
System Description: SPASS Version 3.0

Christoph Weidenbach1, Renate A. Schmidt2, Thomas Hillenbrand1, Rostislav
Rusev1, and Dalibor Topic1

1 Max-Planck-Institut für Informatik, Germany, spass@mpi-sb.mpg.de
2 University of Manchester, UK, spass@mpi-sb.mpg.de

Abstract. Spass is an automated theorem prover for full first-order
logic with equality and a number of non-classical logics. This system de-
scription provides an overview of our recent developments in Spass 3.0,
including support for dynamic modal logics, relational logics and expres-
sive description logics, additional renaming and selection strategies, and
significant interface enhancements for human and machine users.

1 Introduction

New in Spass 3.0 are facilities for supporting automated reasoning in a large
class of related logics which we refer to as EML logics (extended modal logics).
These include (traditional) propositional modal logics such as K(m), KD(m),
KT4(m) etc., which are widely used for studying and formalizing e.g. multi-agent
systems, but have many applications in other areas of computer science as well
as mathematics, linguistics and philosophy. EML logics also include dynamic
modal logics which are PDL-like modal logics in which the modal operators
are parameterized by relational formulas [6]. These can be used to formalize
dynamic notions such as actions or programs and are useful in linguistic and
AI applications. Examples of dynamic modal logics are Boolean modal logic,
tense logic, information logics, logics expressing inaccessibility and sufficiency
as well as a large class of description logics. The EML class further includes
relational logics, i.e. logical versions of Tarski’s relation algebras. Spass handles
these logics by translation to first-order logic, see Sect. 2.

For most decidable EML logics, Spass is actually a decision procedure on
the first-order formulas resulting from the translation. For some logics, e.g.,
description logics including negation of roles, it is currently the only available
decision procedure. Spass is competitive even with special-purpose systems.

Further enhancements in Spass 3.0 are additional renaming and selection
strategies, see Sect. 3, and an improved user/machine interface including an
extended formula-clause relationship handling, input and output of saturated
clause sets and documentation, see Sect. 4 and 5.

2 Modal Logics, Relational Logics and Description Logics

The facilities in Spass 3.0 for supporting automated reasoning in EML logics
were first implemented from 1998 onwards in the Mspass theorem prover [2,

Translation method Options

relational translation -EMLTranslation=0 (default)
(monadic) functional translation -EMLTranslation=1

polyadic functional translation -EMLTranslation=1 -EMLFuncNary=1

(monadic) optimized functional translation -EMLTranslation=2

polyadic optimized functional translation -EMLTranslation=2 -EMLFuncNary=1

semi-functional translation -EMLTranslation=3

relational-functional translation -EMLTranslation=0 -EMLFuncNary=1

relational-relational translation -EML2Rel=1 [-EMLTranslation=0]

Table 1. Available translation methods

4] as an extension of Spass 1.0. This code has been upgraded and integrated
into Spass 3.0 (and Flotter 3.0) so that support for modal, relational and
description logic reasoning is now immediately available to Spass users and the
latest Spass technology is immediately available to Mspass users.

The dfg input language of Spass was extended to support the input of EML
problems without changing the syntax for formulas in first-order logic or clause
form. There are three types of EML formulas which can be used simultaneously in
one file: first-order formulas, Boolean type formulas and relational type formulas.
Boolean and relational type formulas can be constructed using common modal,
relational and description logic operators. The pre-defined logical operators are:

– the standard Boolean operators (for all three types of formulas): true, false,
not, and, or, implies (subsumed by), implied (subsumes), equiv,

– multi-modal operators with atomic or complex relational arguments: dia
and box (synonyms are some and all), as well as domain and range,

– additional relational operators: comp (composition), sum (relative sum), conv
(converse), id (the identity relation), div (the diversity relation), and

– test (test), domrestr (domain restriction) and ranrestr (range restriction).

We give three examples of EML formulas, two Boolean type formulas and one
relational type formula.

prop formula(implies(box(bel1,p), box(know1,box(bel1,p)))). (1)
concept formula(implies(expert AR, (2)

not(some(not(has studied),proof methods)))).

rel formula(implies(comp(r,r), r)). (3)

(1) is an example from modal logic and says that if agent 1 believes p then it
knows that it believes p, i.e. it is aware that it believes p. The example (2) is
a description logic example; it says that an expert in automated reasoning is
someone who has studied every proof method. This kind of example cannot be
handled by current tableau-based description logic provers because it requires
negation of roles. (3) expresses transitivity of a relation in relational logic (or in
description logics).

Table 1 summarizes the implemented translation methods. The different
translation methods are based on first-order encodings of the different ways

of defining the semantics of the logics. The basis for the relational translation
method, or standard translation method, is the standard set-theoretic semantics
of EML logics. It is implemented for all Boolean and relational EML formulas.

