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Abstract

This work deals with a new class of optimization problems: problems in which solutions, despite being feasible,

may beunavailablefor evaluation from time to time (temporarily). Such problems may arise wherever resources are

required in the evaluation of solutions, such as in experimental optimization and expensive computer simulations.

Under certain circumstances, such as time and budget restrictions, machine breakdowns, absence of required skilled

employees, and so on, the resources needed to conduct an experiment may not be available, so a solution can be

temporarily non-evaluable. We model the temporary unavailabilities of resources by what we are callingephemeral

resource constraints(ERCs). In this paper, we define ERC problems and provide an initial set of ERC types which

represent real-world limitations. To analyze the impact ofthe proposed ERC types on evolutionary search we engage

in a theoretical and empirical investigation. The theoretical investigation uses Markov chains to analyze the impact of

one of the proposed ERC types on common selection and reproduction models used within EAs. The experimental

investigation analyzes the impact of the other ERC types on more complete EAs. Further research into the effects of

ERCs is needed, and we facilitate this by providing an initial suite of test problems.

Index Terms

optimization; evolutionary experimentation; evolutionary computation; expensive objective function; constrained

optimization;

I. I NTRODUCTION

An optimization problem of generic form can be defined as

Maximize f(~x) (1)

subject to ~x ∈ X,
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where~x = (x1, ..., xl) is a solution vectorfor which values must be found andX a feasible search space. The

objective function(also known asfitness function) f : X 7→ Y represents a mapping fromX into the objective

spaceY ∈ R and is in generalblack-box[1], meaning we have no knowledge or access to it.

Black box optimization algorithmsa can be represented as mappings from previously visited solutions to a single

new solution inX [1]. Formally,a : φ(t) 7→ ~xt, where thesearch historyφ(t) = {(~x1, y1), ..., (~xt−1, yt−1)} denotes

the time-ordered set of solutions visited until time stept− 1, and~xi andyi indicate theX value, respectively, the

correspondingY value of theith successive element inφ(t). While in standard optimization problems, the objective

value f(~xt) of a feasible solution~xt ∈ X is yt = f(~xt) (sometimes even for infeasible solutions), inephemeral

resource-constrained optimization problems(ERCOPs), which are the focus of this study, we have

yt =











f(~xt) if ~xt ∈ Et(σ) ⊆ X

null otherwise,
(2)

whereEt(σ) represents theset of evaluable solutions(or evaluable search region) at time stept. In our case,Et(σ)

is defined by a set of schemata into which solutions have to fall in order to be evaluable. The setEt(σ), or the

ephemeral resource constraints(ERCs), maychange over timedepending on a set of problem-specific parameters

σ. These parameters may relate to things likerandom events, uncontrolled factorsand thesearch history.

Our motivation for ERCOPs comes from a number of optimization scenarios that recently arose in the experimental

sciences, particularly in the field of combinatorial biochemistry applications and instrument set-up optimization

in analytical chemistry [2]–[10], as well as quantum control in physics [11], [12]. These problems have been

tackled using evolutionary algorithms (EAs) [13]–[15], which are population-based search techniques that employ

a form of simulated evolution for finding good solutions for awide range of problems including noisy [16], [17],

constrained [18], [19], dynamic [20], and multiobjective problems [21]–[23]. In the motivating problems, one can

obtain an objective value only by conducting a physical experiment and thus by using resources such as time,

money, skilled engineers, people (e.g. in drug trials) and instruments. The setEt then represents all resources

available at a particular time stept and thus the set of all experiments that can be conducted at this time step.

At a particular time, or under a particular set of circumstances, the resources required to conduct an experiment

may not be available, so solutions can become temporarily non-evaluable. These temporary changes in resource

availabilities, or, equivalently, inEt, are modeled by the ERCs.

So far, ERCs have been mentioned only recently in published work by Knowles [2], suggesting that there

is little or no research on how ERCs affect an optimization process and what are good strategies to overcome

associated problems. From personal communication with oneof the pioneers of experimental optimization, Hans-

Paul Schwefel, however, we learnt that ERCs were already encountered during his experiments back in the 60s.

These pioneering experimental optimization problems weremainly concerned with shape design problems for fluid

dynamic models [24], [25].

In one of Schwefel’s experimental optimization problems the aim was to find an optimal shape of a flashing

nozzle that offers maximum energy efficiency. The nozzle wasconstructed from a series of conic brass rings, each
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having a ’left’ and ’right’ diameter such that the right diameter of one had to match the left of the subsequent one.

Several copies of the set of rings would be required to allow unfettered evolution of the nozzle shape. Thus, the

evaluation of some solutions required brass rings that werenot available at the outset, and had first to be ordered,

produced, and delivered, before the actual experiment could be conducted. Since the optimizers were not faced

with (strict) budget nor with time constraints all solutions could be evaluated, albeit sometimes delayed. In modern

experimental optimization problem, which are often of higher complexity and may involve severe time and/or budget

restrictions, there are several factors that may further complicate the process of ensuring resources availability: (i)

restricted storage space; (ii) time lags between ordering resources and receiving them; (iii) shelf-lives of resources;

(iv) availability of resources in certain fixed batch sizes only.

In another problem encountered by Schwefel, the evaluationof a single solution was done by running a time-

consuming simulation on a computer. During some simulations the simulation broke down (i.e. an execution error

or exception occurred). Although the failure occurred for always the same solutions, thus making the resource

constraint rather permanent or static, this problem shows that ERCs can beunknownand occurunexpectedlyeven

during an evaluation. However, ERCs may not only occur suddenly but also on aperiodical basis as is the case,

for example, when machines or people are available only on particular weekdays.

ERCs may also occur due touncontrolled factors, for example, with experiments that depend on the weather.

Perhaps more interestingly ERCs may arise due topreviously made decisions. For example, if instrument settings

must (or can) be changed only in certain intervals, then choosing a setting activates a temporarycommitment

constraintallowing only solutions that make use of this particular setting to be evaluable.

A factor that was not encountered in Schwefel’s experimentsbut which is quite common in modern experimental

problems is the presence of non-homogeneousexperimental costsin the sense that some experiments might be

more expensive to conduct than others. Thus, under a limitedbudget, this might cause an optimizer not only to

follow fitness gradients but also to account for variable experimental costs. This very realistic problem formulation

has been considered in the Robot Scientist study of King et al. [5], albeit for an inference problem rather than an

optimization problem.

Another common factor in modern experimental problems is that experimental equipment is often capable of

doingexperiments in batches(truly in parallel) rather than on a sequential basis. Here,the property of EAs to employ

simultaneously a population of solutions is particularly convenient. However note that the offspring population size

might be dictated by the batch size [2]. Deciding which experiments to conduct in a batch was also an important

aspect in the Robot Scientist study and has been investigated in detail by Byrne [26].

Optimizing ERC problems is similar to several research areas: traditionally, experimental problems are dealt

with using statistical methods referred to asexperimental designor design of experiments(DoE) [27]–[29]. The

focus of DoE is rather on low-dimensional search spaces withthe aim to obtain statistically robust results in as

few evaluation steps as possible and to explain them in termsof a model. ERCOPs, by contrast, feature usually

high-dimensional search spaces and one is ultimately interested in finding a single optimal solution. Despite sharing

the common feature of time-linkage, the aim of finding a single optimal (and ultimate) solution makes ERCOPs
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different fromonline (dynamic) optimization problems[30], [31], where the aim is to optimize rather a cumulative

score over some period of time. Unlike in traditionaldynamic optimization[20], the objective space in ERCOPs

does not change over time and thus the optimal solution does not need to be tracked. A further related area is

constrained optimization[18], [19], [32]. However, the fact that ERCs prevent the evaluation of solutions that are

otherwise feasible makes them materially different from standard constraints including dynamic constraints [33].

At this point, it should be apparent that the variety of ERC types is potentially large and that their impact on

an optimization process is as yet unknown. Hence, before onecan start designing efficient search policies, such as

suitable scheduling or learning strategies, one needs to first define formally the problem and understand how ERCs

might generally affect a search process. It is these issues that provide the focus for this study.

Organization

The rest of this paper is organized as follows. In Section II,a general problem definition of ERCOPs is given

and the concept of a communication channel that mediates between an optimizer and the problem itself to model

the ERC is introduced. An initial suite of different ERCs including constraints that we encountered in our own

collaborative work and that seem to be common in real-world is defined in Section III. To analyze the impact of the

ERCs on evolutionary search we engage in a theoretical and empirical investigation. In the theoretical investigation

(Section IV) we use the concept of Markov chains to analyze the impact of one of the proposed ERCs on common

models for performing selection and reproduction within EAs. Before we proceed with the experimental analysis in

Section VI, which will be on the impact of the other ERCs on a set of selected EAs, we describe in Section V the

choice of test functions, the specific ERCs, and give all parameter settings in Section V. In the concluding section

we draw together the findings from the experimental and theoretical analyses and discuss directions for further

research.

II. GENERAL PROBLEM FORMULATION OFERC OPTIMIZATION PROBLEMS

Compared with standard optimization problems, defining an ephemeral resource-constrained optimization problem

(ERCOP) is not quite so straightforward. The reason is that the dependency of the ephemeral resource-constraints

(ERCs) on some variables, such as time, function evaluations, costs and previous solutions evaluated, does not fit

into the standard definition of an optimization problem. Howexactly these variables are handled or simulated thus

needs careful consideration.

Consider Figure 1, which illustrates the basic setup of a real experimental problem. In general, this setup

establishes a closed-loop interaction between an optimizer (e.g. an evolutionary algorithm (EA)) and the experimental

platform including a (human) experimentalist [2], [5], [34]. The EA submits a population plan (i.e. a generation) to

be evaluated by the experimental platform; note, the size ofthe generation might be dictated by the experimental

platform. When the experiment is completed, a generation offitness values is returned. But the process is complicated

by the fact that resources are needed to conduct the experiments, and these might run out e.g. as a function of

time, or previous actions taken (or both). If the EA requeststhe evaluation of a solution that cannot be evaluated
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Fitness values

Order resources

Physical experimental rig

Repair solutions
Delay experiments
Evaluate only some solutions

...Human experimentalist

Optimizer (EA)

Initialize
loop:

Reproduce

Evaluate
Select

Resources

Generation

Fig. 1. A closed-loop experimental problem. When a resourceneeded to conduct an experiment is unavailable, the experimentalist may

intervene: more resources may be ordered; only the evaluable solutions of a generation may be evaluated; the experiments may be delayed; or

non-evaluable solutions may berepaired by hand.

then something must happen, and this something must be defined. In a real experiment, a human might intervene

to order some new resources, or allow the EA to generate some alternative solution(s), or do something else.

The purpose of an ERCOP is tosimulate the above kinds of experimental scenarios, including the way that

non-evaluable solutions arise (i.e. as a function of parameters like time, search history, or costs), and how they are

to be handled.

A. General problem formulation of ERCOPs

An ERCOP is a standard optimization problem as given in (1), augmented by a set of dynamic constraints

that restrict the solutions evaluable by a black box optimization algorithm as defined in (2). Theset of evaluable

solutions(or evaluable search space) at time stept, Et(σ), is a function of aset of problem-specific parametersσ.

