
On Handling Ephemeral Resource Constraints
in Evolutionary Search

R. Allmendinger r.allmendinger@ucl.ac.uk
Department of Biochemical Engineering, University College London, London, WC1E
7JE, UK

J. Knowles j.knowles@manchester.ac.uk
School of Computer Science, University of Manchester, Manchester, M13 9PL, UK

Abstract
We consider optimization problems where the set of solutions available for evaluation
at any given time t during optimization is some subset of the feasible space. This model
is appropriate to describe many closed-loop optimization settings (i.e. where physical
processes or experiments are used to evaluate solutions) where, due to resource lim-
itations, it may be impossible to evaluate particular solutions at particular times (de-
spite the solutions being part of the feasible space). We call the constraints determining
which solutions are non-evaluable ephemeral resource constraints (ERCs). In this paper,
we investigate two specific types of ERC: one encodes periodic resource availabilities,
the other models ‘commitment’ constraints that make the evaluable part of the space a
function of earlier evaluations conducted. In an experimental study, both types of con-
straint are seen to impact the performance of an evolutionary algorithm significantly.
To deal with the effects of the ERCs, we propose and test five different constraint-
handling policies (adapted from those used to handle ‘standard’ constraints), using a
number of different test functions including a fitness landscape from a real closed-loop
problem. We show that knowing information about the type of resource constraint in
advance may be sufficient to select an effective policy for dealing with it, even when
advance knowledge of the fitness landscape is limited.

Keywords
Closed-loop optimization, constrained optimization, dynamic optimization, evolu-
tionary computation, instrument setup optimization, optimization.

1 Introduction

In the late 60s, Hans-Paul Schwefel reported an ingenious set of experiments designed
to optimize the shape of a flashing nozzle (Schwefel, 1968; Klockgether and Schwefel,
1970). Figure 1 illustrates the setup employed. Schwefel was using an early form of
evolutionary algorithm (EA) and evaluating designs, not through simulation, but by con-
ducting real (physical) experiments. Although resource-expensive, this setup is effec-
tive because experiments replace the need for having available, or designing, sufficient
mathematical models of the problem being solved.

This paper considers problems featuring experimental setups of very similar char-
acter to that of Schwefel’s, nowadays commonly referred to as closed-loop optimiza-
tion problems (Knowles, 2009). In these, genotypes to a problem (e.g. set of parame-
ter values specifying nozzle shapes) are planned on a computer, but their phenotypes
(e.g. an actual flashing nozzle) are realized or prototyped and evaluated ex-silico (e.g. re-
lying on a physical experiment of some sort). The process of measuring the fitness

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

R. Allmendinger and J. Knowles

Superheated
water

Computer selects
next nozzle shape

Velocity of
fluid steam

Shape of nozzle

Conical rings

Boiler

Measuring device

Fluid steam

Figure 1: Schematic of the experimental setup as used by Schwefel (1968) in the shape
optimization of a flashing nozzle. The nozzle consisted of a series of conical brass
rings, each having its own diameter. The quality or fitness of the nozzle was measured
by injecting superheated water into one side of the nozzle using a pressurized boiler,
and measuring the velocity of the fluid steam at the other side of the nozzle. Based on
this quality measure, a computer then selected the next nozzle shape for testing.

of the phenotype involves conducting a physical experiment too, as was also the
case in Schwefel’s setup. Applications of closed-loop problems have included shape
design optimization (Rechenberg, 1973; Schwefel, 1975; Rechenberg, 2000), optimiza-
tion of running industrial processes (Box, 1957), quantum control (Judson and Rab-
itz, 1992; Shir, 2008), drug discovery (Caschera et al., 2010; Small et al., 2011), ana-
lytical biochemistry (Vaidyanathan et al., 2003; O’Hagan et al., 2005, 2007), evolvable
hardware (Thompson, 1996), food science (Herdy, 1997; Knowles, 2009), and other sci-
ences. Many of these have used an EA approach following (Box, 1957; Schwefel, 1975;
Rechenberg, 2000).1 Interest in the use of closed-loop methods seems to be healthy; see
e.g. Knowles (2009), Shir and Bäck (2009), Shir et al. (2009), Caschera et al. (2010), Bäck
et al. (2010), Bedau (2010), Michalewicz (2010).

While closed-loop optimization frequently produces satisfying results, there are
various unexplored resourcing issues an experimentalist may face during an iterative
experimental loop. The aim of this paper is to understand how evolutionary search is
affected by, and can be extended to combat, a particular resourcing issue in a closed-
loop optimization scenario: the temporary non-availability of resources required in
the evaluation process of solutions. This situation may cause solutions that are per-
fectly feasible candidate solutions to the problem to be temporarily non-realizable and
thus not available for fitness assessment; we will refer to such solutions as (temporar-
ily) non-evaluable. We refer to the (dynamic) constraints specifying which solutions are
not evaluable at a given time as ephemeral resource constraints (ERCs), and any optimiza-
tion problem that involves ERCs as an ephemeral resource-constrained optimization problem
(ERCOP).

What is the motivation for studying ERCs? Although not reported explicitly in
the literature, Schwefel and others (Heckler and Schwefel, 1978; Booker et al., 1999;
Büche et al., 2002) have experienced these ERCs in practice. For instance, Schwefel
had to stop experiments when brass rings he needed were not available. In another

1When an EA is used, closed-loop optimization is sometimes referred to as evolutionary experimentation or
experimental evolution.

2 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

problem encountered by Schwefel, the fitness of a single solution was measured by
running a time-consuming simulation on a computer. During some simulations, the
process ended prematurely (i.e. an execution error or exception occurred) and no fit-
ness was returned. Finkel and Kelley (2009) give eight further references where “failure
of the function evaluation has been observed in practice”, indicating that this difficulty
still prevails today. We are also aware of several other different types of ERCs as re-
ported in (Allmendinger and Knowles, 2010a). Briefly, these come about in the follow-
ing cases: (1) staff/operators/equipment needed for specific experiments/evaluations
have limited availability, (2) consumable physical resources required to build or eval-
uate specific solutions may have “run out”, and may have time lags between ordering
and receiving them, (3) “relaxation” of a physical instrument setting is costly or takes
time, so the instrument should be reused at the same setting (the setting is described by
a parameter in the solution vector being optimized), (4) random machine/component
breakdowns (the use of a specific machine/component is described by a parameter in
the solution vector being optimized). We have come across (1) in the problem of opti-
mizing cocoa roasting (see brief discussion in Knowles, 2009), (2) in a drug discovery
problem (Small et al., 2011), and in the flashing nozzle problem encountered by Schwe-
fel (see above), (3) in the domain of instrument setup optimization (O’Hagan et al.,
2005, 2007; Jarvis et al., 2010),2 and (4) we have not seen directly, but one can easily
imagine scenarios where in say hardware evolution, a component under evolutionary
selection (e.g. a transistor) fails, so that that component cannot be used in further solu-
tions until it is replaced (or similar scenarios).

We have also investigated ERC scenarios where several different ERCs were
present at the same time. For example, in a real-world problem in design optimiza-
tion, resources needed to test new designs had to be ordered in advance, kept in lim-
ited (refrigerated) storage, and used within a certain time frame. This type of problem,
in abstract form, has been dealt with in detail in (Allmendinger and Knowles, 2010b).
When wastage of resources or time is important, we found it is necessary to schedule
the resources involved in the application dynamically. A modified just-in-time policy,
and another policy that predicts what the EA may wish to evaluate in the next gener-
ation, were found to perform well, with the different constraint regimes determining
which of the two should be preferred.

From the above examples it is apparent that ERCOPs are static optimization prob-
lems, which is to say they have a static fitness function and a static feasible region.
They are only dynamic in the sense that some candidate solutions are non-evaluable
for certain periods of time (i.e. they cannot be prototyped and/or their fitness cannot
be measured) due to resource limitations. In the course of this study we will give var-
ious other examples indicating how ERCs may arise in closed-loop optimization, and
why they cannot reasonably be avoided if an efficient or budget-limited optimization is
to be conducted. We have found that the variety of ERC types is quite rich: in addition
to a temporal lack of raw materials or a sudden breakdown of a simulation program,
one may also face, for example, periodic non-availabilities of skilled engineers needed
to conduct experiments, or random events like machine breakdowns may also cause
parts of the search space to ‘disappear’ temporarily.

Unlike our previous work (Allmendinger and Knowles, 2010b), here we tackle two
different (and simpler) but perhaps more common types of ERCs, and investigate some

2Note that ERCs are not discussed specifically in (O’Hagan et al., 2005, 2007; Jarvis et al., 2010), but they
existed and were circumvented using waiting or other resource-wasteful strategies. In Section 8 we will look
at the studies reported in O’Hagan et al. (2005, 2007) in more detail.

Evolutionary Computation Volume x, Number x 3

R. Allmendinger and J. Knowles

general policies for dealing with them.
The rest of this paper is organized as follows. In the next section, for complete-

ness reasons we briefly recall the general problem definition of an ERCOP. Section 3
discusses the relationship between ERCOPs and other types of optimization problems
to set this study in proper context. The two real-world ERC types on which we test our
policies are outlined in Section 4, and the policies themselves are described in Section 5.
Before we proceed with the experimental analysis in Section 7, we describe in Section 6
the choice of test functions, the base algorithm on which we augment the policies, and
give all parameter settings. In Section 8 we then present a case study that illustrates one
way in which one might select a suitable policy for an ERCOP with largely unknown
search space properties, which is a common situation in the real world. Finally, in the
concluding section we draw together the findings from the experimental analyses and
discuss directions for further research.

2 Ephemeral Resource-Constrained Optimization Problems (ERCOPs)

Ephemeral resource constraints (ERCs) are temporary limitations on the set of solutions
that are available for evaluation during an optimization procedure. To define them
formally we begin with a standard optimization problem, and add to it a notion of a
time-ordered search, and the concept of a non-evaluable solution, as follows.

An optimization problem of generic form can be defined as

maximize y = f(x) (1)

subject to x ∈ X,

where x = (x1, ..., xl) is a solution vector and X a feasible search space. The static objective
function (also known as fitness function) f : X 7→ Y represents a mapping from X into
the objective space Y ⊂ R.

A black box optimization algorithm a, e.g. an EA, for solving the above problem can
be represented as a mapping from previously visited solutions to a single new solution
in X , as suggested by Wolpert and Macready (1997). Formally, a : φ(t) 7→ xt, where the
search history φ(t) = {(x1, y1), ..., (xt−1, yt−1)} denotes the time-ordered set of solutions
visited until time step t − 1, and xi and yi indicate the X value, respectively, the cor-
responding Y value of the ith successive element in φ(t). We augment this notion of a
search algorithm with the ability to visit a null solution, xnull 6∈ X , with the effect that
the algorithm can ‘wait’ for a time step without evaluating a solution. An optimizer
might submit null solutions, for example, if it wishes to wait until a missing resource
is again available. In fact, this approach has been employed by Schwefel in his flashing
nozzle problem (see Section 1).

