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Abstract—In uncertainty analysis, surrogate modelling tech-
niques demonstrate high efficiency and reliable precision in
estimating the uncertainty for the finite difference time domain
(FDTD) computation. However, building an accurate surrogate
model may require a considerable number of system simulations
which could be computationally expensive. To reduce such com-
putational cost to build an accurate model, a general framework
to build surrogate models for the FDTD computation in the
human body based on the least angle regression (LARS) method
and the artificial neural network (ANN) is proposed. The LARS
method is adapted to dynamically select a number of informative
random parameters which are significantly relevant to system
outputs. We design a series of convergence criteria for ANN and
introduce the adaptive moment estimation (ADAM) optimiser
to ANN in order to improve the computational efficiency and
accuracy of ANN. This is the first dynamic surrogate modelling
technique for the FDTD computation designed by taking both
accuracy and computational cost into account.

Index Terms—Bioelectromagnetics, biological tissues, least an-
gle regression (LARS), artificial neural network (ANN), finite
difference time domain (FDTD), Debye media, cross-validation,
uncertainty quantification (UQ).

I. INTRODUCTION

In computational electromagnetics (EM), the accuracy of the

numerical simulation is compromised by randomness which

may arise in various forms such as electrical parameters and

input sources [1]. Though the EM problems are usually treated

as deterministic, there exist many instances where some input

parameters of EM simulators cannot be strictly determined due

to limited knowledge about these parameters. The ambiguity

of input parameters causes a degree of uncertainty of system

responses. Therefore, we should discuss the possible uncer-

tainty together with the system response in order to increase

the reliability of numerical simulations.
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The uncertainty quantification (UQ) [2] techniques can be

utilised to estimate the uncertainty of the system responses.

However, considerable number of system simulations may be

required in order to achieve high accuracy in UQ. For some

computationally-intensive systems, such as the 3-dimensional

(3D) finite difference time domain (FDTD) simulations [3],

[4], performing such a large number of simulations can be

impractical. The surrogate modelling technique [5], [6], that

has emerged within the last decades, is effective in reduc-

ing the computational cost of UQ. This paper is concerned

with the construction of a surrogate model for computation

in electromagnetics. A surrogate model mimics the system

simulation based on the analysis of the relationship between

uncertain input parameters and the system response. An accu-

rate surrogate model is capable of emulating the response of a

system simulation while reducing the required computational

resources.

Many advanced surrogate modelling techniques, such as

the polynomial chaos expansion based methods [7], [8] and

Kriging method [9], have been proposed over recent decades,

each with their relative merits. For example, the work in [10]

proposes a surrogate modelling technique based on sparse

polynomial chaos (PC) expansion and the least angle regres-

sion (LARS) method [11]. It adopts the q-quasi-norms to

reduce the number of polynomials and then utilises the LARS

method to select significant polynomials from the remaining

polynomials. [12] carries out PC expansion and utilises the

LARS method to select significant polynomials and builds

a surrogate model based on the Kriging method using the

selected polynomials.

Machine learning techniques, such as the artificial neural

network (ANN) [13]–[16] and the support vector machine

(SVM) [17], are also widely applied to build surrogate models

for complex systems. For example, an ANN-based surrogate

modelling method in [18] adopts the SVM for sample se-

lection. [19] utilises a SVM to build a surrogate model of

electronic circuits. Though these surrogate modelling tech-

niques demonstrate powerful performance in solving their

specific problems, some challenges still remain. In general,

a surrogate model can be highly accurate when sufficient data

are available to train the surrogate model. However, generating

significant quantities of data requires a considerable number of

system simulations which can be computationally expensive.

For example, when the 3D FDTD method is applied for the

simulation of the wave propagating in the human body, a single
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2

system simulation may take hours to complete. Constructing

an accurate surrogate model while minimising the cost of

data generation is one of the challenges facing the surrogate

modelling techniques.

To alleviate this challenge, this paper proposes a general

framework to build a surrogate model for computation in

electromagnetics with the minimum cost of data generation

while maintaining the accuracy of the surrogate model. The

proposed technique is based on the LARS method and ANN.

The LARS method is a classical model selection method.

This method is employed to select significant input parameters

which are highly correlated with system output. The procedure

of the LARS method consists of a number of LARS iterations,

each of which selects one input parameter in the order of

significance. For example, the input parameter, selected at

the first LARS iteration, is considered the most significant

input parameter in the system. This paper aims to minimise

the number of generated data. We assume that there are very

limited input samples available to build the surrogate model.

However, the LARS method may not be able to accurately

identify the significances of input parameters due to the limited

number of input samples. Therefore, we propose a dynamic

LARS method to improve the accuracy of identification with-

out increasing the cost of data generation.

This dynamic LARS method is inspired by the leave-one-

out cross-validation (LOOCV) method [20]. We drop out one

set of input samples from a given dataset, with the remaining

sets of input samples utilised to run the LARS method to

obtain the significances of input parameters. This process is

repeated for a number of times by dropping out a different set

of input samples at each run and produces a set of results of

the significances of input parameters by the LARS method.

We determine the significance of each input parameter by the

majority of these results and build a surrogate model with a

certain number of significant input parameters and ANN.

An ANN learns from the loss function which measures

the error of the prediction of system output, and utilises an

optimiser to update the weights of ANN. The most popular op-

timiser is the gradient descent (GD) method [21]. It iteratively

updates the weights in ANN in order to minimise the loss

function. This paper adopts an adaptation of the GD method,

namely the adaptive moment estimation (ADAM) optimiser

[22], to update the weights of ANN. Comparing with the

conventional GD method, ADAM is more computationally-

efficient and has the potential to further improve the predictive

accuracy of the system output via ANN. The conventional

GD method utilises a single learning rate (LR) to update all

weights of an ANN, whereas the ADAM updates each weight

individually based on the LR, the average values and variances

of the gradients.

The remaining sections of this paper are as follows. Section

II describes the principles of the LARS method, the ANN

and the proposed method. Section III details the experiments

of building a surrogate model for FDTD simulation by the

proposed method. Section IV presents the results of the

predictions of FDTD output and evaluates the performance

of the proposed method from the viewpoints of the accuracy

and computational efficiency. Section V provides a conclusion.

