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Abstract. Multiobjective approaches to data clustering return sets of solutions
that correspond to trade-offs between different clustering objectives. Here, an
established ensemble technique (evidence-accumulation)is applied to the identi-
fication of shared features within the set of clustering solutions returned by the
multiobjective clustering method MOCK. We show that this approach can be
employed to achieve a four-fold reduction in the number of candidate solutions,
whilst maintaining the accuracy of MOCK’s best clustering solutions. We also
find that the resulting knowledge provides a novel design basis for the visual
exploration and comparison of different clustering solutions. There are clear par-
allels with recent work on ‘innovization’, where it was suggested that the design-
space analysis of the solution sets returned by multiobjective optimization may
provide deep insight into the core design principles of goodsolutions.

1 Introduction

Data clustering is the problem of identifying groups (clusters) of similar data items
within collections of unlabelled data. One of the key challenges in this respect is the
mathematical description of a good cluster, which may then be used to define an ac-
tual clustering objective. Existing objective functions for data clustering typically make
fairly strong assumptions about the properties of a good cluster, and therefore lack ro-
bustness towards data that are violating those assumptions. Recently, multiobjective ap-
proaches to data clustering have been introduced with the aim of optimizing not one but
several clustering objectives simultaneously. It has beenargued that this use of several
objectives facilitates a more natural (and robust) definition of the clustering problem,
and recent work has shown that the sets of optimal trade-off solutions generated by
multiobjective clustering techniques do indeed contain solutions that improve upon the
quality of the solutions obtained by optimizing a single clustering objective only [6, 11].

As the objectives used in multiobjective clustering are typically conflicting, even a
single run of a multiobjective clustering method (for a given number of clusters) will re-
turn a set of different trade-off solutions. Some multiobjective clustering methods, such
as Multiobjective Clustering with Automatic k-Determination (MOCK, [10, 11]) addi-
tionally generate solutions across a range of different numbers of clusters and, therefore,
return solution sets that cover both a range of different numbers of clusters and different
trade-offs between the clustering objectives. In practical applications, a user of a mul-
tiobjective clustering technique will select one (or a few)preferred solution from the



final set of optimal trade-off solutions. Evidently, there is a strong need to support the
user during this process ofmodel selection, and dedicated approaches to this end have
been proposed in the literature. For the multiobjective clustering method MOCK, we
previously devised an automated technique of model selection [10] that selects a single
most promising solution from the set of trade-off solutions. The technique is based on
an analysis of the location of solutions in objective space relative to a background of
unstructured ‘control data’ [see 17]. When applied to the multiobjective clustering tech-
nique MOCK, this approach has been shown to outperform more traditional techniques
of model selection such as the Silhouette Width [15].

A potential criticism of MOCK’s standard model selection approach [10] is the
following: The analysis is based entirely in objective space and does not fully utilize the
information captured by the approximation set as a whole. Recent research in the field
of evolutionary multiobjective optimization has shown thepotential value of identifying
features in design space that are overrepresented within the approximation set returned
by an EMO algorithm [1, 2]. This raises the question of whether further improvements
in the accuracy, presentation and selection of multiobjective clustering solutions may be
feasible by integrating the information provided from the entire set of optimal trade-off
solutions.

Although not applied to the multiobjective clustering algorithm MOCK before, the
idea of integrating sets of solutions is not novel to the fieldof clustering and has been
adressed in the form of cluster ensemble techniques [7, 8, 16]. Cluster ensemble tech-
niques typically operate on sets of cluster assignments that are returned by a range of
clustering methods and attempt to integrate these labels into a single ‘consensus clus-
tering’. In this context, the technique of evidence accumulation has been shown to be
particularly effective [7], and this is the method we will adopt in our work. Specifically,
we aim to investigate whether evidence accumulation provides a suitable means of inte-
grating the set of trade-off solutions returned by multiobjective data clustering, whether
this leads to an improvement in solution accuracy, and whether this enables us to obtain
a better understanding of the relationships between solutions and the features shared by
different optimal trade-off solutions.

