
Towards a Unified Toolset for Embedded Systems
Development

A.G. Bakhmurov
3

V.I. Chervin
2

M.V. Chistolinov
3

J.F. Groote
4

V.A. Kostenko
1;3

R.L. Smeliansky
1;3

D.V. Tsarkov
3

Y.S. Usenko
4

K. Winter
5

V.A. Zakharov
31Redlab Ltd.

Moscow, Russia2State Research Institute of Aircraft Systems (GOSNIIAS)
Moscow, Russia3Moscow State University (MSU)
Moscow, Russia4Centrum voor Wiskunde Informatica (CWI)

Amsterdam, The Netherlands5German National Research Center for Information Technology (GMD FIRST)
Berlin, Germany

Abstract

This paper contains a comparative analysis of three toolsets and associated tech-
niques for development of embedded systems. The comparisonis based on the
experience acquired by applying the techniques to a common case study. The re-
sults of the analysis are being used to design a unified set of tools for embedded
systems development.
Keywords: Formal Methods, Embedded Systems, Tool Comparison.

The work has been carried out under the EU INCO-COPERNICUS
Project No.: 977020 ‘DR TESY’ (http://www.first.gmd.de/˜drtesy)

1 Introduction

One of the most important distinguishing features of the modern technologies for em-
bedded system development is the extensive application of formal methods at the ear-
lier stages of the design process. This is inspired by increasing complexity of such
systems and, hence, by growing development cost. One shouldnotice that the most
expensive stage of embedded system designing is testing, debugging and improving
the system to satisfy the target requirements. Design errors discovered on testing and
field trial stages yield sharp cost growth since the design should be re-done from the

1

beginning. But, the development cost is a crucial factor now. The solution is to use the
technology and flexible tools for virtual prototyping of embedded system on the early
design stages. The main requirements the technologies of this kind have to satisfy are
as follows� to provide the highest design flexibility,� to minimize the cost of changes and analysis of design variants,� to enable its user to build and analyze system prototypes rapidly,� to decompose the system into software and hardware parts correctly,� to perform full cycle of simulation,� to develop and validate algorithms of operation,� to implement programs,� to estimate performance characteristics, information streams and resource re-

quirements.

To measure the cost reduction efficiency in application of a new technology to the
design of embedded systems one has to estimate how effectively the tasks listed above
could be solved by means of its tools and techniques.

Due to these requirements, stated by industry, we resume ourexperience made
with the use of three different kind of formal methods, applied to the case study of
industrial relevance, namely a navigation system of airplanes. The methods used are�SZ (cf. [3]), �CRL (cf. [4]), and the language of the DYANA tool environment
(cf. [5]). The results of our comparison should guide our further investigations in
finding the best suited combination of the three approaches.That is, we are looking
for the most advantageous feature of each language and working for an integration
of these to end up with one method to be applied when developing embedded safety
critical systems. Since all approaches appears to be complementary in their features
this approach appears to be promising.

The experience made so far is related to the formal specification of the case study
(the navigation system, cf. [1] and [2]). Each of the contributing partners provides a
formalization in his/her own notation. Along these documents we are able to compare
the different approaches or languages according to the following measurements:� applicability� expressiveness� readability and documentation facility� abstraction and refinement means� solutions and relevance for the problems in the case study� solutions for validation and analysis tasks, i.e. safety, liveness, real-time, fault-

tolerance issues

2

� formal semantics.

We add the last item since we found out that the formal semantics of the different
approaches is elaborated to different extent. Nevertheless, it is a crucial point for the
development of further verification and validation support.

2 Comparison along the Measurements

For an overview we will start this section with a tabular thatsummarizes the good and
weak points of each notation for each measurement. This is followed by explanation
remarks for each of the judgments.

The given notation in the table is used as follows:
+ good support

+/- less good support
-/+ less weak support
- weak support. �SZ �CRL DYANA

Applicability -/+ +/- +/-
Expressiveness -/+ + +/-
Documentation Facility + - -/+
Abstraction/Refinement +/- - +
Solutions/Relevance for Case Study-/+ -/+ +
Validation/Verification Support - + -/+
Formal Semantics +/- + -/+

2.1 Explanations for the Judgments

2.1.1 �SZ

Applicability The formal language is well suited for modeling of embedded systems
on a high level of abstraction. The major weakness in applicability is that no explicit
notion of time is available. At least for analysis timing issues are not supported.

