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Abstract This paper explores the use of resolution as a meta-frankefeordeveloping
various, different deduction calculi. In this work the facis on developing deduction cal-
culi for modal dynamic logics. Dynamic modal logics &BL-like extended modal logics
which are closely related to description logics. We show tedsleau systems, modal resolu-
tion systems and Rasiowa-Sikorski systems can be develpkstudied by using standard
principles and methods of first-order theorem proving. Tyereach is based on the trans-
lation of reasoning problems in modal logic to first-ordeaudal form and using a suitable
refinement of resolution to construct and mimic derivatiofishe desired proof method.
The inference rules of the calculus can then be read off flenttausal form. We show how
this approach can be used to generate new proof calculi @wve ppundness, completeness
and decidability results. This slightly unusual approalttmss us to gain new insights and
results for familiar and less familiar logics, for diffetggroof methods, and compare them
not only theoretically but also empirically in a uniform fin@work.

Keywords deduction calculus synthesigesolution- tableaux- dual resolution dual
tableaux modal resolution decidability- modal logic

1 Introduction

In this paper we discuss and extend an approach of develtgihgaux calculi for modal
logics that has been suggested and followed in our previauks [40, 19, 25, 26, 28, 46, 48].
Although resolution calculi apparently operate consilrdifferently from tableau calculi,
we have shown that it is possible to linearly simulate mamgn&of modal logic or descrip-
tion logic tableau calculi with standard techniques of foster resolution theorem proving.
In [26] we have shown how derivations and search in standarigau algorithms of the
description logiceZ % can be linearly simulated by resolution. This correspomdot

cal satisfiability testing in the basic multi-modal lodig,. Using redundancy elimination
techniques and a blocking rule we have shown in [25] how toimand strengthen stan-
dard tableau algorithms fa £ % with respect to non-empty TBoxes. This corresponds to
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local satisfiability in multi-modal logi®,; with respect to a background theory of modal
logic formulae (that is, a set of non-logical axioms or gllohssumptions). In [28] details
can be found of how to simulate derivations in the prefixedlsistep tableau calculi of
Massacci [32]. These simulation results show that it is ibpbss$o use first-order resolution
in a way that it closely simulates modal logic and descriptagic tableau procedures. The
close connection exhibited in these papers between tabledwa certain instance of res-
olution is exploited in [10] in order to develop a tableauccélis for a logic that has not
been considered before. The logic considered was the dgnawdal logicK ) (A, V,™).
Dynamic modal logics ar®DL-like modal logics in which the parameters of the modal
operators (constructors) can be relational formulae, whre interpreted as actions or pro-
grams inPDL, and are closely related to description logics [44} (A, V,” ) is the multi-
modal logic defined over frames in which the relations arsediounder intersection, union
and converse. The logic corresponds to the descriptior leg#¢ in which conjunction,
disjunction and converse of roles are allowed. In [10] weehslwown how a tableau cal-
culus can essentially be ‘read off’ from the clausal formta# translation of formulae in
Km (A, V,7). In [46, 48] we use resolution methods to develop a new tainsl mapping
(called the axiomatic translation) of traditional styledablogics. This is then used to derive
tableau inference rules, resulting in tableau calculi ase propagation rules rather than
structural rules.

It is this ‘develop via first-order resolutiondpproach which we explore and extend in
this paper. We consider in more detail how tableau calculi loa developed for modal
logics via a suitable translation to first-order logic andatation. However we also show
that the approach can be used to develop other kinds of dedunethods. In particular, we
show how the approach can be extended to develop RasiowssHilsystems. These are
tableau-style calculi for testing the validity of formul§g0, 38]. In addition, we consider
the development of modal resolution systems [1, 13, 15] iojgerate directly on modal
logic formulae.

We show that all three types of calculi (tableau, RasiowaSki, modal resolution) can
be obtained naturally via translation to first-order logid gtandard techniques of resolution
theorem proving. Key to the ‘develop via first-order resioluitapproach are three aspects:

1. An effective, sound and complete translation to firsteoldgic that retains enough in-
formation about the input formula of the source logic so thatinference rules can be
read off from the clausal form.

2. Arefinement of first-order resolution which performs efeces exactly like the kind of
system we want to develop.

3. If needed, partial pre-saturation and purification of¢haracteristic clauses.

The form and property of the calculus one obtains dependsnaech on all three aspects
and small modifications result in different variations ofccdi and also different styles of
calculi.

In this paper we focus on the developmengaund semantic calculBy this we mean
calculi which operate on labelled modal formulae. For eggérator in the logic there is
a decomposition rule which basically ‘breaks down’ forneulato less complex formulae
on the basis of the semantics of the top-level operator inafrtke premises. The labels
are given by constants (or ground Skolem terms) which reptestates in the underlying
Kripke model. Currently, ground semantic tableau calcppear to be the preferred style
of tableau calculus in the area, and many modal and deserifzigic theorem provers are
based on ground semantic calculi.



In order for the resolution inference steps to be translatbhck into inference steps
on modal formulae we need to use a translation to first-omlgic Ithat allows us to relate
clauses back to modal formulae. This can be achieved byl&t&rs mappings combined
with structural transformation. Structural transforroatis a standard techniques in auto-
mated reasoning which introduces new predicate symboldefirdtions. The cited previous
work shows that ground semantic tableau calculi can be sidlby a structural transfor-
mation into range-restricted clauses in combination wighenresolution. A clause is range-
restricted if all variables of the clause occur in the negaliterals of that clause. Hyper-
resolution on range-restricted clauses has the propeatyathpositive premises are ground
clauses and all conclusions are ground clauses. This issphg¢he property which, when
using a structural transformation, allows us to interphet megative, non-ground premise
as an inference ruleZ of the ground calculus. The positive, ground premises of @ehy
resolution inference step represent then the premiseseofulle .#, and the conclusions
represent the conclusions of the rule. Combined with gmditthyperresolution allows us to
simulate and develop ground semantic tableau calculi. W&uds how dual hyperresolution
with splitting allows us to simulate and develop ground seticgRasiowa-Sikorski calculi.
Furthermore, we see how hyperresolution without a spjttiie produces modal resolution
calculi.

To illustrate the approach we focus on the development otitidbr the dynamic modal
logic Kim(A,V,7,1). In Ky (A,V,7,1) the additional relational operators are conjunc-
tion, disjunction, converse and domain restriction. Tlhigi¢ was chosen because when
this work was undertaken for [43], which is the short versidrihe present paper, it has
not been considered before in the literature and no deducttruli had been described for
it. Kam)(A,V,7,1) is subsumed by Peirce logic, the logical version of Peirgetadas [6],
for which tableau calculi are defined in [35, 49]. Howevee thlational disjunction opera-
tor and the domain restriction operatorkqfy (A, V,~, 1) are not explicit operators in Peirce
logic. This means there are no tableau rules for these apeiiatthe existing tableau calculi
for Peirce logic. Although sound rules can be easily defimedHese operators, on the one
hand, the logic lacks the symmetry that Peirce logic hasusecaf the absence of relational
negation inKy (A,V,”,1). On the other han&, (A, V,™,1) is decidable and Peirce logic
is not decidable. Since this work was undertaken, tableaiside procedures have been
developed in [50, 51] for description logics which subsufng (A, V,™,1). Since the logic
Km(A,V,7,1) is simple and has not been studied explicitly before, it igenideless still
a good candidate for illustrating and exploring the positigs of synthesising deduction
calculi as an application of resolution.

This paper is of theoretical and practical interest, noy @alresearchers interested in
modal and description logics, but also anybody interestgat@of methods, decision pro-
cedures, the relationship between proof methods and gemglsuch methods, and imple-
menting theorem provers. Novel contributions are the ¥alhg.

— The simulation of Rasiowa-Sikorski and modal resolutiorthrads by first-order reso-
lution.

— The interpretation of tableau, Rasiowa-Sikorski and medsblution methods as spe-
cialisations (reductions) of first-order resolution.

— The use of a non-standard approach to developing proof mig#ed implemented sys-
tems.

— The application of resolution not merely as an automatesior@ag procedure, but as a
meta-framework within which it is possible to develop tahlecalculi and other styles
of calculi, decision procedures and even implemented psove



— A uniform methodology for comparing different calculi, bawith respect to theoretical
and practical aspects.

— The transfer of refinements of resolution, such as orderitigether calculi resulting
in more efficient inference systems. In earlier work [25] wewed that a technique
called absorption [23] used to limit the search space fdbajlg satisfiable formulae in
description logic tableau systems can be strengthenedmwyi@rresolution.

— We show that the notion of redundancy, which is crucial faofetion but virtually
absent in other calculi, carries over to other calculi, &=y in stronger results and
improved inference systems. Similar to resolution, we @efedundant formulae and
redundant applications of inference steps in other caltuladdition, we introduce a
new notion ofredundant rules of inference

— The characterisation of the relationship between diffedeluction calculi and proce-
dures in terms of the notions of simulation and reductiotwt calculi or procedures
are correlated by a step-wise simulation and reductiorioakship this defines an exact
correspondence and makes clear that derivations in theseaauli are essentially the
same, i.e. their behaviour is the same. As a consequence weppdy all available
knowledge of one calculus (procedure) to infer propertiethe corresponding other
calculus (procedure). Of greater significance is that ththatkallows us to develop
new and improved calculi.

— For the logics under consideration the methodology allogvaat only to read off the
inference rules of a calculus, it also allows us to deterraipgori the maximum number
of times a particular inference rule of the new calculus wWowted to be applied in a
derivation for a given input formula. By inspecting the daliset of the translation it
is possible to say which inference rules are not needed faveandormula, and it is
possible to tell the maximum number of applications of arfgrence rule.

