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Abstract—It is well known that interference among various information components conveyed in speech, such as linguistic and
speaker-specific information (SSI), hinders either speaker or speech recognition system from yielding a better performance. In this
paper, we present a deep neural architecture (DNA) especially for extracting SSI via learning from Mel-frequency cepstral coefficients
(MFCCs), a speech representation commonly used in speech information processing, to facilitate speaker recognition. For learning
speaker-specific characteristics, we propose a novel multi-objective loss function towards intrinsic SSI extraction along with a minimal
information loss based on first- and second-order speaker-dependent statistics in a high-level yet abstract representation space.
For training our DNA, we adopt a two-stage hybrid learning strategy, i.e., unsupervised greedy layer-wise learning to initialize
parameters and supervised discriminative learning for an optimal solution in terms of our proposed loss function. By using several
Linguistic Data Consortium (LDC) benchmark and multi-lingual speech corpora of different variabilities with cross-corpora and cross-
language experimental protocols, we investigate the importance of both architecture depth and training data in our DNA learning
for SSI extraction. Also we demonstrate extracted SSI by vowel distribution visualization. In comparison to start-of-the-art techniques,
experimental results suggest that, incorporated into a simple speaker modeling technique, our generic speaker-specific representations
are robust against various mismatches ranging from channels to spoken languages and hence lead to the favorable performance in
various speaker recognition tasks.

Index Terms—Speaker-specific information extraction, deep neural architecture, multi-objective loss functions, data regularization,
hybrid learning strategy, speaker recognition, speech information component analysis.
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1 INTRODUCTION

Automatic speaker recognition (SR) generally involves
three aspects: speaker-specific feature extraction, speaker
modeling (SM) and decision making (DM) [1], [2]. Recently,
attention has been mainly devoted to SM and DM in
SR studies and substantial progresses have been made
in the two aspects [1]-[3]. For SM, generative models
such as Gaussian mixture model (GMM) are among the
most successful pragmatic approaches by approximating
speaker-specific distribution from speech [4]-[6]. On the
other hand, discriminative models, e.g., kernel-based
learning, have been presented to enhance GMMs to
deal with inter- and intra-speaker variabilities in high-
level parametric space [7], [8]. Also several compensa-
tion techniques [6]-[9], e.g., decomposition of speaker-
related and environmental variabilities during SM, have
been proposed to tackle the notorious mismatch prob-
lem in SR, which furthermore reinforces stat-of-the-art
SM techniques. A number of DM techniques [3] are
also developed for building up practical SR systems.
While all the aforementioned SM and DM techniques
significantly improves SR performance, speaker-specific
feature extraction, a core aspect in SR, seems to be over-
looked, to a great extent, due to the well-known chal-
lenge that linguistic information (LI) and speaker-specific
information (SSI) conveyed in speech are fundamentally
intermingled and difficult to separate [10]-[14]. As a
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result, almost all existing speech representations [15],
[16], e.g., various spectral representations, carry all kinds
of mixing information as a whole and are used in both
SR and speech recognition. Mutual interference among
various speech information components becomes one of
main hurdles to hinder either SR or speech recognition
system from yielding a better performance [17], [18].

In previous work, several attempts have been made to
explicitly or implicitly extract acoustic features sensitive
to the speaker variation [19]. The explicit feature extrac-
tion includes natural acoustic features like pitch, inten-
sity, vocal tract filter modeling, glottal flow derivatives,
source onset timings and so on [20], [21]. Such features
are influenced by a speaker’s vocal apparatus. However,
such features still convey mixed information compo-
nents despite an emphasis on SSI. In addition, higher-
level prosodic features are also related to emotional
stats and speaking style of the speaker [22], [23]. As
non-spectral features, those source-related and prosodic
features are generally computationally expensive and
quite sensitive to the intra-speaker and environmental
variabilities. For implicit feature extraction, statistical
data analysis techniques, e.g., principal component analysis
(PCA) and independent component analysis (ICA), have
been attempted to segregate the SSI from LI [24]. With
the assumption that SSI is uncorrelated with other non-
SSI and statistically independent among different speak-
ers, PCA or ICA performs unsupervised learning with
general objectives regardless of task-specific information.
Hence, it is unjustifiable that features extracted by PCA
or ICA always encode SSI, and the influence of predom-
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inant LI along with noise and channel variabilities often
exacerbate the problem. Hence, implicit feature extrac-
tion methods often overfit to an observed data set but fail
to extract intrinsic SSI. In addition, discriminative learn-
ing has also been applied to SSI extraction to establish
speaker-specific mapping for individual speakers, which
leads to improved SR performance [25], [26]. Despite the
limited success in previous work, intrinsic SSI extraction
for robust SR remains unresolved in general [17], [18].

As an emerging machine learning methodology, deep
learning (DL) employs a deep architecture (DA) com-
posed of multiple levels of non-linear operations to
tackle complex AI problems by learning the desired
high-level abstraction of input data in a hierarchical
way [27]-[29]. DL leads to hierarchical yet distributed
representations that re-distribute information conveyed
in input data to facilitate complex problem solving and
robust DM [29]. DL has been successfully applied to
a number of difficult AI tasks ranging from computer
vision to acoustic modeling [27]-[33].

Motivated by enormous success of deep learning, we
recently proposed a deep neural architecture (DNA) to
learn speaker-specific characteristics from MFCCs [34].
While we demonstrated that the deep learning leads to
a speaker-specific representation, there are still several
unsolved problems as discussed in [34]. First, the loss
function defined at a single short frame level encounters
a difficulty in capturing intrinsic SSI for better general-
ization. Next, our work was limited by only few speech
corpora available at that time. It is observed from our
previous work [34] that representations by our DNA
fail to yield a satisfactory performance in the presence
of severe mismatches. Furthermore, roles of architecture
depth and training data is unclear in SSI extraction.
Finally, evaluation in our earlier work [34] was not
thorough again due to limited speech corpora available.

In this paper, we further develop our DNA to tackle
all the problems mentioned above towards extracting
intrinsic SSI for robust SR and thoroughly evaluate
performance of our improved DNA under different con-
ditions. The contributions of this paper are summarized
as follows. First, we propose a novel contrastive loss
function based on statistics of long speech segments
rather than short individual frames given the fact that
statistics of a long speech segment is likely to convey
SSI [1], [2] and also facilitate SM used in SR tasks.
Using the new loss function, we derive an alternative
update rule and empirically show that it performs signif-
icantly better than its counterpart [34] in SSI extraction.
Second, we investigate the importance of architecture
depth in our DNA learning and demonstrate the ex-
tracted SSI by vowel distribution visualization. Third,
by using elaborately designed experimental protocols,
we empirically show that the use of speech corpora
covering considerable variabilities in our DNA learning
yields robust representations against severe mismatches
including text, language, ageing, channel, and environ-
ments. Finally, by comparative studies, we demonstrate
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Fig. 1. Deep neural architecture for extracting speaker-specific
information.

that resultant representations incorporated into simple
speaker modeling techniques lead to the state-of-the-art
performance in speaker verification and segmentation
tasks. To the best of our knowledge, the work presented
in this paper is the first attempt towards extracting
intrinsic SSI with machine learning for a generic speaker-
specific representation .

The rest of the paper is organized as follows. Sect.
II presents our DNA and its learning algorithm. Sect.
III describes our experimental methodology and reports
experiments results related to our DNA learning. Sect.
IV presents comparative studies in two typical SR tasks.
Sect. V discusses relevant issues and relates previous
work to ours, and the last section draws conclusions.

2 MODEL DESCRIPTION

In this section, we first describe our deep neural ar-
chitecture (DNA) designed especially for extracting SSI
by learning the statistical compatibility among speakers.
Then we present a two-stage learning algorithm by
applying the hybrid learning strategy [28], [29] to our
proposed loss function to train our DNA.

