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a b s t r a c t

One of the biggest challenges in Multimedia information retrieval and understanding is to bridge the
semantic gap by properly modeling concept semantics in context. The presence of out of vocabulary
(OOV) concepts exacerbates this difficulty. To address the semantic gap issues, we formulate a problem
on learning contextualized semantics from descriptive terms and propose a novel Siamese architecture
to model the contextualized semantics from descriptive terms. By means of pattern aggregation and
probabilistic topic models, our Siamese architecture captures contextualized semantics from the co-
occurring descriptive terms via unsupervised learning, which leads to a concept embedding space of the
terms in context. Furthermore, the co-occurring OOV concepts can be easily represented in the learnt
concept embedding space. The main properties of the concept embedding space are demonstrated via
visualization. Using various settings in semantic priming, we have carried out a thorough evaluation by
comparing our approach to a number of state-of-the-art methods on six annotation corpora in different
domains, i.e., MagTag5K, CAL500 and Million Song Dataset in the music domain as well as Corel5K,
LabelMe and SUNDatabase in the image domain. Experimental results on semantic priming suggest that
our approach outperforms those state-of-the-art methods considerably in various aspects.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Multimedia information retrieval (MMIR) is a collective termi-
nology referring to a number of tasks involving indexing, compar-
ison and retrieval of multimedia objects (Jaimes, Christel, Gilles,
Sarukkai, & Ma, 2005). As media content is created at an expo-
nential rate, it has become increasingly difficult to manage even
personal repositories of multimedia so as to make MMIR more
and more demanding. Moreover, users expect certain levels of
MMIR services from web service providers such as YouTube and
Flickr. In addition, information processing tasks in fields such as
medicine (Müller, Michoux, Bandon, & Geissbuhler, 2004) and ed-
ucation (Chang, Eleftheriadis, & Mcclintock, 1998) benefit enor-
mously from advances in MMIR. In general, the most challenging
problem in MMIR is the so-called semantic gap (Smeulders, Wor-
ring, Santini, Gupta, & Jain, 2000), which stems from the difficulty
in linking low-level media representation, e.g., computationally
extractable features, to high-level semantic concepts describing
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the media content, e.g., human-like understanding. Bridging this
gap has motivated a number of approaches including feature ex-
traction (Lew, Sebe, Djeraba, & Jain, 2006), user-inclusive design
(Schedl, Flexer, & Urbano, 2013), and high-level context model-
ing (Marques, Barenholtz, & Charvillat, 2011). By modeling con-
cepts, the use of semantics, i.e., the representation of high-level
concepts and their interactions, leads to improvements in MMIR
applications as well as the interpretability of the retrieved results
(Kaminskas & Ricci, 2012). As a result, semantics acquisition and
representation are critical in bridging the semantic gap. The rich-
ness, meaningfulness and applicability of semantics rely primarily
on the sources of concept-level relatedness information. Examples
of such sources include manually constructed knowledge graphs
or ontologies (Kim, Scerri, Breslin, Decker, & Kim, 2008), automat-
ically analyzed media content (Torralba, 2003) or well-explored
collections of crowd-sourced descriptive terms or tags (Miotto &
Lanckriet, 2012).

As one of the information sources, descriptive terms, including
keywords, labels and other textual descriptions of media, have
also been used in capturing the term-based semantics underly-
ing co-occurring descriptive terms. Such semantics provides direct
concept-level knowledge regarding the concernedmultimedia ob-
jects. Typical applications include music crowd tagging services
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Nomenclature

Symbol Definition
x[i] The ith element of vector x
|X | The cardinality of the set X
Υ Document-term relatedness matrix
τ A single descriptive term
Γ The collection of training descriptive terms
δ A single document consisting ofm descriptive terms
∆ The collection of training documents
φ A single topic produced from LDA analysis
Φ The set of topics produced from LDA analysis of the

training dataset
t(τ ) A representation of the descriptive term τ
l(τ |δ) A representation of the local context of term τ
BoW (δ) The binary Bag of Words representation of docu-

ment δ
BoW (δ) The binary complement of BoW (δ)
x(τ , δ) The collective representation of a term in context,

i.e. (t(τ ), l(τ |δ))
h Index of layer in the neural network
Wh, bh Weight matrix and biases pertaining to layer h
CE(τ |δ) Contextualized embedding representation of a term

in context
E(x(1), x(2)) Euclidean distance between two terms’ CE

representations
E The abbreviated notation of CE Euclidean distance
d The abbreviated notation of KL-divergence
S KL-divergence based similarity metric for local

context
τoov Out of vocabulary (OOV) descriptive term
t(τoov) OOV descriptive term representation
δiv In-vocabulary terms in a document containing an

OOV term
CE(x(τoov, δiv)) Feature-based semantic representation of an

OOV term
CE(τoov|δiv) Concept-based semantic representation of an

OOV term

(Law, Settles, & Mitchell, 2010) and multi-object image dataset
analysis (Rabinovich, Vedaldi, Galleguillos, Wiewiora, & Belongie,
2007). Thanks to crowd-sourced annotation (Turnbull, Barrington,
& Lanckriet, 2008) and game-based tags collection (Law, Ahn, Dan-
nenberg, & Crawford, 2007), large collections of descriptive terms
are now available. Those term collections can be analyzed for oc-
curring patterns to reveal concept-level relatedness and similarity.
Term-based semantics is expected to be transferable since it is ac-
quired from high-level concepts independent of any specific MMIR
tasks. It is worth stating that term-based semantics is different
from linguistic semantics. First of all, descriptive terms are not only
words but also symbols, abbreviations and complete sentences,
e.g., ‘‘r’n’b’’ (musical style), ‘‘90s’’ (musical type), ‘‘stack of books’’
(visual concept), and so on. Next, descriptive terms may have a
domain specific meaning different from their common linguistic
meaning, e.g., ‘‘rock’’ is genre inmusic (not an earth substance) and
‘‘horn’’ is an instrument in music but is also a visual concept in im-
ages. Finally, the vocabulary used for descriptive terms is subject to
change in time and cannot be fixed to represent a closed set of con-
cepts. Those distinctions limit the usability of available linguistic
resources such as linguistic dictionaries and generic word embed-
ding from capturing term-based semantics. Therefore, we believe
that the rich semantics conveyed in descriptive terms should be
better explored and exploited to bridge the semantic gap.

By close investigation of various descriptive terms collections,
we observe that terms could be used differently to represent
various types of semantics and relatedness: (a) a term may have
multiple meanings and the intended meaning cannot be decided
unless the term co-occurs with other coherent terms, e.g., the term
‘‘guitar’’ can refer to an acoustic guitar when it co-occurs with
terms like ‘‘strings’’, ‘‘classical’’, and so on, or to an electric guitar
when it co-occurs with terms such as ‘‘metal’’, ‘‘rock’’, and so on;
(b) different terms may intend the exact same meaning regardless
of context, e.g., ‘‘drums’’ and ‘‘drumset’’; (c) different terms may
have either similar or different meaning depending on context,
e.g., ‘‘trees’’ and ‘‘forest’’ convey similar concepts and have similar
meaning in context of natural scene (conveying a concept of many
trees) but ‘‘tree’’ is by no means similar to ‘‘forest’’ when used
in description of an urban scene; (d) different terms may share
partial meaning but have different connotations, e.g., ‘‘house’’ and
‘‘building’’ convey some similar concepts but ‘‘building’’ has a
wider connotation; and (e) co-occurring terms may not have their
meanings in singularity or in pair but in group only, e.g., {‘‘wing’’,
‘‘tail’’, ‘‘metallic’’} together define a concept of an airplane while
{‘‘leg’’, ‘‘cat’’, ‘‘tail’’,etc.} collectively present a concept of a cat
and its body parts. The observations described above indicate the
complexity and the necessity of taking the context into account
in semantic learning from terms. Obviously, simply counting co-
occurrence (Rabinovich et al., 2007) is insufficient in modeling
various types of semantics and relatedness in descriptive terms
to capture accurate concepts, and more sophisticated techniques
are required so that we can capture all the intended semantics, or
concepts and their relatedness, in descriptive terms accurately.