— Itis possible to tailor different styles of deduction apgebes for different logics.

The rest of the paper is structured as follows. In the nextimeeve recall standard
definitions of resolution-based theorem proving. SectialisBusses dynamic modal logics
and defineXm (A,V,”,1). Section 4 introduces and analyses the simulation and yeduc
tion mappings which are used to describe the relationshipdsn different deduction ap-
proaches. It also defines the conversion to clausal formvikatise. Section 5 defines the
notions of simulation and reduction which allow us to tremsfoundness, completeness and
termination of hyperresolution to the obtained calculiSkctions 6—8 we describe, in turn,
how ground semantic tableau calculi, ground semantic Rastikorski calculi, and ground
modal resolution calculi can be developed in a systematyowigfirst-order resolution. The
final section discusses the significance and some consezpiehthe method and mentions
future work.

Throughout the paper we use the notation and terminologyioprevious papers, see,
for instance, the surveys [45, 47]. The paper is an extendédnaproved version of [43].

2 First-Order Resolution

The resolution calculus operates on sets of clauses. Gauwsayuantifier free disjunctions
of literals which may contain function symbols. The varebhre implicitly assumed to be
universally quantified. We assume that disjunction is a catative and associative opera-
tor. This means that clauses are regarded as multisete@itrather than sets of literals.

Theorem 1 There is a linear reductioi€ls of any first-order formula to clause logic such
that ¢ is valid in first-order logic, that ig= ¢, iff Cls(—¢) is unsatisfiable.



This says that any first-order formula can be transformedieffily into a satisfiability
equivalent set of clauses. The clausal form is obtaineddmsformation to conjunctive nor-
mal form, Skolemisation and crucially involves structurainsformation which introduces
new predicate symbols and definitions. Since resolutionrefutation calculus, instead of
proving theoremhood, resolution attempts to refute thetieg of a given formula.

The basic (unrefined) resolution calculus consists of tvierénce rules, the resolution
rule and the factoring rule, and no axioms. For proposititogic the resolution rule is just
the operation that infers a clauSev D from two clause€ v A andD Vv —A. The factoring
rule is a contraction rule, that is, it is a form of simplificat which eliminates multiple
copies of the same literal from one clause, that is, it inf2xsAfromC v AV A. These two
rules provide a sound and refutationally complete calcidupropositional logic and sets of
ground clauses. We obtain a sound and refutationally campierence system for full first-
order logic and clause logic, if we augment the rules witliication. This calculus, thieasic
resolution calculu$42], is sound and complete for full first-order logic anduga logic. Itis
however very prolific in generating new clauses. This wagadtalready in the very early
days of the development of first-order resolution methode first papers, by Robinson
and others, on refinements of resolution appeared in the gaane¢hat Robinson published
his famous paper which introduced resolution. Since thesnitles the advances have been
impressive. The current generation of theorem proversghvhnicludespass[53], E [52]
andvAMPIRE [40] (in order of creation), are based on the modern framkwbsaturation-
based resolution and superposition. In the following, wiverrefer toresolutionwe mean
this framework [3, 36].

The main ingredients of the framework are refinements ofrifexénce rules which re-
strict their applicability and a general notion of redundarRefinements of inference rules
are defined in terms of two parameters: an orderingnd a selection functio8. The idea
is that inferences do not need to be performed (but can)ssiriteey are on literals maxi-
mal under the given ordering or on (negative) literals gekkdy the selection functio.
The selection function can override the ordering. Thaf i literal is selected then it is the
preferred candidate for an inference step even though thegebe ‘larger’ literals in the
clause. The ordering and selection function are used ta threinumber of possible infer-
ences. Itis clear that, in general, if we can reduce the nuwftossible inferences without
losing completeness then a refutation proof can be founa moickly as the search space
for the proof is reduced. There is a general completenes¥ proich requires only weak
conditions for the admissibility of orderings and seleetionctions [3].

Simplification and deletion rules are important regard#fahe style of deduction one
uses. In the resolution framework these are based on a geotéicn of redundancy, which
is based on considerations of the model construction wlicht ithe centre of the com-
pleteness proof. Standard simplification rules like eliiion of duplicate literals within a
clause, tautology deletion, subsumption deletion (fodasard backward subsumption dele-
tion), condensing, etc, are instances of this notion [3].

Let Rg%d be the resolution calculus defined by the rules of Figure lie (fieaning of ‘red’
in the notation is ‘with redundancy’ and the meaning of ‘sp'with splitting’. & denotes
disjoint union.) In our presentation we distinguish foundi$ of rules. The Deduce rules are
the ordered resolution and positive factoring rules. Thieong:- is a parameter which can
be any admissible ordering ai&is any selection function of negative literals. The Delete
and Simplify rules are deletion and replacement rules cditvipawith the general notion
of redundancy [3]. Essentially, a ground clause is redundéh respect to a sétl and the
ordering >, if it follows from smaller instances of clauses M A non-ground clause is
redundant irN if all its ground instances are redundantNnTesting for redundancy in its



Deduce: %{C} if Cis a factor or resolvent of premisesih

Delete: NwT{C} if Cis redundant with respect 9.

Simplify: N if (N\M)UM' is satisfiable whel is satisfiable and every
piy- (N\M)YuM’ clause inM is redundant with respect {iN\M) UM'.

Split: N@{CvD} if C andD are variable-disjoint and both are positive.

NU{C} INU{D}

Resolvents and factors are computed with these rules.

CVA -BvD
(CvD)o

provided (i) o is the most general unifier & andB, (i) no literal is selected irC, andAo is strictly -
maximal with respect t€o, and (iii) —B is either selected, orBo is maximal with respect tdo and no
literal is selected iD. The left (right) premise is called thgositive (negative) premise

CVAVB
(CVA)o

provided (i)o is the most general unifier & andB, and (ii) no literal is selected i8 andAg is --maximal
with respect taCo.

Ordered resolution:

Ordered factoring:

Fig. 1 The resolution calculuR’s%d.

general form is an expensive operation; in first-order lggiceral redundancy elimination is
undecidable. For this reason one does not find theorem prtivatr implement redundancy
elimination in full generality, instead only effectivehomputable instances of the Delete
and Simplify rules are implemented.

The Split rule is a rule familiar from DPLL algorithms and kadu calculi. Instead of
refutingN U {C v D} one refutes botitN U {C} andNU {D} (alternatively, it is possible to
use the complement splitting rule, which means that instéaéfutingN U {C v D} one
refutes bottN U {C} andN U {=C, D}). The splitting rule is don’t know non-deterministic
and usually requires backtracking. However, in the regmiutramework an alternative to
explicit splitting is splitting through new propositioneriables [9, 39] implemented in the
theorem provervAmPIRE [40] or the generalisation called separation in [44].

The restriction that only positive clauses are split is restemtial for the soundness and
(refutational) completeness results below. The resticts however important for our ap-
plication.

The calculus without the splitting rule is denoted B and R denotes the calculus
with just the Deduce rules.

Theorem 2 (Bachmair et al [3, 4]) Rfs%d, R4 and R are sound and complete refutation
systems for clause sets.

The (ordered) hyperresolution calculus based on maximal selection of negative liter-
als. This means the selection function selects exactly éhefsall negative literals in any
non-positive clause. LetDH;%d be the calculus based on maximal selection and an order-
ing =, where the Deduce rules are given by the rules in Figure & ffigians the rules are
the hyperresolution rule, positive factoring, redundagtiynination and splitting. Similar
as above OH"d denotes the calculu@HQ%d but without the splitting ruleQH denotes the
calculus just consisting of Deduce rules, aispis OH with splitting. For completeness an
ordering refinement is optional. We use the notatiff, H*, H andHsp for the unordered
versions.



Ordered hyperresolution:

CiVA1 ... CyVA, —BiVv...v-ByvD
C1V.. VC,VD)o

provided (i) o is the most general unifier such thgto = B;jo for everyi, 1 <i <n, (i) Ao is strictly
~-maximal with respect t€ o, and theC; are positive clauses, for everyl <i < n, and (iii) for everyi,
1<i<n, -Bis selected an® is a positive clause. The rightmost premise in the rule isrretl to as the
negative premisand all other premises are referred tgasitive premises

CVAvVB
(CVA)o

provided (i)o is the most general unifier @&andB, and (ii)C is positive andAo is >-maximal with respect
toCo.

Ordered factoring:

Fig. 2 The Deduce rules of ordered hyperresolution.

Corollary 1 OHE!, OH™, OHsp, OH, HE!, H'®Y, Hsp and H are sound and complete refu-

tation systems for clause sets.

3 Dynamic Modal Logics

A dynamic modal logic is an extension of the multi-modal i, in which the modal
operators are parameterised by relational formulae [47].

Given countably many propositional variables denoteghjgyand countably many rela-
tional variables, denoted by, dynamic modal formulaandrelational formulaeare defined
inductively as follows. Every propositional variable isyndmic modal formula and every
relational variable is a relational formula.¢f ¢ are dynamic modal formulae amd 3 are
relational formulae, then

L, -¢, o A, and[a]g
are dynamic modal formulae, and

aAB,aVv B, a”andale

are relational formulae. I, the only relational formulae are relational variables.