2.1 Architecture
As illustrated in Fig. 1, our DNA consists of two subnets,
and each subnet is a fully connected multi-layered per-
ceptron of 2K+1 layers, i.e., an input layer, 2K-1 hidden
layers and a visible layer at the top. If we stipulate
that layer 0 is input layer, there are the same number
of neurons in layers k and 2K-k for k = 0, 1, · · · ,K. In
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particular, the Kth hidden layer is used as code layer, and
neurons in this layer are further divided into two subsets
denoted by CS and CS, respectively, as depicted in Fig. 1.
Those neurons in the subset CS, colored in black in Fig. 1,
are used to encode SSI while all the neurons in CS are ex-
pected to accommodate non-speaker related information.
The input to each subnet is an MFCC representation of a
frame after a short-term analysis that a speech segment
is divided into a number of frames and the MFCC
representation is achieved for each frame. As depicted
in Fig. 1, xit is the MFCC feature vector of frame t in Xi,
input to subnet i (i=1,2), where Xi = {xit}TB

t=1 collectively
denotes MFCC feature vectors for a speech segment of
TB frames.

During learning, two identical subsets are coupled at
their coding layers via neurons in CS with an incompati-
bility measure defined on two speech segments of equal
length, X1 and X2, input to two subnets, which will be
presented in 2.2. Thus, our DNA can be regarded as a
variant of Siamese neural architecture [35], a regularized
version as elucidated in 2.2. After learning, we achieve
two identical subnets and hence can use either of them
to produce a new representation for a speech frame.
For input x to a subnet, only the bottom K layers of
the subnet are used and the output of neurons in CS at
the code layer or layer K, denoted by CS(x), is its new
representation, as illustrated by the dash box in Fig. 1.

2.2 Loss Function
Let CS(xit) be the output of all neurons in CS of subnet
i (i=1,2) for input xit ∈ Xi and CS(Xi) = {CS(xit)}TB

t=1,
which pools output of neurons in CS for TB frames in
Xi, as illustrated in Figure 1. As statistics of speech
signals is more likely to capture SSI [5], we define the
incompatibility measure based on the 1st- and 2nd-order
statistics of a new representation to be learned as

D[CS(X1), CS(X2);Θ] = ||µ(1) − µ(2)||22 + ||Σ(1) − Σ(2)||2F ,
(1)

where
µ(i) =

1

TB

TB∑
t=1

CS(xit),

Σ(i)=
1

TB − 1

TB∑
t=1

[CS(xit)−µ(i)][CS(xit)−µ(i)]T , i = 1, 2.

In Eq. (1), || · ||2 and || · ||F are the L2 norm and the Frobe-
nius norm, respectively. Θ is a collective notation of all
connection weights and biases in the DNA. Intuitively,
two speech segments belonging to different speakers
lead to different statistics and hence their incompatibility
score measured by (1) should be large after learning.
Otherwise their score is expected to be small.

For a corpus of multiple speakers, we can construct a
training set so that an example be in the form: (X1, X2; I)
where I is the label defined as I = 1 if two speech
segments, X1 and X2, are spoken by the same speaker
or I = 0 otherwise. Using such training examples, we

apply the energy-based model principle [36] to define a
loss function as

L(X1, X2; Θ) = α[LR(X1; Θ) + LR(X2; Θ)]

+(1− α)LD(X1, X2; Θ), (2)

where

LR(Xi; Θ) =
1

TB

TB∑
t=1

||xit − x̂it||22 (i=1, 2), (3a)

LD(X1, X2; Θ) = ID + (1− I)(e−Dm
λm + e

−DS
λS ). (3b)

Here Dm = ||µ(1) − µ(2)||22 and DS = ||Σ(1) − Σ(2)||2F .
λm and λS are the tolerance bounds of incompatibility
scores in terms of Dm and DS , which can be estimated
from a training set. In LD(X1, X2; Θ), we drop explicit
parameters of D[CS(X1), CS(X2);Θ] to simplify presen-
tation.

Eq. (2) defines a multi-objective loss function where
α (0 <α< 1) is a parameter used to trade-off between
two objectives LR(Xi; Θ) and LD(X1, X2; Θ). The moti-
vation for two objectives are as follows. By nature, both
SSI and non-speaker related information components
are entangled over speech [16], [34]. When we tend
to extract SSI, the interference of non-speaker related
information is inevitable and appears in various forms.
LD(X1, X2; Θ) measures errors responsible for wrong
speaker-specific statistics on a representation learned by
a Siamese DA in different situations. However, using
LD(X1, X2; Θ) only to train a Siamese DA cannot cope
with enormous variations of non-speaker related infor-
mation, e.g., LI (a predominant information component
in speech), which often leads to overfitting to a training
corpus according to our observations [34]. As a result,
we use LR(Xi; Θ) to measure reconstruction errors to
monitor information loss during SSI extraction. By min-
imizing reconstruction errors in two subnets, the code
layer leads to a speaker-specific representation with the
output of neurons in CS while the remaining neurons
are used to regularize various interference by capturing
some invariant properties underlying them for good
generalization.

In summary, we anticipate that minimizing the multi-
objective loss function defined in Eq. (2) will enable our
DNA to extract SSI by encoding it through a generic
speaker-specific representation insensitive to various
mismatches as well as, more importantly, applicable to
other speech corpora that has never been seen in training
the DNA, which will be verified by our experiments
reported later on.

2.3 Learning Algorithm
In this section, we apply the two-phase deep learning
strategy [28], [29] to derive our learning algorithm, i.e.,
pre-training for initializing subnets and discriminative
learning for learning a speaker-specific representation.

We first present the notation system used in our algo-
rithm. Let hkj(xit) denote the output of the jth neuron
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in layer k for k=0,1,· · · ,K,· · · ,2K. hk(xit) =
(
hkj(xit)

)|hk|
j=1

is a collective notation of the output of all neurons in
layer k of subnet i (i=1,2) where |hk| is the number
of neurons in layer k. By this notation, k=0 refers to
the input layer with h0(xit) = xit, and k=2K refers
to the top layer producing the reconstruction x̂it. In
the coding layer, i.e., layer K, CS(xit) =

(
hKj(xit)

)|CS|
j=1

is a simplified notation for output of neurons in CS ,
corresponding to a speaker-specific representation of xit

after learning. Let W(i)
k and b

(i)
k denote the connection

weight matrix between layers k-1 and k and the bias
vector of layer k in subnet i (i=1,2), respectively, for
k=1,· · · ,2K. Then output of layer k is hk(xit) = σ[uk(xit)]

for k=1,· · · ,2K-1, where uk(xit) = W
(i)
k hk−1(xit) + b

(i)
k

and σ(z) =
(
(1 + e−zj )−1

)|z|
j=1

. Note that we use the
linear transfer function in the top layer, i.e., layer 2K,
to reconstruct the original input.

2.3.1 Pre-training

For pre-training, we employ the denoising autoencoder
[37] as a building block to initialize biases and con-
nection weight matrices of a subnet. A denoising au-
toencoder is a three-layered perceptron where the input,
x̃, is a distorted version of the target output, x. For a
training example, (x̃,x), the output of the autoencoder is
a restored version, x̂. Since MFCCs fed to the first hidden
layer and its intermediate representation input to all
other hidden layers are of continuous value, we always
distort input, x, by adding Gaussian noise to form a
distorted version, x̃. The restoration learning is done by
minimizing the MSE loss between x and x̂ with respect
to the weight matrix and biases. We apply the stochastic
back-propagation (SBP) algorithm to train denoising au-
toencoders, which is detailed in the appendix of [34], and
the greedy layer-wise learning procedure [28], [29] leads
to initial weight matrices for the first K hidden layers,
as depicted in a dash box in Fig. 1, i.e., W1, · · · ,WK of
a subnet. Then, we set WK+k = WT

K−k+1 for k=1,· · · ,K
to initialize WK+1, · · · ,W2K of the subnet. Finally, the
second subnet is created by simply duplicating the pre-
trained one.