Now we are able to define the general ERCOP. While in standard optimization
problems, the objective value f(xt) of a feasible solution xt ∈ X is yt = f(xt), in an
ERCOP, we have

yt =

{

f(xt) if xt ∈ E(σt) ⊆ X

null otherwise,
(2)

where E(σt) represents the set of evaluable solutions (or evaluable search region) at time
step t. In our case, E(σt) is defined by a set of schemata into which solutions have to
fall in order to be evaluable.3 The set E(σt) may change over time depending on a set

3We employ the classical notion of schemata, as used in the context of binary-coded genetic algo-
rithms (Holland, 1975), to describe availability of resources. Section 4.1 will introduce the notion of schemata

4 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

t + 1

3

1

4

8

4

6

3

1

8

7 75

2

5

2

X

E(σt)
X

E(σt+1)

t

6

Figure 2: A schematic diagram showing how a population consisting of the solutions
1 to 8 might be distributed across the feasible search space X and the evaluable search
space E(σt). At time step t, only the solutions 2,5,6, and 7 can be evaluated, while the
solutions 1,3,4, and 8 must be repaired to be evaluable. Each evaluation might cause a
change in E(σt).

of problem-specific and time-evolving parameters σt. The availability of resources re-
quired for the evaluation of solutions depends on these parameters. Hence, the set σt

may include parameters such as various types of counters (e.g. cost, time and eval-
uation counters), the search history (which may be used to encode non-availabilities
of resources due to previously made decisions), random variables (which may encode
random events like machine breakdowns), and so forth. The ERCs specify how exactly
the set E(σt) changes depending on the parameter set σt.

Note that the objective function f (thus also the global optimum) is static and does
not change over time in a standard ERCOP; it is just the set of solutions evaluable at
each time step t, E(σt), that may change. In this context, repairing a solution means to
modify the genotype of a solution x ∈ X that is not in E(σt) such that it is forced into
E(σt); i.e. the outcome of a repairing step is a solution that falls into all schemata that
define E(σt) (assuming that the schemata are non-contradictory; i.e. E(σt) ∩X 6= ∅).

Compared to standard (dynamic) constraints, the meaning of ERCs is different: a
solution x that violates an ERC at time t, or x /∈ E(σt), is not infeasible but non-evaluable
at time step t. That is, the experiment that is associated with x cannot be conducted,
thus causing the fitness of solution x at time t to be undefined (or null).4 Figure 2
illustrates the interaction between E(σt) and X commonly present in an ERCOP.

Time in an ERCOP can be seen as the simulated time defined by the real closed-loop
experimental problem that is to be simulated. Hence, time may refer not only to func-
tion evaluations of single solutions, as is the case in standard optimization problems,
but also e.g. to real time units (e.g. seconds) or cost units (e.g. pounds). This notion of
time allows ERCs to be dependent amongst others on the number of evaluated solu-
tions, expenses, or a certain date, such as days of the week. The normal assumption
is that all evaluations take equal time or resources, but this need not be the case. Gen-
erally, experiments may be of different durations and have non-homogeneous costs in
terms of the financial or temporal resources they require.

and its relationship to ERCs in more detail, and also indicate how this notion may be applied to non-binary
search spaces.

4Notice the difference between a null solution and a solution with a fitness value of null: A null solution
is submitted with the purpose to skip an evaluation, while a solution with fitness null is submitted with the
purpose of being evaluated but then is not due to a lack of resources.

Evolutionary Computation Volume x, Number x 5

R. Allmendinger and J. Knowles

3 Relationship of ERCOPs to other types of optimization problems

As mentioned in the introductory section, dynamic resource constraints in the sense
meant here have not to date been raised much in the literature. In fact, apart from
discussions with Schwefel as well as our own collaborative work (Knowles, 2009; All-
mendinger and Knowles, 2010a,b), ERCs have not been considered in published work
to the best of our knowledge.

However, of course, much other related work informs our research, and we find
that ERCOPs and closed-loop optimization are related to several other areas. Tradi-
tionally, closed-loop optimization problems are dealt with using statistical methods
referred to as experimental design or design of experiments (DoE) (Montgomery, 1976; Box
et al., 2005). The focus of DoE is rather on low-dimensional search spaces with the aim
to obtain statistically robust results in as few evaluation steps as possible and to ex-
plain them in terms of a model. ERCOPs, by contrast, feature often higher-dimensional
search spaces and one is ultimately interested in finding a single optimal solution. Nev-
ertheless, we believe that closed-loop evolution methods should draw on DoE, partic-
ularly in areas like noise-handling, replication, blocking and so on. To our knowledge,
however, the DoE field has not so far considered resourcing issues as a perturbing in-
fluence on conducting the most informative experiments.

As we will see later in the commitment relaxation ERCs, ERCOPs can have a
time-linkage aspect to them in the sense that ERCs arise due to previously made de-
cisions. We find an interesting parallel in some work on online (dynamic) optimization
problems (Borodin and El-Yaniv, 1998; Bosman and Poutré, 2007), which exhibits time-
linkage too. Nevertheless, there are clear and important differences between our prob-
lem formulation and those considered in these studies: their aim is to optimize a cumu-
lative score over some period of time, whereas ours is to find a single optimal (and ul-
timate) solution. Similarly, we find ERCOPs to be materially different to traditional dy-
namic optimization problems (Branke, 2001) because the objective space in ERCOPs does
not change over time and thus the optimal solution does not need to be tracked. De-
spite this core difference, we believe that some policies, as using memory, can carry over
from dynamic optimization into our work considering dynamic resource constraints.

Traditional constrained optimization (Michalewicz and Schoenauer, 1996; Nocedal
and Wright, 1999; Coello, 2002) is also an important related area, which can inspire
some methods for handling resource constraints (e.g. penalty methods). However,
the fact that ERCs prevent the evaluation of solutions that are otherwise feasible
makes them materially different from standard constraints, including dynamic con-
straints (Nguyen, 2011). A practical consequence of the difference between ERCs and
dynamic constraints is that while an algorithm optimizing subject to ERCs may, during
the optimization process, report a currently non-evaluable solution as its best-so-far
solution, an algorithm optimizing subject to dynamic constraints should not report an
infeasible solution as its current best-so-far solution. Also, while the optimal solution
does not change in the presence of ERCs, it is likely to do so when optimizing subject
to standard dynamic constraints. The implication of this is that one could terminate the
optimization in the presence of ERCs once a solution of desired quality is found, while
this should not be done with standard dynamic constraints.

4 Two Specific ERC Types

In this section we introduce two ERC types that we encountered in our own collab-
orative work and that seem to be common in real-world applications: commitment

6 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

t
start
ctf t

end
ctf

t

T0

preparation period constraint time frame recovery period

Figure 3: An illustration of how the available optimization time T can be divided into
the preparation period 0 ≤ t < tstart

ctf , the constraint time frame tstart
ctf ≤ t < tend

ctf , and the

recovery period tend
ctf ≤ t ≤ T .

relaxation ERCs and periodic ERCs.5 Before we define both ERC types, we introduce
three elements that are common to both (and other) ERC types. These elements are the
activation period, the constraint time frame and the constraint schema.

4.1 Fundamental elements of ERCs

The activation period k(ERC i) of ERC i, k ∈ Z
+, is the number of counter units for which

that constraint remains active, once it is ‘switched on’. Similar to time steps, counter
units may refer to function evaluations of a single solution, a set of solutions (in case
experiments are conducted in parallel), real time units (e.g. seconds), or something else.
Here, they refer to function evaluations of a single solution.

The constraint time frame (ctf) of ERC i is {t|tstart
ctf (ERC i) ≤ t < tend

ctf (ERC i)} where
t represents some counter unit, as above.6 The constraint ERC i may be active only
during the ctf and not outside of the ctf. That is, if we assume an ERCOP to be subject
to a single constraint, then we have E(σt) ⊆ X, ∀t ∈ ctf, and E(σt) = X, ∀t /∈ ctf. The
period of time 0 ≤ t < tstart

ctf and tend
ctf ≤ t ≤ T (T is the total optimization time) is the

preparation period and recovery period, respectively (see Figure 3). The duration of these
two periods has a significant effect on the performance of an EA, as we will see later.

The restriction imposed by an ERC during the activation period can be of differ-
ent forms. In our case, resources are associated often directly with individual solution
variables, which allows us conveniently to use the notion of schemata to describe avail-
abilities of resources. We say that solutions have to fall into a particular constraint schema
H(ERC i) (associated with a constraint ERC i) in order to be evaluable. A schema H
represents a particular subset of solutions that share some common properties. For in-
stance, consider solution vectors to be binary strings of length l = 5 with each solution
bit representing two resource choices (0 and 1 or A and B) to be optimized over. Now,
for example, if we assume that only resources 1 and 0 are available for bit position 2
and 5, respectively, whilst all resources are available for the other bit positions, then the
constraint schema H = (∗1 ∗ ∗0) would describe the set of evaluable solutions E(σt);
the ∗ is a wildcard symbol which means that a bit position can have any possible value
(thus in the binary case either value 0 or 1). A general property of a schema is its order
o(H), representing the number of defined bit positions (Reeves and Rowe, 2003); for
the above example we have o(H) = 2. In the presence of multiple constraints ERC i,
solutions have to fall into the union of the schemata x ∈

⋃

i Hi associated with the con-
straints. In this study we consider discrete search spaces, mainly of pseudo-Boolean
nature or X ∈ {0, 1}l. In non-discrete spaces, we might require E(σt) to restrict solu-
tion parameters to lie within or out of certain parameter value ranges rather than to

5In this work we consider these two ERC types only but we are aware of other types of which some are
defined in the technical report (Allmendinger and Knowles, 2010a).

6We are looking at the optimization scenario where the ctf is a single continuous period of time but it is
also realistic to have a ctf that is separated by unconstrained periods.

Evolutionary Computation Volume x, Number x 7

R. Allmendinger and J. Knowles

t

0

V

T

k(1) k(2) ...

Figure 4: An illustration of how a commitment relaxation ERC may partition the opti-
mization time into epochs of length V , and how it may be potentially activated. The
activation period k(j) during the jth epoch is represented by the dashed part.

take specific parameter values. In this case, ERCs could be defined in terms of func-
tions over the input vector space, and corresponding inequality/equality conditions,
i.e., using standard constrained optimization notation, except that the trigger(s) of the
constraint(s) also need to be specified.

4.2 Commitment relaxation ERCs

A commitment relaxation ERC commits (forces) an optimizer to a specific variable value
combination (i.e. constraint schema) for some (variable) period of time whenever it
uses this particular combination. Forcing a variable or linked combination of variables
to be fixed for some time models real-world problems involving change-over costs of
one sort or another. In particular, if changing a variable’s value would incur some
(large) change-over cost, such as a cleaning step, a component replacement, or a testing
phase, then such changes to the variable may be made taboo for some period. Often,
the change-over is much cheaper if done at a particular time step immediately after
component replacements or cleaning (which is commonly done routinely rather than
reactively), and so the variable can be allowed to change at that point.