Thus the language of dynamic modal logics consists of twdasyic types: dynamic
modal formulae and relational formulae. The logical conines are (i) the connectives of
the basic multi-modal logi&, with the difference that the modal operators are indexed
with relational formulae, and (ii) a finite set of relatiormderators. A dynamic modal logic
with relational operatorsy, .. ., x is denoted by (x1, - . ., *k)-

The semantics of a dynamic modal logic is defined in termsavfifs. A frame is a tuple
(W, R) of a non-empty sat/ (of worlds) and a mapping from relational formulae to binary
relations ovelV. A model is given by a triple#Z = (W, R,v), where(W,R) is a frame and/
is a mapping from propositional variables to subset#/ofatisfying the conditionsR, is
the preferred notation fdR(a)):

MK L
A xEp iff xev(p),
MXE=-@ iff A X o,
M XE @AY iff both Z ,x|=@and.Z x|= Y,
M xE=[ale iff (xy) € Ry implies.Z,y = ¢, for anyy e W.



In addition, the following conditions are satisfied:

Rang =Ra NRg,
Ravp = Ra URg,
Rav :Rz;v

Raip ={(X.y)| (X.y) € Ra A A X}= ¢}.

R~ denotes the converse (or inverse) of a relafWWe can define the range restriction
operator bya | @ =% (a~1¢)~.

If 4 ,x = ¢ holds theng is (locally) trueatx in .# and.# (locally) satisfiesp. A
modal formulag is (locally) satisfiabléff there exists a model# and a worldx in .# such
that.#,x = ¢. A modal formula iglocally) validiff it is (locally) satisfiable in every world
of all models.

The following result is a consequence of decidability resin [26] and also of the
decidability of the two-variable fragment of first-ordegio.

Theorem 3 Let L be a dynamic modal logic with any subsefofVv,~ 1, |} as relational
operators. The local (and global) satisfiability problemLitis decidable.

It follows from [26, 33] that the result remains true when vileva negation as a relational
operator [26], or relational composition and identity [38pwever, adding both relational
negation and relational composition leads to undecidgbMore precisely, any dynamic
modal logic with relational conjunction, relational negatand (negative occurrences of)
composition is undecidable [45, 47].

For efficiency reasons and in order to be able to have bettgratmver the resolu-
tion inferences performed on the clausal form, we us&ctural version of the relational
translationof dynamic modal logics into first-order logic. The tranglatis similar to the
one used in [46, 48]; other structural translations havenhesed in [10, 25, 26, 28], for
instance.

Throughout the paper, we assume that all occurrences ofeloabation are eliminated
from modal formulae. For any formulg, let ~F denoteG if F = =G, and—F otherwise.
Thus,~F is the complement df.

Let Def be the transformation of dynamic modal formulae adtional formulae which
is defined as follows.

Def(y) =" vx (Qy(X) — m(y, X))
A VX(Quy(X) — T(~, X))
AVX(Qy(X) = =Qy (X))
Def(ar) =" vxy(Ru (x,y) — m(a,X,y))
AVXY(T(a,%,Y) = Ra(X,Y))

Def(y) is thedefinitionof Qy, which is a new predicate symbol uniquely associated with
the modal formulay. Similarly, Def(a) is the definition of the new symbdt, uniquely
associated with the relational formuia 77 and 77 are defined in Figure 3. Let Def) =d¢f
{Def(F) |F € X}, if X denotes a set of modal and relational formulae.

By Sf(F) we denote the set of all modal and relational subformul&e. of



(LX) =L
m(—L,x) fﬁQL( ),
m(p,x) =
i(—p, ):ﬁQp( ),
(WY A @,X) = Qy(X) A Qqp(X),
(= (Y A 9),X) = Quy(X) V Qugp(X),
r([a]y,x) = VZ(Ra (X, 2) — Qu(2)),
ni(=[a)y,x) = 32(Ra(%,2) A Quy(2)),
m(r,xy) =71 (r,xy) = Re(x.y),
m(a A B,xY) =T (a A B,XY) =Ra(XYy) ARg(XY),
m(a v B,xy) =T (aV B,xy) =Ra(xy) VRs(xy),
na~ xy) = 7(a”,xy) = Ra(y.%),

) =
ma1@,xy) = Ra(%,y) A Qp(X),
(al9,xy) = Ra(%y) A =Qugp(X).

In r([a]y,x) andri(—[a]y,x), zdenotes any variable distinct from

Fig. 3 Definition of the translation mappingsand .

Theorem 4 Let L be a dynamic modal logic defined over the operatorsany, ™, 1}, and
let ¢ be any modal formula. Suppose N is the set of clauses obtiorag’ =% 3x Qp(X) A
ADef(Sf(¢)) by transformation into conjunctive normal form, inner Skulsation, and
clausifying. Then:

1. Each clause in N is either a unit clauséd), for some Skolem constant a, or it is an
instance of a definitional clause given in Figure 4.

2. ¢ is locally satisfiable in L iffp’ is first-order satisfiable iff N is first-order satisfiable.

3. N is computable in linear time.

The markings by" of some of the literals in Figure 4 can be ignored for now; they
explained in Section 6.

In line with [46, 48] the first clause in Figure 4 is calleshegative shortcut clausén-
tuitively, shortcut clauses or shortcut formulae link anfioita to its negation. The remaining
clauses are said to lefinitional clauses associated with the modal subforntuia the
index of the first literal.

For efficiency reasons it is sensible to take the polaritieallothe occurrences of a
subformula in the input problem into account in the spedificaof Def. We do not do
this here because the methodology considers all poss#sal forms that can be obtained
for the logic under consideration, so that all possiblerigrfiee rules for the logic can be
extracted from the clausal forms.

4 Simulation and Reduction

In this section let.; andL, denote two logics (not necessarily modal logics). Suppdse
a sound and complete translation of (sets of) formulde; ito (sets of) formulae iy, that
is,N =1 ¢ iff [T(N) =2 1(¢) for any seNU{¢} of formulae inL;. In addition we assume
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Subformula®@ Definitional clauses associated with
(shortcuy ﬂQﬁw(X)J’ V =Qy(x)*
L -Q (0t
WAQ —Qurp()™ V Qu(x)

N

(YA "Qﬁ(lll/\(p) (¥)* VvV Quy(X) V Qup(X)

[a]y 1wV -Ra(xy)" vV Qu(y)
-laly ﬁQﬁ[u]w V Ra (X, gy (X))
Qe (¥) " V Quy(fofa1y (X))

an B ﬁRot/\ﬁ( s +

/\/\

V =Rg(x,y)*

E .
aVvpB -Rgypl( V Rg(xy)

( +

( +

Fig. 4 Definitional clausal forms foKy, (A, V,~,1).

that/T is computable in linear or polynomial time. L€t be a calculus, or proof procedure,
for L1, and letC; be a calculus, or proof procedure, 1or.

In the previous version of this paper [43] the transfer ofginess and completeness was
based on the notion of p-simulation [8]. Formalfy, p-simulategproofs in C; (with respect
to ) iff the following condition holds: There is a functiancomputable in polynomial time
which maps any proof (or refutation) ity to a proof (or refutation) irC,. If g maps a proof
to a refutation, or a refutation to a proof, we say thadually p-simulate<’;.

In the next theorem and subsequently, when we use the ndtongplete’ or ‘com-
pleteness’ in conjunction with a refutational calculus weam ‘refutationally complete’ or
‘refutational completeness’.

Theorem 5 Suppose’, (dually) p-simulates’; (with respect td7). Then

1. If C1 is complete thert, is complete.
2. If Gy is sound ther(Cy is sound.

Proof SupposeC; andC; are both calculi (procedures) for proving validity. Assulé=,

¢. Then by completeness 6f we have thaN -1 ¢. This implies1(N) 2 I1(¢), sinceC,
p-simulatesC; with respect td7, andl1 is sound and complete by assumption. This proves
completeness. For soundness, asstihig ¢. This implies/1(N) 2 I(¢) as above, and
then by soundness af, we get/1(N) =2 1(¢), which impliesN =1 ¢. The cases where
one ofC; andCy, or both, are refutation calculi (procedures) are simplelries. ad

Corollary 2 If C; and G, p-simulate each other (with respectfib), then C; is sound and
(refutationally) complete iff so i§>.

The notion of p-simulation is sufficient for obtaining soneds and (refutational) com-
pleteness for the derived calculi from the soundness anthténal completeness of hyper-
resolution. As said, this was done in [43]. It is however mitboeninating to use the stronger
notions ofstep-wise simulatiofil1] andreduction These notions can be used to correlate
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any derivations in different calculi, not just successfetigations that are proofs. We need
these notions because our aim is to simulate the searchrpeddy different procedures,
especially decision procedures. This means that all infersteps need to be simulated; not
just those leading to proofs.

By definition, C, step-wise simulate§; (with respect tof1) iff there is ann and a
functiong mapping every inference stepdh to a sequence of at masinference steps i,
which derive the corresponding conclusion. More precjséll; andN;.; are consecutive
sets in anyC;-derivation then7(Ni;1) can be obtained by at mostinference steps it
from T(N;). If rather than N |=1 ¢ iff IT(N) =2 1(¢)’ we have thatN =1 ¢ iff TT(N) A
—I1(¢) is unsatisfiable ih.y’, then we sayC, step-wise simulate§; (with respect td7) in
a dual mannerl(or C; dually step-wise simulates,).

The definition says that, if, step-wise simulate§y every inference step if; can be
mimicked by a bounded number of inference step&znmwhich produce the corresponding
conclusion. Notice that a simulation in calculGsmay use more inference steps.