In general, a set ofm terms, δ = {τi}
m
i=1, is often used collectively

to describe the semantics underlying a single multimedia object
where τi is a descriptive term and δ is the collective notation of the
m terms, named document hereinafter. Furthermore, all m terms
appearing in a document δ are dubbed as accompany terms. Our
observation reveals that for a specific term τi in a document δ,
the accompany terms jointly create its contextual niche, named
local context, that helps inferring the accurate intended meaning
of τi in that situation. In other words, the term along with its local
context uniquely defines a concept of the accurate meaning. By
taking such local contexts into account, wewould learn a new type
of relatedness between terms, named contextualized relatedness,
by exploring terms’ co-occurrence in different documents in a
collection. Unlike the global relatednesswhere relatedness of terms
is fixed irrespective of their local contexts, the contextualized
relatedness of two terms is subject to change in the presence of
different local contexts. In order to represent such contextualized
semantics, we would embed all terms in a concept representation
space that reflects the contextualized relatedness of terms.
Formally, this emerging problem is formulated as follows: given
a term τ and its accompany terms in δ, we would establish a
mapping: (t (τ ) , l (τ |δ)) → CE (τ |δ), where t (τ ) and l (τ |δ)
are the feature vectors of the term τ and its local context in δ
and CE (τ |δ) is a concept embedding representation of τ given its
local context in δ, so that the contextualized semantic similarity of
terms be properly reflected via a distance metric in the concept
embedding representation space. This is a challenging problem
due to the actual facts as follows: (a) terms get their meaning in
groups rather than in singularity or in pair; (b) it is unclear how to
capture intrinsic context in terms; and (c) terms that are not seen in
trainingmay appear in application runtime and hencemay confuse
a semantic learningmodel, this issue is known as out-of-vocabulary
(OOV) issue in literature. Nevertheless, solving this problem brings
us closer to bridging the semantic gap as a solution to this
problem not only provides a term-level contextualized semantic
representation, named concept embedding (CE) hereinafter, for
a term to grasp an accurate concept as well as contextualized
concept relatedness but also the representations of co-occurring
terms in a document collectively form a novel document-
level representation precisely modeling the concepts in groups
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as well as subtle differences among those coherent concepts.
Furthermore, the CE representation learnt from descriptive terms
would facilitate a number of non-trivial applications including
different MMIR tasks, e.g., auto-annotation of multimedia objects
bymapping from the low-level visual/acoustic features onto the CE
space, semantic retrieval by using the embedding representations
as indexing terms, generating useful recommendations on both
term and document levels in a recommendation system, and
zero-shot learning in different multimedia classification tasks,
e.g., object recognition and music genre classification.

In order to tackle the problem described above, we propose
a novel Siamese architecture (Bromley et al., 1993) and a two-
stage learning algorithm to capture contextualized semantics from
descriptive terms. The proposed Siamese architecture learns the
contextualized semantic embedding in an unsupervised way. The
resultant CE representation space embeds different descriptive
terms so that their contextualized semantic relatedness is reflected
by their Euclidean distances. In this CE representation space, one
term tends to co-locate with all the accompany terms appearing
in its local context or co-occurring terms in the same document.
As a result, our approach leads to multiple representations for a
single term that appears in various documents, which reflects the
polysemous aspects of a tag in different contexts. Thanks to our
contextualized semantic learning, it becomes possible that the CE
representation of an OOV tag can be inferred or approximated by
using its local context, which paves a newway in solving the well-
known OOV problem in MMIR. The semantics learnt in this way
is also naturally generic yet transferable as it does not rely on
any specific MMIR tasks. Depending on the nature of descriptive
terms used in practice, the semantics acquired from some training
collectionsmay also bedomain specific.With different training and
test corpora, we would verify the above-mentioned transferability
and domain-specific properties of our CE representation generated
in our experiments of various settings.

Our main contributions in this paper are summarized as
follows: (a) we formulate a problem for learning contextualized
semantics from co-occurring descriptive terms and propose a
novel Siamese architecture and a two-stage learning algorithm as a
solution to this problem; (b) we propose two treatments based on
our CE representation to address the issues regarding OOV terms;
(c) we demonstrate the main properties of our CE representation
via visualization; and (d) by means of semantic priming, we
thoroughly evaluate the performance of our CE representation
with a number of various settings by comparing to several state-
of-the-art semantic learning methods.

The rest of the paper is organized as follows. Section 2
reviews the related work in terms of learning different relatedness
from descriptive terms. Section 3 describes feature extraction of
term and local context required in our contextualized semantic
learning. Section 4 presents our Siamese architecture and learning
algorithms. Section 5 describes the experiments on the CE learning
with our Siamese architecture and Section 6 presents experimental
settings and results in semantic priming. Section 7 discusses
relevant issues and Section 8 draws conclusions.

2. Related work

In this section, we review relevant works in learning semantics
from descriptive terms regardless of any specific multimedia
tasks. In terms of semantics learnt from descriptive terms, those
approaches fall into one of three different categories: global,
syntactic and contextualized relatedness.
2.1. Global relatedness

Global relatedness refers to the relatedness between pairs of
terms that does not take any context into account. In general, there
are statistics-based and graph-based methodologies for learning
global relatedness from descriptive terms.

Aggregation (Markines et al., 2009) is a statistical-based
method that focuses on pairwise co-occurrence of terms in the
training dataset and is sometimes named co-occurrence analysis.
By considering all training documents, aggregation works on a
document-term matrix Υ where the presence or absence of each
term in each document is represented as binary or frequency
indicator (Singhal, 2001). Thus, a columnof document-termmatrix
Υ forms a feature vector for the use of one term. As relatedness
between pairs of terms is likely reflected in their pair-wise use
pattern, it can be estimated by measuring the distance between
the corresponding terms’ feature vectors. Hence, the relatedness
between pairs of terms can be learnt from a training set with
statistical measures. As the relatedness is obtained from an entire
dataset, it is not affected by local context. As an extension, the
term-to-term relatedness matrix achieved with all the pair-wise
relatedness may be further analyzed with Principle Component
Analysis (PCA). By removing unwanted redundancy and noise, the
resultant term representation is in a lower dimensional space.
This extension yields improved performance in the movie review
sentiment evaluation task (Lebret, Legrand, & Collobert, 2013).
Nevertheless, such extension is sensitive to preprocessing and
tunable parameters. Similarly, Mandel et al. (2011) proposed an
information theoretic inspired (InfoTheo) method that yields a
smoothed document representation. InfoTheo directly alters the
values of Υ in favor of terms that co-occur frequently across an
entire dataset. This smoothed representation is later aggregated in
order to generate a term-to-term relatednessmatrix. Nevertheless,
this smoothing process introduces more parameters and hence
results in heavier parameter tuning.

Another statistic-based method is Latent Semantic Indexing
(LSI) (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990).
LSI is often used to analyze collections of documents with
large vocabulary or descriptive terms. In LSI, the matrix Υ is
decomposed using Singular Value Decomposition (SVD) as Υ T

=

UΣV T . Two orthogonal matrices U and V correspond to the terms
and the document subspaces, respectively. The dimensionality
of the subspaces is controlled by limiting the entries of the
diagonal matrix Σ , i.e., retaining the first few entries only. This
decomposition generates an approximation ofΥ with the smallest
reconstruction error. It also uncovers collective terms’ usage
patterns. The rows of U can readily be used as representations
of the descriptive terms. The relatedness between the terms is
measured by the cosine similarity between their corresponding
vectors (Levy & Sandler, 2008). Unfortunately, LSI generally suffers
from poor generalization to new terms/documents.

Graph-based models rely on a graph representation where
terms aremapped to nodes and pair-wise relatedness ismapped to
an edge between relevant nodes. Such a graphmay be constructed
by manual or automatic relatedness analysis (Hueting, Monszpart,
& Mellado, 2014; Kim et al., 2008; Wang, Anguera, Chen, &
Yang, 2010). However, graph-based models are subject to capacity
limitation; any additional node representing a new term has to
be introduced manually in graph revision. Moreover, an edge
representing relatedness usually has a fixed cost that does not take
the local context into account. Therefore, graph-based models are
often thought of as handcrafted dictionaries of semantics.

In summary, those approaches to learning global relatedness
do not address the issue of the contextualized semantics but yield
a term-level representation efficiently. In our work, we would
explore such approaches in generating a semantic representation
of terms required by our learning model (see the next section for
details).
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2.2. Syntactic relatedness

In natural languages, context is explicitly present in the order
of the words, i.e., syntactic context. This dependency between
sequences of words helps capturing the words’ relatedness
in context and understanding of basic linguistic meanings
consequently.

To capture the syntactic relatedness, distributed languagemod-
els (Collobert et al., 2011; Mikolov, Corrado, Chen, & Dean, 2013;
Mikolov, Karafiát, Burget, Cernocký, &Khudanpur, 2010) have been
proposed recently. Such models learn syntactic relatedness from
linguistic corpora and yield distributed semantics where words
are embedded based on their syntactic similarity (Mikolov et al.,
2010). During learning, a model is trained to predict a missing
word given some context, e.g., nearby words, or to predict possi-
ble context words given a word. If trained properly, interchange-
ablewordswithout breaking language rules, i.e., syntactically close
words, would have close embedding vectors. Those models have
attracted increasing attention due to their simplicity and capacity
in providing generic semantics for various tasks (Frome et al., 2013;
Mikolov et al., 2013). Moreover, Pennington, Socher, and Manning
(2014) showedhow to combine the advantages of PCAmodelswith
this syntactic relatedness by careful analysis of the ratios of co-
occurrence probabilities between pairs of words appearing in each
other’s neighborhood.

