CONTINUE 
      READ(5,500) N,M 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,M 
      DO 20 I=1,N 
   20 WRITE(6,610) (I,J,A(I,J),J=1,N) 
      CALL TRIDH(A,100,N,D,SD,V,ICON) 
      WRITE(6,620) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,640) 
      WRITE(6,650) (I,D(I),SD(1),I=1,N) 
      CALL TRQL(D,SD,N,E,M,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,660) 
      WRITE(6,670) (I,E(I),I=1,M) 
      GO TO 10 
  500 FORMAT(2I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1'///,40X,'**ORIGINAL ', 
     *'MATRIX**',5X,'N=',I3,5X,'M=',I3//) 
  610 FORMAT(4(5X,'A(',I3,',',I3,')=', 
     *E14.7)) 
  620 FORMAT('0'//,11X,'**TRIDIAGONAL ', 
     *'MATRIX**') 
  630 FORMAT('0',20X,'ICON=',I5) 
  640 FORMAT('0',//1X,3('NO.',5X,'DIAGONAL', 
     *7X,'SUBDIAGONAL',2X),//) 
  650 FORMAT(1X,3(I3,2E17.7)) 
 

  660 FORMAT('1'///,5X,'**EIGENVALUES**'/) 
  670 FORMAT(1X,4('E(',I3,')=',E17.7)) 
      END 
 
Method 
The reduction of an n-order Hermitian matrix A to a real 
symmetric tridiagonal matrix T is done in two steps 
shown in eqs. (4.1) and (4.2). 
• The n-order Hermitian matrix A is reduced to an n-

order Hermitian tridiagonal matrix H by the 
Householder method. This is performed through n-2 
iteration of the unitary similarity transformation. 

2,...,2,1,*
1 −==+ nkkkkk PAPA  (4.1) 

where A A1 =  

This is the same equation as that of the orthogonal 
similarity transformation for a real symmetric matrix 
except that Pk

T is replaced by Pk
* (Refer to TRID1 for 

the Householder method of real symmetric matrix). 
The resultant matrix An-1 in those transformations 
becomes a Hermitian tridiagonal matrix H. 

• The Hermitian tridiagonal matrix H obtained in eq. 
(4.1) is further reduced to an n-order real symmetric 
tridiagonal matrix T by the diagonal unitary similarity 
transformation (4.2). 

HVVT *=          where 1−= nAH  (4.2) 
V =diag(vj) (4.3) 

Let H = (hij) and 

v1 = 1  

njh/vhv jjjjjj ,...,2,111 == −−−  (4.4) 

Then from transformation (4.2), each element tij of T is 
given as a real number as follows: 

hvhvt jjj
*
jjj ==  (4.5) 

( )
1

11111

111

−

−−−−−

−−−

=

=

=

jj

jjjjj
*
j

*
jj

jjj
*
jjj

h

vhh/vh

vhvt

 (4.6) 

That is, if the absolute value of hjj-1 is taken in the 
course of obtaining subdiagonal elements of H, it will 
directly become subdiagonal element of T. 

 
After above two transformations, takes the form shown 

in Fig.  TRIDH-2. Now, the transformation process for 
the eqs. (4.1) and (4.2) is explained.  The k-th step 
transformation, for Ak = ( ( )ai

k ), is represented by 

( ) ( ) ( ) 2
1

2
2

2
1

k
ll

k
l

k
lk aaa −+⋅⋅⋅++=σ  (4.7) 
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where, l = n − k + 1 

2
1

1 kllt σ=−  (4.8) 

Here, if ( ) 01 ≠−
k

lla  

( ) 2
1

2
1 





= − k

k
llk a στ  (4.9) 

( ) ( ) ( ) ( )( )0,...,0,1,,..., 121
*

kk
*k

ll
*k

ll
*k

lk /aaa τσ+= −−u  (4.10) 

kkkh τσ +=  (4.11) 

or if ( ) 01 =−
k

lla .  eqs. (4.10) and (4.11) are represented 

by 

( ) ( ) 


= − 0,...,0,,..., 2
1*

2
*

1
*

k
k

ll
k

lk aa σu  (4.12) 

kkh σ=  (4.13) 

and transformation matrix Pk is constituted as follows in 
eq.(4.14). 

k
*
kkk h/uuIP −=  (4.14) 

kkkk PAPA *
1 =+  (4.15) 

( )1−= k
llll at  (4.16) 

By eq.(4.15), elements ( ) ( )k
ll

k
l aa 21 ,..., − of the Hermitian 

matrix A are eliminated.  In the actual transformation, the 
following considerations are taken. 

− To avoid possible underflows and/or overflows in the 
computations shown in eqs. (4.7) to (4.14), each 
element on the right hand side of eq. (4.7) is scaled 
by 

( )( ) ( )( )( )∑
−

=

+
1

1

ImRe
l

j

k
lj

k
lj aa  (4.17) 

− Instead of using the transformation (4.15) after 
obtaining Pk Ak+1 is obtained as follows: 

kkkkkkkk hKh 2/,/ * puuAp ==  (4.18) 

kkkk K upq −=  (4.19) 

( ) ( )kkkkkkkk hh // **
1 uuIAuuIA −−=+  

**
kkkkk uqquA −−=  (4.20) 

− Transformation matrices Pk and V are needed when 
obtaining eigenvectors of the Hermitian matrix.  For 
that reason, uk in eq. (4.10) or (4.12) and square root 
of hk in eq. (4.11) or (4.13) are stored in the form in 
Fig. TRIDH-1. Diagonal elements vj of diagonal 
unitary matrix V are stored into one-dimensional 
array PV as shown in Fig. TRIDH-3. 

 
When input parameter N is 1, the diagonal elements of A 
are directly put into array D. For details, see References 
[13] pp.212-226 and [17]. 
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B21-21-0302 TRID1, DTRID1 

Reduction of a real symmetric matrix to a real symmetric 
tridiagonal matrix (Householder method) 
CALL TRID1 (A, N, D, SD, ICON) 

 
Function 
An n-order real symmetric matrix A is reduced to a real 
symmetric tridiagonal matrix T using the Householder 
method (orthogonal similarity transformation). 

APPT T=  (1.1) 

where P is the transformation matrix.  n ≥ 1. 
 
Parameters 
A..... Input. Real symmetric matrix A. 

Output. Transformation matrix P. 
Compressed storage mode for symmetric 
matrix. 
A is a one-dimensional array of size n(n+1)/2. 

N..... Input. Order n of real symmetric matrix A. 
D..... Output. Diagonal elements of tridiagonal 

matrix T.  D is a one-dimensional array of size 
n. 

SD..... Output.  Subdiagonal elements of tridiagonal 
matrix T. SD is a one-dimensional array of size 
n.  SD(2) − SD(N) is used; SD (1) is set to 0. 

ICON .. Output.  Condition code.  See Table TRID1-1. 
 
Table TRID1-1  Condition codes 

Code Meaning Processing 
 0 No error  
 10000 N=1 or N=2 Reduction is not 

performed. 
 30000 N < 1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH, and MGSSL 
FORTRAN basic functions ... ABS, DSQRT, and 
SIGN 

 
• Notes 

Array A that is output is needed for determining the 
eigenvectors of real symmetric matrix A. 

The precision of eigenvalues is determined in the 
tridiagonal matrix reduction process. For that reason 
this subroutine has been implemented to calculate 
tridiagonal matrices with as high a degree of precision 
as possible. However, when very large and very small 
eigenvalues exist, the 

smaller eigenvalues tend to be affected more by the 
reduction process. In some case, it is very difficult to 
obtain small eigenvalues precisely. 
 

• Example 
After an n-order real symmetric matrix is reduced to a 
tridiagonal matrix, subroutine TRQL is used to 
compute the eigenvalues. n ≤ 100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),D(100), 
     *          SD(100),E(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N 
      NE=0 
      DO 20 I=1,N 
      NI=NE+1 
      NE=NE+I 
   20 WRITE(6,610) I,(A(J),J=NI,NE) 
      CALL TRID1(A,N,D,SD,ICON) 
      WRITE(6,620) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.30000) GO TO 10 
      WRITE(6,640) (I,D(I),SD(I),I=1,N) 
      CALL TRQL(D,SD,N,E,M,ICON) 
      WRITE(6,650) 
      WRITE(6,630) ICON 
      IF(ICON.EQ.20000) GO TO 10 
      WRITE(6,660) (I,E(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',10X,'** ORIGINAL MATRIX'/ 
     *       11X,'** ORDER =',I5) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0'/11X,'** TRIDIAGONAL ', 
     *       'MATRIX') 
  630 FORMAT(11X,'** CONDITION CODE =',I5/) 
  640 FORMAT(5X,I5,2E16.7) 
  650 FORMAT('0'/11X,'** EIGENVALUES') 
  660 FORMAT(5X,'E(',I3,')=',E15.7) 
      END 
 
Method 
Reduction of an n-order real symmetric matrix A to a 
tridiagonal matrix is performed through n−2 iterations of 
the orthogonal similarity transformation 

2,...,2,1,T
1 −==+ nkkkkk PAPA  (4.1) 

  where A1 = A, Pk is an orthogonal transformation matrix. 
  The resultant matrix An-1 in above transformations 
becomes a real symmetric tridiagonal matrix. 
  The k-th transformation is performed according to the 
following procedure. Let Ak = ( )( )k

ija  
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( )( ) ( )( ) ( )( )21

2
2

2
1

k
ll

k
l

k
lk aaa −+⋅⋅⋅++=σ  (4.2) 

Where l = n − k + 1 

( ) ( ) ( ) 


 ±= −− 0,...,0,,,..., 2
1

121
T

k
k

ll
k

ll
k

lk aaa σu  (4.3) 

( ) 2
1

1 k
k

llkk ah σσ −±=  (4.4) 

kkkk h/TuuIP −=  (4.5) 

By applying in Pk in (4.5) to (4.l), ( )k
la 1  to ( )k

lla 2−  of Ak can 
be eliminated. The following considerations are applied 
during the actual transformation. 
• To avoid possible underflow and overflow in the 

computations of (4.2) to (4.4), the elements on the right 

side are scaled by ( )∑
−

=

1

1

l

j

k
ija . 

• When determining T
ku  of (4.3), to prevent 

cancellation in the calculation of ( ) 2
1

1 k
k

kka σ±+  the sign 

of 2
1

kσ±  is taken to that of a ( )k
kka 1− . 