In the following (Section 2), we briefly review a number of keyconcepts related
to this work. Section 3 describes the experimental setup, including details of the algo-
rithms and the data sets employed. Section 4 reports our results and discusses the key
findings from our experiments. Finally, Section 5 concludes.

2 Background

In this section, we first discuss the principles of model selection for data clustering.
We then provide some background on multiobjective clustering, and consider the use
of model selection in multiobjective clustering. Finally,ensemble techniques for data-
clustering are reviewed.

2.1 Model selection

Model selection, i.e., the identification of the most suitable solution or algorithm pa-
rameter, is a fundamental problem in data clustering. When asingle, deterministic clus-



tering technique is used (and all available partitionings are obtained for the same set of
input features), the problem reduces to that of identifyingthe number of clustersk in
a data set. More generally, however, the problem of model selection will also include
choices between different possible partitionings with thesame number of clusters, such
as different solutions returned (for the samek) by a non-deterministic method such as
k-means, or the results returned (for the samek) by different algorithms.

Model selection in clustering has been addressed using a variety of different tech-
niques [see 9, 12, for reviews]. One of the most common approaches to model selection
is the evaluation of all clustering solutions using a specialized internal validation in-
dex and the subsequent selection of the top scoring solutions. These indices of cluster
validation typically assess the balance between some measure of intra-cluster and inter-
cluster variation, and prominent examples include the Silhouette Width [15], the Dunn
index [3] and the DB-Index [9]. Alternative approaches to model selection consider the
stability of the partitionings under re-sampling [14] or the relative quality of a partition-
ing compared to a partitioning obtained on unstructured data [17].

2.2 Multiobjective clustering with automatic k-determination

The multiobjective clustering method MOCK [10] is based on the evolutionary mul-
tiobjective algorithm PESA-II [5] and has been designed forthe optimization of two
different clustering criteria. The first of these,overall deviation, measures the compact-
ness of clusters, whereas the second objective,connectivity, considers whether adjacent
data items are placed in the same clusters. See [10] for formal definitions.

A single run of the multiobjective clustering method MOCK returns a set of so-
lutions that correspond to different trade-offs between these two objectives. One of
MOCK’s parameters is an upper limit on the required number ofclusters (typically,
k = 25 is used), but apart from this, the number of clusters is kept open. Many of the
solutions returned by MOCK therefore correspond to different numbers of clusters, in
addition to providing different trade-offs between the clustering objectives.

2.3 Model selection in multiobjective clustering

As multiobjective approaches to data-clustering typically return a set of possible clus-
tering solutions, some previous work on these methods considered automatic ways of
selecting a single preferred clustering solution.

In MOCK, an integrated method of model selection is used [11]which works,
briefly, as follows: Given a data set of interest, MOCK is firstrun to determine an
initial set of optimal trade-off solutions. MOCK then produces several sets of ‘control
data’, which are unstructured data sets that are generated randomly within the bounds
of the original data set. MOCK determines a set of optimal trade-off solutions for each
of these sets of control data. After a normalization of the objective values, the distances
between the initial solutions and the solutions on the control data can be compared
in objective space. The initial solution that is furthest away from the control points is
selected as the best solution. The approach is described in more detail in [11].

In the context of multiobjective fuzzy clustering, a different approach to model se-
lection has been described by Maulik et al. [13]. For the multiobjective data clustering



method MOGA (which returns possible partitionings for a single, fixed number of clus-
ters), the authors (ibid.) developed an approach that utilizes an analysis in decision
space: they use a re-labelling strategy to maximize the overlap between all of MOGA’s
output partitionings, and to identify those data points that are consistently assigned to
the same cluster (and also have a significant degree of membership with that cluster).
The cluster labels of those points are then used as the class labels in the training of a
support vector machine, which is applied to the prediction of cluster membership for
all remaining data points. Using this approach, the method was shown to achieve an
improvement in terms of the Silhouette Width of the final clustering solution, though
no external validation of the clustering results was performed.