2.3.2 Discriminative Learning

For discriminative learning, we minimize the loss func-
tion in Eq. (2) based on pre-trained subnets for SSI
extraction. Given our loss function is defined on statistics
of TB frames in a speech segment, we cannot update
parameters until we have TB output of neurons in CS at
the code layer. Fortunately, the SBP algorithm perfectly
meets our requirement; In the SBP algorithm, we always
set the batch size to the number of frames in a speech
segment. To simplify the presentation, we shall drop
explicit parameters in our derivation whenever doing so
causes no ambiguities.

In terms of the reconstruction loss, LR(Xi; Θ), we have

the following gradients. For layer k = 2K,

∂LR

∂u2K(xit)
= 2(x̂it − xit), i=1, 2. (4)

For all hidden layers, k=2K-1,· · · ,1, applying the chain
rule and (4) leads to

∂LR

∂uk(xit)
=

(
∂LR

∂hkj(xit)
hkj(xit)[1− hkj(xit)]

)|hk|

j=1

, (5a)

∂LR

∂hk(xit)
=

[
W

(i)
k+1

]T ∂LR

∂uk+1(xit)
. (5b)

As the contrastive loss, LD(X1, X2; Θ), defined on
neurons in CS at code layers of two subnets, its gradients
are determined only by parameters related to K hidden
layers in two subnets, as depicted by dash boxes in Fig.
1. For layer k=K and subnet i=1, 2, we obtain

∂LD

∂uK(xit)
=

((
[I − λ−1

m (1− I)e−Dm
λm ]ψj(xit)

)|CS|
j=1

, ~0
)
+

((
[I − λ−1

S (1− I)e−
DS
λS ]ξj(xit)

)|CS|
j=1

, ~0
)
. (6)

Here, ψj(xit)=p
(i)
j

(CS(xit)
)
j

[
1−(CS(xit)

)
j

]
and ξj(xit)=

qj(xit)
(CS(xit)

)
j

[
1−(CS(xit)

)
j

]
, where p(i)= 2

TB
sign(1.5−

i)(µ(1)−µ(2)), q(xit)=
4

TB−1 sign(1.5−i)(Σ(1)−Σ(2))[CS(xit)−
µ(i)] and

(CS(xit)
)
j

is output of the jth neuron in CS for
input xit. In Eq. (6), ~0 is a zero vector of |hK |−|CS| ele-
ments corresponding to the gradients of the loss function
LD, defined in Eq. (3b), with respect to potentials of all
the neurons in CS (c.f. Fig. 1) i.e., ~0 = (0)

|hK |
j=|CS|+1. The

derivation of Eq. (6) appears in the appendix.
For layers k=K-1, · · · ,1, we have

∂LD

∂uk(xit)
=

(
∂LD

∂hkj(xit)
hkj(xit)[1− hkj(xit)]

)|hk|

j=1

, (7a)

∂LD

∂hk(xit)
=

[
W

(i)
k+1

]T ∂LR

∂uk+1(xit)
. (7b)

Given a training example,
({x1t}TB

t=1, {x2t}TB
t=1; I

)
, we

use gradients achieved from Eqs. (4)-(7) to update all the
parameters in the DNA. For layers k=K+1, · · · , 2K, their
parameters are updated by

W
(i)
k ←W

(i)
k − εα

TB

TB∑
t=1

2∑
r=1

∂LR

∂uk(xrt)
[hk−1(xrt)]

T , (8a)

b
(i)
k ← b

(i)
k − εα

TB

TB∑
t=1

2∑
r=1

∂LR

∂uk(xrt)
. (8b)

For layers k=1, · · · , K, their weight matrices and biases
are updated with

W
(i)
k ← W

(i)
k − ε

TB

TB∑
t=1

2∑
r=1

(
α

∂LR

∂uk(xrt)
+

(1− α)
∂LD

∂uk(xrt)

)
[hk−1(xrt)]

T , (9a)
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b
(i)
k ← b

(i)
k − ε

TB

TB∑
t=1

2∑
r=1

(
α

∂LR

∂uk(xrt)
+(1− α)

∂LD

∂uk(xrt)

)
.

(9b)
In Eqs. (8) and (9), ε is a learning rate. Here we empha-
size that using sum of gradients with respect to param-
eters of two subnets in update rules guarantees that two
subsets are always kept identical during learning.

3 EXPERIMENTS

In this section, we present several experiments designed
to investigate critical issues and properties in learning
speaker-specific characteristics. We first describe our ex-
perimental methodology and then present two experi-
ments to examine roles of architecture depth and training
data in our DNA learning. Finally, we visualize vowel
distributions to illustrate the SSI extracted by our DNA
learning.

3.1 Experimental Methodology
Now we describe the general setting for DNA learning
and then other enabling techniques for our experiments.

3.1.1 Experimental Settings for DNA Learning
For learning speaker-specific characteristics, we employ
the English corpus, TIMIT, and all of its variants to train
our DNA. TIMIT is one the the most important bench-
mark corpora for both speaker and speech recognition as
it has a large speaker population and utterances of rich
LI contains all phonemes of American English [38]. As
summarized in TABLE 1, TIMIT and its three variants
collected in LDC [38], CTIMIT, HTIMIT and NTIMIT,
cover most of possible variabilities or mismatches ap-
pearing in SR. To simulate more channel effects, we
distort all the utterances in TIMIT by the additive white
noise channel with SNR of 10dB and the Rayleigh fading
channel with 5 Hz Doppler shift [39], respectively, which
generates a simulated noisy corpus of two data sets
dubbed SNTIMIT listed in TABLE 1. In our experiments
presented in this section, we use another LDC English
benchmark corpus, KING, and two non-English corpora,
CHN and RUS, for test and all of which were collected to
evaluate SR systems. As summarized in TABLE 1, KING
contains wide-band and narrow-band sets, WKING and
NKING, involving all possible variabilities, while CHN
[40] and RUS [41] are two corpora in Chinese and
Russian, respectively. Here, we emphasize that such a
setting allows us to use the cross-corpora and the cross-
language protocols, reflecting various mismatches, for
evaluating the generalization capability of our generic
representations.

In our experiments, we adopt the MFCCs, which en-
codes many favorable properties of auditory system [16],
to be a raw acoustic representation of speech. MFCCs
have been widely used in various speech information
processing tasks and lead to state-of-the-art performance
in both speaker and speech recognition [1], [2], [16]. The

TABLE 1
Information on corpora used in our experiments.

Corpus # Speaker Bandwidth Variability

TIMIT 630 0-8 kHz speaker
CTIMIT 462 0.3-3.3 kHz cellular, speaker
HTIMIT 384 0-4 kHz handset, speaker
NTIMIT 630 0.3-3.3 kHz channel, speaker
SNTIMIT 630 0.3-3.3 kHz cellular, channel, speaker
NKING 51 0.3-3.3 kHz ageing, channel, handset, speaker
WKING 51 0-4 kHz ageing, environment, speaker
RT03 N/A 0-4 kHz speaker
SRE03 356 0.3-3.3 kHz cellular, speaker
CHN 59 0-8 kHz ageing, language, speaker
RUS 50 0-4 kHz language, speaker

same procedure as used in [4]-[6] is applied to all corpora
to extract MFCCs as follows: (i) removing silent parts
in speech signals with an energy-based method, (ii) pre-
emphasis with the filter H(z)=1−0.95z−1, (iii) Hamming
windowing speech by a frame size of 20 ms with a frame
shift of 10 ms, (iv) applying 24 Mel-scale triangular filters
to calculate magnitude spectrum, and (v) extracting 20-
order MFCCs by excluding the coefficient of order zero.

