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Abstract. In engineering and other ‘real-world’ applications, multiobjective opti-
mization problems must frequently be tackled on a tight evaluation budget — tens
or hundreds of function evaluations, rather than thousands. In this paper, we in-
vestigate two algorithms that use advanced initialization and search strategies to
operate better under these conditions. The first algorithm, Bin MSOPS, uses a bi-
nary search tree to divide up the decision space, and tries to sample from the largest
empty regions near ‘fit’ solutions. The second algorithm, ParEGO, begins with so-
lutions in a latin hypercube and updates a Gaussian processes surrogate model of
the search landscape after every function evaluation, which it uses to estimate the
solution of largest expected improvement. The two algorithms are tested using a
benchmark suite of nine functions of two and three objectives — on a budget of
only 250 function evaluations each, in total. Results indicate that the two algo-
rithms search the space in very different ways and this can be used to understand
performance differences. Both algorithms perform well but ParEGO comes out on
top in seven of the nine test cases after 100 function evaluations, and on six after
the first 250 evaluations.
Keywords: multiobjective optimization, expensive black-box functions, ParEGO,
DACE, Bin MSOPS, landscape approximation, response surfaces, test suites

1 Introduction

The vast majority of research effort in developing modern multiobjective evolutionary
algorithms (MOEAs) has concentrated on improving algorithm performance and effi-
ciency on runs, typically, of ten thousand function evaluations or more. In this paper, we
consider multiobjective problems where a ‘budget’ of at most 250 evaluations is imposed
because of the expensive nature of evaluating candidate solutions. More specifically, we
are interested in problems where most or all of the features described in Fig.1 are true.

Features 1–4 limit the numbers of function evaluations possible, while features 5–8
make it reasonable to apply global search techniques rather than either random search or
hillclimbing. Problems exhibiting these features include various combinatorial biochem-
istry and materials science applications [6, 26], as well as instrument set-up optimization
in analytical chemistry [20, 24]. In [20], a standard MOEA, PESA-II, was successfully
used to substantially improve the settings of a GC-MS spectrometer, using just 180 eval-
uations. However, it is clear that given such a restricted number of evaluations, and no
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1. the time taken to perform one evaluation is of the order of minutes or hours,
2. only one evaluation can be performed at one time (no parallelism is possible),
3. the total number of evaluations to be performed is limited by financial considerations,
4. no realistic simulator or other method of approximating the full evaluation is readily

available,
5. noise is low (repeated evaluations yield very similar results),
6. the overall gains in quality (or reductions in cost) that can be achieved are high,
7. the search landscape is multimodal but not highly rugged,
8. the dimensionality of the search space is low-to-medium,
9. the problem has multiple, possibly incommensurable, objectives.

Fig. 1. Features exhibited by problems of interest

particular restriction on computational overhead (since each experiment requires 20 min-
utes), a search strategy that more carefully considers each evaluation would be more
appropriate.

Scanning the optimization literature reveals that a sparse but varied array of different
techniques (that were proposed or could be used) for economizing on evaluations in
multiobjective optimization has already been examined. One strand in this focuses on
the use of neural networks for modeling the search landscape during optimization, in
order to replace some real function evaluations with approximated ones [19, 8, 9], or to
replace standard variation operators with adaptive ones [1]. The simpler concept of fitness
inheritance has also been investigated in multiobjective optimization to economize on
function evaluations [2, 5]. And a third strand is to use Bayesian network and/or other
probabilistic model-building algorithms in a multiobjective scenario, e.g. [17].

However, while the above methods may offer some performance gains over stan-
dard MOEAs when function evaluations are expensive, not one of the studies above
has demonstrated a significant performance advantage within the challenging evalua-
tion budget we are interested in here. In this paper, we present and compare two recently
proposed algorithms that take very different approaches to this challenge. The first algo-
rithm, Binary-MSOPS, which is summarized below, is based on two separate pieces of
work previously published by the second author [11, 12]. The second algorithm, ParEGO,
was first described in a recent technical report [16], and is described here again in some
detail. We evaluate these algorithms over a range of problems and, unlike in other studies,
we focus explicitly on the first 250 evaluations only.

