
On the Relation of Resolution and Tableaux Proof Systems forDescription LogicsUllrich Hustadt and Renate A. SchmidtDepartment of Computing and Mathematics, Manchester Metropolitan University,Chester Street, Manchester M1 5GD, UKU.Hustadt@doc.mmu.ac.uk, R.A.Schmidt@doc.mmu.ac.ukAbstractThis paper investigates the relationship be-tween resolution and tableaux proof system forthe satis�ability of general knowledge bases inthe description logic ALC. We show that res-olution proof systems can polynomially simu-late their tableaux counterpart. Our resolutionproof system is based on a selection re�nementand utilises standard redundancy eliminationcriteria to ensure termination.1 IntroductionRecently a number of results concerning resolution de-cision procedures for subclasses of �rst-order logic havebeen obtained. The considered subclasses are expres-sive enough to encompass a variety of non-classical log-ics, in particular, description logics and extended modallogics. De Nivelle [1998] describes a resolution decisionprocedure for the guarded fragment using a non-liftableordering re�nement. The guarded fragment is a general-isation of the restricted quanti�er fragment correspond-ing to basic modal logic and allows for the embeddingof a variety of extended modal logics and descriptionlogics [Gr�adel, 1998]. Expressions and knowledge basesof the description logic ALC can also be embedded intoMaslov's class K and its subclasses One-Free [Ferm�ulleret al., 1993] and the class of DL-clauses [Hustadt andSchmidt, 1999]. Again, ordering re�nements of resolu-tion provide decision procedures for these classes. A non-standard translation into the Bernays-Sch�on�nkel classcombined with resolution and arbitrary re�nements pro-vide decision procedures for the satis�ability of ALC ex-pressions [Schmidt, 1999]. This approach was adoptedin the experiments of Hustadt, Schmidt, and Weiden-bach [1997; 1998]. Experiments using the standardtranslation and a combination of a �rst-order theoremprover augmented with a �nite-model �nder are de-scribed in [Paramasivam and Plaisted, 1998].The problem of empirical investigations based on com-petitive testing is the di�culty in identifying the majorfactors having a positive or negative in
uence on the per-formance of a theorem prover. As long as the theoremprovers which are being compared follow di�erent proof

strategies this di�erence is likely to have a dominatinge�ect on the overall performance. This has two conse-quences. One, we can say little about the other factorsin
uencing the performance, for example, fundamentaldi�erences between the underlying proof systems or so-phisticated redundancy elimination techniques used bythe theorem prover. Two, while it is easy to �nd bench-mark problems illustrating the superiority of one theo-rem prover it is just as easy to �nd benchmark problemsshowing the opposite. Therefore, it is always advisableto complement empirical investigations with a theoreti-cal analysis of the relative proof and search complexityof the underlying proof systems. In the �rst case, thetask is to determine whether a proof system A is ableto polynomially simulate a proof system B. This is tosay, for any given theorem � there is a function g, com-putable in polynomial time, mapping proofs of � in Bto proofs of � in A. In the second case, the task is todetermine the relative size of the search space, that isthe potential number of inference steps performed untila proof is found [Plaisted and Zhu, 1997].In this paper we focus on the aspect of relativeproof complexity of tableaux proof systems and res-olution proof systems for the description logic ALCwith general terminological sentences and ABox ele-ments. This logic is of particular interest, since alltableaux proof systems presented in the literature re-quire some form of blocking or loop-checking to forcetermination [Buchheit et al., 1993; Donini et al., 1996;Horrocks, 1997]. We