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Abstract. We consider a multiobjective optimization scenario in which
one or more objective functions may be subject to delays (or longer evalu-
ation durations) relative to the other functions. We motivate this scenario
from the viewpoint of experimental optimization problems, and derive
several simple strategies for dealing with population and/or archive up-
dates under these conditions. These are embedded in a ranking-based
EMO algorithm and tested on the WFG test problems augmented with
delayed objective(s). Results indicate that good performance can be
achieved when the most recently generated solutions are submitted for
evaluation on the delayed objective functions, and missing objective val-
ues are approximated using a fitness inheritance-based approach. Also,
in general one should wait for all evaluations to complete before resum-
ing search if the delay is short, while a non-waiting strategy should be
preferred for longer delays.

1 Introduction

Evolutionary approaches to multiobjective optimization continue to find new
applications in a diverse range of scientific and problem-solving contexts, even in
areas where existing techniques have considerable history and traction. One area
of potential exploitation of EMO methods that is beginning to take off (though
is still under-represented) is in applications where the optimization loop involves
an experimental (rather than a simulation) step, examples being [14, 20, 19, 6].
Motivated primarily by this area, this paper considers the problem of optimizing
several objectives simultaneously in the case where at least one of them requires a
relatively longer time to evaluate than the ‘cheaper’ or ‘cheapest’ of the objective
functions. This kind of problem comes about when one objective, for example,
involves a lengthy experimental process such as growth, fermentation or such, or
perhaps the involvement of human expert(s) input, although we note that it also
comes about in the more often considered case where computational simulations
are used. We consider here that the objective functions can be evaluated in
batches, as is often the case in experimental settings, but that there is not a
possibility of speed-up on the expensive objective(s) in terms of the (relative)
time taken to evaluate the batch of solutions.



Given this setting, we investigate what strategies one might employ in an
EMO algorithm (EMOA) to deal with the delayed objective(s). We simulate the
use of surrogate models, which may be appropriate in some contexts, but our
main focus is on strategies that do not rely on estimating missing or delayed
objective values. In the following section, we note some EA and EMO papers
that have looked at similar or perhaps related problems, from which we can
and do draw some inspiration. Section 3 defines our problem and reviews some
basic properties of dominance relationships in the case of unknown objective
values, and this prepares the way for some of the strategies that we go on to
detail in Section 4. Experimental results on modified WFG functions are given
in Section 5, and Section 6 is a discussion and conclusion.

2 Background and Related Work

All general-purpose approaches to optimization involve a “generate-and-test”
loop that must be repeatedly applied in order to discover optimal or high-
performing solutions. The iteration of the main loop means that the cost and
feasibility of optimization, in any given context, will depend critically on how fast
and cheaply solutions can be accurately evaluated. Often, in real applications,
it is expensive or time-consuming to evaluate solutions accurately, so that there
is much interest in the optimization community in topics around the subject
of how to save function evaluations (i.e., designing better optimizers), and also
around how to build or use surrogate models of the real evaluation function that
are sufficiently accurate to allow optimization to occur but at reduced temporal
or financial cost.

Here, we are concerned, in the context of expensive objective functions, with
multiobjective optimization: in particular, finding a representative approxima-
tion of the entire true Pareto Front. Surrogate modeling is a viable and ap-
propriate approach to tackling many expensive objective functions even in the
context of multiple objectives (see [12, 9, 24]), but is a complicated area with
many choices to consider for a proper study. Here, our focus is more on the basic
design choices of the multiobjective optimizer.

Given this, the key questions are: how should fitness assignment, and popu-
lation update occur to account for the fact that one or more objective functions
are delayed, i.e. that the fitness estimates of some solutions, at any given time,
may only be partial? Should we devise or employ selection and update tech-
niques that can deal with partial fitness information, or should we just use a
more standard EMOA, and simply wait for all evaluations to complete, no mat-
ter the delay, before going on to the next generation? A look at the literature
provides useful clues and ideas to try out.

