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Abstract. Multiobjective approaches to data clustering return sétsotutions
that correspond to trade-offs between different clusteobjectives. Here, an
established ensemble technique (evidence-accumulasiapplied to the identi-
fication of shared features within the set of clustering Sohs returned by the
multiobjective clustering method MOCK. We show that thipegach can be
employed to achieve a four-fold reduction in the number ofdidate solutions,
whilst maintaining the accuracy of MOCK’s best clusterirjusions. We also
find that the resulting knowledge provides a novel desigrsbfas the visual
exploration and comparison of different clustering sao$. There are clear par-
allels with recent work on ‘innovization’, where it was segted that the design-
space analysis of the solution sets returned by multiolbacptimization may
provide deep insight into the core design principles of gealdtions.

1 Introduction

Data clustering is the problem of identifying groups (cduis) of similar data items
within collections of unlabelled data. One of the key chadjes in this respect is the
mathematical description of a good cluster, which may themsed to define an ac-
tual clustering objective. Existing objective functiowns flata clustering typically make
fairly strong assumptions about the properties of a goostetuand therefore lack ro-
bustness towards data that are violating those assumpienently, multiobjective ap-
proaches to data clustering have been introduced with the&bptimizing not one but
several clustering objectives simultaneously. It has l@goed that this use of several
objectives facilitates a more natural (and robust) definitof the clustering problem,
and recent work has shown that the sets of optimal tradeetdtions generated by
multiobjective clustering techniques do indeed contalats&ms that improve upon the
guality of the solutions obtained by optimizing a singlestéring objective only [6, 11].
As the objectives used in multiobjective clustering arddgfly conflicting, even a

single run of a multiobjective clustering method (for a giveimber of clusters) will re-
turn a set of different trade-off solutions. Some multiatiee clustering methods, such
as Multiobjective Clustering with Automatic k-Determiiat (MOCK, [10, 11]) addi-
tionally generate solutions across a range of differentimensiof clusters and, therefore,
return solution sets that cover both a range of differentimensof clusters and different
trade-offs between the clustering objectives. In prattapplications, a user of a mul-
tiobjective clustering technique will select one (or a fewferred solution from the



final set of optimal trade-off solutions. Evidently, theseai strong need to support the
user during this process afodel selectionand dedicated approaches to this end have
been proposed in the literature. For the multiobjectivesteting method MOCK, we
previously devised an automated technique of model seleft0] that selects a single
most promising solution from the set of trade-off solutiohke technique is based on
an analysis of the location of solutions in objective spadative to a background of
unstructured ‘control data’ [see 17]. When applied to thédtimiojective clustering tech-
nigue MOCK, this approach has been shown to outperform madéibnal techniques

of model selection such as the Silhouette Width [15].

A potential criticism of MOCK’s standard model selectionpapach [10] is the
following: The analysis is based entirely in objective sgpand does not fully utilize the
information captured by the approximation set as a wholeeReresearch in the field
of evolutionary multiobjective optimization has shown ffegential value of identifying
features in design space that are overrepresented withiaphroximation set returned
by an EMO algorithm [1, 2]. This raises the question of whethgher improvements
in the accuracy, presentation and selection of multiojeciustering solutions may be
feasible by integrating the information provided from timtiee set of optimal trade-off
solutions.

Although not applied to the multiobjective clustering aftfom MOCK before, the
idea of integrating sets of solutions is not novel to the ffidlustering and has been
adressed in the form of cluster ensemble techniques [7,]8Cl#ster ensemble tech-
nigues typically operate on sets of cluster assignmentsatieareturned by a range of
clustering methods and attempt to integrate these labigsisingle ‘consensus clus-
tering’. In this context, the technique of evidence accuatiah has been shown to be
particularly effective [7], and this is the method we willaggat in our work. Specifically,
we aim to investigate whether evidence accumulation pes/édsuitable means of inte-
grating the set of trade-off solutions returned by multiative data clustering, whether
this leads to an improvement in solution accuracy, and warehis enables us to obtain
a better understanding of the relationships between solsiind the features shared by
different optimal trade-off solutions.