Theorem 6 Suppose’, (dually) step-wise simulateS, (with respect ta7). Then

1. If C1 is complete thert, is complete.
2. If Gy is sound ther(; is sound.

The proof is the same as for Theorem 5. Thus, like p-simulati@ppings, step-wise
simulation mappings preserve soundness and (refutatiooalpleteness. The more impor-
tant property for the present paper is the transferal of doess to the simulated calculus
(the second property), because hyperresolution takeslhefrC,.

The notion of a reduction, or specialisation, is a mappin¢han other direction. For-
mally, we say a calculus or procedug is areduct(or specialisatiof of C, (with respect
to 1) iff there is ann such that the inference steps in afprderivation can be uniquely and
exhaustively grouped into macro inference steps of maxiemgjthn that correspond to in-
ference steps id;. More precisely, any complete or clos€gtderivation can be partitioned
into (possibly interleaving) sequences of sets with lergthand there is a function which
maps each sequendk ,...,N;, (wherem < nandij < iy, if j <Kk) to one inference step
in C; with corresponding premises and conclusiamss the finite bound on the size of a
macro inference step. If rather thad =1 ¢ iff [1(N) =2 1(¢)’ we have thatN |=1 ¢ iff
IM(N) A =I1(¢) is unsatisfiable in.,’, then we sayC; is adual reductof C; (with respect
to 7).

Intuitively, an inference step in the reduGt captures a combination of smaller inference
steps inC,. That is, we can think of the reduct using macro inferencpssfer hyperinfer-
ence steps). Inference stepsdp are finer, while inference steps ify are coarser. The
reduct can therefore be viewed as a specialisation of ther otiiculus.

Theorem 7 SupposeC; is a (dual) reduct ofC, (with respect td7). Then

1. If Gy is complete thert; is complete.
2. If ¢y is sound therC; is sound.

Proof Similar to the proof of Theorem 5. a

The preservation of completeness by the reduction mapgiinggiortant for our method-
ology.

If G, (dually) step-wise simulates; (with respect td7) and the inverse of the step-wise
simulation function is a (dual) reduction (with respectii) then we say that; and C;
(dually) correspondo each other (with respect @).
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Corollary 3 SupposeC; and C, (dually) correspond to each other (with respect/9. If
C is sound and complete, then is sound and complete.

This result is also true for calculi that p-simulate eacteatkVe can prove:

Lemmal 1. If G (dually) step-wise simulates, then G, (dually) p-simulatess.
2. If C1 is a (dual) reduct ofC, then C; (dually) p-simulatess.

The converse is not true in either case, because the p-siamufanctions map proofs to
proofs whereas the other two notions map derivations toakons (i.e. not just derivations
which are proofs). Theorems 6 and 7 are easy consequendes lefhma and Theorem 5.

Lemma 2 If C; is a (dual) reduct ofC, (with respect ta1) and n in the definition of the
reduction mapping is 1 the@; (dually) step-wise simulates (with respect taT).

We use the next theorem to transfer decidability resulteeaterived calculi.

Theorem 8 If C; and C; (dually) correspond to each other arf@ is a decision procedure,
thenC is a decision procedure.

5 Simulating Tableau Systems

Numerous tableau methods have been developed, studiedsaniinplemented for tradi-
tional modal logics, see, for instance, [7, 20, 32]. Table®thods for some dynamic modal
logics or logics equivalent to dynamic modal logics can bhenfbin the description logic
literature, see, for instance, [2, 33] and also here [10495,

In this section, let us first look at how resolution can steépevgimulate ground semantic
tableau for local satisfiability in the basic multi-modagio K, and how tableau can be
viewed as reductions of hyperresolution.

A ground semantic tableau calculus ) is given by the rules in Figure 5. There are
slight differences to similar calculi found in the literegu(see, for instance [12, 20]). The
rule (cl) is the closure rule anat¢ntr) is the contraction rule. The remaining inference rules
are called tableaexpansion rulesOften standard definitions do not include contraction
rules. Because we do not assume that conjunction is an idemtpaperator, our calculus
does include a contraction rule. Often only one rule for aoojions and negated box for-
mulae is included in calculi, but for reasons which becoméais, once we look at the
simulation by resolution, we choose the given definitionsthBare insignificant variations.
Observe that instead of introducing constants in(the;); rules, we can equally well use
Skolem terms.

A tableau derivationis a finitely branching tree whose nodes are sets of labetled f
mulae. Given thap is a formula to be tested for local satisfiability the root easl the set
{a: ¢}, wherea denotes a constant. Successor nodes are constructed dawm® with a
set of inference rules. Inference rules have the genenalfof Xy | . . . | X, whereX is the set
of premises and th¥; are sets of conclusions. An inference rule is applicablegelected
labelled formulaF in a node of the tableau, K, together with other formulae in the node,
are simultaneous instantiations of all the premises of tite Thenn successor nodes are
created which contain the formulae of the current node aaépipropriate instances Xf.

As usual it is assumed that in a derivation no rule is apphede to the same set of
instances of premises of a rule. We also stipulate that reveénte step is performed that
yields a formula already on the current branch.
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The side conditions of thé-[J;); rules ( € {1,2}) are thatt is a constant uniquely associated with the
premises: - .

Fig. 5 Tableau calculus foK .

Recall thatHsp denotes the unordered hyperresolution calculus withtsgitFrom now
on we assume that factoring, splitting, and the hyperréisoiuule are applied in this order.
This is an important assumption for the simulations and ecgédos. We also assume that
no inference step is performed that yields a conclusioradirg@resent in the current set of
clauses.

Now consider the clausal form of the structural translatibg as defined in Theorem 4,
that is, Figure 4. In particular, suppobkis the clausal form oBxQy (x) A ADef(Sf(¢)).
The definitional clauses relevant for the basic modal ldgig are in the top-half of the
table in Figure 4. Notice that for each of these definitiotalises there is one corresponding
tableau expansion or closure rule in Figure 5, and vice v&iwathe contraction rule there
is however no corresponding definitional clause.

The connection between the tableau calculus Hggis the following. Every applica-
tion of a tableau rule can be step-wise simulated by one orHyydnference steps. I
is the input formula, the derivation iHs, starts with an inference with the (only positive)
clauseQy (a) (see Theorem 4). This corresponds to the root of the tableawation given
by {a: ¢}. In the tableau derivation we pick a formwap from a branch and attempt to
apply one of the inference rules to it. If the branch contairfermulas: ~( the closure
rule is applicable and yields. In Hsp this derivation corresponds to resolving the clauses
Qu(s) andQ.y(s) with the shortcut clauseQ-y(x)™ vV =Qy(X)* using one hyperresolu-
tion inference step. The resolvent is the empty clausé a similar fashion we can show
that possible applications of each of the other tableauresipa rules, except for the-A)
rule, can be simulated by one hyperresolution inferenqeist@lving the appropriate defi-
nitional clause as negative premise. In the case of negatgdrction we need to follow a
hyperresolution inference step with the correspondinghdifnal clause by a splitting step.
An application of the contraction rule is simulated by onetdaing step inHsp on the con-
clusion of an inference step with the definitional clausesygated conjunctions of modal
formulae.

Lemma 3 Hsp on the structural transformation defined in Theorem 4 stéesewimulates
ground labelled tableau for local satisfiability in k of Figure 5.

Proof By an inductive proof that shows we can map any tableau derivéo a correspond-
ing Hsp-derivation for the translated problem using an argumeskatched above. ad

To prove that the inverse of the step-wise simulation map@m reduction mapping we
need to show that all steps possibleHy, belong to a group of steps involved in simulating
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tableau steps. We can indeed show that there ardspderivations that contain any steps
that have no counter-part in the corresponding tableavatem. Therefore:

Lemma 4 The ground labelled tableau for local satisfiability i of Figure 5 is a reduct
of Hsp on the structural transformation defined in Theorem 4.

We can conclude that:

Theorem 9 There is a linear correspondence between the tableau asdnlFigure 5 and
Hsp on the structural transformation for local satisfiability Ky,

This strengthens a result in [10]. Related (but differeit)utation results have been
shown in [28] (see also [45]) for prefixed single-step tablealculi of K, andK extended
with the axiomsD, T andB. (The results are also true for multi-mod&}, with D, T andB
modalities.) Using the axiomatic translation method [4%, #he results can be strengthened
to prefixed single-step tableau calculi of other traditlonadal logics.

6 Developing Tableau Systems foK g (A, V,7,1)

Let us now illustrate how the principles of the ‘develop viatfiorder resolution’ approach
can be applied to the dynamic modal lo¢fig (A, V,™,1).
We can prove the following:

Theorem 10 Let ¢ be an arbitrary Ky, (A,V,”,1)-formula and let N= Cls(3x Qs (x) A
A\ Def(Sf(¢))) be the clausal form of the structural transformation defimed heorem 4.
Then:

1. AnyHsg-derivation from N terminates.
2. ¢ islocally unsatisfiable in i, (A, Vv, , 1) iff the Hsp-saturation of N contains the empty
clause.

Proof Part 1 can be shown using an argument similar to the proof ebiiém 6.6 in [28]
and Theorem 7.7 in [10]. Part 2 is a consequence of Theorerd Carollary 1. ad

The definitional clauses in the input 9¢thave the form as specified in Figure 4. The
literals selected by the selection function of the calculiysare marked witht. The only
other clause in an input set is a ground unit clause of the @gii@), where¢ is the dynamic
modal formula we want to test for satisfiability. Note tii@g(a) is the only positive clause
in N.

