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Appendix 1

In this appendix, we present our empirical studies on
investigating the capability and the limitation of our
weighted clustering ensemble (WCE) algorithm based on
the algorithm analysis described in Sect. 3.3.

As pointed out in Sect. 3.3, (13) critically determines the
performance of our WCE via the quantities |,um - wm| . As
a result, we need both y,, and w,, for a given data set
X ={x,}, . While w,, is achieved by applying one of clus-
tering validation criteria or their combination to input
partitions, ,, is generally unavailable unless we know
both the ground-truth partition and all possible partitions
of the given data set.

In reality, there are only a subset of partitions,
P={P,}M , returned by initial clustering analysis, we
approximate x,, by using only these partitions via a parti-
tion similarity measure, Normalized Mutual Information
(NMI), although other similarity measures can be used.

Thus, we estimate x,, corresponding to P, by
~ _ NMIP,,C)
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where C is the ground-truth partition of X and
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Here, Kn and Kcare the number of clusters in P, and C,
respectively. N;™ is the number of entities shared by two
clusters C/" € P, and C{ € C, where there are N;" and
N ¢ entities in C." and é JC .

As described in Sect. 3.1.B, we employ three clustering
validation criteria to generate weights but do not combine
three weighted similarity matrices directly. Instead we
combine only three optimal partitions yielded by cutting
dendrogram trees constructed with three weighted simi-
larity matrix at the longest lifetime. Strictly speaking, the
similarity matrix of the final consensus partition is a bi-
nary version of the multiple-criteria based weighted simi-
larity matrix by applying a threshold. Nevertheless, we
firmly believe that this binary version inherits most cha-
racteristics of the original multiple-criteria based
weighted similarity matrix. Hence, we approximate its
weight by

@, =3 2w, (A3)

where = {DVI, MHT, NMI} defined in Sect. 3.1.

In general, data distribution and underlying cluster
shapes may be arbitrarily complex. Therefore, it is im-
possible to examine all kinds of data sets exhaustedly. In
our empirical studies, we apply two of the most impor-
tant cluster properties, compactness and separability, as a
guideline to produce data sets. As the Gaussian mixture
model (GMM) can approximate any kind of distribution,
we employ the GMM of four Gaussian components to
produce data sets of four clusters (K*=4). By altering pa-
rameters, mean, co-variance and mixture proportion, in
the GMM, we can produce data sets of different data dis-
tributions and cluster shapes. For visualization, we pro-
duce three 2-D data sets of clearly distinct properties.

In our experiments, we use K-mean in initial clustering
analysis (ICA) with the procedure described in Sect. 4.2; K
is randomly chosen from a range 1<K <8 and 20 parti-
tions are produced on different initial conditions for a
given data set. We name such an initial clustering analysis
ICA1. To simulate the limitation of initial clustering anal-
ysis, we also use another range of K: 1<K<8 and
K # K* to produce 20 partitions for a given data set. We
denote such an ICA to be ICA2. The purpose of our expe-
riment is two-fold: investigating the capacity and the limi-
tation of our WCE and verifying the benefit of using mul-
tiple validation indexes (MVI).

As shown in Fig. A.1(a). Dataset 1 can be viewed as a
representative of a class of data sets that have the tight
compactness and the high separability, an easy task for
clustering analysis. Therefore, such properties should be
easily captured with any clustering validation criterion.
As observed in Fig. A.1(b) and A.1(c), our WCE based on
the MVI yields nearly perfect partitions even when the
initial clustering analysis returns no correct partitions
given that the fact that there are no partitions of four clus-
ters retuned by ICA2. As expected, the use of a single cri-
terion in the WCE is enough to produce satisfactory parti-
tions as illustrated in Fig. A.1(d)-A.1(i) except Fig. A.1(h)
but a single criterion is not robust against an inadequate
initial clustering analysis as demonstrated in Fig. A.1(h)
where the WCE based on the MHT criterion only fails to
produce a correct partition. Fig. A.1(j) and A.1(k) show
the dissimilarity between the ideal weight defined with
the ground truth partition, u, defined in (A.1), and a
weight based on one or more clustering validation crite-
ria, w,,, collectively. It is observed from Fig. A.1(j) and
A.1(k) that the dissimilarity between x,, and w,, defined
in (A3) is much smaller than that between g, and