Expressiveness �SZ comprises facilities for describing the overall architecture, the
behavior of the components and their data structure and logical properties; the object-
oriented approach allows the decomposition into several components (called process
classes) which encapsulates certain behavior and data structure; it is sophisticated with
inheritance and multiple instantiation of an object or process class; for communication
between the class a broadcast mechanism is applicable. Implementation issues related
to the design of the software to be intended are not sufficiently expressible.

Documentation Facility The notation yields a very good documentation facility by
means of the graphical notation of Statecharts (which are part of �SZ); moreover, the
object oriented approach allows to structure the specification; the overall method sup-
ports the notion of literate specification, i.e. the formal specification is interleaved with
textual explanation.

3

Abstraction/Refinement �SZ supports the formalization on a high level only, i.e.
implementation issues are kept abstract. However, there isan abstraction mechanism
given through the notion of Statecharts: a state may be refined through another stat-
echart. The main drawback in this abstraction mechanism is given by the fact that
interdependencies might remain hidden between different layers of abstraction; it is
very difficult to track those inter-level dependencies.

Solutions/Relevance for Case Study For the case study and their requirements at
hand the notation yields a good documentation facility and supports the description on
a high level of abstraction. Real time estimation or real time requirements can not be
investigated within this approach.

Validation/Verification Support Although the given tools support test case gener-
ation the approach fails for the case study at hand. The navigation system is mainly
concerned on the control flow that is to be specified by means ofStatecharts. Since the
test case generation operates on the data part (given in terms of Z) it is not applicable
here. Other approaches for verification are not supported. For the validation we might
rely on the documentation facility that yields a good surveyover the whole architecture.

Formal Semantics The formal semantics for�SZ comprises the semantics of the
sub-languages, namely Z and Statecharts. Although the formal semantics of Z is well
defined and precisely specified by means of ZF set theory this does not hold for the
formal semantics of Statecharts. For this graphical notation the formal semantics is de-
termined by the (simulation) behavior of the tool that is used. This is a major drawback
of this approach.

2.1.2 �CRL

Applicability The language�CRL was defined to describe interacting processes that
rely on data [9]. The major design objectives for�CRL were that� �CRL had to be so expressive that ‘real life systems’, generally consisting of a

set of interacting programs, could be described� �CRL had to be so simple and clear that it was suitable to form a basis for
mathematical analysis� the definition of�CRL had to be sufficiently precise to allow for the indepen-
dent construction of computer tools for�CRL, capable in assisting in the actual
development of systems.

Expressiveness According to this design goals of�CRL and the experience in spec-
ifying the case study, the language is generally applicablefor specification of such
kind of systems. Some parts of the case study were not possible to specify in the cur-
rent version of�CRL. The extensive computations with real number arithmetics are
hard to specify using algebraic specification techniques that are used in�CRL for data

4

definitions. Despite the research in this direction [11], itis considered to be a better
approach to separate the computation part from the control and communication parts
of the system during the early design phases.

The timing aspects of the case study were not specified in�CRL, as this is still
an active research topic and the tool support for the timed version of�CRL is limited.
However, the case study has helped to indicate the extra requirement for timing support
in �CRL which deal with execution time and busy/idle time registration.

Other problems were due to the presence of priority and interrupt mechanisms in
the case study, which are hard or not possible to encode in�CRL.

Documentation Facility The current documentation facilities of the�CRL toolset [10]
are limited to the pretty printer to LATEX. The�CRL language allows to write very struc-
tured, clear and extremely precise specifications, howeverthe explanatory text must be
provided to explain the system decomposition as well as data, actions and processes
used.

Abstraction/Refinement The�CRL toolset currently does not provide any support
for the stepwise specification development. The abstraction on the level of actions can
be achieved by renaming some of them to the internal, non-observable action. As a
refinement mechanism, action refinement techniques [8] can be applied by hand.

Solutions/Relevance for Case Study Generally, the presented case study is a one
bulk unit that is hard to split into independent parts, and therefore hard to specify
formally. The algorithms presented in the study are mainly sequential computational
algorithms that are hard to model in�CRL. The communication protocols in the case
study were either very compound and trivial, or just absent.Because of this, most of the
errors that can be found in the system are under-specification or bookkeeping errors,
while it is hard to imagine existence of conceptual errors, those that the verification in�CRL is primarily targeted on.

Validation/Verification Support Currently, the�CRL toolset supports the analysis
of specifications which have finite models. It is possible to automatically generate finite
labeled transition systems for such specifications. After that, existing model checking
tools can be applied for the analysis of the transition systems. Some optimization tools
allowing to reduce the size of generated transition system are available in the toolset.