Some papers have considered the idea of finding ‘minimal sets of objective
functions’ [5], such that the subset does not conflict with the full set, and is not
redundant. The context of this work is generally different to ours — mostly the
concern has been with reducing the number of objective functions down (on-
line or prior to search) in the context of ‘many-objective’ optimization [16], to
facilitate the optimization process. Nevertheless, clearly the effect of objective



function removal is closely related to the effect of objective function delay, where
at least some solutions that we wish to rank, or to assign reproductive opportu-
nities, might have a reduced number of objective values (at least temporarily).
The difference is that our aim is not to identify which objectives we can neglect,
but rather to estimate the effects of neglecting a specific expensive objective in
order to determine whether it is worthwhile to use the objective.

Asynchronous evaluation in optimization in the context of grid computing
was considered in [13, 17]. The problem overlaps but is distinct from ours in that
the cloud computing resource is assumed to be heterogeneous and/or unreliable,
and the asynchrony happens across the population rather than across objectives.
(In contrast, we assume for the moment a rather reliable and homogeneous
process for evaluating a whole population en masse, and are concerned only with
the fact that some objectives can be evaluated faster than others.) Although the
context is a bit different, we think that as Lewis et al.[13] found, a strategy based
on a moderate amount of waiting for slower evaluations may be competitive in
some settings, and we also consider the effect of diversity maintenance might be
important (see below).

If we think of using algorithms that have solutions staying in a memory (i.e.,
an archive or secondary population) to allow that they can be waiting for their
expensive objective function values to be computed, and that these solutions
are potentially part of the present or future breeding pool, then we may have
solutions from some number of generations in the past needing to take part in
reproduction. In this context, the use of age-layered populations [10] may be a
neat way to handle population update and selection matters. We consider an
adaptation of this architecture in our work here.

We have learnt through the development of EMO over the last years that
diversity preservation, or methods for ensuring objective space spread are very
important to obtain good approximation sets (e.g., if we are considering sensible
measures of performance such as hypervolume or epsilon-dominance, at least for
external evaluation). But the diversity of solutions in the objective space is going
to be difficult to estimate when many solutions are missing one or more objective
values; in fact this problem may be more severe than the adaptations necessary
to deal with Pareto ranking of solutions. Given this issue, it may be sensible to
revert to the use of decision space diversity [18, 22] in place of objective space,
as we assume that decision space information is quick and cheap to use.

Although we do not wish to cloud our initial studies by complex consider-
ations concerning the use of surrogate modeling techniques, it does seem that
one of the most direct approaches to handling delayed objective values is to use
estimated objective values in their place (at least until true values become avail-
able). In this regard, we consider a few simple methods of estimating objective
values, inspired in part by work on fitness inheritance [21, 15]. Simple methods
of missing value imputation from machine learning might also be used (see [23]).

Finally, we note that the problem of delayed objective function values has
some relationship to our recent work on ephemeral resource constraints (ERCs)
in single-objective optimization [2, 3, 1, 4]. ERCs are temporary limitations in
the capacity to evaluate certain otherwise feasible solutions during the optimiza-
tion process. ERCs arise in experimental optimization settings due to external



factors such as machine breakdowns, limited availability of certain reagents or
chemicals under test, or human experts with limited availabilities, and usually
they only affect part of the feasible search region at any given time (often also as
a function of previous actions). Delayed objectives, by contrast, prevent (imme-
diate) evaluation of all the solutions of a batch, but in only some objectives. A
key finding from our work with ERCs is that waiting for objective values is quite
often the best thing to do, but it can depend on several other factors about the
ERCs, such as how long they will last, how much of the search space is affected,
and so on. We expect that also in the case of delayed objectives in EMO, simply
applying a standard algorithm and waiting for objective functions to return may
be the best thing to do in many cases. But we would like to discover the situa-
tions where this is not the case, and what other strategies may be sensible. As
we found with ERCs, significant savings may sometimes be possible even with a
minimal need for information about the problem [2].