2.4 Ensemble techniques

Methods designed for the combination of the output of different clustering techniques
are often referred to as ensemble methods. Similar to bagging and boosting in super-
vised classification [4], clustering ensembles are designed to improve the performance
of clustering techniques by combining the results from several different runs, param-
eterizations or types of algorithms. Ensemble techniques typically operate on sets of
cluster assignments (the outputs from clustering algorithms) only and do not consider
the original input data. One of the best-known groups of ensemble techniques are the
methods introduced by Strehl and Ghosh [16], which use the idea of hypergraphs to col-
lect information from various partitionings; they then apply graph partitioning methods
to obtain a final consensus clustering.

A relatively recent development in ensemble clustering is the technique ofevidence
accumulation, introduced by Fred and Jain [7]. Similarly, to Strehl and Ghosh’s ap-
proaches [16], the method starts with the cluster assignments returned by all algorithms,
but the algorithm then proceeds to count co-associations between all data items. This
information is used to construct a new dissimilarity matrix, which can then be parti-
tioned using a standard hierarchical clustering approach.The dendrogram returned by
the hierarchical algorithm can be cut to obtain a pre-specified number of clusters. The
resulting partitioning provides a new consensus clustering, and this approach has been
shown to outperform ensembles based on graph partitioning.

For our purpose, which is the aggregation of the solutions returned by multiobjective
clustering, the method of evidence accumulation is appealing, as (i) it appears to be
one of the best ensemble techniques currently available; (ii) it can be used to combine
partitionings with different numbers of clusters; and (iii) it provides an output with
a straightforward and intuitive interpretation: the height of a branch directly reflects
information about the minimum strength of co-association between data items within
that branch.

3 Method

We experimentally explore the use of evidence accumulationfor the aggregation of so-
lutions in multiobjective clustering. First, we assess thequality of the final solutions



returned from evidence accumulation on MOCK’s solution sets, and compare the qual-
ity of these solutions to those obtained using alternative approaches. We then discuss the
potential of evidence accumulation to help in the visualization of clustering solutions
and to reduce the problem of model selection in multiobjective clustering.

3.1 Sets of clustering solutions

In addition to the solution sets returned by MOCK, we generate alternative sets of solu-
tions using a range of established clustering techniques. This is done in order to compare
the performance of evidence accumulation for inputs derived from a range of different
methods. Overall, five different sets of clustering solutions are used:

– MOCK (M ): This set contains the solutions returned by MOCK fork ∈ [1, 25].
For the data sets considered, the output set of MOCK typically contains between
80 to 120 solutions (also see Figure 3 in the Results section). MOCK is run using
standard parameter settings as described in [11].

– k-means (K ): This set contains the solutions returned from the standard R imple-
mentation for k-means fork ∈ [1, 25] (i.e., the set contains 25 solutions in total).

– Average-link (A): This set contains the solutions returned from the standard R im-
plementations of average-link hierarchical clustering for k ∈ [1, 25] (i.e., the set
contains 25 solutions in total).

– Single-link (S): This set contains the solutions returned from the standard R im-
plementations of average-link hierarchical clustering for k ∈ [1, 25] (i.e., the set
contains 25 solutions in total).

– Combined (C): This set combines the solutions sets of k-means, average-link and
single-link (above). Overall, this set therefore contains75 solutions.

3.2 Evidence accumulation

The next step of the experiments is to process some of the above sets as follows: Each of
the sets is, individually, used as the input to Fred and Jain [7]’s method of evidence ac-
cumulation. We then generate a new set of output solutions byapplying the appropriate
cuts to the dendrogram and generating partitionings fork ∈ [1, 25].

As single-link and average-link are hierarchical (and deterministic) methods, the
application of evidence accumulation to their output alonedoes not lead to any new
clustering solutions. Sets of inputs based on their individual outputs only are therefore
not used in these experiments. Evidence accumulation therefore generates three new
sets of solutions only, which are denominated as MOCK with Evidence Accumulation
(MEvAcc), k-means with Evidence Accumulation (KEvAcc) and Combined with Evi-
dence Accumulation (CEvAcc), and contain 25 solutions each.

