Towards a Unified Toolset for Embedded Systems
Development

A.G. Bakhmurov V.I. Chervin’ M.V. Chistolinov’
J.F. Grooté V.A. Kostenko™ R.L. Smeliansky’
D.V. TsarkoV Y.S.Usenkd K. Winter V.A. Zakharov

! Redlab Ltd.
Moscow, Russia

2 State Research Institute of Aircraft Systems (GOSNIIAS)
Moscow, Russia

3 Moscow State University (MSU)
Moscow, Russia

4 Centrum voor Wiskunde Informatica (CWI)
Amsterdam, The Netherlands

5 German National Research Center for Information Techno{@MVD FIRST)
Berlin, Germany

Abstract

This paper contains a comparative analysis of three taobad associated tech-
niques for development of embedded systems. The compasdoased on the

experience acquired by applying the techniques to a comrase study. The re-

sults of the analysis are being used to design a unified seblf for embedded

systems development.

Keywords: Formal Methods, Embedded Systems, Tool Comparison.

The work has been carried out under the EU INCO-COPERNICUS
Project No.: 977020 ‘DR TESY’ (http://www.first.gmd.de/fesy)

1 Introduction

One of the most important distinguishing features of the enndechnologies for em-
bedded system development is the extensive applicatioorofdl methods at the ear-
lier stages of the design process. This is inspired by irsingacomplexity of such
systems and, hence, by growing development cost. One shetilte that the most
expensive stage of embedded system designing is testibggdmg and improving
the system to satisfy the target requirements. Designsdiscovered on testing and
field trial stages yield sharp cost growth since the designukhbe re-done from the

beginning. But, the development cost is a crucial factor.nfiwe solution is to use the
technology and flexible tools for virtual prototyping of eettiled system on the early
design stages. The main requirements the technologiessdittd have to satisfy are
as follows

e to provide the highest design flexibility,

e to minimize the cost of changes and analysis of design viasian

¢ to enable its user to build and analyze system prototypédlyap

¢ to decompose the system into software and hardware partctigr
e to perform full cycle of simulation,

e to develop and validate algorithms of operation,

e to implement programs,

¢ to estimate performance characteristics, informatioaastrs and resource re-
quirements.

To measure the cost reduction efficiency in application ofw technology to the
design of embedded systems one has to estimate how effgcttiectasks listed above
could be solved by means of its tools and techniques.

Due to these requirements, stated by industry, we resumexperience made
with the use of three different kind of formal methods, apglto the case study of
industrial relevance, namely a navigation system of aimpéa The methods used are
uSZ (cf. [3]), uCRL (cf. [4]), and the language of the DYANA tool environment
(cf. [5]). The results of our comparison should guide outtier investigations in
finding the best suited combination of the three approachbat is, we are looking
for the most advantageous feature of each language and ngoflii an integration
of these to end up with one method to be applied when devajopimbedded safety
critical systems. Since all approaches appears to be comeplery in their features
this approach appears to be promising.

The experience made so far is related to the formal spedditaf the case study
(the navigation system, cf. [1] and [2]). Each of the conttibig partners provides a
formalization in his/her own notation. Along these docutseme are able to compare
the different approaches or languages according to thewallg measurements:

¢ applicability

e expressiveness

e readability and documentation facility

e abstraction and refinement means

e solutions and relevance for the problems in the case study

e solutions for validation and analysis tasks, i.e. safétgnless, real-time, fault-
tolerance issues

e formal semantics.

We add the last item since we found out that the formal semmapfithe different
approaches is elaborated to different extent. Nevertbgies a crucial point for the
development of further verification and validation support

2 Comparison along the Measurements

For an overview we will start this section with a tabular tekatnmarizes the good and
weak points of each notation for each measurement. Thidl@fed by explanation
remarks for each of the judgments.
The given notation in the table is used as follows:

+ good support

+/- less good support

-/+ less weak support

- weak support.

uSZ | uCRL | DYANA
Applicability -+ +/- +/-
Expressiveness -[+ + +/-
Documentation Facility + - -/+
Abstraction/Refinement +/- - +
Solutions/Relevance for Case Stugly-/+ -/+ +
Validation/Verification Support - + -/+
Formal Semantics +/- + -/+

2.1 Explanations for the Judgments
2.1.1 uSzZ

Applicability The formal language is well suited for modeling of embeddestiesns
on a high level of abstraction. The major weakness in applitais that no explicit
notion of time is available. At least for analysis timinguss are not supported.