II. METHODOLOGY

In FDTD calculations, the Debye model [23] or the Cole-

Cole model [24] is implemented to account for the frequency

dependency of each human tissue. The one-pole Debye model

is written as [25] D = ǫ0

[
ǫ∞ +

ǫS − ǫ∞

1 + ωτ
+

σS

ωǫ0

]
E, where

E is the electric field, D is the electric flux density, ǫ0 is

the permittivity of vacuum, ω is the angular frequency, 

is the imaginary unit satisfying  =
√
−1, σS is the static

conductivity, ǫ∞ is the optical relative permittivity, ǫS is the

static relative permittivity, and τ is the relaxation time. These

Debye parameters (σS , ǫ∞, ǫS , τ ) differ among people.

Such variation is taken into account by introducing uncer-

tainty. In the FDTD simulation, a certain number of Debye

parameters of interest ξ as the random input parameters used

to determine the system output of

|E|2 =
∑

l

(∣∣∣El
x(̂i, ĵ, k̂)

∣∣∣
2

+
∣∣∣El

y (̂i, ĵ, k̂)
∣∣∣
2

+
∣∣∣El

z (̂i, ĵ, k̂)
∣∣∣
2
)
,

(1)

at an observation location (̂i, ĵ, k̂), where l is the FDTD time

step. A surrogate model is effectively derived by running a

number of FDTD simulations for a given set M of N Debye

parameters of interest.

A. The least angle regression

The LARS method is a model-selection method [10]. It

selects the Debye parameters that highly correlate with FDTD

output. Normalisation of the Debye parameters is a prereq-

uisite prior to the application of the LARS method [26].

Let the vector ξ = [ξ1, ξ2, . . . , ξN ] be a combination of N
normalised Debye parameters of interest and the M × N
matrix X (M) =

{
ξn

(m),m = 1 ∼ M, n = 1 ∼ N
}

be an

input sample set consisting of M ξ(m), where ξ(m) indicates

the m-th sample of ξ.

We define the linear regression model as in

T
(
ξ(m)

)
=

N∑

n=1

anξn
(m) = ξ(m)a, (2)

where the vector a = [a1, · · · , aN ]
T

contains N coeffi-

cients of ξ. T (ξ(m)) is the predicted value of

∣∣∣E(m)
∣∣∣
2

and
∣∣∣E(m)

∣∣∣
2

is |E|2 obtained by the FDTD simulation using

ξ(m). The process of LARS method involves a number of

LARS iterations. At each LARS iteration, a is updated

resulting in the update of T (ξ(m)) in (2). Let T (k)(ξ(m))
be T (ξ(m)) at k-th LARS iteration and the vector T

(k) =[
T (k)(ξ(1)), · · · , T (k)(ξ(M))

]T
. At the start of the LARS

iteration process, a is initialised to 0. Thus, T (1)(ξ(m)) = 0.

We define C
(k) =

[
C1(k), C2(k), · · · , CN (k)

]T
as a vector of

the correlation between ξ and (E − T
(k)) calculated as in

C
(k) = X (M)

T
(E − T

(k)), (3)
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3

where E =

[∣∣∣E(1)
∣∣∣
2

, · · · ,
∣∣∣E(M)

∣∣∣
2
]T

and the difference

between E and T
(k) is called the residual vector at k-th LARS

iteration. Each element in C
(k), such as Cn(k), refers to the

correlation between ξn and the residual vector. When ñ(k)

satisfies

|Cñ(k)
(k)| = max

1≤n≤N
|Cn(k)|, (4)

ξñ(k) is chosen as the highest correlated Debye parameter

with the residual vector. |Cñ(k)
(k)| in (4) represents the ñ(k)-th

element of C in C whose absolute value is maximum among

{C1 . . . CN } at k-th LARS iteration. For example, when C3
is maximum at 5th LARS iteration, ñ(k) can be written as

ñ(5) = 3. At the k-th LARS iteration, a matrix X̂ (M)
is formed to represent the chosen ξ denoted as X̂ (M) ={
ξñ(k)

(m),m = 1 ∼M, ñ(k) ∈ [1,N ]
}

.

añ(k) of those chosen ξ at the k-th LARS iteration are

calculated as in [10]

â(k) = b(k) + γ ñ(k)

(
A
(
X̂ (M)T X̂ (M)

)−1

1

)
, (5)

where â(k) =
[
añ(k) , ñ(k) ∈ [1,N ]

]T
, and b(k) =[

bñ(k) , ñ(k) ∈ [1,N ]
]T

satisfying b(1) = 0. When k > 1,

b
ñ(k†) = a

ñ(k†) and bñ(k) , 0, where 1 ≤ k† ≤ k − 1 and

a
ñ(k†) ∈ â(k−1). A =

(
1

T
(
X̂ (M)

T
X̂ (M)

)−1

1

)− 1
2

, and

1 is a k × 1 vector of 1. γ ñ(k) is calculated as follows [10]

γ ñ(k) = min+
{ |Cñ(k) | − Cñ(k)

A− b̂ñ(k)

,
|Cñ(k) |+ Cñ(k)

A+ b̂ñ(k)

}
, (6)

where ”min+” indicates that γ ñ(k) only takes the positive

minimum component in (6), and b̂ñ(k) is the ñ(k)-th element

of X (M)T
(
AX̂ (M)

(
X̂ (M)T X̂ (M)

)−1

1

)
.

The number of elements in â increases with the progress of

the LARS iteration, and (5) practically calculates the value

of the element in a. For example, during the first LARS

iteration, â contains one element of añ(1) , and a in (2)

becomes a = [0, · · · , 0, añ(1) , 0, · · · , 0]T . We use the set Φ to

store añ(k)ξñ(k) as in Φ =
[
añ(k)ξñ(k) , ñ(k) ∈ [1,N ]

]
and the

set Λ to store ñ(k) as in

Λ =
[
ñ(k), ñ(k) ∈ [1,N ]

]
, (7)

where the number of elements in Λ and Φ increases as the

number of LARS iteration increases. The next step of the

LARS iteration is the update of T (k) given by

T
(k+1) = T

(k) + γ ñ(k)

(
AX̂ (M)

(
X̂ (M)T X̂ (M)

)−1

1

)
.

Such a process of determining añ(k)ξñ(k) , adding it into

Φ, and updating T (k)(ξ(m)) is called a LARS iteration. The

maximum number of the LARS iteration equals N , in which

case all ξ are incorporated in Φ.

