
Gnuplot Short Course

Tim Langlais
langlais@me.umn.edu

February 21, 1999

Introduction

Gnuplot is a powerful freeware program for plotting both 2D
and 3D data. Gnuplot will run under a variety of environ-
ments including Linux, IRIX, Solaris, Windows, and DOS.
Gnuplot requires only minimal graphics capability and will
even run under a vt100 terminal. It has a variety of output
options flexible enough so that plots generated by gnuplot
can be inserted into text documents. This document covers
gnuplot 3.5. Gnuplot pre 3.6 release is available on some,
but not all, MEnet machines.

You should use this document in conjunction with “gnuplot-
course.tar.gz,” an archive file that contains all of the scripts
and data in this document (as well as the document itself).
From MEnet machines,

unix% cp ~langlais/gnuplot-course.tar.gz .
unix% gunzip gnuplot-course.tar.gz
unix% tar -xvf gnuplot-course.tar

This will create a directory called “gnuplot” with several sub-
directories.

Basic 2D Plots

To start gnuplot (make sure you are in the “data” directory
first), simply type

unix% gnuplot

and away you go...

Say you have a single column of data in a file called “1ch.dat”
that you would like to plot

28.062
52.172
55.703
64.281
43.438, etc.

This is simple to plot

gnuplot> plot ’1ch.dat’

Gnuplot will autoscale axes to include all the data. By
default, gnuplot will plot the data using points. The file
’1ch.dat’ must be in the current working directory that you
ran gnuplot from, else you will have to specify the path to

the file; .. and / are allowed, ~ is not.

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0 100 200 300 400 500 600

’1ch.dat’

Let’s plot the data using lines, add more divisions to the x-
axis, and rescale using set xrange.

gnuplot> set data style lines
gnuplot> set xtics 0,50,1000
gnuplot> set xrange [0:500]
gnuplot> plot ’../data/1ch.dat’

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0 50 100 150 200 250 300 350 400 450 500

’1ch.dat’

There are several choices for data style, including lines,
points, linespoints, or dots. The set xtics command
takes three arguments, <start>, <increment>, <end>, and
set xrange, two, [<start>:<end>].

But what if you have multicolumn data? Is it possible to plot

1

one column of that data? Of course! Here we plot the second
column of data from the file “3ch.dat”

gnuplot> plot ’3ch.dat’ using 2

The using command specifies a certain column of data, or
cross-plots between columns. Here we’ll plot column 1 on the
x-axis and column 2 on the y.

gnuplot> plot ’3ch.dat’ using 1:2

-3000

-2000

-1000

0

1000

2000

3000

4000

-3000-2500-2000-1500-1000 -500 0 500 1000 1500 2000 2500

’3ch.dat’

Operators, Constants, and Functions

Gnuplot not only reads data from files, it can also plot an-
alytical functions. Toward this end, gnuplot provides the
usual list of operators +, -, *, /, **, etc, and functions,
sin(), cos(), log(), exp(), etc. A summary of opera-

tors and functions is available at the end of this text. Let’s
plot a simple function based on the above (note that ** is
exponentiation a la FORTRAN).

gnuplot> set xrange [0:250]
gnuplot> plot sin(x)*(x**2)

Gnuplot assumes that x is the independent variable.

-80000

-60000

-40000

-20000

0

20000

40000

60000

0 50 100 150 200 250

sin(x)*x**2

The graph does not look like a smooth function at all.
Gnuplot evaluates the function at certain points only—the
sample rate is too low for this function. To change this, change

the number of samples (or evaluations) gnuplot performs.

gnuplot> set samples 1000
gnuplot> replot

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

0 50 100 150 200 250

sin(x)*x**2

Ahhh! Much better.