We refer to the period of time during which some variable(s) setting (or schema)
H is forbidden from changing as an epoch, and denote its duration by V . We define the
activation period k(j), 0 ≤ k(j) ≤ V to be the duration of the period of time we have to
commit to a particular setting H during the jth epoch. Note, the length of the activation
period may change with each new epoch depending on when the particular setting
H is selected by the optimizer. To describe the setting H we can conveniently use a
constraint schema. For example, we would use H = (∗1∗∗0) to state that a commitment
is associated with the instrument setting for which the value of bit position 2 and 5 is
set to 1 and 0, respectively.

Figure 4 illustrates the partition of the optimization time into epochs, and a possi-
ble distribution of activation periods. From the figure it is apparent that the total num-
ber of constraint activations during the optimization can vary between 0 ≤ j ≤ ⌈T/V ⌉.
That is, we might be lucky and the ERC may be never activated, e.g. if solutions be-
longing to H do not lie on an optimizer’s search path, but already one activation may
introduce enough solutions from H into the population such that future activations
might be more likely.

The corresponding implementation of a commitment relaxation ERC is defined
by Algorithm 1. The method commRelaxERC(tstart

ctf , tend
ctf , V,H,x, t) takes as input the

parameters tstart
ctf , tend

ctf , V, and H , a candidate solution x that is to be checked for evalu-
ability, and the current (global) time step t. The output is a boolean value indicating
whether x is evaluable or not (in our EA, shown in Algorithm 3, we call the method at
Line 21).7 The method maintains two local variables, last activation and k, required to

7We will describe the EA in more detail in Section 6.1.

8 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

Algorithm 1 Implementation of a commitment relaxation ERC

1: commRelaxERC(tstart
ctf , tend

ctf , V,H,x, t){
2: if t = 0 then
3: last activation = 0; k = 0 // initialize local variables
4: if t ∈ ctf then
5: if t− last activation ≥ k then
6: if x ∈ H then
7: last activation = t; k = V − t mod V
8: return true // x is evaluable
9: else if x /∈ H then

10: return false // x is not evaluable
11: else
12: return true // x is evaluable
13: else
14: return true } // x is evaluable

update the internal state of the constraint: Line 5 to 7 are responsible for the activation
of the ERC and the setting of the activation period, while Line 9 ensures that solutions
have to be in H during an activation.

In future, we will denote a commitment relaxation ERC of this form by
commRelaxERC(tstart

ctf , tend
ctf , V,H). An extension to this simple commitment relaxation

ERC is to maintain not only one but several commitment relaxation ERCs with differ-
ent constraint schemata Hi. In this case, we need to consider three aspects: 1) a solution
is non-evaluable if it violates at least one ERC, 2) a repaired solution has to satisfy all
activated ERCs and not only the ones that were violated, and 3) it needs to be checked
whether a repaired solution activates an ERC that was not activated before. This exten-
sion will be considered later in the case study, which we present in Section 8.

4.3 Periodic ERCs

A periodic ERC models the availability of a specific resource, represented by a constraint
schema H , at regular time intervals. That is, the ERC is activated every P time steps
(period length) for an activation period of exactly k time steps (see Figure 5). As the ERC
models the availability of resources, an individual has to be a member of H during the
activation period. An example of a periodic ERC is:

“In an optimization problem requiring skilled engineers to operate instruments, on Mondays,
only engineer engi is available.”

In the above example, the activation period is k = 1 (assuming a time step is a day),
the period length is P = 7 (i.e. a week), and the constraint schema H represents the
parameter combination that corresponds to the instruments (or their settings) operated
by engineer engi.

The corresponding implementation of a periodic ERC is defined by Algorithm 2.
The method perERC(tstart

ctf , tend
ctf , k, P,H,x, t) takes as input the parameters tstart

ctf , tend
ctf ,

k, P , and H , a candidate solution x that is to be checked for evaluability, and the current
(global) time step t. The output is a boolean value indicating whether x is evaluable or
not (in our EA, shown in Algorithm 3, we call the method at Line 21).

In future, we will denote periodic ERCs by perERC(tstart
ctf , tend

ctf , k, P,H). A poten-
tial extension of a periodic ERC is that the period length and the activation period refer

Evolutionary Computation Volume x, Number x 9

R. Allmendinger and J. Knowles

k

P

t

T0

constraint time frame

t
start
ctf t

end
ctf

Figure 5: An illustration of a periodic ERC perERC(tstart
ctf , tstart

ctf , k, P,H). The ERC is
activated every P time steps for an activation period of always k time steps.

Algorithm 2 Implementation of a periodic ERC

1: perERC(tstart
ctf , tend

ctf , k, P,H,x, t){
2: if t ∈ ctf ∧ (t− tstart

ctf) mod P < k ∧ x /∈ H then
3: return false // x is not evaluable
4: else
5: return true } // x is evaluable

to different counter units. For example, consider the maintenance of machines. While
maintenance might take hours (i.e. k might be measured in real time units), machines
might need to be maintained after using them a certain number of times (i.e. P is mea-
sured in function evaluations).

5 Constraint-Handling Policies for ERCOPs

This section introduces five constraint-handling policies for dealing with non-evaluable
solutions arising due to ERCs. The policies are applicable not only to the above ERC
types but (in similar form) also to other ERCs. Three of the policies (forcing, regener-
ating, and the subpopulation strategy) apply repairing (i.e. modify the genotype of a
solution) and two (waiting and penalizing) avoid it in order to prevent drift-like effects
in the search direction. Note, although some of the policies have been used to cope with
standard constraints (we will point this out where applicable), the effect of them when
handling ERCs is unknown. In the description of the policies we assume that multiple
ERCs of a particular ERC type with non-overlapping (or non-contradictory) constraint
schemata Hi, i = 1, ..., r, may be activated at a given time step. That is, there is always
an evaluable solution, or ∃x ∈

⋃

iHi. We also assume that we know which resources
are available and thus that the schemata Hi are known to the optimizer.

1. Forcing: This policy forces a non-evaluable solution x into the constraint schemata
Hi of all activated ERCs. In other words, all bits that do not match the order-defining
bit values of the schemata Hi of all activated ERCs are flipped, and the solution so
obtained is returned for evaluation. Strategies of this kind have been used previously
e.g. in constrained combinatorial optimization (Liepins and Potter, 1991).

A drawback of this policy is that enforcing changes in decision variable values may
destroy potentially good genotypes. Later, we will investigate this aspect more closely.

2. Regenerating: The aim of this policy, which is similar to the death penalty ap-
proach (Schwefel, 1975) originating from the evolution strategies community, is to over-
come the potential drawback of forcing. In fact, as the name of the policy suggests,
upon encountering a non-evaluable solution, regenerating iteratively generates new so-
lutions from the empirical distribution of the current offspring population (i.e. it gener-
ates new offspring from the current parent set) until it generates one that is evaluable,

10 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

i.e. falls into the schemata Hi of all activated ERCs, or until L trials have passed with-
out success. In the latter case, we select the solution, generated within the L trials, that
is closest to the schemata Hi of all activated ERCs and apply forcing to it. Here, closest
refers to the solution with the smallest sum of Hamming distances to the schemata Hi

of all activated ERCs;8 ties between several equally-closest solutions are broken ran-
domly. Thus the method always returns an evaluable solution (except in the ‘deadlock’
situation where multiple ERCs with overlapping Hi are activated simultaneously, in
which case no solution is evaluable).

A potential drawback of this policy is that for large L it can be computationally
expensive, while for small L, it could be that it reduces often to the forcing policy.

3. Subpopulation strategy: Let us assume there is only one ERC, i.e. r = 1. In this case,
alongside the actual population, we maintain also a subpopulation SP of maximum size
J that contains the fittest solutions from H1 evaluated so far. A non-evaluable solution
is then dealt with by generating a new solution based on this subpopulation. If the
maximum population size of SP , J , is not reached, then a new solution from H1 is
generated at random, otherwise we apply one selection and variation step using the
same algorithm as the one we augment the constraint-handling policies on; if the new
solution is non-evaluable, which may happen due to mutation, we apply forcing to
it. To update the subpopulation upon evaluating a solution from H1 we use a steady
state or (J + 1)-ES reproduction scheme. We use this reproduction scheme because,
depending on the ERC, the number of evaluated solutions from H1 might be small, in
which case a generational reproduction scheme is likely to result in a slow convergence.

A drawback of the subpopulation strategy is that if we have more than one ERC,
i.e. r > 1, then the number of subpopulations needed is upper-bounded by 2r, the
power set of the total number of ERCs. With multiple ERCs, we generate a solution
using the subpopulation that is defined by the (set of) schemata Hi of activated ERCs.

4. Waiting: This policy does not repair but it waits with the evaluation of a non-
evaluable solution and the generation of new solutions until the activation periods of
all ERCs that are violated by the solution have passed; i.e. the optimization freezes. The
freezing period is bridged by submitting as many null solutions as required until the
solution becomes evaluable.9 This policy is identical to the way Schwefel (1968) han-
dled unavailable conical rings in his flashing nozzle design problem (see Section 1).

The advantage of waiting is that it should prevent drift-like effects in the search di-
rection caused by ERCs, but the drawback is that this might result in a smaller number
of solutions being evaluated (this depends upon whether time is a limiting factor).

5. Penalizing: Like waiting, this policy does not repair. However, instead of freezing
the optimization, a non-evaluable solution is penalized by assigning a poor objective
value c to it. The effect is that evaluated solutions coexist with non-evaluated ones in
the same population. However, due to selection pressure in parental and environmen-
tal selection, non-evaluated solutions are likely to be discarded as time goes by. As we
will use the policy within an elitist EA, and because we use a c that is the minimal fit-
ness in the search space, a non-evaluated solution will never be inserted in a population
(that is filled with previously evaluated solutions) in the first place.

This kind of penalizing policy is popular in the genetic algorithm (GA) community,

8Notice that the Hamming distance between a solution x and a schema H is calculated based on the
order-defining bits of H only.

9NB to implement the freezing period, the global time counter t is set directly to the end of the longest
activation period of all currently violated ERCs (i.e. we do not actually submit null solutions to bridge the
period); this step is realized in Line 27 of Algorithm 3.

Evolutionary Computation Volume x, Number x 11

R. Allmendinger and J. Knowles

xt,repaired
Member of both
Pop and SP

Member of SP

Offspring individual and the

potential repaired versions of it

xt,repaired

Forcing

Subpopulation strategy

E(σt)

Regenerating

X
xt

xt,repaired

Member of Pop

Offspring

Figure 6: A depiction of the current population Pop (filled circles and squares) and
an offspring individual xt, which is feasible but not evaluable (because it is in X but
not in E(σt)). Solutions indicated by the filled squares coexist in both the actual EA
population Pop and the population SP maintained by the subpopulation strategy. The
three solutions xt,repaired indicate repaired solutions that might have resulted after ap-
plying one of the three ‘repairing’ policies to xt: while forcing simply flips incorrectly
set bits of xt and thus creates a repaired solution that is as close as possible to xt but not
necessarily fit, regenerating creates a new solution in E(σt) using the genetic material
available in Pop. Similarly, the subpopulation strategy creates also a new solution but it
uses the genetic material available in the subpopulation SP (empty and filled squares),
which contains only solutions from E(σt).

where it can be regarded as a static penalty function method (Coello, 2002).
The advantage of penalizing over waiting is that the optimization does not freeze

upon encountering a non-evaluable solution; i.e. the solution generation process con-
tinues and thus solutions might actually be evaluated (without needing to penalize
them) during an activation period. However, since evaluated solutions will have to
fall into the schemata Hi of all currently activated ERCs, penalizing might be subject to
drift-like effects, thus potentially losing the advantage of waiting.