B. The artificial neural network

The traditional ANN [14], [15] is adapted to build a surro-

gate model for the FDTD computation, where the input and the

output are the Debye parameters of interest and the prediction

of |E|2, respectively. We elaborate the ANN with the 1st-
hidden layer with G1 neurons and 2nd-hidden layer with G2

neurons. Three adaptations are introduced to the traditional

ANN:

1) Activation function:

The activation function (AF) of

fp (Ri) = Ri +Ri ⊙Ri, for i = 1, 2 (8)

has the potential to enable the ANN to effectively learn

the data from the FDTD computation [27], where R1 =
X (M)W1 and R2 = fp (X (M)W1) ·W2 are the inputs

of the 1st-hidden layer and 2nd-hidden layer, respectively,

and they are converted to fp (Ri) as the output of the i-

th hidden layer, for i = 1, 2. Note that the operation in

(8) is performed in the element-wise way. For example, the

calculation of fp (R1) is written as fp (R1) = R1 + R1 ⊙
R1 =

{
R1(mg1)

+
(
R1(mg1)

)2

,m = 1 ∼M, g1 = 1 ∼ G1

}
.

2) Weights update:

The training process of an ANN consists of a number of

iterations, each of which updates the weights of ANN in

order to minimise the training error Ltr =
1

M
∣∣∣
∣∣∣Ê − E

∣∣∣
∣∣∣
2

=

1

M
M∑

m=1

(
Ê

(m) −
∣∣∣E(m)

∣∣∣
2
)2

, where ||·|| is the Frobenius

norm [28] and the vector Ê =

[
Ê

(1)
, · · · , Ê(M)

]T
contains

M predictions of |E|2 via ANN corresponding to theM |E|2
from the FDTD simulations. Ltr is calculated at the end of

each ANN iteration. For this two-hidden layer ANN, Ê is

calculated as in

Ê = fp (fp (X (M)W1) ·W2) ·W3, (9)

where matrix W1 = {W1(ng1)
, n = 1 ∼ N , g1 = 1 ∼

G1} and matrix W2 = {W2(g1g2)
, g1 = 1 ∼ G1, g2 =

1 ∼ G2} are the weights between the input layer and the

1st-hidden layer and those between the 1st-hidden layer

and the 2nd-hidden layer, respectively. The vector W3 =[
W3(1) ,W3(2) , . . . ,W3(G2)

]T
consists of the weights between

the 2nd-hidden layer and the output layer. The process of

weights-update is generally based on the GD method. We

hereby replace the GD method with the ADAM optimiser

because the weights of ANN tend to converge more quickly

with the ADAM optimiser than with the GD method, and the

ADAM potentially improves the accuracy of ANN [22].

3) Termination criteria of the training process of ANN:

Traditionally, the ANN iteration is terminated when Ltr

becomes stable. However, this way of termination may incur

overfitting [29], whereby the trained ANN fails to generalise

the relationship between the input Debye parameters and the

FDTD output. When overfitting occurs, the trained ANN can-

not accurately provide predictions for those data which are not

utilised in the training. To terminate the ANN iteration while
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4

decreasing the risk of overfitting, the following convergence

criterion is proposed:
√√√√√√√√√√

3∑

i=1

∣∣∣
∣∣∣W i

(j+1) −W i
(j)

∣∣∣
∣∣∣
2

3∑

i=1

∣∣∣
∣∣∣W i

(j)
∣∣∣
∣∣∣
2

≤ ρ, (10)

where ρ is a small constant. W i
(j) for i = 1 ∼ 3 are the

weights of this two-hidden layer ANN at j-th ANN iteration.

We apply (10) to detect the change of weights with the ANN

iteration. When (10) is met, the accuracy of ANN may not

be improved with the further increase of the number of ANN

iterations, leading to the risk of overfitting.

C. Leave-one-out cross-validation method

When the ANN iteration is terminated, we obtain W i
(j)

for i = 1 ∼ 3 as the ANN model. The accuracy of the ANN

model can be evaluated by the LOOCV method. Given an

input dataset X (M), we split X (M) into training and test

data. The training data are used to train the ANN and obtain

W i
(j) for i = 1 ∼ 3 as the trained ANN model. The test data

are used to estimate the accuracy of the trained ANN model.

We choose one ξ(m) from X (M) as the test data denoted

as X ts , {ξ(m), m ∈ [1,M]}, and utilise the remaining

data of X (Mtr) as the training data to train the ANN, where

Mtr = (M− 1) and X (Mtr)
⋃
X ts = X (M). When we

use X ts = {ξ(m)} as an input to the trained ANN model, the

test error Lts
(m) is calculated as

Lts
(m) =

(
Êts

(m) −
∣∣∣E(m)

∣∣∣
2
)2

, (11)

where Êts

(m)
is the output of the trained ANN model calcu-

lated as in Êts

(m)
= fp

(
fp

(
X tsW1

(j)
)
·W2

(j)
)
·W3

(j)

using W i
(j) for i = 1 ∼ 3 obtained from the training.

We call the process of training the ANN using X (Mtr)
and calculating Lts

(m) as a leave-one-out (LOO) iteration.

Scanning m from 1 toM, there areM LOO iterations in total.

After the M LOO iterations, the LOO error Ll is calculated

as in

Ll =
1

M
M∑

m=1

Lts
(m). (12)

D. The linear leave-one-out cross-validation method

The regression analysis is a linear regression when the

model can be expressed by a summation of a set of terms.

For example, the LARS method is a linear regression method

because the regression model T (ξ(m)) in (2) is the summation

of N terms of anξn
(m). When the LOOCV method is used in

the linear regression analysis, the LOO error can be calculated

by a more computationally-efficient procedure [10] than the

conventional LOOCV method described in Section II-C. We

call the computationally-efficient LOOCV method for the lin-

ear regression as linear LOOCV method in order to distinguish

it from the conventional LOOCV method. The linear LOOCV

method is hereby adopted to estimate the accuracy of the

LARS method. The linear LOO error Lln of T (ξ(m)) in (2)

is calculated as follows:

Lln =
1

M
M∑

m=1




∣∣∣E(m)
∣∣∣
2

− T (ξ(m))

1− hm




2

, (13)

where hm is the m-th diagonal element of a M×M matrix

X̂ (M)
(
X̂ (M)

T
X̂ (M)

)−1

X̂ (M)
T

[10].

