
Paulius Micikevicius| NVIDIA

CUDA Optimization

Outline

• Kernel optimizations

– Global memory throughput

– Launch configuration

– Instruction throughput / control flow

– Shared memory access

• Optimizations of CPU-GPU interaction

– Maximizing PCIe throughput

– Overlapping kernel execution with memory copies

Global Memory Throuhgput

Memory Review

• Local storage

– Each thread has own local storage

– Mostly registers (managed by the compiler)

• Shared memory

– Each thread block has own shared memory

– Very low latency (a few cycles)

– Very high throughput: 38-44 GB/s per multiprocessor

• 30 multiprocessors per GPU -> over 1.1 TB/s

• Global memory

– Accessible by all threads as well as host (CPU)

– High latency (400-800 cycles)

– Throughput: 140 GB/s (1GB boards), 102 GB/s (4GB boards)

GMEM Coalescing: Compute Capability 1.2, 1.3

• Possible GPU memory bus transaction sizes:

– 32B, 64B, or 128B

– Transaction segment must be aligned
• First address = multiple of segment size

• Hardware coalescing for each half-warp (16 threads):

– Memory accesses are handled per half-warps

– Carry out the smallest possible number of transactions

– Reduce transaction size when possible

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 176

Address 180

Address 168

Address 172

Address 160

Address 164

Address 152

Address 156

Address 144

Address 148

Address 136

Address 140

Address 128

Address 132

Address 120

Address 124

Address 208

Address 200

Address 204

Address 192

Address 196

Address 184

Address 188 Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 176

Address 180

Address 168

Address 172

Address 160

Address 164

Address 152

Address 156

Address 144

Address 148

Address 136

Address 140

Address 128

Address 132

Address 120

Address 124

Address 200

Address 204

Address 192

Address 196

Address 184

Address 188

Address 212 ...

Address 256Address 222

Address 214

Address 218

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 152

Address 156

Address 144

Address 148

Address 136

Address 140

Address 128

Address 132

Address 120

Address 124

Address 112

Address 116

Address 104

Address 108

Address 96

Address 100

Address 184

Address 176

Address 180

Address 168

Address 172

Address 160

Address 164

Address 188

Address 200

Address 192

Address 196

6
4

B
 s

e
g

m
e

n
t 1
2

8
B

 s
e

g
m

e
n

t

Address 252

6
4

B
 s

e
g

m
e

n
t

3
2

B
 s

e
g

m
e

n
t

HW Steps when Coalescing

• Find the memory segment that contains the address requested by the
lowest-numbered active thread:

– 32B segment for 8-bit data

– 64B segment for 16-bit data

– 128B segment for 32, 64 and 128-bit data.

• Find all other active threads whose requested address lies in the same
segment

• Reduce the transaction size, if possible:

– If size == 128B and only the lower or upper half is used, reduce transaction to 64B

– If size == 64B and only the lower or upper half is used, reduce transaction to 32B

• Applied even if 64B was a reduction from 128B

• Carry out the transaction, mark serviced threads as inactive

• Repeat until all threads in the half-warp are serviced

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 176

Address 180

Address 168

Address 172

Address 160

Address 164

Address 152

Address 156

Address 144

Address 148

Address 136

Address 140

Address 128

Address 132

Address 120

Address 124

Address 208

Address 200

Address 204

Address 192

Address 196

Address 184

Address 188 Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 176

Address 180

Address 168

Address 172

Address 160

Address 164

Address 152

Address 156

Address 144

Address 148

Address 136

Address 140

Address 128

Address 132

Address 120

Address 124

Address 200

Address 204

Address 192

Address 196

Address 184

Address 188

Address 212 ...