The rest of the paper is organized as follows. Sections 2 and 3 describe the two
algorithms, while 4, 5 and 6 detail the test functions, performance assessment methods
and parameter settings of the algorithms, respectively. Section 7 presents results and
section 8 discusses findings and concludes.

2 Binary-MSOPS

The Binary-MSOPS algorithm is based primarily on the Binary Search Algorithm [11],
summarized below. This method, which can be combined with almost any fitness as-
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Fig. 2. The Binary Search process illustrated in a two dimensional decision space, with the first
seven search points shown. The box around the third point indicates a small distance around a ‘fit’
point, and how this intersects with several empty regions

signment scheme, attempts to improve decision space sampling to ensure that promis-
ing regions are not missed or over-sampled in the early stages of the search, and to ex-
plicitly balance exploitation and exploration. Combining this with the MSOPS ranking
method [12] — a computationally efficient means of assigning fitness in multiobjective
optimization, based on target vectors —, Binary-MSOPS is both efficient and frugal with
evaluations.

2.1 Binary Search Algorithm

The overall strategy of Bin MSOPS uses a binary search tree [11] to divide the decision
space into empty regions, allowing the largest empty region to be approximated. The
search tree is constructed as shown in Fig. 2 by generating a point at random within a
chosen hypercube, then dividing the hypercube along the dimension that yields the most
‘cube-like’ subspaces.

The basic algorithm for constructing the binary search tree (and generating new so-
lutions) works by repeatedly choosing an exploration or exploitation step:

Exploration: Next point is generated at random within the largest empty region (i.e.
global search),

Exploitation: Next point is generated within the largest empty region that is within a
small distance of a selected good point (i.e. local search),

where the choice is random but biased by a parameter specifying the exploration/ex-
ploitation ratio.

The identification of a local region for exploitation is illustrated in Fig. 2. A small
offset distance

���
is used to generate a hypercube of interest about the chosen point

(chosen with tournament selection). The small hypercube is placed around the point of
interest simply to provide an efficient means of identifying large neighbouring regions.
A new point is then generated at random using a normal distribution in the largest region
that intersects the hypercube.
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At each iteration, the tree search to find the largest empty region is at worst �	� ��
� ,
where



is the number of evaluation points so far and

�
is the number of dimensions.

Tree pruning can lead to �	� ������� � 
��� performance for exploitation, and at worst �	� ��
� .
Thus a computational explosion is avoided.

2.2 Population ranking by MSOPS

In order to decide which are ‘good’ points, the entire population is ranked, and a tour-
nament between a random subset of the population, based on rank value, decides on the
next solution to update. In order to control the computational complexity, a non-Pareto
ranking approach has been applied, that like ParEGO (see next section), is also capable
of handling many-objective problems. For this, the Multiple Single Objective Sampling
(MSOPS) [12], with �	� 
������ � 
��� time complexity, has been used.

The concept of MSOPS is to generate a set of � target vectors, and evaluate the
performance of every individual in the population, of size



, for every target vector,

based on a conventional aggregation method. As aggregation methods (e.g. weighted
min-max, � -constraint, goal attainment etc.) are very simple to process, the calculation of
each of the performance metrics is fast.

Thus each of the



members of the population has a set of � scores that indicate
how well the population member satisfied the range of target conditions. The scores are
held in a score matrix, � , which has dimensions


�� � . Each column of the matrix �
corresponds to one target vector (each column containing



entries) and is ranked, with

the best performing population member on the corresponding target vector being given
a rank of 1, and the worst a rank of



. The rank values are stored in a matrix � . Each

row of the rank matrix � may now be sorted, with the ranks for each population member
placed in ascending order. The � matrix now holds in the first column the highest rank
achieved for each population member across the set of target vectors. The second column
will hold the second highest rank achieved etc. Thus the matrix � may be used to rank
the population, with the most fit being the solution that achieved the most scores that
were ranked 1, etc.