E. Modelling FDTD computation

The surrogate model proposed hereafter is based on the

LARS and ANN methods. It consists of two stages of dropout

and modelling.

1) Dropout:

In general, various criteria are introduced to the LARS

method in order to terminate the LARS iteration. In our pro-

posed method, we run through all N LARS iterations without

any stopping criteria. Thus, Λ in (7) contains N elements

when a LARS run completes. The indexes of elements in

Λ indicate the significances of correlation between Debye

parameters and the residual vector. For example, when the

first element (Λ1) of Λ is 6, ξ6 has the highest correlation

with the residual vector, and thus we regard ξ6 as the most

significant Debye parameter.

The LARS method may not be accurate in identifying the

significances of correlation between the Debye parameters and

residual vector when we use only one dataset. The order of

significance of Debye parameters may change with a different

dataset. In order to improve the accuracy of the conventional

LARS method, a dynamic LARS method is implemented.

For a given number M of samples, the LARS algorithm is

successively run usingM−1 samples by removing ξ(m) from

X (M) and utilising the remaining data of X (Mre) to run

the LARS method, whereMre =M−1, X (Mre)
⋃
X dp =

X (M), and X dp , {ξ(m), m ∈ [1,M]}. When the LARS

method completes all N iterations, Λ contains N elements

presented as in Λ = [Λ1,Λ2, · · · ,ΛN ]. Let Λ(m) be Λ when

ξ(m) is treated as the dropped data X dp, and Λ
(0) indicates

that none of ξ(m) is dropped from X (M) and the entire

dataset is utilised to run the LARS method. We use top

(N − P ) significant Debye parameters to build a surrogate

model using an ANN as follows:

(a) Obtain Λ
(0) by the LARS method as described in Section

II-A using X (M) and calculate Lln
(0) in (13), where

Lln
(0) is Lln in (13) when P = 0, which is the LOO

error of T (ξ(m)) when we do not remove any Debye

parameter.

(b) Split X (M) into two parts of X (Mre) and X dp. Scan-

ning m from 1 to M, obtain Λ
(m) using the LARS

method as described in Section II-A by replacing X (M)
with X (Mre).

(c) Select the last P elements of Λ
(m) obtained

from Step(a) and Step(b) for 0 ≤ m ≤ M.

These selected elements are presented as in
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5

[Λ(N − P + 1, 0), Λ(N − P + 2, 0), · · · ,Λ(N , 0),
Λ(N − P + 1, 1), · · · ,Λ(N , 1), · · · ,Λ(N ,M)],
where Λ(i,m) is the i-th element of Λ

(m) for

N − P + 1 ≤ i ≤ N .

(d) Identify the unique elements in

[Λ(N − P + 1, 0), Λ(N − P + 2, 0), · · · ,Λ(N , 0),
Λ(N − P + 1, 1), · · · ,Λ(N , 1), · · · ,Λ(N ,M)] and

count the number of occurrences of these unique

elements.

(e) Determine P unique elements in

[Λ(N − P + 1, 0), Λ(N − P + 2, 0), · · · ,Λ(N , 0),
Λ(N − P + 1, 1), · · · ,Λ(N , 1), · · · ,Λ(N ,M)] which

correspond to the first P largest number of occurrences.

(f) Remove P unique Debye parameters, which are deter-

mined in Step(e), from X (M). The subset of X (M) is

denoted by

Xsub(M) =
[
ξ‡

(1)
, ξ‡

(2)
, · · · , ξ‡(M)

]T
(14)

where ξ‡
(m)

=
[
ξ1

(m), ξ2
(m), . . . , ξN−P

(m)
]
.

(g) Run the LARS method in Section II-A to obtain the

coefficients a in (2) of these remaining Debye parameters

by replacing X (M) and N with Xsub(M) and N − P ,

respectively, and calculate Lln in (13).

(h) Run Step(c)-Step(g) at each value of P , varying P from

1 to P †(< N ) to obtain Xsub(M) and Lln
(P ), where

Lln
(P ) is Lln in (13) when (N − P ) Debye parameters

are used to form Xsub(M).
(i) Determine P which has the minimum Lln

(P ).

The Step(c)-Step(e) in the case of N = 10 and P = 5 is

depicted in Fig. 1.

The usage of the limited number of significant Debye

parameters improves the performance of ANN from the fol-

lowing aspects.

• Reduce the computational cost on the training process of

ANN.

The less number of input parameters may require less

number of ANN iterations in the training process of

ANN, and thus reducing the computational cost.

• Reduce the risk of overfitting.

We aim to build a surrogate model of the FDTD sim-

ulation using a low number of input samples, such as

M = N , which may incur overfitting. Reducing the

number of input parameters has the potential to reduce

the risk of overfitting and may improve the accuracy of

ANN [29].

2) Modelling:

The ANN is utilised to build a surrogate model for FDTD

computation using Xsub(M). We define Xsub(Mtr) and the

associated test data in the same way as we do with X (Mtr)
in Section II-C. When a number of Debye parameters are

excluded from the regression model, the complexity of the

regression model is reduced. The AF of (8) is proposed for

the complex regression analysis with relatively high number

of variables. When the determined P in Step(i) is relatively

high, the number of variables becomes relatively low, making

the regression analysis simpler. In this case, AF of (8) may not

be optimal. In order to set an AF appropriate to each case, and

thus maximise the modelling accuracy via ANN, we introduce

another AF to ANN, namely linear AF, as in

flr (Ri) = Ri, for i = 1, 2. (15)

These two AFs are treated as hyperparameters of ANN, and we

utilise the LOOCV method to determine the most appropriate

AF which presents the lowest Ll. Let Ll
(p) and Ll

(lr) be Ll

in (12) when (8) and (15) are adopted as the AF of ANN,

respectively. Procedures for modelling the FDTD computation

are as follows.

(A) Initialisation

At the start of the ANN iteration, W i for i = 1 ∼ 3 are

initialised with random numbers.