A crucial property is that the clauses Mare allrange-restrictedclauses, that is, all
variables of a clause occur in the negative part of the clausgperresolution on range-
restricted clauses has the property that all conclusiomgérresolution and factoring in-
ferences are ground clauses. Positive range-restrickedes are always ground. This im-
plies that factoring and splitting iAsp are applied only to positivground non-unitclauses.
Since factoring and splitting are applied before the hygstution rule, all non-unit ground
clauses are either factored and then split or just splibreethey are used as premises in hy-
perresolution inference steps. This means that the pegitemises of any hyperresolution
inference step itsp are alwaysgyround unitclauses.

1 Range-restricted clauses and the range restriction @pexat not related in any way.
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For the class of clauses we are working with, these groundclatises have the form
Qu(s) or Ry(t,u), wherey is some dynamic modal formula, is some relational formula
ands,t,uare ground Skolem termQy (s) andRy (t, u) translate directly to the labelled for-
mulaes: ¢ and(t,u) : a, where thest,u are now viewed as constants. We refestay and
(t,u) : a as theformulae associatedith Qy(s) andRy(t,u). Every hyperresolution infer-
ence step irHsp involves one (or two) positive premis€s(,C,) and a negative premide
from Figure 4. The positive premis€ andC, are ground unit clauses of the for@Qy(s)
or Ry (t,u). Following from what we have just said, the conclusion is sifdee clause again,
and it is either a ground unit clause of the same form, or it g@sitive clause of ground
literals of that form which can be factored or split. We al&serve that, sinc@y (a) is the
only positive clause i, the first inference step in amysp-derivation is performed with this
clause.

Now it does not take much to see how we can write down the tabildas which per-
form exactly theHsp-inference steps just described. Take a definitional cl@use-Aq[ Vv
—Az] vV D, whereAq, A, denote atoms anb is the largest positive subclause@flf C is a
negative clause we |& = . C contains at most two variables. Substitute these sathdt,
that is, apply the substitutioo = {x/s,y/t} to C. Now write Co as the ruleF(, R2)/G,
whereF; andF, are the labelled formulae associated wito and A,o. Similarly D be-
comesG, but if G is not a unit clause then disjunction is replaced| bifor example, the
definitional clause fofa]y,

“Qiajp(¥) ™V ~Ra(x,y)" V Qy(y), isturned into the rule W.

With the exception of the contraction rule, all rules in Figé can be obtained in this
way from Figure 4. The contraction rules are the rules cpording to factoring steps.
It is not difficult to see that factoring is applicable onlyhgperresolvents of an inference
involving either the definitional clauses for negated caonfions of modal formulae or those
for positive occurrences of disjunctions of relationahfiolae.

Let Tab be the tableau calculus fiy, (A, V,”,1) given by the rules of Figure 4. The
rules for dynamic modal formulae are the same a&fgy. The rules for relational formulae
include two kinds of rules for every operator: an eliminatiole and an introduction rule.
The introduction rules are indicated hy

Lemma5 Tabis step-wise simulated bysp with respect to the structural transformation
defined in Theorem 4 and is a reduction of it.

Proof For step-wise simulation we need to define a functiainat maps every inference
step in aTab-derivation to a sequence éfp-steps on the corresponding clauses. We just
sketch how one of the relational introduction rules, the] rule, can be simulated. The
unit clauses corresponding to the premiggs) : a and(s;t) : B areRq(s,t) andRg(s;t).
One hyperresolution step with these aRg,\g(x,y) V —-Ra(x,y)" V =Rg(x,y)* generate
the conclusiorR, ,g(s,t). The associated formulds,t) : a A 3, is the conclusion of the
(N)] tableau rule. It remains to check that the side conditiorte@fule are satisfied iHsp.
The side conditions of the\)[ rule, and the introduction rules (see Figure 6), limit tha-ge
eration of formulae in the conclusions to formulae that o@cthe input problem. Since the
transformations of a given input problem to first-order togind clausal form introduce new
symbols only for formulae occurring in the input probleme #ide conditions are satisfied
in Hsp-derivations. In this way it is possible to show that evetyléau rule can be step-wise
simulated by inference steps M.
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The side conditions of the-[]) rules ( € {1,2}) are that is a constant uniquely associated with the premise
s:[a]y. For the ruleg )y, (V)] ;, (A)f and(1), the side conditions are that the relational formulae in the
conclusions, occur as subformulae of a box formula in thatippoblem.

Fig. 6 Tableau calculus foK(m (A, V,7,1).

To prove thatTab is a reduction ofHsp we need to verify that the inverse mappiggt
is a function. For this we need to verify that there are noreriee steps in &sp-derivation
for the translation of &y (A, V,”,1)-formula that are not involved in simulating tableau
inference steps. This can be done by considering the pedsitths of clauses in anfsy-
derivation and thesg-rules applicable to them. We omit the details. a

The proof shows actually something stronger:

Theorem 11 There is a linear correspondence betweeib and Hsp on the structural trans-
formation for local satisfiability in Ky (A, V,7,1).

Soundness and refutational completenesgabfis now a consequence of Theorem 10.2
and Corollary 3.

Theorem 12 A formula ¢ is locally satisfiable in Iy (A, V,7,1) iff a tableau derivation
containing a branchz can be constructed iffab such that# does not contain. and no
more rules are applicable.

It is possible to make the side conditions for the introduttiules of Tab even more
restrictive and thus more efficient. This requires that weeaigariation of the translation as
defined in [10]. More specifically, the definition of Oef) needs to be varied so that dif-
ferent symbols are introduced for positive and negativeioeaces of relational formulae.
Then it follows that the introduction rules need only be &aplf the formula of the con-
clusions: 3 occurs as a subformula of a relational formylaf a box formulas:[y]0 that
occurspositivelyon the current branch. The introduction rulesTub are applied also for
box formulae that occur negatively.
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6.1 Decidability

The calculusTab is unusual for a tableau calculus in that it requires thesride the rela-
tional operators to be applied in two directions. For modaiulae the calculus uses only
elimination rules but for relational formulae it uses boliméation rules and introduction
rules. Because of the presence of the introduction rulesalailus can also be viewed as a
restricted form of natural deduction calculus.

In general, uncontrolled use of introduction rules can ggdjse decidability. Termi-
nation of the calculus follows however from the decidabpilitf Hsp on the transformed
problems. As a direct consequence of Theorems 8, 10.1 ane bbtain:

Corollary 4 Any (fair) procedure based omab is a decision procedure for local satisfia-
bility in K(m)(/\, V,” ,1)

Consequently, any procedure basedTan is a decision procedure, and no loop detection
mechanism or blocking is necessary to ensure termination.

Notice the side conditions of the introduction rules folltlm the clausal form of the
translated problem and restrict the applications of thesrih such a way that no formulae
are introduced that do not occur in the input problem. The shditions thus imply that
the calculus has the subformula property.

6.2 Finite Model Generation

The following results are extensions of results in [10, 28].
Let N», denote thdimit of a path(N =)Np,Ny,... in a resolution derivation starting
with N. By definition, N is the setJ;~oMNi>j Nk Of persistent clauses in the path.

Lemma6 Let¢ be any Ky, (A,V,”,1)-formula. Let N be the clausal form of the structural
transformation ofg. Let | be the set of positive ground unit clauses in the limitdf a
complete open branch in dsp-derivation starting with N. Then:

1. lis a (Herbrand) model of DNand N, if N, does not contain the empty clause.
2. AKm(A,V,7,1)-model ofg can be read off from I.

Theorem 13 1. For any modal formula locally satisfiable inj§ (A, Vv, 1) afinite model
can be effectively constructed with any (fair) procedursdzhonHsp.
2. Kim(A,V,7,1) has the finite model property.

We can state the following, due to the exact correspondeateelen clauses and for-
mulae inHsp- and Tab-derivations.

Corollary 5 For any modal formula locally satisfiable ingg (A, v, ,1) a finite model can
be effectively constructed with any (fair) procedure basedab.

6.3 Redundancy in Tableaux
The ‘develop via resolution’ methodology allows us to erdethe tableau calculus with

notions of redundancy that correspond to redundancy ingbaution framework. We say a
labelled formulaF is redundantin a node, if the node contains labelled formuRe. .., F,
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which are smaller thaR and=| (F1 A ... A Fy) — F (for n> 0) [10]. We can base the def-
inition of an ordering on the subformula or subterm orderimgt a more general definition
similar to admissible orderings in the resolution framew(ee [3]) may be chosen. For
example, all tautologies ih are redundant according to this definition.

We can use the link to resolution to define a new notion of rddany, namelyedun-
dant inference rulesBy definition, an inference rule i®dundant with respect to a set X
of labelled formulae and a calculus, if the definitional clause associated with the rule is
redundant with respect to the union of all definitional cksiassociated with the calculus
(andX), and the clauses associated with the formula¢.ibetting X = 0 gives redundancy
of inference rules. We say an inference rulesidundant in an calculug, if it is redundant
with respect toX = 0 andC. Observe that, in general, an inference rule which is naimed
dant in a calculus can be redundant with respect the calemdsome (derived) formulae.

The application of arule is defined to telundanif its conclusions are redundant in the
current node or the rule is redundant (this generaliseséfinition found in [10, 45]). For
example, if a node includes —p ands: —~(p A q), then the(—A) rule need not be applied,
and creating a new branch can be avoided. The inferencesstegundant because in the
corresponding hyperresolution derivation the clai@gs(s) andQ-p.q)(S) are present and
the conclusionQ-p(s) V Q-q(s) with the definitional clause foQ-p.q) is subsumed by
Q-p(s) and therefore redundant.

The next result gives justification fany instance of redundancy elimination including
the examples given. It states soundness and completendss tw@ibleau calculus modulo
redundancy. The result extends Theorem 8.1 in [10].