Although language models yield a contextualized representa-
tion, they entirely rely on the syntactic context and hence are not
applicable to descriptive terms where there is no synthetic depen-
dency and the co-occurring terms may describe a multimedia ob-
ject regardless of their orders. Nevertheless, such techniques can
be employed as a baseline in a thorough evaluation of the contex-
tualized semantics learned from descriptive terms studied in this
paper.

2.3. Contextualized relatedness

Motivated by syntactic relatedness, terms are permitted to ex-
hibit varying inter-relatedness levels depending on the context.
Works in this stream focus on document-level representations
where patterns of terms’ use are captured in a document-level
representation. Consequently, measuring similarity between doc-
uments may be straightforward while terms’ meaning and their
relatedness are difficult to capture. This often hinders the appli-
cability of such models as generic semantics providers. Here, we
review approaches that can potentially capture contextual related-
ness studied but all lead to only a document-level representation.

Topic models are a class of statistical methods used for
semantics modeling. A topic model makes use of latent processes
to capture collective occurrence patterns in the form of statistical
distributions over observed terms, called topics. When a specific
term appears inmore than one document, which exhibits different
patterns of use with other terms, it might be associated with
more than one topic, which suggests its different meanings
stochastically. Those multiple term-topic associations capture the
different levels of relatedness among terms.

Latent Dirichlet Allocation (LDA) (Blei, Ng, & Jordan, 2003) and
Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) are
themost prominent topicmodels used in text and natural language
processing. In LDA and PLSA, a set of independent topicsΦ are used
to softly cluster the documents based on the used terms. During
learning, the process estimates scalar priors B for the Dirichlet
distribution in LDAorMultinomial distribution in PLSA thatmodels
the topics as distributions over terms as well as the scalar prior
B0 that models the topics distribution. After training, the posterior
probability of all topics given a term and the topic probability given
a document can be estimated with the trained models. Given a
term τ , the posterior probability of a topic φc ∈ Φ is p (φc |τ) ∼

p(τ |φc)p (φc); where p (τ |φc) ∼ Categorical (Dirichlet (Bc)) and
p (φc) ∼ Dirichlet


B0

in LDA or p (τ |φc) ∼ Categorical (Bc) and

p (φc) ∼ Uniform

B0

in PLSA. Given a document δ, the topic

probability is p (φc |δ) ∼ p (φc)


τ∈δ p(τ |φc).
While both LDA and PLSA capture contextualized semantics,

suchmodels provide a summary of a document in formof amixture
of topics; they capture ad hoc relatedness but do not provide term-
to-term relatedness explicitly. As a result, the relatedness between
a pair of terms τ1 and τ2 has to be estimated under a specific topic
distribution: θ (δ) = {p (θc) = p (φc |δ)}

|Φ|

c=1. Assuming equal priors
for all the terms, the relatedness between two terms, τ1 and τ2,
might be estimated by the Kullback–Leibler (KL) divergence:

KL (τ1, τ2|θ (δ)) =

|Φ|
c=1

p (θc)

p (τ1)
(p (τ1|θc) − p (τ2|θc))

·


log


p (τ1|θc)

p (τ2|θc)


.

Thus, the term-topic relatedness learnt by LDA or PLSA implicitly
contextualizes the relatedness between terms under different
topic distributions. Without considering term-to-term relatedness
directly, however, semantics yielded by LDA or PLSA is encoded
in a collective term representation rather than a concept-
level representation required by a solution to our problem.
The effectiveness of topic models in learning semantics from
descriptive terms has been evaluated in Law et al. (2010) and Levy
and Sandler (2008). They reported increased accuracy over global
relatedness models when performing auto tagging of music. In
their settings, the task does not require a term-to-term relatedness
measure and hence a topic-to-term relatedness offered by topic
models is sufficient.

Another method for introducing a context is using Conditional
Restricted Boltzmann Machines (CRBM) in Mandel et al. (2011).
CRBM (Taylor, Hinton, &Roweis, 2007) is a variant of the traditional
RBM (Hinton, 2002) consisting of visible layer v and hidden layer
h. The probabilistic units in visible and hidden layers are fully
connected via aweightmatrixU , and vectors d and c are the biases
in visible and hidden layers, respectively. For learning in RBM, an
energy function is defined by:

E (v, h) = −hTUv − dTv − cTh.

The model is trained by minimizing the free energy F (v) =

− log


h e
−E(v,h) with the contrastive divergence (CD) algorithm.

In CRBM (Mandel et al., 2011), an additional visible layer for
conditiona is introduced and connected to the original visible layer
via a weight matrix W . As a result, the energy function in CRBM is
defined

E (v, h, a) = −hTUv − vTWa − dTv − cTh.

CRBM can also be trained by the CD algorithm. When it is used
in learning semantics from descriptive terms, its observed vector
v is set to be the Bag of Words (BoW) binary representation
(Harris, 1954) of a concerned document. One binomial unit is
used for each vocabulary term. The hidden vector h is set to
binomial variables that capture occurrence patterns. The condition
a is set to the one-hot representation of the training documents
where exactly one unit is used as index representation of a
document. The collection of terms used by other users for the
same document can also be used as another condition in Mandel
et al. (2011) if available. During test, the term-to-term relatedness
is measured by co-activation between a query term and other
terms. In this process, the unit corresponding to one query term
is clamped ‘‘on’’ (as well as the relevant condition unit) and
sampling chains of a large number of times are undertaken.
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Eventually, the average activation level of each visible unit encodes
relatedness of its corresponding term to the query term under the
context conditions. While CRBM provides a smoothed relevance
of each term to a relevant document, the semantics captured is
limited to a document-level representation rather than concept-
level relatedness studied in this paper. In particular, this approach
suffers from a fundamental weakness as it does not lead to
a deterministic continuous semantic embedding representation
required by various applications.

In summary, the existing works for learning semantics from
descriptive terms focus on only relatedness of specific types and
does not sufficiently address the issues arising fromour formulated
problem. To verify our argument, we have used all the approaches
reviewed above as baselines in our semantic priming experiments
(see Section 6 for details).

3. Term, local context and document representation

In this section,wedescribe feature extraction for the descriptive
term, local context and document representations employed in our
approach to facilitate the presentation of our proposed Siamese
architecture in the next section.

3.1. Term representation

In general, terms can be characterized by either ID-based or
statistics-based representations. An ID-based representation uses
a scheme directly linked to the term’s ID in symbolic form, i.e., a
separate entity for each term. A statistics-based representation
uses statistical analysis of the used terms within the dataset.
The ID-based term representations have been used in previous
models, e.g., the CRBM model (Mandel et al., 2011). However, the
capacity of an ID-based representation may be limited so that
adding new terms becomes difficult. Moreover, it may impose
an unnatural order on terms, e.g., a numerical ID. Therefore, we
employ a statistics-based representation (Markines et al., 2009)
where each descriptive term is represented as a summary of its
pair-wise use with all terms over an entire training dataset. This
summary encodes the global relatedness among pairs of terms and
can work together with the local context to form a raw concept
representation of a term in context as described below.

To achieve the statistics-based representation, we start from
the training document-term matrix with binary entries described
in Section 2.1. In our work, we do not eliminate any terms in a
training dataset as we believe that the entire collection of terms
in documents form a coherent meaning niche conveying proper
local contexts collectively. The document-term binary matrix is
re-weighted using tfidf which highlights those rarely used terms.
Given a vocabulary of descriptive terms Γ and a training dataset
∆, the binary term frequency of the presence of the term τ ∈ Γ

in a document δ ∈ ∆ is found in the corresponding entry in the
document-term matrix:

tf (τ , δ) =


1 when τ appears in δ
0 otherwise.

The rarity of a term τ in the collection is achieved by the inverted
document frequency idf (τ ):

idf (τ ) = log


|∆|

1 + |{δ : τ appears in δ}|


,

where |·| is the cardinality of a set.

Then tfidf (τ , δ) = tf (τ , δ) × idf (τ ).
After reweighting the matrix, each term is described using all

tfidf values of its use and is represented by its usage vector u (τ ) =
{tfidf (τ , δi)}
|∆|

i=1. Then, the global relatedness between two terms
τ1 and τ2 is obtained by aggregation with the dot product:

T (τ1, τ2) = ⟨u (τ1) , u (τ2)⟩.