3 Problem Formulation and Pareto Dominance

Considerations

We augment the notion of delayed objective functions onto a multiobjective
optimization problem as follows:

minimize (f1(x), ..., fm(x))T (1)

subject to x ∈ X,

where x = (x1, ..., xl) is a solution vector and X a feasible search space. The
static objective functions fi, i = 1, ...,m are to be minimized and each function
is associated with some evaluation delay of ∆ti ≥ 0 time steps (e.g. hours or
days) relative to the objective(s) that is (are) quickest to evaluate. That is,
∆ti = 0 means that function i is quickest to evaluate and thus has no delay,
while ∆ti > 0 means that function i needs ∆ti time steps longer to be evaluated
than the quickest objective. There is at least one function with delay, i.e. ∃i ∈
{1, ...,m} : ∆ti > 0.

In this study, each function fi is evaluated in a batch of ki > 0 solutions, and
it takes one time step to evaluate this batch. If not otherwise stated, we assume
an optimization scenario with exactly one delayed objective function; this will be
always function fm having a delay of ∆tm > 0, and we set ∆ti = 0, i = 1, ...,m−
1 for the other functions. In this setup the following two Pareto dominance
relations hold, which we will incorporate later in some of our strategies for dealing
with delayed objective functions.

Lemma 1. Let S be a set of points for which m − 1 objective values are all
known, and the mth objective values are all unknown. Then if all solutions in S

are non-dominated with respect to the m−1 objectives, it follows that all solutions
in S are non-dominated to each other irrespective of their mth objective values.

Lemma 2. Let S be a set of points for which m − 1 objective values are all
known, and the mth objective values are all unknown. Then (a) the minimum



Algorithm 1 Ranking-based EMOA for optimizing subject to delayed objective
functions
Require: f1, ..., fm,∆tm > 0, (∆t1 = 0, ..., ∆tm−1 = 0), µ = λ, T (time limit)
1: t = 0 (time counter), Pop = ∅

// Initialize Population:
2: Pop = random generate n solutions(n = µ)
3: evaluate pop(Pop, f1, . . . fm−1), assign pseudovalues to expobjective(Pop, fm),

t = t + 1 // evaluation of non-delayed objectives only, and assignment of
pseudovalues to the delayed objective fm

4: endtime = evaluate pop expensive(Pop, fm, currenttime = t) // spawns parallel
thread to evaluate Pop on delayed objective; immediately returns the projected
end time for spawned process; sets Pop’s mth objective value to ‘pending’
// Main Loop:

5: while t < T do

6: rank(Pop, ranking method) // ranking method must account for missing (de-
layed) objective values of some solutions

7: ParentPop = parental selection(Pop)
8: OffPop = crossover and mutation(ParentPop)
9: evaluate pop(OffPop, f1, . . . fm−1), t = t+ 1 // evaluation of non-delayed ob-

jectives only
10: Pop = Pop ∪ OffPop
11: assign pseudovalues to expobjective(Pop, fm) // (re)assignment of pseudoval-

ues to delayed objective fm
12: if (t = endtime) then
13: pending objective values are now updated
14: EvalPop = selection for expevaluation(Pop) // decides which µ solutions

from Pop to evaluate on the delayed objective fm; only selects from solutions
that have no value for fm

15: endtime = evaluate pop expensive(EvalPop, fm, currenttime = t)
16: return (Pop)

number of different non-dominated sorting (NDS) ranks in S is 1, and (b) the
maximum number of different ranks is the number of NDS ranks existing amongst
the solutions in S in the m− 1 known objectives plus the number of points that
are equal with respect to the known objectives.