Theorem 14 A formula ¢ is locally satisfiable in I, (A,V,”,1) iff a tableau derivation

containing a branch? can be constructed iflab? (modulo redundancy) such that does
not contain and each rule application is redundant.

Notice that this formulation of the theorem is significargtyonger and more general than
the soundness and completeness results for tableauxyufuaid in the literature. It is not
difficult to see that the Corollaries 4 and 5 hold farb™? (modulo redundancy) as well. In
other words,Tab(™9  with or without redundancy, is a decision procedure andbzansed
to generate finite models fd¢y, (A, V,”,1).

6.4 Aside on Contraction and Factoring

Because of the presence of splitting, factoring is optidmatompleteness ofis, on range-
restricted clauses. The calculus obtained fildgawithout factoring isTab without the con-
traction rules. It follows then that all the main results abare also true foifab without
the contraction rules (soundness, completeness, andadbditiy). Without contraction rules
identical branches are however created and potentiallgiderable work is repeated during
the deduction process. For reasons of efficiency it thus ded® sense to exterithb with
contraction rules. Yet in the literature contraction rudes not usually included in the def-
inition of tableau calculi or tableau procedures. Howewaplemented tableau procedures
usually include simplification steps to eliminate such atifteoredundancies. These sim-
plifications are rewritings which replace obvious redurgiles including duplication of the
kind ¢ A ¢ anda V a. This makes the contraction rules superfluous.

In this paper clauses are assumed to be multisets. If clansessumed to be sets, then
factoring is not even needed on range-restricted clausetharmentioned inefficiency does
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For the([])j rule (j € {1,2}) the side conditions is thatis a constant uniquely associated with the premise
s:[a]y. For the ruleg-)i, (A)] j, (V)] and(1); the side conditions are that the complement of the relationa
formulae in the conclusions, occur as subformulae of a boxrdia in the input problem.

Fig. 7 Rasiowa-Sikorski calculus fcb((m)(/\vﬁ .

not arise. The methodology then produces the calctdadut without the contraction rules
and the assumption thatandV are idempotent operators.

7 Rasiowa-Sikorski Systems

The ‘develop via first-order resolution’ approach is notited to the development of tableau
calculi. In this section we use the approach to develop aikeddor validity testing. More
specifically, we develop a Rasiowa-Sikorski proof calcuiusthe dynamic modal logic
Km(A,V,7,1) and show that it is a decision procedure and can be used feraérg
counter-models.

Rasiowa-Sikorski proof systems [38] are dual tableau syst0, 49]. Given a for-
mulaF, they aim to prove its validity, or, iF is not valid, they aim to construct a counter-
model, that is, a model for the complement of the formulartBigawith the given formuldr,
this is done by systematic case analysis until fundameaslalitres are found. Fundamen-
tal validities are obvious validities such as the law of edeld middle (that is;F Vv F).
Rasiowa-Sikorski expansion rules have the same fofrX| ... |X,, as tableau rules and
are also applied top-down. The definition of a Rasiowa-Sikiaterivation, and its construc-
tion by application of rules, is the same as a tableau déivaThere is a slight variation
in notation though, and crucially the interpretation of thkes is differentX, X; denote sets
of labelled formulae, as in the previous section, but seferofiulae are now interpreted as
disjunctions of formulae, whereas branching is intergte@njunctively.

A Rasiowa-Sikorski calculus for local validity iy (A, V,”,1) is presented in Fig-
ure 7. Let the calculus be denoted R$. Notice that the rules are dual to the rules of the
tableau calculugab in Figure 6. To see this, inductively define a functgsuch that any la-
belled formulae of the forms: @ or (s,t) : o in a Tab-derivation is mapped tg(s) : ~ and
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(9(s),9(t)) : ~a in the correspondingrS-derivation. If the Tab-derivation is started with
a: ¢ then theRrS-derivation is started witla: ~¢. g maps the labels as followsg(a) = a
and any successor stat@troduced in thg—[:]); rules in Tab is mapped to the term intro-
duced by thé[-]); rules inRS. Then extend the definition to a mapping frafmb-inferences
(rules) torS-inferences (rules).

We can show:

Theorem 15 1. The calculiTab and RS step-wise simulate each other in a dual manner
for local satisfiability/validity in K (A, V7, 1).
2. There is a linear, dual correspondence betw&eband RS.

A detailed analysis of the duality between tableau and RasiBikorski calculi for Peirce
logic which extend¥y (A,V,™,1) can be found in [49].

Theorem 15 implies that all the properties of the tableacutas transfer to the Rasiowa-
Sikorski calculus, and vice versa. With the notion of recamzy dualised in the expected
way, we can state:

Corollary 6 Aformulag is locally valid in Ky, (A, V,™,1) iff a RS-derivation containing a
branchZ can be constructed (modulo redundancy, and with or withoeitiual contraction
rules) such thatZ does not contair~_L and each rule application is redundant.

Corollary 7 Any (fair) procedure based oRS is a decision procedure for local validity in
K(m) (/\7 V7] )

Corollary 8 A finite modal counter-model for any modal formula which isalty invalid
in K (A, V,7,1) can be effectively constructed with any (fair) proceduredshonRs.

7.1 Developing Rasiowa-Sikorski Systems via Dual Resoiuti

Itis also possible to obtain the rules of tR§-calculus via resolution; this time we use reso-
lution in dual form. The dual form of resolution is not very Nvenown but a little reflection
will convince the reader that it is a legitimate alternafiverpretation of resolution.

Dual resolutioncalculi operate exactly like resolution calculi with thdfelience that
clauses are obtained by transformation into disjunctiommad form and dual Skolemisa-
tion, that is, Skolem terms are used to eliminate univergahtifiers. Also, the dual form of
structural transformation is used. The dual clause fornsit @f conjunctions of literals and
the set s interpreted as a disjunction. The empty clausgagireted as . The definition of
dual ordered resolution with selection is exactly the sam'é‘i#, except that the disjunction
in clauses is viewed as a conjunction and branching in th#isglrule is interpreted con-
junctively. For example the dual resolution rule for prdgosal logic derive<C A D from
C A Aand—-A A D. In fact, all techniques and results of classical resotutiarry over to
dual resolution. As a consequence, by simply interpretiagses dually, and also all trans-
formation and derivation steps as well as all deletion stwpsxan use any resolution prover
as a dual resolution prover for testing validity.

Since we are now interested in showing the validity of a ppoblve need to base our
reduction to first-order logic on the followindual structural translationof formulae in
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Subformulad Definitional dual clauses associated with
(shortcuy  —Q-y(x) A =Qy(X)
WA —Qurp(X) A Qu(X) A Qp(X)
(WAQ) Qg (X) A Quy(X)
ﬂQﬁ(LpMu)(X) A Qgp(X)
[a]¢ Qg (X) A =Ra (X, floyy (X))
Qg () A Qu(flajy (X))
oY —Quy(¥) ARea(%Y) A Quy(y)
(shortcu}  —R-q(X,y) A =Rqa(X,y)
Rﬁa (X, y) A RG (Xv Y)
a/\B “RGAB(XA/) /\Rd(xvy) /\Rﬁ(x7y)
A =Rq (x,y)

ARg(x,y)

(xy)
(xy)
avp - avﬂgxa)?/\Ra(XaY)
X.
(xY) A =Ra(X,y) A =Rg(x,y)

Fig. 8 Definitional dual clausal forms fdf i (A, V,~,1)

dynamic modal logic.

Def? () =" vx (m(,x) — Qy(X))
AVX(TH(~,X) = Quy(X))
A WX (=Quy(X) — Qu(X))
Def’(a) =%*"vxy(m(a,x,y) — Ry (X))
AYXY(Ra(X,y) — T (a,X,y))
AVXY(Rea(X,Y) < =Ra(X,y))

The mappingstandr? are defined as in Section 3. Here the definitions of relatiforatu-
lae include the shortcut equivalenery(R.q(X,y) <> =Ry (X,y)) which is needed to turn
problems into range-restricted clauses, we discuss below.

We can prove:

Theorem 16 Let L be a dynamic modal logic defined over the operaforsv,~,1}, and
let ¢ be any modal formula. Suppose N is the set of dual clausesnebtérom ¢’ =def
ADefd(Sf(¢)) — ¥x Qy (x) by transformation into disjunctive normal form, inner di@#o-
lemisation, and clausifying the Skolemised formula. Then:

1. Each clause in N is either a unit clauséd), for some Skolem constant a, or it is an
instance of a dual definitional clause given in Figure 8.
2. ¢ islocally valid in L iff = ¢ iff = N.

Let DHsp denote the unordered dual hyperresolution calcmt:fgbd with splitting.
By duality, soundness and completeness (for validity) aversequence of Corollary 1
(and also Theorem 2).

Corollary 9 DI-I’S‘f)d and DHgp are sound and complete proof systems for sets of dual clauses
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Subformulad Definitional dual clauses associated with
(shortcu)  —Q-y(X)" A ~Qy (x)"
WAQ  —Quag(X) " A Qy(X) AQgy(x)
(Ao ﬁQﬁ(quo)(Xﬁ A Quy(X)
Q- (yrg) (¥ A Qug(X)
[0y —Quajy (¥ A Rea (X, flayy (X))
~Qlajp (9" A Qu(fia1p ()
oy Qi () A -Ra(%Y)" A Quy(y)

anp Rﬂ(u/\B)(va) A "Req ()(7y)Jr A ﬁR~[5 (va)+
_‘Rﬁ(a/\ﬁ) (X,y) AReg (X,y)
“Roang)(X¥)T ARB(XY)
avB  Ryaup)(xy) A-Rua(Xy)*™
Rﬁ(OIVB) (X,y) A _‘RNB (X=Y)+
ﬁRﬂ(ur\/B)(va)Jr A Rea (va) A RNB (X7y)
a” Ry (YT AR (%)
R (a) (%) A "Rea (. X)*
al®  Ryqg(X%y) AR

Fig. 9 Definitional dual clausal forms fdf i, (A, Vv, ,1) in range-restricted form.