The flexibility of the approach is such that the target vectors can be arbitrary, either
generated using some structure, or generated at random within certain limits. As the
ranking method employed is based on the number of target vectors that are satisfied the
best, a solution at the edge of the objective space will often satisfy vectors that cannot be
attained. Thus the focus of the optimization is naturally drawn to interesting regions of
surface such as the boundary of the optimization surface and discontinuities.

3 ParEGO: landscape modeling using Gaussian processes

Learning a cost landscape from a set of solution/cost pairs is variously called surro-
gate, approximate or meta- modeling in the literature [13]. In design engineering, meta-
modeling is usually known as the response surface method [18], and involves fitting a low
order polynomial via some form of least squares regression. A closely related approach,
deriving from geology, is Kriging, whereby Gaussian process models are parameterized
by maximum likelihood estimation. A particular example of this is known as the Design



5

and Analysis of Computer Experiments (DACE) model [22], which forms the basis of
the EGO search algorithm [14]. EGO has been designed specifically for optimization on
a very restricted evaluation budget: e.g. in [14], four low-dimensional multimodal test
functions are optimized to within 1% of optimal in the order of 100 function evaluations.

The EGO algorithm begins by first generating a number of solutions in a latin hy-
percube, and by then finding the maximum likelihood DACE model that best explains
these solutions (making use of some suitable optimization algorithm). To generate a new
solution to evaluate, EGO searches for the solution that maximizes what Jones et al [14]
call “the expected improvement” — the expected value of that part of the standard er-
ror curve that lies below the best cost sampled so far. This effectively means that EGO
weighs up both the predicted value of solutions, and the error in this prediction, in order
to find the one that has the greatest potential to improve the minimum cost. EGO does not
just choose the solution that the model predicts would minimize the cost. Rather, it auto-
matically balances exploitation and exploration: where a solution has low predicted cost
and low error, it may not be as desirable as a solution whose predicted cost is higher but
whose associated error of prediction is also higher. Once a new solution has been chosen
and evaluated (using the true, expensive cost function), the DACE model is updated with
this new information, and the next solution is chosen using this updated model.

The EGO algorithm could be extended for use with multiobjective optimization prob-
lems in a number of different ways. One simple approach recently proposed by the first
author in [16] (and that has the advantage of scaling to many objectives), converts the �
different cost values of a solution into a single cost via a parameterized scalarizing weight
vector. By choosing a different (parameterization of the) weight vector at each iteration
of the search, an approximation to the whole Pareto front can be gradually built up. This
multiobjective extension of EGO is called ParEGO.

ParEGO begins by normalizing the � cost functions with respect to the known (or
estimated) limits of the cost space, so that each cost function lies in the range [0,1].
Then, at each iteration of the algorithm, a weight vector � is drawn uniformly at random
from the set of evenly distributed vectors defined by:

� �"! � � ��# �%$ # �&$(')'('*$ #,+ �.-0/ +132 � # 1 �547698;: $ # 1 � �=<0> $ �@?BA 'C' >;D $ (1)

with
- � - �FEHGJI +LK �+�K �BM , so that the choice of

>
determines how many vectors there are in

total [10]. The scalar cost of a solution N0OP�RQ � is then computed using the augmented
Tchebycheff function [23]:

N%OS�TQ � �VUXW�Y1 �=# 1�Z N 1 �TQ �3�\[^]`_ 1 # 1�Z N 1 �TQ
� $ : ? 4 'a' � (2)

where N 1 is the raw cost value on objective
:

and
]

is a small positive value, which ensures
all minima are proper Pareto optima, and which we set to