Figure 6 visualizes how the policies forcing, regenerating, and the subpopulation
strategy may repair a non-evaluable solution.

6 Experimental Setup

This section describes the test functions f , the EA on which we augment the differ-
ent constraint-handling policies, and the parameter settings as used in the subsequent
experimental analysis, which investigates the impact of commitment relaxation and
periodic ERCs.

6.1 Evolutionary algorithm

We augment the constraint-handling policies on an EA with a (µ + λ)-ES reproduc-
tion scheme, an elitist approach, which we believe would be generally applicable in
this domain. The algorithm also uses binary tournament selection (with replacement)
for parental selection, uniform crossover (Syswerda, 1989), bit flip mutation, and does
not check whether a currently non-evaluable solution has been evaluated previously,

12 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

Algorithm 3 Generational EA with constraint-handling policies

Require: ERC1,...,ERCr (set of ERCs), f (objective function), T (time limit), µ (par-
ent population size), λ (offspring population size), #Policy (number of selected
constraint-handling policy; see Section 5)

1: t = 0 (global variable representing the current time step), Pop = ∅ (current popula-
tion), OffPop = ∅ (offspring population)

2: while |Pop| < µ ∧ t < T do
3: generate solution x at random
4: x = functionWrapper(x, t)
5: Pop = Pop ∪ {x}; t++
6: while t < T do
7: OffPop = ∅
8: repeat
9: generate two offspring x

(1) and x
(2) by selecting two parents from Pop, and

then recombining and mutating them
10: OffPop = OffPop ∪ {x(1)}
11: if |OffPop| < λ then
12: OffPop = OffPop ∪ {x(2)}
13: until |OffPop| = λ
14: for i = 0 to λ do
15: if t < T then
16: xi = functionWrapper(xi, t) // xi represents the ith solution of OffPop
17: t++
18: form new Pop by selecting the best µ solutions from the union population Pop ∪

OffPop

19: functionWrapper(x, t){
20: yt = null
21: if x satisfies the ERCs ERC1,...,ERCr then
22: xt = x; yt = f(xt)
23: else
24: if #Policy = 1 ∨#Policy = 2 ∨#Policy = 3 then
25: xt = repair(x, t); yt = f(xt) // apply the repairing strategy selected
26: if #Policy = 4 then
27: t = t + δ; xt = x // δ is the number of time steps we have to wait until the

activation periods of all ERCs that are currently violated by x have passed
28: if t < T then
29: yt = f(xt)
30: if #Policy = 5 then
31: xt = x; yt = c // c is a constant, representing poor fitness
32: return xt and yt}

i.e. identical solutions may be evaluated multiple times. Algorithm 3 shows the pseu-
docode of the EA. We use the function wrapper as the interface between the EA and
the ERCOP, allowing us to conveniently manage the ERCs, constraint-handling poli-
cies, and evaluation of solutions; calling this wrapper is similar to calling the objective
function f in a standard optimization problem. Notice from the pseudocode that we
are using a Lamarckian population update in this paper; i.e. a repaired solution is

Evolutionary Computation Volume x, Number x 13

R. Allmendinger and J. Knowles

used for evaluation and also replaces the original solution. Additional performance-
enhancing mechanisms commonly used in EAs, such as diversity preservation tech-
niques (Goldberg and Richardson, 1987; Mahfoud, 1995) or adaptive parameter con-
trol (Davis, 1989), may affect the results, but are not considered here.

6.2 Test functions f

Since our aim in this study is to understand the effect of ERCs on EA performance on
real closed-loop problems (ultimately), it might be considered ideal to use, for test-
ing, some set of real-world ERCOPs, that is: real experimental problems featuring
real resource constraints. That way we could see the effects of EA design choices (the
constraint-handling policy used) directly on a real-world problem of interest. But even
granting this to be an ideal approach, it would be very difficult to achieve in prac-
tice due to the inherent cost of conducting closed-loop experiments and the difficulty
of repeating them to obtain any statistical confidence in results seen. For this reason,
most of our study will use more familiar artificial test problems augmented with ERCs
(although in the case study, in Section 8, we do use data and constraints from a real
closed-loop problem).

Our set of selected test functions comprises: 1) OneMax, 2) a competing optima
problem, TwoMax, and 3) several MAX-SAT problem instances with many local op-
tima. In the subsequent case study we will also see a variant of NK landscapes (NKα
landscapes) being used; we will introduce this test function here too. Of course, we can-
not guarantee that the test functions mimic real (closed-loop) problems, but a diverse
set of functions as used here should be sufficient to draw some tentative conclusions
about the effects of ERCOPs generally, depending on results observed.

OneMax: For a binary solution vector x ∈ {0, 1}l, the unimodal OneMax func-
tion (Mühlenbein and Schlierkamp-Voosen, 1993) takes the sum over the bit values
of all bit positions

maximize f(x) =

l
∑

i=1

xi

and has its optimum f = l for the bit string consisting only of 1-bits.

TwoMax: Our bimodal TwoMax function contains one local and one global optimal so-
lution, which are represented by solutions consisting only of 0-bits and 1-bits, respec-
tively (see Figure 7). Similar to Pelikan and Goldberg (2000), we achieve this bimodal
structure by having a steeper slope leading to the solution consisting only of 1-bits.
Hence, if #1s denotes the number of 1-bits in a solution vector x and b > 1 the factor
by which the global optimal solution shall be fitter than the local optimal solution, then
the TwoMax function is defined by

maximize f(x) =

{

l−#1s if #1s≤ l
2 ,

b#1s otherwise.

MAX-SAT: Given a collection of clauses involving l binary variables xi, i = 1, ..., l, the
satisfiability (SAT) problem asks whether or not there is a variable assignment such that
all clauses are simultaneously satisfied (Hansen and Jaumard, 1990). A generalization
of the SAT decision problem is the maximum satisfiability (MAX-SAT) problem, which
asks for a variable assignment that satisfies the maximum number of clauses (Qasem
and Prügel-Bennett, 2010). MAX-SAT and SAT problems are of high practical relevance
as many challenging real-world problems can be efficiently formulated in SAT form (De

14 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

l/2

l

bl

0 l/2 l

F
it

n
es

s

#1s

Figure 7: A TwoMax function with a local optimal solution at #1s = 0 and a global
optimal solution at #1s = l. The parameter b > 1 specifies the factor by which the global
optimal solution shall be fitter than the local optimal solution.

Jong and Spears, 1989), e.g. hardware and software verification problems, and routing
in FPGAs. Another reason for choosing this problem is the presence of a backbone (the
backbone of a MAX-SAT instance is the schema into which all the optimal solutions
fall), which is a convenient property when analyzing the impact of ERCs on search.

We consider several (ten) benchmark instances of a uniform random 3-SAT prob-
lem, which can be downloaded online.10 The instances have l = 50 variables and 218
clauses and are satisfiable. Similar to (Hansen and Jaumard, 1990; Qasem and Prügel-
Bennett, 2010), we treat the 3-SAT instances as MAX-3-SAT optimization problems with
fitness calculated as the proportion of satisfied clauses. We also conducted experiments
on other challenging multimodal test problems, NKα landscapes (Kauffman, 1989),
which we introduce next.

NKα landscapes: The general idea of the NKα model (Hebbron et al., 2008) is to extend
Kauffmans original NK model (Kauffman, 1989) to model epistatic network topologies
that are more realistic in mapping the epistatic connectivity between genes in natural
genomes. The NKα model achieves this by affecting the distribution of influences of
genes in the network in terms of their connectivity, through a preferential attachment
scheme. The model uses a parameter α to control the positive feedback in the pref-
erential attachment so that larger α result in a more non-uniform distribution of gene
connectivity. There are three tunable parameters involved in the generation of an NKα
landscape: the total number of variables N (in our notation this variable is denoted
as l), the number of variables that interact epistatically at each of the N loci, K , and
the model parameter α that allows us to specify how influential some variables may
be compared to others. As α increases, an increasing influence is given to a minor-
ity of variables, while, for α = 0, the NKα model reduces to Kauffman’s original NK
model with neighbors being selected at random. This model has already been used pre-
viously to analyze certain aspects of real-world closed-loop problems; as an example
see (Thompson, 1996).

10http://people.cs.ubc.ca/ ˜ hoos/SATLIB/benchm.html ; the names of the (ten) instances are
“uf50-218/uf50-0*.cnf”, where * is 1,2,4,6,8,11,19,22,24 and 25. These instances have a backbone with an
order of 40 or greater, allowing us to analyze different ERC setups in the experimental study; in this study,
we will run our EA on each instance for 50 runs to obtain the average performance on this problem type.

Evolutionary Computation Volume x, Number x 15

R. Allmendinger and J. Knowles

Table 1: EA parameter settings.

Parameter Setting

Parent population size µ 50
Offspring population size λ 50
Per-bit mutation probability 1/l

Crossover probability 0.7

Table 2: Parameter settings of constraint-handling policies.

Policy Parameter Setting

Regenerating
Number of regeneration

10000
trials L

Penalizing
Fitness c assigned to

0
non-evaluable solutions

Subpopulation Maximal size of
30

strategy subpopulation SP , J

6.3 Parameter settings

The parameter settings of the EA and the policies are given in Table 1 and 2, respec-
tively. The settings of the test functions are outlined in Table 3. We choose these search
space sizes l (15, 30 and 50) as they correspond to typical search space sizes we have
seen — e.g. a drug combinations problem with a library of about 30 drugs as used
by Small et al. (2011). The reason for setting the scaling factor b so small is that it makes
the problem more challenging due to the low selection pressure to climb up the optimal
slope. The optimization times T (see Table 3) are set such that we can assess both posi-
tive and negative effects of an ERC on the convergence speed and the solution quality
obtained at the end of an algorithm run. To analyze the impact of the preparation and
recovery time we will consider also different settings for T , but this will be pointed out
where applicable.

Any results shown are average results across 500 independent algorithm runs. To
allow for a fair comparison of the policies, we use a different seed for the random
number generator for each EA run but the same seeds for all policies. This allows us
to apply a repeated-measures statistical test, the Friedman test (Friedman, 1937), to
investigate significant performance differences between policies.

7 Experimental Study

The performance of a policy depends inter alia on the potential impact of an ERC on the
population diversity and the optimization direction. To assess the impact on these two
factors we consider the following aspects: 1) what genetic material represented by a
constraint schema H needs to be introduced into a population to cause a performance
impact; 2) how much of it, or, rather, how many individuals of a constraint schema
need to be introduced into a population to cause a performance impact; 3) at what
stage during a run does it need to be introduced to yield a performance impact; and
4) the effects of the preparation and recovery durations. We give detailed observations

16 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

Table 3: Parameter settings of test functions f .