The same result is true for dual ordered hyperresolutioncafalli of dual ordered resolu-
tion with selection calculi.

Looking at Figure 8 we note that the clauses are not all raegeicted. It is in partic-
ular the clause-Q- ¢y (X) A Rua(X,y) A Quy(y) associated with subformulae of the form
—[a]y that is not range-restricted.

This issue can be overcome by pre-saturation and purifitadiad is the reason why the
shortcut equivalencexy(R.q (X,y) — —Rq(X,y)) was added to the definition of k).
Take the input seN computed in accordance with Theorem 16. With ordered résalu
restricted to inferences which involve at least one of thatienal shortcut clauses

“Rog(XY) ARy (x,y)" and R.q(X,y) ARa(XYy)*

as premises we obtain the clauses in Figure 9 as concludidmseed to use an ordering
under which the binary literals are larger than unary ligrand in the shortcut clauses the
Ry -literals (indicated with &) are maximal. As now no more inferences are possible on
these, the relational shortcut clauses and clauses congdtp-literals can be purified away
(that is, deleted). The clauses obtained are given in Fi§u(# is interesting to note that
this partial pre-saturation corresponds to second-ordantifier elimination, see [16].)

By the way we note that alternatively, a standard shiftimgs$formation can be used.
Shifting switches the signs literals. In particular, wechézuse shifting to repladgy (s,t)-
and—Ry (s,t)-literals by—R 4 (s,t)- andR-4 (s, t)-literals, respectively. This transforms the
clauses into range-restricted clauses.

Let N’ denote the ‘partially pre-saturated and purified’ set ofisés obtained froN as
described above. Sind¢ is dual to the clause set obtained for satisfiability of thgated
problem (compare Figures 8 and 9), we can now state:

Theorem 17 Let¢ be any K (A, V,~,1)-formula and let Nbe the set of clauses obtained
by the described pre-saturation and purification from theldclausal form of the dual
structural transformation. Then:

1. AnyDHgg-derivation from N terminates.
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2. ¢ is locally valid in Ky (A,V,~,1) iff the DHsp-saturation of N contains the empty
clauseT.

Lemma 7 RSis step-wise simulated hyHsp, with respect to set Nobtained as defined in
Theorem 17, and is a reduction of it.

Theorem 18 There is a linear correspondence betweefiand DHsp on N’ as defined in
Theorem 17.

Using duality and Theorems 10 and 13 we can now give altematioofs of Corol-
laries 6-8 (i.e. soundness and completenesBS)fdecidability and finite counter-model
generation foK ) (A, V,7,1)).

8 Modal Resolution Systems

Refutation calculi without a splitting rule need an exgplieipresentation of disjunction. This
section shows that if we omit splitting from tableau simngthyperresolution procedures,
we get (labelled) modal resolution calculi. These are okthd described in Areces et al [1]
for some traditional modal logics. Our approach allows udeweelop such calculi also for
other logics.

We focus again on the dynamic modal lo¢fig, (A, V,”,1). Figure 10 presents a cal-
culus we can read off from the structural encoding in Figyreofisidering that hyperreso-
lution without splitting is usedC andD denote disjunctions, actually multisets, of labelled
modal and relational formulae of the forsny and(s,t):a. Although the labelled formulae
are all unnegated, negative literals have not disappe#&vecheed to regard literals of the
form s.—y as negative literals. Note that there are no negative oslatiiterals. This is be-
cause the logi&y (A,V,”,1) does not include an relational negation operation. Negativ
occurrences of relations are implicit in box formulae areltaken care of by th§:]) rule.

Denote the calculus defined in Figure 10Rs. For each definitional clause there is
a rule inRes. In addition, there are the two factoring rulgfact) and(fact)". Comparing
this calculus to the tableau calculus derived earlier (thatomparing Figure 6 and Fig-
ure 10), observe how the closure r(t#) has become a resolution rule, the rgies). The
(res) rule is an instance of the standard, ground resolution Tithe.tableau splitting rules
(=A) and(]), have become rewrite rules. With the exception of the resmiutile (res) and
the factoring rules, all rules iRes are in fact rewrite rules.

Lemma 8 Resis step-wise simulated by (without splitting) with respect to the structural
transformation defined in Theorem 4 and is a reduction of it.

Theorem 19 There is a linear correspondence betwed®ss and H on the structural trans-
formation for local satisfiability in Ig; (A, V.7, 1).

The proofs exploit the correspondence between infereeps #t theRes-derivation and
the H-derivation on the structural transformation of the giveodal formula. All inferences
rules in Res, with the exception of the factoring rules, correspond tpdmesolution steps,
while the factoring rules correspond to factoring on pesitiround clauses iH-derivations.
The correspondence between the steps is therefore sligbtly direct than for tableau.

Corollary 10 Resis sound and refutationally complete for testing the loaisiability of
formulae in Ky (A, V,7,1).
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(res) CvVvs: LévDDVS:ﬁLLI (L) C\/é: L
CVs:yAQ CVs:YUAQ CVs:—=(¢A Q)
(M) Cvs: y (A)2 CVs:@ (_‘/\)CVSZNLLIVSZN(p
Cvs:—aly Cvs:—[aly Cvs:lajg,DV(st):a
Ch sV a CH2=ev<g D—=cvoviy
CvV(st):a~ Cv(s):a
) Cvit:a (i Cv(st:a”

r CV(st):anp r CV(st):anp r CV(st):a,DV(st):B
(M) Cv(ist):a (M2 Cv(st):B (A CVvDV(st):aAB

r CVv(st):aVvp r CVv(st):a r Cv(st):B
(v) Cv(st):aVv(st):B (v)'iC\/(st):avB (V)'=2Cv(s7t):avﬁ
CV(st):ale Cv(st):ale Cv(st):a
M Cv(st):a (1)2 CVs. g (1)'Cv(s7t):a](p\/s:~(p
(fact)C\/s:L/J\/s:w (fact) Cv(st):aVv(st):a
Cvs:y CVv(st):a

The side conditions of theé-[J;); rules ( € {1,2}) are thatt is a constant uniquely associated with the
premises: -0 . For the ruleg—)i, (A)f;, (V) and(1): the side conditions are that the relational formulae
in the conclusions, occur as subformulae of the relatiooahtilay of a box formulas: [y]{ in the current
clause set.

Fig. 10 Modal resolution calculus fafy (A, V,7,1).

Proof By Corollary 1, Theorems 4 and Corollary 3. ad

These results are an illustration that the step from takdége systems to systems with
an explicit resolution rule is not big. The simulation reésdbrmally show that on the one
hand modal resolution can be viewed as semantic tableawwtigplitting. On the other
hand, they formally show that semantic tableau can be viesgethodal resolution with
splitting. At least this is the view we get from the perspexf first-order resolution.

From the perspective of tableau and modal resolution, teendisl difference between
the two is the absence of splitting in modal resolution, &eddifference in the rules induced
by the negative propositional shortcut clause. In the caseonlal resolution the negative
propositional shortcut clause induces the modal resalutite (res), whereas for tableau it
induces the closure rule (because of the presence of sg)itfrhus from the perspective of
tableau and modal resolution the other difference beshdepresence of splitting is the use
of a restricted form of resolution, namely the closure ririghe tableau calculus.

It is interesting to note that, like tableau, the modal reSoh calculus uses a kind of
goal-directed approach, initially breaking down the giigout formula and on-the-fly trans-
forming formulae into first-order clausal form.

One can thus view modal resolution, or semantic tableauowtthplitting, also as hy-
perresolution with lazy translation to first-order logiedause the expansion rules are just a
facilitation of lazy translation to first-order logic. Silaily, semantic tableau can be viewed
as hyperresolution with lazy translation to first-orderidognd splitting.
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8.1 Decidability

What about decidability? We can prove Theorem 10.1 alscstolchyperresolution without
splitting, and any refinement of hyperresolution withouitgpg.

Theorem 20 Let ¢ be any K (A,V,”,1)-formula and let N be the clausal form of the
structural transformation. Then arty-, H®9-derivation from N terminates.

This means that the calcul&es provides a decision procedure as well.

Theorem 21 Any (fair) procedure based ORes is a decision procedure for local satisfia-
bility in K(m)(/\, V>~ ,1)

Because we view clauses as multisets it is necessary talm¢he factoring rules. As
clauses are always ground, factoring has the effect of etiting duplicate literals from
clauses. It is thus easy to see that it is not necessary toaatiorihg rules if clauses are
viewed as sets.

8.2 Refining modal resolution

An advantage of the ‘develop via first-order resolution’ @geh is that it is possible to
transfer any refinements compatible with the simulatingltg®n procedure to the newly
developed calculus. This may appear to be quite a stronmgclait let us now apply the
‘develop via first-order resolution’ approach by using eedehyperresolutiorOH, instead
of unordered hyperresolutiaf, and see which rules ‘fall out’.

Suppose the ordering used is an arbitrary orderingdmissible in the sense of [3].
Recall the rules of ordered hyperresolution from Figurei@c&the selection function over-
rides the ordering, the ordering does not change whichalgerre resolved upon in a negative
premise. However since no literals can be selected in thidygopremises, the ordering re-
stricts inferences to literals strictly maximal with respto the ordering. These restrictions
transfer as follows to the modal resolution calculus.

