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Abstract—Subgridding methods are often used to increase
the efficiency of the wave propagation simulation with the Fi-
nite-Difference Time-Domain method. However, the majority
of contemporary subgridding techniques have two important
drawbacks: the difficulty in accommodating dispersive media
and the inability for physical interfaces to cross the subgridding
interface. This paper presents an extension of the frequency-de-
pendent Huygens subgridding method from one dimension to
three dimensions. Frequency dependency is implemented via
the Auxiliary Differential Equation approach using the one-pole
Debye relaxation model. Numerical experiments indicate that
subgridding interfaces can be placed in various Debye media as
well as across the physical interface.

Index Terms—Computational electromagnetics, electromag-
netic fields, electromagnetic modeling, finite difference methods,
multigrid methods, numerical simulation.

I. INTRODUCTION

M ODERN engineering problems grow in size and at the
same time require precise knowledge about electro-

magnetic behavior within a fine geometry. Prior to prototyping,
electromagnetic field distribution is identified using numerical
simulation techniques such as the Finite-Difference Time-Do-
main (FDTD) method. A precise FDTD simulation requires
a high spatial resolution. Wavelengths of interest must be
sampled by at least 10 grid cells, while the time-step must be
small enough to satisfy the Courant–Friedrichs–Lewy (CFL)
stability condition [1]. Therefore, the FDTD solution of a
realistic problem is usually computationally expensive.
Subgridding techniques can significantly reduce the compu-

tational burden and enlarge the application domain of the FDTD
method. This is the purpose of the present paper, devoted to the
extension of the Huygens subgridding method to frequency-de-
pendent media.
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Inclusion of material dispersion into FDTD simulations is of
growing importance. In broadband systems, the dielectric pa-
rameters of a medium are functions of frequency [2]. Autho-
rized, license-free use of the ultrawideband (UWB) signal [3]
has stimulated a rapid development of UWB applications such
as biomedical and through-wall imaging, positioning systems,
ground penetrating radars, and remote monitoring.
Subgridding methods increase computational efficiency by

decomposing the simulation domain into several separate do-
mains with different temporal and spatial increments. Subgrid-
ding allows the system to obey the CFL condition in each grid
independently. Subgridding techniques may be divided into two
major groups: usual and hybrid subgridding. In usual subgrid-
ding, the simulation domain is composed of FDTD volumes
with different spatio-temporal increments. Subgridding inter-
face acts as a boundary condition of both grids, where main
grid components are interpolated and subgrid components are
extrapolated prior to conventional FDTD updates. Hybrid sub-
gridding uses a combination of the FDTD method and the Fi-
nite Element Method (FEM). The FDTD method discretizes the
main grid, while the entire subgrid or only an interface region is
constructed with finite elements (FEs). In hybrid subgridding,
small spatial steps can be used with large temporal steps in the
FE region. Application of large temporal steps throughout the
main and subgrids allows avoidance of temporal interpolation.
Stability and material traversal are two weak points of most

modern subgridding algorithms. Due to different numerical dis-
persion in the main and subgrids, and imperfect spatial interpo-
lation at the interface, many subgridding methods suffer from
instabilities. Material traversing subgridding [4]–[6] enables di-
electric media to cross the subgrid and especially the subgrid-
ding interface. Very few subgridding algorithms allow mate-
rial traversal because materials crossing the subgridding inter-
face may create additional interface reflection and instability.
Collocated subgridding can be used [4], where only magnetic
field components have to be interpolated on the interface. The
main grid and the subgrid share the electric field. In this way,
collocated subgridding allows nonmagnetic material crossing.
Subgridding with domain overriding [5] use the overlapping re-
gion to eliminate and enforce the dielectric material parameters
traversing the interface. Material traversal can be enabled by
extending the subgridding approach to Lorentz–Drude material
model [6].
Human-body applications of subgridding methods remain

scarce. Subgridding with the highest ratio of 7 was used for the
dosimetry in the inner ear [7].
Reference [8] studied electromagnetic wave propagation in

the interstitial applicators used in bone cancer treatment.
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Reference [9] simulated current distribution inside the human
torso expressing dispersive materials with reluctivity, electric
conductivity, and permittivity.
Huygens subgridding (HSG) is one of relatively new and

promising subgridding methods [10]–[12] in the category of
usual subgridding. Reference [13] has proposed Huygens Sub-
gridding for the Frequency-Dependent Finite-Difference Time-
Domain (HSG–FD–FDTD) method in one dimension (1-D) and
applied it with the subgridding ratio of 15 to a wave propagation
problem in the human torso. However, practical electromagnetic
problems are three-dimensional (3-D) and cannot be properly
represented in a 1-D simulation.
Objectives of this paper are: 1) extension of the

HSG–FD–FDTD [13] method from 1-D to 3-D, and 2) appli-
cation of the 3-D HSG–FD–FDTD algorithm to calculate the
wave propagation inside the human torso.