(B) Training

Split Xsub(M) into Xsub(Mtr) and the test data. The

ANN is trained in Section II-B using Xsub(Mtr) as the

input dataset which containsMtr input samples ofN−P
Debye parameters. When (10) is met, we terminate the

ANN iteration and obtain W i
(j) for i = 1 ∼ 3 as the

trained ANN model.

(C) Calculation of Ll

Varying m from 1 to M, run Step(A) and Step(B),

and calculate Lts
(m) in (11) by replacing X ts with

ξ‡
(m)

. When all ξ‡
(m)

in Xsub(M) are used as test data,

calculate Ll
(p) in (12).

(D) Determination of AF

Run Step(A), Step(B) and Step(C) to obtain Ll
(lr) by

replacing (8) with (15). Determine AF of ANN that has

the minimum Ll.

(E) Modeling

Retrain the ANN in Section II-B using the AF determined

in Step(D) and the entire dataset Xsub(M). When (10) is

met, we terminate the ANN iteration and save W i
(j) for

i = 1 ∼ 3 as the surrogate model of FDTD computation.

Note that Step(B) and Step(E) train the ANN using Mtr and

M input samples, respectively, where Mtr = M − 1. In

general, when there are sufficient samples available to train the

ANN, the influence of a single input sample on the accuracy

of ANN is not significant. Therefore, in the case of sufficient

input samples, we can skip Step(E) and consider the weights

corresponding to the minimum Ll in Step(D) as the surrogate

model of FDTD computation.

However, we hereby assume that the number of input

samples is insufficient and thus each sample is important in

the construction of the surrogate model. Furthermore, most of

the computational resources required in the proposed method

is in the process of determining the optimal AF (Step(D)).

The computational cost in Step(E) is substantially smaller than

that of Step(D). Thus, Step(E) is included in the proposed

method to retrain the ANN using all input samples. The entire

process of the proposed method is presented in Fig. 2. To

assist readers to understand the proposed algorithm with ease,

a simple numerical example of the proposed algorithm for

the case of 2 samples and 2 random variables is presented in

APPENDIX A.

Page 6 of 12

http://mc.manuscriptcentral.com/tap-ieee

IEEE Transactions on Antennas & Propagation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



6

1 2 6 8 5 10 4 3 7 9
2 1 6 8 5 3 4 10 7 9
1 2 6 8 5 10 4 3 7 9
1 2 6 8 4 5 3 7 9 10
1 2 6 8 4 10 3 7 5 9
1 2 6 8 10 5 4 9 3 7

Unique elements 3 4 5 7 9 10
Occurrences 6 4 3 6 6 5

Λ(0)

Last 5 elements of

A(0) ∼ A(5)

Dropped ξ

ξ3
ξ7
ξ9
ξ10
ξ4

Determine the

top 5 largest

occurrences

Step(c) Step(d)
Step(e)

Λ(1)

Λ(2)

Λ(3)

Λ(4)

Λ(5)

Fig. 1. Illustration of Step(c), Step(d) and Step(e) in Section II-E1 in the case of N = 10 and P = 5.

III. NUMERICAL EXPERIMENTS

Section III presents the numerical experiment to build a

surrogate model for the FDTD computation of the electromag-

netic field inside the human body by applying the proposed

method.

A. Numerical simulation setup

We create two scenarios to simulate the electromagnetic

wave propagating in the human body. The digital human

phantom (DHP) used in this work is provided by RIKEN

(Saitama, Japan) under the non-disclosure agreement between

RIKEN and the University of Manchester. The usage was

approved by RIKEN ethical committee. We define some of the

human tissues as influential tissues, where |E|2 in (1) changes

significantly when one or more of the Debye parameters of

the influential tissues are changed. The Debye parameters

for all human tissues in the DHP are presented in [30]. In

our scenario, the input parameters refer to ǫ∞ and ǫS of the

influential tissues. Descriptions of these two scenarios are as

follows.

1) Scenario 1:

The simulation setup for scenario 1 is depicted in Fig.

3, where the FDTD space is 265 × 490 × 601 mm with

a resolution of 1 mm. The excitation is located 17 mm

away from the human body and the observation is placed

in the middle of the prostate tissue. 10 layers of the

complex frequency shifted-perfect matched layers (CFS-

PML) [31] [32] are used to terminate the FDTD space.

There are 10 influential tissues (skin, fat, muscle, bone,

colon, small intestine, bladder, prostate, seminal vesicle,

erectile tissue) nearby the observation point. We conduct

the numerical experiments with the ten influential tissues

which yield 20 input parameters in total.

2) Scenario 2:

The simulation setup for scenario 2 is depicted in Fig.

4, where the FDTD space is 265 × 490 × 240 mm. The

excitation is located 2 mm away from the human head

and the observation is placed in the middle of the tissue of

cerebrospinal fluid. CFS-PML for scenario 1 is applied.

This simulation scenario contains 11 influential tissues

(skin, fat, muscle, bone, cerebral cortex, white matter,

cerebellum, cerebrospinal fluid, salivary gland, middle

ear, inner ear), yielding 22 input parameters in total.

B. Numerical experiments for modelling FDTD computation

Section III-B presents the numerical experiment mainly for

scenario 1, where two stages of dropout and modelling are

involved.

1) Dropout:

Procedures for generating samples of the input parameters

are as follows.

a) Generate 2000 random ǫ∞ and ǫS for each of 10 influen-

tial tissues yielding the normal distribution, where the rel-

ative permittivity and the conductivity of each influential

tissue vary within ±10%. The work in [27] shows that,

the accuracy of ANN saturates with 2000 input samples

in the case of N = 20. Therefore, we prepare 2000 input

samples for the numerical experiments. The probability

description of the 20 input parameters are presented in

Table I, where ∆ǫ = ǫS − ǫ∞.

b) Randomly choose one sample out of the 2000 samples for

each input parameter and combine these chosen samples

to produce 1 combination of the 20 input parameters of

ξ.

c) Repeat Stepb) 2000 times to produce 2000 ξ. In Stepb),

we do not choose the same samples as those chosen

earlier.