The active research and development is going on now towards automatic symbolic
verification and validation of�CRL specifications without generation of the entire tran-
sition system. At the moment symbolic techniques can only beapplied by hand, which
limits the size of the systems to which such techniques can beapplied.

The�CRL toolset also includes a simulator, that can be used to finderrors manually
on earlier stages of specification.

Formal Semantics The formal semantics of�CRL specifications consists of static
semantics, algebraic semantics for data types, and structured operational semantics for
processes. All of this semantic definitions can be found in [9].

5

2.1.3 DYANA

Applicability DYANA is a programming environment intended for the design of em-
bedded real time system (ERTS) architecture [7]. DYANA includes the subsystem for
ERTS formal description and a number of subsystems for simulation, performance
analysis and logical analysis of ERTS. The subsystem used for formal description of
ERTS is based on the MM (Model with Messages) language [6].

Expressiveness By using DYANA model description language MM one can specify� the hardware of ERTS, its structure and communications;� timed characteristics of hardware components;� the overall behavior of ERTS.

The model description language MM language supplies the hierarchy of data and mes-
sage types, message exchange mechanism, modularity, natural number arithmetic, tim-
ing aspects of computations. MM is compatible with programming language C which
is integrated in DYANA. By using MM language one can make a well-structured pre-
cise specification of the ERTS hardware, and describe communication, control and
computation parts of ERTS software.

Documentation Facility DYANA supplies no documentation support; no graphical
notation, e.g. flow-charts or state diagrams, is available for the moment. The descrip-
tion of ERTS model in MM language is presented as a set of text files augmented with
some explanatory text as comments.

Abstraction/Refinement DYANA supports the top-down stepwise development of
ERTS description down to the implementation level. MM provides both abstraction
and refinement techniques by means of modularity of ERTS description, the hierarchy
of message types, by choosing an appropriate level of details in describing the hardware
and software components of ERTS.

Solutions/Relevance for Case Study� DYANA provides

1. adequate tools for the formal description of ERTS;

2. pre-design the software that is to be constructed;

3. simulation, visualization and performance analysis of ERTS behavior;

4. the definition and verification of the logical requirements for software and
hardware;

5. design of the software in detail.

6

� DYANA partly supports:
The coding and testing of basic program modules which are indivisible parts of
a program that allows separate verification (e.g. ASM procedures).� DYANA does not support:

1. the integration and testing of fully implemented programcomponents that
are sets of program modules selected and united by functional or object
criterion (e.g. ADA package).

2. the integration and testing of program volumes that are sets of program
components implemented for a given system board with CPUs, RAM, ROM
etc.

3. timed verification of ERTS behavior.

Validation/Verification Support DYANA supports a performance analysis in terms
of time estimation by code execution. Moreover, the environment is sophisticated for
logical analysis of the model behavior (this holds for program or models with more
then108 states (see [15])). But for the moment no real time behavior can be analyzed.

Formal Semantics The DYANA system is based on the formal model of distributed
computer system developed in [12, 13]. The complete description of formal semantics
of MM language is under the development.

3 Consequences for Future Work

In our comparison in the last section we can find that the formalisms have a comple-
mentary distribution of advantages and disadvantages. We may summarize the follow-
ing advantages in the entire setting of all three formalismswe have at hand:� We have a good documentation facility (given by means of�SZ).� We have good skills for high expressive power (by means of�CRL).� The most elaborated verification and validation support is given by�CRL.� �CRL has a precisely defined formal semantics that allows independent con-

struction of tools for the language.� DYANA has a good support for abstraction and refinement that is necessary to
develop a suitable design from a given formal specification.� DYANA is well suited for the case study at hand and yields the best solutions for
the problems arising within.

Combining these advantages coming with each formalism we get the following
picture given with figure 1 (see next page) that sketches the intended way of integration.

Next steps for further development is already added to the picture. We refer totest
case generation from dynamics, logical analysis for DYANA, andtiming analysis for�CRL.

7

mSZ

Test-Bed

mCRL

time + logical analysis
simulation

test case generation

from dynamic part
test case gen.

for data part (HOL-Z)

LTS reduction
log. analysis

supervision

external environment

DYANA
formal
models

SW+HW
system

Timing analysis

Figure 1: The given formalisms and their (current and future) facilities

Test Case Generation The given test case generation on the basis of the data part ofa�SZ specification should be extended by a concept for test casegeneration derived from
the dynamic part that specifies the overall control flow. Bothfacilities complement each
other, and the entire mechanism will yield solutions for ourproblem at hand. Test case
generation based on control flow is of particular interest for systems with hard real time
requirements like our case study at hand.