II. FREQUENCY-DEPENDENT–FINITE-DIFFERENCE
TIME-DOMAIN METHOD

Based on Taylor series expansion, the Frequency-Depen-
dent Finite-Difference Time-Domain (FD–FDTD) algorithm
approximates the derivatives of Maxwell’s equations with the
central difference operations. Electric flux density is derived
from the source-free Ampère’s law

(1)

where and denote the electric flux density and themagnetic
field, while is time.
The electric field is obtained from the constitutive expression

for the electric flux density. This intermediate calculation step is
called the Auxiliary Differential Equation (ADE) approach and
allows incorporation of frequency dependency into the original
FDTD method

(2)

where , , , , are the electric permittivities: generic,
relative, vacuum, relative static, and relative optical. Symbols

, , , stand for the electric field, electric conductivity,
imaginary unit, angular frequency, and the relaxation time, re-
spectively. The expression in parentheses in (2) is the one-pole
Debye relaxation model that presents the relative electric per-
mittivity as a frequency-dependent complex number.
After multiplication and grouping the and terms,

(2) becomes

(3)
Taking into account the time dependence of , (3) trans-
forms into

(4)
Approximating the time derivatives with finite differences and
expressing from (4) yields the final form of the ADE used in
the FD–FDTD method.

is obtained from the source-free Faraday’s law and the
constitutive expression

(5)

where and denote the magnetic flux density and magnetic
permeability.
In summary, the FD–FDTD method solves the discretized

versions of (1), (4), and (5) on a spatial grid in time domain
following the calculation order of .

III. HUYGENS SUBGRIDDING PRINCIPLES

HSG has multiple advantages over conventional subgridding
algorithms. Instead of direct connection between the main and
the subgrids, HSG operates by means of equivalent currents
flowing through Huygens surfaces (HSs). In contrast to normal
subgridding techniques, which suffer from spurious interface re-
flection due to an abrupt change of the mesh size, application of
HSs dramatically reduces the spurious interface reflection and
removes the need for field extrapolation at the interfaces [12].
In HSG, the subgridding ratio is defined as

, where , denote the spatial and temporal steps,
and indices , stand for the main and the subgrid. Distinct tem-
poral steps , allow each calculation domain to maintain
its own stability condition. The only serious drawback of HSG is
the instability. However, the introduction of low-pass filters [10]
to the process at the interface between the main grid and the sub-
grid can make HSG stable.
The core idea of HSG is the presentation of the original

problem domain as a collection of artificial equivalent domains.
HSG decomposes the physical problem into a main domain and
one or several subdomains.
Recall the equivalence theorem. Consider a spatial domain

that consists of two parts separated by a surface. The equiva-
lence theorem states that an electromagnetic field generated by
the sources in one part of the domain can be reproduced in the
other part of the domain by impressing the electric and magnetic
currents , onto the separating surface

(6)

where , are the electric and magnetic fields that would
exist on the separating surface if the sources were present and
was a unit vector normal to the surface, directed opposite to

the sources. The surface upon which the equivalent currents are
flowing is called a Huygens surface.
Inner Huygens surface (IS) and outer Huygens surface (OS)

transfer electromagnetic signals between the main and the sub-
grids. Fig. 1 shows the OS and IS individually and combined.
For simplicity, in Fig. 1, the OS and IS are represented as
spheres. Both the OS and IS can be viewed as two independent
spheres of the equivalence theorem. The OS sphere radiates the
electromagnetic fields from inside out, and the IS sphere from
outside in. The OS and IS spheres combined implement the
OS–IS interface, which passes electromagnetic fields between
the main and the subgrid domains. See [10] for a detailed
explanation of HSs.
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Fig. 1. HSG principles. The leftmost and the central spheres represent the outer
and the inner Huygens surfaces (OS, IS) depicted separately. The rightmost
hemisphere shows the IS inside of the OS. Outward-directed arrows show the
equivalent current flowing from the sub- to the main grid. Inward-pointing ar-
rows depict the equivalent current flowing from the main to the subgrid.

