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Abstract. Reasoning in complex DLs is well known to be expensive.
However, in numerous application scenarios, the ontology in use is ei-
ther never modified at all (e.g., in query answering), or the amount of
updates is negligible in comparison with the whole ontology (e.g., minor
manual edits, addition of a few individuals). In order to efficiently sup-
port these scenarios, FaCT++ implements the following two techniques:
persistent and incremental reasoning. In persistent reasoning mode, after
classification, the reasoner saves its internal state, including computed
information (e.g., concept taxonomy) on a persistent medium; the next
use of the ontology will not require classification to be performed from
scratch, but just reading an input file. In incremental reasoning mode,
the reasoner is notified of a change and identifies a (usually small) portion
of its internal state that is affected by the change. This is the only part
that requires recomputation. This approach can lead to greater overall
efficiency, when compared with having to reload and reclassify the whole
ontology.

1 Introduction

Reasoning about ontologies in the OWL 2 DL profile is computationally very
expensive. The underpinning logic has 2NEXPTIME worst case complexity for
common reasoning tasks, which makes reasoning for these ontologies highly in-
tractable. However, while this complexity cannot be optimized away, there are
various scenarios in which a reasoner can avoid doing the same work multiple
times.

One such scenario assumes that the ontology does not change at all or changes
rarely and in a predictable manner; this is the case for ontologies that stay
unchanged between releases, and are released every few weeks, rather than being
edited multiple times per day. Examples of such a scenario could be ontology-
based applications that ask hierarchical queries, without additions or removals
of axioms and assertions. In this case there is no need to re-classify the ontology
each time the system runs, as the result of classification would stay the same for
long periods of time.

Another common scenario assumes that the ontology changes frequently but
the changes are much smaller than the ontology itself. A typical example of



such a scenario is manual ontology editing. Full reclassification in this context
is suboptimal, as only a minor part of the concept hierarchy will be changing
between reclassifications.

To support these scenarios we implement additional reasoning modes in an
OWL 2 DL reasoner FaCT++ [5]. In persistent mode, FaCT++ saves the in-
ferred information together with its internal state into a file, which can then be
reloaded with much less computational effort than reasoning would require. In
incremental mode, FaCT++ carefully determines which parts of the precom-
puted inferences may be affected by an incoming change and only recomputes a
subset of the inferences.

In this paper we describe in detail how persistent and incremental reasoning
modes are implemented in FaCT++ along with an empirical evaluation, and
outline future developments.

2 Persistent Reasoning

We call a reasoner persistent if it can save its internal state together with some
precomputed inferences (e.g., concept hierarchy) and reload it when presented
with the same ontology. The purpose of persistent reasoning is to avoid duplica-
tion of expensive calculations for an input that has been already processed. One
can view a persistent reasoner as a cache that is indexed by ontology. For every
ontology in cache it returns a reasoner that is ready to answer queries about
that ontology.

A good use-case for persistent reasoning is a query answering over a com-
plex ontology, which is subject to changes only very rarely. For example, the
SNOMED-CT terminology1 is used in many healthcare applications, and is up-
dated with a new release twice a year. Although this ontology is in the OWL
2 EL profile, which means classification complexity is polynomial and it can
be classified quickly with tractable EL reasoners, an OWL 2 DL ontology of
comparable size can be problematic to deal with.

The implementation of a persistent reasoner depends a lot on the program-
ming language and/or infrastructure around it. Some languages, like Java, allow
one to (de-)serialize the internal state of the program as a language feature.
However, FaCT++ is implemented in C++, so a different solution is needed.
The well-known Boost library collection2 contains a Boost::Serialization li-
brary that allows one to serialise/deserialise classes in a customisable way. In
FaCT++ however we implemented our own version of serialising routines to
have the necessary flexibility.

The most obvious approach to persistent reasoning is to save the entire inter-
nal state of the reasoner and reload it every time the same ontology needs to be
classified or queried. This approach, however, seems to be too complicated and
error-prone, as every minor change of the object model will lead to change in
the (de-)serialising code. This also implies that the saved state cannot be loaded

1 http://www.ihtsdo.org/snomed-ct/
2 http://www.boost.org/



by two slightly different versions of the reasoner code, just as it happens with
standard Java serialization.

The essence of the approach used in FaCT++ is to save and restore only
inferred information, performing the initialisation of the internal state each time
during the reasoner creation. This approach might look not optimal, however it
provides a good compromise between minimising loading time and complexity of
the implementation, combined with resilience to minor changes in the reasoner
code. Typically, code using the reasoner must already have loaded the ontology
in memory; it is therefore of little use to save the ontology data together with
the reasoner state; not saving the ontology requires extra initialization work for
the reasoner, but saves effort. This, as shown in Section 4, demonstrates good
results in practice. This is due to the fact that preprocessing and consistency
checking usually requires negligible time comparing to classification.