Expressiveness uSZ comprises facilities for describing the overall arctitee, the
behavior of the components and their data structure anddbgroperties; the object-
oriented approach allows the decomposition into sevenalpmments (called process
classes) which encapsulates certain behavior and datdLstyit is sophisticated with
inheritance and multiple instantiation of an object or mg&class; for communication
between the class a broadcast mechanism is applicableeimepkation issues related
to the design of the software to be intended are not suffigiexpressible.

Documentation Facility The notation yields a very good documentation facility by
means of the graphical notation of Statecharts (which aregbaSZ); moreover, the
object oriented approach allows to structure the spedificathe overall method sup-
ports the notion of literate specification, i.e. the formagification is interleaved with
textual explanation.

Abstraction/Refinement ©SZ supports the formalization on a high level only, i.e.
implementation issues are kept abstract. However, theaa &bstraction mechanism
given through the notion of Statecharts: a state may be cetim®ugh another stat-
echart. The main drawback in this abstraction mechanisniviengoy the fact that
interdependencies might remain hidden between diffelgrdrk of abstraction; it is
very difficult to track those inter-level dependencies.

Solutions/Relevance for Case Study For the case study and their requirements at
hand the notation yields a good documentation facility amapsrts the description on

a high level of abstraction. Real time estimation or reaktiraquirements can not be
investigated within this approach.

Validation/Verification Support Although the given tools support test case gener-
ation the approach fails for the case study at hand. The aBeigsystem is mainly
concerned on the control flow that is to be specified by meaBsatécharts. Since the
test case generation operates on the data part (given i @) it is not applicable
here. Other approaches for verification are not supportedtHe validation we might
rely on the documentation facility that yields a good sureegr the whole architecture.

Formal Semantics The formal semantics forSZ comprises the semantics of the
sub-languages, namely Z and Statecharts. Although theslaemantics of Z is well
defined and precisely specified by means of ZF set theory ties dot hold for the
formal semantics of Statecharts. For this graphical natetie formal semantics is de-
termined by the (simulation) behavior of the tool that isdisehis is a major drawback
of this approach.

2.1.2 uCRL

Applicability The languageCRL was defined to describe interacting processes that
rely on data [9]. The major design objectives faERL were that

e 1CRL had to be so expressive that ‘real life systems’, gehecahsisting of a
set of interacting programs, could be described

e 4CRL had to be so simple and clear that it was suitable to fornasisbfor
mathematical analysis

e the definition ofyCRL had to be sufficiently precise to allow for the indepen-
dent construction of computer tools foCRL, capable in assisting in the actual
development of systems.

Expressiveness According to this design goals @fCRL and the experience in spec-
ifying the case study, the language is generally applicédnespecification of such
kind of systems. Some parts of the case study were not pessilspecify in the cur-
rent version ofuCRL. The extensive computations with real number arithosegire
hard to specify using algebraic specification techniquasahe used inCRL for data

definitions. Despite the research in this direction [11]sitonsidered to be a better
approach to separate the computation part from the conmtiblcammunication parts
of the system during the early design phases.

The timing aspects of the case study were not specifigddRL, as this is still
an active research topic and the tool support for the timesioe of ,CRL is limited.
However, the case study has helped to indicate the extraresgent for timing support
in uCRL which deal with execution time and busyl/idle time regison.

Other problems were due to the presence of priority andrimpémechanisms in
the case study, which are hard or not possible to encod€RL.

Documentation Facility The currentdocumentation facilities of th€RL toolset [10]

are limited to the pretty printer t6TeX. The uCRL language allows to write very struc-
tured, clear and extremely precise specifications, howtieeexplanatory text must be
provided to explain the system decomposition as well as, @a&tions and processes
used.

Abstraction/Refinement The uCRL toolset currently does not provide any support
for the stepwise specification development. The abstnactiothe level of actions can
be achieved by renaming some of them to the internal, noerglble action. As a
refinement mechanism, action refinement techniques [8] eapplied by hand.

Solutions/Relevance for Case Study Generally, the presented case study is a one
bulk unit that is hard to split into independent parts, anerdfore hard to specify
formally. The algorithms presented in the study are maielguential computational
algorithms that are hard to model fCRL. The communication protocols in the case
study were either very compound and trivial, or just absBetause of this, most of the
errors that can be found in the system are under-specificatitbookkeeping errors,
while it is hard to imagine existence of conceptual errdrese that the verification in
uCRL is primarily targeted on.

Validation/Verification Support Currently, theuCRL toolset supports the analysis
of specifications which have finite models. Itis possibleutoaatically generate finite
labeled transition systems for such specifications. Afiat,texisting model checking
tools can be applied for the analysis of the transition systeSome optimization tools
allowing to reduce the size of generated transition systenaeailable in the toolset.