Test function f Parameter Setting

OneMax
Solution parameters l 30
Optimization time T 700

TwoMax
Solution parameters l 30

Scaling factor b 1.1
Optimization time T 700

MAX-SAT
Solution parameters l 50
Optimization time T 800

NKα landscapes

Solution parameters N = l 15
Neighbors K {2, 6}

Model parameter α {0, 2}
Optimization time T 2250

on these effects here, and summarise the key findings in Section 9.

7.1 Commitment relaxation ERC

We first analyze the case where a constraint schema H represents poor genetic material.
For OneMax and TwoMax, this means that the order-defining bits of H are set to 0. For
the MAX-SAT instances, we represent a poor bit by flipping a randomly selected bit
from the backbone of an instance;11 for ease of presentation, also on this problem, we
will write 1-bits to refer to ‘good’ bits, which are randomly selected unflipped bits from
a backbone, and 0-bits to refer to their complements.12

Figure 8 shows how the final average best solution fitness is affected for the differ-
ent policies on OneMax. The results obtained on TwoMax and the MAX-SAT instances
are very similar and are shown in Appendix A. For ease of presentation we normalize
the fitness values of all test functions so that they lie in the range [0, 1]. We make the
following observations from the figure.

• Generally, the ERCs affect search negatively, and policy choice is important.

• The subpopulation strategy tends to perform better than forcing and regenerating
(which perform similarly) for the majority of constraint parameters. The reason is
that the subpopulation strategy generates fitter solutions from H and thus allows
the EA to converge more quickly to a (suboptimal) population state containing
many (copies of) optimal solutions from H . The subpopulation performs poorly
for constraint settings that can cause a premature convergence towards search re-
gions covered by H (see range 4 < o(H) < 7 in the top left plot).

• With respect to the order of the constraint schema o(H) (top left plot), we observe that

11We identified the backbones of our MAX-SAT instances from optimal solutions obtained from running a
generational GA for 1000 generations, 500 times independently.

12If not otherwise stated, then the order-defining bits of a constraint schema are chosen at random for
each algorithm run; if an order-defining bit is a 1-bit, then the position of this bit is also chosen at random
among the order-defining bits; i.e. a constraint schema denoted by H = (010 ∗ ∗ ∗ ∗) might actually be e.g.
H = (∗ ∗ 1 ∗ 0 ∗ 0) or H = (∗ ∗ 00 ∗ ∗1) in an algorithm run. Nevertheless, all policies will be optimizing
subject to the same constraint schemata.

Evolutionary Computation Volume x, Number x 17

R. Allmendinger and J. Knowles

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Order of constraint schema H, o(H)

commRelaxERC(0,700,15,H=(0o(H)***...))

Forcing
Regenerating

Waiting
Subpopulation strategy

Penalizing

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 100 200 300 400 500

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Start of constraint time frame tctf
start

commRelaxERC(tctf
start

,tctf
start+700,15,H=(00***...)), T = tctf

start+700

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 700 800 900 1000 1100 1200

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Optimization time T

commRelaxERC(0,700,15,H=(00***...))

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Epoch duration V

commRelaxERC(0,700,V,H=(00***...))

Figure 8: Plots showing the average best solution fitness found and its standard error
on OneMax as a function of the order of the constraint schema o(H) (top left), the
epoch duration V (top right), the optimization time T (bottom left), and the start of
the constraint time frame tstart

ctf (bottom right). Note, while the optimization time in
the top plots is fixed to T = 700, as specified in Table 3, the parameter T varies in
the bottom plots. For each setting shown on the abscissa, a Friedman test (significance
level of 5%) has been carried out. In the top left plot, waiting performs best in the range
2 < o(H) < 6, while, in the top right plot, it performs best in the range 2 < V < 12
with the subpopulation strategy being best in the range V > 12. In the bottom left plot,
the subpopulation strategy performs best for T = 750, while, in the bottom right plot,
waiting performs best in the range 0 < tstart

ctf < 300. There is no clear winner for the
other settings.

there is a value that has the largest negative effect on the optimization; it is around
4 for the ‘repairing’ policies (forcing, regenerating or the subpopulation strategy),
and lower for penalizing and waiting.

The non-monotonic performance impact on the repairing policies, and partially
on penalizing, is due to two competing forces: 1) the probability of activating a
constraint, which decreases exponentially with o(H), and 2) the probability that
a constraint activation causes a shift in the search focus, which is greater for low
orders. With respect to these two forces, an order of o(H) ≈ 4 tends to have the
worst trade-off. Penalizing performs better than the repairing policies in the range
2 < o(H) < 8 because the probability of having to penalize solutions increases
exponentially with o(H). We remark that (results not shown) the order for which
the worst trade-off is obtained is a function of the string length l and the population
size µ. In general, the worst trade-off shifts to only a slightly higher order than 4
as l and/or µ increase; the shift is only little because the probability of activating

18 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

the ERC decreases exponentially with the order.

For waiting, the performance only depends on the probability of activating a con-
straint, causing the performance to be poorest at o(H) = 1 and improve exponen-
tially thereafter.

• Longer epoch durations (larger V) degrade performance of all methods because of
potentially longer activation periods during epochs (see top right plot). With pe-
nalizing, forcing, regenerating, and the subpopulation strategy a saturation point
is reached beyond which further increases in the epoch duration have no effect.
With waiting there is no saturation point because an increase in V results in longer
waiting periods and thus a poorer performance. The reason that waiting performs
best for small V (see range 0 < V < 14) is that the waiting periods are short in
this regime, allowing an optimizer to converge quickly away from search regions
covered by H and prevent future constraint activations.

• When providing some recovery time, all policies improve in performance (see bot-
tom left plot). The recovery speed depends on how much time is required to intro-
duce first diversity among the previously constrained bits before one can generate
better solutions.

• With later start times of the constraint time frame, or, equivalently, longer prepara-
tion times, there is a positive effect on the performance of all policies (see bottom
right plot). This is because with a commitment relaxation ERC the later in the op-
timization one is, the less likely it is to enter a poor schema (a schema not on the
optimization path) and activate a constraint; also, due to elitism, repaired solutions
are less likely to be inserted into the population the later a constraint is activated.
Thus later constraints are less disruptive.

Figure 9 analyzes how constraint schemata that represent genetic material of dif-
ferent qualities affect the performance obtained with the constraint-handling policies.
Although ERCs can have large effects on performance, one can see from the plots that
the majority of the constraint schemata do not have an impact on the performance at
all compared to the unconstrained performance (which is represented by the square at
o(H) = #1s = 0). These are schemata that are unlikely to cause an activation at all be-
cause they either do not lie on an optimizer’s search path (schemata with few 1-bits) or
are associated with a generally low probability of being met by any individual (higher
order schemata around the straight line). Constraint schemata that represent poor ge-
netic material (i.e. consist of many 0-bits) have only an impact if their order is low
because an optimizer is searching in a different direction. Hence, constraint schemata
that have a significant effect on the performance of both policies are either of low order
or contain many 1-bits (schemata along and near the diagonal). For these constraint
setting regimes, we observe a similar non-monotonic effect on the performance of both
policies as we have seen previously for schemata representing poor genetic material
only (indicated here by the row of squares with #1s = 0). The difference is that the
more 1-bits there are in H (i.e. as we go up the rows of squares), the less apparent
becomes this non-monotonic (negative) performance effect. From Figure 10 — which
compares the performance of penalizing against the one obtained with waiting (left
plot) and the subpopulation strategy (right plot) — it is apparent that the performance
differences between the policies observed previously is also maintained largely (as we
go up the rows of squares).

Evolutionary Computation Volume x, Number x 19

R. Allmendinger and J. Knowles

Forcing - Average best solution fitness

 0 5 10 15 20

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

#
1

s
in

 H

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

Picking schemata
at random

Waiting - Average best solution fitness

 0 5 10 15 20

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

#
1
s

in
 H

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Picking schemata
at random

Forcing - Average number of times the
optimal solution has been evaluated

 0 5 10 15 20

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

#
1

s
in

 H

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Picking schemata
at random

Waiting - Average number of times the
optimal solution has been evaluated

 0 5 10 15 20

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

#
1
s

in
 H

 0

 1

 2

 3

 4

 5

 6

 7

 8

Picking schemata
at random

Figure 9: Plots showing the average best solution fitness obtained (left) and the
average number of times the optimal solutions has been evaluated during the op-
timization (which is an indication of the convergence speed) (right) by forcing
(top) and waiting (bottom) on OneMax as a function of the order of the constraint
schema o(H), and the number of order-defining bits in H with value 1 for the ERC
commRelaxERC(0, 700, 15, H). The straight line represents the expected performance
when picking a schema (i.e. the order-defining bits and their values) with a particu-
lar order at random. The performance obtained in an unconstrained environment is
represented by the square at o(H) = #1s = 0.

On the MAX-SAT instances, the range of constraint schemata causing a perfor-
mance impact is smaller; this is apparent from Figure 11. From the plot we observe
that while again low-order schemata affect the performance significantly, higher-order
schemata that represent near-optimal or optimal genetic material have only a little or no
effect; the reason is that good genetic material is difficult to detect on this challenging
problem, particularly within T = 800 time steps.

7.2 Periodic ERC

With the insights we gained about the policies when applying them to commitment
relaxation ERCs, we can understand their behavior in the presence of a second type of
ERC, periodic ERCs, more easily.

20 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

Ratio P(f(x) > fPenalizing)/P(f(x) > fWaiting)

 0 5 10 15 20

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

#
1
s

in
 H

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Picking schemata
at random

Ratio P(f(x) > fPenalizing)/P(f(x) > fSubpop. strategy)

 0 5 10 15 20

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

#
1
s

in
 H

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Picking schemata
at random

Figure 10: Plots showing the ratio P(f (x) > fPenalizing)/P(f (x) > fWaiting) (left) and
P(f (x) > fPenalizing)/P(f (x) > fSubpop. strategy) (right) on OneMax as a function of the or-
der of the constraint schema o(H), and the number of order-defining bits in H with
value 1 for the ERC commRelaxERC(0, 700, 15, H); here, x is a random variable that
represents the best solution from a set of solutions drawn uniformly at random from
the search space and f∗ the average best solution fitness obtained with policy ∗. If
P(f (x) > f∗)/P(f (x) > f∗∗) > 1, then policy ∗∗ is able to achieve a higher average best
solution fitness than policy ∗ and a greater advantage of ∗∗ is indicated by a darker
shading in the heat maps; similarly, if P(f (x) > f∗)/P(f (x) > f∗∗) < 1, then ∗ is better
than ∗∗ and a lighter shading indicates a greater advantage of ∗.

Subpop. strategy - Average best solution fitness

 0 5 10 15 20

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

#
1
s

in
 H

 0.972

 0.973

 0.974

 0.975

 0.976

 0.977

 0.978

 0.979

 0.98

 0.981

Picking schemata
at random

Figure 11: A plot showing the average best solution fitness obtained by the subpopula-
tion strategy on several MAX-SAT instances as a function of the order of the constraint
schema o(H), and the number of order-defining bits in H set correctly for the ERC
commRelaxERC(0, 800, 15, H). The straight line represents the expected performance
when picking a schema (i.e. the order-defining bits and their values) with a particular
order at random.