4 Strategies for Dealing with Optimizations Problems

Featuring Delayed Objective Functions

As the basis for our strategies we use a ranking-based EMOA as shown by
Algorithm 1. Unlike standard EMOAs, the size of the population Pop in this
EA is not fixed. This way we allow solutions with missing objective function
values to influence the search direction and be evaluated at any point in time
during the optimization. Assuming that the delayed objective function fm is
evaluated in a batch of km = µ solutions, the EA begins the optimization by
generating a set of µ solutions at random, evaluating them on the non-delayed



objectives only and assigning pseudovalues to the delayed objective (Line 3).
At t = 0, all solutions are submitted for evaluation on the delayed objective
function fm, and their mth objective values are set to ‘pending’ (Line 4). The
projected end time endtime of the delayed objective represents the time step at
which the pending objective values are updated (i.e. revealed) (Line 13), and a
set of new µ solutions for evaluation on the delayed objective selected (Line 14).
Each generation, the population is first ranked (Line 6), and then λ offspring
generated by a process of selection, crossover and mutation (Line 7 and 8), and
evaluated on the non-delayed objective functions (Line 9). Following this, all
offspring are added to Pop and pseudovalues are (re)assigned to all solutions
in Pop that have not been evaluated on fm (Line 11); reassigning pseudovalues
to solutions reduces the risk that these solutions take over the population and
potentially misguide the search. Our EMOA ensures that the population Pop
does not contain duplicate solutions, i.e. offspring are generated until we have a
set that has not been evaluated yet.

In the following we describe various modifications to the EMOA we are going
to investigate in the presence of delayed objective functions. In particular, we
look at different methods for the assignment of pseudovalues to the delayed
objective (Line 3 and 11), ranking (Line 6), parental selection (Line 7) and the
selection of solutions for evaluation on the delayed objective function (Line 14).

Assignment of pseudovalues to delayed objectives. We investigate three
assignment strategies. The first strategy, random pseudovalue assignment, as-
signs to each solution with a missing objective value a pseudovalue drawn at
random from the interval [min

Pop
fm,max

Pop
fm], where min

Pop
fm and max

Pop
fm is the

minimum and maximum value of objective fm of all solutions in Pop that have
actually been evaluated on objective fm. The second strategy, noise-based pseu-
dovalue assignment, draws for each solution with a missing objective value a
random solution from Pop that has been evaluated on all objectives (including
the delayed objective), and adds a small amount of (Gaussian distributed) noise
N (0, σ2) to the value of the delayed objective; the resulting value is used as the
pseudovalue for the delayed objective. The third strategy, fitness inheritance-
based pseudovalue assignment, selects for each solution with a missing objective
value a solution from Pop that is both closest to it in the decision space (in terms
of normalized Euclidean distance) and has been evaluated on all objectives, and
then simply takes over the delayed objective value of this solution.

Ranking subject to missing objective values. We investigate two rank-
ing schemes. The first scheme, performance ranking, sorts all solutions in Pop
according to their non-dominated sorting (NDS) ranks only. In contrast, the
second ranking scheme, performance+age ranking, considers both the NDS rank
and the time stamp at which a solution has been generated. More precisely, first
the NDS ranks of all solutions in Pop are obtained (these ranks are used later as
quality criterion in parental selection), and then the population is sorted based
on the age of solutions whereby more recently generated solutions are favoured
(this sorting affects the truncation selection only).



Determining a parent population ParentPop. Once the population Pop
has been ranked we need to decide which solutions should be eligible for parental
selection (as our population is not limited in size). In a standard EA setup with
a fixed population size, this design choice would correspond to the reproduction
scheme (or environmental selection mode). We investigate two schemes: parental
selection among (i) the top ranked µ solutions in Pop (generational reproduction
scheme) (denoted in future by GGA) and (ii) the top ranked µ × 2 solutions
((µ+ λ)-ES reproduction scheme) (denoted in future by (µ+ λ)-ES).