The active research and development is going on now towartdsretic symbolic
verification and validation gfiCRL specifications without generation of the entire tran-
sition system. At the moment symbolic techniques can onlgrgdied by hand, which
limits the size of the systems to which such techniques cappbed.

TheuCRL toolset also includes a simulator, that can be used teefirts manually
on earlier stages of specification.

Formal Semantics The formal semantics qiCRL specifications consists of static
semantics, algebraic semantics for data types, and steactyperational semantics for
processes. All of this semantic definitions can be foundjn [9

2.1.3 DYANA

Applicability DYANA is a programming environment intended for the desi§ar-
bedded real time system (ERTS) architecture [7]. DYANA rtds the subsystem for
ERTS formal description and a number of subsystems for sitim, performance
analysis and logical analysis of ERTS. The subsystem usddimal description of
ERTS is based on the MM (Model with Messages) language [6].

Expressiveness By using DYANA model description language MM one can specify
¢ the hardware of ERTS, its structure and communications;
¢ timed characteristics of hardware components;
¢ the overall behavior of ERTS.

The model description language MM language supplies thratuley of data and mes-
sage types, message exchange mechanism, modularityglnaiorber arithmetic, tim-

ing aspects of computations. MM is compatible with programgitanguage C which
is integrated in DYANA. By using MM language one can make alas&Lictured pre-

cise specification of the ERTS hardware, and describe coriwation, control and

computation parts of ERTS software.

Documentation Facility DYANA supplies no documentation support; no graphical
notation, e.g. flow-charts or state diagrams, is availatéHe moment. The descrip-
tion of ERTS model in MM language is presented as a set of testdiugmented with
some explanatory text as comments.

Abstraction/Refinement DYANA supports the top-down stepwise development of
ERTS description down to the implementation level. MM pd®s both abstraction
and refinement techniques by means of modularity of ERT Sriji¢iea, the hierarchy

of message types, by choosing an appropriate level of détadlescribing the hardware
and software components of ERTS.

Solutions/Relevance for Case Study
e DYANA provides

. adequate tools for the formal description of ERTS;
. pre-design the software that is to be constructed;
. simulation, visualization and performance analysisRTE behavior;

A W N P

. the definition and verification of the logical requireneefdr software and
hardware;

5. design of the software in detail.

DYANA partly supports:
The coding and testing of basic program modules which areisidle parts of
a program that allows separate verification (e.g. ASM prooces).

DYANA does not support:

1. the integration and testing of fully implemented progreemponents that
are sets of program modules selected and united by func¢tarnabject
criterion (e.g. ADA package).

2. the integration and testing of program volumes that ate gseprogram
componentsimplemented for a given system board with CPAIN ,/ROM
etc.

3. timed verification of ERTS behavior.

Validation/Verification Support DYANA supports a performance analysis in terms
of time estimation by code execution. Moreover, the envinent is sophisticated for
logical analysis of the model behavior (this holds for pargror models with more
then10® states (see [15])). But for the moment no real time behadartze analyzed.

Formal Semantics The DYANA system is based on the formal model of distributed
computer system developed in [12, 13]. The complete detsmnipf formal semantics
of MM language is under the development.

3 Consequences for Future Work

In our comparison in the last section we can find that the ftisms have a comple-
mentary distribution of advantages and disadvantages. 8yesetmmarize the follow-
ing advantages in the entire setting of all three formalisrasiave at hand:

We have a good documentation facility (given by meang®).
We have good skills for high expressive power (by means@RL).
The most elaborated verification and validation supporhisrgby CRL.

#CRL has a precisely defined formal semantics that allowspeddent con-
struction of tools for the language.

DYANA has a good support for abstraction and refinement thateicessary to
develop a suitable design from a given formal specification.

DYANA is well suited for the case study at hand and yields testlsolutions for
the problems arising within.

Combining these advantages coming with each formalism vitehgefollowing
picture given with figure 1 (see next page) that sketchestieaded way of integration.

Next steps for further development is already added to tbeims. We refer tdest
case generation from dynamics, logical analysis for DYANA, andtiming analysis for
uCRL.

test case generation
mSZ for data part (HOL-2)

test case gen.
from dyW
formal
DYANA models

log. analysis time + logical analysis
LTSreduction simulation
Timing analysis supervision
SW+HW
Test-Bed system

external environment

Figure 1: The given formalisms and their (current and futigeilities

Test Case Generation The given test case generation on the basis of the data pgart of
1SZ specification should be extended by a concept for tesgeasaration derived from
the dynamic part that specifies the overall control flow. Hatlilities complement each
other, and the entire mechanism will yield solutions for ptoblem at hand. Test case
generation based on control flow is of particular interessfstems with hard real time
requirements like our case study at hand.