Figure 12 shows how the performance of the different policies is affected by vari-
ous constraint parameters of a periodic ERC on OneMax when H represents poor ge-
netic material. Again, the results obtained on TwoMax and the MAX-SAT instances are
similar and are shown in Appendix B. In comparison to commitment relaxation ERCs,

Evolutionary Computation Volume x, Number x 21

R. Allmendinger and J. Knowles

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 2 4 6 8 10 12 14

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Order of constraint schema H, o(H)

perERC(0,700,20,50,H=(0o(H)***...))

Forcing
Regenerating

Waiting
Subpopulation strategy

Penalizing

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 100 200 300 400 500

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Start of constraint time frame tctf
start

perERC(tctf
start

,tctf
start+700,20,50,H=(0000***...)), T = tctf

start+700

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 700 800 900 1000 1100 1200

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Optimization time T

perERC(0,700,20,50,H=(0000***...))

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Activation period k

perERC(0,700,k,50,H=(0000***...))

Figure 12: Plots showing the average best solution fitness found and its standard error
on OneMax as a function of the order of the constraint schema o(H) (top left), the
activation period k (top right), the optimization time T (bottom left), and the start of
the constraint time frame tstart

ctf (bottom right). For each setting shown on the abscissa,
a Friedman test (significance level of 5%) has been carried out. In the top left plot, the
subpopulation strategy performs best for o(H) = 2; there is no clear winner for the
other settings.

the main difference we observe from Figure 12 is that waiting performs poorly and
is also clearly dominated by penalizing for the majority of constraint settings. This is
due to the fact that activation periods are set deterministically with periodic ERCs. In
essence, waiting is likely to freeze the optimization during each activation period be-
cause of the low probability of generating solutions from H (regardless of the quality of
the genetic material represented by H). With penalizing one is also unlikely to evaluate
any solutions during an activation period. However, the fact that the optimization is
not frozen is beneficial because offspring are generated using a more up-to-date parent
population during unconstrained optimization periods.

The fact that activation periods are set deterministically with periodic ERCs means
also that high-order constraint schemata have an impact on the performance and this
is the case regardless of the genetic material they represent. In fact, from Figure 13
we see that the average best solution fitness obtained with the subpopulation strategy
on OneMax decreases rather smoothly for all orders as the quality of the represented
genetic material worsens. Comparing this average best solution fitness with the fitness
obtained by penalizing (left plot of Figure 14), we observe that repairing is particularly
beneficial for high-order constraint schemata that represent very good genetic material.
Waiting, in turn, is inferior to penalizing across all the different constraint schemata but
in particular for low-order schemata representing very good genetic material (see right

22 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

Subpop. strategy - Average best solution fitness

 0 5 10 15 20

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

#
1
s

in
 H

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

Picking schemata
at random

Figure 13: A plot showing the average best solution fitness obtained by the sub-
population strategy on OneMax as a function of the order of the constraint schema
o(H), and the number of order-defining bits in H with value 1 for the ERC
perERC(0, 700, 20, 50, H). The straight line represents the expected performance when
picking a schema (i.e. the order-defining bits and their values) with a particular order
at random.

plot of Figure 14).
On the MAX-SAT instances, results not shown here, one makes similar observa-

tions as on OneMax. However, because of the difficulty of finding good genetic ma-
terial, even when setting a small number of bits correctly, a smooth decrease in the
average best solution fitness, and differences between the performance of policies, are
more obvious for schemata of higher orders. Compared to OneMax, there are also
small differences apparent in the results obtained on TwoMax; we show the results and
discuss these differences in Appendix B.

8 Case Study

In this section we demonstrate one way for selecting a suitable constraint-handling pol-
icy for an real-world application involving ERCs. For this we use the same experimen-
tal setup as used in the instrument configuration application described by O’Hagan
et al. (2005, 2007). We now give a more detailed description of this application.

Application description: The application is concerned with optimizing the configura-
tion parameters of a gas-chromatography mass spectrometer instrument so as to max-
imize its ability to separate and detect a complex (biological) sample. Resource con-
straints arise here because certain parameters of the instrument configuration cannot be
changed widely from one experiment to the next, without incurring a severe “change-
over cost” associated with having to clean parts of the instrument (Dunn, 2011).13 The
problem is defined over l = 15 integer variables and a total search space of 7.32 × 109

configurations. O’Hagan et al. (2005, 2007) cast this application as a multi-objective op-
timization problem but here we consider only one objective, namely the number of
peaks detected (to be maximized). Two ERCs are used to model the parameters (here
related to oven temperatures of the instrument) that must be prohibited from varying

13This particular ERC was avoided by O’Hagan et al. (2005, 2007) by artificially reducing the ranges of
these parameters, which may have compromised the optimization to a degree.

Evolutionary Computation Volume x, Number x 23

R. Allmendinger and J. Knowles

Ratio P(f(x) > fPenalizing)/P(f(x) > fSubpop. strategy)

 0 5 10 15 20

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

#
1
s

in
 H

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Picking schemata
at random

Ratio P(f(x) > fPenalizing)/P(f(x) > fWaiting)

 0 5 10 15 20

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

#
1
s

in
 H

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Picking schemata
at random

Figure 14: Plots showing the ratio P(f (x) > fPenalizing)/P(f (x) > fSubpop. strategy) (left)
and P(f (x) > fPenalizing)/P(f (x) > fWaiting) (right) on OneMax as a function of the or-
der of the constraint schema o(H), and the number of order-defining bits in H with
value 1 for the ERC perERC(0, 700, 20, 50, H); here, x is a random variable that rep-
resents the best solution from a set of solutions drawn uniformly at random from
the search space and f∗ the average best solution fitness obtained with policy ∗. If
P(f (x) > f∗)/P(f (x) > f∗∗) > 1, then policy ∗∗ is able to achieve a higher average best
solution fitness than policy ∗ and a greater advantage of ∗∗ is indicated by a darker
shading in the heat maps; similarly, if P(f (x) > f∗)/P(f (x) > f∗∗) < 1, then ∗ is better
than ∗∗ and a lighter shading indicates a greater advantage of ∗.

over too wide a range.

ERCs: To keep things simple, we assume that the maximal number of instrument
configurations that can be tested on a day is fixed at V = 15, and the total num-
ber of days available for the optimization is 150, resulting in T = 15 × 150 = 2250
available time steps or fitness evaluations. We set the first two variables to represent
the oven temperatures, and the value 0 to represent the low temperatures (which
cause the ERCs to arise). Hence, we have the following two commitment relaxation
ERCs: commRelaxERC (0, 2250, 15, H = (0 ∗ ∗ ∗ ...)) and commRelaxERC (0, 2250, 15,
H = (∗0 ∗ ∗ ∗ ...)). Little is known of the fitness landscape before optimization begins
but, as in (O’Hagan et al., 2007), it would be expected that there is some degree of epis-
tasis in the problem. We would not know which of the two schemata represent good or
poor instrument configurations.

Offline testing: As algorithm designers, we are now faced with the challenge to select
an optimizer or constraint-handling policy for the above described ERCOP. A common
approach is to first design appropriate problem functions that simulate the problem at
hand, and then to test several algorithms offline on these functions and use the best one
for the real-world problem. In this case study, we use NKα landscapes as the test prob-
lems because they allow us to model different degrees of epistasis. We introduced this
problem in Section 6.2, and also provided the settings of the problem parameters N,K,
and α in Table 3.14 The (four) selected settings allow us to cover landscapes featuring
different degrees of epistasis and topologies. To cope with the integer representation,
we need to modify the mutation operator, which shall now select a random setting from

14Note that NKα landscapes are binary problems by default. Transforming them to account for an in-

teger representation is straightforward and involves the generation of aK different fitness values for each
neighbourhood, where a is the alphabet size.

24 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0 500 1000 1500 2000

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Time counter t

commRelaxERC(0,2250,15,H=(0***...)),
commRelaxERC(0,2250,15,H=(*0***...)), N=15, K=2, α=0.0

Forcing
Regenerating

Waiting
Subpopulation strategy

Penalizing
 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0 500 1000 1500 2000

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Time counter t

commRelaxERC(0,2250,15,H=(0***...)),
commRelaxERC(0,2250,15,H=(*0***...)), N=15, K=6, α=0.0

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0 500 1000 1500 2000

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Time counter t

commRelaxERC(0,2250,15,H=(0***...)),
commRelaxERC(0,2250,15,H=(*0***...)), N=15, K=2, α=2.0

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0 500 1000 1500 2000

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Time counter t

commRelaxERC(0,2250,15,H=(0***...)),
commRelaxERC(0,2250,15,H=(*0***...)), N=15, K=6, α=2.0

Figure 15: Plots showing the average best solution fitness obtained on NKα land-
scapes with N = 15 and K = 2, α = 0.0 (top left), K = 6, α = 0.0 (top right),
K = 2, α = 2.0 (bottom left), and K = 6, α = 2.0 (bottom right) as a function of
the time counter t; results are averaged over 500 independent runs using a different
randomly generated problem instance for each run. All instances were subject to the
two commitment relaxation ERCs commRelaxERC(0, 2250, 15, H = (0 ∗ ∗ ∗ ...)) and
commRelaxERC(0, 2250, 15, H = (∗0 ∗ ∗ ∗ ...)). We have carried out a Friedman test
(significance level of 5%) for each of the four NKα landscapes at time step t = 2250. In
the top and bottom right plot, forcing achieves the best performane at the end of the
search among the policies; there is no clear winner on the other two NKα landscapes.

the set of possible ones for the instrument parameter that is to be modified. Otherwise,
we can use the same algorithm setup as previously (see Algorithm 3).

Figure 15 shows the average best solution fitness obtained by the constraint-
handling policies on the four NKα landscape models as a function of the time counter
(we do not show the standard error as it was negligible). The plots confirm what we
observed in the experimental study that similar patterns are obtained for different land-
scapes. In fact, we observe that a repairing policy (forcing, regenerating, or the subpop-
ulation strategy) should be clearly favored over a waiting or penalizing policy. A trend
is apparent that the subpopulation strategy and regenerating perform best in the initial
stages of the optimization, while forcing is slightly better in the final part of the opti-
mization. Also, the performance advantage of forcing at T = 2250 over the other two
repairing policies tends to increase with K and/or α. The waiting policy does not per-
form well because the likelihood that either or both of the ERCs is active is relatively
high, causing the optimization to freeze for too long. Although penalizing performs
significantly better than waiting, the probability of penalizing many solutions and thus
making only little or no progress in the optimization is too high to match the perfor-

Evolutionary Computation Volume x, Number x 25

R. Allmendinger and J. Knowles

 3000

 3500

 4000

 4500

 5000

 5500

 0 500 1000 1500 2000

A
v

er
ag

e
b

es
t

so
lu

ti
o

n
 f

it
n

es
s

Time counter t

commRelaxERC(0,2250,15,H=(0***...)),
commRelaxERC(0,2250,15,H=(*0***...))