T

w,, overall, while the dissimilarity between u, and wj,,
7t ={DVI, MHT, NMI}) varies across 20 partitions. Accord-
ing to our algorithm analysis in Sect. 3.3, (13) suggests
that the smaller collective dissimilarity between g, and
w,, results in a lower cost. Therefore, experimental re-
sults here confirm the benefit of using MVI to measure
the contribution of a partition for combination. In addi-
tion, Fig. Al.(k) shows that overall the dissimilarity be-
tween x, and w)"'" is significantly larger than others.
This explains why the use of the MHT criterion only in
the WCE fails to produce a correct partition by combining
20 partitions returned from ICA2.

Dataset 2 shown in Fig. A.2(a) is different from Dataset
1 in terms of the number of entities in different clusters,
compactness and separability. Although this data set still
has some identifiable properties, the intra-cluster variabil-
ity gets higher and the inter-cluster variability becomes
lower in contrast to Dataset 1, which leads to a difficult
clustering analysis task. From Fig. A.2(b) and A.2(c), it is
observed that our WCE yields a satisfactory partition and
detects the correct number of clusters by combining parti-
tions returned by ICA1 but fails to produce a partition of
the intrinsic structure by combining partitions returned
by ICA2. The ambiguity arises when the separability be-
tween different clusters is low. Incorrect initial clustering
analysis inevitably misleads the clustering ensemble to
produce a wrong partition due to ambiguity. This result
suggests that initial clustering analysis plays a critical role
particularly when there appears low separability between
different clusters. In other words, a clustering ensemble
itself cannot detect the intrinsic structure underlying a
data set unless input partitions carry such information. As
the ambiguity appears, the WCE based on a single crite-
rion is no longer reliable; it is seen from Fig. A.2(d)-Fig.
A.2(f) that the WCE based on the MHT criterion yields a
partition of four clusters but the WCE based on the DVI
and the NMI criteria produces two different partitions of
three clusters. It implies that due to the ambiguity a single
criterion does not always recognize partitions of the in-
trinsic structure even though an initial clustering analysis
returns such partitions. Again, this evidence justifies our
motivation on the joint use of multiple clustering valida-
tion criteria in our weighting scheme. Likewise, the WCE
based on a single criterion fails to produce a partition of
four clusters owing to the same reason seen for the parti-
tion shown in Fig. A.2(c), which is illustrated in Fig
A.2(g)-A.2(i). Fig. A.2(j) and A.2(k) shows the dissimilari-
ty between g, and w,, of 20 partitions returned from
ICA1 and ICA 2, respectively. It is clearly shown from Fig.
A.2(j) and A.2(k) that the larger dissimilarity appears as a
clustering validation criterion mismatches the intrinsic
structure underlying a given data set.

Fig. A.3(a) shows Dataset 3 of the ground truth that
has no identifiable properties and is full of ambiguity
without the reference to the ground truth. In particular,
the intra-cluster variability is far higher than the inter-
cluster variability. Due to a lack of no identifiable proper-
ties, neither a clustering algorithm nor a clustering valida-
tion criterion works on such a data set. As anticipated, the
WCE based on either a single criterion or the multiple
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criteria fails to yield a partition close to the ground truth
as shown in Fig. A.3(b)-Fig.3(i). Also our weight dissimi-
larity index values illustrated in Fig. A.3(j) and A.3(k)
clearly indicate the reason of failure.

In summary, the above experiment results suggest that
our WCE based on multiple validation criteria performs
well but heavily relies on the quality of input partitions
returned by initial clustering analysis, in particular, when
a given data set is of fewer identifiable cluster structural
information, e.g., low separability, uneven size of clusters,
high intra-cluster and low inter-class variability. In gener-
al, our empirical studies are consistent with our algorithm
analysis presented in Sect.3.3. As demonstrated in plots (j)
and (k) of Fig. A.1-A.3, the dissimilarity between the op-
timal “weights” u, and “weights” w,, generated via
clustering validation criteria becomes a useful measure to
understand the behaviors of our WCE algorithm for dif-
ferent data sets. On the other hand, experimental results
further justify the benefit of using multiple clustering va-
lidation criteria in our weighting scheme when the
ground truth is not available.