Let us have a look at the approach in a nutshell. After the classification or
realisation is finished, FaCT++ saves the most important information of the
internal state to a file. These include the signature of the ontology, the set of
all expressions and the result of reasoning (e.g. the concept hierarchy, types of
individuals, etc).

During the reload of the persisted state, the ontology is loaded as usual, and
its consistency is checked. After this step, all internal structures have been ini-
tialised and the reasoner is ready to answer queries. This is the point at which the
saved structures are loaded from the file. The reasoner then performs verification
to ensure that the loaded ontology correspond to the saved one. This verification
mainly compares the set of expressions: if the in-memory version coincides with
the saved one (up to things like the ordering of elements in conjunctions), then
the ontology is assumed to be the same.

Some preliminary tests of persistent reasoning can be found in Section 4.

3 Incremental Reasoning

The idea of an incremental reasoning mode is to avoid reloading and reclassifying
the whole ontology when just a few axioms in the ontology are changed. The
standard way of achieving this for tableaux-based reasoners is to use modules to
determine, within an acceptable approximation, the affected subsumptions [1].
We use a similar approach in our implementation of incremental reasoning.

We now briefly introduce the notion of a module in DL. Let O be an ontology
and Σ a signature, which is essentially a set of entities. The subset M of O is
called a module of O w.r.t. Σ if for any axiom α with Sig(α) ⊆ Σ, M |= α ⇐⇒
O |= α. The module Mα is a module for an axiom α if it is a module w.r.t.
Sig(α). The precise definitions of module and the notion of ⊥-locality-based
module could be found, e.g., in [1, 4].

The approach presented in [1] provides an algorithm for incremental classifi-
cation, i.e., it tries to minimise work that is necessary to provide a new concept
hierarchy. The approach is based on the following propositions:



Proposition 1 (Proposition 1 from [1]). Let O1,O2 be ontologies, α an
axiom, and O1

α,O2
α respectively modules for α in O1 and O2. Then, the following

properties hold:

– If O1 |= α and O1
α ⊆ O2, then O2 |= α.

– If O1 6|= α and O2
α ⊆ O1, then O2 6|= α.

Proposition 2 (Proposition 3 from [1]). Let O be an ontology, α an axiom
in the form A v B, where A,B ∈ Sig(O) are concept names. Then a module
for axiom α can be computed as a ⊥-locality-based module for signature {A},
denoted OA.

The incremental classification algorithm works in several steps. First it takes
the changes (the set of axioms that were added to O or removed from O) and
determines the set of concept names, for which the concept hierarchy can be
altered due to that changes. Then for every such name A the algorithm re-
builds the module OA, taking into account ontology changes. If the module OA
does not change then, by Proposition 1, the concept hierarchy for A stays the
same. If the module OA changes, then the algorithm checks whether OA |= α,
where α = A v B.

In FaCT++ we use the algorithm described above with a few improvements.
The first one is about the module extraction approach. While locality-based

module extraction is computationally cheap (the complexity is O(n2) for the
algorithm from [1] and O(n ∗m) for the one from [4], where n = |O| and m =
max(|Sig(α)|) for α ∈ O), the number of modules in question can be large.
Therefore, we use an approach inspired by the following observation (that is a
consequence of Proposition 2 from [4]):

Proposition 3. Let A and B be concept names such that B ∈ Sig(OA). Then
OB ⊆ OA. In other words, OB = (OA)B.

This leads to a stratified approach to module extraction. Once we find OA
for some A, we look at those B ∈ Sig(OA) for which the module should be
recalculated. Then we extract OB as (OA)B . We proceed recursively, so at all
times we start to extract a module from as small a set of axioms as possible.

Another optimization we apply is the one described in Section 2. Namely,
after having a change-set in hand, we save the internal state of the reasoner
(which is a concept hierarchy in this case), reload the new ontology and perform
preprocessing and a consistency check. After this the reasoner is ready to answer
queries about the new ontology. The reasoner then loads the old hierarchy and
performs changes according to the incremental algorithm described above. The
fact that we use the whole O instead of OA to query about subsumptions of
the form A v B might look like a bad choice, taking into account the high
complexity of reasoning. However, in this approach there is no need to organise
separate reasoners for modules, load axioms in, etc. Moreover, the fact that the
current instance of the reasoner is loaded with the whole ontology allows it to
answer arbitrary queries about the changed ontology. This makes FaCT++



a complete incremental reasoner, unlike Pellet, which, while implementing the
algorithm from [1], can only answer named concept subsumption queries; this
makes it, in fact, an incremental classifier.

Additional benefit is the ability to determine non-subsumption quickly using
modules. The Proposition 2 has the following very important corollary:

Proposition 4. Let O be an ontology, A,B be concept names. Then if B /∈
Sig(OA), then OA 6|= A v B.