Selecting solutions for evaluation on the delayed objective function. We
investigate two strategies to decide which µ solutions from Pop to evaluate on
fm. The first strategy, sweep selection, selects always the most recently generated
µ solutions for evaluation on fm. The second strategy, priority-based selection,
assigns to each solution without a value for fm, a score representing the solu-
tion’s priority of being evaluated. We compute this score by first obtaining the
NDS ranks, considering the objectives f1, ..., fm−1 only, of all completely evalu-
ated solutions in Pop. Then, the priority score of a solution is estimated based
on Lemma 1 and 2 (see Section 3), and also on the idea of counting the total
amount the ranking of all (completely evaluated) solutions could be changed:
If a solution with no value for fm is dominating all solutions, then potentially
it could demote all of these solutions by one rank after revealing the value of
objective fm (i.e. we have a priority score equal to the number of completely
evaluated solutions in Pop). If a solution with no value for fm is dominated by
all solutions, then it cannot possibly dominate any solution (although it might
be non-dominated if the value of fm is very small) (i.e. we a have a priority
score of zero). In all other cases, a solution with no value for fm can potentially
dominate some solutions in Pop; here we assign the solution a priority equal to
the number of solutions having a lower rank.

The modifications described above enable an EMOA to deal with partial
fitness information. We will investigate also an EMOA that waits for all evalua-
tions to complete and thus prevents having to deal with solutions with missing
objective values; hence for this algorithm it makes sense to look only at modifi-
cations related to the ranking of solutions (Line 6) and the determination of the
parent population ParentPop (Line 7).

5 Experimental Study

This section describes the test functions and the parameter settings as used in
the subsequent experimental analysis, which investigates the performance of the
strategies described above when applied to problems with delayed objectives.

5.1 Experimental setup

Our aim in this study is to understand the effect of delayed objective functions
on EA performance. To cover a wide range of problem characteristics, we use
the Walking Fish Group (WFG) toolkit [11]. We use the toolkit with 4 distance



Table 1. EA parameter settings.

Parameter Setting

Parent population size µ (= km) 50
Offspring population size λ 50

Per-variable mutation probability pm 1/l
Crossover probability pc 0.9

Distribution index (mutation and crossover) 20
Time limit T 40

parameters and 2 position parameters within the standard WFG1-WFG9 test
problems; i.e. we have l = 4 + 2 = 6 continuous decision variables. If not other-
wise stated we use the WFG problems with m = 3 objectives, with f3 being the
objective function delayed by ∆t3 = 3 time steps. We set the batch size associ-
ated with this objective function identical to the population size, i.e. k3 = µ; the
batch sizes ki, i = 1, ...,m−1 are irrelevant as there is no delay on the associated
objective functions.

We augment the strategies described in Section 4 on a ranking-based EMOA
(see Algorithm 1) that uses binary tournament selection (with replacement)
for parental selection, simulated binary crossover (SBX) [7], and polynomial
mutation [8]. The parameter settings of the EMOA are given in Table 1.

For the noise-based pseudovalue assignment strategy we use a noise level
of σ =

√

(max
Pop

fm −min
Pop

fm) ∗ 0.05, where, as in the case of the random pseu-

dovalue assignment method, max
Pop

fm and min
Pop

fm is the maximum and minimum

value of objective fm of all solutions in Pop that have actually been evaluated
on objective fm so far. To reduce the risk of any search bias, the parameters
max
Pop

fm and min
Pop

fm are set initially to large positive and negative numbers, here

1000 and -1000, respectively. We set the time limit to T = 40 time steps.
Any results shown are average results across 20 independent algorithm runs.

We use paired comparison by employing a different seed for the random number
generator for each EA run but the same seeds for all strategies described above.

5.2 Experimental results

Table 2 gives us an initial overview of the performance (hypervolume measure-
ments) of some of the algorithm modifications on all WFG test problems.3 Re-
sults were obtained using an EMOA with random pseudovalue assignment and

3 The hypervolume measurements were obtained by normalizing the non-dominated
front found by an EA at the end of an optimization run, and then taking the average
of the hypervolume measurements across 20 runs. The normalization was done based
on the extremal values of the estimated True Front, which is available online at
http://jmetal.sourceforge.net/problems.html, and the reference point was set
to the minimum and maximum values of the normalized front.