In the following (Section 2), we briefly review a number of kegncepts related
to this work. Section 3 describes the experimental setighyding details of the algo-
rithms and the data sets employed. Section 4 reports outsesud discusses the key
findings from our experiments. Finally, Section 5 concludes

2 Background

In this section, we first discuss the principles of model@a for data clustering.
We then provide some background on multiobjective clustgrand consider the use
of model selection in multiobjective clustering. Finaknsemble techniques for data-
clustering are reviewed.

2.1 Model selection

Model selection, i.e., the identification of the most suiadolution or algorithm pa-
rameter, is a fundamental problem in data clustering. Whengle, deterministic clus-



tering technique is used (and all available partitioningsabtained for the same set of
input features), the problem reduces to that of identifytiigy number of clusterk in

a data set. More generally, however, the problem of modetteh will also include
choices between different possible partitionings withdhme number of clusters, such
as different solutions returned (for the sak)dy a non-deterministic method such as
k-means, or the results returned (for the samby different algorithms.

Model selection in clustering has been addressed usingetyaf different tech-
nigues [see 9, 12, for reviews]. One of the most common agpexto model selection
is the evaluation of all clustering solutions using a spersd internal validation in-
dex and the subsequent selection of the top scoring sotutidrese indices of cluster
validation typically assess the balance between some me=akimtra-cluster and inter-
cluster variation, and prominent examples include thedbidtte Width [15], the Dunn
index [3] and the DB-Index [9]. Alternative approaches todeicselection consider the
stability of the partitionings under re-sampling [14] oettelative quality of a partition-
ing compared to a partitioning obtained on unstructured fH&d].

2.2 Multiobjective clustering with automatic k-determination

The multiobjective clustering method MOCK [10] is based ba evolutionary mul-
tiobjective algorithm PESA-II [5] and has been designedtfar optimization of two
different clustering criteria. The first of thesmjerall deviation measures the compact-
ness of clusters, whereas the second objeativenectivity considers whether adjacent
data items are placed in the same clusters. See [10] for fal@fiaitions.

A single run of the multiobjective clustering method MOCKums a set of so-
lutions that correspond to different trade-offs betweesséhtwo objectives. One of
MOCK'’s parameters is an upper limit on the required numbeclos$ters (typically,
k = 25 is used), but apart from this, the number of clusters is kepnoMany of the
solutions returned by MOCK therefore correspond to difiéreimbers of clusters, in
addition to providing different trade-offs between thest&ring objectives.

2.3 Model selection in multiobjective clustering

As multiobjective approaches to data-clustering typjcegturn a set of possible clus-
tering solutions, some previous work on these methods dereil automatic ways of
selecting a single preferred clustering solution.

In MOCK, an integrated method of model selection is used jMfijch works,
briefly, as follows: Given a data set of interest, MOCK is fish to determine an
initial set of optimal trade-off solutions. MOCK then pramhs several sets of ‘control
data’, which are unstructured data sets that are generatedmly within the bounds
of the original data set. MOCK determines a set of optimaleraff solutions for each
of these sets of control data. After a normalization of thediive values, the distances
between the initial solutions and the solutions on the abrdata can be compared
in objective space. The initial solution that is furthestgvirom the control points is
selected as the best solution. The approach is describedrimdetail in [11].

In the context of multiobjective fuzzy clustering, a diéait approach to model se-
lection has been described by Maulik et al. [13]. For the ibjective data clustering



method MOGA (which returns possible partitionings for agéin fixed number of clus-
ters), the authors (ibid.) developed an approach thazeslian analysis in decision
space: they use a re-labelling strategy to maximize thdaybetween all of MOGA's
output partitionings, and to identify those data pointg Hra consistently assigned to
the same cluster (and also have a significant degree of mshipavith that cluster).
The cluster labels of those points are then used as the élaskslin the training of a
support vector machine, which is applied to the predictibolaester membership for
all remaining data points. Using this approach, the methad shown to achieve an
improvement in terms of the Silhouette Width of the final tdusg solution, though
no external validation of the clustering results was péeniedl.