• Instead of determining Pk of transformation of (4.1), 
Ak+1 is determined as follows 

kkkkkkkk hKh 2/,/ T puuAp ==  (4.7) 

kkkk K upq −=  (4.8) 

( ) ( )
TT

TT
1 //

kkkkk

kkkkkkkk hh

uqquA

uuIAuuIA

−−=

−−=+  
(4.9) 

Transformation matrix Pk is required to determine the 
eigenvectors of the real symmetric matrix A, so the 
elements of uk of (4.3) and hk of (4.4) are stored as shown 
in Fig. TRID1-l.  
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(Note): × represents work area, n=5 

Fig. TRID1-1  Array A after Householder's reduction (A is in the 
compressed storage mode) 

When n= 2 or n=1 the diagonal elements and the 
subdiagonal elements are entered as is in arrays D and 
SD.  For further information see Reference [13] pp.212-
226. 
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B21-21-0402 TRQL, DTRQL 

Eigenvalues of a real symmetric tridiagonal matrix (QL 
method) 
CALL TRQL (D, SD,  N, E, M, ICON) 

 
Function 
All eigenvalues of an n-order real symmetric tridiagonal 
matrix T are determined using the QL method. n ≥ 1 
 
Parameters 
D..... Input.  Diagonal elements of tridiagonal matrix 

T. 
D is a one-dimensional array of size n. 
The contents of D are altered on output. 

SD.... Input.  Subdiagonal elements of tridiagonal 
matrix T. 
The elements must be be stored in SD(2) to 
SD (N). The contents of SD are altered on 
output. 

N...... Input. Order n of tridiagonal matrix. 
E..... Output. Eigenvalues 

E is a one-dimensional array of size n. 
M..... Output. Number of eigenvalues that were 

obtained. 
ICON.. Output. Condition code. See Table TRQL-1. 
 
Table TRQL-1  Condition codes 

Code Meaning Processing 
 0 No error  
 10000 N=1 E(1)=D(1) 
 15000 Some of the eigenvalues 

could not be determined. 
M is set to the 
number of 
eigenvalues that 
were determined.  
1 ≤ M < n. 

 20000 Eigenvalues could not be 
determined. 

M=0 

 30000 N < 1 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ... AMACH and MGSSL 
FORTRAN basic functions ... ABS, SQRT, and SIGN 

 
• Notes 

Parameter M is set to n when ICON =0 or to the 
number of eigenvalues that were obtained when ICON 
= 15000. 

This routine uses the QL method which is best suited 
for tridiagonal matrices in which the magnitude of the 
element is graded increasingly. 

This routine is used for tridiagonal matrices. When 
determining eigenvalues of a real symmetric matrix, 
first reduce that matrix to a tridiagonal matrix using 
subroutine TRID1, and then call this routine. 

When determining approximately n/4 or less 

eigenvalues of a tridiagonal matrix, it is faster to use 
subroutine BSCT1. 
  When eigenvectors of a tridiagonal matrix are also to 
be determined, TEIG1 should be used. 

 
• Example 

An n-order real symmetric matrix is reduced to a 
tridiagonal matrix using subroutine TRID1, then this 
routine is used to obtain the eigenvalues.  n≤100. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),D(100), 
     *          SD(100),E(100) 
   10 CONTINUE 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      NN=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NN) 
      WRITE(6,600) N 
      LST=0 
      DO 20 I=1,N 
      INT=LST+1 
      LST=LST+I 
      WRITE(6,610) I,(A(J),J=INT,LST) 
   20 CONTINUE 
      CALL TRID1(A,N,D,SD,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) GO TO 10 
      CALL TRQL(D,SD,N,E,M,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,630) (I,E(I),I=1,M) 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',5X,'ORIGINAL MATRIX',10X, 
     *       'N=',I3) 
  610 FORMAT('0',7X,I3,5E20.7/(11X,5E20.7)) 
  620 FORMAT('0',20X,'ICON=',I5) 
  630 FORMAT('0',5X,'EIGENVALUE'// 
     *       (8X,4('E(',I3,')=',E15.7,3X))) 
      END 
 
Method 
All eigenvalues of n-order real symmetric tridiagonal 
matrix T are determined using the QL method.  Before 
explaining the QL method, the representation of the 
tridiagonal matrix and its eigenvalues will be defined. 

The tridiagonal matrix is represented as T and its 
eigenvalues as (λ1, λ2, ..., λn). All eigenvalues are 
assumed to be different. The diagonal elements of 
tridiagonal matrix T are represented as d1, d2,..., dn and 
the subdiagonal elements as e1, e2, ..., en.That is. 
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0

T=

0
en−1

en−1

e2

e2e1

e1

dn

d2

d1

 (4.1) 

To determine eigenvalues, the QL method uses the 
following three theorems. 
• If a tridiagonal matrix  T is a real symmetric matrix, 

such an orthogonal matrix  X that satisfies (4.2) exists. 

TXXD T=  (4.2) 

where D is a diagonal matrix and diagonal elements of 
D are all eigenvalues of T. 

 
• If T is non-singular, it can be uniquely decomposed 

into an orthogonal matrix Q and a lower triangular 
matrix  L whose diagonal elements are all positive, 

T QL=  (4.3) 

• Let real symmetric tridiagonal matrix  T be T1, and the 
matrix obtained after the s-th iteration be  Ts+1  
The following iterative calculation can be done: 

,...3,2,1, == ssss LQT  (4.4) 

ssss QTQT T
1 =+  (4.5) 

From the orthogonal similarity transformation of (4.5), 
Ts+1 becomes a real symmetric tridiagonal matrix.  
Furthermore, the Ts+1 is determined only the n-th column 
of Qs and when ∞S , Ts+1 converges to a diagonal matrix. 

By using the above three theorems, the QL method 
determines all eigenvalues. However, in the actual 
calculations of the QL method, (4.4) and (4.5) are 
calculated in parallel instead of first obtaining Qs in (4.4) 
and then determining Ts+1 of (4.5). 
  Since from (4.4) 

sss LTQ =T  (4.6) 

  Ts is transformed into a lower triangular matrix  Ls when 
premultiplied by QsT.  Therefore, if ( ) TP Ts

i  is the 
transformation matrix which eliminates the  i-th element 
of the (i+l)th column of Ts, T

sQ  can be represented as 

( ) ( ) ( )T
1

T
2

T
1

T s
n

ss
s −⋅⋅⋅= PPPQ  (4.7) 

Thus, (4.5) can be represented as 

( ) ( ) ( ) ( ) ( ) ( )sss
ns

s
n

Tss
s 121

T
12

T
11 PPPTPPPT ⋅⋅⋅⋅⋅⋅= −−+  (4.8) 

By successively calculating (4.8) from the inside to 
outside (4.4) and (4.5) can be executed in parallel. 
Normally, in order to improve the rate of convergence in 
the QL method. (Ts −−−− kI) origin-shifted by an appropriate 
constant k is used instead of Ts. 
Thus (4.4) becomes 

( ) ss LQIT =− ks  (4.9) 

and (4.5) becomes 

( ) ( ) ssss kk QITQIT −=−+
T

1  (4.10) 

Since (4.10) can also be written as 

( ) IQITQT kk ssss +−=+
T

1  (4.11) 

then, 

ssss QTQT T
1 =+  (4.12) 

Note that this Qs differs from the Qs of (4.5). That is, 
based on (4.9) if Qs is calculated as 

( ) sss k LITQ =−T  (4.13) 

Ts+1 can be obtained from (4.12).  The origin shift k is 
determined as follows:  Let an eigenvalue obtained on di 
in (4.1) be λi and rate of the convergence of λi, depends 
on the ratio: 

kk ii −− +1/ λλ  (4.14) 

k is determined by obtaining the eigenvalues of 2 × 2 
submatrix Bs showing (4.15) using the Jacobian method, 
and using the one obtained on ( )d i

s . 

( ) ( )
( ) ( ) 
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s
i

s
i
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ed

1
B  (4.15) 

By this way, ( )ei
s  converges to 0 rapidly. 

If k is recalculated for each iteration of (4.12), the rate 
of convergence is further improved. Therefore, if (4.12) 
is calculated after recalculating k at every times, the 
accelerating of convergence can be performed. The ks is k 
calculated for the s-th iteration.  (4.12) is actually 
calculated in the form shown in (4.8), so the calculation 
of ( )Ts

iP  (i = n−1, ..., 2, 1) is described next. Since ( )Ts
iP  

makes elements (n−1, n) of (Ts − ksI) zero when post-
multiplied by (Ts − ksI), Pn-1 can be thought of as the 
following matrix: 
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If above ( )T
1

s
n−P  is used in the calculation of 

( ) ( )k
ns

s
ns 1

T
1

~
−−= PTPT  (4.16) 

~Ts  will have the following form: 

(n, n−2)

(n−2, n)
0

0 * *
 * * *

* * *

 * * * *
* * *
* * *

 
In this form, element (n − 2, n) and element (n ,n − 2) 

are appended to a tridiagonal matrix. 
Since above Ts is a symmetric matrix, it can be reduced 

to a tridiagonal matrix using the Givens method.  Let the 
transformation matrices used in the Givens method for 
reduction of Ts to a tridiagonal matrix be 

( ) ( ) ( )s
1

s
2

s
2s

~~~~ PPPQ ⋅⋅⋅= −n  (4.17) 

and with respect to the Ts to Ts+1 reduction, we obtain 

ssss QTQT ~~~T
1 =+  (4.18) 

  Therefore, from (4.19), (4.21) and (4.22), Ts+1 can be 
calculated as 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )s
1

s
2

s
2

s
1s

Ts
1

Ts
2

Ts
2

Ts
11s

~~

~~~~

PP

PPTPPPPT

⋅⋅⋅

⋅⋅⋅⋅⋅⋅= −−−−+ nnnn  
(4.19) 

  The computation process for this routine is shown next. 
Steps 1) to 6) are performed for i=1, 2, ..., n−1.  
1) Shift ks of origin is calculated according to: 

( ) ( )( ) ( )s
i

s
i

s
i eddf 2/1 −= +  

( ) ( ) 


 +±−= 12ff/edk s
i

s
is  (4.24) 

(Signs of ±Lf 2 +1 and f are made equal) 
2) Cn-1 and Sn-1 are determined ~Ts  is obtained. Then ~Ts  

is calculated from (4.16). 
3) ~Ts  is reduced to a tridiagonal matrix by Givens 

method. 
4) Steps 1) to 3) are repeated as s = s + 1 until one of the 

following conditions is satisfied. 
(a) ( ) ( )1,...,1,1 −+=+≤ + niijddue jjj  (4.20) 

where u is the unit round-off. 
(b)  s ≥ 30 

where s is number of iterations. 
5) When condition (a) is satisfied with j = i, this means 

that eigenvalue λi is determined.  When λn-1 is 
determined, then λn is determined automatically. 

6) When condition (b) is satisfied, λi is considered to be 
undertermined and ICON is set to 15000. The process 
is terminated. 

 
The following considerations have been made in order 

to diminish the execution time of this subroutine. 
1) If matrix T is a direct sum of submatrixes. steps 1) to 

6) above are applied to each submatrix in order to 
reduce operations.  When condition (4.20) is satisfied 
with j ≠ i, matrix T is split into submatrices. 

