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CUDA Optimization



Outline

• Kernel optimizations

– Global memory throughput

– Launch configuration

– Instruction throughput / control flow

– Shared memory access

• Optimizations of CPU-GPU interaction

– Maximizing PCIe throughput

– Overlapping kernel execution with memory copies



Global Memory Throuhgput



Memory Review

• Local storage

– Each thread has own local storage

– Mostly registers (managed by the compiler)

• Shared memory

– Each thread block has own shared memory

– Very low latency (a few cycles)

– Very high throughput: 38-44 GB/s per multiprocessor

• 30 multiprocessors per GPU -> over 1.1 TB/s

• Global memory

– Accessible by all threads as well as host (CPU)

– High latency (400-800 cycles)

– Throughput: 140 GB/s (1GB boards), 102 GB/s (4GB boards)



GMEM Coalescing: Compute Capability 1.2, 1.3

• Possible GPU memory bus transaction sizes:

– 32B, 64B, or 128B

– Transaction segment must be aligned
• First address = multiple of segment size

• Hardware coalescing for each half-warp (16 threads):

– Memory accesses are handled per half-warps

– Carry out the smallest possible number of transactions

– Reduce transaction size when possible
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HW Steps when Coalescing

• Find the memory segment that contains the address requested by the 
lowest-numbered active thread:

– 32B segment for 8-bit data

– 64B segment for 16-bit data

– 128B segment for 32, 64 and 128-bit data.

• Find all other active threads whose requested address lies in the same 
segment

• Reduce the transaction size, if possible:

– If size == 128B and only the lower or upper half is used, reduce transaction to 64B

– If size == 64B and only the lower or upper half is used, reduce transaction to 32B

• Applied even if 64B was a reduction from 128B

• Carry out the transaction, mark serviced threads as inactive

• Repeat until all threads in the half-warp are serviced
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Threads 0-15 access 4-byte words at addresses 116-176

• Thread 0 is lowest active, accesses address 116

• 128-byte segment: 0-127
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Threads 0-15 access 4-byte words at addresses 116-176
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Threads 0-15 access 4-byte words at addresses 116-176

• Thread 3 is lowest active, accesses address 128

• 128-byte segment: 128-255
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Threads 0-15 access 4-byte words at addresses 116-176

• Thread 3 is lowest active, accesses address 128

• 128-byte segment: 128-255 (reduce to 64B)
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Experiment: Impact of Address Alignment

• Assume half-warp accesses a contiguous region

• Throughput is maximized when region is aligned on its size 
boundary

– 100% of bytes in a bus transaction are useful

• Impact of misaligned addressing:

– 32-bit words, streaming code, Quadro FX5800 (102 GB/s) 

– 0 word offset: 76 GB/s  (perfect alignment, typical perf)

– 8 word offset: 57 GB/s  (75% of aligned case)

– All others:       46 GB/s  (61% of aligned case)



Address Alignment, 64-bit words

• Can be analyzed similarly to 32-bit case:

– 0B offset:  80 GB/s  (perfectly aligned)

– 8B offset:  62 GB/s  (78% of perfectly aligned)

– 16B offset:  62 GB/s  (78% of perfectly aligned)

– 32B offset:  68 GB/s  (85% of perfectly aligned)

– 64B offset:  76 GB/s  (95% of perfectly aligned)

• Compare 0 and 64B offset performance:

– Both consume 100% of the bytes
• 64B: two 64B transactions

• 0B: a single 128B transaction, slightly faster



Comparing Compute Capabilities

• Compute capability < 1.2
– Requires threads in a half-warp to:

• Access a single aligned 64B, 128B, or 256B segment

• Threads must issue addresses in sequence

– If requirements are not satisfied:

• Separate 32B transaction for each thread

• Compute capability 1.2 and 1.3
– Does not require sequential addressing by threads

– Perf degrades gracefully when a half-warp addresses multiple segments

• Compute capability 2.0 (Fermi)
– Memory access is per warp (32 threads), L1/L2 caches help with alignment



GMEM Optimization Guidelines

• Strive for perfect coalescing

– Align starting address (may require padding)