Thus, a term is represented by a feature vector of |Γ | features
consisting of its global relatedness to all terms in the training
dataset:

t (τ ) = {T (τ , τi)}
|Γ |

i=1 . (1)

3.2. Local context representation

As described in Section 1, the local context of each term is
acquired by considering all the terms in the samedocument as they
together convey specific concepts. A local context representation
should be semantically consistent and easy to capture in real
applications, e.g., auto annotation. In the recent work of Law et al.
(2010), Latent Dirichlet Allocation (LDA) was used to represent
terms in form of topics and then a model was trained to map
the acoustic content onto the topical representation to facilitate
MMIR. Motivated by their work, we employ LDA to represent
the local context in our work due to the generality of LDA in
representing patterns of collective use. It is worth mentioning
that there are alternative models for local context representations,
e.g., semantic hierarchies, PLSA or any other topic model. Here, we
emphasize that a local context representation used in our work is
not equivalent to the complete document itself but a semantically
coherent summary of the document.

To achieve the local context representation with LDA (see
Section 2.3 for more details), a set of topics Φ softly clusters
the documents based on the used terms within each document.
During training, the process estimates scalar priors B for Dirichlet
distributions modeling the topics as distributions over terms as
well as scalar prior B0 modeling the topic distribution itself. After
training, the probability of observing a term τ ∈ Γ given a specific
topic φ ∈ Φ follows

p(τ |φ) ∼ Categorical (Dirichlet (B)) ,

where p (φ) ∼ Dirichlet

B0 .

This means that the probability of one term identifying one
topic follows p (φ|τ) ∼ p(τ |φ)p (φ) and the likelihood of a topic
given a complete document δ follows p (φ|δ) ∼ p (φ)


τ∈δ p(τ |φ).

Consequently, given a term and accompany terms, the local con-
text is represented by a feature vector of |Φ| features correspond-
ing to |Φ| topic distribution output:

l (τ |δ) = {lc (δ)}
|Φ|

c=1 , lc (δ) = p (φc |δ) . (2)

3.3. Document representation

Apart from term and local context representations, a represen-
tation of an entire document is also required in our approach. In
our work, we adopt the Bag of Words (BoW) representation of a
document δ denoted by BoW (δ), a binary sparse feature vector of
|Γ | entries for a given vocabulary Γ , where entry i corresponds to
a specific term τi:

BoW (δ) [i] =


1 when τi appears in δ
0 otherwise. (3)

In summary,we employ the tfidf -based aggregation as our term
representation to encode the global term-to-term relatedness, the
LDA as our local context representation to summarize semantic
coherence in different documents and the BoW as the document
representation in our learning model.
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4. Model description

In this section, we come up with a solution to the problem
described in Section 1.We first describe ourmotivation behind our
proposed Siamese architecture and then present its architecture
and a two-stage algorithm for learning contextualized semantics
from descriptive terms. Finally, we propose two methods to
deal with the contextualized semantic embedding of OOV terms
based on the representation space generated by our Siamese
architecture.

4.1. Motivation

As described in Section 1, we aim to tackle an issue that
has not been fully addressed previously in learning semantics
from descriptive terms. In the previous work, either the term-to-
term relatedness is captured without taking the local context into
account or the context is modeled on a document level. Unlike
previouswork,we encounter a challengewhere a term and its local
context have to be simultaneously taken into account. By looking
into the nature of this problem, we would like to come up with a
solution by fulfilling two subsequent tasks.

In general, an ideal representation of semantics allows similar
concepts to associate each other seamlessly; a concept should
be easily inferred from its related/coherent concepts. Motivated
by the argument that learning a simple yet relevant auxiliary
task could facilitate semantic embedding learning (Bottou, 2014),
we can comply with this requirement by fulfilling a simple yet
generic task: predicting all the accompany terms in a document
from the representations of a constitutional term and its local
context described in Section 3. If a learning model of latent
variables is employed, we expect that the latent variables form a
representational space that encodes the semantic information of
coherent terms at a concept level. As such a representation also
needs to resolve the highly nonlinear relationship between terms
and their contexts in order to predict accompany terms, a deep
neural network of hidden layers would be a powerful tool for this
task.

While the representation generated by the prediction task
encodes the semantic information conveyed in coherent terms, it
may not provide the proper term-to-term relatedness in context.
To enhance the semantic representational space, we need to
perform a further task based on the initial semantic representation
obtained in the prediction task; i.e., learning a proper distancemetric
for the pairwise contextualized relatedness of concepts. For this task,
we would develop a variant of Siamese architecture consisting of
two identical deep neural networks used in the earlier prediction
task as a Siamese architecture has turned out to be an effective
method for distance learning (Bromley et al., 1993). By taking all
possible concept relations between a pair of terms along with
their local contexts into account during learning, we expect that
all concepts reflected by terms in the presence of local contexts
are located properly in the embedding space so that a pair of
coherent concepts sharing the local context can co-locate with
minimal distance and other concepts can be positioned properly
in reflection of their contextualized relatedness.

Upon accomplishing the proposed learning tasks, we anticipate
that all contextualized concepts are properly embedded in a
distributed representation space.

4.2. Architecture

As illustrated in Fig. 1, the proposed Siamese architecture
consists of two identical subnetworks. Each subnetwork is a feed-
forward neural network composed of H − 1 hidden layers and
two visible layers marked in green; i.e., input and output layers.
Each subnetwork receives the representations of a term t(τ )
and its local context l(τ |δ), collectively denoted by x (τ , δ) =

(t (τ ) , l (τ |δ)), as input and outputs a prediction of the BoW
representation of all the terms in δ, BoW (δ), in the document
δ from which t (τ ) and l (τ |δ) were extracted. Two subnetworks
are coupled to work together and trained via a two-stage learning
procedure.

In the first stage, one subnetwork is trained to carry out the
prediction task for an initial semantic embedding. As a result,
this subnetwork is trained to predict the BoW representation of
a document, BoW (δ) from the input features of a tag τ and its
local context in δ, x (τ , δ). After the first-stage learning, the output
of the (H − 1)th hidden layer is used as an initial contextualized
semantic representation for concepts conveyed by terms and
their local contexts. We refer to this representation as concept
embedding (CE) throughout the paper.

In the second stage, we couple two identical trained subnet-
works and train two subnetworks simultaneously to revise the
initial semantic embedding towards embedding the proper con-
textualized term-to-term or concept-to-concept relatedness. The
learning in this stage is done via distance learning working on fur-
ther constraints required by a proper distance metric in contex-
tualized semantic embedding. During the distance learning, two
subnetworks work together to deal with different situations re-
garding all possible types of input to two subnetworks. For reg-
ularization, each subnetwork is also trained simultaneously in this
stage to perform the prediction task in order to avoid unneces-
sary changes to initial semantic representation achieved in the first
stage with a multi-objective optimization process.

After the two-stage learning, we achieve two identical subnet-
works. Those are used in mapping a term and its context to the CE
space to form its contextualized representation.

4.3. Learning algorithm

To facilitate the presentation of our learning algorithm, we first
describe our notation system (see also Nomenclature). For layer
number h in a subnetwork, the output is

zh (x) = f (Wh · zh−1(x) + bh) , 1 ≤ h ≤ H,

where Wh, bh are the weights and bias vectors for the hth layer
of the network, f (x) =

ex−e−x

ex+e−x is the element-wise hyperbolic
tangent function. We stipulate that z0 (x) = x indicates the
input layer, CE (x) = zH−1 (x) is the contextualized semantic
representation vector, i.e., the output of the (H − 1)th hidden
layer, and ŷ (x) = zH (x) is the prediction vector yielded by the
output layer. Hereinafter, we shall drop all the explicit parameters
to simplify the presentation, e.g., yk is an abbreviated version of
yk (xk (τ , δ)) and yk [j] denotes the jth entry of vector yk.