The setσ may include parameters such as various types of counters (e.g. cost counter, time counter and evaluation

counter), the search history, random variables (which may encode random events like machine breakdowns), and

so forth. To specify a particular ERCOP,Et is defined in terms of one or moreephemeral resource constraint

(ERC) functions, which map a particular set of circumstances (depending onσ) to schemata representing allowed

or forbidden solutions.Et is the union of schemata, when schemata positively define thefeasible region; it is

the complement of the union of schemata when the ERCs define the feasible region negatively, i.e. by defining

disallowed regions.1 Compared to standard constraints, the meaning of ERCs is different: assuming that the ERC

functions can be computed, a solution~x that violates an ERC at timet, or ~x /∈ Et, is not infeasiblebut it is

rathernon-evaluable. That is, the experiment that is associated with~x cannot be conducted and thus the objective

function is undefined for solution~x at time t. Figure 2 illustrates a common situation in ERCOPs with respect to

the distribution of solutions acrossEt and the feasible search spaceX .

1This becomes clearer in Section III where specific ERC functions are defined. In that section we will refer to specific ERC functions by

h.
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Fig. 2. A schematic diagram showing how a population consisting of the solutions 1,2,3,4,5,6,7,and 8 might be distributed across the feasible

search spaceX and the evaluable search spaceEt. At time stept, only the solutions 2,5,6, and 7 can be evaluated while the solutions 1,3,4,

and 8 must be repaired to be evaluable. Each evaluation mightcause a change inEt.

Time in an ERCOP can be seen as thesimulated timedefined by the real closed-loop experimental problem that

is to be simulated. Hence, time may not only refer to functionevaluations of single solutions, as is the case in

standard optimization problems, but also e.g. to evaluations of ERC functions, real time units (e.g. seconds), or cost

units (e.g. pounds). This notion of time allows ERCs to be dependent amongst others on the number of evaluated

solutions, expenses, or a certain date, such as days of the week (independent of the number of evaluated solutions).

The normal assumption is that all evaluations take equal time or resources, but this need not be the case.

Generally, experiments may be of different durations and have non-homogeneous costs in terms of the financial or

temporal resources they require. However, as the aim of thispaper is to investigate solely the impact of ERCs on

the optimization and not the effects of non-homogeneous costs or experimental durations (which form an important

part of ongoing investigations), we conform here to the normal assumption.

One important aim in defining an ERCOP or the simulation environment is to achieve (as far as possible) a logical

separation between (i) the objective function (e.g. a OneMax function or an NK landscape), which is preserved

intact, (ii) the ERCs and resource handling, and (iii) the optimizer or EA. If we can achieve a separation then we

can test different EAs – standard off-the-shelf ones that are blind to resource constraints, or more advanced ones

that are augmented with the ability to order resources preemptively, repair solutions between generations, and so

on – all on the same platform. This would allow us to make meaningful statements about whether it is worthwhile

using advanced strategies for dealing with the ERCs or not. (The additional separation between objective function

and ERCs allows us to interchange objective functions with little difficulty, enabling us to understand how different

objective functions are affected by different ERCs).

A schematic of the simulation environment we use is shown in Figure 3. The EA is shown on the left and the

objective function on the right. Between them sits what we are calling thecommunication channel, which has several

roles that enable the complete ERCOP to be well-defined. It collects the EA’s population plans, simulates time and

other variables, and based on these it implements the ERCs, thus determining if solutions in the population plan

are evaluable or not. Upon discovering a non-evaluable solution, a number of actions are defined. These include

ordering new resources, communicating with the EA, submitting null solutions (these will be explained below),

repairing solutions, and so on.
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Lamarckian update

Optimizer (EA)

Initialize
loop:

Reproduce

Evaluate
Select

Auxiliary functions
(optional):
Predict ERCs
Repair solutions
Order in resources
Sanction null solutions

Objective function

Return fitness and
parameter vector

Rreturn fitness only

Communication channel

Update counters:

generations

Update ERCs

Inspect solutions and
determine evaluability

Alert optimizer to
non-evaluable solutions

Repair non-evaluable solutions

calender time

function evaluations

Order resources and wait

Submit solutions

Submit null solutions

Baldwinian update

Fig. 3. Schematic of a simulation environment for a closed-loop problem with ERCs. The environment is divided logicallyinto three units:

the optimizer, the communication channel, and the objective function. The main role of the communication channel is to determine if ERCs are

active, and to do this it maintains several (time) counters as well as the history of the search. When an ERC affects a solution to be evaluated, the

communication channel may interact with the optimizer, to determine what must happen. But a simple optimizer (a standard EA) will not have

any facility to do this. In this case, the communication channel uses some default actions such as performing a simple repair of non-evaluable

solutions. The set of all arrows indicates how the three units of the simulator might interact. The dark arrows indicate how the simulators used

in this paper interact, i.e., the EA is simple, repairs are done by default by the communication channel, and the genotype(parameter vector) of

repaired solutions is returned to the optimizer, which thususes Lamarckian population update.

In this paper, we wish to enable simple (off-the-shelf) EAs to run normally on our ERCOPs. To do this, we need

to ensure that the EA may submit any population plan2 at all, and it will receive in response a set of (corresponding)

fitness values, none of which is null. There are two possible ways to achieve this. One is to have the communication

channel order in resources (and, if necessary,wait in simulated time until they are available) so that all solutions do

become evaluable. The other possibility is to have the communication channel repair non-evaluable solutions before

submitting them to the objective function. The latter admits a further pair of choices: either the fitness values only

of the repaired solutions are returned to the EA (Baldwinianpopulation update) or the fitness and also the repaired

solutions are returned to the EA (Lamarckian population update). These choices are illustrated in Figure 3.

When using the communication channel for interacting with more advanced EAs, we would allow the EA itself to

make resource orders (perhaps preemptively), to poll the communication channel for information on current resource

levels and the state of other variables like time, and for it to be responsible for repairing solutions. Provided the rules

governing when the ERCs are active are correctly implemented by the communication channel, we will have the

same basic ERCOP. It is just that we can extend the range of actions open to the optimizer during the optimization

process.

We mentioned above the concept of null solutions, which we now briefly explain. The submission of a null

2Note that the EA may be steady state in which case the population may be of size 1
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Algorithm 1 Communication channel used in this paper
Require: ERCsSet (set of ERCs),f (objective function),T (time limit), batchSize (number of experiments that

can be done in a batch)

1: t = 0 // time counter

2: EvalSol = ∅ // set of currently evaluable solutions

3:

4: functionWrapper(P ){ // depending onbatchSize, P is either a single solution or a set of solutions that is

submitted by an optimizer for evaluation

5: if t < T then

6: for i = 1 to min{|P |, batchSize} do

7: if ~xi satisfies all ERCs inERCsSet then

8: EvalSol = EvalSol ∪ ~xi

9: else

10: repair~xi andEvalSol = EvalSol ∪ ~xi,repaired

11: end if

12: end for

13: evaluate all solutions inEvalSol // calls tof

14: t++

15: end if

16: returnEvalSol (i.e. both fitness values and solutions)}

solution can be seen as the counterpart of repairing a non-evaluable solution. Null solutions increment only the

time without making use of any other resources. An optimizermight submit them, for example, if it wishes to wait

until a missing resource is again available.3 Although null solutions (or equivalently incomplete batches) might play

a useful role in handling ERCs, we do not consider it further in this paper, instead preferring to focus initially on

a default repairing strategy for non-evaluable solutions.

The communication channel used in this paper is given in Algorithm 1 in form of pseudocode. Here, time steps

refer to function evaluations of up tobatchSize solutions, wherebatchSize is the maximal number of experiments

that can be done in a batch. At each time step an optimizer is allowed to submit a population plan or generation

P , which is iterated through by checking each solution for evaluability. While evaluable solutions are immediately

remembered, non-evaluable ones are first repaired and then remembered. OnceP has been iterated through, all

remembered solutions are evaluated using some objective function. Finally, the time counter is incremented and the

objective value as well as the repaired individuals are returned (i.e. Lamarckian population update is used). This

3Null solutions come into play particularly when experiments can be done in batches (truly in parallel). Assuming thatbatchSize experiments

can be done in parallel, the optimizer might choose to do onlym < batchSize due to ERCs.
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process is repeated until a time limitT is reached.

III. I NITIAL SUITE OF ERCS

In this section we propose a set of ERC types including types designed to model constraints that we encountered

in our own collaborative work and that would seem to be commonin real-world applications. Before we define

each of these ERC types, we want to introduce three elements that are common to all of them. These elements are

the constraint time frame, the activation period and the constraint schema.

A. Fundamental elements of ERCs

The activation periodk(ERC i) of ERC i, k ∈ Z+ is the number of counter units for which that constraint

remains active, once it is “switched on”. Similar to time steps, counter units may refer to function evaluations of

a single solution, of a batch of up tobatchSize solutions, real time units (e.g. seconds), a calendar period (e.g.

Tuesday 2-4pm), or something else. Here, they refer to function evaluations of a batch of up tobatchSize solutions.

The constraint time frame(ctf) is {t|tstart
ctf ≤ t < tend

ctf } wheret represents some counter unit, as above. During

the time frame, one or more ERCs may be active. Outside the time frame, no ERCs can be active. That is,

Et(σ) ⊆ X, ∀t ∈ ctf, andEt(σ) = X, ∀t /∈ ctf. The period of timet < tstart
ctf andt ≥ tend

ctf is thepreparation period,

respectively, therecovery period.

The restriction imposed by an ERC during the activation period can be of different forms. We consider the case

where solutions have to fall into a particularconstraint schemaH , respectively, cannot be a member ofH , in order

to be evaluable. The schemaH represents a particular subset of solutions that share somecommon properties. For

instance, consider solution vectors to be binary strings oflength l = 5. Then, the constraint schemaH = (∗1 ∗ ∗0)

describes the set of all solutions with value 1 at bit position 2 and value 0 at bit position 5; the∗ is a wildcard

symbol which means that a bit position can have any possible value (thus in the binary case either value 0 or 1). The

two general properties of a schema are itsorder o(H) and itslength l(H), representing the number of defined bit

positions, respectively, and the distance between the firstand last defined bit position [35]; for the above example

we haveo(H) = 2 and l(H) = 3. In this study we consider binary search spaces, but in non-binary ones,H

might restrict solution parameters to lie within or out of certain parameter value ranges rather than to take specific

parameter values.

B. Suite of ERCs

This section introduces four ERC types: (i) commitmnet ERCs, (ii) commitment composite ERCs, (iii) random

ERCs, and (iv) periodic ERCs.

Commitment ERCs

A commitment ERCis an ERC that is activated for an activation period of alwaysk time steps if: (i) a solution

from a particular (always the same) constraint schemaH is evaluated and (ii) there is no ongoing activation (i.e. a
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constraint time frame

k
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... T0 t

start
ctf t

end
ctf

Fig. 4. An illustration of how a commitment ERC may be activated during the constraint time frame. Activation periods arerepresented by

the dashed parts.

new activation period can only be started if the previous oneis over). A real-world example of a commitment ERC is:

“ In an optimization problem involving the selection of instrument settings, settingxyz once set cannot be changed

over the next two hours.”