In other words, all the super-concepts of A are in the signature of OA. As long
as we maintain OA for all A ∈ Sig(O), we can use that information to reduce the
number of subsumption tests not only in an incremental step of reasoning, but
also for the initial classification. The benefit of this could be huge, see Section 4
for the details.

4 Empirical Evaluation

All the experiments were done on the machine with Intel Core 2 Duo 3.06 GHz
processor and 8 Gb of RAM under Max OS X 10.9.1. We used for the experiments
FaCT++ [5] version 1.6.3 beta.

4.1 Persistent Reasoning

For the persistent reasoning tests we use a command-line version of FaCT++.
For every ontology, we load it into a fresh reasoner, classify or realise it and then
save the inferred information. On the second run the ontology is loaded and
checked for consistency. After this, the inferred information is already loaded, so
the reasoner is ready to answer hierarchical queries.

The results for a few of the most complex ontologies are presented in Table 1.
The SNOMED CT ontology has a simple structure but very large size. The NCI
Thesaurus ontology3 is large and not so simple as SNOMED. The Family History
ontology, FHKB [3] is very small but it uses unusually complex role hierarchy
and is rather hard for modern reasoners. The columns in the table correspond to
the time required to load the ontology into the reasoner, preprocess the ontology,
check its consistency, classify or realise it, save it to a file and read the saved
structures from that file (with verification). The ratio column shows how much
faster the reasoning via restoring previously computed inferences is comparing
to the actual classification. It is also easy to see that in the normal reasoning
the classification time dominates over the initialisation of the reasoner. This is
an empirical justification of the chosen approach.

4.2 Incremental Reasoning

The inspiration for our implementation of incremental reasoning comes from
the joint project between Siemens Healthcare and the University of Manchester.
In this project, reasoning was used in a complex ontology-driven application, to

3 http://ncit.nci.nih.gov/



Ontology |Sig(O)| Initial reasoning time, sec save/load time, sec ratio
load preprocess consistency realise save load

SNOMED 379,689 3.07 3.33 0.07 481.28 6.91 8.23 33
NCIt-10.05 98,902 0.79 1.35 0.12 568.49 2.17 2.68 115.5
FHKB 462 0 0 0.78 43.61 0 0 57

Table 1. Time of different reasoning and (de-)serialisation steps, in seconds.

answer queries that were written as conjunctions of complex concept expressions.
The application asks for the super-concepts of these expressions and, depending
on the answer, performs some actions.

The ontology developed in this project was classified using FaCT++, in non-
incremental mode; this requires more than 8 hours. However, using incremental
mode, the initial classification time is reduced to 20 minutes, most of which are
spent in the module extraction procedure.

The reasons of such a disparity was found to be that the axioms that define
the set of criteria look like α = C v A, where A is a criterion, and C is a
complex expression, defining the criterion. Note that α is the only axiom that
mention A. The ontology contains about 30,000 such axioms, most of which
share some parts of their definitions. So, the reasoner in standard mode tries
to check subsumption between different criteria, spending a lot of time there.
However, OA for such an A would be empty, and the incremental reasoner does
not need to perform any classification over such concepts.

In order to test incremental reasoning we add/remove a small number (1-10)
of criteria definitions at random. In all cases the reclassification time was less
than 20 seconds, the mean was around 5 seconds, which shows a ratio of about
240 to 1 compared to the original classification time of 20 minutes.

5 Future Work

While currently implemented features of persistent and incremental reasoning
work quite well, we can see future improvements for these techniques in several
possible directions.

– It might be worth trying to use Labelled Atomic Decomposition (LAD)
instead of modules for single concepts. The LAD is a compact representation
of all modules of an ontology [7]. It is used in the Chainsaw reasoner [6]
to extract modules. It might be beneficial to have a single representation
of all modules rather than keep each one separately. However, it requires
a fully incremental LAD implementation, while currently only incremental
additions, but not removals, are allowed [2].

– Investigate the case of tighter integration of persistent and incremental rea-
soning. The obvious candidate for serialization is the set of modules. It might
also be possible to save the history of changes, so the retraction of a change
would just amount to the loading of a previous state.



– A more ambitious goal is to combine the two modes and use the result as a
default mode for applications like ontology editors. An editor usually works
with several ontologies, and changes tend to be minor. Such a reasoning
system will save all the classified information, and load it using hashing over
the ontology name and/or content.

6 Conclusions

We have identified two common ontology usage scenarios for which the perfor-
mance of traditional reasoners is sub-optimal. We propose two reasoning modes,
namely persistent reasoning and incremental reasoning, to improve reasoner per-
formance in these scenarios. We described the implementation of these modes
in the OWL 2 DL reasoner FaCT++ and evaluated our implementation on
several real-life ontologies. Finally, a few directions for future work have been
introduced.
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