A ' A&b . The scalar costs of all
previously visited solutions are computed and, using all or a selection of these, a DACE
model of the landscape is constructed by maximum likelihood. The solution that maxi-
mizes the expected improvement with respect to this DACE model is determined. This
becomes the next point, and is evaluated on the real, expensive cost function, completing
one iteration of ParEGO.
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Algorithm 1 ParEGO pseudocode
1: procedure PAREGO( c , d , e , f )
2: gLhji�hlk�m;n LATINHYPERCUBE opd0q /* Initialize using procedure: line 15 */
3: for each r in s to s)std�uvs do
4: w*hji3hxk rpmjn EVALUATE opgLhji�hlk rTmTy�c;q /* See line 36 */
5: end for
6: while not finished do
7: zBn NEWLAMBDA oTe{y|f(q /* See line 19 */
8: }~i(d��*�{n DACE opgLhji�hlk�mTyJw*hji�hlk�mTy�z\q /* See line 22 */
9: gj������n EVOLALG op}~i(d��(�RyHgLhji�hlkRm�q /* See line 28 */

10: gLhji�hlk�mjn�gLh�i3hlkRm0�	��gj�����.�
11: w0������n EVALUATE opgj������y�c;q
12: w(h�i3hlkRm;n�w*hji3hxk�m0�~�*w����*�`�
13: end while
14: end procedure

15: procedure LATINHYPERCUBE( d )
16: divide each dimension of search space into s�s�d�u�s ‘rows’ of equal width
17: return s�s�d�u�s vectors g such that no two share the same ‘row’ in any dimension
18: end procedure

19: procedure NEWLAMBDA( e , f )
20: return a e -dimensional scalarizing weight vector chosen uniformly at random from

amongst all those defined by equation 1
21: end procedure

22: procedure DACE( gLh�i3hlkpm , w(h�i3hlkRm , z )
23: compute the scalar fitness c)� of every cost vector in w(h�i3hlkRm , using equation 2
24: choose a subset of the population based on the computed scalar fitness values
25: maximize the likelihood of the DACE model for the chosen population subset
26: return the parameters of the maximum likelihood DACE model
27: end procedure

28: procedure EVOLALG( }~i(d��(� , gLhji�hlkRm )
29: initialize a temporary population of solution vectors, some as mutants of g�hji3hxk�m and others

purely randomly
30: while set number of evaluations not exceeded do
31: evaluate the expected improvement of solutions using the model
32: select, recombine and mutate to form new population
33: end while
34: return best evolved solution
35: end procedure

36: procedure EVALUATE( g , c )
37: call the expensive evaluation function c with the solution vector g
38: return true cost vector w of solution g
39: end procedure
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Population size: 20 solutions
Population update: steady state (one offspring produced per generation, from either a

crossover or cloning event, followed by a mutation)
Generations/evaluations: 10,000 evaluations
Reproductive selection: binary tournament without replacement
Crossover: simulated binary crossover [3] with probability 0.2, producing one offspring
Mutation: decision value shifted by ��s���st���0� ��� � , where � is drawn uniformly at random

from oT��� ������s�y*s*q , � is the range of the decision variable, and h{� , the per-gene mutation
probability, is s*�*d .

Replacement: offspring replaces (first) parent if it is better, else it is discarded
Initialization: 5 solutions are mutantsa of the 5 best solutions evaluated on the real fitness

function under the prevailing z vector; the remaining 15 solutions are generated in a
latin hypercube in decision space

a The mutation is carried out as described above except that mutants are checked to ensure
they are different than parents.

Fig. 3. The EA used in ParEGO to search for the ‘best’ next solution

Pseudocode for the entire ParEGO algorithm is given in Algorithm 1. The Nelder and
Meads downhill simplex algorithm is used (with 20 restarts) to maximize the likelihood
of the DACE model (line 25 of Algorithm 1). The evolutionary algorithm used within
ParEGO to search for the solution that maximizes the expected improvement (line 28) is
implemented as detailed in Fig. 3.