In this example, the activation period isk = 2 (assuming a time step represents one hour) and the constraint

schemaH represents the parameter combination that corresponds to instrument setting xyz. The restriction imposed

during the activation period is that solutions have to fall into H (i.e. use instrument setting xyz) in order to be

evaluable.

Figure 4 illustrates a possible distribution of activationperiods during the constraint time frame. From this figure

it is apparent that the total number of activation periods during the constraint time frame can vary between 0 and

⌊(tstart
ctf − tend

ctf )/k⌋, where⌊...⌋ is the floor function. That is, we might be lucky and the ERC maybe never activated,

e.g. if solutions belonging toH do not lie on an optimizer’s search path, but already one activation may introduce

enough solutions fromH into the population such that future activations might be more likely.

The corresponding ERC function can be defined by

h : if {t− last activation ≥ k} (3)

if {t ∈ ctf ∧ ~x ∈ H} ⇒ {last activation = t}

else

if {t ∈ ctf ∧ ~x /∈ H} ⇒ {~x /∈ Et},

wherelast activation is initially set totstart
ctf −k; the first two lines of Equation 3 are responsible for the activation of

the ERC while the else clause ensures that solutions have to be in H during an activation. In future, we will denote

a commitment ERC of this form bycommERC(tstart
ctf , tend

ctf , k,H). In the communication channel of Algorithm 1,

Equation 3 is checked at Line 7. A potential extension to thissimple commitment ERC is to maintain not one but

many different constraint schemataHi so that multiple commitments may co-exist.

Commitment composite ERCs

A commitment composite ERCis an ERC that asks an optimizer at certain time steps to defineseveral (always the



11

constraint time frame

t
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start
ctf t

end
ctf

∆t

...

Fig. 5. An illustration of a commitment composite ERC. The ERC is activated during the entire constraint time frame and anoptimizer is

given the opportunity to order new composites after every∆t time steps.

same) solution parameters to order (or fix) a composite; i.e.a composite can be considered as a partial solution (or

a specific constraint schemaH). There are no restrictions on the remaining solution parameters. Once a composite

has been ordered, it has to be used until there is a new chance to order a composite (i.e. evaluable solutions need

to be a member ofH). In this paper, we consider constraints that ask an optimizer after each∆t time steps to

order#SC composites.4

Put in other words, at each time step during the constraint time frame, an optimizer maintains#SC constraint

schemataHi and a solution needs to be a member of one of them. AllHi share the same order-defining bits, which

we call in this context thecomposite-defining bits, and can be updated every∆t time steps. A graphical example

of this ERC is given in Figure 5. To denote the composite-defining bits, we use again the notation of schemata.

We represent a composite-defining bit position within a schema by# and denote the associated schema, which we

call the high level constraint schema, by H#. For example, a high level constraint schema of ordero(H#) = 2

with the composite-defining bit positions 2 and 5 would correspond toH# = (∗#∗∗#) (assuming solution vectors

being of lengthl = 5). Note, in a binary search space, a schemaH# is associated in total with2o(H#) different

composites or constraint schemata.

A simplified real-world example of a commitment composite ERC is:

“ In an optimization problem charged with finding the best configuration of a mass spectrometer, some of the

independent variables refer to the type of well plate wafersto use in the instrument. A wafer is characterized by

two variables, which are related to its preparation: etch time (3 different levels) and etch concentration (2 different

levels). Each Monday we are given the opportunity to order 2 types of well plates, and the subsequent experiments

must use those (until the following Monday); previously ordered wafers must not be used any more as they are

passed their recommended lifetime.”

In this example, the two composite-defining bits are the solution bits that are associated with the etch time and

the etch concentration, the number of time steps between twoorders is∆t = 7 (assuming a day is one time step),

and the number of storage cells is#SC = 2; here, the overall number of different composites is3 × 2 = 6.

4The initials SC refer to storage cells. In the real-world problem where we encountered a more complex commitment composite ERC,

composites had a ’reuse number’ and needed to be stored in separate storage cells.
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This example represents a simplified version of a commitmentcomposite ERC that we encountered in a real-world

problem. However, although we faced storage limitations too, we were able to order wafers whenever we wanted

but orders were associated with time-lags. Also, wafers hadto be ordered in batches, were associated with shelf

lives, and could be used only a certain number of times.

This ERC and a commitment ERC have a different effect on the optimization. Although both ERCs depend on

decisions made in the past, this ERC is activated all the timewhile a commitment ERC may not be activated at all.

On the other hand, a commitment ERC can cause an optimizer to get stuck in the sense that the ERC is activated

over and over, causing all solutions to be from the same schema. By contrast, if the setting of∆t and#SC allows

it, this ERC provides an optimizer at least the chance to order new composites and thus to evaluate solutions from

different schemata.

The corresponding ERC function can be defined by

h : if {t ∈ ctf ∧ (

#SC
∧

i=1

~x /∈ Hi(t))} ⇒ {~x /∈ Et}, (4)

whereHi(t), i=1, ...,#SC , is the constraint schema that corresponds at time stept to the composite that is stored in

‘storage cell’i. In future, we will denote a commitment composite ERC of thisform bycommCompERC(tstart
ctf , tend

ctf ,

∆t,H#,#SC). In the communication channel of Algorithm 1, Equation 4 is checked at Line 7. The opportunity

for an optimizer to order new composites, given the conditions are met, is given between Line 5 and 6. Note, for

repairing one needs to provide an optimizer not only with a single constraint schema but with#SC constraint

schemata, each corresponding to one of the available composites.

Random ERCs

A random ERCmodels the temporary non-availability of randomly selected resources, whereby all resources

correspond to constraint schemata of fixed ordero(H). In other words, if a resource becomes unavailable, then

we activate a new (plain) ERC for an activation period ofk time steps and associate it with a constraint schema

H for which the order-defining bit positions and their values are selected at random. As the ERC models the

non-availability of a resource, an evaluable solution cannot be a member ofH . We allow multiple resources to be

non-available at the same time, meaning a solution must not be a member of any of these constraint schemata. Let

us denote the set of ERCs that is activated at time stept by ActERCst; ERCs with an expired activation period

are removed from this set.

So far, we did not specify how a resource can become unavailable and thus how a new ERC is activated. Obviously,

there are many options but since we want to use this ERC type tomodel random effects, such as unexpected machine

breakdowns, we activate a new ERC at each time step with an independentactivation probabilityof p.

We want to avoid situations in which there is no evaluable solution. This is simply achieved by removing any

ERCs from the setActERCst that have a constraint schema that is contradictory to the constraint schema of a newly

activated ERC. Clearly, this can be realized differently, for example, by not allowing a new ERC to enterActERCst

rather than removing contradictory ERCs fromActERCst. Allowing contradictions and thus being perhaps unable
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Fig. 6. A random ERC with an order ofo(H) = 1, an activation period ofk time steps and an activation probability ofp ≈ 2/k (k ≥ 2) is

applied to binary strings of lengthl = 2. The 4(=2o(H)
(

l

o(H)

)

) possible constraint schemata are represented on the left side. Each dashed block

represents the activation period of an ERC in the setActERCst. One can see that multiple ERCs can coexist, including ones with identical

constraint schemata (A), and that an ERC is removed fromActERCst if its activation period expires or if its constraint schemacontradicts

the one of a newly activated ERC (B).

to evaluate any solution from time to time is of course also anoption. Figure 6 shows how the setActERCst may

vary over time and the effects of enforced ERC removals usingour approach.

A simplified real-world example of a random ERC is:

“ In a multistage production process, a manufactured productruns through a series of stages, where, at each stage,

the product is processed by a single machine which progresses it towards its final manufactured state. We wish to

optimize the production facility/process in the followingsense. For each stage there is a choice from among several

machines (or machine types) capable of advancing the product to the next stage; we wish to select the best machine

to use at each stage. Each machine may breakdown at any time step with a probability of 2% in which case it

needs to be repaired; standard repairing takes 5 hours including test runs. Repairing time may increase if machine

failures are more severe than expected (A in Figure 6)but, if necessary, a machine can be used before the test runs

are finished (B in Figure 6).”

In this example we have an activation probability ofp = 0.02, an activation period ofk = 5 (assuming a time

step is one hour) and a fixed order of any constraint schemaH of o(H) = 1 (because a single machine might

break down).

It is easy to see that a random ERC with a smallp andk is unlikely to harm the optimization much (even if

o(H) high) as machines rarely break down and in case they do, they are quickly repaired. Clearly, the opposite is

the case if either of the parameters is large; in this case, even a low ordero(H) can severely harm the optimization.

The corresponding ERC function can be defined by

h :if{t ∈ ctf ∧ (

|ActERCst |
∨

i=1

~x ∈ Hi(t))} ⇒ {~x /∈ Et}, (5)

whereHi(t), i=1, ..., |ActERCst | is the constraint schema of theith ERC in the setActERCst at time stept.

In future, we will denote a random ERC of this type byrandERC(tstart
ctf , tend

ctf , k, o(H), p). In the communication
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Fig. 7. An illustration of a periodic ERCperERC(tstart
ctf , tstart

ctf , k,N,H). The ERC is activated everyN time steps for an activation period of

alwaysk time steps.

channel of Algorithm 1, Equation 5 is checked at Line 7. The drawing of random numbers for potential activations

of new ERCs, and the removal of expired or contradictory ERCsfromActERCst is performed between Line 5 and 6.

Periodic ERCs

A periodic ERCmodels the unavailability of a specific resource, represented by a constraint schemaH , at regular

time intervals. That is, the ERC is activated everyN time steps (period length) for an activation period of always

k time steps (see Figure 7). As the ERC models unavailabilities of resources, an individual is not allowed to be a

member of the constraint schema. An example of a periodic ERCis:

“ In an optimization problem requiring the knowledge of skilled engineers to operate instruments, engineerxyz is

not available on Mondays.”

In the above example, the activation period isk = 1 (assuming a time step is a day), the period length isN = 7,

and the constraint schemaH represents the parameter combination that corresponds to the instruments (or their

settings) operated by engineer xyz.

The corresponding ERC function can be defined by

h : if {t ∈ ctf ∧ tstart
ctf +Ni ≤ t < {tstart

ctf +Ni+ k}, (6)

i = 0, 1, 2, . . . ∧ ~x ∈ H} ⇒ {~x /∈ Et}.

In future, we will denote periodic ERCs byper(tstart
ctf , tend

ctf , k,N,H). In the communication channel of Algorithm 1,

Equation 6 is checked at Line 7. Potentially, the period length and the activation period may refer to different

counter units. For example, consider the maintenance of machines. Maintenance might take hours (k is measured

in real time units) and machines might need to be maintained after they have been used a certain number of time

(N is measured in function evaluations).

IV. T HEORETICAL STUDY

This section conducts a theoretical investigation on the impact of periodic ERCs on two selection and reproduction

schemes commonly-used within EAs. For this, we use the concept of Markov chains, which is introduced in the
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next section. We then derive the Markov model (transition probabilities) and analyze the simulation results. Finally,

a summary is provided.

A. Markov chains

A Markov processis a random process that hasno memoryof where it has been in the past such that only the

currentstateof the process can influence the next state. If the process canassume only a finite or countable set of

states, then it is usual to refer to it as aMarkov chain[36].