Address 256Address 222

Address 214

Address 218

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 152

Address 156

Address 144

Address 148

Address 136

Address 140

Address 128

Address 132

Address 120

Address 124

Address 112

Address 116

Address 104

Address 108

Address 96

Address 100

Address 184

Address 176

Address 180

Address 168

Address 172

Address 160

Address 164

Address 188

Address 200

Address 192

Address 196

6
4

B
 s

e
g

m
e

n
t 1
2

8
B

 s
e

g
m

e
n

t

Address 252

6
4

B
 s

e
g

m
e

n
t

3
2

B
 s

e
g

m
e

n
t

Threads 0-15 access 4-byte words at addresses 116-176

• Thread 0 is lowest active, accesses address 116

• 128-byte segment: 0-127

96 192128

128B segment

160 224

t1 t2

288256

...
t0 t15

0 32 64

t3

Threads 0-15 access 4-byte words at addresses 116-176

• Thread 0 is lowest active, accesses address 116

• 128-byte segment: 0-127 (reduce to 64B)

96 192128

64B segment

160 224

t1 t2

288256

...
t0 t15

0 32 64

t3

Threads 0-15 access 4-byte words at addresses 116-176

• Thread 0 is lowest active, accesses address 116

• 128-byte segment: 0-127 (reduce to 32B)

96 192128

32B transaction

160 224

t1 t3

288256

...
t0 t15

0 32 64

t2

Threads 0-15 access 4-byte words at addresses 116-176

• Thread 3 is lowest active, accesses address 128

• 128-byte segment: 128-255

96 192128

128B segment

160 224

t1 t2

288256

...
t0 t15

0 32 64

t3

Threads 0-15 access 4-byte words at addresses 116-176

• Thread 3 is lowest active, accesses address 128

• 128-byte segment: 128-255 (reduce to 64B)

96 192128

64B transaction

160 224

t1 t2

288256

...
t0 t15

0 32 64

t3

Experiment: Impact of Address Alignment

• Assume half-warp accesses a contiguous region

• Throughput is maximized when region is aligned on its size
boundary

– 100% of bytes in a bus transaction are useful

• Impact of misaligned addressing:

– 32-bit words, streaming code, Quadro FX5800 (102 GB/s)

– 0 word offset: 76 GB/s (perfect alignment, typical perf)

– 8 word offset: 57 GB/s (75% of aligned case)

– All others: 46 GB/s (61% of aligned case)

Address Alignment, 64-bit words

• Can be analyzed similarly to 32-bit case:

– 0B offset: 80 GB/s (perfectly aligned)

– 8B offset: 62 GB/s (78% of perfectly aligned)

– 16B offset: 62 GB/s (78% of perfectly aligned)

– 32B offset: 68 GB/s (85% of perfectly aligned)

– 64B offset: 76 GB/s (95% of perfectly aligned)

• Compare 0 and 64B offset performance:

– Both consume 100% of the bytes
• 64B: two 64B transactions

• 0B: a single 128B transaction, slightly faster

Comparing Compute Capabilities

• Compute capability < 1.2
– Requires threads in a half-warp to:

• Access a single aligned 64B, 128B, or 256B segment

• Threads must issue addresses in sequence

– If requirements are not satisfied:

• Separate 32B transaction for each thread

• Compute capability 1.2 and 1.3
– Does not require sequential addressing by threads

– Perf degrades gracefully when a half-warp addresses multiple segments

• Compute capability 2.0 (Fermi)
– Memory access is per warp (32 threads), L1/L2 caches help with alignment

GMEM Optimization Guidelines

• Strive for perfect coalescing

– Align starting address (may require padding)

– Warp should access within contiguous region

• Process several elements per thread

– Multiple loads get pipelined

– Indexing calculations can often be reused

• Launch enough threads to cover access latency

– GMEM accesses are not cached

– Latency is hidden by switching threads (warps)

Data Layout for Optimal Memory Throughput

• Prefer Structure of Arrays instead of Array of Structures:

– A warp (32 threads) should be accessing a contiguous memory region

• As opposed to a thread accessing a contiguous region (as is often the case on CPU)

– Stride between threads in a warp will ideally be 1, 2, 4, 8, or 16B
(goes back to how hw coalescing is done)

• Not that different from what has to be done for CPU
vectorization:

– SSE: 4-wide vectors (for fp32)