A. Inner Surface Equations

At each subgrid FDTD iteration, after the regular update of
the electric flux density , an equivalent current is injected
onto the values at IS. influences by means of [14]

(7)

where the IS node lies in the FDTD cell located closest to the IS.
The tilde on top of denotes the temporal interpolation de-
scribed in [10]–[12]. The sign preceding depends
on the spatial location of the given component relative to the IS
and is governed by the Total-Field/Scattered-Field (TF/SF) ap-
proach [14]. Equation (7) only applies to an IS perpendicular to
the -direction. Similar equations are used for IS perpendicular
to - and -axes, which update and .

at the IS is calculated immediately after is updated.
The influence equation for at the IS remains unchanged in

comparison to the frequency-independent HSG [10]–[12]. For
example, (8) shows the influence on the on the IS
normal to

(8)

B. Outer Surface Equations

Since the subgrid values overlap with the main grid points
in space and time, no spatial or temporal extrapolations are re-
quired in the OS influence, which remain unchanged relative to
the frequency-independent HSG [10]–[12]. For example,
and on the OS perpendicular to are advanced,

(9)

(10)

where the OS node lies in the FDTD cell located closest to
the OS. Equations for the field components in the - and
-directions are obtained in a similar manner. values are
calculated using (4) immediately after the values were
updated in (9).

TABLE I
MEDIA PARAMETERS FOR THE ONE-POLE DEBYE MODEL

IV. NUMERICAL RESULTS

A variety of testing scenarios were designed to verify HSG
performance in dispersive media. The stability and accuracy of
the HSG were examined in artificial settings as well as in a re-
alistic scenario. Also, the computational efficiency of the HSG
with was compared to an all-fine-grid FDTD method.

A. Simulation Settings for Basic Accuracy Tests

All tests were launched with a subgridding ratio of 5. No
low-pass filtering was used in the HSG. A perfectly matched
layer (PML) of 10 and 6 cells bounded the simulation domains
in the main and the subgrid regions, respectively. The main and
the subgrids without the PML comprised 60 and 121 grid
points. The volume within the inner surface occupied 16 cells
of the main grid. Simulations were performed for 2000 time-
steps unless stated otherwise. Spatial and temporal steps were

mm and mm and ps and
ps.

In this paper, the HSG and the FDTD signify the fre-
quency-dependent HSG–FDTD and the frequency-dependent
FDTD methods, respectively. The main and the subgrid de-
note the main and the subgrid regions of the HSG, while the
words “coarse” and “fine” grids refer to the FDTD methods
comprising all coarse and all fine cells.
Highest frequency of interest is 6 GHz, given a 20-dB

threshold value of the frequency spectrum of the excitation. Cal-
culated as , the spatial resolution of the main
and the coarse grids corresponds to 5, and the sub- and the fine
grids to 25 elements per wavelength. Symbol in the above ex-
pression denotes the speed of light propagation in vacuum.
-directed soft point source [2] was used for excitation.

An excitation waveform is defined by means of the following
Gaussian pulse: . In all experiments
reported in Section IV, equals 6 GHz.
Media parameters for the Debye model used in the basic sce-

narios are listed in Table I. The media parameters for all human
tissues, which are used in Section IV-D, are presented in [15].
In this paper, the Air, Fat and Bone media are called the weak

Debye media as their conductivity is lower than the conduc-
tivity of the Heart or Muscle. The Heart and Muscle tissues are
referred to as the strong Debye media.

B. Basic Accuracy Tests

Fig. 2 shows a generic setting for the basic accuracy tests of
Scenarios 1–3. Scenario settings of these three cases are pre-
sented in Table II. Symbols P1 and P2 in Table II denote the
points 1 and 2 in Fig. 2. The Cartesian coordinates of the points 1
and 2 are (15, 40, 40) and (40, 40, 40), respectively.
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Fig. 2. Cross-section of Scenarios 1–3 at the plane . Dotted lines
denote the outer and inner Huygens surfaces (OS, IS). Symbol “o” marks the
locations of interest at points 1 and 2. Scenarios 1–3 are symmetric relative to
the centre line. Cross section at the plane is the same as presented here.

Fig. 3. Time domain observation at P2 in Scenario 1. “Coarse” and “Fine”
denote the signals obtained with the FDTD method on the all-coarse and the
all-fine grids. Instability in the HSG is observed at approximately .