Gnuplot lets the user define constants and functions as well.
Say we have some sort of material property data that is de-
scribed by the following equation

ε =
σ

E
+

(σ

K ′
)(1

n′)

and we want to plot the function with ε (eps) on the x-axis
and σ (sts) on the y-axis. The equation is valid for σ =
[0 : 600]. First, we set gnuplot to plot parametrically, then
we change the default parametric dummy variable t to sts.
Since we know the valid range for sts, let’s change that too.
The function is not strictly defined at 0 so we will enter a
small value for the lower bound. Then, we define the function
eps(sts) and the material constants E, Kp, np. Finally, we
plot the function.

gnuplot> set parametric
dummy variable is t for curves,
u/v for surfaces

gnuplot> set dummy sts
gnuplot> set trange [1.0e-15:600]
gnuplot> eps(sts)=sts/E+(sts/Kp)**(1.0/np)
gnuplot> E = 206000.0
gnuplot> Kp = 1734.7
gnuplot> np = 0.2134
gnuplot> plot eps(sts), sts

2

0

100

200

300

400

500

600

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

eps(sts), sts

Note that gnuplot is case sensitive: E is different from e.
For 2D parametric plots, the format of the plot command is
plot <x(t)>, <y(t)> where t is the dummy variable and
x(t) and y(t) can be any functions of t. Constants can be
entered in decimal format (600.456) or in exponential format
(1.0e-15= 1.0 ∗ 10−15). String constants (e.g. a=’fred’) are
not allowed.

But what if we have actual discrete data that we’d like to
compare to the analytical curve? No problem! Let’s draw the
analytical curve with lines and the actual data with points.

gnuplot> set xrange [0:0.01]
gnuplot> plot eps(sts), sts with lines, \
> ’material.dat’ with points

0

100

200

300

400

500

600

0 0.002 0.004 0.006 0.008 0.01

eps(sts), sts
’material.dat’

Note too how we can break input lines using \ just like in a
UNIX shell. The \ at the end of the plot line tells gnuplot
to continue to the next line and treat it and the preceding line
as one. You can even split lines within a string like a title or
file name.

Formatting

Gnuplot has several formatting parameters that can be used
to change the appearance of a plot. These parameters are
accessed using the set command. A list of these formatting

parameters (for gnuplot 3.5) appears at the end of this doc-
ument.

Gnuplot automatically locates the line identifiers—called the
key—in the upper right corner of the plot. In our example,
the analytical curve passes through the line labels, making
the labels difficult to read. We can change this using set
key <x>, <y>. Let’s also change the line labels themselves.

gnuplot> set key 0.007, 150
gnuplot> plot eps(sts), sts \
> title ’analytical’ with lines,\
> ’material.dat’ title ’experimental’ \
> with points

The <x> and <y> parameters of the set key command refer to
the local coordinate system of the plot. The title command
within plot must come before the with command. Adding a
plot title and axis labels is easy too.

gnuplot> set title ’1045 Steel’
gnuplot> set ylabel ’Stress (MPa)’
gnuplot> set xlabel ’Strain (mm/mm)’
gnuplot> replot

0

100

200

300

400

500

600

0 0.002 0.004 0.006 0.008 0.01

St
re

ss
 (

M
Pa

)

Strain (mm/mm)

1045 Steel

analytical
experimental

The replot command repeats the last plot.

The set xlabel and set ylabel com-
mands also take optional arguments:
set xlabel ’string’ <xoffset> <yoffset>. The off-
sets are measured in characters. Let’s add more tics to the
x-axis, set up a grid, and move the ylabel closer to the actual
graph.

gnuplot> set xtics -1, 0.001, 1
gnuplot> set grid
gnuplot> set ylabel ’Stress (MPa)’ 2, 0
gnuplot> replot

3

0

100

200

300

400

500

600

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

St
re

ss
 (

M
Pa

)

Strain (mm/mm)

1045 Steel

theoretical
experimental

There are three basic axis parameters: 1) set xrange
[<x>:<y>], which allows the user to specify the viewable
range, 2) set autoscale, which forces gnuplot to set the
viewable range, and 3) set logscale <x|y>, which sets log-
arithmic scaling. Let’s logscale the y-axis on the above plot,

gnuplot> set logscale y
gnuplot> replot

1

10

100

1000

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

St
re

ss
 (

M
Pa

)

Strain (mm/mm)

1045 Steel

theoretical
experimental

Grids are especially useful for plots with logarithmic scales.