2.4 Ensemble techniques

Methods designed for the combination of the output of diffeérclustering techniques
are often referred to as ensemble methods. Similar to bgggid boosting in super-
vised classification [4], clustering ensembles are desidgmémprove the performance
of clustering techniques by combining the results from sawdifferent runs, param-
eterizations or types of algorithms. Ensemble technigyeisally operate on sets of
cluster assignments (the outputs from clustering algmgthonly and do not consider
the original input data. One of the best-known groups of erde techniques are the
methods introduced by Strehl and Ghosh [16], which use teedd hypergraphsto col-
lect information from various partitionings; they then §pgraph partitioning methods
to obtain a final consensus clustering.

A relatively recent development in ensemble clusteringéstéchnique oévidence
accumulation introduced by Fred and Jain [7]. Similarly, to Strehl ando€itis ap-
proaches [16], the method starts with the cluster assigtsmeturned by all algorithms,
but the algorithm then proceeds to count co-associatiotveeas all data items. This
information is used to construct a new dissimilarity matehich can then be parti-
tioned using a standard hierarchical clustering approBlea.dendrogram returned by
the hierarchical algorithm can be cut to obtain a pre-sgtifiumber of clusters. The
resulting partitioning provides a new consensus clusiednd this approach has been
shown to outperform ensembles based on graph partitioning.

For our purpose, which is the aggregation of the solutionsmed by multiobjective
clustering, the method of evidence accumulation is appgaés (i) it appears to be
one of the best ensemble techniques currently availaljét ¢an be used to combine
partitionings with different numbers of clusters; and)(iti provides an output with
a straightforward and intuitive interpretation: the heigha branch directly reflects
information about the minimum strength of co-associatietween data items within
that branch.

3 Method

We experimentally explore the use of evidence accumuldtiothe aggregation of so-
lutions in multiobjective clustering. First, we assess d@lity of the final solutions



returned from evidence accumulation on MOCK'’s solutios sehd compare the qual-
ity of these solutions to those obtained using alternafiyg@aches. We then discuss the
potential of evidence accumulation to help in the visuaiimaof clustering solutions
and to reduce the problem of model selection in multiobjeatiustering.

3.1 Sets of clustering solutions

In addition to the solution sets returned by MOCK, we gereeadternative sets of solu-
tions using a range of established clustering techniquesigdone in order to compare
the performance of evidence accumulation for inputs ddrivem a range of different

methods. Overall, five different sets of clustering solosiare used:

— MOCK (M): This set contains the solutions returned by MOCK foE [1, 25].
For the data sets considered, the output set of MOCK typicalhtains between
80 to 120 solutions (also see Figure 3 in the Results sect@CK is run using
standard parameter settings as described in [11].

— k-means K): This set contains the solutions returned from the stahBample-
mentation for k-means fdr € [1, 25] (i.e., the set contains 25 solutions in total).

— Average-link @): This set contains the solutions returned from the stahBam-
plementations of average-link hierarchical clustering/foc [1,25] (i.e., the set
contains 25 solutions in total).

— Single-link (S): This set contains the solutions returned from the stahBam-
plementations of average-link hierarchical clusteringfoc [1,25] (i.e., the set
contains 25 solutions in total).

— Combined C): This set combines the solutions sets of k-means, avdiaigand
single-link (above). Overall, this set therefore contaiBsolutions.

3.2 Evidence accumulation

The next step of the experiments is to process some of theedets as follows: Each of
the sets is, individually, used as the input to Fred and Jis fnethod of evidence ac-
cumulation. We then generate a new set of output solutiorapplying the appropriate
cuts to the dendrogram and generating partitioningé fer|1, 25].

