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1. Background

In the real world, most of objects can be treated as one kind of patterns in general.
Although patterns are ubiquitous and of miscellaneous forms, they can be generally divided
into two categories: static and dynamic patterns. In nature, static patterns tend to unchange
dramatically upon generation whilst dynamic patterns always tend to change in a wide range.
For instance, printed characters can be regarded as a class of static patterns since upon
generation they are not altered considerably despite the slight deformation by the noise
corruption. In contrast, handwriting artifacts of a word may vary significantly. On the one
hand, different people have different writing styles, which results in different shapes for the
same word. On the other hand, one could write the same word in various forms at different
times. Thus, handwriting artifacts become a class of dynamic patterns. In terms of pattern
analysis, discovery and recognition, dynamic patterns lead to more challenging problems
than static patterns. In artificial intelligence, there are many challenging problems, ranging
from biometrics to bioinformatics, relevant to various dynamic patterns, and their solutions
rely on effective dynamic pattern analysis, discovery and recognition techniques [1].

As a prominent characteristic, the variability of dynamic patterns in the same class becomes
gradually larger, which leads to tremendous difficulties in discriminating between dynamic
patterns belonging to different classes. In addition, dynamic patterns often convey mixing
information, which is often hardly separable, so that the direct use of the mixing information
can result in the inadequate performance for a specific task due to the interference of
irrelevant information. For example, it is well known that a speech signal, a type of dynamic
patterns, generally contains three types of information; i.e., linguistic, speaker-specific, and
environmental information [2]. A speech recognition task demands only linguistic
information rather than speaker-specific and environmental information; an ideal system
should recognize speech regardless of speakers. Conversely, a speaker recognition task needs
speaker-specific information; an ideal speaker recognition system should carry out the voice-
based authentication regardless of linguistic information or whatever a speaker utters. As a
consequence, the direct use of all mixing information in either speech or speaker recognition
hinders either of two systems from producing higher performance.

The characteristics of dynamic patterns give rise to several challenging problems as follows:
how to generate a parsimonious yet robust representation of dynamic patterns that tolerates
their intra- and inter-class variability, how to highlight the relevant information and
simultaneously suppress affection of any irrelevant information, how to make use of intrinsic
contextual information for dynamic pattern analysis and discovery, and how to create an
appropriate learning model for dynamic pattern recognition to yield the consistently good
generalization without being affected by the constant change of dynamic patterns?

For dynamic pattern analysis, discovery and recognition, the author and his collaborators
have been systematically researching into this theme for over one decade. This article tends to
give a brief overview of our previous endeavors in tackling dynamic pattern related problems
and further presents our ongoing research topics.
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2. Overview of Our Research

For over one decade, we have been systematically researching into dynamic pattern
analysis, discovery and recognition. Our research can be summarized as three aspects; i.e.,
exploration/exploitation of effective representations, use of the divide-and-conquer principle and
exploitation of intrinsic contextual information. The techniques developed have been applied to
several real problems ranging from speaker recognition to computer vision.

2.1. On Representations of Dynamic Patterns

In pattern recognition, one of the most important topics is feature extraction that distills
silent features from raw data in order to facilitate the next-stage processing and overcome the
“curse of dimensionality” problem [1]. For dynamic patterns, feature extraction becomes
critical; a representation or a feature set extracted from raw data needs to capture intra- and
inter-class variability as well as highlight relevant features (suppress irrelevant features
reciprocally) for a specific task.

Typically, speech is a type of dynamic patterns. In our early study [3], we investigated a
perceptually-processing based speech representation for speaker recognition by introducing
characteristics of the human auditory system for bearing variability of speech and a new
transformation for highlighting the speaker-specific features. The proposed representation is
based on the perceptual linear predictive analysis and an adaptive component weighting idea.
A comparative study showed that our speech representation outperforms most of classical
ones in the robustness against noise and highlighting speaker-specific information [3].

Although the best representation is always anticipated, it is often unavailable due to the
nature of dynamic patterns. Instead, there are multiple representations extracted by different
feature extraction methods that characterize dynamic patterns from various perspectives.
Although each of different representations can be used individually, none of them is perfect
to represent dynamic patterns completely. Our research uncovers that for a set of dynamic
patterns, a single representation often characterizes only a subset of dynamic patterns very
well but fails to present others [4]. It suggests that the simultaneous use of different
representations provides an alternative way for better characterizing dynamic patterns.