One can think of a Markov chain as a sequenceX0, X1, X2, . . . of random events occurring in time [35]. Suppose

S0, ..., Sn are then+1 possible values that each of the random variablesXt can take. Then, a chain moves from a

stateSm at timet, to a stateSr at timet+1 with a probability ofpmr = P (Xt+1 ∈ Sr|Xt ∈ Sm). The probabilities

pmr (m, r = 0, ..., n) are calledtransition probabilitiesand form then+1×n+1 matrix P, the transition matrix.

Thus, the probability that the chain is in stateSr at time t is therth entry in the vector

~ut = ~u0Pt, (7)

where~u0 is the (n+1)-dimensional probability vector that represents the initial distribution over the set of states.

When an evolutionary algorithm (EA) is modeled by a Markov chain it is easy to see that the population is the

natural choice for describing a state. The transition probabilities then express the likelihoods that an EA changes

from a current population to any other possible population after applying the stochastic effects of selection, crossover

and/or mutation. It is also possible to consider other effects such as noisy fitness functions [37], niching [38] and

élitism [39]. Once the transition matrix is calculated it can be usedto calculate a variety of measurements, such as

the first hitting time of a particular state or the probability of hitting a state at all. An overview of tools of Markov

chain analysis can be found in any general textbook on stochastic processes, see e.g. [36], [40].

The drawback of modeling EAs with Markov chains is that the size of the required transition matrix grows

exponentially in both the population size and string length. To keep Markov chain models manageable it is therefore

common to use small population sizes and string lengths, seee.g. Goldberg and Segrest [41] and Horn [38]. Other

options, which allow the modeling of more realistic EAs, areto make simplifying assumptions about the state

space [42] or to use matrix notation only, see e.g. Vose and co-authors [43], [44] and Davis and Principe [45].

B. Modeling ERCs with Markov models

In this section we derive the transition probabilities for EAs optimizing in the presence of periodic ERCs. Our

Markov chain model is based on the model of Goldberg and Segrest [41], which considers a simple environment

that is composed of two individual types: TypeA has always a fixed objective value (or fitness) off(A), while

typeB has a fitness off(B). This limitation allows for an intuitive definition of states. For a fixed population size

of n, there aren+1 possible states, where stateSm represents a population withm typeA individuals andn−m

type B individuals. Furthermore, in this simple EA model we do not apply mutation and crossover such that an

offspring shall be simply a copy of the selected parent.
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Goldberg and Segrest [41] used this model to investigate theeffect of drift for a simple EA that used a generational

reproduction scheme combined with fitness proportionate selection. They also extended the model to include

mutation. Horn [38] extended it further to include niching.We extend it to include periodic ERCs and use the

resulting model to analyze the impact of the ERC on two selection strategies, fitness proportionate and binary

tournament selection, and two reproduction schemes, generational and steady state reproduction withoutélitism.

Selection probabilities

Underfitness proportionate selection(FPS) we choose an individual of the current population to serve as a parent

(in our environment, to be in the next population) with a probability that is proportional to its fitness. In our simple

environment, the probability of choosing a typeA individual for the next population while being in a stateSm is

simply

Pm(A) =
mf(A)

mf(A) + (n−m)f(B)
. (8)

As there are only two individuals types in total, the probability of choosing a typeB individual is Pm(B) =

1 − Pm(A). From the above equation it is apparent that once a uniform population is reached, i.e.m = 0 or n,

there is no chance to select individuals from the other type.Thus, the two corresponding statesS0 and Sn are

absorbing states.

Under tournament selectionwe first randomly select a number of individuals from the population (with replace-

ment) and then perform a tournament among them with the fittest one serving subsequently as a parent. It is common

to use a tournament size of two, which will also be used here; this selection strategy is known asbinary tournament

selection(BTS). The result of a tournament is clear: the individual with the higher fitness wins the tournament;

there is a draw if an individual meets another individual with the same fitness in which case the winner is randomly

determined; and an individual will be the winner of a tournament with itself. We distinguish two cases regarding

the fitness of the individual types: (i)f(A) = f(B) and (ii) f(A) > f(B). The following selection probabilities

are obtained for each of the cases:

f(A) = f(B) : Pm(A) =

(

m

n

)2

+
m(n−m)

n2
(9)

f(A) > f(B) : Pm(A) =

(

m

n

)2

+ 2
m(n−m)

n2
.

Transition probabilities

In our environment, the transition probabilities depend onthe selected reproduction scheme, which in turn depends

on the selected selection strategy. We first consider agenerational reproduction schemeas already used in Holland’s

original genetic algorithm [13]; with regard to the experimental analysis where this genetic algorithm itself is

considered, we denote this scheme by GGA. With GGA, the entire current population is replaced by the offspring

population. That is,n selection steps are carried out per time step (with replacement). Using the selection probability

Pm(A) either for FPS or BTS, the transition probabilitiespmr = P (Xt+1 ∈ Sr|Xt ∈ Sm) for GGA of moving
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at time t from a stateSm with m type A individuals andn−m typeB individuals, to a stateSr with r type A

individuals at timet+ 1, are defined as follows:

For m = 0

pmm = 1 (10)

pmr = 0, r = 1, ..., n.

For 0 < m < n and0 ≤ r ≤ n

pmr =

(

n

r

)

Pm(A)r(1 − Pm(A))n−r .

For m = n

pmr = 0, r = 0, ..., n− 1

pmm = 1.

With steady state reproduction, the population is updated after each selection step. Usually, an offspring individual

replaces the worst individual in the population. This replacement strategy, however, ensures that the number of the

less fit individual type in the population does not increase.Thus, to allow for a fair comparison with GGA, an

offspring does not replace the worst individual in the population but a randomly chosen one regardless of its fitness.

With regard to the experimental analysis, we denote this reproduction scheme by SSGA (rri). Note, replacing a

random individual is usually not the method of choice but it has been shown elsewhere [46] that GGA and SSGA

(rri) yield similar performance. Bearing in mind that one time step corresponds to one selection step, we obtain

following transition probabilities for SSGA (rri):

For m = 0

pmm = 1 (11)

pmr = 0, r = 1, ..., n.

For 0 < m < n

pmr = 0, r = 0, ...,m− 2

pmm−1 = (1− Pm(A))
m

n

pmm = Pm(A)
m

n
+ (1− Pk(A))

n −m

n

pmm+1 = Pm(A)
(n −m)

n

pmr = 0, r = m+ 2, ..., n.

For m = n

pmr = 0, r = 0, ..., n− 1

pmm = 1.
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These transition probabilities will be the entries of the transition matrixP. Notice that the effect on the optimization

imposed by the generational reproduction schema is identical to optimizing an ERCOP withbatchSize = n. By

contrast, steady state reproduction can be seen as optimizing the same ERCOP but usingbatchSize = 1.

Constrained transition probabilities for a periodic ERC

Note that for the same number of reproductive events to occur, SSGA (rri) needs to performn time steps for

each time step of GGA. Hence, in order for an ERC to impose the same effect on the optimization, we express

ERCs in this section in terms of selection steps rather than time steps.

Consider a periodic ERCperERC(in, (i + 1)n, k, n,H = (B)) (i ∈ N, k ≤ n), which is activated at selection

stepin for a period ofn selection steps, i.e. one time step for GGA andn time steps for SSGA (rri). During the

activation period ofk ≤ n selection steps, we are not allowed to select typeB individuals, or, equivalently, we

have to select typeA individuals. In the case where a typeB individual is selected during this period, we repair

it by simply forcing it into the right schema; i.e. it is converted into a typeA individual. Before we derive the

constrained transition probabilities for GGA we want to point out a few aspects:

• If we are in stateS0 and the ERC is activated, thenS0 is not an absorbing state anymore and we move directly

to stateSk.

• As a population contains at leastk typeA individuals after lifting the constraint, we are not able tomove to

a stateSr with r < k.

• The ERC reduces the number of freely selected offspring downto nnew = n− k.

• Moving to a stateSr with r > k is already achieved by selectingrnew = r−k (instead ofr) typeA individuals

from the current population.

Considering these points, we derive for the time step for which the ERC is activated the following new transition

probabilities for GGA:

For m = 0

pmr = 0, r = 0, ..., k − 1, k + 1, ..., n (12)

pmk = 1.

For 0 < m < n and0 ≤ r < k

pmr = 0

For 0 < m < n andk ≤ r ≤ n

pmr =

(

nnew

rnew

)

Pm(A)r
new

(1− Pm(A))n
new−rnew

.

For m = n

pmr = 0, r = 0, ..., n− 1

pmm = 1.



19

Note, in the case where one and the same activation period constrains selection steps within two successive time

steps, one needs to constrain both time steps and update the number of the constrained selection steps for each of

the two time steps accordingly. A similar update of the number of constrained time steps needs to be made if the

period length and activation period is greater than the population size, i.e.N ≥ k > n; in this case, alln selection

steps within a time step may be constrained.

With SSGA (rri), the ERC prevents us, during the activation period, from moving from a current stateSm to a

stateSm−1, which can only be reached if a typeB individual replaces a typeA individual. As above, during the

constraint time frame, the stateS0 is not an absorbing state anymore, so we move directly to state S1. We obtain

the following new transition probabilities for each of thek constrained time steps:

For anym = 0

pmr = 0, r = 0, 2, 3, ..., n (13)

pm0 = 1.

For any0 < m < n

pmr = 0, r = 0, ...,m− 1

pmm =
m

n

pmm+1 =
n−m

n

pmr = 0, r = m+ 2, ..., n.

For anym = n

pmr = 0, r = 0, ..., n− 1

pmm = 1.

We will denote the transition matrix with the constrained transition probabilities byPc.

Calculating proportions of individual types in a population

One way to analyze the impact of an ERC on different selectionand reproduction schemes is to monitor the

proportion of the two individual types in a population. For this, one needs to first calculate the probability of ending

up in any of the possible statesSi, i = 0, ..., n after t time steps. In an unconstrained environment, this is done

according to Equation 7 using the transition matrixP. In a constrained environment we cannot use the transition

matrix P across allt time steps but have to swap it with the constrained transition matrix Pc for the time steps

that consist of constrained selection steps. For example, for a periodic ERCperERC(in, (i+ d)n, k, n,H = (B)),

whered ∈ N is the number of periods for which the ERC is activated, we calculate the probability vector at time

stept (t ≥ d+ i) for GGA as follows:

~ut = ~u0PiPd
cPt−d−i,
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Fig. 8. Shown is the proportion of typeB individuals ct(B) for GGA and SSGA (rri) as a function of the number of selectionsteps. Both

individual types have equal fitness and the used constraint settings are given above the plot. The termsreal and expectedrefer to proportions

obtained by actually running the EA, respectively, by running the Markov chain. The EA results are averaged across 500 independent runs.

where the transition matricesP andPc are calculated using Equations 10 and 12, respectively. Theinitial distribution

vector~u0 has a 1 at theith entry and a 0 in the others, if we want to start with a population of exactlyi typeA

individuals.