describe a resolution proof systembased on a selection re�nement of resolution, instead ofan ordering re�nement, which provides a new resolutiondecision procedure for this logic. We show that thisproof system is able to polynomially simulate tableauxproof systems for this logic. The technique for simulat-ing blocking described in this paper can also be appliedfor obtaining other simulation results, for example, ana-lytic modal KE tableaux proof systems or sequent proofsystems for modal logics.The structure of the paper is as follows. Section 2 de-�nes the syntax and semantics of ALC and describes astandard tableaux proof system. We adopt the resolu-tion framework of Bachmair and Ganzinger [1998] whichis described brie
y in Section 3. Section 4 presents the



simulation result for the tableaux proof system and Sec-tion 5 shows how termination of the resolution proof sys-tem can be enforced in analogy to blocking in tableauxsystems. In Section 6 we discuss some optimisationswhich are naturally available in the resolution frameworkand can be transferred to the corresponding tableauxproof systems.2 Inference for ALCWe work with a signature given by a tuple � = (O;C;R)of three disjoint alphabets, the set C of concept sym-bols , the set R of role symbols , and the set O of objects .Concept terms (or just concepts) are de�ned as follows.Every concept symbol is a concept. If C and D are con-cepts, and R is a role symbol, then >, ?, C uD, C tD,:C, 8R:C, and 9R:C are concept terms. A conceptsymbol is also called a primitive concept.A knowledge base has two parts: A TBox comprisingof terminological sentences of the form C _v D and anABox comprising of assertional sentences of the forma 2 C and (a; b) 2 R, where C and D are concepts, R isa role, and a and b are objects.Although the language does contain any role formingoperators, it is still possible to express properties of thedomain and range of a role R [Buchheit et al., 1993].The semantics is speci�ed by the embedding into �rst-order logic as follows. For sentences:�(C _v D) = 8x:�(C; x) ! �(D; x)�(a 2 C) = �(C; a)�((a; b) 2 R) = �(R; a; b)where a and b are constants uniquely associated with aand b. For terms:�(A;X) = pA(X)�(R;X; Y ) = pR(X;Y )�(:C;X) = :�(C;X)�(>; X) = >�(?; X) = ?�(C uD;X) = �(C;X) ^ �(D;X)�(C tD;X) = �(C;X) _ �(D;X)�(8R:C;X) = 8y:�(R;X; y)! �(C; y)�(9R:C;X) = 9y:�(R;X; y) ^ �(C; y)where X and Y are meta-variables for variables and con-stants, and pA (respectively pR) denotes a unary (bi-nary) predicate symbol uniquely associated with the con-cept symbol A (role symbol R). The variable y is distinctfrom X .All common inferential services for knowledge bases,like subsumption tests for concepts, TBox classi�cation,realization, retrieval, can be reduced to tests of the satis-�ability of a knowledge base. Our de�nition of a tableauxproof system, also called a constraint system, largelyfollows Buchheit et al. [1993]. All terminological sen-tences C v D are assumed to have been replaced by

> v :C t D and all concepts in the resulting knowl-edge based are assumed to have been transformed intonegation normal form.Let I be a subset of O such that no element of I occursin �. Let �I be a well-founded total ordering on I. Theelements of I are called introduced objects. We assumethat the elements of I are introduced during inferenceaccording to �I, that is, if a is introduced into �, thenfor all b 2 I with b �I a, b already occurs in �.Following Buchheit et al. [1993] we de�ne the followingset of transformation rules for the purpose of testing thesatis�ability of a knowledge base:1. � )u � [ fa 2 C; a 2 Dg, if a 2 (C u D) is in �,and a 2 C and a 2 D are not both in �.2. � )t � [ fa 2 Eg, if a 2 (C t D) is in �, neithera 2 C nor a 2 D is in �, and E = C or E = D.3. � )9 � [ f(a; b) 2 R; b 2 Cg, if a 2 9R:C is in �,there is no d such that both (a; d) 2 R and d 2 Care in �, b 2 I is a newly introduced object.4. � )8 � [ fb 2 Cg, if a 2 8R:C and (a; b) 2 R arein �, and b 2 C is not in �.5. � )? � [ fa 2 ?g, if a 2 A and a 2 :A are in �,where A is a concept symbol.6. � )v � [ fa 2 Cg, if a occurs in � and a sentence> v C is in �, and a 2 C is not in �.Let )TAB be the transitive closure of the union of thetransformation rules given above. A knowledge base �contains a clash if a 2 ? is in �. A knowledge base � issatis�able if there exists a knowledge base �0 such that(i) � )TAB �0, (ii) no further applications of )TAB to �0are possible, and (iii) �0 is clash-free. Note that the rule)t is don't know nondeterministic.3 The Resolution FrameworkAs usual clauses are assumed to be multisets of liter-als. The components in the variable partition of a clauseare called split components, that is, split componentsdo not share variables. A clause which is identical toits split component is indecomposable. The condensa-tion Cond(C) of a clause C is a minimal subclause of Cwhich is a factor of C.The calculus is parameterised by an ordering � anda selection function S. The ordering has to satisfy cer-tain restrictions as detailed in [Bachmair and Ganzinger,1998], in particular, it is required to be a reduction or-dering. A selection function assigns to each clause apossibly empty set of occurrences of negative literals. IfC is a clause, then the literal occurrences in S(C) areselected. No restrictions are imposed on the selectionfunction.The calculus consists of general expansion rules (overclause sets) NN1 j � � � jNn ;each representing a �nite derivation of the leavesN1, : : : , Nk from the root N . The following rules de-scribe how derivations can be expanded at leaves.



Deduce: NN [ fCond(C)gif C is either a resolvent or a factor of clauses in N .Delete: N [ fCgNif C is a tautology or N contains a clause which is avariant of C.Split: N [ fC [DgN [ fCg jN [ fDgif C and D are variable-disjoint.Resolvents and factors are derived by the following rules.Ordered Resolution: C [ fA1g D [ f:A2g(C [D)�where (i) � is the most general uni�er of A1 and A2, (ii)no literal is selected in C and A1� is strictly �-maximalwith respect to C�, and (iii) :A2 is either selected, or:A2� is maximal in D� and no literal is selected in D.C _ A1 is called the positive premise and D _ :A2 thenegative premise.1Ordered Factoring: C [ fA1; A2g(C [ fA1g)�where (i) � is the most general uni�er of A1 and A2; and(ii) no literal is selected in C and A1� is �-maximal withrespect to C�.Let N be a set of ground clauses. A ground clause Cis redundant in N if there are clauses C1, : : : , Cn in Nsuch that C1, : : : , Cn are smaller than C with respectto � and logically imply C. The notion of redundancyis lifted to the non-ground case in the expected way. Aninference is redundant if one of the parent clauses or itsconclusion is redundant.Theorem 1 (Bachmair and Ganzinger [1998]).Let N be a set of clauses. Then N is unsatis�able i� thesaturation of N up to redundancy contains the emptyclause.4 Simulation by ResolutionOur intention is to restrict resolution inferences in sucha way that admissible resolution steps correspond to in-ference steps in tableaux proof systems. Furthermore,the resolution proof system will be a decision procedurewhenever the tableaux system terminates without thehelp of loop-checking or blocking techniques.It is necessary to modify the translation mapping �slightly. Without loss of generality, all expressions oc-curring in � are assumed to be in negation normal form.Let H be a concept symbol not occurring in �. Intu-itively, H has the same semantics as the concept symbol>. But while > is translated to the true formula andwill vanish during the conversion to clausal form, thetranslation treats H as an ordinary concept symbol. Byadding certain formulae to the translation of the knowl-edge base we provide su�cient information about H to1As usual we implicitly assume that the premises have nocommon variables.