Table 2. Average hypervolume values obtained in an environment with and with-
out (in parenthesis) delayed objective functions for different algorithm setups on the
WFG test problems using m = 3 objectives. All EAs optimizing subject to delayed
objective functions employed random pseudovalue assignment and sweep selection. For
each problem instance and optimization environment (with delay vs without delay),
we highlighted all algorithm setups in bold face that are not significantly worse than
any other setup. A Friedman test revealed a significant difference between the search
algorithm setups in general, but differences among the individual setups were tested
for in a post-hoc analysis using (paired) Wilcoxon tests (significance level of 5%) with
Bonferroni correction.

GGA (µ+ λ)-ES

waiting
no

waiting
waiting

no
waiting

WFG1

Performance 0.1015 0.1976 0.0940 0.1682
ranking (0.1939) (0.1916)

Performance+age 0.0885 0.1077 0.0875 0.0992
ranking (0.0982) (0.1016)

WFG2

Performance 0.6901 0.6748 0.6474 0.6655
ranking (0.8527) (0.8616)

Performance+age 0.6028 0.5603 0.6068 0.5819
ranking (0.6822) (0.6958)

WFG3

Performance 0.4292 0.4030 0.4214 0.3915
ranking (0.4639) (0.4624)

Performance+age 0.4129 0.3970 0.4260 0.4000
ranking (0.4270) (0.4396)

WFG4

Performance 0.3434 0.2701 0.3362 0.2503
ranking (0.4172) (0.4199)

Performance+age 0.2935 0.2468 0.3015 0.2561
ranking (0.3728) (0.3598)

WFG5

Performance 0.3430 0.2676 0.3353 0.2925
ranking (0.4020) (0.4012)

Performance+age 0.3284 0.2888 0.3290 0.2996
ranking (0.3633) (0.3667)

WFG6

Performance 0.3457 0.2356 0.3240 0.2646
ranking (0.3943) (0.3918)

Performance+age 0.3214 0.2701 0.3252 0.2888
ranking (0.3410) (0.3464)

WFG7

Performance 0.3447 0.2760 0.3408 0.3004
ranking (0.4096) (0.4163)

Performance+age 0.3298 0.2862 0.3346 0.2975
ranking (0.3787) (0.3722)

WFG8

Performance 0.3129 0.2497 0.3021 0.2550
ranking (0.3721) (0.3687)

Performance+age 0.2900 0.2492 0.3047 0.2556
ranking (0.3134) (0.3172)

WFG9

Performance 0.3743 0.3260 0.3596 0.3402
ranking (0.4330) (0.4224)

Performance+age 0.3242 0.2865 0.3332 0.2912
ranking (0.3727) (0.3858)
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Fig. 1. Plots showing the true Pareto Front, and median attainment surface (across
20 runs) obtained on WFG1 (left) and WFG3 (right) with m = 2 objectives in an
environment with delayed objective functions (objective function f2 was subject to a
delay of ∆t2 = 3, and k2 = µ) and without. The EMOA was equipped with a genera-
tional reproduction scheme (GGA), sweep selection, random pseudovalue assignment,
performance ranking, and waited for all evaluations to complete before resuming search.

sweep selection. We can make several observations from the table: (i) optimizing
subject to delayed objective function affects the performance negatively on all
problems except WFG1; (ii) a generational reproduction scheme without elitism
(GGA) tends to perform best in the presence of delayed objectives (when waiting
is applied), while there is no clear winner between GGA and (µ+λ)-ES in an en-
vironment without delays; (iii) waiting for all evaluations to complete performs
best on all problems except WFG1 and WFG2; (iv) performance ranking gen-
erally performs better in an environment with and without delayed objectives.