– Warp should access within contiguous region

• Process several elements per thread

– Multiple loads get pipelined

– Indexing calculations can often be reused

• Launch enough threads to cover access latency

– GMEM accesses are not cached

– Latency is hidden by switching threads (warps)



Data Layout for Optimal Memory Throughput

• Prefer Structure of Arrays instead of Array of Structures:

– A warp (32 threads) should be accessing a contiguous memory region

• As opposed to a thread accessing a contiguous region (as is often the case on CPU)

– Stride between threads in a warp will ideally be 1, 2, 4, 8, or 16B 
(goes back to how hw coalescing is done)

• Not that different from what has to be done for CPU 
vectorization:

– SSE: 4-wide vectors (for fp32)

– One can think of GPU accesses as 32-wide vectors



Global Memory Throughput Metric

• Many applications are memory throughput bound

• When coding from scratch:

– Start with memory operations first, achieve good throughput

– Add the arithmetic, measuring perf as you go

• When optimizing:

– Measure effective memory throughput

– Compare to the theoretical bandwidth

• 70-80% is very good, ~50% is good if arithmetic is nontrivial

• Measuring throughput

– From the app point of view (“useful” bytes)

– From the hw point of view (actual bytes moved across the bus)

– The two are likely to be different

• Due to coalescing, discrete bus transaction sizes



Measuring Memory Throughput
• Visual Profiler reports memory throughput

– From HW point of view

– Based on counters for one TPC (3 multiprocessors)

– Need compute capability 1.2 or higher GPU
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• Visual Profiler reports memory throughput
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Measuring Memory Throughput

• How throughput is computed:

– Count load/store bus transactions of each size (32, 64, 128B) on the TPC

– Extrapolate from one TPC to the entire GPU

– Multiply by ( total threadblocks / threadblocks on TPC )

(grid size / cta launched )

• Latest Visual Profiler reports memory throughput

– From HW point of view

– Based on counters for one TPC (3 multiprocessors)

– Need compute capability 1.2 or higher GPU



Launch Configuration



Launch Configuration

• How many threads/threadblocks to launch?

• Key to understanding:

– Instructions are issued in order

– A thread blocks when one of the operands isn’t ready:
• Memory read doesn’t block

– Latency is hidden by switching threads
• Not by cache

• GMEM latency is 400-800 cycles

• Conclusion:

– Need enough threads to hide latency



Hiding Latency

Arithmetic:

Need at least 6 warps (192) threads per SM



Hiding Latency

Streaming 16M words: each thread reads, increments, writes 1 element

Arithmetic:

Need at least 6 warps (192) threads per SM

Memory:

Depends on the access pattern

For GT200, 50% occupancy (512 threads per SM) is often sufficient

Occupancy = fraction of the maximum number of threads per multiprocessor



Launch Configuration: Summary

• Need enough total threads to keep GPU busy

– Currently (GT200), 512+ threads per SM is ideal

– Fewer than 192 threads per SM WILL NOT hide arithmetic latency

• Threadblock configuration

– Threads per block should be a multiple of warp size (32)

– SM can concurrently execute up to 8 threadblocks
• Really small threadblocks prevent achieving good occupancy

• Really large threadblocks are less flexible

• I generally use 128-256 threads/block, but use whatever is best for the application



Instruction Throughput / Control Flow



Runtime Math Library and Intrinsics

• Two types of runtime math library functions

– __func(): many map directly to hardware ISA
• Fast but lower accuracy (see CUDA Programming Guide for full details)

• Examples: __sinf(x), __expf(x), __powf(x, y)

– func(): compile to multiple instructions
• Slower but higher accuracy (5 ulp or less)

• Examples: sin(x), exp(x), pow(x, y)

• A number of additional intrinsics:

– __sincosf(), __frcp_rz(), ...

– Explicit IEEE rounding modes (rz,rn,ru,rd)



Control Flow

• Instructions are issued per 32 threads (warp)

• Divergent branches:

– Threads within a single warp take different paths

• if-else, ...