ensure that the introduction of H preserves satis�abilityequivalence. This allows us to obtain the desired com-putational behaviour in our resolution proof system.The modi�ed translation � is de�ned as follows.�(C _v D) = 8x:�(H; x)! �(nnf(:C) tD; x)�(a 2 C) = �(C; a) ^ �(H; a)�((a; b) 2 R) = �(R; a; b) ^ �(H; a) ^ �(H; b)The occurrence of �(H; x) on the left-hand side of theimplication ensures that all clauses in the clausal formcontain the negative literal :pH(x). Since�(C v D) = �(> v nnf(:C) tD)it is immaterial whether the terminological sentences in� take the �rst or second form.The conversion to clausal form of �rst-order formulaeresulting from the translation of ALC knowledge bases,makes use of a particular form of structural transforma-tion � [Baaz et al., 1994], which is based on two map-pings �1 and �2.Let Pos(�) be the set of positions of a formula �. If� is a position in �, then �j� denotes the subformula of� at position � and �[�  ] is the result of replacing� at position � by  . We associate with each element� of � � Pos(�) a predicate symbol Q� and a literalQ�(x1; : : : ; xn), where the xi are the free variables of�j�, Q� does not occur in � and two symbols Q� andQ�0 are equal i� �� and ��0 are variant formulae. �1uses de�nitions of the formDef�(�) = 8x1; : : : ; xn:Q�(x1; : : : ; xn)! �j�:Now, de�ne Def�(�) inductively by: Def;(�) = � andDef�[f�g(�) = Def�(�[� Q�(x1; : : : ; xn)]) ^ Def�(�);where � is maximal in �[f�g with respect to the pre�xordering on positions. Let Posd(�) be the set of positionsof subformulae of � corresponding to positions of non-primitive concepts in the knowledge base �. By �1 wedenote the transformation taking �(�) to its de�nitionalform DefPosd(�(�))(�(�)):Note that in this case, every predicate symbol Q� is aunary predicate associated with a concept C (althoughnot necessarily uniquely associated). Thus, we willhenceforth denote Q� by pC . By �2 we denote the func-tion which produces for every unary predicate symbol poccurring in �1�(�) the conjunction of all formulae8x: p(x)! pH(x):Finally, let ��(�) = �1�(�) ^ �2�1�(�):Theorem 2. Let � be any knowledge base. ��(�) canbe computed in polynomial time, and � is satis�able i���(�) is satis�able.The clausal form of ��(�) consists of three types ofclauses: (i) clauses stemming from terminological axioms



which all contain an occurrence of the negative literal:pH(x), (ii) clauses stemming from formulae introducedby �1 and �2 which all contain an occurrence of somenegative literal :pC(x), and (iii) clauses originating fromthe translation of assertional sentences which are groundunit clauses.Our selection function STAB selects the literal :pH(x) inclauses of type (i) and :pC(x) in clauses of types (ii). Inaddition, a binary literal of the form :pR(s; t) is selectedwhenever s is a ground term and t is a variable. Allclauses stemming from a terminological sentence or froman additional formula introduced by � contain negativeliterals, one of which is selected. We will mark selectedliterals by �+. For Theorem 3 an arbitrary reductionordering � may be used.For every concept C and every role R, which may pos-sibly occur in a knowledge base during a satis�abilitytest, there exist corresponding predicate symbols pC andpR in the clausal form of ��(�). Likewise every objecta is associated with a term ta.We show that every application of one of the trans-formation rules is simulated by at most two resolutioninference steps.1. The )u rule, by two resolution inference stepsbetween the ground clause fpCuD(ta)g and clausesf:pCuD(x)+; pC(x)g and f:pCuD(x)+; pD(x)g, generat-ing the resolvents fpC(ta)g and fpD(ta)g.2. The)t rule, by an inference step between the groundunit clause fpCtD(ta)g and f:pCtD(x)+; pC(x); pD(x)g,followed by an application of the splitting rule tothe conclusion fpC(ta); pD(ta)g which will generate twobranches, one on which the set of clauses containsfpC(ta)g and one on which it contains fpD(ta)g.3. The )9 rule, by resolution inference steps betweenthe clauses fp9R:C(ta)g, f:p9R:C(x)+; pR(x; f(x))g, andf:p9R:C(x)+; pC(f(x))g. This will add fpR(ta; f(ta))gand fpC(f(ta))g to the clause