For the DNA learning, we divide speakers in a corpus
into two groups with a consideration of gender balance
and their utterances are used for training and validation.
For training, we randomly choose 600 speakers from
TIMIT, NTIMT and SNTIMIT, 430 and 350 speakers from
CTIMIT and HTIMIT, respectively. The remaining speak-
ers in all five corpora are reserved for validation. For an
utterance in the training set, we randomly partition it
into speech segments of a length TB (1 sec≤TB ≤2 sec)
and then exhaustively combine them to form training
examples as described in Sect. 2.2. By cross validation,
we conduct model selection from a large number of
candidate DNAs with 2K+1 (1≤K≤5) layers (c.f. Fig.
1) and 50-1000 neurons in a hidden layer. Parameters
used in our learning are as follows: Gaussian noise of
N(0, 0.1σ) used in the denoising autoencoder [37], α=0.2,
λm=100 and λS=2.5 in the loss function defined in Eq.
(2) and (3), and learning rates ε=0.01 and 0.001 for pre-
training and discriminative learning. To avoid overfit-
ting, the number of epochs for discriminative learning is
determined by an early stopping criterion.

3.1.2 Speaker Modeling, Distance and Comparison
For any SR tasks, speaker modeling (SM) is inevitable. In
our experiments, we use the 1st- and 2nd-order statistics
of a speech segment of |X| frames, X={xt}|X|

t=1 where xt

is a feature vector of frame t, SM = {µ,Σ}, for SM. Fur-
thermore, all utterances belonging to an individual are
assumed to follow the normal distribution, N(xt|µ,Σ),
which is well-known as the mono-Gaussian speaker model,
a simple yet popular SM method for more than two
decades [1], [42].

To measure similarity between two speaker models
(SMs) in our experiments, we employ the symmetric
negative log-likelihood [42] and a variant of the KL
divergence [1], [34] for mono-Gaussian SM. Suppose that
SM1 and SM2 are established with two speech seg-
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Fig. 2. SC performance (DET curves) of representations generated by our DNA of 2K−1 hidden layers (K=1, · · · ,5) vs. MFCCs
on different test corpora. (a) WKING. (b) NKING. (c) CHN. (d) RUS.

ments, X1 = {xt,1}|X1|
t=1 and X2 = {xt,2}|X2|

t=1 , respectively.
The distance metric based on the symmetric negative
likelihood [42] is defined as

d(SM1,SM2) =
|X1|L̄(X1, X2) + |X2|L̄(X2, X1)

|X1|+ |X2| , (10)

where L̄(Y, Z) = − 1
|Z|

∑|Z|
t=1 logN(zt|µY ,ΣY ) and µY

and ΣY are mean vector and covariance matrix estimated
on a speech segment Y . Although this distance metric
works for mono-Gaussian SMs in general, we observe
that it does not perform well for SMs established based
on very short speech segments irrespective of represen-
tations. To tackle this problem in our previous work [34],
we defined an alternative distance metric as

d(SM1,SM2)=tr[(Σ−1
1 +Σ−1

2 )(µ1−µ2)(µ1−µ2)
T ], (11)

where µi and Σi (i = 1, 2) are mean vector and co-
variance matrix of two SMs built up based on speech
segments, X1 and X2. The distance metric in (11) was
derived from the KL divergence of two normal dis-
tributions [1] by dropping the term concerning only
covariance matrices that often appears unstable for very
short segments [34].

Speaker comparison (SC) is an essential process involved
in any SR tasks by comparing two speaker models
to collect evidence for DM, which provides a direct
way to evaluate representations/speaker modeling [1],
[2]. In our experiments presented in this section, we
evaluate the SC performance on different representations
on the same condition: given a representation, a mono-
Gaussian SM is always built up with a speech segment
of a fixed length and the similarity between two SMs is
measured by the distance metric in (10). As result, we
first divide all the utterances in a test corpus into speech
segments of 5 sec to build up SMs as a short utterance
poses a greater challenge to SR [1], [2], [5]. Then we
exhaustively combine any two SMs to generate SM
pairs. If both SMs in a pair belong to the same speaker,
they form a genuine pair, and imposter pair otherwise. For
performance evaluation, we use the detection error tradeoff
(DET) measure [43] to show all possible errors made in
DM during SC to determine whether two SMs are the
genuine pair or not, where the area of operating region
enclosed by a DET curve and two error axes is generally
regarded as the best performance index for SR tasks.

3.2 Validating the Role of Architecture Depth

Model selection is essential for a machine learning sys-
tem. Due to the limited space here, more results in model
selection can be found from [44] and relevant issues
will be discussed later on. In this section, we focus on
experiments regarding the role of architecture depth in
learning speaker-specific representations.

As described in Sect. 3.1.1, model selection in our
DNA learning involves many candidate models of a
different number of hidden layers where a hidden layer
may have a various number of hidden neurons. In our
experiment, we use the same training data and learning
algorithms described in 3.1.1 to train DNAs of 2K−1
hidden layers (c.f. Fig. 1) for K=1, · · · ,5. For DNAs of
the same number of hidden layers, we only use the DNA
of the best performance achieved by cross-validation to
generate a new representation; i.e., for the MFCC feature
vector of a frame input to a subnet of this DNA, the
output of neurons in CS at the code layer or layer K
forms its new representation. SC evaluation described in
Sect. 3.1.2 is carried out with such five representations
corresponding to K = 1, · · · ,5 respectively as well as
MFCCs itself as a baseline, and all speakers and their
utterances in four test corpora described in 3.1.1 are used
respectively for SC evaluation.

It is observed from Fig. 2 that in general SC per-
formance is improved monotonically as the number of
hidden layers increases up to K = 4 but appears to
be degraded for K = 5, comparing to K = 4, for all
four test corpora. In comparison to the MFCC baseline
performance, it is evident from Fig. 2(b) and 2(d) that
our DNA works better on corpora of noisy speech,
NKING and RUS, given the fact that representations
by our DNA always outperforms MFCCs regardless of
the number of hidden layers. However, representations
by our DNA does not performs better on WKING and
CHN of clean speech until it has at least three hidden
layers, as illustrated in Fig. 2(a) and 2(c), which is
consistent with a well known fact that being used as
a speaker-specific representation MFCCs appears ade-
quate for clean speech but sensitive to noise without
channel compensation [2], [19]. For the cross-corpora
and/or the cross-language evaluation as depicted in Fig.
2, it is seen that the optimal performance is obtained by
our DNA of a sufficient architecture depth of K=4 for
all four corpora. In particular, an error-free performance
is achieved by our DNA of seven hidden layers on RUS
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Fig. 3. SC performance (DET curves) of representations generated by our DNA trained on different data sets vs. MFCCs on
WKING and NKING. (a) WKING (within-divide). (b) NKING (within-divide). (c) WKING (cross-divide). (d) NKING (cross-divide).

as evident in Fig. 2(d).
In summary, our experiments validate the importance

of sufficient architecture depth in our DNA for good
generalization in SSI extraction.

3.3 Validating the Role of Training Data

As a data-driven method, it is well known that training
data critically determine the performance of a machine
learning system. In this section, we present experiments
to validate the role of training data in learning speaker-
specific representations. Due to the limited space here,
more results on investigating the importance of training
data can be found from [44] and relevant issues will be
discussed later on.

According to variabilities conveyed in data, we con-
struct three training data sets based on all five training
corpora described in 3.1.1 as follows: 1) TIMIT (speaker
variability), 2) TIMIT, NTIMIT and SNTIMIT (speaker,
land-line and cellular phone channel variabilities), and 3)
all five training corpora (speaker, land-line and cellular
phone channel, and handset variabilities). Based on our
model selection results reported previously, we train
DNAs of seven hidden layers (i.e., K=4) on three data
sets, respectively. Hereinafter, we dub DNAs trained on
the aforementioned three data sets DNA-1, DNA-2 and
DNA-3. Representations generated by three DNAs are
used to build up SMs against MFCCs in SC evaluation.