Forcing
Regenerating

Waiting
Subpopulation strategy

Penalizing

Figure 16: A plot showing the average best solution fitness obtained on a
fitness landscape interpolated from real-world data as a function of the time
counter t. The optimization was subject to the two commitment relaxation ERCs
commRelaxERC(0, 2250, 15, H = (0 ∗ ∗ ∗ ...)) and commRelaxERC(0, 2250, 15, H =
(∗0 ∗ ∗ ∗ ...)).

mance of the repairing policies.
Based on these results, if a single policy is to be chosen, then we would select the

policy, forcing, for the real-world problem as it performs best after T = 2250 time steps.

Testing on real-world landscape: To test this choice now on the real problem, we can-
not run it on the real closed-loop problem (and certainly we would not be able to com-
pare different policies). However, we are able to do the next best thing. Since we
have available the actual fitness values collected during the real experimental trials re-
ported by O’Hagan et al. (2005, 2007) (i.e. the number of peaks detected) for around
315 instrument configurations tested, we can use this data to construct an interpolated
fitness landscape using, for example, the Kriging approach (Cressie, 1993).15 In compar-
ison to the NKα landscapes considered for offline testing, the interpolated landscape is
smoother and contains significantly fewer local optima; both aspects are attributed to
the low number of data points.

Nevertheless, as it is apparent from Figure 16, the performance of the policies on
the interpolated landscapes is largely in alignment with the findings made on the NKα
landscapes: The repairing policies tend to perform better than waiting and penalizing,
and, while the subpopulation strategy performs best at the beginning of the optimiza-
tion, all repairing policies tend to perform identically at the end of the optimization.
Clearly, in reality one is usually able to perform a single optimization run only mean-
ing that the result might be different from the one we obtained from averaging over
many runs. Nevertheless, this case study demonstrates how one can approach and
solve an ERCOP beginning with the definition of the ERCs, modelling the simulated
environment, selection of appropriate test functions, and finally comparing different
optimizers and selecting the most suitable one to be used in the real-world application.

15In essence, Kriging is a technique that interpolates the fitness value of an unobserved data point from
observations of values of nearby data points. To generate the fitness landscape we used a Kriging function,
Krig(), from the fields package of the statistical software, R.

26 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

9 Summary and Conclusion

Ephemeral resource-constrained optimization problems (ERCOPs) are problems where
feasible solutions can be temporarily non-evaluable due to a lack of resources required
for their evaluation. In this study, we have proposed and analyzed various policies for
dealing with non-evaluable solutions, and assessed them for two types of ephemeral
resource constraints (ERCs) — commitment relaxation ERCs and periodic ERCs — us-
ing four test problems: OneMax, TwoMax, several MAX-SAT problem instances, and
NKα landscapes. In addition, a demonstration of how one may approach and solve a
new ERCOP in the common case where knowledge of the fitness landscape is poor has
been given in the form of a case study that used landscape data from a real closed-loop
optimization problem.

We made several key observations from the experimental analysis that may deter-
mine how one should proceed with an ERCOP. Generally, ERCs affect the performance
of an optimizer, and clear patterns emerge relating ERC parameters to performance
effects. The later the constraint time frame of an ERC begins, the less disruptive is
the impact on search. This could mean that investment in resources at early stages
of the optimization should be preferred, where possible. For commitment relaxation
constraints, the probability of activating the constraint is dependent on the order and
the quality of the genetic material represented by the constraint schemata. Thus, to
some degree, we may be able to predict the extent of impact if information about these
schemata is available. Although periodic constraints are activated at regular time inter-
vals (independently of the constraint schemata defining them), their impact on search
still depends upon the order and quality of the constraint schemata in predictable ways.
We also clearly see that the impact on EA performance is modulated by the choice of
constraint-handling policy adopted. Which choice of policy is best is dependent on the
details of the ERC, as we have set out in our results.

Importantly, we also observed that the patterns of performance impact seen on
the same ERC type are quite similar across different search problems with different types
of fitness landscape. Whereas, between the two ERCs, even on the same problem, the
impact on performance is quite different. If this pattern turns out to be more generally
true, then it is good news because we usually have more knowledge about the ERCs
than about the fitness landscape. Therefore we would not need to be ‘right’ about the
fitness landscape in order to choose the right policy. Nevertheless, as indicated in the
case study, an a priori analysis of the problem at hand can be beneficial when it comes
to selecting a suitable policy.

With respect to the impact of the individual ERC types, our analysis concluded
that with commitment relaxation ERCs, we would tentatively say that repairing poli-
cies should not be used (i.e. the genotype of a solution should not be modified) for
the majority of constraint settings, while they are appropriate policies with periodic
ERCs. An exception may be the situation where the available resources are poor be-
cause, there, repairing solutions and inserting them into the population may cause an
EA to prematurely converge to a suboptimal population state. In situations where it
should be repaired, we can tentatively suggest that a policy that aims at creating fit
repaired solutions should be preferred over a naı̈ve forcing policy.

Although we are able to draw these conclusions, our study has of course been
very limited, and there remains much else to learn about the effects of ERCs and how
to handle them. Our immediate attention is turning to the design and tuning of in-
telligent search policies. In (Allmendinger and Knowles, 2011) we have already shown
that an EA that learns offline (using a reinforcement learning agent) and online (using a

Evolutionary Computation Volume x, Number x 27

R. Allmendinger and J. Knowles

multi-armed bandit algorithm) when to switch between the different static constraint-
hanlding policies introduced here can yield better performance than the static strategies
themselves. We are also looking at the treatment of problems where some solutions are
more costly in time or resources to evaluate than others. The challenge there is that the
optimizer has not only to account for the fitness of solutions, but also for their differen-
tial costs of evaluation.

Acknowledgment

The authors would like to thank Julia Handl for critical comments of a draft of this
manuscript. We would also like to thank Hans-Paul Schwefel for answering many
questions about his experience with resource constraints.

References

Allmendinger, R. and Knowles, J. (2010a). Ephemeral resource constraints in optimization and
their effects on evolutionary search. Technical Report MLO-20042010, University of Manch-
ester.

Allmendinger, R. and Knowles, J. (2010b). On-line purchasing strategies for an evolutionary algo-
rithm performing resource-constrained optimization. In Proceedings of Parallel Problem Solving
from Nature — PPSN XI, pages 161–170.

Allmendinger, R. and Knowles, J. (2011). Policy learning in resource-constrained optimization. In
GECCO ’11 — Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation,
pages 1971–1978.

Bäck, T., Knowles, J., and Shir, O. M. (2010). Experimental optimization by evolutionary algo-
rithms. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation
(Companion), pages 2897–2916.

Bedau, M. A. (2010). Coping with complexity: Machine learning optimization of highly syn-
ergistic biological and biochemical systems. Keynote Talk at the 12th Annual Conference on
Genetic and Evolutionary Computation.

Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V., and Trosset, M. W. (1999).
A rigorous framework for optimization of expensive functions by surrogates. Structural and
Multidisciplinary Optimization, 17(1):1–13.

Borodin, A. and El-Yaniv, R. (1998). Online Computation and Competitive Analysis. Cambridge
University Press.

Bosman, P. A. N. and Poutré, H. L. (2007). Learning and anticipation in online dynamic opti-
mization with evolutionary algorithms: The stochastic case. In GECCO ’07 — Proceedings of
9th Annual Conference on Genetic and Evolutionary Computation, pages 1165–1172.

Box, G. E. P. (1957). Evolutionary operation: A method for increasing industrial productivity.
Applied Statistics, 6(2):81–101.

Box, G. E. P., Hunter, J. S., and Hunter, W. G. (2005). Statistics for Experimenters: Design, Innovation,
and Discovery. Wiley, 2nd edition.

Branke, J. (2001). Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publish-
ers.

Büche, D., Stoll, P., Dornberger, R., and Koumoutsakos, P. (2002). Multiobjective evolutionary
algorithm for the optimization of noisy combustion processes. IEEE Transactions on Systems,
Man, and Cybernetics C, 32(4):460–473.

28 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

Caschera, F., Gazzola, G., Bedau, M. A., Moreno, C. B., Buchanan, A., Cawse, J., Packard, N., and
Hanczyc, M. M. (2010). Automated discovery of novel drug formulations using predictive
iterated high throughput experimentation. PloS ONE, 5(1):e8546.

Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics
and Engineering, 191(11-12):1245–1287.

Cressie, N. (1993). Statistics for Spatial Data. Wiley.

Davis, L. (1989). Adapting operator probabilities in genetic algorithms. In Proceedings of the 3rd
International Conference on Genetic Algorithms, pages 61–69.

De Jong, K. A. and Spears, W. M. (1989). Using genetic algorithms to solve NP-complete prob-
lems. In Proceedings of the International Conference on Genetic Algorithms, pages 124–132.

Dunn, W. B. (March 2011). Email discussion with W. B. Dunn.

Finkel, D. E. and Kelley, C. T. (2009). Convergence analysis of sampling methods for perturbed
lipschitz functions. Pacific Journal of Optimization, 5:339–350.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, 32(200):675–701.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for multimodal func-
tion optimization. In Proceedings of the 2nd International Conference on Genetic Algorithms, pages
41–49.

Hansen, P. and Jaumard, B. (1990). Algorithms for the maximum satisfiability problem. Comput-
ing, 44(4):279–303.

Hebbron, T., Bullock, S., and Cliff, D. (2008). NKα: Non-uniform epistatic interations in an
extended NK model. In Artificial Life XI, pages 234–241.

Heckler, R. and Schwefel, H.-P. (1978). Superimposing direct search methods for parameter opti-
mization onto dynamic simulation models. In Proceedings of the Conference on Winter Simulation,
pages 173–181.

Herdy, M. (1997). Evolutionary optimization based on subjective selection — evolving blends of
coffee. In European Congress on Intelligent Techniques and Soft Computing, pages 640–644.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. MIT Press.

Jarvis, R., Rowe, W., Yaffe, N., O’Connor, R., Knowles, J., Blanch, E., and Goodacre, R. (2010).
Multiobjective evolutionary optimisation for surface-enhanced Raman scattering. Analytical
and Bioanalytical Chemistry, 397(5):1893–1901.

Judson, R. S. and Rabitz, H. (1992). Teaching lasers to control molecules. Physical Review Letters,
68(10):1500–1503.

Kauffman, S. (1989). Adaptation on rugged fitness landscapes. In Lecture Notes in the Sciences of
Complexity, pages 527–618.

Klockgether, J. and Schwefel, H.-P. (1970). Two-phase nozzle and hollow core jet experiments. In
Engineering Aspects of Magnetohydrodynamics, pages 141–148.

Knowles, J. (2009). Closed-loop evolutionary multiobjective optimization. IEEE Computational
Intelligence Magazine, 4(3):77–91.

Liepins, G. E. and Potter, W. D. (1991). A genetic algorithm approach to multiple-fault diagnosis.
In Handbook of Genetic Algorithms, pages 237–250.

Mahfoud, S. W. (1995). Niching methods for genetic algorithms. PhD thesis, University of Illinois at
Urbana-Champaign.

Evolutionary Computation Volume x, Number x 29

R. Allmendinger and J. Knowles

Michalewicz, Z. (2010). Some thoughts on wine production. Keynote Talk at the International
Conference on Parallel Problem Solving from Nature — PPSN XI.

Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter
optimization problems. Evolutionary Computation, 4(1):1–32.