ξ Meaning of ξ Average Standard deviation

ξ1 ǫ∞ of bone 7.37 0.74

ξ2 ∆ǫ of bone 6.80 0.68

ξ3 ǫ∞ of skin 29.87 2.99

ξ4 ∆ǫ of skin 18.07 1.81

ξ5 ǫ∞ of muscle 28.02 2.81

ξ6 ∆ǫ of muscle 28.93 2.88

ξ7 ǫ∞ of fat 4.01 0.40

ξ8 ∆ǫ of fat 1.53 0.15

ξ9 ǫ∞ of prostate 27.73 2.78

ξ10 ∆ǫ of prostate 32.82 3.28

ξ11 ǫ∞ of colon 34.76 3.57

ξ12 ∆ǫ of colon 26.46 2.60

ξ13 ǫ∞ of small intestine 39.26 3.79

ξ14 ∆ǫ of small intestine 25.65 2.58

ξ15 ǫ∞ of bladder 9.67 0.98

ξ16 ∆ǫ of bladder 9.66 0.97

ξ17 ǫ∞ of seminal vesicle 27.71 2.72

ξ18 ∆ǫ of seminal vesicle 32.92 3.24

ξ19 ǫ∞ of erectile tissue 30.54 3.06

ξ20 ∆ǫ of erectile tissue 32.40 3.26
TABLE I

THE AVERAGE VALUES AND STANDARD DEVIATIONS OF THE 20 DEBYE

PARAMETERS AND THEIR CORRESPONDING NOTATIONS

In the LARS method, the number of input samples should

be larger than or equal to the number of input parameters
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7

a) Obtain Λ
(0) through the entire N LARS

iterations in Section II-A using X (M)

b) Calculate Lln
(0) in (13)

c) m = 1

d) Partition X (M) into X (Mre) and X dp

e) Obtain Λ
(m) using the LARS method in

Section II-A by replacing X (M) with X (Mre)

f) m =M

g) P = 1

h) Collect the last P elements of Λ(m) in

Section II-E1 Step(c) for 0 ≤ m ≤ M

i) Determine P unique elements of these collected elements

in h) which correspond to the first P largest occurrences

j) Form Xsub(M) in Section II-E1 Step(f)

k) Calculate a in (2) of the remaining Debye

parameters by the LARS method using Xsub(M)

l) Calculate Lln
(P ) in (13)

m
=

m
+
1

P
=

P
+
1

m) P = P †

n) Determine P whose Lln
(P ) is minimum

o) Save Xsub(M) corresponding to the determined P

S
el

ec
ti

o
n

o
f

th
e

D
eb

y
e

p
ar

am
et

er
s

h
ig

h
ly

co
rr

el
at

ed
w

it
h
(E
−
T

(k
)
)

p) m = 1

q) Partition Xsub(M) into Xsub(Mtr) and test data

r) j = 1, AF in (8), initialise W i for i = 1 ∼ 3

s) Train ANN in Section II-B using Xsub(Mtr)

A
D

A
M

t) Meet (10)j = j + 1

u) Obtain W i
(j) for i = 1 ∼ 3

v) Calculate Lts
(m) in (11)

w) m =M

m
=

m
+
1

x) Calculate Ll
(p) in (12)

y) Run p)-x) to calculate Ll
(lr) in (12)

replacing AF in (8) with AF in (15) in r)

z) Ll
(p) < Ll

(lr)AF in (8) AF in (15)

Run p), r)-u) using the AF determined in y)

and replacing Xsub(Mtr) with Xsub(M) in s)

Save W i
(j) for i = 1 ∼ 3 as the final ANN model

A
N

N

No

No
Yes

Yes

Yes

No

No

Yes

Yes

No

Fig. 2. The flow chart of the proposed method to produce the final ANN
model
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Fig. 3. Numerical simulation setup for scenario 1.

2∆x

Excitation

50 150 250

50

150

250

350

450

Distance(×∆x)

Observation

Fig. 4. Numerical simulation setup for scenario 2.

in order to obtain a unique solution for the coefficients of

input parameters. In Step e) in Fig. 2, we obtain Λ
(m) using

Mre(=M−1) samples of ξ in the LARS method. Therefore,

M− 1 should be not less than N (= 20) as in M− 1 ≥ 20.

We set M to 21 in order to minimise the computational cost.

We form X (21) by randomly choosing 21 ξ out of the 2000

ξ and form E by the FDTD simulations using the chosen ξ.

We determine P at which Lln
(P ) reaches minimum varying

P from 1 to P †. The setting of P † is application depen-

dent. For each value of P , one LARS run is required to

obtain Lln
(P ). Therefore, a high value of P † demands more

LARS runs, which may render the computational inefficiency,

whereas a small value of P † may result in missing the global

minimum of Lln
(P ). In our scenario, P † is set to half of the

number of input parameters as in P † = ⌊N2 ⌋ = 10, where ⌊·⌋
is the floor function that gives the largest integer which is less

than or equal to N
2 . Varying P from 1 to 10, Lln

(P ) reaches

minimum when P = 3. Thus, we choose 17 out of 20 input

parameters to form the transformed Xsub(21).
2) Modelling:

Before the ANN is trained, we set its hyperparameters. The

number of hidden layers and the learning rate are set to 2 and

0.1, respectively. The number of neurons in the input layer is

17 equalling the number of chosen input parameters and there
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8

is one neuron in the output layer which is the prediction of

|E|2. The number of neurons in the hidden layer is usually

up to the size of input layer. We set it to half of the size of

input layer as in G1 = G2 = 8 . The reason for such settings

is detailed in [14].

The ADAM optimiser is adopted to update the weights

of ANN, where we use the recommended settings [22] for

the hyperparameters associated with ADAM. The setting of

ρ in (10) is application-dependent. In our scenarios, we set

ρ to 0.01. When j = 369, condition (10) is met. Thus, we

terminate the ANN iteration at the 369th ANN iteration and

calculate Lts
(1) in (11) by replacing X ts with ξ‡

(1)
and using

W3
(369),W2

(369), and W1
(369) as the trained ANN model

of the first LOO iteration. When all 21 ξ‡
(m)

in Xsub(21) are

used as test data, we calculate Ll
(p) in (12).

The same process is conducted to calculate Ll
(lr) in (12)

using (15) as the AF of ANN. We obtain Ll
(p) = 1.39 and

Ll
(lr) = 1.95. Thus, (8) is chosen as the AF of ANN. The

ANN is then re-trained using Xsub(21). Condition (10) is met

at j = 379. W3
(379),W2

(379), and W1
(379) are therefore

saved as the final ANN model.