Appendix 2

In this appendix, we employ two common evaluation
criteria for clustering analysis to assess the performance
of all clustering algorithms used in Sect. 4.2 for time series
data mining benchmarks.

One is the normalized mutual information (NMI) de-
fined in (A.1) and (A.2). The other is the normalized
Rand Index (ARI) defined by

s (VRGN
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Here, N is the number of data points in a given data set
and N i is the number of data points of the label C; as-
signed to clusters i in partition P,,. Ni is the number of
data points is in cluster i of partition P, and Nj is the
number of data points in class j. In general, an ARI value
lies between 0 and 1. The index value is equal to one only
if a partition is completely identical to the intrinsic struc-
ture and close to 0 for a random partition.

Corresponding to Table 2 in Sect. 4.2, the performance
of different clustering algorithms is tabulated in Tables
A.l and A.2 in terms of the NMI and the ARI measures.
Likewise, Tables A.3 and A 4 list the performance of four
clustering ensembles by the NMI and the ARI measures,
which is the counterpart of Table 3 in Sect. 4.2. The nota-
tion here is the same as used in Tables 2 and 3 in Sect. 4.2.

A direct comparison between those counterparts, i.e.,
Table 2 versus Tables A.1 and A.2 as well as Table 3 versus
Tables A.3 and A.3, shows that the performance measured
by three different evaluation criteria is completely
consistent each other for different clustering algorithms
and four clustering ensemble algorithms on all 16 time
series data mining benchmark tasks. Thus, all conclusions
drawn in Sect. 4.2 are supported and augmented by
additional evaluation results in Tables A.1-A 4.

ARI(P,,,C) = (A4)
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Fig. A.1. Results on Dataset 1. (a) Ground truth. (b) Partition by WCE based on multiple validation indexes (K-mean,1< K <8). (c)
Partition by WCE based on multiple validation indexes (K-mean, 1< K <8 and K #4) (d)-(f) Partitions by WCE based on DVI, MHT and
NMI (K-mean, 1<K <8). (g)-(i) Partitions by WCE based on DVI, MHT and NMI (K-mean, 1< K <8 and K4). (j) Dissimilarity be-
tween wi, and p, of 20 partitions (K-mean, 1< K <8). (k) Dissimilarity between wi, and p,, of 20 partitions (K-mean, 1<K <8 and K=
4).
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Fig. A.2. Results on Dataset 3. (a) Ground truth. (b) Partition by WCE based on multiple validation indexes (K-mean,1< K <8). (c)
Partition by WCE based on multiple validation indexes (K-mean, 1< K < 8 and K>4) (d)-(f) Partitions by WCE based on DVI, MHT and
NMI (K-mean, 1< K <8). (g)-(i) Partitions by WCE based on DVI, MHT and NMI (K-mean, 1< K < 8 and K4). (j) Dissimilarity be-
tween wy, and p, of 20 partitions (K-mean, 1< K < 8). (k) Dissimilarity between wn, and p, of 20 partitions (K-mean, 1< K <8 and K=
4).
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TABLEA.1
ARI ACHIEVED BY DIFFERENT CLUSTERING ALGORITHMS