– One can think of GPU accesses as 32-wide vectors

Global Memory Throughput Metric

• Many applications are memory throughput bound

• When coding from scratch:

– Start with memory operations first, achieve good throughput

– Add the arithmetic, measuring perf as you go

• When optimizing:

– Measure effective memory throughput

– Compare to the theoretical bandwidth

• 70-80% is very good, ~50% is good if arithmetic is nontrivial

• Measuring throughput

– From the app point of view (“useful” bytes)

– From the hw point of view (actual bytes moved across the bus)

– The two are likely to be different

• Due to coalescing, discrete bus transaction sizes

Measuring Memory Throughput
• Visual Profiler reports memory throughput

– From HW point of view

– Based on counters for one TPC (3 multiprocessors)

– Need compute capability 1.2 or higher GPU

Measuring Memory Throughput
• Visual Profiler reports memory throughput

– From HW point of view

– Based on counters for one TPC (3 multiprocessors)

– Need compute capability 1.2 or higher GPU

Measuring Memory Throughput

• How throughput is computed:

– Count load/store bus transactions of each size (32, 64, 128B) on the TPC

– Extrapolate from one TPC to the entire GPU

– Multiply by (total threadblocks / threadblocks on TPC)

(grid size / cta launched)

• Latest Visual Profiler reports memory throughput

– From HW point of view

– Based on counters for one TPC (3 multiprocessors)

– Need compute capability 1.2 or higher GPU

Launch Configuration

Launch Configuration

• How many threads/threadblocks to launch?

• Key to understanding:

– Instructions are issued in order

– A thread blocks when one of the operands isn’t ready:
• Memory read doesn’t block

– Latency is hidden by switching threads
• Not by cache

• GMEM latency is 400-800 cycles

• Conclusion:

– Need enough threads to hide latency

Hiding Latency

Arithmetic:

Need at least 6 warps (192) threads per SM

Hiding Latency

Streaming 16M words: each thread reads, increments, writes 1 element

Arithmetic:

Need at least 6 warps (192) threads per SM

Memory:

Depends on the access pattern

For GT200, 50% occupancy (512 threads per SM) is often sufficient

Occupancy = fraction of the maximum number of threads per multiprocessor

Launch Configuration: Summary

• Need enough total threads to keep GPU busy

– Currently (GT200), 512+ threads per SM is ideal

– Fewer than 192 threads per SM WILL NOT hide arithmetic latency

• Threadblock configuration

– Threads per block should be a multiple of warp size (32)

– SM can concurrently execute up to 8 threadblocks
• Really small threadblocks prevent achieving good occupancy

• Really large threadblocks are less flexible

• I generally use 128-256 threads/block, but use whatever is best for the application

Instruction Throughput / Control Flow

Runtime Math Library and Intrinsics

• Two types of runtime math library functions

– __func(): many map directly to hardware ISA
• Fast but lower accuracy (see CUDA Programming Guide for full details)

• Examples: __sinf(x), __expf(x), __powf(x, y)

– func(): compile to multiple instructions
• Slower but higher accuracy (5 ulp or less)

• Examples: sin(x), exp(x), pow(x, y)

• A number of additional intrinsics:

– __sincosf(), __frcp_rz(), ...

– Explicit IEEE rounding modes (rz,rn,ru,rd)

Control Flow

• Instructions are issued per 32 threads (warp)

• Divergent branches:

– Threads within a single warp take different paths

• if-else, ...

– Different execution paths within a warp are serialized

• Different warps can execute different code with no impact on performance

• Avoid diverging within a warp

– Example with divergence:

• if (threadIdx.x > 2) {...} else {...}

• Branch granularity < warp size

– Example without divergence:

• if (threadIdx.x / WARP_SIZE > 2) {...} else {...}

• Branch granularity is a whole multiple of warp size

Profiler and Instruction Throughput

• Profiler counts per multiprocessor:

– Divergent branches

– Warp serialization

– Instructions issues

• Visual Profiler derives:

– Instruction throughput

• Fraction of SP arithmetic instructions that could have been issued in
the same amount of time