set. The term f(ta) cor-responds to the object b 2 I introduced by the )9 rule,that is, tb = f(ta).4. The )8 rule, by two consecutive resolution infer-ence steps. Here, the set of clauses contains fp8R:C(ta)gand fpR(ta; tb)g. First, the clause fp8R:C(ta)g is re-solved with f:p8R:C(x)+;:pR(x; y); pC(y)g to obtainthe clause f:pR(ta; y)+; pC(y)g. Then the conclusion isresolved with fpR(ta; tb)g to obtain fpC(tb)g.5. The)? rule, by two consecutive inference steps usingfpA(ta)g, fp:A(ta)g, and f:p:A(x)+;:pA(x)g (which isthe clausal form of the de�nition of :A) to derive theempty clause.6. The )v rule is simulated as follows. Since the ob-ject a occurs in �, the corresponding term ta occurs inour set of clauses. In particular, there is a ground unitclause fpD(ta)g, a clause f:pD(x)+; pH(x)g introducedby �2, and a clause f:pH(x)+; pC(x)g stemming fromthe translation of the terminological sentence> v C. Bytwo resolution inference steps we obtain fpC(ta)g whichcorresponds to the sentence a 2 C added by )v to �.Note that all the inference steps strictly obey the restric-tions enforced by the selection function STAB and are in

accordance with the resolution calculus. This proves:Theorem 3. The resolution proof system with selectionfunction STAB p-simulates the tableaux proof system forALC.Interestingly, factoring plays no role for the clause setsunder consideration, that is, the only possible factoringsteps are condensations of ground conclusions. More-over, no resolution inference steps other than those ofthe simulation are possible. Thus, the following strongerresult holds.Theorem 4. Let � be a knowledge base and N theclausal form of ��(�). Then the search space of theresolution procedure for N can be polynomially reducedto the search space of the tableaux procedure for �.5 TerminationBy C(�; a) we denote the set of all concepts C such thata 2 C is an element of the knowledge base �. Twoobjects a; b 2 I are �-equivalent, denoted by a �� b, ifC(�; a) = C(�; b). If b �I a and a �� b, then b is awitness for a. Similarly, let P(N; t) denote the set ofpredicate symbols fp j fp(t)g 2 Ng in a clause set N .(Remember whenever a 2 :A is an element of �, thenthe positive clause fp:A(ta)g is an element of N .)The strategy (S) employed by Buchheit et al. [1993]restricts the application of rules as follows: (i) apply atransformation to an introduced object only if no ruleis applicable to an object a 2 O n I, (ii) apply a ruleto an introduced object a only if no rule is applicableto an introduced object b such that b �I a, (iii) apply)9 only if no other rule is applicable, and (iv) apply)9 to an introduced object a in � only if there is nowitness for a. Restrictions (i){(iii) ensure that whenever)9 becomes applicable to an introduced object a in aknowledge base �, then for every �0 with � )�TAB �0 wehave C(�; a) = C(�0; a). The strategy guarantees thetermination of the tableaux proof system.Restriction (iv) may be viewed as an instance of theLeibniz principle, identifying two objects which are in-distinguishable with respect to their properties. Sincewe con�ne ourselves to applications of this principle tointroduced objects, it is su�cient to consider propertiesexpressible by concepts. In this case, the principle canbe expressed as a set of �rst-order formulae of the form8x; y: pC1(x) ^ : : : ^ pCn(x) ^pC1(y) ^ : : : ^ pCn(y)! x = y;with the antecedents representing all possible truth as-signments to concepts and subconcepts occurring in �.(That is, each pCi corresponds to a concept Ci in � andfor every subconcept C in �, either pC or p:C occurs ineach formula.) The notion of ��-equivalence also has anon-monotonic aspect: During a tableaux derivation itcan happen that a �� b at one state and a 6�� b at a laterstate. But restrictions (i){(iii) ensure that eventually ei-ther a �� b or a 6�� b holds for all future states in thederivation. Furthermore, it is assumed that for concepts