In scenario 2, We conduct the same experiment as that

in scenario 1 to build a surrogate model for the FDTD

computation, where N = 22 and M = 23.

IV. RESULTS AND DISCUSSION

In this section we evaluate the performance of the proposed

method in terms of accuracy and computational efficiency.

A. Results

We feed 100 ξ which are not used for the training process

of ANN into the final ANN model to obtain 100 predictions

of |E|2, and assess the accuracy of the surrogate model by

comparing 100 |E|2 from the FDTD simulations with the 100

predictions of |E|2 from the proposed method for scenario

1 and scenario 2. Fig. 5 shows the results for scenario 1

including the 100 |E|2 obtained from the FDTD simulations

and their predictions Ê in (9) from the proposed method,

where the 100 |E|2 are sorted in ascending order for the

sake of clarity. The accuracy of the 100 predictions of |E|2

is calculated as in 1− 1

100

100∑

m=1

∣∣∣∣
∣∣∣E(m)

∣∣∣
2

− Ê
(m)

∣∣∣∣
∣∣∣E(m)

∣∣∣
2 = 96.42%.

The results for Scenario 2 are presented in Fig. 6, where the

accuracy of the 100 predictions of |E|2 is 95.58%.

B. Discussion

The proposed method mainly involves three techniques of

the LARS method, the ANN, and the ADAM, where the

ADAM is incorporated in the ANN for weights update. We

discuss the influences of the LARS method and the ADAM

on the accuracy of the proposed method based on scenario 1.

We use LARS+(ANN+ADAM) to indicate the proposed

method, where (ANN+ADAM) refers to the ANN using the

ADAM to update its weights. The traditional ANN, which

Trial number
1 20 40 60 80 100

Predictions
FDTD simulations

|E|2

10

15

20

25

30

35

Fig. 5. Results for scenario 1, including 100 |E|2 from the FDTD simulations,

sorted in ascending order and 100 predictions of |E|2 from the proposed
method.

Trial number

1 20 40 60 80 100

20

16

12

24

28 Predictions

FDTD simulations

|E|2

Fig. 6. Results for scenario 2, including 100 |E|2 from the FDTD simulations,

sorted in ascending order and 100 predictions of |E|2 from the proposed
method.

utilises the GD method to update weights, is denoted as

(ANN+GD).

Fours methods of LARS+(ANN+ADAM),

LARS+(ANN+GD), (ANN+ADAM), and (ANN+GD)

are adopted to build four surrogate models for the FDTD

computation. We utilise the 100 ξ in Section IV-A to evaluate

their accuracy, where methods of (ANN+ADAM) and

(ANN+GD) do not form Xsub(M) but use X (M) to train

the ANN. Fig. 7 shows errors of
1

100

100∑

m=1

∣∣∣∣
∣∣∣E(m)

∣∣∣
2

− Ê
(m)

∣∣∣∣
∣∣∣E(m)

∣∣∣
2

for the four methods, where we conduct 100 experiments

to obtain 100 errors for each method and different X (21)
randomly sampled from the 2000 samples in Section III-B1

is used at each experiment for the training. Table II lists the

average values and the standard deviations of the 100 errors

for the four methods.

From Fig. 7 and Table II, we conclude that

• both the LARS method and the ADAM optimiser con-
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Number of experiments

1 20 40 60 80 100
0

0.05

0.15

0.25

1 10
0

1
0
0

∑ m
=
1

∣ ∣ ∣ ∣∣ ∣ ∣E
(m

)∣ ∣ ∣2

−
Ê

(m
)∣ ∣ ∣ ∣

∣ ∣ ∣E
(m

)∣ ∣ ∣2

LARS+(ANN+ADAM) (ANN+ADAM) (ANN+GD)

(a) Errors of LARS+(ANN+ADAM), (ANN+ADAM), and (ANN+GD)

LARS+(ANN+ADAM) LARS+(ANN+GD) (ANN+GD)

Number of experiments

1 20 40 60 80 100
0

0.05

0.15

0.25

1 10
0

1
0
0

∑ m
=
1

∣ ∣ ∣ ∣∣ ∣ ∣E
(m

)∣ ∣ ∣2

−
Ê

(m
)∣ ∣ ∣ ∣

∣ ∣ ∣E
(m

)∣ ∣ ∣2

(b) Errors of LARS+(ANN+ADAM), LARS+(ANN+GD), and (ANN+GD)

Fig. 7. Errors of LARS+(ANN+ADAM), LARS+(ANN+GD),
(ANN+ADAM), and (ANN+GD). Solid lines are Bezier curves [33]
for 100 errors.

Methods Average value Standard deviation

LARS+(ANN+ADAM) 0.066 0.021

LARS+(ANN+GD) 0.073 0.022

(ANN+ADAM) 0.110 0.045

(ANN+GD) 0.155 0.041
TABLE II

AVERAGE VALUES AND STANDARD DEVIATIONS OF 100 ERRORS FOR THE

METHODS OF LARS+(ANN+ADAM), LARS+(ANN+GD),
(ANN+ADAM) AND (ANN+GD).

tribute to the improvement of the accuracy of the pro-

posed method and the traditional ANN.

• the LARS method demonstrates a greater significance in

the proposed method and the traditional ANN than the

ADAM optimiser.

Furthermore, we compare the proposed method with other

state-of-the-art modelling techniques, including the works in

[34] and [35], from the viewpoints of accuracy, stability

and computational efficiency. The computational efficiency

is assessed by the number of required FDTD simulations.

Our in-house FDTD code was implemented based on the

openMP and was executed on the Intel Xeon computer at 2.40

GHz with 128 GB of memory operating Red Hat Enterprise

Linux 7.3 system, where the number of threads was set to 8.

The computational requirements of one FDTD simulation for

Scenario 1 and Scenario 2 are listed in Table III.

Memory Usage (MB) Real time (h)
FDTD iteration

number

Scenario 1 9033.73 1.27 5000

Scenario 2 3235.84 0.42 5000
TABLE III

COMPUTATIONAL REQUIREMENTS OF ONE FDTD SIMULATION FOR

SCENARIO 1 AND SCENARIO 2.