For the simultaneous use of different representations, our initial endeavor simply
constructed a composite representation by lumping different representations together [5]-[7].
Although the use of such a composite representation has yielded relatively better
performance, it results in three problems as follows: 1) curse of dimensionality, 2) difficulty in
formation, and 3) redundancy. These problems not only hinder the use of a composite
representation from a significant improvement but also incur much higher computational
cost (for an example in speaker recognition, see [4]).

In order to tackle problems mentioned above, our next endeavor was combining multiple
classifiers trained on different representations [8], [9]. The basic idea is a two-stage learning
procedure; multiple classifiers are first trained independently on different individual
representations and then combined on the decision level to reach a final consensus. In our
previous studies [8], we systematically investigated the state-of-the-art combination schemes,
including the associative switch, the Bayesian fusion and the Dempster-Shafer fusion, on
homogeneous and heterogeneous classifiers trained on different representations. Furthermore,
we proposed a novel optimal linear scheme especially for combining multiple probabilistic
classifiers on different representations [9]. In general, the use of different representations in
this way yields the considerably better performance than either the use of an individual
representation or the use of a composite representation [8], [9]. Unfortunately, there is also a
weakness behind this methodology; i.e., different representations are used in an indirect way
and the two-stage learning procedure results in only a sub-optimal solution that could be



IEEE Systems, Man & Cybernetics Society E-Newsletter, Issue 12, September 2005

sensitive to intra- and inter-class variability of dynamic patterns. In addition, the use of
heterogeneous classifiers on different representations leads to a new problem, yet another
combination or correspondence problem; that is, how to select a proper one from a set of
candidate representations for a specific classier so that the heterogeneous classifiers used for
combination can always associate with their proper individual representations for the
maximal synergy [8]. To our knowledge, this problem is still open up to now in general.
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Fig. 1. Generalized Gaussian mixture model [4]: an implementation of the soft-competition scheme on
different representations of dynamic patterns.

In order to better characterize dynamic patterns, we proposed a soft-competition scheme
on different representations [4], [10], [11]. This scheme tends to overcome all the problems
appearing in two aforementioned methodologies on the simultaneous use of different
representations. The core idea behind this scheme is the use of a soft competition principle;
i.e., given a dynamic pattern, its available representations compete each other for the right of
representation and, unlike the winner-take-all principle, the soft-competition principle allows
all the representations to work together so that for the current represented pattern, a winning
representation would simply play a more important role. It is worth stating that the soft-
competition of different representations takes place for every dynamic pattern and therefore a
winning representation for the current pattern may be a loser for other patterns. In reality, it
is impossible to know which representation is a winner in advance for a given pattern.
Thanks to available training data, we cast the soft-competition problem as a learning task and
develop a unified finite mixture model for soft-competition on different representations in a
probabilistic sense; the unconditional probabilistic model for pattern modeling [4] and the
conditional probabilistic model for classification [10], [11]. Thus, the learning task becomes a
maximal likelihood problem for parameter estimation on training data. As illustrated in Fig. 1,
a generalized Gaussian mixture model is designed to implement the unconditional finite
mixture model. In this implementation, multiple Gaussian mixture models are employed to
model dynamic patterns based on their different representations, whereas weights of
different representations for a dynamic pattern are produced by a linear combination of the
proportion generators working on different representation of the current dynamic pattern.
This architecture forms an input-dependent model, which significantly distinguishes from
those systems of combining multiple classifiers/models on different representations in an
input-independent way. Another model was also designed for implementing the conditional
finite mixture model on different representations [10], [11]. Both speaker modeling and
recognition tasks demonstrate the usefulness of our soft-competition scheme [4], [10], [11].

In summary, our research mentioned above indicates that along with the exploration of a
single representation for dynamic patterns for a specific task, the simultaneous use of
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different representations, in particular, the optimal use of different representations like our
soft-competition scheme, provides a generic and novel way to characterize dynamic patterns
and often leads to the better performance.

2.2. On Use of the Divide-and-Conquer Principle

As a general principle, the divide-and-conquer strategy has been widely applied in various
scientific fields to tackle a difficult yet complicated problem. As a consequence, an original
problem is first divided into several smaller but simpler sub-problems that are subsequently
solved independently. Afterwards, solutions to sub-problems are seamlessly integrated to
form a complete solution. In our research, we have endeavored to apply the divide-and-
conquer principle to dynamic pattern recognition from different perspectives.