As single-link and average-link are hierarchical (and deiristic) methods, the
application of evidence accumulation to their output aldpes not lead to any new
clustering solutions. Sets of inputs based on their indiaidutputs only are therefore
not used in these experiments. Evidence accumulationftrergenerates three new
sets of solutions only, which are denominated as MOCK witld&wce Accumulation
(MEvAcc), k-means with Evidence AccumulatiokEvAcc) and Combined with Evi-
dence AccumulationGEvAcc), and contain 25 solutions each.

Evidence accumulation is implemented as described by Frédain [7]. Given a
set of input clustering solutions for a data set contaimihigems (e.g. from a single run
of MOCK), the N x N co-association matrix is constructed as

mij
M’

Ci,j) =



whereM gives the number of clustering solutions contained in tliges®m;; indi-
cates the number of times (within tho&£ partitions) that data itemsand; have been
assigned to the same cluster. A new dissimilarity matrixéntobtained a® (i, j) =
1-C(i,7), and two different hierarchical clustering methods (rlijhik and average-
link agglomerative clustering) are used to construct threseasus partitions of the data.
In line with Fred and Jain [7], the results for single-linkgdgmerative clustering are
consistently worse than the results for average-link agglative clustering, so results
for this are not shown in the experimental section.

3.3 Solution selection methods

Using the sets of solutions generated in the previous stagedurther investigate
whether evidence accumulation may present a suitable apipror model selection
in multiobjective clustering. For this purpose, we companeimber of alternative tech-
niques of model selection. The first of these is MOCK'’s esthlld approach [11],
which identifies a single partitioning based on distanaesljjective space) to random
control data.

As a second option, we explore the use of the solution satsnexd by evidence ac-
cumulation: The output from evidence accumulation isjatiit, a set of solutions that
contains a single solution for each possible number of etagherek < [1,25]). As a
result, the spacing of solutions along the Pareto front isenewen than the spacing in
the fronts returned directly from multiobjective clustegi(which usually contain sev-
eral solutions for each value 6J. Knee detection based on the local shape of the Pareto
front may therefore become more feasible, and we test thisiloyilating the angles be-
tween triplets of adjacent clustering solutions, and silgthe ‘middle’ solution with
the smallest angles as the final solution.

Finally, as a third option, we consider the fact that evidgeaccumulation uses a
hierarchical clustering algorithm to partition the co@dation matrix, and that its out-
put is, therefore, best represented using a dendrogrameWiopis work, Fred and Jain
[7] suggest that branch length within this dendrogram candes for model selection:
they propose to identify the cut that eliminates the longeanch in the dendrogram
and select the associated partitioning as the best solMerexplore the potential of
this approach for the dendrograms returned from evidencenaglation on MOCK’s
clustering solutions.

3.4 Datasets

The techniques discussed above are compared using a testfstata sets that contain
multiple Gaussian clusters in various dimensions. Thete skts are generated using
the cluster generator described in [11] and available enliine parameterization of the
generator is shown in Table 1. Data sets are generated im d&makten dimensions and
contain four, six or eight Gaussian clusters. Ten diffeiegtances are generated for
each combination of dimension and cluster number, regpitira total of 60 different
instances. Individual instances are denoteddsCc-nal, where D indicates the di-
mensionality of the data}’ indicates the number of clusters ahds the index of the



instance. All experimental results reported are obtainest @1 independent runs per
algorithm per instance, and the Euclidean distance funésiased in all experiments.

Table 1. Parameters of the synthetic data generator, whgrgives the number of points in the
kth cluster,uq defines the mean of thith cluster in thedth dimension andrq defines the
variance of thésth Gaussian cluster in théth dimension. The parameters of individual clusters
are generated randomly within the bounds shown below.