Time Series Single Representation Different Eepresentations
Data Set —_— He EHMM E-mean DBSCAN WCE
PCF DFT P13 FDWT PCF TFT PLS3 FDWT E-mean HC DB3CAN
Syn Control 0.663 0.502 0.673 0.488 0.583 0.625 0.670 | 0.318 0.680% 0.692% 0463 0.862+0.018* 0.711%* 0.740*
Gui-Point 0.477 0.376 0.405 0.410 0397 0421 0439 | 0.432% 0461% 0398 0448% 0.492+0.019% 0.565*% 0.481*
CBF 0.671 0.411 0.653 0.580 0402 0.532 0.621 | 0.589% 0405 0423 0673* 0.683+0.024* 0.707* 0.676%
Face (all) 0.514 0.330 0.519 0329 0311 0330 0390 | 0.273 0464 0290 0337 0.751+0.019* 0.724% 0.415
OSU Leaf 0.544 0.551 0.584 0.492 0421 0490 0.514 | 0.280 0353 0376 0.559% 0.598+0.035* 0.604* 0.614*
Swedishi Leaf | 0.491 0.417 0.454 0411 0399 0424 0450 | 0156 0197 0387 0392 0.553+0.026* 0.504* 0.449+
50Words 0412 0.385 0.39% 0.367 0.482 0405 0363 | 0.315 0291 0.309 0.194 0.372+0.021 0.451* 0.345
Trace 0.535 0.430 0.563 0.488 0.490 0492 0519 | 0.405 0496 0.526 0.550 0.582+0.019% 0.505% 0.017%
Two Parterns | 0.308 0.291 0.310 0.229 0.238 2.568 0.298 | 0.224 0235 0.181 0.169 0.31940.023 * 0.358%" 0.264
Wafer 0.620 0.441 0.623 0482 0.519 0470 0.605 | 0.674% 0.452% 0472 0240 0.657+0.026* 0.625% 0.636*
Face (four) 0.493 0.432 0.497 0.389 0400 0422 0498 | 0161 0164 0206 0.386 0.692+0.031* 0.504* 0.400
Lightning-2 0.531 0.540 0.512 0.430 0442 0459 0493 | 0.556% 0496 0.380 0375 0.572+0.017* 0.561* 0.550%
Lightning-7 0.637 0.489 0.651 0.500 0.510 0.632 0.644 | 0.546 0398 0.621*% 0425 0.738+0.041* 0.668% 0.655%
ECG 0.640 0.510 0.641 0.506 0.526 0.531 0.580 | 0.434% 0.440% 0.420% 0.524% 0.620+0.019% 0.645% 0.669*
Adiac 0.434 0.240 0.440 0.242 0.237 0.265 0.260 | 0.262 0176 0.275 0.191 0.381+0.029 0.298 0.323*
Yoga 0.461 0.351 0.426 0.482 0.469 0.382 0.445 | 0.368 0.512* 0.2904 0.331 0.495+0.026* 0.503" 0.527
TABLEA.2
NMI ACHIEVED BY DIFFERENT CLUSTERING ALGORITHMS
Time Series Single Representation Different Representations
Data Set K-mean DBESC AN WCE
Kifhear O KIMM e TFr PLS  POWI | FCF DET P15 FDWT |  Fomem = DBSCAN
Syn Control 0.480 0.412 0.497 0.398 0451 0460 0470 | 0.253  0.507* 0.513% 0.330 0.726 + 0.021* 0.535% 0.621%*
Gun-Point 0.450 0.381 0.409 0.413  0.401 0.445 0430 | 0.428% 0.465% 0404 0.452% | 0.483 +0.024% 0.521* 0.476%
CBF 0.559 0.424 0.551 0.539 0411 0498 0.550 | 0.547% 0.215 0441  0.568% | 0.619 + 0.028% 0.655% 0.606%
Face (all) 0.207 0.208 0.301 0.224 019 ©.210 0292 | 0.060 0287 0.065 0210 0.451 + 0.0311 0.442* 0.260
OSU Leaf 0.238 0.244 0.279 0.209 0200 0.220 0.225 | 0.080 0.117 0.159 0.251% | 0.297 + 0.018* 0.303* 0.313*
Swedish Leaf | 0.393 0.361 0.374 0.366  0.338 0.368 0.368 | 0.163 0.253 0.308 03206 0.521 + 0.030" 0.430% 0.370*
S0Words 0.524 0.503 0.512 0.400 0.464 0.369 0.483 37 0.354 0359 0314 0.491 + 0.026 0.569* 0.466