Evidence accumulation is implemented as described by Fred and Jain [7]. Given a
set of input clustering solutions for a data set containingN items (e.g. from a single run
of MOCK), theN ×N co-association matrix is constructed as

C(i, j) =
mij

M
,



whereM gives the number of clustering solutions contained in the set, andmij indi-
cates the number of times (within thoseM partitions) that data itemsi andj have been
assigned to the same cluster. A new dissimilarity matrix is then obtained asD(i, j) =
1−C(i, j), and two different hierarchical clustering methods (single-link and average-
link agglomerative clustering) are used to construct the consensus partitions of the data.
In line with Fred and Jain [7], the results for single-link agglomerative clustering are
consistently worse than the results for average-link agglomerative clustering, so results
for this are not shown in the experimental section.

3.3 Solution selection methods

Using the sets of solutions generated in the previous stages, we further investigate
whether evidence accumulation may present a suitable approach for model selection
in multiobjective clustering. For this purpose, we comparea number of alternative tech-
niques of model selection. The first of these is MOCK’s established approach [11],
which identifies a single partitioning based on distances (in objective space) to random
control data.

As a second option, we explore the use of the solution sets returned by evidence ac-
cumulation: The output from evidence accumulation is, initially, a set of solutions that
contains a single solution for each possible number of clusters (here,k ∈ [1, 25]). As a
result, the spacing of solutions along the Pareto front is more even than the spacing in
the fronts returned directly from multiobjective clustering (which usually contain sev-
eral solutions for each value ofk). Knee detection based on the local shape of the Pareto
front may therefore become more feasible, and we test this bycalculating the angles be-
tween triplets of adjacent clustering solutions, and selecting the ‘middle’ solution with
the smallest angles as the final solution.

Finally, as a third option, we consider the fact that evidence accumulation uses a
hierarchical clustering algorithm to partition the co-association matrix, and that its out-
put is, therefore, best represented using a dendrogram. In previous work, Fred and Jain
[7] suggest that branch length within this dendrogram can beused for model selection:
they propose to identify the cut that eliminates the longestbranch in the dendrogram
and select the associated partitioning as the best solution. We explore the potential of
this approach for the dendrograms returned from evidence accumulation on MOCK’s
clustering solutions.

3.4 Data sets

The techniques discussed above are compared using a test suite of data sets that contain
multiple Gaussian clusters in various dimensions. These data sets are generated using
the cluster generator described in [11] and available online. The parameterization of the
generator is shown in Table 1. Data sets are generated in three and ten dimensions and
contain four, six or eight Gaussian clusters. Ten differentinstances are generated for
each combination of dimension and cluster number, resulting in a total of 60 different
instances. Individual instances are denoted asDd-Cc-noI, whereD indicates the di-
mensionality of the data,C indicates the number of clusters andI is the index of the



instance. All experimental results reported are obtained over 21 independent runs per
algorithm per instance, and the Euclidean distance function is used in all experiments.

Table 1.Parameters of the synthetic data generator, whereNk gives the number of points in the
kth cluster,µkd defines the mean of thekth cluster in thedth dimension andσkd defines the
variance of thekth Gaussian cluster in thedth dimension. The parameters of individual clusters
are generated randomly within the bounds shown below.

Min Nk Max Nk Max µkd Min µkd Min σkd Max σkd

10 100 10 -10 0 20
√

D

3.5 Comparison metrics

A range of techniques are used to evaluate the quality of the solution sets and indi-
vidual clustering solutions. First, a visualization of thesets of clustering solutions in
bi-objective space is used to understand the actual effect of evidence accumulation. As
we are dealing with sets of clustering solutions in bi-objective space, some of these re-
sults are summarized in the form of attainment fronts. Results are obtained over 21 runs
for each data set, so the first and eleventh attainment front are employed to indicate top
and median performance.