For test, we employ the LDC benchmark corpus KING
as it covers nearly all possible variabilities faced by SR.
The KING corpus consists of wide-band and narrow-
band sets, WKING and NKING, and utterances of all
speakers were recorded in 10 sessions in various envi-
ronments [38]. Furthermore, there was a “great divide”
between sessions 1-5 and 6-10; both recording device and
environments changed, which alters spectral features
of 26 speakers and leads to 10dB SNR reduction on
average. Therefore, the KING provides an ideal test
bed to evaluate the generalization capability. By using
the same protocol introduced in [4], we conduct two
experiments on WKING and NKING, respectively; i.e.,
within-divide where SMs built on utterances in session 1
are compared to SMs on those in sessions 2-5 and cross-
divide where SMs built on utterances in session 1 are
compared with those in sessions 6-10.

In both with-divide and cross-divide experiments, it
is observed from Fig. 3 that the use of training data

conveying more variabilities always leads to better per-
formance. In the within-divide setting, MFCCs outper-
forms representations by DNAs trained on data sets of
fewer variabilities although the representation by DNA-
3 always yields the best performance, as illustrated in
Fig. 3(a) and 3(b). In contrast, representations by DNAs
perform is generally superior to MFCCs in the cross-
divide setting, as evident in Fig. 3(c) and 3(d). Once
again, our results are consistent with the well known
fact that MFCCs are sensitive to noise and environmental
changes in encoding speaker-specific characteristics [2],
[19]. Our experimental results validate the importance
of training data; the training data must convey sufficient
variabilities for good generalization in learning speaker-
specific characteristics.

As illustrated in Fig. 3, DNA-3 trained on all five cor-
pora as described in 3.1.1 yields the best representation
that even outperforms those generated by a number of
different deep architectures trained a subset of WKING
or NKING in the same within-divide and cross-divide
settings [34], [44], [45]. DNA-3 has a structure of 100, 100,
100 and 200 neurons in hidden layers 1-4 and |CS|=100 in
the code layer or hidden layer 4. In all the experiments
reported in the rest of this paper, we shall use such a
100-dimensional feature vector by DNA-3 as a generic
speaker-specific representation in comparison to several
state-of-the-art SR techniques.

3.4 Vowel Distribution Visualization

Vowels have been recognized to be a main carrier of SSI
[1], [2], [10], [11], [13], [15], [16]. TIMIT [38] provides
phonetic transcription of all 10 utterances containing all
20 vowels in American English for every speaker. As
all the vowels may appear in 10 different utterances,
there are up to 200 vowel segments in length of 0.1-
0.5 sec for every speaker, which enables us to investi-
gate vowel distributions in a representation space for
different speakers. As we model a speaker with the
1st- and the 2nd-order statistics on a speech segment,
we treat both the mean vector and the covariance ma-
trix (converted into one-dimensional vector) of a vowel
speech segment as two feature vectors in terms of a
specific representation. Hence, we visualize the mean
and the covariance feature vectors of all different vowel
segments for a speaker with the t-SNE method [46], a
state-of-the-art non-linear visualization technique likely
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(a) (b)

/ae/, /ah/, /ao/, /ix/

/aa/, /iy/, /aw/, /ay/

(c) (d)

/iy/, /ih/, /eh/, /ix/

/ae/, /aa/, /aw/, ay/

(e) (f)

Fig. 4. Visualization of all 20 vowels in American English
spoken by five speakers in terms of (a)-(b) CS representation,
(c)-(d) CS representation, and (e)-(f) MFCCs.

to reveal intrinsic manifolds, by projecting them onto a
two-dimensional plane.

In the code layer of our DNA (c.f. Fig. 1), output
of neurons 1-100 forms a speaker-specific representa-
tion, CS, and that of remaining 100 neurons becomes a
non-speaker related representation, CS . Thus, a vowel
segment is characterized by a 100-dimensional mean
and 10,000-dimensional covariance feature vectors for
both CS and CS, respectively. For comparison, the vowel
segment is also represented by 20-dimensional mean and
400-dimensional covariance MFCC feature vectors. For a
noticeable effect, we randomly choose only five speakers
(four females and one male) from the TIMIT validation
set as described in Sect. 3.1.1 and visualize their vowel
distributions in Fig. 4 in terms of CS, CS and MFCC
representations, respectively, where a marker/color cor-
responds to a speaker. It is evident from Fig. 4(a) that,
by using the CS mean vectors, most vowels spoken by
a speaker are tightly grouped together while vowels
spoken by different speakers are well separated. For the
CS mean vectors, closer inspection on Fig. 4(c) reveals
that the same vowels spoken by different speakers are,
to a great extent, co-located. Moreover, most of pho-
netically correlated vowels, as circled and labeled, are
closely located in dense regions independent of speakers
and genders. For comparison, we also visualize their
MFCC mean vectors in Fig. 4(e) and observe that most
of phonetically correlated vowels are also co-located,

as circled and labeled, whilst others scatter across the
plane and their positions are determined mainly by
vowels but affected by speakers. In particular, most of
vowels spoken by the male speaker, marked by ¤ and
colored by green, are grouped tightly but isolated from
those by all female speakers. In contrast, visualization
of covariance feature vectors reveals less meaningful
distributions due to a significant information loss in-
curred by dimension reduction. Nevertheless, it is still
seen from Fig. 4(b) that those vowels spoken by the
same speaker are distributed in some “manifolds” in
terms of CS covariance feature vectors, although their
separability is unclear. In Fig. 4(d), with CS covariance
feature vectors, vowels spoken by an individual seem to
distribute evenly in the two-dimensional plane but there
is no clear phoneme grouping. By MFCC covariance
feature vectors, the distribution of vowels is depicted in
Fig. 4(f) and we observe neither speaker nor phoneme
groupings from this visualization.

In summary, the visualization in Fig. 4 demonstrates
how our DNA learning extracts SSI and could also
lend an evidence to justification on why MFCCs can
be used in both SR and speech recognition [16]. It is
also worth stating that visualization in Fig. 4, to a great
extent, justifies why the original KL divergence used
as a distance metric [1] does not work well for mono-
Gaussian SMs built on very short utterances but our
modified KL distance metric in (11) often performs better
in this situation [34], [44], [45].

4 COMPARATIVE STUDIES

In this section, we further evaluate our proposed ap-
proach by comparing it to several state-of-the-art tech-
niques in terms of two typical yet real SR tasks, speaker
verification, a supervised learning problem, and speaker
segmentation, an unsupervised learning problem. In our
experiments, once again, we use cross-corpora and/or
cross-language protocols to assess generalization perfor-
mance and mainly focus on the situation that a short
utterance is available for SM as such a situation poses a
greater challenge to SR [1], [2], [5],

4.1 Speaker Verification
Speaker verification (SV) is a process that accepts or rejects
the identity claim of a speaker based on his/her voice
and probably the commonest SR application scenario.
Typically, a SV system works in supervised learning
paradigm[3]; for an individual, his/her utterances as a
reference are collected to build up his/her SM during
learning and then the SM is used to test an utterance
claimed to be spoken by the speaker. In our experiment,
we compare ours described in Sect. 3.1.2 with two
state-of-the-art techniques, adapted GMM from a universal
background model (GMM-UBM) [6] and convolutional deep
belief network (CDBN) [32], based on the Switchboard
Cellular Part 2, a benchmark corpus that consists of
149 male and 207 female speakers and was used in the
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Fig. 5. SV performance (DET curves) of different methods on SRE03 with test utterances/segments of various lengths. (a) 1 sec.
(b) 3 sec. (c) 5 sec. (d) 7 sec.