In practice, on a very expensive cost function, all solutions previously evaluated
should be used to update the DACE model, at every iteration. However, to save com-
putational overhead in our experiments (because of the need to do 21 runs on a large
number of functions to collect performance data), we used a simple, heuristic method
of choosing a subset of the solutions evaluated to update the model, as follows: At each
iteration: (i) if the iteration number �H�|��� is less than 25, all

404 ��� 4 [ �H�|�)� solutions eval-
uated so far, are used to update the model; and (ii) if �H�|��� �V¡ b a subset of

404 ��� 4 [ ¡ b
solutions is used, where the first half of them are the best

:
solutions under the prevail-

ing scalarizing vector � and the other half are selected at random without replacement.
Further details of the parameter settings used in ParEGO are given in Section 6.

4 Test function suite

4.1 Notes on the selection of functions

A number of good attempts at designing test function suites and/or general schemes for
test function generation have been proposed in the multiobjective optimization litera-
ture, of which those described in [4, 21, 25] are some of the best. We make a selection
of nine test functions, borrowing from these, and adapting some of them slightly for
our purposes. Overall, our suite contains functions from two to eight decision variables;
functions with a very low density of solutions at the Pareto front; functions with locally
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KNO1 [16] Features: Two decision variables; two objectives; Fifteen locally optimal
Pareto fronts.

OKA1 [21] Features: Two decision variables; two objectives; Pareto optima lie on curve;
density of solutions low at PF.

OKA2 [21] Features: Three decision variables; two objectives; Pareto optima lie on spiral-
shaped curve; density of solutions very low at PF.

VLMOP2 [25] Features: Two decision variables; two objectives; concave PF.
VLMOP3 [25] Features: Two decision variables; three objectives; disconnected Pareto op-

timal set and PF is a curve ‘following a convoluted path through objective space’.
DTLZ1a, adapted from [4] Features: Six decision variables; two objectives; local optima

on the way to the PF.
DTLZ2a and DTLZ4a, adapted from [4] Features: Eight decision variables; three objec-

tives; DTLZ4a biases the density distribution of solutions toward the c)¢%u�c � and c � u.c �
planes.

DTLZ7a, adapted from [4] Features: Eight decision variables, three objectives; four dis-
connected regions in the Pareto front (in objective space).

Fig. 4. Summary of the nine test functions

optimal Pareto fronts; functions where the Pareto set follows a complicated curve in the
decision space; functions where the Pareto front is disconnected in objective space; and
functions where the density of points parallel to the Pareto front is non-uniformly dis-
tributed. There is thus a good deal of variety in the difficulties that they pose. We have
nonetheless been restrictive in some particular aspects: all functions are unconstrained
and while difficult, are not overly high-dimensional (in decision space), and have a rea-
sonable, rather than pathological degree of ruggedness. And, we have kept to functions
of two and three objectives only. These restrictions accord with our description (in Sec-
tion 1) of certain kinds of expensive engineering/scientific problem, where we hope to
obtain good results in a very small number of function evaluations. We do not reproduce
the equations of all functions here but they can be found in [16] and are summarized in
Fig. 4.

5 Selected performance analysis techniques

In accordance with the analyses presented in [27], we choose the hypervolume indicator
to assess the approximation sets obtained by Bin MSOPS and ParEGO. We supplement
these tabulated values and significance levels with a visual representation based on sum-
mary attainment surfaces, for some of the 2-objective functions.

5.1 Hypervolume indicator

The hypervolume indicator assesses the size (hypervolume or Lebesgue integral) of the
region weakly dominated by an approximations set, thus larger values indicate better
nondominated sets. It is “the only unary indicator we are aware of that is capable of
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Fig. 5. Five sets of nondominated points and the best, median and worst attainment surfaces that
they define. The interpretation of the median attainment surface is that, for every point on it (in-
dependently), a point (weakly) dominating this was obtained in at least £)��¤ of the nondominated
sets. Similarly, the worst attainment surface indicates the level achieved in s��)�L¤ of the sets. The
best attainment surface indicates the level achieved by the aggregation of all sets. In this study, the
best attainment surface is irrelevant and is not included in plotted results