2) The above steps 2) to 3) are put together as (4.18) and 
are calculated as shown in (4.21). 
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( ) ( )
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i xdd 21
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1 −= +

+
+  

For further information see references [12], [13] pp. 227-
248 and [16] pp.177-206. 

=sT~  
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C23-11-0111 TSDM, DTSDM 

Zero of a real function (Muller’s method) 
CALL TSDM(X, FUN, ISW, EPS, ETA, M, ICON) 

 
Function 
This subroutine finds a zero of a real function 

f(x) =0 

An initial approximation to the zero must be given. 
 
Parameters 
X..... Input.  Initial value of the root to be obtained. 

Output. Approximate root. 
FUN ... Input.  Function subprogram name which 

computes the function f(x). 
ISW... Input.  Control information. 

One of the convergence criteria for the root 
obtained is specified.  ISW must be either one 
of 1, 2, or 3. When ISW = 1, xi becomes the 
root if it satisfies the condition 

( ) :EPS≤ixf  
Convergence criteria I 
When ISW = 2, xi becomes the root if it 
satisfies the condition 

: ETA1 iii xxx ⋅≤− −  
Convergence criteria II 
When ISW = 3, xi becomes the root if either of 
the criteria described above are satisfied. See 
"Comments on use". 

EPS ... Input. The tolerance ( ≥ 0.0) used in the 
convergence criteria I. (See the parameter 
ISW.) 

ETA...... Input. The tolerance ( ≥ 0.0) used in the 
convergence criteria II. (See the parameter 
ISW.) 

M ..... Input. Upper limit of number of iterations to 
obtain the solution. See "Comments on use". 
Output.  Number of iterations actually tried. 

ICON.. Output. Condition code.  
See Table TSDM-1. 

 
Comments on use 
• Subprograms used 

(a) SSL II..... MGSSL, AMACH, AFMAX and 
AFMIN 

(b) FORTRAN basic functions .. ABS, EXP, SQRT 
and ALOG 

 
• Notes 

The function subprogram specified by the parameter 
FUN mut be defined as having only one argument for 
the variable x, and the program which calls this TSDM 
subroutine must have 

 

Table TSDM-1 Condition codes 

Code Meaning Processing 
1 The obtained approximate root 

satisfied the convergence 
criteria I. (See parameter 
ISW.) 

Normal end 

2 The obtained approximate root 
satisfied the convergence 
criteria II. (See parameter 
ISW.) 

Normal end 

10 Iterations were tried 
unconditionally m times. 
(M=−m) 

Normal end 

11 Although m iterations were 
specified (M=−m), before 
finishing all iterations,  
f(xj) = 0.0  
was satisfied, thereby the 
iteration was stopped and xj 
was set as the root. 

Normal end 

12 Although m iterations were 
specified (M=−m), before 
finishing all iterations,  
|xi-xi-1| ≤u･|xi| 
was satisfied, thereby the 
iteration was stopped and xj  
was set as the root. 

Normal end 

10000 The specified convergence 
criterion was not satisfied 
within the limit of iterations 
given. 

The last iteration 
is value Xi stored 
in X. 

20000 A difficulty occurred during 
computation. so Muller's 
method could not be 
continued.  See. (4) Method. 

Terminated 

30000 The input parameter had 
error(s). when M>0, either of 
the followings was found:  
 
1 ISW=1 and EPS < 0, or 
2 ISW=2 and ETA<0, or 
3 ISW=3, EPS<0 and 
ETA<0, or in other case, 
M=0 or ISW ≠ 1, 2, 3 was 
found. 

Bypassed 

 
EXTERNAL statement for that function subprogram. 
(See the example below.) 

This subroutine, even if ISW = 1 is given, stops the 
iteration with ICON = 2 whenever 

iii xuxx ⋅≤− −1  (u is the unit round off) 

is satisfied, and also stops the iteration with ICON = 1 
whenever f(xi) = 0.0 is satisfied even if ISW = 2 is given. 
  Iterations are repeated m times unconditionally, when M 
is set as M = −m (m > 0). However, if f(xi)= 0.0 or 

iii xuxx ⋅≤− −1  is satisfied before finishing m 
iterations, the iteration is stopped and the result is put out 
with ICON = 11 or ICON = 12. 
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• Example 
A root of f(x) = ex −1 is obtained with the initial value 
x0 = 1 given 

 
C     **EXAMPLE** 
      EXTERNAL FEXP 
      X=0.0 
      ISW=3 
      EPS=0.0 
      ETA=1.0E-6 
      M=100 
      CALL TSDM(X,FEXP,ISW,EPS,ETA,M, 
     *ICON) 
      WRITE(6,600) ICON,M,X 
      STOP 
  600 FORMAT(10X,'ICON=',I5/13X,'M=',I5/ 
     * 13X,'X=',E15.7) 
      END 
      FUNCTION FEXP(X) 
      FEXP=EXP(X)-1.0 
      RETURN 
      END 
 
Method 
The subroutine uses Muller's method. This uses an 
interpolating polynomial P (x) of degree two, by using 
three approximate values for a root and approximates  
f(x) near the root to be obtained. One of the roots for P(x) 
= 0 is taken as the next approximate root of  f(x). In this 
way iteration is continued.  This algorithm has the 
following features: 
a. Derivatives of f(x) are not required 
b. The function is evaluated only once at each iteration 
c. The order of convergence is 1.84 (for a single root). 
 
• Muller's method 

Let α be a root of f(x) and let three values xi-2, xi-1 and 
xi be approximations to the root (See later explanation 
for initial values x1 , x2 and x3).  According to Newton’s 
interpolation formula of degree two, f(x) is 
approximated by using the three values described 
above as follows: 

( ) [ ]( )iiii xxxxffxP −+= −1,  
[ ]( )( )121,, −−− −−+ iiiii xxxxxxxf  (4.1) 

where fi = f(xi), and [ ]1, −ii xxf  and [ ]21 ,, −− iii xxxf  
are the first and the second order divided differences of 
f(x), respectively, and are defined as follows: 

[ ]
1

1
1,
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−
− −

−=
ii

ii
ii xx

ffxxf
 

[ ] [ ] [ ]
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211
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,,,,
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−=
ii

iiii
iii xx

xxfxxfxxxf  (4.2) 

P (x) = 0 is then solved and the two roots are written as 

[ ]{ } 21
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2 ,,4

2

−−−±
−=

iiii

i
i

xxxff

fxx
ωω  

[ ] ( ) [ ]2111 ,,, −−−− −+= iiiiiii xxxfxxxxfω  (4.3) 

    Of these two roots for P (x) = 0, the root corresponding 
to the larger absolute value of the denominator in the 
second term of Eq. (4.3) is chosen as the next iteration 
value xi+1. This means that xi+1 is a root closer to xi. In Eq. 
(4.1), if the term of x2 is null, i.e., if [ ]21,, −− iii xxxf  = 0, 
the following equation is used in place of using Eq. (4.3): 

[ ]1, −
−=

ii

i
i xxf

f
xx  

i
ii

ii
i f

ff
xx

x ⋅
−
−

−=
−

−

1

1  (4.4) 

This is the secant method. 
In Eq. (4.1) also, if both terms x and x2 are null, P(x) 
reduces to a constant and the algorithm fails. (See later 
explanation.) 
 
• Considerations of Algorithm 

− Initial values x1, x2 and x3 
The three initial values are set as follows: Let x be an 
initial value set by the user in the input parameter X. 
When x ≠ 0 
x1= 0.9x 
x2 = l.lx 
x3= x 
When x= 0, 
x1 = -1.0 
x2 = 1.0 
x3 = 0.0 

− When f(xi-2) = f(xi-1) = f(xi) 
This corresponds to the case in which both terms x 
and x2 in Eq. (4.1) are null, so Muller's method 
cannot be continued.  
The subroutine changes xi-2, xi-1, and xi and tries to 
get out of this situation by setting 

x′ i-2= (1+pn)xi-2 

x′ i-1= (1+pn)xi-1 

x′ i= (1+pn)xi 

where p=−u-1/10, u is the unit round off and n is the count 
of changes. Muller's method is continued by using x'i-2, 
x'i-1, and x'i . When more than five changes are performed 
the subroutine terminate unsuccessfully with ICON = 
20000. 
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• Convergence criteria 
The following two criteria are used. 
Criteria I. 
When the approximate root  xi satisfies f(xi) ≤ EPS, the 
xi is taken as the root. 
Criteria II. When the approximate root xi satisfies |xi 
−xi-1| ≤ ETA･|xi| 

the xi is taken as the root.  When the root is a multiple 
root or very close to another root, ETA must be set 
sufficiently large. If  0 ≤ ETA < u, the subroutine resets 
ETA = u.  For further details, see Reference [32]. 
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C23-11-0101 TSD1, DTSD1 

Zero of a real function which changes sign in a given 
interval (derivative not required) 
CALL TSD1 (AI, BI, FUN, EPST, X, ICON) 

 
Function 
Given two points a, b such that f(a) f(b) ≤ 0, a zero in  
[a, b] of the real transcendental equation 

f(x)=0 

is obtained.  The derivatives of f( x) are not required 
when determining the zero. The bisection method, linear 
interpolation method, and inverse quadratic interpolation 
method are used depending on the behavior of f( x) 
during the calculations. 
 
Parameters 
AI... Input. Lower limit a of the interval. 
BI..... Input. Upper limit b of the interval. 
FUN.... Input. The name of the function subprogram 

which calculates f( x) . In the program which 
calls this subroutine, the user must declare 
EXTERNAL and prepare the function 
subprogram. 

EPST... Input. The tolerance of absolute error (≥ 0.0) 
of the approximated root to be determined 
(See the notes) 

X..... Output. The approximated zero 
ICON... Output. Condition code. See Table TSD1-1. 
 
Table TSD1-1  Condition codes 

Code Meaning Processing 
0 No error  

30000 F(a) f(b) > 0 or EPST < 0.0 Bypassed 
 
Comments on use 
• Subprograms used 

SSL II ...  AMACH and MGSSL 
FORTRAN basic function... ABS 
 

• Notes 
FUN must be declared as EXTERNAL in the program 
from which this subroutine is called. 
  If there are several zeros in the interval [a, b] as 
shown in Fig. TSD1-l, it is uncertain which zero will be 
obtained. 

x
b

a

f(x)

0

y

 
Fig. TSD1-1 

The required accuracy of the root being determined is 
defined by parameter EPST. If the interval [a, b] does not 
include the origin, EPST=0.0 can be specified, and the 
subroutine will calculate as precise root as possible. 
 
• Example 

One root of f(x) = sin2(x) − 0.5 = 0 is calculated in the 
interval [0.0,1.5]. Notice that f(x) has different signs at 
both ends of the interval, and only one root exists in 
this interval. 