Trace 0.391 0.334 0.410 0.309 0353 0.346 0.385 7 0379 0388 039 0.419 + 0.023* 0.432% 0.471%
Twe Patterns | 0.217 0.210 0.222 0.199 0.210 ©.208 0.212 | 0.183 0206 0.159 0.156 0.228 + 0.019% 0.236" 0.210
Wafer 0.201 0.227 0.293 0.260 0.281 0.251 0.289 | 0.403*% 0.240* 0.274 0.157 0.381 + 0.027* 0.300% 0.421%
Face (four) 0.521 0.502 0.536 0.321 0386 0477 0.527 | 0.146 0.118 0.241 0318 0.648 + 0.031* 0.553% 0.358
Lightning-2 0.529 0.533 0.492 0.438 0447 0461 0472 | 0.542*% 0475 0378 0301 0.686 + 0.024" 0.656% 0.652%
Lightning-7 0.451 0.382 0.502 0.385 0396 0449 0482 | 0403 0251 0.430% 0373 0.711 + 0.029* 0.520 0.516%
ECG 0.462 0.371 0.466 0.362 0394 0402 0417 | 0.205% 0.207* 0.101* 0.394% | 0.458 + 0.019* 0.467* 0.474%
Adine 0.591 0.443 0.598 0.448 0438 0460 0455 | 0460 0329 0.500 0.388 0.568 + 0.023 0.505 0.513*
Yoga 0.487 0.407 0.468 0.533 0.505 0437 0479 | 0425  0.602% 0.383 0.397 0.572 + 0.015% 0.580°* 0.614
TABLEA.3 TABLEA.4
ARI PERFORMANCE OF DIFFERENT ENSEMBLE ALGORITHMS NMI PERFORMANCE OF DIFFERENT ENSEMBLE ALGORITHMS
Diata Set CE HBGF SDP-CE WCE Data Set CE HBGF SDP-CE WCE
Syn Control 067940017 0.72940.021 O815+0.018  0.862+0.018* Sy Control 050140023 0.606+0.018 069140016 0.726 £ 0.021*
Gun-Point 0.481+0.014 048840023 047240007  0.492+0.019* Gun-Point 0.465+0.016 0.476+0.019  0.459:0.010  0.483 + 0.024%
CBF 059040026 0698+0.017  0.704£0.018  0.683+0.024* CBF 0.54940.023 0.64240.015  0.65140.024  0.619 + 0.028*
Face (uall) 065040021 0.743+0.018  0.751+0.019* Fuace (all) 0.290+0.028 0.390+0.026 04440011 0451 + 0.031%
OSU Leaf 0.617+0.025  0.609+0.018  0.598+0.035~ OSU Leaf 0.31140.013 0.433+0.022  0.412+0.015 0297 + 0.018%
Swedish Leaf 049640025  0.581+0.021  0.353+0.026* Swedish Leaf | 0.401+0.012 042040028 0.54240.017  0.521 + 0.030*
S0Words 037940019  0380+0.019  0.372+0.02] S50Words 0.510+0.018 0.501+0.024 0.497+0.021 0.491 + 0,026
Trace 051140017 0.5376+0.018 0.582+0.019* Trace 0. 40440.021 0385400016 041440015 0.419 + 0,023~
Twe Patterns 031140020  0.318+0.021 0.319+0.023* Twao Patterns 0.22540.020 022440018 0.226+0.017  0.228 £ 0.019*
Wafer 0.661+0.029 0.657+0.026* Wafer 0.588+0,021 0.69040.024  0.608:0.019 0381 + 0.027*
Face (four) 0.502+0.021  0.300+0,028  0.692+0.031* Face (four) 0.513+0.028 0.350+0.028  0.548+0.022 0648 £ 0.031%
Lightning-2 0352040014 035040012 0.572+0.017* Lightning-2 051040024 050240016 061940015 0.686 + 0.024*
Lightning-7 066240035 069140022 0.738+0.041* Lightning-7 0.5104+0.031 052040029 059340028 07114 0,029
ECG 0.616+0.016  0.624+0.014  0.620+£0019* ECG 0.533+0.020 0.543+0.016  0.56940.015 0438 + 0.019*%
Adiae 0.380+0.028 0.536+0.026  0.549+0.017  0.381+0.029 Adiac 0.458+0.021 0.362+0.019  0.588+0.014 0568 + 0.023
Yoga 0.43940.025 0483+0.024  0.541+0.020 0 495+0.026" Yoga 047540021 0.561+0.019 0.621+0.01% 0572 + 0.015%