The basis for the different functional translations is the functional semantics
of traditional modal logics. The optimized functional translations are obtained
from the functional translations by a non-standard quantifier exchange opera-
tion, which is implemented by replacing non-constant Skolem terms by Skolem
constants. The polyadic functional translation methods are variations of func-
tional translation methods and differ in the way they encode world paths (transi-
tion sequences). The polyadic translations avoid the use of an extra function sym-
bol by using n-ary predicates of different arities. The semi-functional translation
approach is a mixture of the relational and functional translation approaches. It
translates box modalities in the standard relational way, while diamond modal-
ities are translated functionally. The (monadic) functional translations and the
semi-functional translation are implemented for the basic multi-modal logic K(m)

possibly with serial (total) modalities, plus frames or models, and non-logical
axioms. The corresponding description logics are ALC with concept ABox and
TBox statements, possibly with total roles. The polyadic functional translations
are implemented for the basic multi-modal logic K(m) possibly with D (serial)
modalities. The corresponding description logic is ALC possibly with total roles.

The relational-functional translation method, or tree-layered relational trans-
lation, is a variation of the relational translation specialized for the basic modal
logic K(m). The relational-relational translation converts Boolean EML formulas
into the relational formulas via a cylindrification operation. This translation is
implemented for K(m).

All translation methods are sound and complete for the logics they are im-
plemented for and have linear time complexity.

There are various additional EML options. For example, the -EMLTheory
option can be used to add standard relational properties to the background
theory. There are also options for varying the translation methods and the pre-
processing done on EML formulas. The functional translations can be varied
slightly with the two options -EMLFuncNdeQ and -EMLFFSorts. With the op-
tion -EMLElimComp=1 top-level occurrences of relational composition in modal
parameters can be eliminated as part of preprocessing. When enabled, the op-
tion -QuantExch=1 causes non-constant Skolem terms in the clausal form to be
replaced by constants. The option is automatically set for the optimised func-
tional translation methods. The option can also be used for classical formulas
and clauses, but it is not sound in general and therefore switched off by default.

With the new EML facilities Spass supports reasoning for EML logics with
the following additional additional features.

1. For dynamic modal logics and relational logics: non-logical axioms, modal
operators characterized by any first-order frame correspondence properties
and accessibility relations satisfying any first-order properties, specification
of concrete worlds as constants, (first-order) relationships between concrete
worlds, specifications of frames and models.

2. For description logics: the corresponding features, including in particular
terminological axioms, TBox and RBox statements, and ABox statements
for concept and role expressions.

Because Spass is a first-order superposition based prover its capabilities as a
modal, relational or description logic prover are very different and more varied
than those of other provers for these logics. It is possible to use Spass as a deci-
sion procedure for a large class of EML logics. For instance, it decides extensions
of Boolean modal logic with converse, domain/range restriction, and positive
occurrences of composition, and the corresponding description logics, i.e. ex-
tensions of ALB with positive occurrences of composition. No other (special-
purpose) prover currently decides these logics. Spass can be used as a decision
procedure for many solvable first-order fragments including the guarded frag-
ment, Maslov’s class K, first-order logic in two variables, the clausal class DL*,
and many decidable quantifier prefix classes. Using the new features it is possi-
ble to approximate the behaviour of modal and description logic tableau provers
with Spass. Additionally, it can be used as a model finder.

For definitions of the different translation methods and further details, the
various applications and references to original work, the reader is invited to con-
sult the survey paper [6]. The paper [3] surveys decidable first-order fragments
relevant to description logics. References to resolution decision procedures of
EML logics and first-order fragments can be found in both [6] and [3].

3 Renaming and Selection Enhancements

Renaming transformations, or structural transformations, are not standard in
current first-order theorem provers but have various advantages. They are es-
sential for linear conversion of first-order formulas into clausal form. They are
useful to control the way the search is performed in order to enhance the perfor-
mance of a prover or to define decision procedures. They preserve the structure of
the input formulas and make it easier to read resolution derivations and translate
them back into first-order logic or the original EML logic. Renaming transfor-
mations introduce new predicate symbols for subformulas in the input problem.
The renaming strategy available in Spass 2.2 [7] is aimed at minimizing the
number of eventually generated clauses [5]. A subformula is renamed if the re-
placement of the subformula by an atom headed with a new Skolem predicate
plus the definition of the Skolem atom eventually results in fewer clauses. We
added two more renaming strategies to Spass 3.0: complex formula renaming
and quantified formula renaming. Complex formula renaming introduces a new
Skolem predicate for any subformula that is not an atom and does not start with
a negation symbol. Quantified formula renaming introduces a new Skolem pred-
icate for any subformula that starts with an existential or universal quantifier.
The definition formulas for the Skolem predicates are generated in a polarity de-
pendent way for all three versions. The renaming strategy is controlled via the
-CNFRenaming=n flag where n = 1 selects minimizing renaming, n = 2 selects
complex renaming, and n = 3 selects quantified renaming.

For the finite saturation of many first-order theories it is indispensable to
select certain literals in order to protect variables in different literals of the same
clause. An example is the (simplified) formalization of LAN router functionality
that contains clauses of the form below. The clause states that if a packet is
to be routed to the destination xdst and there is a route entry saying that all
destination addresses “anded” with the mask xmsk produce the network xnet
can be forwarded to xhop, then the packet is actually forwarded to xhop.