It is also possible to customize the appearance of the tic labels
in gnuplot. First, let’s turn off the y-axis logscale, then set
the y-axis tics to read in exponential notation with no digits
after the decimal point.

gnuplot> set nologscale y
gnuplot> set format y ’%.0e’
gnuplot> replot

The format command uses C printf() syntax, so
set format x ’\%d wombats’ is a valid command. It is also
possible to specify no-numeric tic labels.

gnuplot> set xtics (’low’ 0, \
> ’medium’ 0.005, ’high’ 0.01)
gnuplot> replot

0e+00

1e+02

2e+02

3e+02

4e+02

5e+02

6e+02

low medium high

St
re

ss
 (

M
Pa

)

Strain (mm/mm)

1045 Steel

theoretical
experimental

The parentheses are necessary when specifying non-numeric
labels.

3D Plots

Besides 2D graphs, gnuplot can also generate simple 3D plots
like

gnuplot> set data style lines
gnuplot> set parametric

dummy variable is t for curves,
u/v for surfaces

gnuplot> set view 60, 60, 1, 1
gnuplot> set xlabel ’x’
gnuplot> set ylabel ’y’
gnuplot> set zlabel ’z’
gnuplot> splot u,u+v,sin(0.5*(u+v))

u, u+v, sin(.5*(u+v))

-5

0

5 -10
-5

0
5

10

-1

-0.5

0

0.5

1

x

y

z

Plots in 3D must use splot instead of
plot. You can set the perspective view using
set view <rot_x>, <rot_z>, <scale>, <scale_z>,
which allows the user to set rotations about the x- and z-axis
as well as scale the graph.

Gnuplot will also do hidden line removal

gnuplot> set hidden3d
gnuplot> splot u,u+v,sin(0.5*(u+v))

4

u, u+v, sin(.5*(u+v))

-5

0

5 -10
-5

0
5

10

-1

-0.5

0

0.5

1

x

y

z

and draw contours based on the z-axis value (sorry, gnuplot
cannot handle 4D data—3 spatial dimensions plus 1 data
channel). You can choose to have the contours drawn on
the surface, on the base, or both.

gnuplot> set contour both
gnuplot> splot u,u+v,sin(0.5*(u+v))

u, u+v, sin(.5*(u+v))
 0.667
 0.333

-1.11e-16
 -0.333
 -0.667

-5

0

5 -10
-5

0
5

10

-1

-0.5

0

0.5

1

x

y

z

Unfortunately, the mess of lines is often confusing rather than
enlightening.

Gnuplot can read in data files of gridded and scattered data.
Let’s make a 3D plot of scattered data.

gnuplot> set data style lines
gnuplot> set view 60,20,1,1
gnuplot> set xtics -3000,1000
gnuplot> set xlabel ’Axial Strain’
gnuplot> set ylabel ’Shear Strain’ 2
gnuplot> set zlabel ’Transverse Strain’
gnuplot> set nokey
gnuplot> splot ’3ch.dat’

-2000 -1000 0 1000 2000
-2000

-1000
0

1000
2000

3000
-400
-300
-200
-100

0
100
200
300
400

Axial Strain

Shear Strain

Transverse Strain

Saving Your Work

The gnuplot save command is an easy way to save all of
parameter settings, constant definitions, function definitions,
and the last plot command. You can even elect to save only
certain variables or functions. Gnuplot stores the information
in an ASCII text file that can be read into gnuplot using
load <file>. An excerpt of what gnuplot saves

set title "1045 Steel" 0,0
set notime
set rrange [-0 : 10]
set trange [0 : 600]
set urange [-5 : 5]
set vrange [-5 : 5]
set xlabel "Strain (mm/mm)" 0,0
set xrange [0 : 0.01]
set ylabel "Stress (MPa)" 0,0
set yrange [0 : 600]
set zlabel "" 0,0
set zrange [-10 : 10]
set autoscale r
set noautoscale t
set autoscale y
set autoscale z
set zero 1e-08
eps(sts)=sts/E+(sts/Kp)**(1.0/np)
E = 206000.0
Kp = 1734.7
np = 0.2134

Notice that gnuplot simply saves a list of gnuplot com-
mands.