detecting that ¥ is not worse than ¦ for all pairs ¥V§ [better than] ¦ ” [27], where ¥ and¦ are two approximation sets.
The weakly dominated region being measured must be bounded from above in some

way, and for this some point ¨ is chosen, which must be itself dominated by every point
in the sample set. In order to choose a bounding point for application of the hypervolume
indicator, we use the following method. First, the collection of nondominated point sets
from all runs of both algorithms (on the relevant function) are aggregated into a single
superset. Then, the ideal and the anti-ideal point of this superset are found. The bounding
point is then the anti-ideal point shifted by © times the range, in each objective:

ª � �=¨ � $ ¨ � $)'(')'*$ ¨ + � $ with
¨ 1 �VUXW�Y 1 [ ©;�T«B¬&Q 1 � U	a® 1 � $ : ? 4 'C' � $

where
U	W�Y 1 and

U	C® 1 are the maximum and minimum value, respectively, on the
:
th

objective, found within the superset. We use © � A ' A 4 here.
For the analysis of multiple runs, we compute the hypervolume indicator of each

individual run, and report the mean and the standard deviation of these. Since the dis-
tribution of Bin MSOPS’ and ParEGO’s results are not necessarily normal, we use the
Mann-Whitney rank-sum test to indicate if there is a statistically significant difference in
the position of the two distributions.

5.2 Median and worst summary attainment surface plots

A summary attainment surface is a visual way of summarizing a number of runs of a
multiobjective optimizer, based on the notion of an attainment surface [7]. For illustra-
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Table 1. ParEGO parameter settings, where d is the number of decision variables

Parameter setting
Initial population in latin hypercube s�s�d�u�s
Total maximum evaluations 250
Number of scalarizing vectors 11 (for 2 objectives), 15 (for 3 objectives)
Scalarizing function augmented Tchebycheff
Internal GA evals per iteration ¯(���\���)�
Crossover probability 0.2
Real-value mutation probability s*�(d
Real-value SBX parameter 10
Real-value mutation parameter 50

tion, we plot five sets of nondominated points and their exact sample median, best and
worst, summary attainment surfaces in Fig. 5.

For the two-objective problems in this paper, we give the median and worst attain-
ment surfaces only of ParEGO and of Bin MSOPS on the same plot, with ParEGO’s two
surfaces shown in solid and Bin MSOPS’s two surfaces shown with dashed lines. We do
not give plots for the three-objective problems here, because of space restrictions.

6 Experimental details

To evaluate Bin MSOPS and ParEGO on the test suite, each algorithm is run 21 times,
and all solutions visited are stored. The nondominated sets achieved after a particular
number of function evaluations can then be determined and used to estimate performance.

6.1 Bin MSOPS parameter settings

Weighted Min-Max was used as the aggregation method within the MSOPS ranking
algorithm. The weighted min-max score

>
of � objectives is calculated using (3),where#,° is the weight for the � th objective value, N0° .

> � +UXW%Y° 2 � ��# ° N ° � $ (3)

A set of objective weights constitutes a single target vector.
Thirty target vectors were used, spaced so that the angle to their nearest neighbour

was constant across the set of 30. Thus in trials with 3 objectives, the set of weight
vectors, although evenly spaced, was non-unique.

To choose a ‘good’ point, a tournament size with a maximum of 20, without replace-
ment, was used throughout all the experiments.

A search interval (see figure 2) of
� � � A ' A ¡ was used and a lower limit was set

on the coverage area of allowable cells of
A ' A0A�b � (in normalized decision space with all

variables in the range [0,1]). If the cells near to the chosen ‘good’ point were below the
cell area limit, a search was performed to find the nearest cell that is large enough to
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split. The lower limit promotes a wider search around interesting points, but does prevent
a tight-formation search occurring, which may be detrimental in problems with a very
low density at the Pareto set (e.g. test function OKA1).