Assuming a smooth transformation is given from one formalism into the other,
we can exploit the most suitable foundation of a formal semantics for our concerns.
Since�CRL provides a good and very well suitable formal semantics we will start our
investigations on the basis of this formalism. Also, we can learn from other approaches
that have already investigated test case generation on the basis of process algebras (cf.
for instance [14]). We found that to be a good starting point.

Logical Analysis The logical analysis coming along within the DYANA tool is lim-
ited currently through the extend of system’s state space. This is a well known problem
for the overall model checking approach, called thestate space explosion problem. To
overcome this restriction the LTS reduction supported by the�CRL formalism should
be facilitated within the DYANA tool. After transforming a given system specification
into a linear form, a simple reduction algorithm is applicable. Thus systems’ state space
that have been too large will become smaller such that model checking can be applied
efficiently. How to adapt this appealing facility for the DYANA modeling language
will be the topic of our next investigations.

Timing Analysis The�CRL tool support is very well established. We found a wide
range of well founded algorithms for analysis. Going to extend these range we are
claiming that timing analysis is needed. The timing issue isnewly added to the formal-

8

ism. Thus the tool support is not yet very well elaborated. Ongoing research for this
issues will be guided by the given real time problems that arise within our case study
at hand.

References

[1] Informal Description of the Airborne Navigation System,
http://www.first.gmd.de/~drtesy/publications/IDNS/IDNS.doc, 1999

[2] Report on Informal Specification,
http://www.first.gmd.de/~drtesy/publications/RIS.doc, 1999

[3] Modeling the Navigation System in�SZ,
http://www.first.gmd.de/~drtesy/publications/FormSpec/NS-GMD.ps.gz, 1999

[4] Formal Specification of the Navigation System in�CRL,
http://www.first.gmd.de/~drtesy/publications/FormSpec/NS-CWI.ps, 1999

[5] The formal specification of the Airborne Navigation System by means of DYANA
tools,
http://www.first.gmd.de/~drtesy/publications/FormSpec/NS-MSU.tgz, 1999

[6] MM language for DYANA tool,
http://www.first.gmd.de/~drtesy/publications, 1999

[7] A.G. Bahmurov, A.P. Kapitonova, R.L. Smeliansky,DYANA: An Environment for
Embedded System Design and Analysis, Proceedings of TACAS’99, Amsterdam,
March 22-26, p.390–404.

[8] R.J. van Glabbeek and U. Goltz. Refinement of Actions and Equivalence Notions
for Concurrent Systems. Technical report, Institut für Informatik, Universität
Hildesheim, 1998.

[9] J.F. Groote and A. Ponse. The syntax and semantics of�CRL. In A. Ponse,
C. Verhoef, and S.F.M. van Vlijmen, editors,Algebra of Communicating Pro-
cesses 1994, pages 26–62. Workshop in Computing Series, Springer-Verlag,
1995.

[10] J.F. Groote and B. Lisser. Tutorial and reference guidefor the �CRL toolset
version 1.0. Technical report, CWI, 1999. To appear, available from URL
http://www.cwi.nl/~mcrl/mutool.html

[11] P.H. Rodenburg and D.J. Hoekzema. Specification of the fast Fourier transform
algorithm as a term rewriting system. Logic Group Preprint Series No. 27, De-
partment of Philosophy, Utrecht University, December 1987.

[12] R.L. Smeliansky,Distributed computer system operation model, Moscow Univer-
sity Computational Mathematics and Cybernetics, 1990, N 3,p. 4–16.

9

[13] R.L. Smeliansky,On program behaviour invariants, Moscow University Compu-
tational Mathematics and Cybernetics, 1990, N 4, p. 54–58.

[14] J. Tretmans. Testing Concurrent Systems: A Formal Approach. CONCUR’99 –10th Int. Conference on Concurrency Theory, 1999, J.C.M. Baetenand S. Mauw,
pages 46–65, Lecture Notes in Computer Science 1664, Springer-Verlag, 1999.

[15] D.V. Tsarkov and V.A. Zakharov, Efficient algorithms for the model checking in
CTL and their application to the verification of parallel programs,Programming
and Software Engeneering, 1998, v. 4, pp. 3-18.

10