NIST Speaker Recognition Evaluation 2003 (SRE03) [38]
as listed in TABLE 1. To better understand experimental
results, MFCCs with the same SM and SC techniques
used for our representation, as described in Sect. 3.1.2,
are also employed as an essential baseline in this SV
experiment.

The GMM-UBM trained on the MFCC representation
has been generally recognized as one of the best SR
techniques and yields state-of-the-art performance in
different SR tasks [2], [6], [47]. The principle behind
the GMM-UBM [6] is as follows: a UBM, a GMM of
many Gaussian components, is created in advance based
on a data set conveying different variabilities, e.g., a
large speaker population and utterances collected from
different channels, and then a GMM-based SM of an
individual is built up with his/her short reference utter-
ance(s) by adapting it from the UBM . It is well known
that training data used for creating a UBM critically
determines the performance of an adapted GMM [2],
[6], [47], which is the same problem encountered in our
DNA learning. In order to set baseline and evaluate
generalization performance, we train two UBMs in terms
of close-set and open-set settings. In the close-set setting,
we assume that a speaker population is known and fixed
and an SV system is developed only for this population.
As a result, we use all 356 speakers’ utterances with
a duration of 90 sec per speaker in SRE03 to train a
UBM. In the open-set setting, we assume that there is
no a prior knowledge on speakers to be involved in SV
and hence employ the exactly same training data used
for our DNA-3 learning, as described in Sect. 3.1.1 and
Sect. 3.3, to train a UBM. The standard EM algorithm is
used to train two UBMs of 2048 Gaussian components on
20-order MFCCs. Then, individual speaker models are
adapted using the MAP with the relevance factor equal
to 16 from two UBMs, respectively, where only mean
adaptation is used as suggested in [6]. Hereinafter, we
name GMMs adapted from the close-set and the open-
set UBMs GMM-UBM-1 and GMM-UBM-2, respectively.
Instead of evaluating the standard log-likelihood score
with an adapted GMM SM, the fast scoring procedure
suggested in [6] is applied to produce a score for any
test utterance/segment during recognition.

The CDBN was recently proposed to learn a generic
speech representation and yields satisfactory perfor-
mance in several audio classification tasks [32]. For a
thorough evaluation, we also employ representations

generated by the CDBN in our SV experiment. For a fair
comparison, we strictly follow their experimental set-
tings used in [32]; i.e., the same preprocessing procedure,
the same CDBN structural parameters including the ker-
nel size of feature maps and the neighborhood size for
probabilistic maximal-pooling, and the sparsity penalty.
While all other parameters are kept the same as used in
[32], we also exhaustively search three tunable parameter
values in a broad range for the best performance with
the cross-validation method. In our experiment, we train
the CDBN with the same training data used in our DNA-
3 learning, as described in Sect. 3.1.1 and Sect. 3.3, and
employ the exactly same SM and SC techniques used
in our representation, as described in Sect. 3.1.2, for SV.
As their CDBN structure has two hidden layers, output
from either of hidden layers and their combination by
concatenating output of two hidden layers form different
representations [32]. In our SV experiment, we have
investigated all three representations by the CDBN. In
the sequel, we always use the best performance achieved
by the CDBN to compare with others.

As there are only utterances of 2 min for each speaker
in SRE03 and utterances of 90 sec per speaker have al-
ready been used to train the close-set UBM, we randomly
divide the remaining utterances of 30 sec per speaker
into two data sets: reference and test sets. The reference
set contains utterances of 10 sec per speaker used to
build up SMs with different methods as described above
for each individual speaker, and utterances of 20 sec
per speaker in the test set are partitioned into short
speech segments of different lengths ranging from 1 sec
to 7 sec used as test speech. For every SM, we follow
the same test protocol used in [4], [5] to conduct 100
true speaker and 1775 imposter trials including all other
speakers in this SV experiment. The same SV experiment
was repeated with 3-fold cross-validation for reliability
and average results are reported here. As our evaluation
focuses on the effectiveness of a representation and the
capacity of SM, again, we use the DET curve to show all
possible errors in SV to avoid thresholding or DM issues
encountered in a practical SV system [3].

It is evident from Fig. 5 that the our method generally
outperforms all the others regardless of test lengths. For
the GMM-UBM method, it is seen from Fig. 5. that its
performance is critically determined by training data
used for building up a UBM given the fact that the
performance of GMM-UBM-1 is generally superior to
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Fig. 6. SS performance (ROC curves) of different methods on four test data sets. (a) TIMIT. (b) NTIMIT. (c) CHN. (d) RT03.

that of others except ours and the baseline performance
by mono-Gaussian SMs on MFCCs for test length of 1
sec, as depicted in Fig. 5(a), but GMM-UBM-2 even un-
derperforms the baseline performance for all test lengths,
which confirms its well-known limitation of the GMM-
UBM method [47]. From Fig. 5, it is observed that the
CDBN always performs worse than all others including
the essential baseline performance produced by mono-
Gaussian SMs on MFCCs. Our experimental results
here indicate that the CDBN trained in an unsupervised
learning style does not capture SSI well while it yields
generic yet new speech representations that lead to
satisfactory performance for various audio classification
tasks [32]. In contrast, our DNA trained in a supervised
learning style yields a generic speaker-specific represen-
tation that leads to better generalization in SSI extraction
and favorable SV performance accordingly when short
utterances are only available for SM and recognition.
Relevant issues will be discussed later on.

4.2 Speaker Segmentation
Speaker segmentation (SS) is a task of detecting speaker
change points in an audio stream and splitting it into
acoustically homogeneous segments where every seg-
ment contains one speaker only [48]. As there is no a
prior knowledge on an audio stream in general, e.g.,
speaker information and the number of speakers and
change points, SS is a typical unsupervised learning task
and an essential step for generic speaker diarization [49].

In our experiment, we compare ours described in Sect.
3.1.2, hereinafter dubbed dist-DNA, to both benchmark
and state-of-the-art SS techniques including distance-
based (dist-MFCCs) [48], Bayesian information criterion
(BIC) [50], distance-based BIC (DISTBIC) [51] and divide-
and-conquer BIC (DACBIC) [52] SS techniques where 20-
order MFCC representation is used in all SS methods to
be compared. In general, a distance-based method slides
a window of the fixed size onto an audio stream to block
it into short segments and two consecutive segments
are always compared to determine if there is a possible
speaker change point between the two segments. While
BIC is applied to those BIC-based SS techniques for SC,
the modified KL divergence in Eq. (11) as a distance
metric is applied to all the distance-based methods for
SC since very short segments are used for SM in SS.

To simulate conversations of short lengths in an audio
stream, we adopted the same protocol used in [48], [51]
to generate audio streams from three corpora of natural

short utterances, TIMIT, NTIMIT and CHN, as listed in
TABLE 1. With TIMIT and NTIMIT [38], we generate 50
audio streams totally and 25 for each. Each audio stream
has a duration of about 40 sec and consists of 10 speaker
segments of variable lengths ranging from 1.6 and 7.0
sec where a segment corresponds to a natural short
utterance. Totally, utterances of 250 speakers, including
all the speakers in the validation sets, from TIMIT and
NTIMIT were used, respectively. Similarly, we created
10 audio streams with 50 speakers’ utterances from the
CHN corpus [40]. By concatenating utterances recorded
in the same session, each audio stream of 45 sec on
average consists of 10 speaker segments of variable
lengths ranging from 3.0 to 5.0 sec . Furthermore, we
also employed the data set of ABC broadcast news
excerpts within a benchmark corpus used in NIST Rich
Transcription Evaluation 2003 (RT03) to evaluate the SS
performance. The total duration of news recording is
30 minutes in this data set where there are 70 speaker
change points and the duration of a speaker segment
is typically longer than 10 sec. The use of CHN and
RT03 allows us to evaluate the generalization capability
of our speaker-specific representation again with cross-
language and/or cross-corpora settings.