 
C     **EXAMPLE** 
      EXTERNAL FSIN 
      AI=0.0 
      BI=1.5 
      EPST=1.0E-6 
      CALL TSD1(AI,BI,FSIN,EPST,X,ICON) 
      WRITE(6,600) X,ICON 
      STOP 
  600 FORMAT(10X,E15.7,5X,I10) 
      END 
      FUNCTION FSIN(X) 
      FSIN=SIN(X)**2-0.5 
      RETURN 
      END 
 
Method 
With some modifications, this subroutine uses what is 
widely known as the Dekker algorithm. The iteration 
formula to be used at each iteration (bisection method, 
linear interpolation method, inverse quadrantic 
interpolation method) are determined by examining the 
behavior of f(x) . f(x) is a real function that is continuous 
in the interval [a, b], and f (a )f (b ) < 0 .  At the 
beginning of the algorithm, c is taken as a ; the general 
procedures used thereafter are as follows. 
• Procedure 1  If f(b) f(c) > 0, c is assumed to be the 

same as a. 
If f(b)f(c)<0 and |f(b)| > |f(c)|, b and c are interchanged 
and then a is assumed equal to c. In this manner, band c 
are determined such that 

f(b)f(c)<0 and |f(b)| ≤ |f(c)| 
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Variables a, b, and c have the following meanings: 
a... Current approximation to a root 
b... Previous b 
c... The opposing variable of b; a root lies between b 

and c. 
• Procedure 2 Let m = (c− b)/2 , as long as |m| < δ is not 

satisfied, one of the following (a), (b), or (c) is used to 
calculate the next approximation i and that value is 
assigned to b (as explained in detail later, δ is a 
function of b). 
(a) When |f(a)|≤|f(b)| 

The bisection method, i = (b + c) /2 is applied 
(b) When a = c 

The linear interpolation (4.1) is applied 
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)(/)()(

afbf
afbfbabi

−
−−=  

qpb /+=  (4.1) 

(c) When |f(b)| < |f(a)|≤|f(c)| 
The inverse quadratic interpolation method is 
applied 
Let fa = f(a), fb = f(b), fc = f(c), 
also r1=fa/fc, r2=fb/fc, r3=fb/fa,  
then  
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Procedure 1 and procedure 2 are then repeated. 
 
• Preventing overflow 

When using (4.1) and (4.2), the following is necessary 
to prevent overflow. That is, when 

mmbcqp
2
32

4
3

4
3/ ==−>  

which can be rewritten 

mqp 32 >  

is satisfied, the division p/q is not performed, instead the 
bisection method (described in (a)) is used. When |p/q|<δ, 
i is calculated as 

)sign( bcbi −+= δ  

to keep convergence from slowing down. 
 
• Convergence criterion 

When either (a) or (b) below is satisfied, convergence 
is judged to have occurred. Calculation is terminated, 
and current b is taken as the root. 
(a) f(b) = 0(This will happen when complete underflow 

occurs) 
(b) |m|<δ=2u|b|+ε/2 ε > 0  (4.3) 

 
Where u is the round-off unit and ε is the tolerance to the 

root (that corresponds to the parameter EPST of this routine).  
The righthand side of (4.3) has been derived experimentally. 
For more details see reference [3]. 

Let the exact root be x, the upper limit of the absolute 
error |b−x| somewhat larger than the righthand side of 
(4.3) because of the rounding error. The result can be 
expressed as 

|b−x|≤6u|x|+ε 

Care should be taken when specifying the value of 
parameter EPST.  If the interval [a, b] includes the origin, 
it is unwise to set EPST=0.0 since there is a possibility 
that the exact root is the origin.  Otherwise, EPST can be 
set to 0.0 without problems. 
 

For further information, see Reference [28]. 
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APPENDIX A 
AUXILIARY SUBROUTINES 

A.1 OUTLINE 

Auxiliary subroutines internally supplement the functions 
of SSL II subroutines and slave subroutines. In Section 
2.9, for example, SSL II subroutines frequently call for 
the unit round off "u". Then, the auxiliary subroutine for 
"u" facilitates the use of "u" for various subroutines that 
require "u" in execution. 
  Thus, auxiliary subroutines are usually called from 
general or slave subroutines in SSL II. and have features 
as follows: 
 

Features of auxiliary subroutines  
• Some auxiliary subroutines are computer-dependent, 

(while SSL II subroutines and slave subroutines are 
computer-independent). 

• Some auxiliary subroutines have single and double 
precision parameters at the same time, (whereas these 
two are not combined in the SSL II general subroutines 
and slave subroutines). 

• There is no naming rule to apply to auxiliary 
subroutines, as with SSL II general subroutines and 
slave subroutines.(See Section 2.3).  

 

Table A.1 Auxiliary subroutines 

 Subroutine name   
 Single precision Double precision   

Unit round off AMACH DMACH M,F See A.2. 
Printing of condition message MGSSL  S See A.3. 
Control of message printing MGSET**  S See A.4. 
Product sum (Real vector) ASUM,BSUM DSUM,DBSUM S See A.5. 
Product sum (Complex 
vector) 

CSUM DCSUM S See A.6. 

Radix of the floating-point 
number system 

IRADIX  M,F See A.7. 

Positive max. value of the 
floating -point number system 

AFMAX DFMAX M,F See A.8. 

Positive min. value of the 
floating -point number system 

AFMIN DFMIN M,F  

* M: Computer dependent subprograms. 
F: Function subprograms. 
S: Subroutine subprograms. 

** MGSET is the sub-entry of MGSSL. 

 

Feature* Reference section Item 
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A.2 AMACH, DMACH 

Unit round off 
(Function subprogram) AMACH(EPS) 

 

Function 

The function value defines the unit round off u in 
normalized floating-point arithmetic. 
 
 u = M1-L/2(for (correctly) rounded arithmetic) 
 u = M1-L(for chopped arithmetic) 
 
 where M is the radix of the number system, and L the 
number of digits contained in the mantissa. 
 Table AMACH-1 lists the values for single and double 
precision arithmetic. 

Parameter 
EPS.. Input. EPS is specified as follows depending 

on the working precision. 
• Single precision:Single precision real 

variable or constant. 
• Double precision:Double precision real 

variable or constant. 
 
Example 
The unit round off for single and double precision 
arithmetic are obtained. 

 
C     **EXAMPLE** 
      REAL*4 AEPS 
      REAL*8 DEPS,DMACH 
      AEPS=AMACH(AEPS) 
      DEPS=DMACH(DEPS) 
      WRITE(6,600) AEPS,DEPS 
      STOP 
  600 FORMAT(10X,'AEPS=',E16.7, 
     *        5X,'DEPS=',D25.17) 
      END 
 

 
 
Table AMACH-1 Unit round off 

  AMACH DMACH  
Arithmetic method  Single precision Double precision  
Binary:M=2 Rounded arithmetic L=26  

u=1/2･2-25 
L=61  
u=1/2･2-60 

 

Hexadecimal:M=16 Chopped arithmetic L=6  
u=16-5 

L=14  
u=16-13 

FACOM M series 
FACOM S series 
SX/G 200 series 

Binary:M=2 Rounded arithmetic L=23  
u=1/2･2-22 

L=52  
u=1/2･2-51 

FM series  
SX/G series 

Application 
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A.3 MGSSL 

Printing of condition messages 
CALL MGSSL(ICON,MCODE) 

 
Function 
This subroutine prints the condition messages for SSL II 
subroutines. 
 
Parameters 
ICOM.. Input. Condition code. 
MCODE..Input. Subroutine classification code. 

One dimensional array of size 6. 
All 11-digit classification code is specified in 
MCODE. 

Example:For classification code, A52-22-0101: 
DATA MCODE/2HA5,2H2-,2H22,2H-0,2H10,2H1/ 
 
Comments on use 
• Notes 

This subroutine is called by all SSL II general 
subroutines upon completion of the execution except 
by special function subroutines when normally ending 
with ICON=0. 

This subroutine does not usually print messages by itself. 
The printing message is controlled by subroutine 
MGSET, see MGSET. 
 
• Example 

The following example, taken on subroutine LAX, 
shows how this subroutine is called internally by SSL 
II general subroutines. 

 
C     **EXAMPLE** 
      SUBROUTINE LAX(A,K,N,B,EPSZ,ISW,IS, 
     *VW,IP,ICON) 
      DIMENSION A(K,N),B(N),VW(N),IP(N) 
      CHARACTER  MCODE(6)*4 
      DATA MCODE/'A2  ','2-  ','11  ', 
     *'-0  ','10  ','1   '/ 
      IF(ISW.EQ.1) GOTO 1000 
      IF(ISW.EQ.2) GOTO 1100 
      ICON=30000 
      GOTO 8000 
 1000 CALL ALU(A,K,N,EPSZ,IP,IS,VW,ICON) 
      IF(ICON.NE.0) GOTO 8000 
 1100 CALL LUX(B,A,K,N,1,IP,ICON) 
 8000 CALL MGSSL(ICON,MCODE) 
      RETURN 
      END 
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A.4 MGSET 

Control of message printing 
CALL MGSET(ISET,IFLE) 

 
Function 
This subroutine controls message printing for SSL II 
general subroutines. 
 
Parameters 
ISET.. Input. Output level.(See Table MGSET-1.) 
IFLE.. Input. File reference No. for output.(Data set 

identification No.) 
 
Table MGSET-1 Output level 

ISET Control function 
0 Output when the condition code is among 

0∼ 30000. 
1 Output when the condition code is among 

10000∼ 30000. 
2 Output when the condition code is among 

20000∼ 30000. 
3 Output when the condition code is 30000. 
-1 No condition message is output. 

 
Comments on use 
• Notes 

Printing of the condition messages: 
SSL II general subroutines call the auxiliary 
subroutine MGSSL to print condition message upon 
completion of the processing. Usually, auxiliary 
subroutine does not print messages, but messages can 
be printed by calling this subroutine in advance in the 
user's program. 
Extent of output control: 
Output control by this subroutine is retained until it is 
called again from the user's program.  Note that, when 
an SSL II subroutine called by user's program calls 
other SSL II subroutines, they are also under the 
output control. 
Termination of printing: 
The message printing previously called for can be 
terminated by calling this subroutine again with 
ISET= −1. 
File reference number: 
IFLE=6 is usually specified as the standard.  This 
subroutine is the sub-entry of the auxiliary subroutine 
MGSSL. 

• Example 
The example shows how MGSET is used in 
subroutine LSX to solve a system of linear equations 
with a positive symmetric matrix. 