Our initial endeavor was applying the mixture of experts [12] and its variants [13], [14] in
speaker recognition. This model carries out the divide-and-conquer principle via its modular
neural network architecture in a probabilistic sense. To a great extent, our applications of the
mixture of experts [5] and its variants [15] manifest that such models is capable of dealing
with the intra- and inter-class variability [5], [15]. In order to improve the performance of
original model in dynamic pattern recognition, we have developed several variants,
including the introduction of time-delay [6], [7] and input-weighted schemes [16] to the
original model, and the development of alternative learning algorithms [17]. Our variants and
new learning algorithms yield the better performance in dynamic pattern recognition, as
exemplified by speaker identification [6], [7], [16], [17] and other benchmark tasks [17].

For use of the divide-and-conquer principle in recognition, a critical problem is how to
divide a problem into a number of appropriate sub-problems corresponding to available
learners, which can be view as model selection from another perspective; i.e. how to find the
right number of local learning models for a given problem. In this context, we have come up
with several novel approaches. First of all, we adopt the boosting methodology [18] to solve
the model selection problem by developing a novel boosting algorithm that allows
component learners to have different architectures [19]. As an application of our boosting
algorithm, simple input/output HMMs [14] of different topological structures are employed
to deal with different type of variability in a sequential way so that their ensemble can tackle
a recognition problem without the need of explicit model selection. Simulations have
demonstrated the effectiveness of our approach in sequence classification [19].

For supervised learning, we developed a novel self-generated learning model of automatic
model selection with a hybrid learning strategy [20], [21]. The basic idea is as follows: the
input space is partitioned hierarchically into several appropriate portions of overlapping in a
discriminant learning way so that the problem complexity on a specific portion roughly
matches the problem-solving capability of an available learning model, then the learning
model works on its own portion of the input space [20], [21]. For constructive learning, we
developed the growing and the credit-assignment algorithms for automatic model selection.
As a result, the resultant tree-structured learning model would automatically assign an
unknown dynamic pattern to a handful of adjacent local learning models responsible for the
overlapping portions containing this pattern. It turns out that the soft partitioning of the
input space enables our model to manage both intra- and inter-class variability very well, as
demonstrated by a range of dynamic pattern classification tasks [21]. In [22], one can find
how our learning model works and yields favorite results for a real world dynamic pattern
classification problem in detail.

For dealing with the intra-class variability of dynamic patterns, many researchers adopt a
model-based methodology where dynamic patterns in the same class are characterized by a
set of non-parametric prototypes or a probabilistic parametric model. In terms of dynamic
pattern recognition, however, such modeling has a weak discriminating capability since no
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inter-class variability can be explicitly taken into account for classification. In order to
overcome this weakness, we initially suggested a robust decision rule [23] that results in an
improvement in discrimination. However, the poor discriminating weakness is still not
overcome entirely. Our further endeavor was developing a hybrid learning model that
combines a learning model of the strong discriminating capability with those models of
characterizing dynamic patterns of the same class respectively [24]. As illustrated in Fig. 2, a
generative model, e.g., a Gaussian mixture model [24], is use to characterize the intra-class
variability of dynamic patterns belonging to the same class, whilst a supervised learning
model, e.g., a neural network [24], is employed to capture the inter-class variability. Such a
hybrid learning model can also be viewed as an innovative use of the divide-and-conquer
principle; generative models deal with sub-problems of characterizing dynamic patterns of
the same class while a learning model globally looks at all solutions of sub-problems by
making use of the inter-class information for discrimination. An application in speaker
identification manifests that our hybrid learning model effectively deals with intra- and inter-
class variability and therefore generates the significantly better performance [24].
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Fig. 2. A hybrid pattern recognition scheme to capture both intra- and inter-class variability as
exemplified to be applied in speaker recognition [24].
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In summary, our research suggests that the divide-and-conquer principle offers us a
powerful tool for dynamic pattern recognition and the innovative use of this principle has
resulted in the favorite performance.

2.3. On Exploitation of Intrinsic Contextual Information

For dynamic patterns, our research reveals that contrary to appearances, there is very
useful intrinsic contextual information that encodes their essential structures, mutual
constraints and regularities of variations of dynamic patterns. In our research, we have
endeavored to explore and exploit intrinsic contextual information underlying different kinds
of dynamic patterns in context of machine perception.