In our experiment, we use a fixed-duration sliding
window of 1.5 sec for SM in a distance-based method
and allow a tolerance interval of 0.5 sec to validate
a speaker change point. All other parameters are kept
same for all methods. In an SS system, two types of
errors are measured by the false alarm rate (FAR) and
the miss detection rate (MDR) [48], which reflects recall
and precision performance, respectively. As suggested in
[52], we use a receiver operating characteristic (ROC) curve
(FAR vs. MDR), which indicates typical errors made by
different threshold settings to determine speaker change
points, for performance evaluation.

It is evident from Fig. 6 that in general our dist-DNA
outperforms all other methods on all four data sets.
As a state-of-the-art SS method, the DACBIC [52] also
achieves adequate results on all data set in general. As
shown in Fig. 6(a), the DACBIC results in a comparable
performance to ours overall but performs worse on the
TIMIT data set in terms of the equal error rate when
FAR equals MDR, a common performance index used
in SR. Both the DACBIC and our dist-DNA generally
outperform the baseline performance produced by dist-
MFCCs on all data sets. In contrast, the original BIC
[50], a benchmark SS technique, yields the comparable
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performance to the baseline performance by dist-MFCCs
on CHN and RT03 data sets, as shown in Fig. 6(c) and
6(d), but fails to do the same on TIMIT and NTIMIT data
sets, as illustrated in Fig. 6(a) and 6(b). The DISTBIC [51],
another benchmark SS technique, significantly underper-
forms other four methods including the baseline.

In summary, comparative studies suggest that our ap-
proach yields the robust performance on different types
of data sets including short and long speaker segments
and different variabilities. In particular, our approach
using a simple speaker distance yields better perfor-
mance than the state-of-the-art DACBIC of advanced
divide-and-conquer mechanisms incorporated into BIC
on MFCCs, which, once again, demonstrates strength
and potential of a representation encoding SSI in SR.

5 DISCUSSIONS
In this section, we discuss relevant issues and relate
ours to previous work in terms of deep learning and
SSI extraction.

Apart from experiments reported in this paper, we
have done extensive experiments regarding our DNA
learning in terms of SSI extraction [44]. Due to the
limited space, we briefly summarize main outcomes
below and details can be found from [44]. For validating
the hybrid learning strategy [28], [29], we conducted
experiments by a random initialization of DNA parame-
ters without the pre-training described in Sect. 2.3.1. We
found that the performance of the DNA is quite unstable
without the pre-training and resultant representations
lead to poorer SC performance than those yielded by
the DNA trained with the hybrid strategy in our cross-
validation experiments on a number of speech corpora.
Besides results report in Sect. 3.2, other model selection
experiments suggest that our DNA seems insensitive to
structural parameters, e.g., DNAs of seven hidden layers
but more hidden neurons in the code layer yields similar
performance to that of the DNA-3 as described in Sect.
3.3. For validating training data of variabilities, we found
that our DNA generates more robust representations
when it is trained on a data set of more variabilities, e.g.,
using an additional corpus of emotional speech to train
our DNA yields a more robust representation against
emotional variabilities during test. It is also worth stat-
ing that the availability of computational resources and
training data still limited our work reported in this
paper. As model selection is computationally expensive,
the number of candidate models had to be limited in
our experiments. Due to a lack of data, the training set
used in our work has yet to cover the ageing variability,
a main mismatch in SR, although our method yields
satisfactory results on test data of ageing variability as
demonstrated in Sect. 3.3. Nevertheless, we notice that
a heuristic algorithm for automatic model selection [53]
was proposed very recently to facilitate deep learning. In
our ongoing work, we shall be investigating such algo-
rithms towards finding out the optimal DNA structure
for a given training data set.

As described in Sect. 1, speech carries different yet
mixed information but SSI is minor in comparison to
predominant LI. Our empirical studies suggest that our
success in SSI extraction is attributed to both unsuper-
vised pre-training and supervised discriminative learn-
ing with a multi-objective loss. In particular, the use
of data regularization in discriminative learning and
distorted data in two learning phases plays a critical role
in capturing intrinsic speaker-specific characteristics and
variations caused by miscellaneous mismatches. Without
discriminative learning, a DA trained with unsupervised
learning only, e.g., the CDBN [32], tends to yield a new
representation that redistributes different information
in its encoding scheme but neither highlights minor
SSI nor suppresses predominant LI given the fact that
representations by the CDBN yield inadequate perfor-
mance in SV, as demonstrated in Sect. 4.1, but works
well for various audio classification tasks [32]. If we
remove the data regularization term, LR(Xi; Θ) defined
in Eq.(3a), from the loss function in Eq. (3), our DNA
is boiled down to a standard Siamese architecture [35].
Our results not reported here show that such an archi-
tecture yields a representation that often overfits to a
training data set due to interference of predominant non-
speaker related information [44], which does not seem
to be a problem in predominant information extraction,
e.g., facial identity information in a facial image. The
previous work in face recognition [30] lends a clear
evidence to support our argument where a Siamese
DA without data regularization successfully captures
predominant identity characteristics from facial images
as, we believe, facial expression and other non-identity
information conveyed in a facial image are minor in this
situation. On the other hand, the use of distorted speech
generated by adding channel noise to clean speech as
additional training data further contributes to the suc-
cess in SSI extraction. While the use of distorted data
in the pre-training is in the same spirit of self-taught
learning [54], we emphasize that the same distorted data
are also used in discriminative learning to train our
DNA. Our experiments not reported here reveal that
the DNA trained on distorted data in both pre-training
and discriminative learning considerately outperforms
its counterpart where distorted data is merely used in
its pre-training in terms of several different SR settings
[44]. Hence, our work suggests that the idea of self-
taught learning in an unsupervised learning setting [54]
can be extended to supervised discriminative learning
to facilitate robust feature learning in SSI extraction. In
addition, it is worth stating that with the same settings,
our DNA trained with the loss function defined in Eq. (3)
are also distinctly superior to its counterpart trained with
a loss function defined at the frame level in our previous
work [34], which demonstrates the effectiveness of our
loss function proposed in this paper.

In terms of architecture, our DNA resembles the one
proposed in [55] for dimensionality reduction of hand-
written digit images via learning a nonlinear embed-
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ding. However, ours distinguishes itself from theirs in
building blocks, loss functions and, more importantly,
motivations. The DA proposed in [55] uses the restricted
Boltzmann machines [28] as a building block to con-
struct a deep belief subnet in their Siamese DA and
the neighborhood component analysis (NCA) criterion [56]
as their contrastive loss function to minimize the intra-
class variability. However, the NCA does not meet our
requirements as there are so many training examples
in one class in our problem. Instead we propose a
contrastive loss to minimize both intra- and inter-class
variabilities simultaneously. On the other hand, intrinsic
topological structures of a handwritten digit convey pre-
dominant information given the fact that without using
the NCA loss a deep autoencoder has already yielded
a satisfactory representation [27], [28], [31], [55]. Thus,
the use of the NCA in [55] simply reinforces the topo-
logical invariance by minimizing other variabilities with
a small amount of labeled data in the semi-supervised
learning paradigm [55]. In our work, however, SSI is
non-predominant in speech and hence a large amount
of labeled data reflecting miscellaneous variabilities are
demanded during supervised discriminative learning
along with the unsupervised pre-training. Finally, our
code layer yields an overcomplete representation to fa-
cilitate non-predominant information extraction. In con-
trast, a parsimonious representation seems more suitable
for extracting predominant information since dimension-
ality reduction is likely to discover “principal” compo-
nents that often associate with predominant information,
as are evident in [30], [55].