– So, not a good metric for code with DP arithmetic or transcendentals

– Extrapolated from one multiprocessor to GPU

Profiler and Instruction Throughput

– Divergent branches

– Warp serialization

– Instructions issues

• Visual Profiler derives:

– Instruction throughput

• Fraction of SP arithmetic instructions that could have been issued in
the same amount of time

– So, not a good metric for code with DP arithmetic or transcendentals

– Extrapolated from one multiprocessor to GPU

Shared Memory

Shared Memory

• Uses:

– Inter-thread communication within a block

– Cache data to reduce redundant global memory accesses

– Use it to avoid non-coalesced access

• Organization:

– 16 banks, 32-bit wide banks

– Successive 32-bit words belong to different banks

• Performance:

– 32 bits per bank per 2 clocks per multiprocessor

– smem accesses are per 16-threads (half-warp)

– serialization: if n threads (out of 16) access the same bank, n accesses are
executed serially

– broadcast: n threads access the same word in one fetch

Bank Addressing Examples

• No Bank Conflicts • No Bank Conflicts

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank Addressing Examples

• 2-way Bank Conflicts • 8-way Bank Conflicts

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

Trick to Assess Impact On Performance

• Change all SMEM reads to the same value

– All broadcasts = no conflicts

– Will show how much performance can be improved by eliminating
bank conflicts

• The same doesn’t work for SMEM writes

– So, replace SMEM array indices with threadIdx.x

– Can also be done to the reads

CPU-GPU Interaction

Pinned (non-pageable) memory

• Pinned memory enables:

– faster PCIe copies (~2x throughput on FSB systems)

– memcopies asynchronous with CPU

– memcopies asynchronous with GPU

• Usage

– cudaHostAlloc / cudaFreeHost
• instead of malloc / free

• Implication:

– pinned memory is essentially removed from host virtual memory

Streams and Async API

• Default API:

– Kernel launches are asynchronous with CPU

– Memcopies (D2H, H2D) block CPU thread

– CUDA calls are serialized by the driver

• Streams and async functions provide:

– Memcopies (D2H, H2D) asynchronous with CPU

– Ability to concurrently execute a kernel and a memcopy

• Stream = sequence of operations that execute in issue-order on GPU

– Operations from different streams can be interleaved

– A kernel and memcopy from different streams can be overlapped

Overlap kernel and memory copy

• Requirements:

– D2H or H2D memcopy from pinned memory

– Device with compute capability ≥ 1.1 (G84 and later)

– Kernel and memcopy in different, non-0 streams

• Code:

cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);
potentially

overlapped

Call Sequencing for Optimal Overlap

• CUDA calls are dispatched to the hw in the sequence they were
issued

• A call is dispatched if both are true:

– Resources are available

– Preceding calls in the same stream have completed

• One kernel and one memcopy can be executed concurrently

• Note that if a call blocks, it blocks all other calls of the same type
behind it, even in other streams

– Type is one of { kernel, memcopy }

Stream Examples (current HW)

K1,M1,K2,M2: K1

M1

K2

M2

K1,K2,M1,M2: K1

M1

K2

M2

K1,M1,M2: K1

M1 M2

K1,M2,M1: K1

M1M2

K1,M2,M2: K1

M2M2

Time

Summary

• GPU-CPU interaction:

– Minimize CPU/GPU idling, maximize PCIe throughput

• Global memory:

– Maximize throughput (GPU has lots of bandwidth, use it effectively)

• Kernel Launch Configuration:

– Launch enough threads per SM to hide latency

– Launch enough threadblocks to load the GPU

Summary

• GPU-CPU interaction:

– Minimize CPU/GPU idling, maximize PCIe throughput

• Global memory:

– Maximize throughput (GPU has lots of bandwidth, use it effectively)

• Kernel Launch Configuration:

– Launch enough threads per SM to hide latency

– Launch enough threadblocks to load the GPU

• Measure!

– Use the Profiler, simple code modifications

– Compare to theoretical peaks