Most of biometric tokens fall into the category of dynamic patterns. For biometric
authentication, decision-making is one of the most important issues. For decision-making on
dynamic patterns, a decision rule or a threshold estimated from only training data often
causes the poor generalization in testing or production data unobserved during training due
to their mismatch. For good generalization, production data should be taken into account as
well for the decision rule generation. Although production data are not available during
training, our research unveils that there are often intrinsic contextual constraints because both
training and production data belonging to the same class are generated with the same
regularity. Using the uncovered regularity, we proposed a method to rectify a decision rule
generated from only training data for better generalization [25]. As exemplified in speaker
verification, we uncover that scores produced by a speaker model can be divided into normal
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and abnormal; the former conveys useful information while the latter mainly caused by noise
and other factors misleads the decision rule generation. Using this intrinsic contextual
information, we developed an algorithm for pruning abnormal scores, and this algorithm
readily improves the generalization [25]. Here we emphasize that unlike the cross-validation
techniques, the improved generalization benefits from the exploration and the exploitation of
intrinsic contextual information without use of additional production data.

In computer vision, dynamic patterns are ubiquitous, ranging from low-level image signals
to high-level organizational/perceptual prototypes. As another major research topic, we have
also researched into the exploitation of intrinsic contextual information in early vision [26],
[30]-[32] and 3-D object recognition [33].

Early vision plays a prominent role in visual information processing, which critically
determines the ultimate interpretation of an image. Due to high complexity of the real world
and noise corruption from various sources during imaging, there are enormous amount of
ambiguities for an early vision task. Fortunately, there is intrinsic contextual information
underlying an image that can resolve ambiguities. In our recent work [26], we uncovered that
unlike local discontinuities that can confuse noise with not-trivial features, there are relatively
global yet robust contextual discontinuities that would robustly specify intrinsic structures of
an image. As a result, we derived a contextual discontinuity measure from the scale-based
affinity theory [27]. The measure detects the intrinsic contextual information of much fewer
ambiguities so as to form a “road map” of silent features underlying an image [26].

Smoothing is viewed as a general tool in the low-level of machine version for noise removal
and irrelevant feature elimination demanded by subsequent processing. By combining the
local and contextual discontinuities in a synergetic way, we proposed a novel adaptive
smoothing [26]. In general, there are two weaknesses for an adaptive smoothing algorithm;
one is that its performance is extremely sensitive to the termination time, and the other is that
it often fails to eliminate the impulse noise. The use of contextual discontinuities readily
overcomes the two weaknesses and yields the favorite outcome; our adaptive smoothing
scheme is, to a great extent, immune to termination times so that non-trivial features can be
preserved in a widely range of iterations, and our algorithm can remove the impulse noise
mixed with other types of noise (for details and a formal analysis, see [26]).

As a major aspect of visual perception, image segmentation is a process that partitions an
image into a set of coherent regions. Recently, a biologically plausible computational model
[28], locally excitatory and globally inhibitory oscillator networks (LEGION), was proposed for
perceptual modeling and has been successfully applied to image segmentation [29]. Without
the use of any intrinsic contextual information, the original LEGION algorithm [29] fails to
work in the presence of substantial noise [30], [31]. In our research, we extended the LEGION
by exploiting intrinsic neighboring constraints [30] and introducing a contextual discontinuity
map [31], which results in two improved variants of the LEGION. In [30], we introduce a set
of neighborhoods to generate dynamic coupling structures associated with a specific
oscillator. As a result, we used an ensemble of oscillators dynamically coupled in a local
region instead of pair-wise coupling and further developed two novel grouping rules for
perceptual organization [30]. Owing to the use of intrinsic neighboring structural constraints,
the resultant dynamic coupling without iterative operations makes our segmentation network
robust to noise in an image, as demonstrated with a variety of images [30]. On the other hand,
the use of a contextual discontinuity map introduces an additional weight adaptation
mechanism to the LEGION [31]. Such a weight adaptation mechanism tends to remove noise
and preserve significant discontinuities in an image prior to segmentation and its usefulness
has been demonstrated by a range of synthetic and real image segmentation tasks [31].
Furthermore, we have also applied this LEGION variant of weight adaptation to a
challenging real world problem [32], namely extraction of hydrographic objects from satellite
images, which yields the favorite extraction results. As illustrated in Fig. 3, the river in Fig.
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3(a) is extracted and shown in Fig. 3(b) by marking it as white and superimposing it on the
original image. It is obvious that all boundaries are located accurately even for those of small
islands covered by forests and the very narrow bridge. Fig. 3(c) shows the corresponding part
of the topographic map. By comparing Fig. 3(a) and 3(c), one can see that hydrographic
objects have changed from the map. Fortunately, our system precisely detects this change and
therefore is suitable for map revision. Furthermore, Fig. 3(e) shows the extraction result from
Fig. 3(d), a satellite image of the Washington East, D.C. and Maryland area, U.S.A., where all
major hydrographic objects are extracted with high accuracy (for details, see [32]).