– Different execution paths within a warp are serialized

• Different warps can execute different code with no impact on performance

• Avoid diverging within a warp

– Example with divergence: 

• if (threadIdx.x > 2) {...} else {...}

• Branch granularity < warp size

– Example without divergence:

• if (threadIdx.x / WARP_SIZE > 2) {...} else {...}

• Branch granularity is a whole multiple of warp size



Profiler and Instruction Throughput

• Profiler counts per multiprocessor:

– Divergent branches

– Warp serialization

– Instructions issues

• Visual Profiler derives:

– Instruction throughput

• Fraction of SP arithmetic instructions that could have been issued in 
the same amount of time

– So, not a good metric for code with DP arithmetic or transcendentals

– Extrapolated from one multiprocessor to GPU



Profiler and Instruction Throughput
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Shared Memory



Shared Memory

• Uses:

– Inter-thread communication within a block

– Cache data to reduce redundant global memory accesses

– Use it to avoid non-coalesced access

• Organization:

– 16 banks, 32-bit wide banks

– Successive 32-bit words belong to different banks

• Performance:

– 32 bits per bank per 2 clocks per multiprocessor

– smem accesses are per 16-threads (half-warp)

– serialization: if n threads (out of 16) access the same bank, n accesses are 
executed serially

– broadcast: n threads access the same word in one fetch



Bank Addressing Examples

• No Bank Conflicts • No Bank Conflicts
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Bank Addressing Examples

• 2-way Bank Conflicts • 8-way Bank Conflicts
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Trick to Assess Impact On Performance

• Change all SMEM reads to the same value

– All broadcasts = no conflicts

– Will show how much performance can be improved by eliminating 
bank conflicts

• The same doesn’t work for SMEM writes

– So, replace SMEM array indices with threadIdx.x

– Can also be done to the reads



CPU-GPU Interaction



Pinned (non-pageable) memory

• Pinned memory enables:

– faster PCIe copies (~2x throughput on FSB systems)

– memcopies asynchronous with CPU

– memcopies asynchronous with GPU

• Usage

– cudaHostAlloc / cudaFreeHost
• instead of malloc / free

• Implication:

– pinned memory is essentially removed from host virtual memory



Streams and Async API

• Default API:

– Kernel launches are asynchronous with CPU

– Memcopies (D2H, H2D) block CPU thread

– CUDA calls are serialized by the driver

• Streams and async functions provide:

– Memcopies (D2H, H2D) asynchronous with CPU

– Ability to concurrently execute a kernel and a memcopy

• Stream = sequence of operations that execute in issue-order on GPU

– Operations from different streams can be interleaved

– A kernel and memcopy from different streams can be overlapped



Overlap kernel and memory copy

• Requirements:

– D2H or H2D memcopy from pinned memory

– Device with compute capability ≥ 1.1 (G84 and later)

– Kernel and memcopy in different, non-0 streams

• Code:

cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync( dst, src, size, dir, stream1 );

kernel<<<grid, block, 0, stream2>>>(…);
potentially

overlapped



Call Sequencing for Optimal Overlap

• CUDA calls are dispatched to the hw in the sequence they were 
issued

• A call is dispatched if both are true:

– Resources are available 

– Preceding calls in the same stream have completed

• One kernel and one memcopy can be executed concurrently

• Note that if a call blocks, it blocks all other calls of the same type 
behind it, even in other streams

– Type is one of { kernel, memcopy }



Stream Examples (current HW)

K1,M1,K2,M2: K1
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K2
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M1 M2

K1,M2,M1: K1

M1M2

K1,M2,M2: K1

M2M2

Time 



Summary

• GPU-CPU interaction:

– Minimize CPU/GPU idling, maximize PCIe throughput

• Global memory:

– Maximize throughput (GPU has lots of bandwidth, use it effectively)

• Kernel Launch Configuration:

– Launch enough threads per SM to hide latency

– Launch enough threadblocks to load the GPU



Summary

• GPU-CPU interaction:

– Minimize CPU/GPU idling, maximize PCIe throughput

• Global memory:

– Maximize throughput (GPU has lots of bandwidth, use it effectively)

• Kernel Launch Configuration:

– Launch enough threads per SM to hide latency

– Launch enough threadblocks to load the GPU

• Measure!

– Use the Profiler, simple code modifications

– Compare to theoretical peaks