Assuming a smooth transformation is given from one fornmmalisto the other,
we can exploit the most suitable foundation of a formal sdmaror our concerns.
SinceuCRL provides a good and very well suitable formal semantieswil start our
investigations on the basis of this formalism. Also, we ezart from other approaches
that have already investigated test case generation oraglie &f process algebras (cf.
for instance [14]). We found that to be a good starting point.

Logical Analysis The logical analysis coming along within the DYANA tool isn
ited currently through the extend of system’s state spahs i$ a well known problem
for the overall model checking approach, called state space explosion problem. To
overcome this restriction the LTS reduction supported leyt8RL formalism should
be facilitated within the DYANA tool. After transforming awgen system specification
into a linear form, a simple reduction algorithm is applieaflhus systems’ state space
that have been too large will become smaller such that mdasdiing can be applied
efficiently. How to adapt this appealing facility for the DM@ modeling language
will be the topic of our next investigations.

Timing Analysis TheuCRL tool support is very well established. We found a wide
range of well founded algorithms for analysis. Going to exit¢hese range we are
claiming that timing analysis is needed. The timing issueeisly added to the formal-

ism.

Thus the tool support is not yet very well elaboratedg@ing research for this

issues will be guided by the given real time problems thateawiithin our case study
at hand.

References

[1]

[2]

(3]

[4]

[5]

[6]

Informal Description of the Airborne Navigation System
http://lwww.first.gmd.dédrtesy/publications/IDNS/IDNS.doc, 1999

Report on Informal Specification
http://www.first.gmd.dédrtesy/publications/RIS.doc, 1999

Modeling the Navigation System Sz,
http://www.first.gmd.dédrtesy/publications/FormSpec/NS-GMD.ps.gz, 1999

Formal Specification of the Navigation Systemu@RL,
http://lwww.first.gmd.dédrtesy/publications/FormSpec/NS-CWI.ps, 1999

The formal specification of the Airborne Navigation Systeymteans of DYANA
tools
http://www.first.gmd.dédrtesy/publications/FormSpec/NS-MSU.tgz, 1999

MM language for DYANA too]
http://lwww.first.gmd.dédrtesy/publications, 1999

[7] A.G. Bahmurov, A.P. Kapitonova, R.L. SmelianskyYANA: An Environment for

(8]

Embedded System Design and Analysis, Proceedings of TACAS’99, Amsterdam,
March 22-26, p.390-404.

R.J. van Glabbeek and U. Goltz. Refinement of Actions agquigalence Notions
for Concurrent Systems. Technical report, Institut fifohmatik, Universitat
Hildesheim, 1998.

[9] J.F. Groote and A. Ponse. The syntax and semantigsG#L. In A. Ponse,

(10]

(11]

(12]

C. Verhoef, and S.F.M. van Vlijmen, editor8|gebra of Communicating Pro-
cesses 1994, pages 26—62. Workshop in Computing Series, Springerayerl
1995.

J.F. Groote and B. Lisser. Tutorial and reference gdatethe uCRL toolset
version 1.0. Technical report, CWI, 1999. To appear, abtéldrom URL
http://www.cwi.nl/mcrl/mutool.html

P.H. Rodenburg and D.J. Hoekzema. Specification ofakeRourier transform
algorithm as a term rewriting system. Logic Group Prepriati& No. 27, De-
partment of Philosophy, Utrecht University, December 1987

R.L. SmelianskyDistributed computer system operation mq&iédscow Univer-
sity Computational Mathematics and Cybernetics, 1990, pl 3;-16.

[13] R.L. Smeliansky©On program behaviour invariantdloscow University Compu-
tational Mathematics and Cybernetics, 1990, N 4, p. 54-58.

[14] J. Tretmans. Testing Concurrent Systems: A Formal Apph. CONCUR’99 —
10*" Int. Conference on Concurrency Theory, 1999, J.C.M. BaatehS. Mauw,
pages 46—-65, Lecture Notes in Computer Science 1664, Sprifeglag, 1999.

[15] D.V. Tsarkov and V.A. Zakharov, Efficient algorithmsrfine model checking in
CTL and their application to the verification of parallel grams,Programming
and Software Engeneering, 1998, v. 4, pp. 3-18.

10