Montgomery, D. C. (1976). Design and Analysis of Experiments. Wiley.

Mühlenbein, H. and Schlierkamp-Voosen, D. (1993). Optimal interaction of mutation and
crossover in the breeder genetic algorithm. In Proceedings of the Fifth International Conference
on Genetic Algorithms, page 648.

Nguyen, T. T. (2011). Continuous dynamic optimisation using evolutionary algorithms. PhD thesis,
University of Birmingham.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer.

O’Hagan, S., Dunn, W. B., Brown, M., Knowles, J., and Kell, D. B. (2005). Closed-loop, mul-
tiobjective optimization of analytical instrumentation: Gas chromatography / time-of-flight
mass spectrometry of the metabolomes of human serum and of yeast fermentations. Analyti-
cal Chemistry, 77(1):290–303.

O’Hagan, S., Dunn, W. B., Knowles, J., Broadhurst, D., Williams, R., Ashworth, J. J., Cameron, M.,
and Kell, D. B. (2007). Closed-loop, multiobjective optimization of two-dimensional gas chro-
matography / mass spectrometry for serum metabolomics. Analytical Chemistry, 79(2):464–476.

Pelikan, M. and Goldberg, D. E. (2000). Genetic algorithms, clustering, and the breaking of
symmetry. In Proceedings of Parallel Problem Solving from Nature — PPSN VI, pages 385–394.

Qasem, M. and Prügel-Bennett, A. (2010). Learning the large-scale structure of the MAX-SAT
landscape using populations. IEEE Transactions on Evolutionary Computation, 14(4):518–529.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biol-
ogischen Evolution. Frommann-Holzboog.

Rechenberg, I. (2000). Case studies in evolutionary experimentation and computation. Computer
Methods in Applied Mechanics and Engineering, 2-4(186):125–140.

Reeves, C. R. and Rowe, J. E. (2003). Genetic algorithms — Principles and Perspectives: A guide to
GA theory. Kluwer Academic Publishers.

Schwefel, H.-P. (1968). Experimentelle optimierung einer Zweiphasendüse. Bericht 35 des AEG-
Forschungsinstituts Berlin zum Projekt MHD-Staustrahlrohr.

Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung. PhD thesis, Technical
University of Berlin.

Shir, O. and Bäck, T. (2009). Experimental optimization by evolutionary algorithms. Tutorial at
the 11th Annual Conference on Genetic and Evolutionary Computation.

Shir, O. M. (2008). Niching in Derandomized Evolution Strategies and Its Applications in Quantum
Control: A Journey from Organic Diversity to Conceptual Quantum Designs. PhD thesis, University
of Leiden.

Shir, O. M., Roslund, J., and Rabitz, H. (2009). Evolutionary multi-objective quantum control
experiments with the covariance matrix adaptation. In GECCO ’09 — Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation, pages 659–666.

Small, B. G., McColl, B. W., Allmendinger, R., Pahle, J., López-Castejón, G., Rothwell, N. J.,
Knowles, J., Mendes, P., Brough, D., and Kell, D. B. (2011). Efficient discovery of anti-
inflammatory small molecule combinations using evolutionary computing. Nature Chemical
Biology, 7:902–908.

30 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0 2 4 6 8 10 12 14

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Order of constraint schema H, o(H)

commRelaxERC(0,800,15,H=(0o(H)***...))

Forcing
Regenerating

Waiting
Subpopulation strategy

Penalizing 0.96

 0.962

 0.964

 0.966

 0.968

 0.97

 0.972

 0.974

 0.976

 0.978

 0 5 10 15 20 25 30 35 40

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Epoch duration V

commRelaxERC(0,800,V,H=(0000***...))

Figure 17: Plots showing the average best solution fitness found and its standard er-
ror on several MAX-SAT instances as a function of the order of the constraint schema
o(H) (left) and the epoch duration V (right). For each setting shown on the abscissa,
a Friedman test (significance level of 5%) has been carried out. In the left and right
plot, the subpopulation strategy performs best in the ranges 1 < o(H) < 5 and V > 10,
respectively; there is no clear winner for the other settings.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of the 3rd Interna-
tional Conference on Genetic Algorithms, pages 2–9.

Thompson, A. (1996). Hardware Evolution: Automatic design of electronic circuits in reconfigurable
hardware by artificial evolution. PhD thesis, University of Sussex.

Vaidyanathan, S., Broadhurst, D. I., Kell, D. B., and Goodacre, R. (2003). Explanatory optimiza-
tion of protein mass spectrometry via genetic search. Analytical Chemistry, 75(23):6679–6686.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1:67–82.

Appendix

A Commitment composite ERCs

Figure 17 and 18 show the results obtained with the different constraint-handling strategies on
several MAX-SAT instances and the TwoMax function, respectively. In general, the subpopula-
tion strategy tends to obtain a higher average best solution fitness than forcing and regenerating
because it converges quicker to a suboptimal population state. Further evidence of this behaviour
is given by the plots in the right column of Figure 18, which show the probability that the major-
ity of a population climbs up the optimal slope.

B Periodic ERCs

Figure 19 and 20 show the results obtained with the different constraint-handling strategies on
the MAX-SAT instances and the TwoMax function, respectively. Unlike on the MAX-SAT in-
stances (and OneMax), waiting (and penalizing) tend to perform significantly better than the
repairing policies for the majority of constraint parameter settings on the TwoMax problem. The
reason is that, on this problem, repairing decreases the probability of climbing up the optimal
slope significantly and that is already true for low orders o(H). From Figure 21, which compares
the performance of waiting against the one of the subpopulation strategy for different constraint
schemata, we observe that waiting is able to maintain a significant performance advantage over a
repairing policy (all three repairing policies performed similarly) for schemata below the straight
line.

Evolutionary Computation Volume x, Number x 31

R. Allmendinger and J. Knowles

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

P
ro

b
ab

il
it

y
 o

f
cl

im
b
in

g
 u

p
 t

h
e

o
p
ti

m
al

 s
lo

p
e

Order of constraint schema H, o(H)

commRelaxERC(0,700,15,H=(0o(H)***...))

Forcing
Regenerating

Waiting
Subpopulation strategy

Penalizing

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

P
ro

b
ab

il
it

y
 o

f
cl

im
b
in

g
 u

p
 t

h
e

o
p
ti

m
al

 s
lo

p
e

Epoch duration V

commRelaxERC(0,700,V,H=(000***...))

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Epoch duration V

commRelaxERC(0,700,V,H=(000***...))

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Order of constraint schema H, o(H)

commRelaxERC(0,700,15,H=(0o(H)***...))

Forcing
Regenerating

Waiting
Subpopulation strategy

Penalizing

Figure 18: Plots showing the average best solution fitness found and its standard error
(left column) and the probability (measured by the relative number of algorithmic runs)
that the majority of the individuals in a population ends up on the optimal slope at the
end of the optimization (right column) on TwoMax as a function of the order of the
constraint schema o(H) (top row), the epoch duration V (bottom row). For each setting
shown on the abscissa (of the plots on the left-hand side), a Friedman test (significance
level of 5%) has been carried out. In the top left plot, waiting performs best in the
range 2 < o(H) < 6, while, in the the bottom left plot, it performs best in the range
2 < V < 22 with the subpopulation strategy being best in the range V > 22; there is no
clear winner for the other settings.

32 Evolutionary Computation Volume x, Number x

On Handling Ephemeral Resource Constraints in Evolutionary Search

 0.962

 0.964

 0.966

 0.968

 0.97

 0.972

 0.974

 0.976

 0.978

 0 5 10 15 20 25 30 35 40

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Order of constraint schema H, o(H)

perERC(0,800,20,50,H=(0o(H)***...))

Forcing
Regenerating

Waiting
Subpopulation strategy

Penalizing

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0 5 10 15 20 25 30 35 40

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Activation period k

perERC(0,800,k,50,H=(0000***...))

Figure 19: Plots showing the average best solution fitness found and its standard er-
ror on several MAX-SAT instances as a function of the order of the constraint schema
o(H) (left) and the activation period k (right). For each setting shown on the abscissa,
a Friedman test (significance level of 5%) has been carried out. In the left plot, the sub-
population strategy performs best for o(H) = {2, 4, 8, 10}, while penalizing performs
best in the range o(H) > 16. In the right plot, the subpopulation strategy performs best
in the range k > 24; there is no clear winner for the other settings.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

P
ro

b
ab

il
it

y
 o

f
cl

im
b
in

g
 u

p
 t

h
e

o
p
ti

m
al

 s
lo

p
e

Order of constraint schema H, o(H)

perERC(0,700,15,50,H=(0o(H)***...))

Forcing
Regenerating

Waiting
Subpopulation strategy

Penalizing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

P
ro

b
ab

il
it

y
 o

f
cl

im
b
in

g
 u

p
 t

h
e

o
p
ti

m
al

 s
lo

p
e

Activation period k

perERC(0,700,k,50,H=(00000***...))

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Activation period k

perERC(0,700,k,50,H=(00000***...))

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0 2 4 6 8 10 12 14

A
v
er

ag
e

b
es

t
so

lu
ti

o
n
 f

it
n
es

s

Order of constraint schema H, o(H)

perERC(0,700,15,50,H=(0o(H)***...))

Forcing
Regenerating

Waiting
Subpopulation strategy

Penalizing

Figure 20: Plots showing the average best solution fitness found and its standard error
(left column) and the probability (measured by the relative number of algorithmic runs)
that the majority of the individuals in a population ends up on the optimal slope at
the end of the optimization (right column) on TwoMax as a function of the order of
the constraint schema o(H) (top row) and the activation period k (bottom row). For
each setting shown on the abscissa (of the plots on the left-hand side), a Friedman
test (significance level of 5%) has been carried out. In the top and bottom left plot,
penalizing performs best in the ranges o(H) > 2 and 16 < k < 24, respectively; there is
no clear winner for the other settings.

Evolutionary Computation Volume x, Number x 33

R. Allmendinger and J. Knowles

Ratio P(f(x) > fSubpop. strategy)/P(f(x) > fWaiting)

 0 5 10 15 20 25 30

Order of constraint schema H, o(H)

 0

 5

 10

 15

 20

 25

 30
#

1
s

in
 H

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Picking schemata
at random

Figure 21: A plot showing the ratio P(f (x) > fSubpop. strategy)/P(f (x) > fWaiting) on
TwoMax as a function of the order of the constraint schema o(H), and the number
of order-defining bits in H with value 1 for the ERC perERC(0, 700, 15, 50, H); here,
x is a random variable that represents the best solution from a set of solutions drawn
uniformly at random from the search space and f∗ the average best solution fitness ob-
tained with policy ∗. If P(f (x) > f∗)/P(f (x) > f∗∗) > 1, then policy ∗∗ is able to achieve
a higher average best solution fitness than policy ∗ and a greater advantage of ∗∗ is indi-
cated by a darker shading in the heat maps; similarly, if P(f (x) > f∗)/P(f (x) > f∗∗) < 1,
then ∗ is better than ∗∗ and a lighter shading indicates a greater advantage of ∗.

34 Evolutionary Computation Volume x, Number x