Min N Max Ny Max Mid Min Mid Min Okd Max orq
10 100 10 -10 0 20vD

3.5 Comparison metrics

A range of techniques are used to evaluate the quality of ahgisn sets and indi-
vidual clustering solutions. First, a visualization of thets of clustering solutions in
bi-objective space is used to understand the actual effestidence accumulation. As
we are dealing with sets of clustering solutions in bi-obyecspace, some of these re-
sults are summarized in the form of attainment fronts. Resuk obtained over 21 runs
for each data set, so the first and eleventh attainment frergraployed to indicate top
and median performance.

Furthermore, the agreement of the partitionings with thewkm cluster member-
ships is determined using an an external validation teckmigihe Adjusted Rand Index
is used for this purpose, as it provides an established wapmparing partitionings
with different numbers of clusters [12]. It returns valueghin the rangd0, 1], where
a value of 1 indicates a perfect agreement with the knowrneluimsemberships. During
the evaluation of results, the Adjusted Rand Index is @ilim two different ways. For
the comparison of solution sets, we are interested in etiafuthe algorithms perfor-
mance at generating high-quality solutions. Hence, thepesison focuses on the best
clustering solution found within each solution set (i.Be solution that scores highest
with respect to the Adjusted Rand Index is identified disggcihen comparing tech-
niques for model selection, evaluation is based on the AeljuRand Index of the final
(single) solution selected.

Finally, we also consider the sizes of the solution setsrmetli by the different
techniques.

4 Results

Figure 1 shows the evaluation of the solution sets for a tdieensional data set with
eight clusters. This visualization in bi-objective spauasiig MOCK's clustering ob-
jectives) reveals an interesting phenomenon regardingffeet of evidence accumu-
lation: For the solution sets generated by k-means or thébowtion of algorithms,
evidence accumulation generates results that dominaterii@al solutions with re-
spect to MOCK's clustering objectives. Unlike the origimgbut solutions, the solu-
tions resulting from evidence accumulation tend to be nilytuen-dominated. This
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Fig. 1. Results for instance 3d-8c-no0. Sets of clusteringlsitions obtained by a single run of
MOCK, MOCK with evidence accumulation (MOCK EvAcc), k-means, k-means with evi-
dence accumulation (k-means EvAcc), the ensemble of thremtlitional algorithms (Com-
bined), and the ensemble of three traditional algorithms wih evidence accumulation (Com-
bined EvAcc).

is surprising, as the objective of connectivity is not dilgoptimized by any of these
algorithms. The results suggest that the technique of agglaccumulation produces
solutions that implicitly optimize this measure. Intenegly, the same effect is not seen
when evidence accumulation is applied to MOCK'’s solutidigdence accumulation
does not generally produce solutions that dominate thosti®d in MOCK's origi-
nal approximation front. This may be because MOCK’s sohgiare already close to
optimal with respect to both objectives.

To provide a better idea of the stochastic variation in thesalts, Figure 2 shows
the first and eleventh attainment fronts for all six algorithon the same data set. It
can be seen that there is no substantial difference in tefrthe attainment of MOCK'’s
solutions before and after evidence accumulation. On therdtand, it is clear that both
sets of results dominate the solution sets returned bynaltiee techniques.

Next, we consider the size of the solution sets and the gualithe best solutions
in terms of the known cluster memberships. Summary resuéis @l 60 instances are
show in Figures 3 and 4, in the form of boxplots. Consistetih e observations in
objective space and the results in [7], the application @fe&vce accumulation results in
improved solutions (compared to the original input solagipfor the use with k-means



solutions. For the output of MOCK and the ensemble of alhord, we see no such
effect in terms of the accuracy of the best clustering sohgi For MOCK, this result is
consistent with our observations in objective space: irsethat evidence accumulation
is not able to improve upon the solutions returned by mujéctive clustering, which
may be due to the strong performance of MOCK on these data sets