When optimizing subject to delayed objective functions, the convergence
speed seems to be reduced and a more diverse population maintained; these
properties tend to be amplified as the delay ∆tm becomes larger, ultimately
causing the performance to reduce (as will be seen later from Figure 4). For
WFG1, however, the presence of a delayed objective can yield better results
than obtainable in an unconstrained environment (observation (i)); in general,
we observed that the experimental results obtained on WFG1 are different than
on the other WFG problems, which may be due to the structure of this problem
(WFG1 is separable, uni-modal and has a dissimilar weight structure [11]). For
WFG2-WFG9, assigning pseudovalues to the delayed objective that are too far
away from the true objective values can lead to misguidance when performing
ranking and parental selection. The risk of misguidance can be reduced when
employing an EMOA with a waiting strategy and a generational reproduction
scheme (observation (ii) and (iii)). Observation (iv) implies that parental selec-
tion should not be limited to a subset (the most recently generated solutions) of
the population.

Figure 1 and 2 show visually the performance impact of delayed objective
functions on WFG1 and WFG3 using m = 2 and 3 objectives, respectively.
Plots are showing the median attainment surface across 20 runs obtained by
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Fig. 2. Plots showing the true Pareto Front, and the median attainment surface (across
20 runs) obtained on WFG1 (left) and WFG3 (right) with m = 3 objectives in an
environment with and without delayed objective functions. The EMOA was equipped
with a generational reproduction scheme (GGA), sweep selection, random pseudovalue
assignment, performance ranking, and waited for all evaluations to complete before
resuming search.

the best performing EMOA from Table 2. The plots indicate that the impact
of a delayed objective function on the performance of an optimizer depends on
(i) the characteristics of the fitness landscape of a problem and (ii) the number
of objectives to be optimized, an observation we will make again later.

Figure 3 investigates the effect of different delay lengths ∆tm on the perfor-
mance of our strategies for WFG1 (top plots) and WFG2 (bottom plots); note
that the setting ∆tm = 0 means there is no delay and thus refers to an uncon-
strained optimization scenario. The left and right plots show the performance
impact for EMOAs employing sweep selection and priority-based selection, re-
spectively. All results were obtained using a generational reproduction scheme
(GGA), and performance ranking; this setup yielded best results as shown pre-
viously. We make the following observations from the figure.

• Generally, an increase in the delay length ∆tm affects search negatively,
and algorithm choice is important. Interestingly, a performance improvement
may be obtained for short delays (see range 0 < ∆tm < 7 in the top left
plot). It seems to be the case that this is due to an increase in the population
diversity, although other factors may be responsible.

• Sweep selection clearly outperforms priority-based selection on both test
problems (and the other WFG problems for which the results are not shown
here) and for all values of ∆tm > 0. The reason is that priority-based selec-
tion ignores completely the values of the delayed objective fm when selecting
solutions for evaluation on the delayed objective. This may lead to misguid-
ance in the selection and stagnation in the search.

• With respect to the delay length ∆tm, we observe for WFG2 and sweep se-
lection (bottom left plot) that there is a value (∆tm = 5) at which one should
switch from a waiting strategy to a non-waiting one (when using sweep se-
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Fig. 3. Plots showing the average hypervolume (and its standard error, indicated by
the error bars) obtained on WFG1 (top plots) and WFG2 (bottom plots) with m = 3
objectives using EA setups employing sweep selection (left plots) and priority-based
selection (right plots). All results were obtained using an EMOA equipped with a
generational reproduction scheme (GGA) and performance ranking.

lection and a random or noise-based pseudovalue assignment; this pattern
was apparent for all WFG problems except WFG1). The larger ∆tm the
slower is the search progress when employing a waiting strategy. The length
of the delay ∆tm at which the switch from a waiting to a non-waiting strat-
egy should be performed depends on the difficulty of the problem at hand,
and the optimization time available. For WFG1 and sweep selection (top
left plot) a non-waiting strategy should be employed for all values of ∆tm.
When using priority-based selection, a waiting strategy should be preferred
over a non-waiting one because it removes the risk of getting the priority
scores wrong and thus submitting non-promising solutions for evaluation on
the delayed objective.