 
C     **EXAMPLE** 
      DIMENSION A(5050),B(100) 
      CALL MGSET(0,6) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,600) N 
      CALL LSX(A,N,B,0.0,1,ICON) 
      IF(ICON.GE.20000) GOTO 20 
      WRITE(6,610) (B(I),I=1,N) 
   20 CALL MGSET(-1,6) 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E16.8) 
  600 FORMAT('0',4X,'ORDER=',I5) 
  610 FORMAT(' ',4X,'SOLUTION VECTOR' 
     * /(5X,E15.7)) 
      END 
 
  Several sets of systems are solved successively in this 
example. Subroutine MGSET is called two times in the 
program:first it is called after the array statement to 
produce the message when the first system is solved then 
it is called at statement number "20" to terminate the 
message printing in the successive operations.Since 
subroutine LSX internally uses component routines 
(SLDL, LDLX), they are also under the output control. 
 

ORDER=3 
****SSL2(A22-51-0202) CONDITION 0**** 
****SSL2(A22-51-0302) CONDITION 0**** 
****SSL2(A22-51-0101) CONDITION 0**** 

SOLUTION VECTOR 
0.1352613E+01 
0.1111623E+00 
0.4999998E+01 
 
ORDER=4 
SOLUTION VECTOR 
0.5000001E+01 
0.3333330E-01 
0.1111110E+00 
0.2499998E+00 
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A.5 ASUM(BSUM), DSUM(DBSUM) 

Product sum (real vector) 
CALL ASUM (A, B, N, IA, IB, SUM) 

 
Function 
Given n-dimensional real vectors a and b, this 
subroutine computes the product sum µ. 

i

n

i
iba∑

=

=
1

µ  

where, aT=(a1, a2, ... , an), bT=(b1, b2, ... , bn) 
 
Parameters 
A.... Input. Vector a. One-dimensional array of 

size IA ･N. 
B.... Input. Vector b. One-dimensional array of 

size IB  ･N. 
N.... Input. Dimension n of vectors. 
IA... Input. An interval between consecutive 

elements of vector a (=0). 
Generally, it is set to 1.  Refer to Notes. 

IB... Input. An interval between consecutive 
elements of vector b (=0). Generally, it is est 
to 1.  
See Notes. 

SUM.. Output. Inner product µ . Refer to Notes. 
 
Comments on use 
• Notes 

The purpose of this subroutine: 
From the theory of error analysis on floatingpoint 
arithmetic, the calculation of product sum frequently 
used in numerical analyses requires high accuracy to 
maintain the needed number of significant digits. To 
do that, this subroutine enjoys an optimum method, 
which depends on the computer to be used. 
Data spacing in arrays A and B: 
Set IA=p when elements of vector a are to be stored in 
array A with spacing p . 
Likewise, set IB=q when elements of vector b are to 
be stored in array B with spacing q . 
If p, q<0 are must be taken in assigning arrays A and 
B(see Example). 
About BSUM: 
The functions of BSUM are equivalent to those of 
ASUM but BSUM computes the product sum µ in 
double precision. The comparison among ASUM, 
BSUM, DSUM and DBSUM is tabulated as follows: 

 
Subroutine 

name 
Use Difference in parameters 

ASUM  A,B and SUM:Single precision 
BSUM  A,B:                Single precision  

SUM:              Double precision 
DSUM  A,B,SUM:       Double precision 
DBSUM  A,B:              Double precision  

SUM:              Quadruple precision 
 
Note: 
DBSUM cannot be used if the FORTRAN system does not 
support the quadruple-precision operation function. 

• Example 
When n-dimensional real matrix A (=(aij)) is defined 
as a two-dimensional array A (K, N), the product sum 
µ in the m-th column and l-th row is calculated as 
shown below:  

∑
−

−+=
n

i
inlimaa

1
1µ  

K N

l

Array A

m

 
Where, n≤100 
 
C     **EXAMPLE** 
      DIMENSION A(100,100) 
      K=100 
      READ(5,100) N,((A(I,J),I=1,N),J=1,N) 
      READ(5,200) M,L 
      CALL ASUM(A(1,M),A(L,N),N,1,-K,SUM) 
      WRITE(6,150) M,L,SUM 
      STOP 
  100 FORMAT(I5/(4E15.7)) 
  200 FORMAT(2I5) 
  150 FORMAT('1'//10X,'M=',I5,5X,'L=',I5, 
     *5X,'SUM=',E16.7) 
      END 
 

 

Single 
precision 
routines 
Double 
precision 
routine 
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A.6 CSUM, DCSUM 

Product sum (Complex vector) 
CALL CSUM (ZA, ZB, N, IA, IB, ZSUM) 

 
Function 
Given n-dimensional complex vectors a and b this 
subroutine computes the product sum µ. 

∑
−

=
n

i
iiba

1

µ  

Where      aT=(a1, a2, ..., an), bT=(b1, b2, ...,bn) 
 
Parameters 
ZA... Input. Vector a. One-dimensional complex 

type array of size IA ･N. 
ZB... Input. Vector b. One-dimensional complex 

type array of size IB ･N. 
N.... Input. Dimension n of vectors. 
IA... Input. An interval between consecutive 

elements of vector a (≠0). 
Generally, it is set to 1. (See Notes.) 

IB... Input. An interval between consecutive 
elements of vector b (≠0). 
Generally, it is set to 1. (See Notes.) 

ZSUM. Output. Inner product µ . Complex type 
variable. 

 
Comments on use 
• Notes 

The purpose of this subroutine: 
From the theory of error analysis on floating-point 
arithmetic, the calculation of the product sum 
frequently used in numerical analysis requires high 
precision. This subroutine uses the most appropriate 
method depending on the computer used. 

Data interval of array ZA, ZB: 
Specify IA=p when elements of vector are to be stored 
in array ZA with the interval p. 
Similarly, specify IB=q when elements of vector b are 
to be stored in array ZB with the interval q. 
If p, q<0, assigning of arrays ZA and ZB should be 
done with sufficient care.  (See the example.) 

 
• Example 

When n-dimensional complex matrix A(=(aij)) is given 
as a two-dimensional array ZA (K, N), the following 
example computes the product sum u in the m-th 
column and the l-th row. 

∑
−

−+=
n

i
ilnim aa

1
1µ  

K N

l

Array ZA

m

 
 
C     **EXAMPLE** 
      DIMENSION ZA(100,100) 
      COMPLEX ZA,ZSUM 
      K=100 
      READ(5,100) N,((ZA(I,J),I=1,N),J=1,N) 
      READ(5,200) M,L 
      CALL CSUM(ZA(1,M),ZA(L,N),N,1,-K,ZSUM) 
      WRITE(6,150) M,L,ZSUM 
      STOP 
  100 FORMAT(I5/(4E15.7)) 
  200 FORMAT(2I5) 
  150 FORMAT('1'//10X,'M=',I5,5X,'L=',I5, 
     *5X,'CSUM=',2E16.7) 
      END 
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A.7 IRADIX 

Radix of the floating-point number system 
(Function subprogram) IRADIX(RDX) 

 
Function 
The radix of the floating-point number system is set as 
an integer-type function value. 
See Table IRADIX-1. 
 
Table IRADIX-1 Radix for floating-point 

Arithmetic IRADIX Application 
Binary IRADIX=2 FM series  

SX/G 100 series 
Hexadecimal IRADIX=16 FACOM M series 

FACOM S series 
SX/G 200 series 

Parameter 
RDX... Input. Real variable, or a constant. Any real 

number can be specified as RDX. 
 
Example 
The radix of the number system can be obtained as 
follows. 
 
C     **EXAMPLE** 
      REAL*4 RDX 
      RDX=IRADIX(RDX) 
      WRITE(6,600) RDX 
  600 FORMAT(//10X,'RDX=',E15.7) 
      STOP 
      END 
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A.8  AFMAX, DFMAX, AFMIN, DFMIN 

Positive max.  and min.  values of the floating-point num-
ber system. 
Maximum value AFMAX(X) 
Minimum value AFMIN(X) 

 
Function 
The positive maximum value flmax or minimum value 
flmin of the floating-point number system is set. 
See Table AFMAX-1. 
 
Parameter 
X.. Input. This specified according to the 

precision as: 
• Single precision:Single precision real 

variable or constant. 
• Double precison:Double precision real 

variable or constant. 

Example 
The maximum and minimum values for single and 
double precisions are obtained as follows: 
 
C     **EXAMPLE** 
      REAL*4 X0,X1,X2 
      REAL*8 Y0,Y1,Y2,DFMAX,DFMIN 
      X1=AFMAX(X0) 
      X2=AFMIN(X0) 
      Y1=DFMAX(Y0) 
      Y2=DFMIN(Y0) 
      WRITE(6,600) X1,X2,Y1,Y2 
      STOP 
  600 FORMAT(10X,'AFMAX=',E16.7/ 
     *10X,'AFMIN=',E16.7/ 
     *10X,'DFMAX=',D25.17/ 
     *10X,'DFMIN=',D25.17) 
      END 
 

 

 
 
 
Table AFMAX-1  Max, and min.  values for floating-point unmber system 

 Maximum values Minimum values  
Arithmetic Single precision 

AFMAX 
Double precision 

DFMAX 
Single precision 

AFMIN 
Double precision 

DFMIN 
Application 

Binary (1-2-26)･2255 (1-2-61)･2255 2-1
･2-256 2-1

･2-256  
Haxadecimal (1-16-6)･1663 (1-16-14)･1663 16-1

･16-64 16-1
･16-64 FACOM M series 

FACOM S series 
SX/G 200 series 

  (1-2-53)･21024  2-1
･2-1021 FM series 

  (1-2-56)･2252  2-1
･2-259 SX/G 100 series 

Binary (1-2-24)･2128 2-1
･2-125 
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APPENDIX B 
ALPHABETIC GUIDE FOR SUBROUTINES 

In this appendix,  subroutine name of SSL II are listed in 
alphabetical order. 
The subroutines are divided into three lists based on 
their uses. Only single precision subroutine names are 
included. 