To this point, we have interacted with gnuplot by typing in
commands at the prompt. The easier, more efficient way to
interact with gnuplot—especially if you are creating complex
plots that reset parameters and define variables—is to edit a
text file list of commands, much like a MATLAB or ANSYS batch
file. Using your favorite editor, create a file called ’script2.gp’
that looks like

5

set square ranges
set xrange [-3500:3500]
set yrange [-3500:3500]

leave plenty of tics
set xtics -10000,1000
set ytics -10000,500

set the format of the tic-mark labels
set format ’%g’

set the plot title and axis labels
set title ’Out-of-Phase Loading \
for 1045 Steel’

set ylabel ’Shear Strain (mm/mm)’
set xlabel ’Axial Strain (mm/mm)’
set key 2800,2800

set up a grid
set grid

enable parametric plotting
set parametric
set trange [0:2.0*pi]

finally plot the graph
plot ’3ch.dat’ u 1:2 \
title ’experimental’, \
2500.0*cos(t), 2500.0*sin(t) \
title ’theoretical’

Save the file and load

gnuplot> load ’script2.gp’

-3500
-3000
-2500
-2000
-1500
-1000

-500
0

500
1000
1500
2000
2500
3000
3500

-3000 -2000 -1000 0 1000 2000 3000

Sh
ea

r
St

ra
in

 (
m

m
/m

m
)

Axial Strain (mm/mm)

Out-of-Phase Loading for 1045 Steel

experimental
theoretical

Gnuplot ignores empty lines and lines that begin with #.
Everything else gnuplot interprets as a command. If you
mistyped format as frmat in the above file, gnuplot would
raise an error

gnuplot> load ’script2.gp’
gnuplot> set frmat ’%g’

^
"script2.gp", line 11: valid ...

Using files like ’script2.gp’ to interact with gnuplot is a good
idea because the files serve as records of what you have done.
In a later section we will discuss how gnuplot can be auto-
mated using shell scripts and these batch files.

Output Options

While gnuplot has several output options, Postscript is the
most useful. You can send Postscript files directly to the
printer using lpr -P<printername> <filename>. Generally,
it is best to pipe Postscript output to a file. The following
will generate a landscape 7 inch by 10 inch plot.

gnuplot> load ’script2.gp’
gnuplot> set output ’plot.ps’
gnuplot> set terminal postscript
gnuplot> replot
gnuplot> set term x11; replot

Once the terminal has been set to postscript, you need to
replot in order to produce output. Remember to reset the
terminal to x11 to display the graph on the screen. Note that
gnuplot can accept several commands on the same line when
they are separated by ;, just like in the UNIX shell.

The set terminal postscript command has many options.
Let’s generate a color portrait Postscript file that uses the
Times 12-point font.

gnuplot> set output ’plot2.ps’
gnuplot> set terminal postscript \
> portrait color "Times-Roman" 12
gnuplot> replot
gnuplot> set term x11; replot

You can substitute any valid Postscript font for Times-Roman.

If you want to change the size or aspect ratio of your plot,
you can use set size. For instance,

gnuplot> set size .721,1

will create a square graph.

Gnuplot and LATEX

If you want to include gnuplot output in a LATEX document,
there are several options available. One gnuplot terminal
type is latex. In this case, the output is raw LATEX code
that can be included directly into a document. This has the
advantage that LATEXish commands can be used in titles, etc.

gnuplot> set xlabel ’ϵ (mm/mm)’
gnuplot> set ylabel ’σ (MPa)’
gnuplot> set output ’plot.tex’
gnuplot> set terminal latex
gnuplot> load ’script1.gp’

6

gnuplot> set term x11; replot

0

100

200

300

400

500

600

0 0.002 0.004 0.006 0.008 0.01

σ (MPa)

ε (mm/mm)

1045 Steel

theoretical

The simplest way to include this in a LATEX document is

\begin{center}
\input{plot.tex}
\end{center}

This method is not robust. Sometimes, the output LATEX
code is too big for LATEX to handle without some work. Fur-
thermore, LATEX cannot draw smooth curved lines without
aliasing so that the theoretical curve above looks jagged.