Initially, the algorithm performed a global exploration search for approximately the
first 20 points, then global exploration was performed 6% of the time.

6.2 ParEGO parameter settings

The full set of parameter settings used in all runs of ParEGO are given in Table 1. These
were determined empirically from a few exploratory trials.

7 Results

Tables 2 and 3 present the results of applying the hypervolume indicator to the 21 runs of
Bin MSOPS and ParEGO after, respectively, 100 and 250 function evaluations. Because
it is not possible to use these values in comparisons with other algorithms, we make avail-
able the raw results at [15]. Note also that the appearance of the hypervolume decreasing
from 100 to 250 evaluations on some problems is only due to the choice of a different
bound point (see above).

Fig. 5 and 6 visualize the median and worst summary attainment surfaces of the 21
runs of both algorithms on selected 2-objective problems. Fig. 7 and 8 show the deci-
sion space points visited by the first run of the two algorithms on KNO1 and OKA1,
respectively.

From these results a number of observations can be made:

– ParEGO is statistically significantly better than Bin MSOPS on seven of the nine
functions at 100 evaluations, and on six of the nine functions after 250 evaluations,
under the hypervolume indicator. (cf. [16], where ParEGO was better than a standard
setup of NSGA-II with population size 20 on all test functions under two different
indicators).

– The standard deviations of the two algorithms are generally comparable, with a
large difference evident on only one problem, DTLZ1a, at 250 evaluations (2 or-
ders of magnitude less deviation for ParEGO). Results reported in [16] indicated that
ParEGO’s standard deviations were frequently one or two orders of magnitude lower
than NSGA-II’s on these problems, so the results here show that Bin MSOPS is per-
forming comparatively robustly — an important feature on problems where only one
run may be possible.

– Fig. 5 and 6 indicate that ParEGO run for 250 evaluations is superior to a random
search of 1000 evaluations on the difficult OKA1 and OKA2 functions, where there
is a low density of solutions near the Pareto front. On OKA1, ParEGO’s median
attainment surface dominates all 1000 randomly generated points and on OKA2,
even ParEGO’s worst attainment surface does.

– Fig. 7 and 8 demonstrate that the search patterns of Bin MSOPS and ParEGO are
very different, and generally complementary. It is clear that while Bin MSOPS at-
tempts to get an even coverage of the search space, both globally and locally, ParEGO
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operates by combining a well-spread global search with full exploitation of local
‘niches’ (highly fit regions). This explains the far superior performance of ParEGO
on the test functions with either low density at the Pareto front, local Pareto fronts or
severe discontinuities. Fig. 7 (right) is a good example, however, of a smoother, more
dense function where Bin MSOPS has provided good even coverage, but ParEGO
has focused too much on local niches. Fig. 8 really shows how ParEGO homes in on
parts of the true Pareto set more aggressively, but sometimes fails to spread across it.

8 Summary and conclusion

In many optimization scenarios, the number of fitness evaluations that can be performed
is severely limited by cost or other constraints. In this study, the performance of two
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Table 2. Mean and SD values of the hypervolume indicator after 100 evaluations of Bin MSOPS /
ParEGO from 21 runs of each. Larger values indicate better performance. The distributions of the
values are tested using the Mann-Whitney rank sum test. The ± values and significance level are
indicated. ParEGO is significantly better than Bin MSOPS unless stated