B.1  GENERAL SUBROUTINES 

Table B.1 shows general subroutines. 
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Table B.1  General subroutines 

Subroutine 
name 

Classification 
code Subprogram used 

AGGM A21-11-0101  
AKHER E11-11-0201 AFMAX 
AKLAG E11-11-0101 AFMAX 
AKMID E11-42-0101  
AKMIN E12-21-0201  
ALU A22-11-0202 AMACH 
AQC8 G23-11-0301 AMACH 
AQE G23-11-0401 AMACH, AFMIN 
AQEH G23-21-0101 AMACH, AFMAX 
AQEI G23-31-0101 AMACH, AFMAX 
AQMC8 G24-13-0101 AMACH 
AQME G24-13-0201 AFMAX, AFMIN, UAQE1, 
  UAQE2, UAQE3, UFNIO, 
  UFN2O, UFN3O, UFN4O, 
  AMACH 
AQN9 G23-11-0201 AMACH 
ASSM A21-12-0101  
ASVD1 A25-31-0201 AMACH 
BDLX A52-31-0302  
BICD1 E12-32-1102 UBAS1, UCIO1,ULUI1, 
  UMIO1 
BICD3 E12-32-3302 UBAS1, UCIO3, ULUI3, 
  UMIO3 
BIC1 E12-31-0102 UBAS1, UCIO1,ULUI1, 
  UMIO1 
BIC2 E12-31-0202 UBAS1, UCIO2, ULUI1, 
  UMIO2 
BIC3 E12-31-0302 UBAS1, UCIO3, ULUI3, 
  UMIO3 
BIC4 E12-31-0402 UBAS4, UCIO4, ULUI4, 
  UMIO4, UPEP4 
BIFD1 E11-32-1101 UBAS1, UCAD1 
BIFD3 E11-32-3301 UBAS1, UCAD1 
BIF1 E11-31-0101 UBAS1, UCAR1 
BIF2 E11-31-0201 UBAS1, UCAR1 
BIF3 E11-31-0301 UBAS1, UCAR1 
BIF4 E11-31-0401 UBAS4, UCAR4, UPEP4 
BIN I11-81-1201 AMACH,BI0, BI1, AFMIN, 
  AFMAX, ULMAX 
BIR I11-83-0301 AFMIN, AMACH, ULMAX 
BI0 I11-81-0601 AFMAX, ULMAX 
BI1 I11-81-0701 AFMAX, ULMAX 
BJN I11-81-1001 AMACH, BJ0, BJ1, 

AFMIN, 
  UTLIM 
BJR I11-83-0101 AMACH, AFMIN, UTLIM 
BJ0 I11-81-0201 UTLIM 
BJ1 I11-81-0301 UTLIM 
BKN I11-81-1301 BK0, BK1, ULMAX 
BKR I11-83-0401 AMACH, AFMAX, ULMAX 
BK0 I11-81-0801 ULMAX 
BK1 I11-81-0901 ULMAX 
BLNC B21-11-0202 IRADIX 
BLUX1 A52-11-0302 ASUM 
BLU1 A52-11-0202 AMACH 
BMDMX A52-21-0302  
BSCD2 E32-32-0202 UBAS0, UCDB2, UPOB2,  
  UPCA2 UREO1 
BSCT1 B21-21-0502 AMACH 
BSC1 E32-31-0102 UBAR1, UCAO1, UCDB1, 
  UNCA1, UREO1 
BSC2 E32-31-0202 UBRS0, UCDB2, UPOB1, 
  UPCA1, UREO1, AFMAX 
BSEG B51-21-0201 AMACH,BSCT1, BSVEC, 
  BTRID 
BSEGJ B51-21-1001 AMACH, BDLX, MSBV, 
  SBDL, TEIG1, TRBK, 

Table  B.1 -continued 

Subroutine 
name 

Classification 
Code Subprogram used 

  TRID1, UCHLS, UESRT 
BSFD1 E31-32-0101 UBAS1, UCAR2 
BSF1 E31-31-0101 UBAS1, UCAR1 
BSVEC B51-21-0402 AMACH 
BTRID B51-21-0302 AMACH 
BYN I11-81-1101 BY0, BY1, UBJ0, UBJ1, 
  UTLIM 
BYR I11-83-0202 AMACH, AFMAX, UTLIM, 
  ULMAX 
BY0 I11-81-0401 UBJ0, UTLIM 
BY1 I11-81-0501 UBJ1, UTLIM 
CBIN I11-82-1101 AMACH, ULMAX 
CBJN I11-82-1301 AMACH, ULMAX 
CBJR I11-84-0101 AMACH, ULMAX 
CBKN I11-82-1201 CBIN, AMACH, ULMAX, 
  UTLIM 
CBLNC B21-15-0202 IRADIX 
CBYN I11-82-1401 CBIN, CBKN, AMACH, 
  ULMAX, UTLIM 
CEIG2 B21-15-0101 CBLNC, CHES2, CNRML,  
  AMACH, CSUM, IRADIX 
CELI1 I11-11-0101  
CELI2 I11-11-0201  
CFRI I11-51-0201 UTLIM 
CFT F12-15-0101 CFTN, PNR 
CFTM F12-11-0101 UCFTM 
CFTN F12-15-0202  
CFTR F12-15-0302  
CGSBM A11-40-0101  
CGSM A11-10-0101  
CHBK2 B21-15-0602  
CHES2 B21-15-0302 AMACH, CSUM 
CHSQR B21-15-0402 AMACH 
CHVEC B21-15-0502 AMACH, CSUM 
CJART C22-15-0101 AMACH, CQDR, UCJAR 
CLU A22-15-0202 AMACH, CSUM 
CLUIV A22-15-0602 CSUM 
CLUX A22-15-0302 CSUM 
CNRML B21-15-0702  
COSI I11-41-0201 UTLIM 
CQDR C21-15-0101  
CSBGM A11-40-0201  
CSBSM A11-50-0201  
CSGM A11-10-0201  
CSSBM A11-50-0101  
CTSDM C23-15-0101 AMACH, AFMAX, AFMIN 
ECHEB E51-30-0201  
ECOSP E51-10-0201  
EIGI B21-11-0101 AMACH, BLNC, HES1, 
  IRADIX 
ESINP E51-20-0201  
EXPI I11-31-0101 ULMAX, AFMAX 
FCHEB E51-30-0101 AMACH, UTABT, UCOSM 
FCOSF E51-10-0101 AMACH, UTABT, UCOSM, 
  UNIFC 
FCOSM F11-11-0201 UCOSM, UPNR2, UTABT 
FCOST F11-11-0101 UCOSM, UPNR2, UTABT 
FSINF E51-20-0101 AMACH, UTABT, USINM, 
  UNIFC 
FSINM F11-21-0201 USINM, UPNR2, UTABT 
FSINT F11-21-0101 USINM, UPNR2, UTABT 
GBSEG B52-11-0101 AMACH, MSBV, TRID1, 
  TEIG1, TRBK, UCHLS, 
  UBCHL, UBCLX, UESRT 
GCHEB E51-30-0301  
GINV A25-31-0101 ADVD1, AMACH 
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TableB.1-conteimued 

Subroutine 
name 

Classification
code 

Subprogram used 

GSBK B22-10-0402  
GSCHL B22-10-0302 AMACH, UCHLS 
GSEG2 B22-10-0201 AMACH, GSBK, GSCHL, 

TRBK, TRID1, UCHLS, 
UTEG2 

HAMNG H11-20-0121 AMACH, RKG 
HBK1 B21-11-0602 NRML 
HEIG2 B21-25-0201 AMACH, TEIG2, TRBKH, 

TRIDH, UTEG2 
HES1 B21-11-0302 AMACH 
HRWIZ F20-02-0201 AMACH 
HSQR B21-11-0402 AMACH 
HVEC B21-11-0502 AMACH 
ICHEB E51-30-0401  
IERF I11-71-0301 IERFC 
IERFC I11-71-0401 IERF 
IGAM1 I11-61-0101 AMACH, IGAM2, AFMAX, 

EXPI, ULMAX 
IGAM2 I11-61-0201 AMACH, EXPI, ULMAX, 

AFMAX 
INDF I11-91-0301 IERF, IERFC 
INDFC I11-91-0401 IERF, IERFC 
INSPL E12-21-0101  
LAPS1 F20-01-0101 AFMAX 
LAPS2 F20-02-0101 LAPS1, HRWIZ, AFMAX, 

AMACH 
LAPS3 F20-03-0101  
LAX A22-11-0101 ALU, AMACH, LUX 
LAXL A25-11-0101 AMACH, ULALB, ULACH 
LAXLM A25-21-0101 ADVD1, AMACH 
LAXLR A25-11-0401 AMACH, MAV, ULALB 
LAXR A22-11-0401 AMACH, LUX, MAV 
LBX1 A52-11-0101 AMACH, BLUX1, BLU1 
LBX1R A52-11-0401 AMACH, BLUX1, MVB 
LCX A22-15-0101 AMACH, CLUX, CLUX, 

CSUM 
LCXR A22-15-0401 AMACH, CLUX, CSUM, 

MCV 
LDIV A22-51-0702  
LDLX A22-51-0302  
LESQ1 E21-20-0101 AMACH 
LMINF D11-30-0101 AMACH 
LMING D11-40-0101 AMACH 
LOWP C21-41-0101 MAMCH, RQDR, UREDE, 

U3DEG 
LPRS1 D21-10-0101 ALU, LUIV, AMACH 
LSBIX A52-21-0101 SBMDM, BMDMX, 

AMACH 
LSBX A52-31-0101 AMACH, BDLX, SBDL 
LSBXR A52-31-0401 AMACH, BDLX, MSBV 
LSIX A22-21-0101 AMACH, MDMX, SMDM, 

USCHA 
LSIXR A22-21-0401 MDMX, MSV, AMACH 
LSTX A52-31-0501 AMACH 
LSX A22-51-0101 AMACH, LDLX, SLDL 
LSXR A22-51-0401 AMACH, LDLX, MSV 
LTX A52-11-0501 AMACH 
LUIV A22-11-0602  
LUX A22-11-0302  
MAV A21-13-0101  
MBV A51-11-0101  
MCV A21-15-0101  
MDMX A22-21-0302  
MGGM A21-11-0301  
MGSM A21-11-0401  
MINF1 D11-10-0101 AMACH, LDLX, UMLDL 

TableB.1-continued 

Subroutine 
name 

Classification
Code 

Subprogram used 

MING1 D11-20-0101 AMACH, AFMAX, MSV 
MSBV A51-14-0101  
MSGM A21-12-0401 CSGM, MGGM 
MSSM A21-12-0301 CSGM, MGSM 
MSV A21-14-0101  
NDF I11-91-0101  
NDFC I11-91-0201  
NLPG1 D31-20-0101 AMACH, UQP, UNLPG 
NOLBR C24-11-0101 AMACH 
NOLF1 D15-10-0101 AMACH 
NOLG1 D15-20-0101 AMACH 
NRML B21-11-0702  
ODAM H11-20-0141 AMACH, UDE, USTE1, 

UINT1 
ODGE H11-20-0151 AMACH, USDE,UINT2, 

USTE2, USETC, USETP, 
USOL, UADJU, UDEC 

ODRK1 H11-20-0131 AMACH, URKV, UVER 
PNR F12-15-0402  
RANB2 J12-20-0101  
RANE2 J11-30-0101 RANU2 
RANN1 J11-20-0301  
RANN2 J11-20-0101 RANU2 
RANP2 J12-10-0101 ULMAX 
RANU2 J11-10-0101  
RANU3 J11-10-0201 RANU2 
RATF1 J21-10-0101 UX2UP 
RATR1 J21-10-0201 UX2UP 
RFT F11-31-0101 CFTN, PNR, URFT 
RJETR C22-11-0101 AFMAX, AFMIN, AMACH, 