Selecting postscript eps is another way to get similar re-
sults. It is easy to include eps documents in LATEX. But since
gnuplot cannot selectively output Symbol font in Postscript
mode, you have to use psfrag to substitute LATEX commands
for simple text (psfrag actually searches the Postscript for
the text string).

gnuplot> set xlabel ’epsilon’
gnuplot> set ylabel ’sigma’
gnuplot> set output ’plot.eps’
gnuplot> set terminal postscript eps \
> "Helvetica" 24
gnuplot> load ’script1.gp’
gnuplot> set term x11; replot

The companion LATEXcode is

\usepackage{graphicx}
\usepackage{psfrag}
.
.
.
\begin{center}
\psfrag{epsilon}{ϵ (mm/mm)}
\psfrag{sigma}{σ (MPa)}
\includegraphics{plot.eps}
\end{center}

0

100

200

300

400

500

600

0 0.002 0.004 0.006 0.008 0.01

1045 Steel

theoretical

ε (mm/mm)

σ
(M

P
a)

Fonts specified for postscript eps are halved when the out-
put is generated. Thus, "Helvetica" 24 actually appears as
12 point Helvetica.

Interacting with the Shell

Gnuplot allows the user to escape to the shell using !. If we
wanted to know the contents of the current working directory,
we would type

gnuplot> !ls
1ch.dat junk.gp script1.gp
3ch.dat material.dat script2.gp
!
gnuplot>

The gnuplot> prompt will return only when the UNIX pro-
cess spawned by ! has finished. The ! shell escape is an easy
way to list files, look at file contents, etc. Rather unfortu-
nately, !cd ../directory does not move the user to another
directory.

Gnuplot can also interact with the shell by reading from
stdout. For instance, we can use the UNIX utility awk to
plot ’3ch.dat’ with the shear strain in column 2 multiplied by
−0.9. The awk utility reads files line by line and by default
will print the entire line. The first column is denoted by $1,
the second by $2, etc.

gnuplot> plot "<awk ’{print $1,-0.9*$2}’ \
> 3ch.dat"

7

-3500
-3000
-2500
-2000
-1500
-1000

-500
0

500
1000
1500
2000
2500
3000
3500

-3000 -2000 -1000 0 1000 2000 3000

Sh
ea

r
St

ra
in

 (
m

m
/m

m
)

Axial Strain (mm/mm)

Out-of-Phase Loading for 1045 Steel

"<awk ’{print $1, -0.9*$2}’ 3ch.dat"

Normally, gnuplot does not differentiate between " and ’
when quoting files, etc. However, the UNIX shell
does differentiate between the two. Using " to enclose
{print $1,-0.9*$2} rather than ’ causes the shell to in-
terpret $1 rather than allowing awk to interpret it. If you are
not familiar with these concepts, or with awk, use man awk to
find out more.

Gnuplot can read standard output from any program, includ-
ing your own. Say you have a code called “myprog” that
prints three columns of numbers.

unix% myprog
0.157008 2.300000 0.120373
0.674853 2.265058 0.898681
1.172192 2.161293 1.568595
1.633916 1.991859 2.049314
.
.
.

You can plot these numbers without ever having to create an
intermediate file. Notice that we can reset plot parameters to
their defaults by entering them without arguments.

gnuplot> set autoscale x
gnuplot> set autoscale y
gnuplot> set xtics
gnuplot> set ytics
gnuplot> set key
gnuplot> plot ’<../myprog’ u 1:3

-3e+00

-2e+00

-2e+00

-1e+00

-5e-01

0e+00

5e-01

1e+00

2e+00

2e+00

3e+00

-3 -2 -1 0 1 2 3

St
re

ss
 (

M
Pa

)

Strain (mm/mm)

1045 Steel

’<../myprog’

The ability to read from stdout is a powerful feature of
gnuplot. This feature, when used in conjuction with shell
scripts, can save disk space and time when generating plots
of data.

Automating Gnuplot

Unlike many programs that rely on graphical interfaces,
gnuplot can be run directly from the UNIX command-line.
Users can generate plots from shell scripts automatically. This
feature may not seem very important until your adviser says
of the 37 graphs in your thesis, “I think you should have more
tics on the x-axis and you should probably change the units
on the y-axis.”