By contrast, for SSGA (rri), the probability vector after the same number of selection steps or at time stepnt

for the same ERC is calculated by

~unt = ~u0Pin(Pk
cPn−k)dP(t−d−i)n,

where the transition matricesP andPc are calculated according to the Equations 11 and 13.

Remember, for periodic ERCs where the number of constrainedselection steps within a time step is different

from the length of activation period, one needs to update theconstrained transition matrix of GGA accordingly.

Having obtained the probabilities of ending up in all the different states, we can calculate the expected proportions

ct(A) andct(B) of typeA andB individuals in a population at time stept as follows:

ct(A) =
1

n

n
∑

i=0

iui
t , ct(B) = 1− ct(A),

whereui
t is the ith entry of~ut.

C. Simulation results

This section uses the measure of the expected individual type proportion to analyze the impact of period ERCs

on two selection strategies, FPS and BTS, and two reproduction schemes, GGA and SSGA (rri). We consider first

the case where both individual types have equal fitness values and then the case where they are different. For the

analysis, we keep the population size fixed atn = 50.
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periodk. Both individual types have equal fitness.

Identical fitness values:f(A) = f(B)

In this case there is no selection pressure and thus both selection strategies behave identically. Ideally, an EA

maintains an equal proportion of the two individual types inthe population. However, because of genetic drift this

is impossible and an EA eventually converges to a uniform population (Si = 0, n). As the probability of ending up

in one of the two states is proportional to the initial state,the expected individual type proportion is identical to

the initial proportion, which is specified by~u0. Thus, for a random initialization, the expected proportion is 0.5.

From Figure 8 we can see that an expected proportion of 0.5 is achieved until selection step 400 at which we

activate the periodic ERCperERC(400, 450, 20, 50, H = (B)), which has a unique activation period ofk = 20

selection steps.5 Clearly we see here that after the constraint is lifted (selection step 420) there is no recovery of

either EA.Although this effect can be put down to the specifics of the model (no selection pressure towards either

individual type), we will see in the following theoretical and experimental studies, several results which display a

similar pattern. That is, a constraint can have a permanent or long-lived effect on search performance even if it was

active for a short time.

From the figure it is also clear that after the ERC is lifted, SSGA (rri) maintains a higher proportion of typeB

individuals than GGA. SSGA (rri) outperforms GGA because with this reproduction scheme there is a chance that

an offspring of typeA replaces another typeA individual that is currently in the population. Of course, if such a

situation occurs, then the proportion does not change by performing a selection step. By contrast, with GGA, all

offspring are carried over to the next population meaning that the proportion of typeB individuals in the population

is a linear function of the activation period. This difference between the two reproduction schemes is also shown

5Note, in an EA performing optimization of a function, the number of performed selection steps displayed on the x-axes of Figure 8 would

be equivalent to the number of performed function evaluations.
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Fig. 10. Shown is the proportion of typeB individuals ct(B) for FPS (top) and BTS (bottom) as a function of the number of selection steps.

The termunconstrainedrefers to the proportions obtained in an ERC-free environment.

in Figure 9. From the figure one can see that SSGA (rri) is able to maintain a proportion of 0.2 after an activation

period ofk = 50, which is equal to the population size, while GGA cannot maintain a single typeB individual in

the population. Note, in the case wherek > 50, the constraint is activated for more than one time step whenusing

GGA. For example, fork = 70 the constraint restricts all 50 selection steps within one time step and 20 selection

steps within the subsequent one.

As the Markov chain results are exact we will omit the real experimentally obtained proportions in the following

plots.

Different fitness values:f(A) 6= f(B)

When both individual types have different fitness values, the aim of an EA is to converge as quickly as possible

to an optimal population consisting only of the fitter individual type. We focus our investigations mainly on the

more interesting case where an ERC has a negative effect on the convergence behavior. Thus, the fitness of the
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individual type that cannot be selected, in our case typeB, needs to be higher. If not otherwise stated, the fitness

values aref(A) = 1.0 andf(B) = 1.3.

As the basis for our investigations we use the periodic ERCperERC(50, 400, 20, 50, H = (B)). This ERC is

activated after the initialization for seven periods, eachconsisting of 50 selection steps whereby 20 of them are

constrained. Figure 10 presents two plots which give an insight into the effect of this ERC on the convergence

behavior of the four possible EA variants – GGA with BTS, GGA with FPS, SSGA (rri) with BTS, SSGA (rri)

with FPS.6

During the activation period SSGA (rri) with BTS and with FPSperform identically, since independently of

selection type, an A offspring will replace an individual selected at random. But during the inactive period the

stronger selection pressure of BTS recovers more of the B-to-A replacements, so that overall BTS maintains a

higher proportion of Bs. This behavior can be seen in the zigzag shape, where there is the same steep fall off of

fitness in both methods, but a steeper recovery for BTS. Overall, the same is true for GGA, (BTS is better for the

same reason) but it is not possible to see this so clearly in the plot.

Figures 11, 12 and 13 indicate how the proportion of typeB individuals is affected when altering the constraint

parameters. We can observe that:

• Longer activation periods degrade the performance of all EAs (Figure 11, right).

• Fixing the constraint time frame duration, but translatingit (Figure 11, left), yields a non-monotonic effect

on performance (all EAs, but most apparently with FPS): morepreparation time gives more time to fill the

population with fit individuals, whereas little recovery time detriments final fitness. These two effects trade off

against each other.

• Increasing the duration of the constraint time frame (Figure 12) degrades performance.

6Note, we get the zigzag-shaped line for SSGA (rri) during theconstraint time frame becausect(B) is plotted after each population update.

That is, whilect(B) is plotted for SSGA (rri) after each selection step, for GGA it is plotted everyn selection steps.
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• Changing the fitness ratio (Figure 13) has only a switching effect on BTS (when the fitter individual changes),

but for FPS the ratio smoothly affects final proportion up to asaturation point.

• Overall, comparing GGA with SSGA we see that SSGA achieves the higher proportion of fit individuals during

the constraint time frame, and it recovers more rapidly after the constraint is lifted, but its rate of recovery does

not reach the rate achieved by GGA, and ultimately GGA reaches a higher proportion (see Figs. 9 and 10).

This can be explained by the replacement strategy of SSGA (rri): offspring may replace individuals in the

population that are from the same type. During the activation period, this is beneficial as the number of poor

typeA individuals in the population does not increase linearly with the activation period. However, during the

unconstrained selection steps, this may be disruptive in the sense that fit typeB offspring may replace other
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typeB individuals of the current population, which slows down theconvergence.



25

D. Summary of theoretical study

This section made use Markov chains to analyze the impact of periodic ERCs for a simple environment and EA

model. The environment was composed of only two individual types and the EA model applied only a selection

operator. In the EA model we considered two selection strategies, FPS and BTS, and two reproduction schemes,

GGA and SSGA (rri). We observed that for one and the same reproduction scheme, BTS is more robust than FPS

due to its independence to the fitness value of the individualtypes. However, FPS was able to match and even

outperform the performance of BTS if the ratio of the individual type fitnesses was high, i.e. if a larger selection

pressure than for BTS was obtained. The crucial difference between the two reproduction schemes is that GGA

carries out many selection steps before the population is updated, while SSGA (rri), or steady state reproduction

in general, carries out only a single one. This enables SSGA (rri) during the activation periods to replace less fit

individuals with other less fit individuals of the current population, but also prevents SSGA (rri) on a long run

from a quicker convergence in the remaining periods. By contrast, the performance of GGA depends linearly on

the activation period but there are now drawbacks if the ERC is not activated. This crucial difference between

the reproduction schemes means that SSGA (rri) is able to outperform GGA during the activation period and

in situations where the advantage over GGA gained in the activation period(s) can be maintained until the next

activation period or until the end of the optimization. In terms of the constraint parameter, this occurs when there

is a long activation period, a short recovery period, and theconstraint time frame is set late.

The findings gained in this theoretical investigation are valid for more complex environments and EA models

too. Moreover, they are also largely valid for the remainingERC types as we shall see in the experimental study.

For this reason, we do not consider periodic ERCs in the experimental analysis, preferring to show the impact of

other ERCs.

V. EXPERIMENTAL SETUP

Unlike the theoretical analysis, the experimental analysis is conducted in a more complex environment where the

fitness value is obtained using a functionf and more than two individual types exist, i.e. strings consist of more

than 1 bit. The EAs are extended by additional operators too.This section describes the test functions, EAs and

the parameter settings as used in the experimental analysis, which investigates the impact of the remaining three

ERCs.

A. Evolutionary algorithms

To obtain better results on a variety of problem types, EAs have been often extended by performance enhancing

mechanisms, such as diversity and niching mechanisms. As this paper aims to analyze the impact of ERCs on an

EA’s performance without having to account for disruptive effects coming from any additional mechanisms, we

consider four standard EAs in the experimental analysis: (i) generational genetic algorithm (GGA), (ii) steady state

genetic algorithm where a randomly selected individual is replaced (SSGA (rri)), (iii) steady state genetic algorithm

where the worst individual is replaced (SSGA), and (iv) an EAusing the (µ+λ)ES selection and reproduction
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TABLE I

CLASSIFICATION OF THE FOUR CONSIDEREDEAS ACCORDING TO THEIR DISTINCTIVE FEATURES

generational steady state

reproduction reproduction

non-́elitism based
GGA SSGA (rri)

optimization

élitism based
(µ+λ)ES SSGA

optimization

scheme, but standard operators. All four EAs apply selection, mutation and crossover, and distinguish themselves

in the reproduction scheme and/or in that they employélitism or not; due to convenience reasons we equip all EAs

with the same selection operator. A classification of the EAsaccording to these two features is given in Table I.

We give a short description of each of the four EAs.

GGA [13] and (µ+λ)ES [14], [15] employ a generational reproduction scheme inthe sense that they generate

an entire offspring population, respectively,λ offspring from the individuals of the current population;µ refers

to the population size of (µ+λ)ES. However, while GGA replaces the entire current population with the offspring

population, (µ+λ)ES forms a new population by selecting theµ best individuals from the combined pool of offspring

and current population. That is, (µ+λ)ES employs a mechanism that ensures that fit individuals found during the

search are not lost. This mechanism is known asélitism [47].

As the name implies, the two steady state genetic algorithmsemploy a steady state reproduction scheme in the

sense that they generate one offspring at a time. However, while SSGA [48] inserts this offspring into the population

by replacing the worst individual, given the offspring is fitter, SSGA (rri) replaces a randomly selected individual

from the population regardless of its fitness. Similar to (µ+λ)ES, SSGA employs a mechanism to maintain fit

individuals found during the search.

The selection, crossover and mutation operators employed by all EAs and their parameter settings are outlined

in Section V-C.

B. Test functionsf

To date, a number of test functions posing different types ofchallenges to an optimization algorithm, such as non-

convexity, mixed non-linearity, multiple objectives, deception, many local optima, and so on, have been proposed in

the literature. However, despite the variety of test functions, to test a new algorithm or a new concept it is common

to consider first rather simple and to an algorithm designer familiar functions. This allows for a more convenient

and confident performance analysis and assessment.