C not occurring in C(�; a) or C(�; b) we can assume thatneither a nor b are in the semantical interpretation of C.To account for these aspects and to reduce the com-putational overhead introduced by these formulae wechoose to add a special expansion rule instead.Blocking: NN [ fta � tbgwhere (i) ta and tb are distinct ground, functional terms,and (ii) P(N; ta) = P(N; tb). (`�' is the equality symbol.)This rule is sound. Using the correspondence betweenthe application of one of the propagation rules and par-ticular resolution inference steps, we can restrict our-selves to a corresponding strategy in the resolution proofsystem. It follows that whenever resolution inferencesteps corresponding to )9 become applicable to a termta in the clause set N , then for every clause set N 0 deriv-able from N we have P(N; ta) = P(N 0; ta).On the basis of the ordering �I on introduced objectswe will now de�ne a reduction ordering �TAB. Suppose aand b are introduced objects and ta and tb are the corre-sponding terms according to the simulation result above.Let �TAB be a reduction ordering with the following prop-erties: (i) if b �I a then ta �TAB tb, and (ii) for arbitrarynon-equality atoms A, if ta �TAB tb, then A[ta] �TAB A[tb]and A[ta] �TAB (ta � tb). It is not di�cult to show thatsuch a reduction ordering exists. Note that it is su�cientthat only ground expressions are ordered by �TAB.Assume now that by restriction (iv) of strategy (S)the rule )9 is not applicable to an introduced objecta in �, because there is a witness b for a. Then thereare terms ta and tb such that P(N; ta) = P(N; tb). Inthis situation an application of the blocking expansionrule will add an equation fta � tbg to N . Since b �I a,it follows ta �TAB tb, and the ground clauses fpC(tb)gand ftb � tag are smaller than fpC(ta)g with respectto �TAB. Also, fpC(tb)g and ftb � tag logically implyfpC(ta)g. Consequently, the clause fpC(ta)g is redun-dant and does not participate in any further inferences.This mimics restriction (iv) of strategy (S). To establishlogical implications of this form, the redundancy elimi-nation algorithm will require some form of equality rea-soning, for example, superposition. In our special case,all that is required are one-step rewrite transformations.Theorem 5. The strategy (S) for tableaux proof systemscan be polynomially simulated by blocking and redun-dancy elimination as outlined above.It is now straightforward to show that any inferencein our resolution proof system terminates.Theorem 6. Let � be a knowledge base and let N bethe clausal form of ��(�). Then any derivation from Nby (ordered) resolution with selection as determined bySTAB and blocking following the strategy outlined aboveterminates.Corollary 7. The resolution proof system and thetableaux proof system have the same time complexity,namely NEXPTIME [Buchheit et al., 1993].

6 OptimisationsIn practice a principal cause for intractability is the pres-ence of a large number of terminological sentences. Ev-ery application of the )v rule to an object a and ter-minological sentence > v :C t D will be followed byan application of )t to a 2 :C t D. The number ofbranches in the search space generated in this way is toolarge to be manageable for implementations relying onchronological backtracking to systematically investigateall the branches.As indicated by Horrocks and Patel-Schneider [1998]and Hustadt and Schmidt [1998] one possible optimisa-tion is the use of more sophisticated backtracking tech-niques like backjumping or branch condensing. However,it is even more desirable to avoid unnecessary branchingin the �rst place. A closer look at the intention be-hind the introduction of H in the modi�ed translation �reveals one possible optimisation in this direction. Sup-pose the knowledge base contains a terminological sen-tence of the form :A _v C. Using the standard embed-ding � we obtain a clause fpA(x); pC(x)g which containsno negative literal we could select. Using � we obtainf:pH(x); pA(x); pC(x)g which contains a selectable lit-eral. However, whenever for a terminological sentenceC _v D, the concept nnf(:C) t D contains a negativeoccurrence of a primitive concept A, the correspondingclauses under the standard embedding � will containa selectable negative literal :pA(x). The transformation�1 is modi�ed such that these occurrences are preserved.Now the selection