First, let’s see how we can generate gnuplot output di-
rectly from the UNIX command-line. Consider the following
gnuplot script, “script3.gp.”

set parametric
set dummy sts
set trange [1.0e-15:600]
set key 0.007,150
eps(sts)=sts/E+(sts/Kp)**(1.0/np)
E = 206000.0
Kp = 1734.7
np = 0.2134
set xrange [0:0.01]
set title ’1045 Steel’
set ylabel ’Stress (MPa)’
set xlabel ’Strain (mm/mm)’
set term postscript
set output ’plot3.ps’
plot eps(sts), sts \
title ’theoretical’ with lines, \
’material.dat’ title ’experimental’ \
with points

We could start an interactive gnuplot session and use load
script3.gp to generate “plot3.ps.” But since “script3.gp”
is self-contained from input to output, the following will also
generate “plot3.ps.”

8

unix% gnuplot script3.gp

Any number of files can be specified on the command-line;
gnuplot will execute them in order using load.

A shell script is a UNIX batch file. It consists of an initial call
to a UNIX shell (csh, tcsh, bash, sh, etc.) followed by a list
of UNIX commands. The file that contains the shell script
needs to be executable.

unix% chmod +x shell.sh

Here is a simple script, “shell.sh,” that creates a gnuplot
script file and generates a Postscript file designated on the
command-line.

#! /usr/local/bin/bash

(echo ’set yrange [-2:2]’
echo ’set xrange [0:10]’
echo ’set samples 1000’
echo ’set term postscript’
echo "set output \"$1\""
echo ’plot sin(x)’) > temp.gp

gnuplot temp.gp

The echo command is a primitive print. Note that there is a
difference between " (allows variable substitution) and ’ (does
not allow variable substitution). The first UNIX command-
line argument is the variable $1. The \" tells the shell to
interpret " literally, rather than as the end of the echo string.
To create a Postscript file called “trial.ps,”

unix% shell.sh trial.ps

You can use ghostview to see the Postscript file.

Now what if we had a directory full of data files that we
wanted to plot? Let’s assume that the plots all have the same
axis labels and roughly the same range. The data is located in
“data/lotsodata.” All file names have a “.stn” extension. The
script will send the output to a new directory called “post/.”

#! /usr/local/bin/bash

makes a directory to put the
output in
mkdir post

assign each file in data/lotsodata
to the shell variable $i
for i in ‘ls data/lotsodata/*‘
do
strip the .stn extension
g=‘basename $i .stn‘

working....
echo ’processing’ $i

for each file generate a .gp

script that is temporary
(echo ’set yrange [-3500:3500]’
echo ’set xrange [-3500:3500]’
echo ’set data style lines’
echo ’set xlabel "Axial Strain"’
echo ’set ylabel "Shear Strain"’
echo ’set term postscript’
echo "set output \"post/$g.ps\""
echo "plot \"$i\" u 1:2") > temp.gp

generate output
gnuplot temp.gp
\rm temp.gp

done

Now try it out and look at the Postscript output.

unix% shell2.sh
unix% ghostview post/g1-2-3.ps &

Using a shell script this way saves time in generating and re-
generating plots. Should you wish to change the x-axis label,
you only need to edit the “shell2.sh” and re-run.

Perl has all of the features of shell scripting and
more. If you have a problem more complicated
than the above examples, you are encouraged to use
Perl. MEnet has online documentation for Perl at
http://www.menet.umn.edu/docs/perl/perl.html.

Getting Help

Typing help accesses gnuplot’s online help. The online help
is text-based. It provides command and parameter descrip-
tions as well as examples. Let’s try it,

gnuplot> help
GNUPLOT is a command-driven interactive

function plotting program.

For help on any topic, type ‘help‘
followed by the name of the topic.

The new GNUPLOT user should begin by
reading the ‘introduction‘ topic (type
‘help introduction‘) and about the ‘plot‘
command (type ‘help plot‘). Additional
help can be obtained from the USENET
newsgroup comp.graphics.gnuplot.

Help topics available:
autoscale binary-data bugs
cd clear comments
copyright environment exit
expressions fit help
introduction line-editing load
pause plot print
pwd quit replot

9

reread save set
shell show splot
startup substitution update
userdefined

Help topic:

At the help prompt, Help topic:, you can type any of the
listed topics. In this way you will be directed down a hierarchy
until you finally reach information on the specific command
you need. If you want information on a specific command,
say set data style, you can type

gnuplot> help set data style

MEnet maintains the gnuplot manual on the web at
http://www.menet.umn.edu/docs/gnuplot.html. This
manual consists of the online help in HTML format.
The folks at Dartmouth (where gnuplot got its start)
also maintain a web-page with assorted gnuplot informa-
tion, http://www.cs.dartmouth.edu/gnuplot_info.html.
There you will find mailing lists, FAQ’s, and tutorials. As
mentioned in the gnuplot help, gnuplot also has its own
USENET group, comp.graphics.gnuplot.