We follow the common approach and select two rather simple and one more challenging unconstrained binary

test function: (i) OneMax, (ii) TwoMax and (iii) a 3-SAT instance. We describe briefly all three functions.
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OneMax

The OneMaxfunction is a bit counting function that has become popular in the theoretical analysis of genetic

algorithms (see e.g. [39], [49]). For a binary solution vector ~x ∈ {0, 1}l, it takes the sum over the bit values of all

bit positions

Maximize f(~x) =

l
∑

i=1

xi

and has its optimumf = l for the bit string consisting only of 1-bits.

TwoMax

The TwoMax function is a bimodal function that can be seen as the multimodal counterpart of OneMax. It has

two local optimal solutions: solutions consisting only of 1-bits and 0-bits. In its original version, the slopes leading

to these two solutions are symmetric. As the OneMax function, this function has become popular in theoretical

works on the analysis of genetic algorithms (see e.g. [50], [51]). To make the TwoMax function more realistic and

interesting, its symmetric property has often been broken (see e.g. [39], [51], [52]), turning it into a function with

a local and a global optimal solution. The two common modifications are to change either the steepness of either

slope or to simply increase the fitness value of either optimal solution. We opt for the former and make the solution

consisting only of 1-bits to a unique global optimum. Hence,if #1s denotes the number of 1-bits in a solution

vector~x and b the factor by which the global optimal solution shall be fitter than the local optimal solution, then

the TwoMax function is defined by

Maximize f(~x) =











l −#1s if #1s≤ l
2 ,

b#1s otherwise.

Figure 14 illustrates this TwoMax function.

MAX-SAT

Given a boolean expression consisting of a set of clauses, which in turn are formed by binary variablesxi, i =

1, ..., l, the maximum satisfiability(MAX-SAT) problem asks for the maximum number of clauses that can be

satisfied by any assignment~x. A MAX-SAT problem is the optimization form of asatisfiability (SAT) decision

problem, which only asks whether there is a satisfying assignment at all or not. SAT is the archetypal NP-complete

optimization problem, while MAX-SAT is an NP-hard problem widely studied in optimization.

The single instance of MAX-SAT we consider is a uniform random 3-SAT problem and can be downloaded

online.7 The instance has 50 variables and 218 clauses and is satisfiable. We treat this 3-SAT instance as a MAX-

SAT optimization problem, with fitness calculated as the proportion of satisfied clauses.

7http://people.cs.ubc.ca/∼hoos/SATLIB/benchm.html; the name of the instance is “uf50-218/uf50-01.cnf”
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Fig. 14. TwoMax with a local optimal solution at #1s = 0 and a global optimal solution at #1s =l. The parameterb specifies the factor by

which the global optimal solution shall be fitter than local optimal solution.

C. Parameter settings

We analyze the impact of three ERC types (commitment ERC, commitment composite ERC and random ERC)

on the performance of four EAs ((µ+λ)ES, SSGA, GGA, and SSGA (rri)) for the OneMax and TwoMax function,

and a 3-SAT problem instance. For the OneMax and TwoMax function all experiments will be performed using

l = 30 solution parameters, while the 3-SAT instance requiresl = 50. The scaling factorb for the TwoMax function

will be set tob = 1.1, i.e. the global optimal solution has a fitness of 33 while thelocal one of 30.

We equip all four EAs with the same selection, mutation and crossover operators and keep their parameter settings

fixed throughout the study. For selection we use binary tournament selection with replacement in the same way as

in the theoretical analysis: two members of the current population are chosen at random with replacement and the

fitter of the two becomes a parent; if both are equally fit then we chose a parent at random. This selection step

is repeated to obtain two parents. With a probability of 0.7,the two parents are then recombined using uniform

crossover [53]. Each of the two resulting offspring (which are simply copies of the two parents if crossover is not

applied) is then mutated using bit flip mutation with a per-bit mutation rate of1/l. We also fix the population size

of all EAs to n = 50 and setµ = λ = 50, which makes the evolution strategy a (50+50)ES.

For the experimental study we use again the measure of time steps rather than selection steps. On OneMax and

TwoMax all EAs are run for alwaysT = 1500 time steps on the 3-SAT instance forT = 15000 time steps. Any

results shown are average results across 500 independent algorithm runs. Recall that we use Lamarckian population

update in this paper. Furthermore, we do not submit null solutions and use the communication channel in sequential

experimentation mode (batchSize = 1), meaning one time step corresponds to a function evaluation of a single

solution. But remember that the performance difference between batch and sequential experimentation can also be

assessed by comparing the performance between the two reproduction schemes. The employed repairing strategies

are specified in the experimental study for each of the ERC types separately.



29

 0.8

 0.85

 0.9

 0.95

 1

 0  5  10  15  20  25  30

P
o
p
u
la

ti
o
n
 a

v
er

ag
e 

fi
tn

es
s

Activation period k

commERC(0,1000,k,H=(00000***...))

SSGA
(50+50)ES

GGA
SSGA (rri)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  200  400  600  800  1000  1200  1400

P
o
p
u
la

ti
o
n
 a

v
er

ag
e 

fi
tn

es
s

End of constraint time frame tctf
end

commERC(0, tctf
end

, 20,H=(00000***...))

SSGA
(50+50)ES

GGA
SSGA (rri)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100  200  300  400  500

P
o
p
u
la

ti
o
n
 a

v
er

ag
e 

fi
tn

es
s

Start of constraint time frame tctf
start

commERC(tctf
start

, tctf
start+1000, 20,H=(00000***...))

SSGA
(50+50)ES

GGA
SSGA (rri)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  5  10  15  20  25  30

P
o
p
u
la

ti
o
n
 a

v
er

ag
e 

fi
tn

es
s

Order of constraint schema H, o(H)

commERC(0,1000,20,H=(0...0***...))

SSGA
(50+50)ES

GGA
SSGA (rri)

Fig. 15. Shown is the final population average fitness and its standard error on OneMax as a function of the activation period k (top left), the

end and start of the constraint time frame,tend
ctf and tstart

ctf (top right and bottom left), and the order of the constraint schemaH, o(H) (bottom

right).

VI. EXPERIMENTAL STUDY

Whether the effect of an ERC decreases or perhaps even improves an optimizer’s performance depends predom-

inantly on its impact on the population diversity and the optimization direction. To assess the impact on these two

factors one has to answer questions like: (i) what genetic material represented by a constraint schema needs to be

introduced into a population to cause a performance impact;(ii) how much of it, or, rather, how many individuals of

a constraint schema need to be introduced into a population to cause a performance impact; (iii) when does it have

to be introduced to yield a performance impact; (iv) how muchpreparation time and recovery time is available?

This section analyzes these and related questions for commitment ERCs, commitment composite ERCs and random

ERCs, using three test functions: OneMax, TwoMax and a 3-SATproblem instance.

A. Commitment ERC

Here, we repair a non-evaluable solution by simply forcing it into the constraint schemaH , i.e. all bits that do

not match the values of the order-defining bits ofH are flipped.
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OneMax

Figure 15 shows how various constraint parameters of a commitment ERC may affect the performance of the EAs

on OneMax. In this problem, the constraint schemata are of order 5 (the first five bits) and all order-defining bits of

H are 0-bits (recall that this is represented byH = (00000 ∗ ∗ ∗ ∗...)). That is,H represents genetic material that

contradicts entirely an algorithm’s optimization direction. The case whereH represents different genetic material

is investigated later.

From Figure 15, the following observations can be made.

• Longer activation periodsk (top left plot) degrade performance, although a saturationpoint is reached beyond

which further increases in activation period have no effect. The onset of the performance drop-off and the

saturation point occur at higherk for the élitist EAs, and performance is also maintained at a much higher

level. Élitist EAs do not accept individuals from a poor schema into the population, hence it is unlikely

for repaired individuals to enter the population; this has the effect of ‘freezing’ the optimization during the

constrained time frame. For non-élitist EAs, the population can fill up with repaired individuals from poor

schema, a state from which it then takes longer to recover.

• Longer constraint time frames (leaving less time for recovery) affect all EAs negatively, but théelitist EAs

maintain their unconstrained performance level for much longer.

• With later start times of the constraint time frame there is apositive monotonic effect on the performance of all

EAs. This effect is different to the one observed for the periodic ERC in the Markov chain study (where there

was a trade off between more recovery time and more preparation time). This is because with a commitment

constraint the later in the optimization one is, the less likely it is to enter a poor schema (a schema not on the

optimization path) and activate a constraint. Thus later constraints are less disruptive.

• There is a clear ‘sweet-spot’ in respect of the order of the schema which has maximum (negative) effect on the

optimization. As the ordero(H) increases it becomes less likely that an optimizer activates the ERC at all; this

is due to the generally lower probability of falling into a higher order schemata and the fact that the genetic

material is even further away from an optimizer’s search direction. However, on the other hand, although a

low order increases the probability of generating individuals fromH , it does not affect the search as much

because fewer bits need to be optimized during the recovery period. With respect to these two aspects, an

order ofo(H) ≈ 5 tends to have the worst trade off for an optimizer, as can be seen in the bottom right plot

of Figure 15. Note, the order for which the worst trade off is obtained is a function of the string lengthl and

the population sizen. In general, the worst trade off shifts to only a slightly higher order than 5 asl and/orn

increase. The reason for the shift is that a repaired individual is allowed to be poorer (i.e.o(H) is allowed to

be higher) asl and/orn increase but still have a high likelihood of being inserted into the population. However,

the reason for the shift being only little is that the probability of activating the ERC decreases exponentially

with the order.

Just as poor genetic material might prevent an optimizer from searching and evaluating of fitter individuals, good
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Fig. 16. Shown is the final population average fitness (left) at and the average number of times the optimal solutions has been evaluated

during the optimization (right) for (50+50)ES on OneMax as afunction of the order of the constraint schemaH, o(H), and the number of

order-defining bits inH with value 1 for the ERCcommERC(0, 1000, 20, H). The straight line represents the expected performance when

picking a schema for a particular order at random.

genetic material may be beneficial in terms of finding fitter individuals and finding them more quickly. The effect on

the performance of constraint schemata that represent genetic material of different quality is shown in Figure 16.8

The average number of times the optimal solution has been evaluated can be seen as a measure for the convergence

speed, where a higher number indicates a quicker convergence. The performance of the other EAs, here not shown,

follows a similar pattern.

At first glance, one can see from Figure 16 that the majority ofthe constraint schemata do not have an impact

on the performance at all compared to the unconstrained performance (which is represented by the square at

o(H) = #1s = 0). These are schemata that are unlikely to cause an activation at all because they either do not

lie on an optimizer’s search path (schemata with few 1-bits)or are associated with a generally low probability of

being met by any individual (higher order schemata around the straight line). Constraint schemata that represent

poor genetic material (i.e. consist of many 0-bits) have only an impact if their order is low because an optimizer is

searching in a different direction. If the represented genetic material is optimal, i.e.o(H) = #1s, then an activated

ERC prevents the generation of individuals that are less fit with respect to the order-defining bits. That is, an

optimizer benefits from such an ERC in terms of both the population average fitness and the convergence speed

(this is seen by the increasingly dark shade in the elements when moving up the diagonal of the right plot of

Figure 16).