[34] builds a surrogate model based on the LARS method

and the polynomial chaos expansion, where the LARS method

is utilised to reduce the number of polynomials and the highest

degree of Hermite polynomials is set to 2. [35] proposes a sur-

rogate modelling technique based on the principal component

analysis (PCA) and the Kriging method, where 5% information

of the input dataset is dropped in the PCA. We apply the

proposed method, [34] and [35] to build surrogate models

for the FDTD computation. Thus, there are three surrogate

models in total. 100 ξ generated in Section IV-A are fed into

each surrogate model to obtain 100 predictions of |E|2. Fig.

8 shows the 100 predictions of |E|2 from these three methods

for scenario 1 and scenario 2, respectively. Table IV and Table

V list the accuracies of these three methods, and the average

values and standard deviations of the 100 predicted |E|2 for

scenario 1 and scenario 2, respectively. The proposed method

demonstrates the highest accuracy in the comparison with

other two techniques, and it also presents a higher efficiency

because it requires the least number of FDTD simulations.

Methods Accuracy Average
Standard
deviation

FDTD
simulations

FDTD output 20.79 3.57 100

Proposed method 96.42% 20.70 3.18 21

Work in [35] 93.12% 21.01 4.26 21

Work in [34] 88.84% 21.12 5.05 41
TABLE IV

ACCURACY, AVERAGE AND STANDARD DEVIATION OF 100 PREDICTED

|E|2 FOR SCENARIO 1. FDTD OUTPUT REFER TO THE 100 |E|2

OBTAINED FROM 100 FDTD SIMULATIONS USING 100 ξ.

Methods Accuracy Average
Standard
deviation

FDTD
simulations

FDTD output 21.51 3.54 100

Proposed method 95.58% 20.31 3.23 23

Work in [35] 89.98% 21.31 3.52 23

Work in [34] 84.69% 21.48 4.91 44
TABLE V

ACCURACY, AVERAGE AND STANDARD DEVIATION OF 100 PREDICTED

|E|2 FOR SCENARIO 2. FDTD OUTPUT REFER TO THE 100 |E|2

OBTAINED FROM 100 FDTD SIMULATIONS USING 100 ξ.

V. CONCLUSION

We proposed a general framework of surrogate modelling

technique to minimise the computational cost associated with

the number of system simulations while maintaining accuracy

of the surrogate model. The proposed method is based on the

LARS method and ANN, where the LARS method is adapted

to improve the accuracy in selecting the informative input

parameters, and thus reducing the complexity of the surrogate

model. Furthermore, we introduce the ADAM optimiser and

the hyperparameters of activation functions to ANN in order
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Proposed method

FDTD simulations

[35]
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(a) Scenario 1

Trial number
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|E|2
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30

0

Proposed method

FDTD simulations [34]

[35]

(b) Scenario 2

Fig. 8. 100 |E|2 from the FDTD simulations and 100 predictions of |E|2

from the proposed method, works in [34] and [35]

to improve the modelling accuracy of ANN. The performance

of the proposed method is evaluated in comparison to other

state-of-the-art techniques. The proposed method has better

performance in terms of accuracy, efficiency, and robustness,

which could potentially be of significant use for uncertainty

quantification, for example, in bioelectromagnetics field.

APPENDIX A

BASIC NUMERICAL EXAMPLE OF PROPOSED ALGORITHM

Assuming there are 2(= M) sets of samples for 2(= N )

variables ξ1, ξ2, the dataset X (2) is given as X (2) =[
2.38 1.93
2.41 1.99

]
. Procedures of dropout are presented as follows:

Step(a): Λ(0) = [2, 1] is obtained by the LARS method using

X (2) and Lln
(0) = 0.6 is calculated in (13).

Step(b): m is varied from 1 to 2 to obtain Λ
(1) and Λ

(2),

respectively.

When m = 1, remove ξ(1) from X (2), and run the LARS

method for the remainingM−1 = 1 sample as in X (Mre) =
[2.41, 1.99] to obtain Λ

(1) = [2, 1].
When m = 2, reinsert ξ(1) and remove ξ(2), and run the

LARS method for the remaining M− 1 = 1 sample as in

X (Mre) = [2.38, 1.93] to obtain Λ
(2) = [1, 2].

Step(c): Varying P from 1 to N −1, in the case of N = 2, P

only has one value equalling 1. When P = 1, we select the

last element of Λ
(0),Λ(1) and Λ

(2). Λ(i,m) in Step(c) are

presented as [Λ(2, 0),Λ(2, 1),Λ(2, 2)] = [1, 1, 2].
Step(d): The unique elements in Λ(i,m) and their occurrences

are presented in Table VI as

Unique elements 1 2

Occurrences 2 1
TABLE VI

UNIQUE ELEMENTS IN Λ(i,m) AND OCCURRENCES

Step(e): Determine 1(= P ) unique element which is ξ1
because it has the largest number of occurrences.

Step(f): Xsub(2) is obtained by removing the samples of ξ1

from X (2) as Xsub(2) =

[
1.93
1.99

]
.

Step(g) and Step(h): Xsub(2) is then utilised to run the LARS

method in Section II-A and Lln
(1) = 0.35 is calculated in

(13).

Step(i): Since Lln
(1) = 0.35 < Lln

(0) = 0.6, Lln
(P ) reaches

the minimum at which P = 1. Xsub(2) obtained in Step(f) is

saved as the input data to the ANN.

In the stage of Modelling:

Step(A)-Step(C): Split Xsub(2) into Xsub(Mtr) and the test

data varying m from 1 to 2(=M), whereMtr =M−1 = 1.

When m = 1, Xsub(Mtr) = [1.99] and the test data is the first

set of sample in Xsub(2) denoted as ξ‡
(1)

= 1.93. The ANN

is trained in Section II-B using the AF of (8) and Xsub(Mtr).
Lts

(1) = 0.4 is then calculated in (11) by replacing X ts with

ξ‡
(1)

. Similarily, we can obtain Lts
(2) = 0.5 in the case of

m = 2. Ll
(p) = 0.45 is then calculated in (12) using Lts

(1)

and Lts
(2).

Step(D): Utilise (15) as the AF of ANN, and run Step(A)-

Step(C). Ll
(lr) = 0.3 is obtained in (12). Since Ll

(lr) < Ll
(p),

(15) is determined to be the AF of ANN.

Step(E): Build the surrogate model by retraining the ANN in

Section II-B using the AF of (15) and Xsub(2).
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