Let >’ be the ordering on labelled modal formulae that corresperdstly to the order-
ing = used iNOH. Let ORes be theordered modal resolution calculusased on-" which
is given by the rules oRes (see Figure 10) but the rules have side conditions sayirg tha
for each rule except for the factoring rules, the explicgiyen literals in every premise are
strictly maximal with respect te-’. The side conditions of the factoring rules are that the
explicitly given literals are maximal with respecttd. This means that any inferences that
do not satisfy these side conditions need not be performadcém be, as is established in
Corollary 10).

As before, it is possible to transfer any instances of rednod elimination to the newly
developed calculus. This includes tautology deletionsaoiption deletion, condensing and
other techniques. Similar as for tableau and Rasiowa-§kksystems we can define differ-
ent forms of redundancy specifically for the modal resofuttalculus. Let us refer to the
extension ofORes with such notions of redundancy &Res®.

Lemma9 Let ~ be an admissible ordering and let’ be the corresponding ordering on
labelled formulae ORes based on-' is step-wise simulated b§H based on- with respect
to the structural transformation defined in Theorem 4. Theesatatement is true f@Res®4
and OH™d,
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Theorem 22 There is a linear correspondence betwa@Res and OH (ORes®d and OH')
on the structural transformation for local satisfiability Ky, (A, V,™,1).

Theorem 23 ORes and ORes"? are sound and refutationally complete for testing locat sat
isfiability of formulae in Ky, (A, V,™,1).

Theorem 24 Any (fair) procedure based ofRes"9 is a decision procedure for local sat-
isfiability in Kim) (A, V,7,1)-

Analogously, we can write down (unordered and ordered) indwla resolution calculi
for validity in K (A, Vv, 7, 1) (with or without redundancy) and prove soundness, complete
ness and decidability by dual arguments. We leave it to théeeto work out the details.

The reader may be wondering how ordering restrictions caexXpdoited in tableau
and Rasiowa-Sikorski calculi. Since splitting is alwayplégg before hyperresolution, hy-
perresolution is applied to unit clauses only. This meansrdering has no effect on the
application of the inference rules. Nevertheless the arndenay be used to restrict the ap-
plication of splitting only to maximal literals and redudetsearch space. It is beyond the
scope of this paper to discuss details.

9 Discussion

It is of course possible to come up with the calculi develojpetiis paper in an independent
way and prove soundness, completeness and decidabilieg lmestraditional methods. By
taking a slightly unusual approach we can however obtainingsights and results for famil-
iar and less familiar logics, and develop new calculi and@rs. The ‘develop via first-order
resolution’ approach provides a common framework for thigclv enables direct compar-
ison of different deduction approaches and the immediatesferal of techniques between
different approaches.

We have seen that small variations in the translation mappird the resolution re-
finement used, result in notably different styles of calckbr example, there is only a
very small difference between the tableau calculus and théairresolution calculus for
Km (A, V,7,1) in the simulations, namely the omission of the splittingerulableau and
resolution methods are typically regarded as quiet opposiith the difference being not
only the presence of the splitting rule in tableau calcuti #iso the absence of the reso-
lution rule in tableau calculi. Our analysis however shoeusd(gives a formal proof) that
the difference between tableau and resolution methods éé smaller than sometimes per-
ceived, in fact they are closely related.

We have seen that by interpreting resolution dually we cam elevise calculi for prov-
ing the validity of formulae. The approach allows us to tfansefinements and techniques
such as redundancy elimination to the new calculi, and iblersethe formulation of stronger
soundness and completeness results and the definitiontef iderence systems. Our case
study shows that there is significant flexibility to tailoethpproach and control the kind of
calculi which can be derived.

It is interesting to note that we generated all three calasihng hyperresolution. For
modal resolution we also used hyperresolution and not ardiresolution as one may have
expected.

All results and observations in this paper K, (A, V,™, 1) hold for all dynamic modal

logics defined over the operatofs, v,~,1, |}
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We know that the approach can be generalised and applied t® expressive logics
to yield sound and (refutationally) complete special-pse calculi for many, if not all,
first-order definable (dynamic) modal logics. The approgmbiias also to other first-order
definable logics and fragments of first-order logic. For eglamlinear correspondence re-
sults between tableau systems and resolution have bedneabta [19] for decidable frag-
ments of first-order logic which are closely related to tharged fragment. It is clear that
the ‘develop via resolution’ approach allows us to immesliapull out sound, refutation-
ally complete and terminating tableau procedures for theegdisations obtained in the
paper [19]. Similarly, tableau decision procedure can limee for the solvable clas®U
introduced and studied in [18].

Soundness and completeness of the extracted calculi isnergleautomatic as long
as the translation to first-order logic and the refinemend useve the properties identi-
fied in the Introduction so that correspondence results eaprbved. Apart from finding
a suitable combination of a translation, refinement andsptaration (if needed), the main
challenge is to develop ways to guarantee termination aodepdecidability. In the case
of Kimy (A, V,7,1) there are existing decidability results for hyperresolutivhich we have
extended and then used to show the developed calculi prdeicision procedures.

The starting point of the methodology in this paper is the atin specification of a
logic which provides the basis for the translation to firsley logic. The translation is a
combination of the standard relational translation metéiod structural transformation. It
is possible to derive in a systematic way sound and compédteiicvia other, non-standard
translation methods, for instance, translations basedupatibnal translation approaches
or the axiomatic translation approach. (See [37, 47] foveys of different translation ap-
proaches and [46, 48] for the axiomatic translation.) If e the functional translation or
the optimised function translation then what we obtain aediytableau calculi. In prefix
tableau calculi the formulae are also labelled modal foemuut the labels are strings of
constants, or prefixes. With the axiomatic translation wegenerate modal tableau calculi
in a form that are currently popular for traditional modadilcs and mainstream description
logics with non-empty TBoxes. Without splitting new modagolution calculi are produced.

Itis in fact also possible to use the methodology to obtaloutefrom Hilbert axiomati-
sations of modal logics. In [46, 48] we use resolution theopeoving techniques to obtain
tableau calculi in a systematic and semi-automatic way fiteerHilbert axiomatisations of
traditional modal logics. Although not explicitly stateslsuch, the approach followed there
can be seen to be an instance of the ‘develop via first-ordetuton’ approach. There is
actually a lot of flexibility and potential in the approachialhwe have not explored due to
lack of time and space.

There are good reasons why the methodology introducedsrptper is based on first-
order resolution. Currently no other proof method exhittitslevel of sophistication that the
resolution framework has. It combines and integrates naoseprinciples and techniques
that have been developed over many years in the area of agmeasoning. Previous
work has shown that the available concepts of refinement eddndancy, in particular,
mean that it is well suited for developing decision proceduior non-classical logics and
expressive solvable fragments of first-order logic; seestheeys [14, 29, 47]. Furthermore,
the framework is well suited for developing and studying eldmlilders; see, for instance [5,
14, 17]. As we have seen in this paper refinements and redoy@ae crucial ingredients
of the ‘develop via first-order resolution’ approach.

One of the attractions of situating the methodology in ttaniework of resolution is
that it is easy to implement procedures based on the extr@etieuli with existing first-
order resolution theorem provers. Hyperresolution, oeeisally equivalent refinements,
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are standardly implemented in all of the well-known firstl@r resolution theorem provers.
Moreover, ordering restrictions can be flexibly defined ias and splitting is currently
available in at least\)SPASS[27, 53] andvAMPIRE [40]. With modest implementation ef-
fort it is therefore possible to use these provers as esdlgntiodal tableau provers, modal
Rasiowa-Sikorski provers, or modal resolution proverd.ti#t is necessary, is to imple-
ment the appropriate structural transformations and thense the correct combination of
flag settings so that the prover uses the simulating refineriiéis provides a simple ap-
proach of implementing special-purpose procedures. &éhbasic ingredients are already
implemented ing)sSPASS[27, 53, 54].

In addition, such simulating implementations permit ekpental evaluation and com-
parison of different deduction approaches in a uniform gemrk. Examples of empirical
studies undertaken following essentially this approaat lea found in [5, 28]. Such ex-
periments tend to provide more reliable indicators of thigability of different calculi, or
different styles of deduction, for specific applicationsl dmgics than experiments based on
the comparisons of independently implemented provers22428].

Further work consists of generalising the methodology gplyéng it to other forms
of tableaux (e.g. set-labelled tableaux with global cagliii] or free variable tableaux), to
other styles of deduction methods, to other logics, andrdtitens of inference problems.
We are presently investigating the simulation and develgrof natural deduction calculi
for modal logics and first-order logic [41]. It would also bieimterest if a resolution prover
can be used directly as a special-purpose prover withoueatmg implementation effort.
Ultimately it is our aim to realise the approach as a tool taat take the specification of a
logic as input and output a deduction calculus which is spoathplete and terminating, if
possible. Independent student projects at Manchesterdaven that it is indeed possible to
use resolution theorem provers as tableau provers for pitigeal and modal logics. These
projects use resolution theorem provers as suggestedsirpéier and back-translate the
derived clauses into tableau derivations [22, 34]. Anostadent project has developed a
tableau inference rule generator in Prolog [31]. We areatsiixing on using the approach
to generate tableau calculi for more expressive dynamicatrlodics, in particular, our aim
is to generate calculi such as the ones in [50, 51] which usestimination rules and rules
that operate only on dynamic modal formulae but not relatiémrmulae.
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