TABLE II
RADIO ENVIRONMENT SETTINGS OF SCENARIOS 1–3

1) HSG in the Air With the Main Grid Excitation: Scenario 1
is effectively the same as in [12, Fig. 9] in that the IS and OS
are placed in the free space. Fig. 3 presents obtained with
the HSG, the FDTD on the all-coarse grid, and the FDTD on
the all-fine grid. The mesh sizes of the coarse and fine grids are
the same as those of the main and subgrids of the HSG.
The HSG signal matches the fine grid signal very well, be-

cause the Heart is in the subgrid of the HSG. Conversely, the
highest frequencies of the coarse grid signal cannot properly
propagate in the Heart, which resides in the coarse grid. There-
fore the coarse grid simulation produces an erroneous signal,
seen in Fig. 3. Good matching between the HSG and the fine
grid signals confirms that the HSG behaves the same way as
in [12].

Fig. 4. Frequency domain observation at P2 in Scenario 2. In time domain, no
instability is visible during the entire simulation of 2000 time-steps.

Fig. 5. Frequency domain observation at P1 in Scenario 3. In time domain, no
instability is visible during the entire simulation time of 2000 time-steps.

2) HSG in the Homogeneous Dispersive Medium With the
Main Grid Excitation: Scenario 2 Table II illustrates the HSG
performance when the OS–IS interface is placed in a dispersive
medium. The signal travels through Air toward the subgrid re-
gion and first enters a weak Debye medium and then a strong
Debye medium.
Results in frequency domain are plotted in Fig. 4. The fine

and the coarse grid results are substantially different. This is
because the highest frequencies of the signal cannot be sampled
properly by the coarse mesh in the Heart medium. Conversely,
a good matching is observed between the HSG signal and the
fine grid signal because the Heart is within the subgrid of the
HSG calculation.
The difference at the highest frequencies is explained by the

wave propagation in the Fat medium, which lies in the main grid
of the HSG, outside the OS. Fig. 4 shows the advantage of using
the HSG. Applying the fine grid only in the subgrid region of the
HSG allows us to obtain a result comparable to the one achieved
using a fine grid in the entire computational domain.
3) HSG in the Homogeneous Dispersive Medium With the

Subgrid Excitation: Scenario 3 is the opposite of Scenario 2
with the excitation source placed at P2 in the Heart and the ob-
servation at P1 in the Air. Fig. 5 shows the observation results.
As expected, the signals in Fig. 5 resemble the signals in Fig. 4.
The good matching of the HSG signal with the fine grid signal
is preserved.
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Fig. 6. Cross section of Scenario 4 at the plane . The OS–IS interface
is placed in the Fat, Bone, and Muscle media. Symbols “*” and “o” denote the
excitation and the observation locations, respectively.

Fig. 7. Time-domain observation of Scenario 4. Close matching between the
HSG and the fine grid signals is observed. A small drift of the HSG from the fine
grid signal is explained by the initial wave propagation in the main grid inside
the Air and Fat media. No instability is visible over the entire simulation time.

4) HSG in the Inhomogeneous Dispersive Media With Main
Grid Excitation: Scenario 4, shown in Fig. 6, offers a more
realistic setting of the radio environment. Four dispersive
media compose the subgrid. The Fat, Bone, and Muscle tissues
cross the HSs, while the Heart occupies the entire subgrid. This
test supports the correct HSG behavior when multiple different
media intersect the HSs. Fig. 7 shows a good matching between
the HSG and the fine grid signals.

C. Stability

The HSG method in the Air is unstable. The instability be-
comes visible after several thousands of time-steps [12]. Based
on the previous experimental results from the Scenarios 1–4
and [13], a hypothesis arises that dispersive media contribute
to a better HSG stability. A strong dispersive medium delays
the visibility of the native HSG instability.
Scenario 5 tests the effect of of the Debye medium on the

overall stability of the dispersive HSG simulation. The setting
of Scenario 5 is depicted in Fig. 8. Domain sizes of 46 and 63
were applied to the main and the subgrids. The simulation was
run for 10 . The spatial and temporal steps were

Fig. 8. Cross section of Scenario 5 at the plane . Scenario 5 is sym-
metric relative to the center line. Cross section at the plane is the same
as presented here.

Fig. 9. Time-domain observation of Scenario 5. The cases when and
, where is 2, 0, and 2, are plotted. In case of , the

signal diverges after approximately 170 000 time-steps.

mm, mm, and ps,
ps.