4.3.1. Training data
For unsupervised learning, we need to create training examples

based on different documents in a term collection or collections
used for training. Given a training document δ consisting of m
co-occurring terms, we create m training examples where each
example is a focused term in document with the same local
context, i.e., the m terms in the document δ. The prediction
targets for all the m examples are the same, i.e. the document
representation of this training document BoW (δ). We observed
that in training for the prediction, the local context may
predominate the initial semantic embedding and hence cause all
terms in the same document to have very similar representations
regardless of whether they are meaningfully coherent. To tackle
this issue, we introduce negative examples. Given a training
document δ, we synthesize a negative example by randomly
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Fig. 1. The proposed Siamese architecture for learning contextualized semantics from descriptive terms. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
coupling a term that is not in δ and using all the terms in
δ to form its local context. The prediction target for such a
negative example is set to be the complement of a document
representation of δ; i.e., the complement of BoW (δ) denoted by
BoW (δ), achieved by flipping all the binary entries of BoW (δ).
To avoid confusion, hereinafter, we refer to those examples with
prediction target BoW (δ) as positive examples. For a balanced
learning, we use all positive examples and the same number of
randomly synthesized negative examples. Thus, for any example
k, its input is xk (τ , δ) = (t (τ ) , l (τ |δ)) and the learning target is
the document representation of δ, i.e., yk (xk (τ , δ)) = BoW (δ)

if xk (τ , δ) is a positive example or yk (xk (τ , δ)) = BoW (δ)
otherwise.

4.3.2. Prediction learning
To learn the prediction in the first stage, a deep neural network

(DNN) is initialized with the greedy unsupervised layer-wise pre-
training procedure using sparse auto-encoders as building blocks
(Bengio, Lamblin, Popovici, & Larochelle, 2007). After a subnetwork
of H − 1 hidden layers is initialized, the DNN is fine-tuned
by applying the document representation labels. The learning
algorithm for sparse autoencoder can be found in the Appendix.

The binary nature of the output makes the cross-entropy loss
suitable for this task. Given the entire training dataset (X, Y ) of K
examples generated from |∆| documents and a vocabulary of |Γ |

terms, the initial prediction loss is

LP (X, Y ; Θ) = −
1

2K |Γ |

K
k=1

|Γ |
j=1

((1 + yk [j]) log

1 + ŷk [j]


+ (1 − yk [j]) log


1 − ŷk [j]


,

where Θ is the collective notation of all the weight and bias
parameters in the DNN. This is a standard loss function for binary
classification and the targets in our situation are binary BoW
representations. During learning, however, the sparse nature of
the BoW representation often skews the target labels towards an
incorrect trend that all the terms are absent in a document. To
escape from this trend, we re-weight the cost of a false negative
error for example k, i.e., the existing term is predicted as absence,
by κk =

{j : yk [j] = 1}|Γ |

j=1

 / |Γ |. By re-weighting errors caused
by different examples, the loss incurred by false negative errors
in learning is highlighted. Thus, we use the following re-weighted
prediction loss in prediction learning:

LP (X, Y ; Θ) =
−1

2K |Γ |

K
k=1

|Γ |
j=1


κk (1 + yk [j]) log


1 + ŷk [j]


+ (1 − κk) (1 − yk [j]) log


1 − ŷk [j]


. (4)

Solving this optimization problem based on a training dataset
leads to a trained deep neural network that can predict all the
accompany terms in a document from their term and local context
representations. Details of this learning algorithm can be found in
the Appendix.

4.3.3. Distance learning
After completing the prediction learning with a single DNN,

we train a Siamese architecture by coupling two copies of the
trained DNNs. When presenting a pair of input vectors x(1), x(2)

of two examples to the coupled DNNs, we employ Euclidean
distance between their CE representations (cf. Fig. 1) to measure
the embedding similarity:

E

x(1), x(2)

=
CE x(1)

− CE

x(2)

2 . (5)

Although other distance metric can be used for the same
purpose, we wish to use the simplest Euclidean distance to be
our learning goal. Furthermore, local context intrinsically decides
the semantic meaning of different concepts. Thus, measuring the
similarity between two different local contexts is essential for our
distance learning. As described in Section 3.2, the local context
similarity in the LDA can bemeasured by the Kullback–Leibler (KL)
divergence:

KL

x(1), x(2)

=

|Φ|
c=1


l(1) [c] − l(2) [c]


log


l(1) [c]
l(2) [c]


. (6)

To formulate a loss for our distance learning, we exploit the
information underlying all the paired training examples used to
train the Siamese architecture. According to our observations, two
terms (in the same document) sharing the same local context
often convey the same concept. Hence, the Euclidean distance
between their representations in the CE space should be zero
ideally. On the other hand, for two terms (in different documents)
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of different local contexts, their Euclidean distance between the
representations in the CE space should be set via learning to reflect
their local context similarity measured by the KL divergence.
Hence, we have to enumerate all different situations that incur the
loss in our distance learning.

Let the binary variables I1, I2 and I3 indicate three possible
situations for a pair of examples that have input (x(1), x(2)):

• I1 = 1: both x(1) and x(2) are positive examples. In this situation,
the proper distance between their representations is learnt to
reflect the conceptual similarity between their local contexts. In
particular, their representations of two terms sharing the same
local context should be co-located or as close as possible in the
CE space.

• I2 = 1 : both x(1) and x(2) are negative examples. In this situation,
the same should be done as described for I1 = 1. As the concepts
conveyed in negative examples are randomly synthesized,
however, the distance between their CE representations is less
important. This difference will be reflected by a treatment of
weighting the similarity cost differently for I1 = 1 and I2 = 1
in our loss as presented below.

• I3 = 1 : x(1) and x(2); one is positive and the other is negative. In
this situation, the distance between their CE representations is
unknown given the fact that the coherence is deeply uncertain
for a positive example conveying certain concept and a negative
example is randomly synthesized, which may not convey any
concepts. Thus, their CE representations need to be distant as
far as possible to distinguish from positive examples conveying
the genuine concepts especially when they share the same local
context. Again, we carry it out with a weighting scheme in our
loss as presented below.

As a result, our loss for distance learning needs to take all the
above three situations into account alternatelywith different types
of pair-examples as three situations are mutually exclusive; i.e.,3

i=1 Ii = 1 and Ii ∈ {1, 0} for i = 1, 2, 3.
Given two subsets X (1) and X (2) of the same cardinality N

of examples from the training dataset via random pairing. For
example pair n, we denote E = E


x(1)
n , x(2)

n


, d = KL


x(1)
n , x(2)

n


and S = e

−λ
2 d where λ is a positive sensitivity hyper-parameter.

While E and d are defined in Eqs. (5) and (6), S forms a local
context similarity measure carried out by an exponential decay of
the KL distance d and the hyper-parameter λ decides the degree to
which the embedding is dominated by the local context similarity,
as required in dealing with three different situations described
above. If two terms share the same local context, i.e., d = 0, the
resultant similarity S = 1. Otherwise the similarity reflects the
actual difference between two local contexts. Hence, we define our
loss based on three situations indicated by I1, I2 and I3 as follows:

LS

X (1), X (2)

; Θ


=

N
n=1


I1 (E − β (1 − S))2

+ I2ρ (E − β (1 − S))2

+ I3 (E − β)2 S

. (7)

Here, β is a scaling hyper-parameter used to ensure controlled
spreading concepts over the entire CE space and ρ is a hyper-
parameter that weights down the importance of the situation of
I2 = 1. Intuitively, the first two terms in Eq. (7) define the precise
loss between the actual distanceE and the target distance β(1−S)
for situations I1 = 1 and I2 = 1 but the importance of the loss
for situation I2 = 1 is discounted by ρ. The last term in Eq. (7)
specifies a loss that penalizes a negative example to be co-located
with a positive example via a cost E − β along with considering
their local context similarity S.
In the distance learning, we still need to keep the CE space of
the main properties resulting from the prediction learning. As a
result, the loss used in our distance learning is a multi-objective
cost function by combining losses defined in Eqs. (4) and (7):

L

X (1), X (2), Y (1), Y (2)

; Θ


=

2
i=1

LP

X (ı), Y (ı)

; Θi


+ αLS

X (1), X (2)

; Θ

, (8)

where α is used a trade-off hyper-parameter to balance two losses
and Θi is a collective notation of all the parameters in one of two
component DNNs.

In our two-stage learning, all the parameters are estimated
iteratively via the stochastic back-propagation (SBP) (Bottou, 2012)
by optimizing the loss functions specified in Eqs. (4) and (8). The
optimal hyper-parameters are found via a grid search with cross-
validation and, in general, an early stopping criterion is applied in
the SBP learning (see the next section for our specific experimental
setting). In each iteration of the SBP, a small batch of training
examples are randomly selected to update the parameters in
training either single DNN for the prediction learning or Siamese
architecture for the distance learning. It is also worth stating that
the two componentDNNs in Siamese architecture are alwaysmade
identical via averaging their weights and biases after each iteration
during the distance learning. Details of our learning algorithms and
their derivation can be found in the Appendix.