Furthermore, the agreement of the partitionings with the known cluster member-
ships is determined using an an external validation technique. The Adjusted Rand Index
is used for this purpose, as it provides an established way ofcomparing partitionings
with different numbers of clusters [12]. It returns values within the range[0, 1], where
a value of 1 indicates a perfect agreement with the known cluster memberships. During
the evaluation of results, the Adjusted Rand Index is utilized in two different ways. For
the comparison of solution sets, we are interested in evaluating the algorithms perfor-
mance at generating high-quality solutions. Hence, the comparison focuses on the best
clustering solution found within each solution set (i.e., the solution that scores highest
with respect to the Adjusted Rand Index is identified directly). When comparing tech-
niques for model selection, evaluation is based on the Adjusted Rand Index of the final
(single) solution selected.

Finally, we also consider the sizes of the solution sets returned by the different
techniques.

4 Results

Figure 1 shows the evaluation of the solution sets for a three-dimensional data set with
eight clusters. This visualization in bi-objective space (using MOCK’s clustering ob-
jectives) reveals an interesting phenomenon regarding theeffect of evidence accumu-
lation: For the solution sets generated by k-means or the combination of algorithms,
evidence accumulation generates results that dominate theoriginal solutions with re-
spect to MOCK’s clustering objectives. Unlike the originalinput solutions, the solu-
tions resulting from evidence accumulation tend to be mutually non-dominated. This
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Fig. 1. Results for instance 3d-8c-no0. Sets of clustering solutions obtained by a single run of
MOCK, MOCK with evidence accumulation (MOCK EvAcc), k-means, k-means with evi-
dence accumulation (k-means EvAcc), the ensemble of three traditional algorithms (Com-
bined), and the ensemble of three traditional algorithms with evidence accumulation (Com-
bined EvAcc).

is surprising, as the objective of connectivity is not directly optimized by any of these
algorithms. The results suggest that the technique of evidence accumulation produces
solutions that implicitly optimize this measure. Interestingly, the same effect is not seen
when evidence accumulation is applied to MOCK’s solutions:Evidence accumulation
does not generally produce solutions that dominate those contained in MOCK’s origi-
nal approximation front. This may be because MOCK’s solutions are already close to
optimal with respect to both objectives.

To provide a better idea of the stochastic variation in theseresults, Figure 2 shows
the first and eleventh attainment fronts for all six algorithms on the same data set. It
can be seen that there is no substantial difference in terms of the attainment of MOCK’s
solutions before and after evidence accumulation. On the other hand, it is clear that both
sets of results dominate the solution sets returned by alternative techniques.

Next, we consider the size of the solution sets and the quality of the best solutions
in terms of the known cluster memberships. Summary results over all 60 instances are
show in Figures 3 and 4, in the form of boxplots. Consistent with the observations in
objective space and the results in [7], the application of evidence accumulation results in
improved solutions (compared to the original input solutions) for the use with k-means



solutions. For the output of MOCK and the ensemble of algorithms, we see no such
effect in terms of the accuracy of the best clustering solutions. For MOCK, this result is
consistent with our observations in objective space: It seems that evidence accumulation
is not able to improve upon the solutions returned by multiobjective clustering, which
may be due to the strong performance of MOCK on these data sets.

We next investigate the size of the solution sets in Figures 3and 4. From these data,
it is evident that the application of evidence accumulationresults in a significant (about
four-fold) reduction in the size of MOCK’s solution sets, which is an important advan-
tage. The results also show that this reduction comes at no significant expense in terms
of solution quality: in terms of the Adjusted Rand Index, thebest solutions returned by
both MOCK and MOCK EvAcc are usually comparable and reliablyoutperform the
best solutions returned by the six alternatives considered.