() ()
Fig. 3. Extraction of hydrographic objects by using intrinsic contextual information [26], [32]. (a) A
satellite image patch of 640x640 pixels. (b) The extraction result from the patch in (a). (c) A topographic
map corresponding to the patch in (a). (d) A larger satellite image of 7676x6204 pixels containing the
patch in (a). (e) The extraction result from the image in (d).

3-D object recognition from a 2-D image is an ill-posed problem; multiple objects can be
coincidently projected into the same image. Thus, corrupted by noise during imaging,
numberless aspects of a 3-D object can be viewed as dynamic patterns. Psychological studies
in human vision system uncover that a multi-stage process takes place in 3-D object
recognition via a range of perceptual organization operations for recovery from non-trivial
image features to aspects. In our earlier research, we proposed a distributed representation of
aspects [33] that models intrinsic or non-accidental contextual constraints from image features
to aspects in a hierarchical way for perceptual organization. This distributed aspect
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representation makes a parallel voting scheme feasible so that non-trivial aspects can be
discovered and further recovered quickly by means of intrinsic contextual constraints [33].
This preliminary work indicates that the exploitation of intrinsic contextual information can
effectively tackle a difficult problem of computer vision even in a complex environment.

In summary, our research suggests that the exploitation of intrinsic contextual information
underlying dynamic patterns effectively resolves ambiguities and thus yields the robust
performance for dynamic pattern analysis, discovery and recognition.

3. Ongoing Research Topics

As described in this article, dynamic patterns lead to a large number of challenging
problems in different fields of artificial intelligence. As one of the long-term research interests,
the author and his collaborators would continue to work for dynamic pattern analysis,
discovery and recognition, including theories and their applications. At the University of
Manchester, the author and his students are now researching into the following topics
relevant to dynamic pattern analysis, discovery and recognition.

o Exploration/Exploitation of representations: On the basis of our previous research, we
mainly focus on two problems on the representation of dynamic patterns. One is the
exploration of a proper representation of dynamic patterns by learning to filter the
irrelevant information out for a task-driven task. The other is the exploitation of different
representations for dynamic patterns that cannot be well presented by a single
representation. We are improving our proposed soft-competition scheme on different
representations [4], [10] and shall further study an alternative representation fusion
scheme of automatic feature selection. In terms of applications, we are studying the two
problems on various dynamic biometric tokens for personal authentication and dynamic
patterns in video for automatic content analysis.

e Task-driven similarity measures: Since dynamic patterns often convey mixing
information, a generic similarity criterion may fail to work in accurately measuring the
similarity between dynamic patterns for a specific task. In our ongoing research, we are
developing an approach for finding a task-driven similarity measure by learning from
selected data with a hybrid learning strategy. The proposed approach will be applied to
speaker clustering, meaningful audio stream segmentation from video and affective
computing, e.g., facial expression analysis and recognition.

e Hybrid learning paradigm: As teacher’s information is available for a task, one often
takes it for granted that the supervised learning paradigm should be simply used. For a
complex dynamic pattern recognition task, however, our research unveils that the use of
only a supervised learning model is often very difficult to achieve a solution as expected
even though teacher’s information is available. In our previous research [20], [21], we
have successfully combined unsupervised and learning paradigms to develop a self-
generated hybrid learning model by the innovative use of the divide-and-conquer
principle for supervised learning . However, partitioning the input space was based on a
heuristic algorithm [20], which does not guarantee an optimal solution in terms of
generalization though the hybrid learning model yields the satisfactory performance for a
range of dynamic pattern recognition problems. In our ongoing research, we are
improving our hybrid learning model by introducing an optimization criterion to
automatically partition the input space and a “compatibility” measure to examine
whether a recognition sub-task specified on a specific portion of the input space can be
handled by a given learner of the limited learning capability. In addition, we are going to
research into other hybrid learning models (e.g., see [34] for an alternative hybrid
learning model used in news reading personalization).



IEEE Systems, Man & Cybernetics Society E-Newsletter, Issue 12, September 2005

We anticipate that our continuous endeavors will lead to effective and easy-to-use
techniques for dynamic pattern analysis, discovery and recognition, and their applications
would solve challenging real world problems related to dynamic patterns.
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