Interesting is the effect of constraint schemata that represent near-optimal genetic material (seen best as a light

8If not otherwise stated, then both the order-defining bits and the positions of the 1-bits among the order-defining bits are chosen at random

in the heat maps
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Fig. 17. Snapshots of a single run of (50+50)ES at different time steps t whilst optimizing TwoMax subject to the ERC

commERC(0, 1000, 20, H = (00 ∗ ∗ ∗ ...)). The horizontal axis represents the number of 1-bits in an individual’s solution vector and

the vertical axis the number of corresponding individuals in the population.

patch just below the diagonal in the right plot of Figure 16).Individuals falling into these schemata are likely

to be fit and thus be inserted into the population. This causesthe ERC to be activated over and over, which is

initially beneficial, but at the same time this prevents an optimizer from generating even fitter individuals. Once the

constraint is lifted, diversity needs to be again introduced among a few poor order-defining bits, which may not be

possible during the recovery period and thus may result in a non-optimal performance. For GGA and SSGA (rri),

for which the results are not shown here, near-optimal constraint schemata of medium and higher order may even

improve the performance compared to the unconstrained performance. Responsible for this effect is their inability

to find very fit individuals in an unconstrained search reliably. More precisely, the near-optimal genetic material

stored in the population during the constraint time frame isused as a stepping stone to find fit individuals during

the recovery period that would otherwise not be found.

TwoMax

An illustration of the effect of a commitment ERC on TwoMax isgiven in the form of histogram plots in

Figure 17. The ERC considered has an activation period ofk = 20 and a constraint schema of ordero(H) = 2

that represents poor genetic material. The local and globaloptimum is located at#1s=0 and#1s=30, respectively.

After the random initialization, the individuals consist on average of 15 1-bits. As the optimization proceeds, the

selection pressure and the effect of drift push the entire population to either side, whereas the optimal slope is

more likely to be climbed up. Since the constraint schema is of low order, it is very likely that the corresponding

genetic material (regardless of its quality) is propagatedthroughout the population. Indeed, at time stept = 1000,
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Fig. 18. Shown is the final population average fitness and its standard error (left) and the probability that the majority of the individuals in a

population ends up on the optimal slope at the end of the optimization (right) on TwoMax as a function of the order of the constraint schema

H, o(H).

just before lifting the constraint, the population is nearly uniform with almost all individuals containing the poor

genetic material. However, the provided recovery time is sufficient to introduce again diversity into the population

and to eventually find the global optimal solution, though insufficient to converge to the optimal population.

We also measured for which constraint settings the probability of climbing up the optimal slope is affected. Once

the majority or all individuals of a population are on a slope, then it is unlikely that individuals on the other slope

are generated and thus that slopes are switched, in particular not if the local and global optimal solution have a

similar fitness. Moreover, once a population has decided to climb up either slope, it behaves like on OneMax and

the effect of an ERC on the performance is similar to that on OneMax too. Figure 18 demonstrates this for the

impact of the ordero(H).

The left and right plot of Figure 18 show the effect of the order o(H) on the population average fitness,

respectively, the probability that the entire population is on the optimal slope at the end of the optimization. Once

again, the largest performance impact is present for an order of o(H) ≈ 5 and high-order constraint schemata have

practically no impact at all. However, the population average fitness decreases more than on the OneMax problem,

especially for SSGA and (50+50)ES. From the right plot, we can see that this is caused by the low probability

of converging to the optimal slope. In fact, foro(H) ≈ 5 this probability reduces for all EAs by a factor of

almost ten compared to an unconstrained environment. The fact that (50+50)ES is able to outperform SSGA in the

unconstrained case and for low-order constraint schemata is due to the higher probability of being on the optimal

slope, which in turn is the result of its higher population diversity. On this simple bimodal problem, however, it

seems that this property cannot yield a sufficient advantageover the quicker convergence speed of SSGA as the

impact of the ERC becomes more severe, i.e. as the ordero(H) increases.

What is slightly different from the results obtained on OneMax is the effect of constraint schemata that represent

non-poor genetic material. Figure 19 shows this effect for GGA in terms of the probability of climbing up the
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Fig. 19. Shown is the probability that the entire populationends up on the optimal slope at the end of the optimization forGGA on

TwoMax as a function of the order of the constrainedH, o(H), and the number of order-defining bits inH with value 1 for the ERC

commERC(0, 1000, 20, H). The straight line represents the expected performance when picking a schema for a particular order at random.

optimal slope;9 the other EAs reacted similarly. Recall that the ‘decision’to climb up either slope is made by

an algorithm usually within the first few hundred time steps,as we have seen in the histogram plots. During this

period, the population is most diverse and undecided in the search direction, which gives ERCs with low-order

constraint schemata the highest chance to propagate their genetic material and thus to affect the search direction.

As can be seen from the figure, this is exactly the range of orders that show an impact. As one would expect,

constraint schemata with few 1-bits decrease the probability of converging to the optimal slope while schemata

with many 1-bits increase it. The population average fitness, which is not shown here, changes accordingly.

3-SAT

Unlike OneMax and TwoMax, this problem consists of many local and global optima. Thus, it is interesting

to analyze not only the population average fitness but also the proportion of runs that found an optimal solution;

in the following, we will call such runssuccessful runs. Another difference to the other two problems is that the

individual bits cannot be optimized independently. That is, the impact on the performance does not depend only

on the order of a constraint schema and the number of order-defining bits being set to 1 but also on the positions

of the order-defining bits within a bit string.

Figure 20 shows the population average fitness and the proportion of successful runs obtained with (50+50)ES

as a function of the ordero(H) and the number of 1-bits among the order-defining bits. To keep the analysis as

9Results in Figure 19 are displayed only for an order of up to 20as the performance was not affected for higher orders
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Fig. 20. Shown is the population average fitness (left) and the proportion of runs that found an optimal solution (right) for (50+50)ES on a

3-SAT problem instance as a function of the order of the constraint schemaH, o(H), and the number of order-defining bits inH with value

1 for the ERCcommERC(0, 7500, 20, H).

general as possible, we chose the order-defining bits in thisexperiment for each algorithm run at random. Similar

to the results obtained on OneMax, the figure shows that constraint schemata of low order (o(H) ≤ 10) affect the

performance. Again, the reason is that constraint schemataof lower order are most likely to yield an activation

regardless of an EA’s optimization stage and the genetic material they are representing. Constraint schemata of

higher order do not affect the performance because of the absence of unique optimal genetic material and the low

probability of finding optimal genetic material at all.

As the positions of the order-defining bits are selected at random, the results allow us to make only general

assumptions about the structure of the problem. For example, the low population average fitness obtained for

constraint schemata of ordero(H) ≈ 5 consisting of many 1-bits may indicate that fit individuals are more likely

to consist of more 0-bits than 1-bits, or that 1-bits are tricky to be set correctly. The uniform impact of low-order

constraint schemata on the proportion of successful runs may indicate that the global optimal solutions consist of

the same number of 1-bits and 0-bits.

The results for the other EAs, not shown here, feature a similar pattern as for (50+50)ES. However, the two

non-́elitism-based EAs perform better than the twoélitism-based EAs with respect to the proportion of successful

runs but not to the population average fitness.

The effect on the performance of the remaining constraints parameter is in alignment with the results obtained

for OneMax: commitment ERCs with low-order constraint schemata harm the performance more severely as the

activation period and the constraint time frame is extendedor the recovery time shortened.
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Fig. 21. Shown is the final population average fitness and its standard error on OneMax as a function of the end and start of the constraint

time frame,tend
ctf and tstart

ctf .

B. Commitment composite ERC

For this ERC type, we use an unbiased ordering and repairing strategy. In fact, we order random composites (i.e.

composite-defining bits are 0 or 1 with equal probability) whenever possible (i.e. after every∆t time steps). For

repairing, we select a random composite from the set of currently stored composites, and use this as a template

to specify the composite-defining bits. Note, with these twostrategies, a composite will consist in average of the

same number of 1-bits and 0-bits, so will a repaired individual with respect to the composite-defining bits.

OneMax

The key observations for this ERC type on OneMax are as follows.

• The longer the constraint time frame the worse the performance of all EAs, but the effect is much less with

élitism (Figure 21, left). This result is very similar to whatwe observe in Figure 15 for the commitment

constraint.

• With respect to the start time of the constraint time frame wesee theoppositeeffect to that observed on the

commitment ERC. Here, it is worse to delay the constraint time frame because this gives less time for recovery;

the preparation time has little positive influence and so does not offset having little time for recovery.

These results, particularly the positive effect ofélitism, can be understood quite easily. Since repaired individuals

will generally be poor (considering that the composites ordered in our setup are made of random bits), a non-élitist

EA will finish the constraint time frame with many poor individuals in its population, and have much to do during

the recovery period. Ańelitist EA, in contrast, will only allow fit repaired individuals to enter the population and

so will either (i) maintain a memory of (unconstrained) goodsolutions generated during the preparation time, or

(ii) find and maintain repaired individuals of high fitness, which occasionally occur due to ‘lucky’ orders having

large numbers of 1-bits in the composite-defining bits.

Figure 22 shows the effect of∆t on the population average fitness of (50+50)ES for differentorderso(H#).
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Fig. 22. Shown is the final population average fitness of (50+50)ES on OneMax as a function of the number of time step betweentwo orders∆t

and the order of the high level constraint schemaH#, o(H#), for the ERCcommCompERC(0, 1000,∆t,H# = (#...#∗∗∗...),#SC = 8).

The column∆t = 0 and the rowo(H#) = 0 represent the population average fitness obtained in an ERC free environment.

One can see that ordering composites more frequently can compensate slightly the negative effect coming from

an increasing order. The small number of storage cells prevents a better performance for medium and high orders.

Note, a higher number of composites tested during the constraint time frame allows also for a higher population

diversity with respect to the composite-defining bits and not only a higher probability of selecting a good composite.

Being more diverse with respect to the composite-defining bits means that a shorter recovery period is needed to

introduce diversity among these bits before fitter individuals can be generated. Thus, a low diversity contributes to

the poor performance of (50+50)ES for large∆t too.

The results for the remaining EAs are not shown here. But SSGAtends to perform slightly better than (50+50)ES,

which is due to its faster convergence, an important property on this problem. The lack of memory of the two non-

élitism-based EAs causes their performance to be predominantly a function of the order. The number of time steps

between two orders plays only a role if it can affect the population diversity with respect to the composite-defining

bits in the final population before lifting the constraint.