We are further interested whether evidence accumulation will allow for more ef-
fective means of model selection, and Figure 5 shows the related comparisons. The
performance of the three model selection techniques is mixed. While, overall, MOCK’s
original strategy shows the most consistent performance, the angle and the dendrogram-
based technique show very good performances for some of the data sets. The angle
and dendrogram-based techniques are conceptually different and exploit different types
of information, which leads us to hope that, in future work, higher robustness may be
achieved through the integration of both approaches. Compared to MOCK’s established
selection strategy, an important advantage of both of theseapproaches is reduced com-
putational expense, as they do not rely on the costly generation and clustering of control
data.

Finally, we consider how the information derived from evidence accumulation may
be used to support a user in the exploration of the solution sets returned by a multiobjec-
tive clustering algorithm. Evidence accumulation captures valuable information about
the frequency of co-assignment of different items, which isdisplayed in the result-
ing dendrogram. We suggest to use this dendrogram for the visualization of individual
clustering solutions. In Figure 6, this concept is illustrated for MOCK’s output on a
four-cluster data set.

5 Conclusion

Evidence accumulation is a state-of-the-art ensemble technique that has been shown to
provide an effective way of combining and improving the results of traditional clus-
tering techniques. This manuscript investigates evidenceaccumulation as a means to
support the post-processing of the clustering solutions returned by the multiobjective
clustering method MOCK. On the data sets considered, we find that evidence accu-
mulation does not improve the accuracy of MOCK’s clusteringsolutions, but that it
achieves a substantial reduction in the number of trade-offsolutions to be considered
(with no loss of accuracy). We further demonstrate how the knowledge generated by
evidence accumulation may be used in the selection, visualization and analysis of the
solutions returned by multiobjective clustering. Future work may look into the integra-
tion of evidence accumulation into MOCK’s search, as well asthe development of more
robust approaches to solution selection.
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Fig. 2. Attainment fronts on instance 3d-8c-no0 for MOCK, MOCK with evidence accumu-
lation (MOCK EvAcc), k-means, k-means with evidence accumulation (k-means EvAcc),
the ensemble of three traditional algorithms (Combined), and the ensemble of three tradi-
tional algorithms with evidence accumulation (Combined EvAcc). (Top) First (best) attain-
ment front. (Bottom) Eleventh (median) attainment front.
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Fig. 3. Results for 21 runs each across ten different instances with three dimensions and
(top) four clusters; (centre) six clusters; and (bottom) eight clusters. (Left) Adjusted Rand
Index of the best solution in the final set of clustering solutions for each algorithm; (right)
Number of solutions in the final set of clustering solutions.for each algorithm.
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Fig. 4. Results for 21 runs each across ten different instances with ten dimensions and (top)
four clusters; (centre) six clusters; and (bottom) eight clusters. (Left) Adjusted Rand Index
of the best solution in the final set of clustering solutions for each algorithm; (right) Number
of solutions in the final set of clustering solutions. for each algorithm.
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Fig. 5. Results for 21 runs each across ten different instances with (left) three dimensions;
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Fig. 6. Visualization of one of MOCK’s clustering solutionsfor a sub-sampled instance 3d-
4c-no0. The dendrogram structure is obtained based on evidence accumulation of all of
MOCK’s trade-off solutions, wheras the numbers displayed at the leaf nodes reflect the
assignments made by a single, selected clustering solution. Using this visualization, a user
can easily identify discrepancies between this particularsolution and the ‘majority opin-
ion’: here, the dendrogram is almost entirely consistent with the labelling provided by the
selected solution (it can be seen that a cut of the dendrogramfor k = 4 would result in
an almost identical clustering solution), indicating thatthe particular solution is in strong
agreement with the majority of solutions in MOCK’s complete set of trade-off solutions.
There is one discrepancy in the fourth cluster (note the single label of “2” within a series
of “3”s), which highlights a data point that has been misclassified by the clustering solution
selected. The visualization also helps in identifying dataitems for which there is particu-
larly low or high uncertainty in the cluster assignment, e.g. the length of the branches in the
dendrogram indicates that, overall, there is higher consensus in the assignments to clusters
0 and 1, relative to assignments to clusters 2 and 3. This provides additional information
about the level of definition of individual cluster structures in the underlying data.
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