The Fat tissue was taken for a basis medium (see Table I
and [15] for the exact values of the media parameters). The ex-
periments were performed with a modified of Fat given by

[S/m] and [S/m], where was an in-
teger varied from 1 to 1. This constituted four test cases with
the constant values of , , , and the changing value of .
Only the case when corresponded to the real Fat tissue,
while the other three cases resulted in the wave propagation in
an artificial medium.
The results shown in Fig. 9 support the aforementioned hy-

pothesis—no instability growth was observed in the HSG when
a nonzero electric conductivity is applied. Most likely, minor
amplitude fluctuations after the main peaks (at time

) are attributed to numerical noise. The case when
diverged after approximately .

D. Accuracy in the Realistic Scenario

1) Defibrillation Simulation: Current resuscitation guide-
lines [16] pose the need for in-depth research on defibrillators,
aimed at increasing the defibrillation success rate. Successful
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Fig. 10. Human torso with the heart and two defibrillator pads placed antero-
posteriorly.

defibrillation depends on many factors: current level, defib-
rillator waveform, electrode size, shape and position, and
transthoracic impedance. Practical tests of defibrillators are
difficult and inhumane. On the other hand, an efficient elec-
tromagnetic wave propagation solver becomes a versatile tool
for defibrillator optimization. The HSG method can be applied
to simulate electromagnetic waves propagating from the de-
fibrillator pads through the human body. Multiple defibrillator
parameters can be optimized with a numerical simulation of the
wave propagation in a digital human phantom. The HSG will
provide a high mesh resolution throughout the heart and a low
one throughout the torso, resulting in the sufficiently accurate
solution.
2) Simulation Settings: The digital human phantom (DHP)

used in this scenario was provided by RIKEN (Saitama, Japan).
The usage was approved by the RIKEN ethical committee.
The original spatial resolution of the DHP was 1 mm. The
phantom consisted of 53 distinct tissues. For the HSG compu-
tations, the main grid size was 81 106 182 cells, and the
subgrid size was 182 193 171 cells. These sizes include
the four- and six-points-thick PML terminating the main and
the subgrids, respectively. The torso lay entirely within the
main grid, with several cells of Air in between the torso and
the surrounding PML. In the subgrid, the Heart lay entirely
within the IS. Ranges of the actual FDTD domains were

in the main
grid and in
the subgrid.
The spatial steps were mm, mm, and the

temporal were ps, ps. For compar-
ison, the wave propagation inside the human torso was also sim-
ulated with the FDTD method using the all-coarse and all-fine
grids.
Two defibrillator pads were placed on the torso, one at the

front and one at the rear as illustrated in Fig. 10. The size of
each defibrillator pad equaled to 7.5 10 cm . Scenario setting

Fig. 11. Human torso, scenario setting. (a) Human torso with the defibrillator
pads placed anteroposteriorly. Human torso, scenario setting in 1-D as viewed
by the main grid of the HSG. Observation point is in the middle of the heart.
Rectangular pads , where present, coincide with locations of the skin. Numer-
ical values are given in the main grid units. (b) Human body tissues between the
defibrillator pads on the line crossing the heart at , ,

as viewed by the all-coarse grid. Dotted lines denote the OS–IS loca-
tions in the main grid of the HSG. Following abbreviations are used: S—Skin,
F—Fat, M—Muscle, L—Lung, H—Heart, and B—Bone. Numbers specify the
tissue thickness in the main grid units. (c) Human body tissues between the de-
fibrillator pads on the line crossing the heart at , ,

as viewed by the all-fine grid. Dotted lines denote the OS–IS lo-
cations in the subgrid of the HSG. Following abbreviations are used: S—Skin,
F—Fat, M—Muscle, L—Lung, H—Heart, and B—Bone. Numbers specify the
tissue thickness in the subgrid units.