• Fitness-inheritance based pseudovalue assignment combined with sweep se-
lection, and no waiting yields best performance on WFG2 (and all the other
WFG problems except WFG1). The reason is that the fitness inheritance-
based method is able to approximate the value of the delayed objective fm
better than the other two pseudovalue assignment strategies, reducing the
risk of misguidance in the search.
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Fig. 4. Plots showing the average hypervolume (and its standard error, indicated by
the error bars) obtained by different EA setups on WFG2 with m = 2 and 3 objectives
(using 1 delayed objective function) (left) and m = 3 objectives using 1 and 2 delayed
objective functions (in case of 2 delayed objective functions, a delay was on f2 and
f3 with k2 = k3 = µ). All results were obtained using an EMOA equipped with a
generational reproduction scheme (GGA), sweep selection, and performance ranking.

Finally, Figure 4 shows some initial results on how the search performance is
affected on WFG2 by the number of objectives m to be optimized (left) and the
number of delayed objective functions (right) as a function of the delay length
∆tm. From the left plot we observe that whilst the performance is affected in sim-
ilar way for m = 2 and 3 objectives, there is a smaller performance gap between
different strategies for m = 2. This pattern was also apparent for the other WFG
problems (results not shown) and may indicate that lower-dimensional problems
are easier to deal with in the presence of delayed objectives.

From the right plot in Figure 4 we observe that having two instead of one
delayed objective function (i.e. being more uncertain about the quality of a solu-
tion) improves the performance of strategies that approximate missing objective
values poorly (random pseudovalue assignment) but degrades the performance
of otherwise accurate approximation techniques (fitness inheritance-based pseu-
dovalue assignment). This pattern was apparent for all WFG problems except
WFG1, and may indicate that there is a trade-off between increasing the risk
of misguidance (leading to reduction in the performance when using an accu-
rate approximator) and increasing the probability that truly poor solutions are
approximated poorly and thus not considered for evaluation on the delayed ob-
jective function (improvement in performance when using a poor approximator).

6 Summary and conclusion

In this paper we have considered a multiobjective optimization scenario in which
at least one objective function may be subject to delays relative to the other func-
tions. In other words, some objective functions take longer to be evaluated than
others. This kind of problem can be encountered, for example, when the eval-
uation of an objective function involves a lengthy experimental process such as
growth or fermentation, or the involvement of human expert(s) input. We have



proposed several strategies to deal with this kind of optimization scenario —
concerning the pseudovalue assignment to delayed objectives, population rank-
ing, reproduction scheme, and the selection of solutions for evaluation on the
delayed objective functions — and assessed them on the (continuous) WFG test
problems.

The experimental study revealed that delayed objective functions affect the
search performance of an EA — in general, the longer the delay the poorer is
the search performance — but that a well-tuned optimizer can damp the perfor-
mance impact significantly. In particular, when optimizing subject to delays, we
can tentatively conclude that one should: (i) employ a fitness inheritance-based
pseudovalue assignment (i.e. fill missing objective values of a solution with the
objective values of the genetically closest and fully evaluated solution), (ii) select
parents for reproduction from a population that is sorted based on the solutions’
non-dominated sorting ranks (without accounting for the time stamps at which
solutions have been created), (iii) use a generational reproduction scheme (with-
out elitism), and (iv) submit the most recently generated solutions for eval-
uation on the delayed objectives. Furthermore, we found that, in general, for
short delays one should wait for all evaluations to complete before continuing
with the next generation. When the delay is long, however, waiting slows down
the search and should be avoided. Finally, we have seen that our observations
hold for problems with two and three objectives, and that varying the number
of delayed objective functions has interesting implications on the performance
depending on the algorithm setup employed.

Our study has shown that EA performance crucially depends on the way
pseudovalues are assigned and solutions for evaluation on the delayed objective
functions selected. We believe there are still some performance improvements to
gain by tuning these two aspects, which usually do not need to be considered
in the design of an EA. Investigating the effect of delayed objective functions
on many-objective optimization problems where several objectives are subject
to delays of different durations is another important avenue to be pursued.
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