IRADIX, RQDR, UJET 
RKG H11-20-0111  
RQDR C21-11-0101 AMACH 
SBDL A52-31-0202 AMACH 
SBMDM A52-21-0202 AMACH 
SEIG1 B21-21-0101 AMACH,TEIG1, TRID1, 

TRBK 
SEIG2 B21-21-0201 AMACH, TEIG2, TRBK, 

TRID1, UTEG2 
SFRI I11-51-0101 UTLIM 
SGGM A21-11-0201  
SIMP1 G21-11-0101  
SIMP2 G23-11-0101 AMACH 
SINI I11-41-0101 UTLIM 
SLDL A22-51-0202 AMACH 
SMDM A22-21-0202 AMACH, USCHA 
SMLE1 E31-11-0101  
SMLE2 E31-21-0101  
SPLV E11-21-0101 USPL 
SSSM A21-12-0201  
TEIG1 B21-21-0602 AMACH 
TEIG2 B21-21-0702 AMACH, UTEG2 
TRAP G21-21-0101  
TRBK B21-21-0802  
TRBKH B21-25-0402  
TRIDH B21-25-0302 AMACH 
TRID1 B21-21-0302 AMACH 
TRQL B21-21-0402 AMACH 
TSDM C23-11-0111 AFMAX, AFMIN, AMACH 
TSD1 C23-11-0101 AMACH 

Note: 
In the "Subprograms used"column, any subroutine names (except 
MGSSL) which are called in each subroutine are listed. 
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B.2  SLAVE SUBROUTINES 

Table B.2 shows slave subroutines. 
 
TableB.2 Slave subroutines 

Subroutine 
name 

Calling subroutines Subroutine  
nama 

Calling subroutines 

UADJU ODGE  ULU14 BIC4 
UAQE1 AQME UMIO1 BICD1, BIC1 
UAQE2 AQME UMIO2 BIC2 
UAQE3 AQME UMIO3 BICD3, BIC3 
UBAR1 BSC1 UMIO4 BIC4 
UBAS0 BSCD2, BSC2 UMLDL MINF1 
UBAS1 BICD1, BICD3, BIC1, BIC2, BIC3, BIFD1, 

BIFD3, BIF1, BIF2, BIF3, BSF1,BSFD1 
UNCA1 
UNIFC 

BSC1 
FSINF, FCOSF 

UBAS4 BIC4, BIF4 UNLPG NLPG1 
UBCHL GBSEG UPCA1 BSC2 
UBCLX GBSEG UPCA2 BSCD2 
UBJ0 BY0 UPEP4 BIF4 
UBJ1 BY1 UPNR2 FCOSM, FCOST, FSINM, FSINT 
UCAD1 BIFD1, BIFD3 UPOB1 BSC2 
UCAO1 BSC1 UPOB2 BSCD2 
UCAR1 BIF1, BIF2, BIF3, BSF1 UQP NLPG1 
UCAR2 BSFD1 UREO1 BSC1, BSC2, BSCD2 
UCAR4 BIF4 UREDR LOWP 
UCDB1 BSC1 URFT RFT 
UCDB2 BSCD2, BSC2 URKV ODRK1 
UCFTM CFTM USCHA SMDM 
UCHLS BSEGJ, GBSEG, GSCHL, GSEG2 USINM FSINM, FSINT 
UCIO1 BICD1, BIC1 USOL ODGE 
UCIO2 BIC2 USPL SPLV 
UCIO3 BICD3, BIC3 USTE1 ODAM 
UCIO4 BIC4 USTE2 ODGE 
UCJAR CJART UTABT FCOSM, FCOST, FSINM, FSINT 
UCOSM FCOSM, FCOST UTEG2 GSEG2, TEIG2 
UDE 
UDEC 

ODAM 
ODGE 

UTLIM BJR, BJ0, BJ1, BYR,BY0, BY1 ,CBKN, 
CFRI, COSI, SFRI, SINI 

UESRT BSEGJ, GBSEG UVER ODRK1 
UFN10 AQME UX2UP RATF1, RATR1 
UFN20 AQME U3DEG LOWP 
UFN30 AQME   
UFN40 AQME   
UNT1 ODAM   
UNIT2 ODGE   
UJET RJETR   
ULALB LAXL, LAXLR   
ULALH LAXL   
ULUI1 BICD1, BIC1, BIC2   
ULMAX BIR, BI0, BI1, BKR, BK0, BK1, BYR, CBIN, 

CBJN, CBJR, CBKN, EXPI, IGAM2, RANP2 
  

ULU13 BICD3, BIC3   
 
Note: 
Each slave subroutine listed is called directly by the subroutine listed in its"Calling subroutines" colmn.
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B.3  AUXILIARY SUBROUTINES 

Table B.3 shows auxiliary subroutines. 
 
Tabale B.3 Auxiliary subroutines 

Auxiliary 
subroutine 

name 

 
Calling subroutines 

AMACH (Called by many general and slave 
subroutines.) 

MGSET (Called by the user of SSL II.) 
MGSSL (Called by all general subroutines.) 
IRADIX BLNC, CBLNC, RJETR 
ASUM  
BSUM  
CSUM GEIG2, CHES2, CHVEC, CLU, 

CLUX, CLUIV 
AFMAX AKHER, AKLAG, AQME, BI0, BI1, 

BKR, BYR, CTSDM, EXPI, IGAM2, 
MING1, RJETR, TSDU, UPOB1 

AFMIN AQE, AQME, BIN, BIR, BJN, BJR, 
CTSDM, RJETR, TSDM 

 
Note: 
Refer to Appendix A. 
MGSET is the sub-entry of MGSSL. 
Each auxiliary subroutine listed is called directly by the 
subroutine listed in its"Calling subroutines"column.
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APPENDIX C 
CLASSIFICATION CODES AND 
SUBROUTINES

Liner algebra 

Code Subroutine 
A11-10-0101 CGSM 
A11-10-0201 CSGM 
A11-40-0101 CGSBM 
A11-40-0201 CSBGM 
A11-50-0101 CSSBM 
A11-50-0201 CSBSM 
A21-11-0101 AGGM 
A21-11-0201 SGGM 
A21-11-0301 MGGM 
A21-11-0401 MGSM 
A21-12-0101 ASSM 
A21-12-0201 SSSM 
A21-12-0301 MSSM 
A21-12-0401 MSGM 
A21-13-0101 MAV 
A21-14-0101 MSV 
A21-15-0101 MCV 
A22-11-0101 LAX 
A22-11-0202 ALU 
A22-11-0302 LUX 
A22-11-0401 LAXR 
A22-11-0602 LUIV 
A22-15-0101 LCX 
A22-15-0202 CLU 
A22-15-0302 CLUX 
A22-15-0401 LCXR 
A22-15-0602 CLUIV 
A22-21-0101 LSIX 
A22-21-0202 SMDM 
A22-21-0302 MDMX 
A22-21-0401 LSIXR 
A22-51-0101 LSX 
A22-51-0202 SLDL 
A22-51-0302 LDLX 
A22-51-0401 LSXR 
A22-51-0702 LDIV 
A25-11-0101 LAXL 
A25-11-0401 LAXLR 
A25-21-0101 LAXLM 
A25-31-0110 GINV 
A25-31-0201 ASVD1 
A51-11-0101 MBV 
A51-14-0101 MSBV 
A52-11-0101 LBX1 
A52-11-0202 BLU1 
A52-11-0302 BLUX1 
A52-11-0401 LBX1R 
A52-11-0501 LTX 
A52-21-0101 LSBIX 

Linear algebra-continued 

Code Subroutine 
A52-21-0202 SBMDM 
A52-21-0302 BMDMX 
A52-31-0101 LSBX 
A52-31-0202 SBDL 
A52-31-0302 BDLX 
A52-31-0401 LSBXR 
A52-31-0501 LSTX 

 
 
 
 
Eigenvalues and eigenvectors 

Code Subroutine 
B21-11-0101 EIGI 
B21-11-0202 BLNC 
B21-11-0302 HES1 
B21-11-0402 HSQR 
B21-11-0502 HVEC 
B21-11-0602 HBK1 
B21-11-0702 NRML 
B21-15-0101 CEIG2 
B21-15-0202 CBLNC 
B21-15-0302 CHES2 
B21-15-0402 CHSQR 
B21-15-0502 CHVEC 
B21-15-0602 CHBK2 
B21-15-0702 CNRML 
B21-21-0101 SEIG1 
B21-21-0201 SEIG2 
B21-21-0302 TRID1 
B21-21-0402 TRQL 
B21-21-0502 BSCT1 
B21-21-0602 TEIG1 
B21-21-0702 TEIG2 
B21-21-0802 TRBK 
B21-25-0201 HEIG2 
B21-25-0302 TRIDH 
B21-25-0402 TRBKH 
B22-21-0201 GSEG2 
B22-21-0302 GSCHL 
B22-21-0402 GSBK 
B51-21-0201 BSEG 
B51-21-0302 BTRID 
B51-21-0402 BSVEC 
B51-21-0001 BSEGJ 
B52-11-0101 GBSEG 

Non-linear equations 

Code Subroutine 
C21-11-0101 RQDR 
C21-15-0101 CQDR 
C21-11-0101 LOWP 
C22-11-0111 RJETR 
C22-15-0101 CJART 
C23-11-0101 TSD1 
C23-11-0111 TSDM 
C23-15-0101 CTSDM 
C24-11-0101 NOLBR 

 
 
Extrema 

Code Subroutine 
D11-10-0101 MINF1 
D11-20-0101 MING1 
D11-30-0101 LMINF 
D11-40-0101 LMING 
D15-10-0101 NOLF1 
D15-20-0101 NOLG1 
D21-10-0101 LPRS1 
D31-20-0101 NLPG1 
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Interpolation and approximation 

Code Subroutine 
E11-11-0101 AKLAG 
E11-11-0201 AKHER 
E11-21-0101 SPLV 
E11-31-0101 BIF1 
E11-31-0201 BIF2 
E11-31-0301 BIF3 
E11-31-0401 BIF4 
E11-32-1101 BIFD1 
E11-32-3301 BIFD3 
E11-42-0101 AKMID 
E12-21-0101 INSPL 
E12-21-0201 AKMIN 
E12-31-0102 BIC1 
E12-31-0202 BIC2 
E12-31-0302 BIC3 
E12-31-0402 BIC4 
E12-32-1102 BICD1 
E12-32-3302 BICD3 
E21-20-0101 LESQ1 
E31-11-0101 SMLE1 
E31-21-0101 SMLE2 
E31-31-0101 BSF1 
E32-31-0102 BSC1 
E32-31-0202 BSC2 
E31-32-0101 BSFD1 
E32-32-0202 BSCD2 
E51-10-0101 FCOSF 
E51-10-0201 ECOSP 
E51-20-0101 FSINF 
E51-20-0201 ESINP 
E51-30-0101 FCHEB 
E51-30-0201 ECHEB 
E51-30-0301 GCHEB 
E51-30-0401 ICHEB 