on the cross-section line , , is
presented in Fig. 11, where Fig. 11(a) gives a general scenario
overview, Fig. 11(b) shows the all-coarse grid, and Fig. 11(c)
depicts the all-fine grid views of the setting.
Points on each pad were excited in-phase, while both pads

were excited anti-phase. The excitation waveform was a
Gaussian pulse defined in Section IV-A. The simulation was
performed for 10 .
The Skin was situated in the main grid. The width of the Skin

in the human phantom constituted 1 mm, which corresponded
to one or one fifth of . Therefore, Debye parameters
of the Skin medium for the main grid of the HSG were divided
by 5. This would be rigorous if the constitutive parameters of
the medium were independent of frequency. However, with the
frequency-dependent media, this is only an approximation. A
rigorous approach to take account of the Debye medium thinner
than the cell size would be the generalization of the formalisms
in [17] and [18]. This will be the outcome of future work.
3) Observation: Up to of received at in the

middle of the heart (see Fig. 11) is plotted in Fig. 12. A good
matching between the HSG and the fine grid signals is observed.
Fig. 13 shows in the frequency domain. The HSG signal
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Fig. 12. Time-domain observation at in themiddle of the heart (see Fig. 11).
The HSG signal matches the fine grid signal very well. No instability is visible
during the entire simulation time of 1000 time-steps.

Fig. 13. Frequency-domain observation at in the middle of the heart (see
Fig. 11).

preservedmost of the high-frequency components, which can be
observed with the all-fine grid simulation. On the other hand, the
all-coarse grid has lost a significant amount of high-frequency
components during the propagation. This happened because the
cutoff frequency of the coarse grid is five times lower than that
of the fine grid.

E. Error Estimation

The error between the HSG and the all-fine grid signals
was calculated in frequency domain as to

(11)

where and signify the frequency spectrum values at
the frequency obtained with the all-fine grid and the HSG.
Theminimum frequency in (11) was 0.5 GHz.When themax-

imum frequency is set to 6.0 GHz, the errors between the HSG
and the all-fine grid results were 1.32% in Scenario 1, 11.40%
in Scenario 2, 8.70% in Scenario 3, 8.87% in Scenario 4, and
2.63% in the Human Torso Scenario. When the maximum fre-
quency in (11) is set to 4.0 GHz, the errors were 0.38%, 4.20%,
4.54%, 2.83%, and 1.34%, respectively.

Fig. 14. CPU time and memory requirements of the HSG relative to the all-fine
grid.

TABLE III
COMPUTATIONAL REQUIREMENTS OF HSG

F. Computational Requirements

Computational requirements of the HSG were measured
using an Intel Xeon computer with 8 CPUs (E5620 at 2.4 GHz)
and 96 GB of memory running Scientific Linux 5.5. Here, the
main grid occupied 80 voxels, while the IS box, the part of the
subgrid within the IS, covered of the main grid domain.
The integer is varied from 1 to 6. The OS–IS separation was

. The PML was placed five cells away from the OS. In
both the main and the subgrid domains, the PML was 5 points
thick. Thus, the effective main grid size equaled 70 . The sub-
grid size was defined as .
The spatial and temporal steps were the same as in the basic

accuracy tests (see Section IV-A). The CPU time was mea-
sured after running , including the initialization time.
The computational requirements of the HSG are summarized in
Table III, where the all-coarse and the all-fine grid cases are de-
noted as and .
Fig. 14 is produced based on Table III. Abscissa signifies the

size of the IS box relative to the size of the main grid. The values
on abscissa are defined as the ratio . Ordinate
shows the CPU time and the memory requirements of the HSG
relative to the all-fine grid (case in Table III).
Extrapolation applied to Fig. 14 suggests that the HSG with

and the IS box of approximately 15% of the main grid
size reaches the CPU time requirements of the all-fine grid. The
HSG requires the same amount of memory as the all-fine grid in
the case where the IS box covers 45% of the main grid. Thus, the
HSG with outperforms the all-fine grid case, when the IS
box occupies less than 15% of the effective main grid domain.
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V. CONCLUSION AND FUTURE WORK

This paper presented an extension of the HSG–FD–FDTD
method from the one- to the three-dimensional case. Application
of the one-pole Debye relaxation model together with the HSG
provided a versatile tool for electromagnetic wave simulation in
dispersive materials.
The new 3-D HSG–FD–FDTD method was extensively

tested on various cases. The HSG method with a subgridding
ratio of 5 showed very good matching with the all-fine grid
FD–FDTD method. No instability was visible in the dispersive
HSG method during the 10 simulation time-steps. Finally, the
HSG with outperforms the all-fine grid case, when the IS
box occupies less than 15% of the main grid volume.
Future work will consist of: 1) the exploration of how permit-

tivity affects the general HSG stability; 2) the adaptation of
the Thin Slab method [17] for the correct calculation of media
parameters when the main grid cells are thicker than a given
medium; and 3) the application of the HSG method to calculate
the current density and the flow distribution in the human heart.
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