Function Bin MSOPS mean (SD) ParEGO mean (SD) ² -value significance
OKA1 14.8496 (0.571733) 17.9532 (0.372966) -5.546841 ³9´�´�µ
OKA2 13.6773 (1.53528) 19.7183 (0.887686) -5.546841 ³9´�´�µ
KNO1 86.9879 (5.9303) 78.4856 (7.24012) -3.735627 ³9´�´�µ Bin MSOPS wins
VLMOP2 0.317661 (0.00440428) 0.307027 (0.00564198) -4.792169 ³9´�´�µ Bin MSOPS wins
VLMOP3 7.22865 (0.681038) 7.61652 (0.157667) -1.547078 ³9´�¶�µ
DTLZ1a 185317 (2573.43) 189262 (209.001) -5.521685 ³9´�´�µ
DTLZ2a 3.85168 (0.139089) 3.97869 (0.0890044) -3.358291 ³9´�´�µ
DTLZ4a 0.533989 (0.0394657) 0.673329 (0.263526) -2.477840 ³9´�´�µ
DTLZ7a 10.5544 (1.7988) 12.9893 (0.655795) -4.490300 ³9´�´�µ

Table 3. Mean and SD values of the hypervolume indicator after 250 evaluations of Bin MSOPS /
ParEGO from 21 runs of each. Larger values indicate better performance. The distributions of the
values are tested using the Mann-Whitney rank sum test. The ± values and significance level are
indicated. ParEGO is significantly better than Bin MSOPSunless stated

Function Bin MSOPS mean (SD) ParEGO mean (SD) ² -value significance
OKA1 14.8169 (0.446187) 15.9849 (0.372917) -5.219816 ³	´t´tµ
OKA2 13.9093 (1.13887) 18.4416 (0.467239) -5.546841 ³	´t´�µ
KNO1 94.972 (1.70367) 84.2247 (5.5432) -5.521685 ³X´�´�µ Bin MSOPS wins
VLMOP2 0.324363 (0.000664073) 0.310789 (0.00398408) -5.546841 ³	´t´tµ Bin MSOPS wins
VLMOP3 4.94459 (0.0599138) 4.75726 (0.113527) -4.892791 ³	´t´tµ Bin MSOPS wins
DTLZ1a 63980.6 (602.738) 64869.6 (6.98978) -5.546841 ³	´t´tµ
DTLZ2a 2.79582 (0.0960357) 3.08818 (0.0276524) -5.546841 ³	´t´tµ
DTLZ4a 0.111108 (0.124952) 1.67242 (0.478067) -5.521685 ³	´t´tµ
DTLZ7a 10.6171 (1.26015) 18.1657 (0.431554) -5.546841 ³	´t´tµ
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Fig. 8. Decision space points visited by Bin MSOPS and ParEGO on KNO1 and OKA1. ParEGO
fares worse on the former because it focuses too much on getting exactly on the PF instead of
spreading out along it, while Bin MSOPS extends further along it. But ParEGO’s strategy does
better than Bin MSOPS’s on OKA1 because points a small way off the Pareto set in decision space
are far from the PF in objective space
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advanced multiobjective optimization algorithms, Bin MSOPS and ParEGO, was mea-
sured on much shorter runs than used in most previous MOEA studies. A suite of nine
difficult, but low-dimensional, multiobjective test functions of limited ruggedness were
used to evaluate and compare the algorithms. The results of the comparison indicated
that ParEGO’s use of a surrogate model to establish both the expected multiobjective
cost of candidate solutions and the uncertainty in these predictions, enables rapid ad-
vances in the early phase of the optimization process. The less directed search performed
by Bin MSOPS is good, but can fail to capitalize effectively on previously gathered in-
formation when the solution density at the Pareto front is low.

Overall, the experiments reported here can serve as a benchmark for other algorithms
aimed at these type of expensive, low-dimensional multiobjective problems. To facilitate
the comparison of Bin MSOPS and ParEGO with other methods, raw results are available
at [15]. Comparisons of ParEGO with NSGA-II can already be found in [16].

Future work will focus on three possible extensions. 1. an adaptive update of the
scalarizing vectors to get a better distribution on the Pareto front; 2. constraint handling
mechanisms; and 3. investigation of a hybrid between Bin MSOPS and ParEGO that
might offer a good combination of computational efficiency and high performance in
short-to-medium run lengths (say up to 500 evaluations) for problems where evaluations
are faster but still otherwise limited.
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