[RouteIP(packet(xsrc, xdst, xpld)), RouteEntry(xmsk, xnet, xhop),
ipand(xdst, xmsk) ≈ xnet] → Send(xhop, packet(xsrc, xdst, xpld))

As all symbols starting with ‘x’ are variables, superposition left inferences can
produce many clauses with the clause above and the theory for logical “and”
on bit vectors (the function ipand). If the literals RouteIP and RouteEntry are
selected then these inferences can be avoided.

Such situations are supported by enhanced selection mechanisms in Spass 3.0.
First, via the command set selection a list of predicates can be defined in the
input file to be candidates for selection. Second, this list can be combined with
the following selection strategies that are set via the -Select=n option. For
n = 1 in any clauses with more than one maximal literal one negative literal
is selected. Either a negative literal with a predicate from the selection list is
chosen or if no such negative literal is available, a negative literal with maximal
weight is chosen. For n = 2 in any clause containing at least one negative literal,
a negative literal is selected. Again, either a negative literal with a predicate from
the selection list is chosen or if no such negative literal is available, a negative
literal with maximal weight is chosen. For n = 3 in any clause containing neg-
ative literals with predicates specified by the selection list, one negative literal
out of these is selected.

In Spass 3.0 we changed the heuristic for selecting splitting clauses. Spass
now selects the clause with the highest unit reduction potential after splitting.

4 Interface Enhancements

Starting with Spass 3.0, Flotter writes the formula-clause relation into the
setting part of the clause normal form output file. When processing such a .cnf
file Spass is now also able to tell which input formulas were used in an eventually
found proof.

When Spass finitely saturates a set of clauses, the result can be output to
a file via the -FPModel option. So far the generated file did not contain any
information about the selection of literals. Hence, it could happen that running
Spass again on such a file would produce further clauses by inferences. With
Spass 3.0 we have defined an additional clause input format that is similar to
the clause output given by Spass at run time and includes the possibility to
mark negative literals in clauses to be selected. In Spass 3.0 this format is used
when -FPModel is set and inferences on saturated sets produce no additional
clauses when such sets are resubmitted to Spass.

At run time, Spass now selects literals before it prints the Given clause.
This improves manual inspection of the Spass output.

5 Conclusion and Future Work

Finally, we want to point the reader to the new handbook [8] distributed with
Spass. It contains detailed descriptions of the most important features and facil-
ities implemented in the prover, covering the sophisticated reasoning technology,
the superposition calculus implemented in Spass, the theory and implementa-
tion details for the translation methods for EML logics, and the theory behind
the clause set transformations of dfg2dfg. A detailed, formal specification of
the extended input language can be found in the Spass documentation [9]. It
also includes examples of input files for the different EML logics supported by
Spass.

A start has been made at implementing the techniques introduced and stud-
ied in [1] for the bottom-up model generation paradigm in Spass. Moreover, we
are developing efficient superposition based reasoning techniques for finite do-
mains, further improving the performance of the prover for several EML logics.

Spass 3.0 is available from http://spass.mpi-sb.mpg.de.

Acknowledgements. We thank the Spass user community for delivering enhance-
ment requests as well as bug reports, and the reviewers for their comments.

References

1. P. Baumgartner and R. A. Schmidt. Blocking and other enhancements for bottom-
up model generation methods. In Automated Reasoning: IJCAR 2006, vol. 4130 of
LNAI, pp. 125–139. Springer, 2006.

2. U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by translation and
first-order resolution. In Proc. TABLEAUX 2000, vol. 1847 of LNAI, pp. 67–71.
Springer, 2000.

3. U. Hustadt, R. A. Schmidt, and L. Georgieva. A survey of decidable first-order
fragments and description logics. J. Relational Meth. in Computer Sci., 1:251–276,
2004.

4. U. Hustadt, R. A. Schmidt, and C. Weidenbach. MSPASS: Subsumption testing
with SPASS. In Proc. DL’99, pp. 136–137. Linköping University, 1999.

5. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In
Handbook of Automated Reasoning, pp. 335–367. Elsevier, 2001.

6. R. A. Schmidt and U. Hustadt. First-order resolution methods for modal logics.
In Volume in memoriam of Harald Ganzinger, LNCS. Springer, 2006. To appear,
http://www.cs.man.ac.uk/~schmidt/publications/SchmidtHustadt06a.html.

7. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and D. Topic.
SPASS version 2.0. In Automated Deduction: CADE-18, vol. 2392 of LNAI, pp.
275–279. Springer, 2002.

8. C. Weidenbach, R. A. Schmidt, and E. Keen. SPASS handbook version 3.0. Con-
tained in the distribution of SPASS Version 3.0, 2007.

9. C. Weidenbach, R. A. Schmidt, and D. Topic. SPASS input syntax version 3.0.
Contained in the distribution of SPASS Version 3.0, 2007.