4.4. OOV term contextualized embedding

Upon applying the contextualized semantic representation
learned from co-occurring terms, the issue of out-of-vocabulary
(OOV) term contextualized embedding has to be addressed. In
general, a test document may contain more than one OOV term.
As our learning model relies on the LDA in generating the local
context representation but the LDA does not address the OOV
issue, we always use only those in-vocabulary terms appearing in
this test document when generating the LDA-based local context
representation. Without loss of generality, we need to take a
document containing only one OOV term into account. Based on
the trained Siamese architecture and the resultant contextualized
semantic representation,we propose twomethods to dealwith the
OOV situation. Let δ = {τoov, δiv} denote a test document of an
OOV term τoov where δiv = {τi}

m
i=1 is a collective notation of m in-

vocabulary terms in δ.
Our first method relies on the representation capacity of the

term representation described in 3.1. We can extend the term
representation to an OOV term τoov. For τoov, its tfidf values are
measured the same as done for in-vocabulary terms with all the
training documents plus all test documents containing it. However,
the aggregation is only done against all the in-vocabulary terms
to achieve t (τoov). This extension ensures that the same number
of features is used to represent both in-vocabulary and OOV
terms. In addition, each feature always means relatedness against
the corresponding term. Similarly, we can achieve its local LDA-
based context representation l (τoov|δiv) by using δiv . Thus, feeding
x (τoov, δiv) = (t (τoov) , l (τoov|δiv)) to a trained subnetwork leads
to its contextualized semantic representation CE (x (τoov, δiv)). As
OOV terms were not seen in training, a document of any OOV term
δ = {τoov, δiv} is actually equivalent to the settings of negative
examples (cf. Section 4.3.1). In our distance learning,we havemade
all negative examples distant from positive examples in the CE
space as far as possible. Whenmeasuring the contextualized term-
to-term relatedness between anOOV termand other in-vocabulary
terms, we stipulate that its most related in-vocabulary term is the
one furthest in distance in the CE space. As this treatment relies
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on the term representation, we name it the feature-based OOV
method.

Our second method is motivated by the coherent nature
of co-occurring terms in a document and the capacity of our
contextualized semantic representation in encoding term-level
and document-level semantics. As a result, the contextualized
semantic representation CE (τoov|δiv) should be co-located with
{CE (x (τi, δiv))}

m
i=1 in the CE space and shares the group-

level semantics in the CE space. Thus, we directly define the
contextualized semantic representation of τoov:

CE (τoov|δiv) =
1
m

m
i=1

CE (x (τi, δiv)) .

Intuitively, we treat the OOV term as missing data and then use
the centroid of CE representations ofm co-occurring in-vocabulary
terms to represent the concept conveyed in this OOV in terms of
their shared local context. As this process does not involve the
OOV term features, we deliberately use the notation CE (τoov|δiv)
to distinguish from the OOV term representation CE (x (τoov, δiv))
achieved by the first method. As this treatment is based on the
CE representations of those accompany in-vocabulary terms in the
document containing OOV terms, we dub it the concept-based OOV
method.

5. Experiments on concept embedding learning

In this section, we describe the experimental settings and
visualize results regarding the use of our Siamese architecture to
learn the concept embedding (CE) space from a number of corpora
in different domains.

5.1. Datasets

In our experiments, we employ six publicly accessible corpora
of multi-term documents from two domains: textually tagged
music and multi-labeled images. Those datasets are often used as
benchmarks for different information processing tasks including
MMIR.

Three music tagged corpora are CAL500 (Turnbull, Barrington,
Torres, & Lanckriet, 2007), MagTag5K (Marques, Domingues,
Langlois, & Gouyon, 2011) andMillion Song Dataset (MSD) (Bertin-
mahieux, Ellis, Whitman, & Lamere, 2011). It is observed that the
three music tagging datasets exhibit different yet typical aspects
of music tagging. In our experiments, we used only CAL500 and
MagTag5K, respectively, as our training corpora to investigate the
influence of different tagging styles in our CE learning and theMSD
as a test dataset to examine the generalization of contextualized
semantics learnt from a specific dataset via cross-corpora setting
(cf. Sections 5.2 and 6.2.2).

Three multi-labeled image datasets used in our experiments
are Corel5K (Duygulu, Barnard, Freitas, & Forsyth, 2002), LabelMe
dataset (Russell, Torralba, Murphy, & Freeman, 2007) and SUN-
Database benchmark (Xiao, Hays, Ehinger, Oliva, & Torralba, 2010).
Unlike the music annotation case, we observe comparable statis-
tics underlying the annotations in the three image corpora. In
particular, there exists similar usage statistics including label-use
frequency and document cardinality in both Corel5K and LabelMe.
In our experiments, we used only Corel5K as the training corpora
in our CE learning and LabelMe and SUNDatabase as test datasets
in the cross-corpora setting (cf. Sections 5.2 and 6.2.2).

In summary, Table 1 describes the information on six datasets
including domain, the number of documents in a dataset (#Doc.),
the number of in-vocabulary terms (#In-Voc.), the averaging
document length, the number of OOV terms (#OOV) reserved for
simulation (see also Sections 5.2 and 6.2.4 for details) and the
purpose in our experiments.
5.2. Experimental setting

We now describe the experimental settings in training our
Siamese architecture on three corpora: CAL500, MagTag5K and
Corel5K.

For feature extraction, we applied methods described in
Section 3 to generate the term, the local context and the document
representation from each document. We can achieve the feature
vectors of any in-vocabulary term with Eq. (1) and generate the
representation of OOV terms in a similar way as described in
Section 4.4. In our experiments, the de-correlation of features
with PCA and linear scaling of each feature was applied to the
term and the local context representations in order to ensure that
each feature is in the range (−1, +1). By applying Eq. (2), the
local context features of a document were obtained based on a
trained LDA working on all accompany terms in the document.
To train an LDA model, we use all the documents in a training
dataset. The number of topics were empirically decided by using
the hierarchical process as suggested in Teh, Jordan, Beal, and
Blei (2006). As a result, we achieved three LDA models of 25,
19 and 20 topics trained on CAL500, MagTag5K and Corel5K,
respectively. Each LDA model is applied to a relevant document
to generate its local context representation. Note that a trained
parametric LDA model is also used in generating the local context
representations for those test documents in different settings. For
training the Siamese architecture, the BoW representation of a
training document is achieved with Eq. (3).

For model selection and performance evaluation in different
settings, cross validation (CV) was used. In CV, a training corpus
is randomly split into two subsets A and B with a ratio 2:1; A for
training and B for validation and test. For CAL500, 40 documents
in B were randomly chosen and reserved for validation during
training and the rest of documents in this subsetwere used for test.
ForMagTag5K,we adopted a default setting suggested byMarques,
Domingues et al. (2011) instead of the random split and 300
documents were randomly selected from subset B for validation
while the rest of documents were reserved for test. The same
setting as done forMagTag5Kwas applied to Corel5K. Furthermore,
it should be clarified that we have exploited MagTag5K in
simulating OOV situations. To do so, we randomly reserved 22 tags
from theMagTag5K vocabulary. Thus, the number of in-vocabulary
tags is down to 114. Accordingly, all the documents containing any
of those 22 tags are removedbefore the CV split. Hence, the number
of documents used in the aforementioned CV setting is 3826.

For the Siamese architecture, we randomly generate the same
number of negative examples as that of positive examples in subset
A by using the procedure described in Section 4.2 and append
them to subset A in each CV trial. It is worth mentioning that
the use of more negative than positive examples often leads to a
degenerate solution that the uniform negative output in prediction
is always reached regardless of any actual input. For the distance
learning, as described in Section 4.3, training documents in subset
A were randomly paired so that roughly equal number of paired
examples was generated for two situations corresponding to Ii =

1 (i = 1, 2). Consequently, the number of examples for I3 = 1
doubles that number.

In the SBP learning, the ‘‘optimal’’ hyper-parameter valueswere
foundwith a grid search duringmultiple CV trials and summarized
as follows: (a) for the sparse autoencoder learning, the sparsity
factor is 2, weight decay is 0.02 and a quasi-Newton algorithm
was employed for training (see Appendix for details); (b) for the
prediction learning, the learning rates were initially set to 10−4,
10−5 and 10−5 for MagTag5K, CAL500 and Corel5K, respectively,
and then decayed with a factor of 0.95 every 200 epochs. The re-
weighting parameter κ in Eq. (5) is automatically obtained for each
example as described in Section 4.3.2; and (c) for the distance
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Table 1
Summary of all the datasets used in our experiments.