In previous SR studies, some efforts [25], [26] were
made for SSI extraction based on an assumption that
the predominant LI or an speaker-independent speech
representation is available or easy to extract. Then, the
basic idea behind those methods is establishing a map-
ping from a general speech representation of mixed
information to a speaker-specific representation for an
individual speaker by highlighting SSI and suppressing
LI simultaneously via discriminative learning. In order
to achieve LI, they either simply assume that the low
frequency sub-band in a spectral representation encodes
only LI [26] or have to extract LI via learning to minimize
the difference of each phoneme spoken by different
speakers [25]. In contrast, our approach neither makes
any assumption on the availability of LI nor explicitly
use LI in SSI extraction. Although discriminative learn-
ing is used in both theirs and ours, our approach is
towards extracting generic yet intrinsic SSI, a generic
speaker-specific representation for any speakers, whilst
the aforementioned methods [25], [26] merely establish
a speaker-specific mapping for an individual. Therefore,
our approach clearly distinguishes itself from the afore-
mentioned methods in hypotheses and ultimate goals in
terms of SSI extraction.

By means of functional magnetic resonance imaging
techniques, recent neuroscience studies reveal that de-
pending on a specific perceptual task, acoustic/speech

information is processed in a hierarchical and selective
way in human auditory cortex [57]. In particular, it has
been discovered that processing of SSI is located in the
right hemisphere while speech message processing takes
place predominantly in the left hemisphere of brain
[57]-[59]. This finding suggests that human selectively
extracts SSI from speech by separating it from LI in an SR
task and hence accomplishes various text-independent
SR tasks effortlessly, which lends a strong evidence to
support our methodology of using a hierarchical DNA
with selective yet discriminative learning for SSI extrac-
tion. As demonstrated by the vowel distribution visu-
alization, our speaker-specific representation can isolate
SSI from LI, which are highly consistent with those
achieved from neuroscience studies in terms of func-
tionality. In a broader sense, our work presented in this
paper suggests that speech information component analysis
(SICA) becomes critical in various speech information
processing tasks; the use of proper SICA techniques
would result in task-specific speech representations to
improve their performance radically. Our work on SSI
extraction demonstrates that SICA is feasible via learning
and, in particular, deep learning may be a promising
methodology for SICA tasks.

6 CONCLUSIONS

In this paper, we have proposed an improved deep
neural architecture and its learning algorithms for SSI
extraction. Our empirical studies justify the importance
of architecture depth and training data and demonstrate
that SSI can be isolated from LI in general to facilitate
text-independent SR. The further evaluation in both SV
and SS tasks suggests that by incorporating a simple SM
technique, the generic speaker-specific representation by
our DNA leads to favorable performance in comparison
to several state-of-the-art techniques. As a result, our
approach paves an alternative way to improve SR perfor-
mance. In our ongoing work, we shall be investigating
alternative loss functions and structural learning algo-
rithms to facilitate our DNA learning towards intrinsic
SSI extraction as well as seeking suitable yet effective
SM techniques to improve performance in different SR
application scenarios.

APPENDIX

In this appendix, we derive the gradient of
LD(X1, X2; Θ), defined in Eq. (3b) in the main text, with
respect to potentials, uK(xit), of neurons in the code
layer to obtain Eq. (6) in the main text.

To simplify the presentation, we first elucidate our
notation system that is completely consistent to that used
in the main text. We collectively denote the output of
neurons in CS at the code layer or layer K of subnet i

(i=1,2) as CS(Xi) =
{((CS(xit)

)
j

)|CS|

j=1

}TB

t=1
for a speech

segment of TB frames, Xi = {xit}TB
t=1. Accordingly, we
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have µ(i) =
(
µ
(i)
j

)|CS|
j=1

and Σ(i) =
[
σ
(i)
ln

]
(l, n=1, · · · , |CS|)

where σ
(i)
ln = 1

TB−1

∑TB

t=1

[(CS(xit)
)
l
− µ

(i)
l

][(CS(xit)
)
n
−

µ
(i)
n

]T . In the following derivation, we also drop all
explicit parameters in LD(X1, X2; Θ) and rewrite it into
LD = Lm + LS where Lm = IDm + (1 − I)e−Dm

λm and
LS = IDS + (1− I)e−

DS
λS .

Using our notation described above, we immediately
achieve

∂LD

∂uK(xit)

=
∂Lm

∂uK(xit)
+

∂LS

∂uK(xit)

=
((

[I − λ−1
m (1− I)e−Dm

λm ]
∂Dm

∂uKj(xit)

)|CS|
j=1

, ~0
)
+

((
[I − λ−1

S (1− I)e−
DS
λS ]

∂DS

∂uKj(xit)

)|CS|
j=1

, ~0
)
. (A.1)

Here, ~0 is a zero vector of |hK | − |CS| elements
corresponding to the gradients of the loss function
LD(X1, X2; Θ) with respect to potentials of all the neu-
rons in CS (c.f. Fig. 1), i.e., ~0 = (0)

|hK |
j=|CS|+1. To facilitate

the presentation, we define ψj(xit) = ∂Dm

∂uKj(xit)
and

ξj(xit) = ∂DS

∂uKj(xit)
. Now we simply need to calculate

ψj(xit) and ξj(xit) for j=1, · · · , |CS| to obtain Eq. (6) in
the main text.

As Dm = ||µ(1)−µ(2)||22 =
∑|CS|

l=1 (µ
(1)
l −µ

(2)
l )2, we have

ψj(xit) =
∂Dm

∂
(CS(xit)

)
j

∂
(CS(xit)

)
j

∂uKj(xit)

=
∂
∑|CS|

l=1 (µ
(1)
l − µ

(2)
l )2

∂
(CS(xit)

)
j

∂
(CS(xit)

)
j

∂uKj(xit)

= p
(i)
j

(CS(xit)
)
j

[
1− (CS(xit)

)
j

]
, (A.2)

where

p
(i)
j =

∂
∑|CS|

l=1 (µ
(1)
l − µ

(2)
l )2

∂
(CS(xit)

)
j

=
2

TB
sign(1.5−i)(µ

(1)
j −µ

(2)
j ),

and
∂
(CS(xit)

)
j

∂uKj(xit)
=

(CS(xit)
)
j

[
1− (CS(xit)

)
j

]

given the fact that the transfer function used in the code
layer or layer K is the sigmoid function. Collectively, we
have p(i)= 2

TB
sign(1.5−i)(µ(1)−µ(2)). Here, the notation

sign(1.5 − i) is introduced to simplify our presentation
where i indicates subset i (i = 1, 2).

Similarly, DS = ||Σ(1) − Σ(2)||2F =
∑|CS|

l=1

∑|CS|
n=1(σ

(1)
ln −

σ
(2)
ln )2. Hence, we have

ξj(xit) =
∂DS

∂
(CS(xit)

)
j

∂
(CS(xit)

)
j

∂uKj(xit)

=
∂
∑|CS|

l=1

∑|CS|
n=1(σ

(1)
ln − σ

(2)
ln )2

∂
(CS(xit)

)
j

∂
(CS(xit)

)
j

∂uKj(xit)

= qj(xit)
(CS(xit)

)
j

[
1− (CS(xit)

)
j

]
, (A.3)

where

qj(xit)=
4

TB−1
sign(1.5−i)

|CS|∑
n=1

(σ
(1)
jn−σ(2)

jn )
[(CS(xit)

)
n
−µ(i)

n

]
,

and, collectively, we have q(xit)=
4

TB−1 sign(1.5−i)(Σ(1)−
Σ(2))[CS(xit)− µ(i)].

Inserting Eqs. (A.2) and (A.3) into Eq. (A.1), we obtain
Eq. (6) in the main text as

∂LD

∂uK(xit)
=

((
[I − λ−1

m (1− I)e−Dm
λm ]ψj(xit)

)|CS|
j=1

, ~0
)
+

((
[I − λ−1

S (1− I)e−
DS
λS ]ξj(xit)

)|CS|
j=1

, ~0
)
.
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