We next investigate the size of the solution sets in Figurasd4. From these data,
it is evident that the application of evidence accumulatesults in a significant (about
four-fold) reduction in the size of MOCK'’s solution sets, ienis an important advan-
tage. The results also show that this reduction comes agnifisant expense in terms
of solution quality: in terms of the Adjusted Rand Index, Hest solutions returned by
both MOCK and MOCK EvAcc are usually comparable and reliabyperform the
best solutions returned by the six alternatives considered

We are further interested whether evidence accumulatiirelow for more ef-
fective means of model selection, and Figure 5 shows theéeceleomparisons. The
performance of the three model selection techniques isdnikéhile, overall, MOCK’s
original strategy shows the most consistent performaheegngle and the dendrogram-
based technique show very good performances for some ofafeesgts. The angle
and dendrogram-based techniques are conceptually diffenel exploit different types
of information, which leads us to hope that, in future worigher robustness may be
achieved through the integration of both approaches. Coedga MOCK'’s established
selection strategy, an important advantage of both of tappeoaches is reduced com-
putational expense, as they do not rely on the costly gaparad clustering of control
data.

Finally, we consider how the information derived from evide accumulation may
be used to support a user in the exploration of the solutitarsturned by a multiobjec-
tive clustering algorithm. Evidence accumulation capguraluable information about
the frequency of co-assignment of different items, whicldisplayed in the result-
ing dendrogram. We suggest to use this dendrogram for thhzstion of individual
clustering solutions. In Figure 6, this concept is illuggthfor MOCK'’s output on a
four-cluster data set.

5 Conclusion

Evidence accumulation is a state-of-the-art ensemblatgok that has been shown to
provide an effective way of combining and improving the fesof traditional clus-
tering techniques. This manuscript investigates evidewoemulation as a means to
support the post-processing of the clustering solutiohgmed by the multiobjective
clustering method MOCK. On the data sets considered, we fiatldavidence accu-
mulation does not improve the accuracy of MOCK’s clustersadutions, but that it
achieves a substantial reduction in the number of tradeadéftions to be considered
(with no loss of accuracy). We further demonstrate how thewkedge generated by
evidence accumulation may be used in the selection, vimatalh and analysis of the
solutions returned by multiobjective clustering. Futuerkvmay look into the integra-
tion of evidence accumulation into MOCK's search, as wethadevelopment of more
robust approaches to solution selection.
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Fig. 2. Attainment fronts on instance 3d-8c-no0 for MOCK, MOCK with evidence accumu-
lation (MOCK EvAcc), k-means, k-means with evidence accumiation (k-means EvAcc),
the ensemble of three traditional algorithms (Combined), ad the ensemble of three tradi-
tional algorithms with evidence accumulation (Combined E¥Acc). (Top) First (best) attain-
ment front. (Bottom) Eleventh (median) attainment front.
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Fig. 6. Visualization of one of MOCK'’s clustering solutionsfor a sub-sampled instance 3d-
4c-no0. The dendrogram structure is obtained based on evidee accumulation of all of
MOCK's trade-off solutions, wheras the numbers displayed &the leaf nodes reflect the
assignments made by a single, selected clustering solutiddsing this visualization, a user
can easily identify discrepancies between this particulasolution and the ‘majority opin-
ion’: here, the dendrogram is almost entirely consistent wth the labelling provided by the
selected solution (it can be seen that a cut of the dendrograrfior £ = 4 would result in
an almost identical clustering solution), indicating thatthe particular solution is in strong
agreement with the majority of solutions in MOCK'’s complete set of trade-off solutions.
There is one discrepancy in the fourth cluster (note the sinig label of “2” within a series
of “3"s), which highlights a data point that has been misclasified by the clustering solution
selected. The visualization also helps in identifying datitems for which there is particu-
larly low or high uncertainty in the cluster assignment, e.g the length of the branches in the
dendrogram indicates that, overall, there is higher consesus in the assignments to clusters
0 and 1, relative to assignments to clusters 2 and 3. This prales additional information
about the level of definition of individual cluster structures in the underlying data.
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