Dataset Domain #Doc. #In-Voc. Ave. Doc. length #OOV Training

CAL500 Music 500 158 25 0 ✓

MagTag5K Music 5,259 136 5 22 ✓

MSD Music 218,754 24,499 8.5 N/A ×

Corel5K Images 4,524 292 3.5 0 ✓

LabelMe Images 26,945 2,385 7.3 N/A ×

SUNDatabase Images 23,743 1,908 11 N/A ×
learning, the importance and the scaling factors in Eq. (6) were set
to ρ = 0.5 and β =

√
d, respectively, and the trade-off factors

in Eq. (7) were set to α = 2000 for MagTag5K and α = 1000
for both CAL500 and Corel5K. The same learning rates used in the
prediction learning were used for distance learning but the decay
rule was applied every 200 mini-batches in SBP.

Early stopping principle was applied in both the prediction
and the distance learning stages for generalization. Instead of
monitoring only the cost defined in the loss functions on a
validation set, however, our stopping criterion makes use of a
surrogate loss on the validation set; i.e., the performance of a
semantic priming task, P@2, to be described in the next section.
The motivation behind this stopping criterion comes from the
unsupervised learning nature of our CE learning; the loss functions
were formulated for generic semantics without ground-truth. As
a generic information retrieval task, semantic priming allows
us to see ‘‘ground-truth’’ to some extent. Hence, the actual
generalization performance can be guaranteed at least on the
generic semantic priming task. As a result, our stopping criterion
is as follows: we evaluated the priming performance based on the
representations obtained after every 200 epochs and examined
the performance improvement on both training and validation
datasets between two adjacent tests. The learning was stopped at
the point of the smallest improvement between two test points
by human inspection. We believe that this is a generic stopping
criterion applicable to any applications of our contextualized
semantic representation. In Section 5.3, we demonstrate that
this early stopping criterion actually leads to satisfactory concept
embedding.

For model selection, we examined a number of feed-forward
neural networks that have hidden layers ranging from one to
four layers and different numbers of hidden units in a hidden
layer ranging from 10 to 200. For reliability, we repeated the
aforementioned CV experiments for three trials. As a result, the
‘‘optimal’’ subnetwork: input → 100 → 100 → 10 → output;
i.e., a multi-layered perceptron has three hidden layers of 100, 100
and 10 hidden units where the dimension of the CE representation
is 10. It is worth mentioning that our model selection described
above was mainly done based on the MagTag5K training set. For
training on CAL500 and Corel5K, the grid search score is much
smaller thanks to the information acquired from the MagTag5K
training. Actually, the optimal structure achieved based on the
MagTag5K training turns out to be the best for both CAL500 and
Corel5K as well. Hereinafter, we report experimental results based
on this optimal structure.

5.3. Visualization of concept embedding

After the completion of the two-stage learning, a trained sub-
network provides a 10-dimensional CE representation for any
given term along with its local context. By employing the unsu-
pervised t-SNE (van der Maaten & Hinton, 2008), we can visu-
alize the CE representations learnt from the training corpora by
projecting the 10-dimensional representation to a 2-dimensional
space. Thanks to the powerful non-linear dimensionality reduction
capacity of the t-SNE, we anticipate that the visualization would
demonstrate the main properties of contextual semantics and re-
latedness learnt from training corpora in different domains vividly.

First of all, we choose ‘‘guitar’’ to be the focused tag as it is
a typical example of a tag that can convey different concepts in
the presence of different local contexts (cf. Section 1). We collect
all the 388 documents containing ‘‘guitar’’ from the MagTag5K
dataset and apply the subnetwork trained onMagTag5K to produce
their CE representations for all 388 ‘‘guitar’’ with different local
contexts. To facilitate our presentation, hereinafter, instance is
used to describe an embedding vector of a focused term along
with its local context. Fig. 2 shows the projection of all the CE
representations of 388 ‘‘guitar’’ instances onto 2-D space as well as
the projection of CE representations of few relevant tags that share
the same local context with the focused tag. It is observed from
Fig. 2(a) that the concepts defined by the tag ‘‘guitar’’ instances
are grouped into three clusters, which demonstrates that our CE
representation captures multiple meanings of ‘‘guitar’’ in different
contexts. By a closer look, we find that three clusters actually
correspond to two different meanings or concepts: ‘‘acoustic
guitar’’ indicated by the solid circle (•) and ‘‘electric guitar’’
indicated by the hollow circle (◦). As two different instruments
are often used in different music genres, our CE representation
has successfully distinguished between them by embedding them
in different regions. Fig. 2(b) further shows the projection of CE
representations corresponding to the accompany tags from two
randomly chosen documents containing ‘‘guitar’’, one indicated by
solid square (�) from an ‘‘acoustic’’ cluster and the other indicated
by hollow square (�) from the ‘‘electric’’ cluster, by superimposing
them on the projection of ‘‘guitar’’ as shown in Fig. 2(a). Note
that we deliberately shade all 388 ‘‘guitar’’ instance projections in
Fig. 2(b) for clearer visualization. It is clearly seen from Fig. 2(b)
that different concepts in the same context have been properly
co-located with each other in the CE space thanks to the distance
learning used in training the Siamese architecture. Furthermore,
the CE representations of all the co-occurring tags in a document
collectively provide a document-level representation reflecting a
set of similar concepts and their subtle differences. While such
concepts in context seem to be easily grasped by people, we
emphasize that the embedding was acquired via unsupervised
learning.

Next, we take the label ‘‘house’’ in the image domain as an
example to examine whether concepts reflecting the ambient
environment specified in its local contexts can be captured by
our CE representation. Moreover, we would demonstrate the
transferability of learnt contextualized semantics via visualization.
As a result, we collect all the documents containing the label
‘‘house’’ in Corel5K, LabelMe and SUNDatabase datasets and use
the Siamese architecture trained on Corel5K to generate the
CE representations for 152 ‘‘house’’ instances. Fig. 3 illustrates
the projections of all 152 ‘‘house’’ instances in a 2-D space
where 96 instances indicated by solid circle (•) from Corel5K,
14 instances indicated by gray circle ( ) from SUNDatabase, and
42 instances indicated by hollow circle (◦) from LabelMe. Due to
the unavailability of images in Corel5K, we have to examine the
embedding by inspecting all the relevant documents manually. In
general, our inspection shows that the contextualized semantics
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Fig. 2. Visualization of the CE representations of ‘‘guitar’’ inMagTag5K. (a) 2-D projections corresponding to all the 388 ‘‘guitar’’ instances. (b) 2-D projections of the instances
corresponding to the accompany tags co-occurring with ‘‘guitar’’ in two randomly selected documents containing ‘‘guitar’’. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
a

b

Fig. 3. Visualization of the CE representations of label ‘‘house’’ in image datasets. (a) 2-D projections of all 152 ‘‘house’’ instances along with the associated images of
‘‘house’’ instances in LabelMe whose projections are roughly located on a manifold as indicated by connected points. (b) Annotation documents used as local contexts for
those instances on the manifold. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
learnt from Corel5K properly reflects concepts corresponding to
different ambient environments for the ‘‘house’’ instances in all
three datasets and the 2-D projections of their CE representations
are illustrated in Fig. 3. Fortunately, we can use images from
LabelMe to confirm our inspection. As a result, we present 14
‘‘house’’ images in Fig. 3(a) and the corresponding annotations
in Fig. 3(b). It is evident that houses with similar ambient
environments are close to each other in the CE space. In particular,
it is observed that a manifold appears in the 2-D space and shows
the transition of ambient environments from castles, seaside and
rural houses to urban houses. As illustrated in Fig. 3(a), we
highlight the manifold by connecting those projection points on
the ‘‘house’’ manifold in response to the ambient environmental
changes. We highlight that the concepts are captured solely from
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the co-occurring labels via unsupervised learning without using
any visual features.