Summary of Commands

Operators

Symbol Example Explanation
- -a unary minus
~ ~a one’s complement
! !a logical negation
! a! factorial
** a**b exponentiation
* a*b multiplication
/ a/b division
% a%b modulo
+ a+b addition
- a-b subtraction
== a==b equality
!= a!=b inequality
& a&b bitwise AND
^ a^b bitwise exclusive OR
| a|b bitwise inclusive OR
&& a&&b logical AND
|| a||b logical OR
?: a?b:c ternary operation

Functions

abs absolute value
arg phase of a complex number
floor largest integer not greater
ceil smallest integer that is not less
int truncation to form integer
rand random number [0:1], using a seed
real real part of complex number

imag imaginary part of a complex number

sin sine (argument in radians)
cos cosine (argument in radians)
tan tangent (argument in radians)

asin inverse sine in radians
acos inverse cosine in radians
atan inverse tangent in radians

sinh hyperbolic sine (arg in radians)
cosh hyperbolic cosine (arg in radians)
tanh hyperbolic tangent (arg in radians)

sqrt square root
log log base e
log10 log base 10
exp exponential function, e**(x)

sgn sign of the argument (-1,0,1)
erf error function
erfc 1.0 - erf(x)
inverf inverse error function
gamma gamma function
igamma incomplete gamma function
ibeta incomplete beta function
norm the normal distribution function
inorm

besj0 j0th Bessel function of its arg
besj1 j1st Bessel function of its arg
besy0 y0th Bessel function of its arg
besy1 y1st Bessel function of its arg

Format Parameters

Use the set <parameter> ... to access these parameters.

Axis Ranges and Scales

xrange the x, y, z axis ranges
yrange
zrange
autoscale (un)sets autoscaling for axis
noautoscale
logscale (un)set log scaling for axis
nologscale

Labels

xlabel x, y and z axis labeling
ylabel
zlabel
label arbitrary label anywhere on plot
nolabel turns off labeling

10

title plot title (top)
time plot time (lower left)
arrow draw arrow on plot
noarrow remove arrow from plot
key position of line labels
nokey no line labels

Parametric Plots

parametric (un)set parametric plots
noparametric
dummy rename parametric dummy variable
trange range for 2D parametric
urange ranges for 3D parametric
vrange

Polar Plots

polar (un)set polar plotting
nopolar
rrange radial range for polar plots
angles angular range

3D Plots

ticslevel relative scaling of z-axis
surface 3D mesh plotting
nosurface no 3D mesh
hidden3d hidden line removal for surfacing
contour plot contours on surfaces
cntrparam contouring parameters
isosamples isoline density on surface
dgrid3d (no) gridded data
view 3D viewpoint
clabel (un)label contours
noclabel
mapping coordinate system (cartesian, etc.)

Reference Lines

xzeroaxis marks zero of axis with
yzeroaxis dotted line
zeroaxis
noxzeroaxis unsets marking of zero axes
noyzeroaxis
nozeroaxis
grid grid lines at each tic

Tics and Scales

tics direction of tics (in or out)
xtics set number of tics on axis
ytics
ztics
noxtics remove tics (scales)

noytics
noztics
format set format of tic-mark labels

xmtics label tics with months rather
ymtics than numbers
zmtics
noxmtics unset month tic labeling
noymtics
nozmtics

xdtics label tics with days rather
ydtics than numbers
zdtics
noxdtics unset day tic labeling
noydtics
nozdtics

General

border rectangular border around plot
noborder eliminate border
data style set line/point-style for data
function style set line/point-style for functions
boxwidth width of boxes in data style
clip (un)set clipping near borders
noclip
size changes physical plot dimensions
offset offset plot in window
samples number of samples for functions
output set output display or device
terminal set graphics device

11