TwoMax

On TwoMax, a commitment composite ERC enables an optimizer to evaluate repaired individuals from either

slope for a longer period of time. In fact, foro(H#) > l/2, repaired individuals from either slope might be

evaluated throughout the constraint time frame. Withélitism, this gives an optimizer the opportunity to build up a

bias towards the optimal slope through both the composite-defining bits and the unconstrained bits. In particular,

an optimizer is given the chance to re-optimize the values ofthe unconstrained bits if they represent suboptimal

genetic material. The resulting bias increases then also the probability that a population climbs up the optimal

slope during the recovery period (see Figure 23). For this totake place, however, apart from a high ordero(H#),
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Fig. 23. Shown is the probability that the entire populationends up on the optimal slope at the end of the optimization forGGA on

TwoMax as a function of the time step between two orders∆t and the order of the high level constraint schemaH#, o(H#), for the ERC

commCompERC(0, 1000,∆t, H# = (#...# ∗ ∗ ∗ ...),#SC = 8).

two factors need to be present: (i) a high probability of encountering a non-evaluable individual in order to affect

the optimization at all and (ii) a preferably large number ofdifferent composites tested during the constraint time

frame in order to increase the probability of selecting manycomposites with more 1-bits and potentially being

able to reverse a suboptimal search direction; the constraint time frame should also be set as early as possible

because less bias is required to reverse the search direction of a less optimized population and the probability of a

repaired individual being inserted into the population is higher too. In Figure 23, these factors are fulfilled making

a performance advantage apparent foro(H#) ≥ 15 and ∆t ≤ 100 (the column∆t = 0 and row o(H#) = 0

indicate the unconstrained performance). Note, the drop inthe performance for large∆t and high orderso(H#) is

due to two reasons: the low number of different composites available during the constraint time frame and the low

population diversity with respect to the composite-defining bits, which might prevent an optimizer from converging

on either slope during the recovery period.

Without élitism, results not shown here, it is difficult to optimize the composite-defining bits during the constraint

time frame, especially if many individuals need to be repaired. Hence, a bias in the final population before lifting

the constraint towards either slope needs to come from the unconstrained bits. Thanks to selection pressure, these

are slightly more likely to represent optimal genetic material (if a sufficient number of different composites is

available during the constraint time frame) and thus contribute to a slightly higher probability of climbing up the

optimal slope during the recovery period; obviously, the advantage is not as significant as with́elitism.

3-SAT

The presence of multiple local and global optima makes it rather unlikely that a bias towards a single solution is

built up during the constraint time frame. The fact that the unconstrained bits cannot be optimized independently
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Fig. 24. Shown is the final population average fitness for (50+50)ES on a 3-SAT problem instance as a function of number of time steps

between two orders∆t and the order of the high level constraint schemaH#, o(H#), for the ERCcommCompERC(0, 7500,∆t, H# =

(#...# ∗ ∗ ∗ ...),#SC = 8).

from the composite-defining bits might complicate this process further.

Figure 24 shows how the population average fitness of (50+50)ES is affected as a function of∆t ando(H#); the

number of storage cells is kept small, increasing the probability of an individual being non-evaluable. Once again,

with élitism an optimizer benefits from ordering new composites more frequently. The reason is similar as on the

other problems: suitable composites are more likely to be selected throughout the constraint time frame, allowing

an optimizer to fill the population with fit individuals that are at the same time diverse at least with respect to

the composite-defining bits. These individuals help then anoptimizer during the recovery period to find even fitter

individuals without getting trapped at local optima too quickly. For this, however, the recovery period needs to be

of sufficient length.

C. Random ERC

Here, we restrict ourselves to ERCs with constraint schemata of order one (for an example see Figure 6 in

Section III-B). In a binary search space, this makes repairing straightforward.

OneMax

Increasing activation probabilityp and activation periodk both lead to an increased numbers of bits constrained

per time step. This slows convergence during the constrainttime frame, in a similar way to increasing the order

o(H#) of a commitment composite ERC (cf. Figure 24), leading to a drop off in final fitness achieved (Figure 25).

However, although a large value ofp has a generally detrimental effect on performance, it can lead to an increased

diversity in the population of an EA. This is seen in Figure 26, where the population diversity is measured using

pair-wise Hamming distance (see e.g. [54]). The reason for the effect, which occurs for approxk ≤ 20, is that a

larger number of different bits is constrained to differentvalues, but only for a short period. This is somewhat akin
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Fig. 25. Shown is the final population average fitness for (50+50)ES on OneMax as a function of the activation periodk and the activation

probability p for the ERCrandomERC(0, 1000, k, o(H) = 1, p).
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Fig. 26. Shown is the population average diversity for GGA during the constraint time frame on OneMax as a function of the activation period

k and the activation probabilityp.

to a high mutation rate.

We can see in Figure 26 that fork > 40, an increase inp has first a negative and then at the higher levels

a positive effect on diversity. This pattern can be understood if one considers that for large values ofk most (or

all) individuals may be constrained: then increasingp slightly from a low level will tend to add more constraints

(more constrained bits) and so reduce diversity of the population; when increasingp from an already high level, an

already constrained bit may be re-constrained (flipped), which increases diversity. These effects on diversity, whilst

not important on OneMax, do seem to affect performance on themultimodal problems, TwoMax and Max-SAT

considered next.

The effect of shifting the constraint time frame is not shownbut, similarly to a commitment composite ERC,

the performance reduces the later the constraint time frameis set. The reasons are similar too. Withélitism, the
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Fig. 27. Shown is the final population average fitness and its standard error on OneMax as a function of the activation period k.

advantage gained during a longer preparation period is insufficient to compensate the drawback coming from a

shorter recovery period; also here, the population tends tofreeze during a late constraint time frame because the

quality of the constrained bits remains the same. Withoutélitism, the required recovery period is always the same.

Consequently, the shorter this period the poorer the performance.

TwoMax

Figure 28 shows the effect of the activation periodk and the activation probabilityp on the probability of

(50+50)ES to climb up the optimal slope. A correlation with the available population diversity (which was shown

in Figure 26) is apparent. In fact, a lower population diversity tends to reduce the probability of climbing up the

optimal slope. The reason is that, in the process of buildingup a bias towards either slope, the values of the

constrained bits gain in importance as less diversity is available. Of course, on average these values are unbiased.

However, in the case where more bits are constrained to the same values, it is more likely that a bias is built up

towards the corresponding slope. Compared to an unconstrained optimization, this increases the probability that the

suboptimal slope is climbed up.

Without élitism (results not shown here), the higher population diversity available in the range40 ≤ k ≤ 100,

0.4 < p ≤ 1 does not significantly improve the probability of climbing up the optimal slope compared to performance

in the range40 ≤ k ≤ 100, 0 < p < 0.4. The reason is simply that the resulting larger number of constrained

bits in combination with the lack of memory leaves less spacefor optimization during the constraint time frame.

The search direction followed by an optimizer during the recovery period depends mainly on the quality of the

composites selected to generate the final population beforelifting the constraint.
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Fig. 28. Shown is the probability that the entire populationends up on the optimal slope at the end of the optimization for(50+50)ES on

TwoMax as a function of the activation periodk and activation probabilityp for the ERCrandomERC(0, 1000, k, o(H) = 1, p).
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Fig. 29. Shown is the final population average fitness for (50+50)ES on a 3-SAT problem instance as a function of the activation periodk

and activation probabilityp for the ERCrandomERC(0, 7500, k, o(H) = 1, p).

3-SAT

Getting trapped at local optima and subsequently losing population diversity is a common situation on this

multimodal problem, especially wheńelitism is used. Additional diversity coming from a random ERC may help an

optimizer to jump out from a local optimum and to find even better search regions. In Figure 29, where the population

average fitness of (50+50)ES is shown as a function of the activation periodk and the activation probabilityp, one

can see that the population average fitness improves significantly in the range0 < k ≤ 40 asp increases (compare

with Figure 26). Here, the constraint enables an optimizer to find good search regions that would otherwise not be

found.
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VII. SUMMARY AND CONCLUSION

Any optimization problem that involves resources, such as time, money, instruments, skilled engineers, patients,

and so forth, in the evaluation of solutions may also be subject to temporary non-availabilities of these resources. In

such situations, solutions that are otherwisefeasiblemay not beevaluabletemporarily. So far, in published work,

problems with these constraints have not been considered. In this study, we have provided an appropriate general

problem formulation and termed such problemsephemeral resource-constrained optimization problems(ERCOPs).

We have indicated that population-based optimization algorithms like evolutionary algorithms(EAs) are suitable

optimizers for ERCOPs. We then have proposed an initial set of four ephemeral resource constraint(ERC) types

which model various forms of temporary resource limitations; these ERCs were periodic ERCs, commitment ERCs,

commitment composite ERCs, and random ERCs. To analyze the impact of these ERCs on evolutionary search, we

engaged in a theoretical and experimental investigation.

The theoretical investigation has used Markov chains to study the effect of periodic ERCs on two selection

strategies and reproduction schemes commonly-used withinEAs. One conclusion of the analysis was that (binary)

tournament selection is in general more robust to the restrictions imposed by the ERC than fitness proportionate

selection, which tends to perform better only when the difference in the fitness between fit and poor individuals

is large. Another conclusion was that a non-élitist steady state reproduction scheme is superior to a standard

generational one during the activation periods of an ERC andwhen the restriction imposed by an ERC on the

optimization is severe, i.e. when the activation period andthe constraint time frame is long and little or no recovery

time is available.

The experimental investigation has studied the effect of the other ERC types on four EAs that differed in their

reproduction scheme and in whether they employélitism or not. The experimental analysis confirmed the findings

from the theoretical analysis and revealed parameter settings of the individual ERCs that seem to be challenging

to an EA. Commitment ERCs with a constraint schemata of low order and/or constraint schemata that represent

near optimal genetic material seem to be challenging as theymay cause a population, if activated at the appropriate

optimization stage, to become uniform with respect to poor order-defining bits. Commitment composite ERCs might

be challenging if an optimizer is not given the opportunity to try out many composites and/or the number of storage

cells is small as this may slow down the convergence and causea population to get trapped at local optima. A lack

of élitism is rather harmful in the presence of this ERC type. This is certainly the case when dealing with random

ERCs. With this ERC type, the convergence is slowed down too,especially if the average number of constrained

bits is large or the activation period long.

As all ERC types reduce the convergence speed and/or requirean optimizer to wait for mutation to introduce again

diversity into the population among previously constrained bit positions, generally speaking, the performance reduces

as less recovery time is available. But we also observed examples where recovery time was less important than the

preparation time, and this was easily understood from considering the interaction between the EA, problem and

ERC. Resource constraints did not uniformly degrade performance either: sometimes they caused useful additional
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diversity, as we saw with 3-SAT and the random ERCs; alternatively the constraints can be aligned with the

optimization goal, which will also tend to help search.

An initial suite of test problems resulting from this study including the communication channels of all ERCs is

available online.10

Further research into the effects of ERCs is needed. One of our main intentions is to consider non-homogeneous

experimental costs and to understand how these yield challenging problem instances. Another is to eventually

develop effective and efficient search policies, or components for their design, for the optimization of ERCOPs. Here,

inspiration may be drawn, for example, from strategies usedin online optimization, and dynamic scheduling, and

memory-based EA methods including diploid representations [55]; online optimization can be helpful in the decision

of upcoming resource orders, while scheduling and memory-based methods can be helpful if (future) activation

periods are known, respectively, to make use of previously-found but temporarily non-evaluable individuals. Another

important avenue we are pursuing is to consider learning techniques, such as reinforcement learning [56], in

combination with prediction models to make search strategies more versatile and robust to environmental changes;

for example, one can learn for which decisions an ERC was activated and/or negative performance impact was

associated with it. Finally, due to the nature of experimental optimization, ERCOPs may not only be subject

to ERCs but also to noise, uncertainty and uncontrolled factors. Moreover, the aim is often to optimize several

(conflicting) objectives simultaneously. Another future aspect is to extend search policies developed for ERC to

account also for these additional factors.
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