function can select an arbitrary nega-tive literal. For example, if we have a terminological sen-tence of the form A1u: : :uAn _v C, the selection functioncan choose an arbitrary :pAi(x) among the negative lit-erals in C1 = f:pA1(x); : : : ;:pAn(x); pC(x)g. This pre-vents any inference with C1 until a unit clause fAi(ta)ghas been derived. Independent of these consideration,this optimisation has been incorporated in the FaCT sys-tem [Horrocks, 1997].From correspondences with propositional dynamiclogic it is known that the satis�ability problem for gen-eral ALC knowledge bases is in EXPTIME. The algo-rithms presented in Sections 2 and 4 require double ex-ponential time in the worst case. Buchheit et al. [1993]note that this can be improved by caching contradic-tory sets C(�; a) of previously investigated branches in-troduced by applications of the )t rule. This has beenformalised in [Donini et al., 1996]. Evidently, this formof caching will have the same e�ects for the resolutionprocedure described in this paper.7 ConclusionThe prime motivation for this work has been our in-terest in possible links between di�erent proof systemsfor description logics and modal logics. This paper fo-cuses on a particular tableaux proof system for descrip-tion logics with general inclusion sentences and showshow this system and certain optimisations can be sim-ulated with polynomial overhead in the context of reso-



lution. Our results provide new insight into the relativeproof complexity of these systems similar to correspond-ing results for propositional logic. Although we haveconsidered only the logic ALC, our results may be ex-tended to description logics with role conjunction androle hierarchies. We expect similar results can also beobtained for other forms of tableaux proof systems or se-quent calculi. Resolution procedures following tableauxproof strategies have the advantage that proofs maybe easily translated back into tableaux or sequent-styleproofs of the original source logic. Related work onbackward translation is by Caferra and Demri [1993;1995].The resolution decision procedure described in thispaper o�ers just one of many possible search strate-gies. Other resolution strategies utilised in the litera-ture, mentioned in the Introduction, are implementedby ordering strategies which do not rely on blocking orloop-checking techniques. Such techniques are also notneeded in the ordered chaining calculus for modal log-ics with transitive modalities, or ALC with transitiveroles [Ganzinger et al., 1999].Although experimental results with SPASS using or-dered resolution are encouraging [Hustadt and Schmidt,1997; Hustadt et al., 1998], there are classes of prob-lems on which tableaux proof systems have better per-formance. The results of this paper now provide a ba-sis for the scienti�c testing of the comparative perfor-mance of the two orthogonal strategies for resolutionproof systems, and for establishing guidelines indicatingwhich strategy is most appropriate for particular classesof problems.References[Baaz et al., 1994] M. Baaz, C. Ferm�uller, andA. Leitsch. A non-elementary speed-up in prooflength by structural clause form transformation.In Proc. LICS'94, pages 213{219. IEEE ComputerSociety Press, 1994.[Bachmair and Ganzinger, 1998] L. Bachmair andH. Ganzinger. Equational reasoning in saturation-based theorem proving. In W. Bibel and P. Schmitt,eds., Automated Deduction: A Basis for Applications,Vol. I, pages 353{397. Kluwer, 1998.[Buchheit et al., 1993] M. Buchheit, F. M. Donini, andA. Schaerf. Decidable reasoning in terminologicalknowledge representation systems. J. Ariti�cial In-telligence Research, 1:109{138, 1993.[Caferra and Demri, 1993] R. Caferra and S. Demri.Cooperation between direct method and translationmethod in non classical logics: Some results in propo-sitional S5. In R. Bajcsy, ed., Proc. IJCAI-93, pages74{79. Morgan Kaufmann, 1993.[de Nivelle, 1998] H. de Nivelle. A resolution decisionprocedure for the guarded fragment. In C. Kirchnerand H. Kirchner, eds., Proc. CADE-15, volume 1421of LNAI, pages 191{204. Springer, 1998.
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