 
Transforms 

Code Subroutine 
F11-11-0101 FCOST 
F11-11-0201 FCOSM 
F11-21-0101 FSINT 
F11-21-0201 FSINM 
F11-31-0101 RFT 
F12-11-0101 CFTM 
F12-15-0101 CFT 
F12-15-0202 CFTN 
F12-15-0302 CFTR 
F12-15-0402 PNR 
F20-01-0101 LAPS1 
F20-02-0101 LAPS2 
F20-02-0201 HRWIZ 
F20-03-0101 LAPS3 

Numerical differentiation and 
quadrature 

Code Subroutine 
G21-11-0101 SIMP1 
G21-21-0101 TRAP 
G23-11-0101 SIMP2 
G23-11-0201 AQN9 
G23-11-0301 AQC8 
G23-11-0401 AQE 
G23-21-0101 AQEH 
G23-31-0101 AQEI 
G24-13-0101 AQMC8 
G24-13-0201 AQME 

 
Differential equations 

Code Subroutine 
H11-20-0111 RKG 
H11-20-0121 HAMNG 
H11-20-0131 ODRK1 
H11-20-0141 ODAM 
H11-20-0151 ODGE 

 
Special functions 

Code Subroutine 
I11-11-0101 CELI1 
I11-11-0201 CELI2 
I11-31-0101 EXPI 
I11-41-0101 SINI 
I11-41-0201 COSI 
I11-51-0101 SFRI 
I11-51-0201 CFRI 
I11-61-0101 IGAM1 
I11-61-0201 IGAN2 
I11-71-0301 IFRF 
I11-71-0401 IERFC 
I11-81-0201 BJ0 
I11-81-0301 BJ1 
I11-81-0401 BY0 
I11-81-0501 BY1 
I11-81-0601 BI0 
I11-81-0701 BI1 
I11-81-0801 BK0 
I11-81-0901 BK1 
I11-81-1001 BJN 
I11-81-1101 BYN 
I11-81-1201 BIN 
I11-81-1301 BKN 
I11-82-1101 CBIN 
I11-82-1201 CBKN 
I11-82-1301 CBJN 
I11-82-1401 CBYN 
I11-83-0101 BJR 
I11-83-0201 BYR 
I11-83-0301 BJR 
I11-83-0401 BKR 
I11-84-0101 CBJR 
I11-91-0101 NDF 
I11-91-0201 NDFC 
I11-91-0301 INDF 
I11-91-0401 INDFC 

Pseudo random numbers 

Code Subroutine 
J11-10-0101 RANU2 
J11-10-0201 BANU3 
J11-20-0101 RANN2 
J11-20-0301 RANN1 
J11-30-0101 RANE2 
J12-10-0101 RANP2 
J12-20-0101 RANB2 
J21-10-0101 RATF1 
J21-10-0201 RATR1 
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CONTRIBUTORS AND THEIR WORKS 

Author Subroutine Item 
M. Tanaka ODRK1 A system of first order ordinary differential equations (Runge-Kutta-Verner method) 
I. Ninomiya CGSBM Storage mode conversion of matrices (real general to real symmetric band) 
 CSBGM Storage mode conversion of matrices (real symmetric band to real general) 
 CSSBM Storage mode conversion of matrices (real symmetric to real symmetric band) 
 CSBSM Storage mode conversion of matrics (real symmetric band to real symmetric) 
 LSBIX A system of linear equations with a real indefinite symmetric band matrix (Block 

diagonal pivoting method) 
 SBMDM MDMT decomposition of a real indefinite symmetric band matrix (Block diagonal 

pivoting method) 
 BMDMX A system of linear equations with real indefinite symmetirc band matrix 

decomposed into the factors M, D and MT 
 LAXLM Least squares minimal norm solution with a real matrix (Singular value 

decomposition  method) 
 ASVD1 Singular value decomposition of a real matrix (Householder method, QR method) 
 GINV Moore-Penrose generalized inverse of a real matrix (Singular value decomposition 

method) 
 CEIG2 Eigenvalues and corresponding eigenvectors of a complex matrix (QR method) 
 CBLNC Balancing of a complex matrix 
 CHES2 Reduction of a complex matrix to a complex 

Hessenberg matrix (Stabilized elementary similarity transformation method) 
 CHSQR Eigenvaluse of a complex Hessenberg matrix (QR method) 
 CHVEC Eigenvectors of a complex Hessenberg matrix (Inverse iteration method) 
 CHBK2 Back transformation of the eigenvectors of a complex Hessenberg matrix to those 

of a complex matrix 
 CNRML Normalization of eigenvectors of a complex matrix 
 BSEG Eigenvalues and corresponding eigenvectors of a real symmetric band matrix 

(Rutishauser-Shwarz method, bisection method and inverse iteration method) 
 BTRID Reduction of a rael symmetric band matrix to a tridiagonal matrix (Rutishauser-

Schwarz method) 
 BSVEC Eigenvectors of a rael symmetric band matrix (Inverse iteration method) 
 BSEGJ Eigenvalues and corresponding eigenvectors of a real symmetric band matrix 

(Jennings method) 
 GBSEG Eigenvalues and corresponding eigenvectors of a real symmetric band generalized 

eigenproblem Ax=λBX (Jennings method) 
 AQN9 Integration of a function by adaptive Newton-Cotes 9-point rule 
 IERF Inverse error function erf -1 (x) 
 IERFC Inverse complementary error function erfc-1 (x) 
 NDF Normal distribution function φ (x) 
 INDF Inverse normal distribution function φ  -1 (x) 
 NDFC Complementary normal distribution function ϕ (x) 
 INDFC Inverse complementary normal  distribution function ϕ  -1 (x) 
 RANNI Fast normal pseudo random numbers 
T. Torii FCOSF Fourier cosine series expansion of an even function (Function input, fast cosine 

transformation) 
 ECOSP Evaluation of a cosine series 
 FSINF Fourier sine series expansion of an odd functon (Function input, fast sine 

transformation) 
 ESINP Evaluation of a sine series 
 FCHEB Chebyshev series expansion of a real function 



 

627 

 
Author Subroutine Item 

T. Torii ECHEB Evaluation of a Chebyshev series 
 GCHEB Differentiation of a Chebyshev series 
 ICHEB Indefinite integral for Chebyshev series 
 FCOST Discrete consine transform (Trapezoidal rule, radix 2 FFT) 
 FCOSM Discrete cosine transform (midpoint rule, radix 2 FFT) 
 FSINT Discrete sine transform (Trapezoidal rule, radix 2 FFT) 
 FSINM Discrete sine transform (midpoint rule, radix 2 FFT) 
T. 
Hasegawa 

AQC8 Integration of a function by a modified Clenshaw-Curtis rule 

 AQMC8 Multiple integration of a function by a modified Clenshaw-Curtis rule 
K.Hatano BICD1 B-spline two-dimensional interpolation coefficient calculation (I -I) 
 BICD3 B-spline two-dimensional interpolation coefficient calculation (III-III) 
 BIC1 B-spline Interpolation coefficient calculation (I) 
 BIC2 B-spline interpolation coefficient calculation (II) 
 BIC3 B-spline interpolation coefficient calculation (III) 
 BIC4 B-spline interpolation coefficient calculation (IV) 
 BIFD1 B-spline two-dimensional interpolation, differentiation, and integration (I-I) 
 BIFD3 B-spline two-dimensional interpolation, differentiation, and integration (III-III) 
 BIF1 B-spline interpolation differentiation, and integration (I) 
 BIF2 B-spline interpolation differentiation, and integration (II) 
 BIF3 B-spline interpolation differentiation, and integration (III) 
 BIF4 B-spline interpolation differentiation, and integration (IV) 
 BSCD2 B-spline two-dimensional smoothing coefficient calculation variable knots 
 BSC1 B-spline smoothing coefficient calculation with fixed knots 
 BSC2 B-spline smoothing coefficient calculation variable knots 
 BSFD1 B-spline two-dimensional smoothing 
 BSF1 B-spline smoothing differentiation, and integration 
Y.Hatano AKMID Two-dimensional quasi-Hermite interpolation 
 AQE Integration of a function by double exponential formula 
 AQEH Integration of a function over the semi-infinite interval by double exponential formula 
 AQEI Integration of a function over the infinite interval by double exponential formula 
 AQME Multiple integration of a function by double exponential formula 
T.Yoshida CBIN Integer order modified Bessel function of the first  kind with a complex variable, In 

(z) 
 CBKN Integer order modified Bessel function of the second kind with a complex 

variable,Kn (z) 
 CBJN Integer order Bessel function of the first kind with a complex variable, Jn (z) 
 CBYN Integer order Bessel function of the second kind with a complex variable, Yn (z) 
 BJR Real order Bessel function of  the first kind, Jv (x) 
 BYR  Real-order Bessel function of  the second kind, Yv (x) 
 BIR Real order modified Bessel function of the first kind, Iv (x) 
 BKR Real order modified Bessel function of the second kind, Kv  (x) 
 CBJR Real order Bessel function of the first kind with a complex variable, Jv (z) 
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K.Tone LMINF Minimization of  function with a variable (Quadratic interpolation using function 

values only) 
 LMING Minimization  of function with a variable (Qubic interpolation using function values 

and its derivatives) 
 MING1 Minimization of a function with several variables (quasi-Newton method, using 

function values and its derivatives) 
 NOLF1 Minimization of the sum of squares of  functions with several variables (Revised 

Marquardt method, using function values only) 
 NOLG1 Minimization of the sum of squares of functions (Revised Marquardt  method 

using function values and its derivatives) 
 NLPG1 Nonlinear programming problem (Powell’s method using function values only) 

T. Kobayashi LPRS1 Solution of linear programming problem (Revised simplex menthod) 

T. Hosono LAPS1 Inversion of laplace transform of a rational function (analytic in the right half 
plane) 

 LAPS2 Inversion of laplace transform of a rational function 

 LAPS3 Inversion of laplace transform of a general function 

 HRWIZ Judgement on Hurwiz polynomials 

L.F. Shampine ODAM* A system of first order ordinary differntial equations (Adams method) 

A.C. Hindmarsh ODGE* A stiff system of first order ordinary differential equations (Gear’s method) 

 
* This program is based on that registered  in ANL-NESC in U.S.A. 

The original code is available direcly form the Center. 
 
NESC: National Energy Software Center  

Argonne National Laboratory  
9700 South Cass Avenue  
Argonne, IIIinois 60439  
U.S.A.  
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