Finally, we demonstrate OOV term embedding via visualization.
As described in Section 4.4, the concept-based OOV embedding
method entirely relies on the representations of in-vocabulary
terms appearing in the local context and the CE representation
of an OOV term is actually the centroid of its co-occurring in-
vocabulary term representations in the CE space. One easily
imagines such an embedding. As a result, we simply visualize
the CE representation of an OOV term achieved by the feature-
based embedding method (cf. Section 4.4). In our experimental
settings described in Section 5.2, 22 tags in MagTag5K were
reserved to simulate OOV terms. For visualization, we choose
a typical document of four tags {‘‘classical’’, ‘‘violins’’, ‘‘strings’’,
‘‘cello’’} that annotates the song ‘‘La Reveuse’’ composed byMartin
Marais. In this document, ‘‘cello’’ is one of OOV terms. To facilitate
our presentation of the main properties of an OOV term in the
CE space, we also visualize all the instances derived from the
incomplete document of {‘‘classical’’, ‘‘violins’’, ‘‘strings’’} including
all the positive/negative examples. Consequently, the incomplete
document leads to three positive and 111 negative instances
by coupling all the remaining 111 in-vocabulary tags with this
incomplete document (cf. Section 4.3.1). Hence, tags ‘‘classical’’,
‘‘violins’’ and ‘‘strings’’ are in turn to be the focused tags in three
positive instances and the document containing this tags and
{‘‘classical’’, ‘‘violins’’ and ‘‘strings’’} together form its local context.
To generate a negative instance, we substitute the focused tag
in the positive instance with an in-vocabulary tag other than
‘‘classical’’, ‘‘violins’’ and ‘‘strings’’. Fig. 4 illustrates 2-D projections
of the CE representations of ‘‘cello’’ and all relevant instances
specified above. It shows the projections of all the instances
concerning the exemplar document as described above. It is
observed from Fig. 4 that all three positive instances indicated by
blue square ( ) are co-located and projected onto a tiny region at
the upper right corner of the 2-D space.With themusic knowledge,
we see that all three instances correspond to concepts that classical
music is played by string instruments. In contrast, 111 negative
instances indicated by cross in red ( ) and are projected to two
regions in the 2-D space; i.e., the small region consisting of seven
instances is close to three positive instances and the large one
composed of the remaining negative instances is far from the small
region as well as those projections of three positive instances
as shown in Fig. 4. A closer look at those near three positive
instances reveals that the tags used to form those instances, as
depicted in Fig. 4, are actually semantically associated with the
positive instances (even though they are treated as negative). Any
of those tags might have been used to annotate this music piece
without altering the concept; i.e.,most classical string-basedmusic
is orchestral in an old style, probably from the Baroque era and
rarely involving piano in it. Moreover, most such music includes
the fiddle as instrument. This result demonstrates the capability
of our approach in capturing the accurate concepts underlying
training documents even for those treated as ‘‘negative’’ in training.
From Fig. 4, it is seen that the OOV tag instance (τoov = ‘‘cello’’ and
δiv = { ‘‘classical’’, ‘‘violins’’, ‘‘strings’’}) indicated by green star ( )
is projected into the large region of negative example due to the
fact that OOV termwas not seen in training and hence the resultant
OOV instance has to be treated as negative (cf. Section 4.4). As the
OOV instance is further from the three points corresponding to
positive instances than any negative instances in the 2-D space,
the visualization intuitively provides the evidence to support our
measure of the contextualized relatedness between in-vocabulary
and OOV terms in the feature-based OOV treatment.

In summary, visualization shown above suggests that our learn-
ing model successfully captures contextualized semantics from
co-occurring terms in different domains and also demonstrates its
Fig. 4. 2-D projections of the CE representation of the OOV tag ‘‘cello’’ along with
those sharing the same local context. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

capability in dealing with domain-specific semantics, transferabil-
ity of learnt semantics across different corpora and the OOV terms.
In addition, visualization also suggests that the use of a surrogate
loss, i.e., semantic priming performance, in our stopping criterion
during learning leads to generic CE representations applicable to
various tasks described in Section 1.

6. Application to semantic priming

As demonstrated in Section 5, our trained model captures
high quality terms semantics that tends to be generic and hence
can support a variety of applications. Semantic priming is an
application that depends directly on those semantics without the
need of accessing content or other information regarding media
(Lund & Burgess, 1996; Osgood, 1952). As priming highlights the
versatility of the semantics from an abstract point of view, it
provides invaluable insight into the performance of a semantic
model regardless of different applications. Hence, we employ this
generic task to evaluate the performance of our proposed approach
based on those datasets described in Section 5.1 and further
compare ours to a number of state-of-the-art methods on learning
semantics from co-occurring terms for thorough evaluation.

6.1. Semantic priming and evaluation

In general, semantic priming is a process involving associating
concepts based on their semantic relatedness. This abstract process
is often used to evaluate the learnt semantics and demonstrate
the performance of a semantic learning model (Lund & Burgess,
1996). Ideally, coherent terms should be associated with one
another based on the intrinsic contextualized semantics conveyed
by them. To do so, a semantic learning model has to resolve
the highly nonlinear relationship between terms and contexts by
capturing intentions behind those observed terms as accurately
as possible. Thus, the semantic priming task becomes a proper
test bed to evaluate the capabilities of a semantic learning model
by measuring the relatedness of terms in different scenarios such
as applicability to new documents, incomplete context and the
presence of OOV terms.

Below, we first present the priming protocol used in evaluating
a term-based contextualized semantic representation. Then, we
extend this protocol to the document-level so that all the existing
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semantic learning models can be compared fairly on the exact
same condition. Finally, we describe the evaluation criteria used
in semantic priming.

6.1.1. Priming protocol
Semantic priming was first introduced by Meyer and Schvan-

eveldt (1971) to associate semantically related concepts to each
other, e.g., doctor–nurse. Through semantic priming, it has been
shown that human subjects read consecutive words quicker when
the words are semantically or syntactically associated. Given a
priming concept or a query concept, all other concepts can be gen-
erally split into two groups, related and unrelated concepts, de-
pending on the context. Thus, semantic priming functions as a
highly generic evaluation method for learnt semantics without ac-
cess to information other than the learnt semantics themselves.
Semantic priming was first used in Lund and Burgess (1996) in
evaluating the appropriateness of learnt similarity where a word
embedding space was built using aggregation of a textual cor-
pus. Using such embedding, word similarity was estimated using
priming such that the closer two words’ representations were, the
more similar they were considered to be. However, there exists a
subtle difference between syntactic and semantic relatedness (cf.
Section 2.2) andwe focus on the semantic relatedness in our exper-
iments reported in this section. As a result, we define the priming
as the capability of a semantic learningmodel in identifying related
concepts given a single query concept represented as a term and its
local context as defined in Section 1.

Priming is reflected by a learnt semantic representation
where similarity between concepts is encoded in some semantic
distance. In contextualized semantics, such distance is significantly
affected by the context. A contextualized semantic model uses the
context to express concepts meaningfully via their contextualized
semantic distance denoted by e (τ1, τ2|δ) where τ1 and τ2 are two
different terms in the document δ that forms their shared local
context. This distancemeasure can straightforwardly be applied to
priming over a set of concepts as follows: given a query concept τ ,
all available terms τi (i = 1, . . . , |Γ |) in a vocabularyΓ are ranked
based on their corresponding contextualized semantic distances to
the query concept:

Prime (τ , δ) =

τi|∀τi, τj ∈ Γ : e (τ , τi|δ)

≤ e

τ , τj|δ


if i ≤ j

|Γ |

i=1 . (9)

Intuitively, Eq. (9) results in an ordered list of all |Γ | terms
whose corresponding representations have increasing distances
away from the query concept. Ideally, the terms with contextual-
ized semantic similarity to the query concept should precede those
sharing no such semantic similarity, and the top term of the list
may correspond to the query concept itself.

For a semantic learning model, acquiring such ranked list for
a specific query concept depends only on the definition of a
distance metric used in its representation space. In literature,
the priming performance evaluation requires ground-truth or
gold standard of all the different concept similarities in terms
of all possible contexts. Unfortunately, such information is not
only missing for descriptive terms so far but also does not seem
attainable in general since it demands the human judgment on
terms’ relatedness in an unlimited number of contexts.

To alleviate the problem of the ground-truth unavailability,
we assume that all co-occurring terms in a single document are
coherent and hence, semantically similar in terms of their shared
context. Thus, one document is used as ground-truth; each time
one of its constitutional terms is used as a query term to prime
other terms in that document. As a result, the priming protocol
used in our experiment is as follows. Given a document, each term
in this document would be used in turn as a query term that
couples with the shared local context derived from the document
to form a query concept. The list of primed terms resulting from
each query term is then compared against this document (treated
as ground-truth) to measure the priming accuracy as described
in Section 6.1.3. The performance of a contextualized semantic
learning model is evaluated by taking priming accuracy on all
evaluation documents into account.

6.1.2. Extended priming protocol
The priming protocol specified in Section 6.1.1 is used in

evaluating a contextualized semantic learning model where the
information in an entire document is required. However, there are
many different semantic learning models that do not consider the
local context, e.g., all themodels in learning global relatedness such
as PCA and LSA as reviewed in Section 2.1. It seems unfair if we
compare a contextualized semantic learning model to those that
work only on a single term without access to the document-level
information. To allow us to compare ours to more state-of-the-art
semantic learningmodels, we extend the priming protocol defined
in Section 6.1.1 by allowing all semantic learning model to use
exactly the same information conveyed in an entire document in
semantic priming. Hence, any model is provided with an entire
document and the collective priming results of all the terms in
this query document will be used for performance evaluation. In
other words, the extended priming amounts to merging all the
ranked lists achieved by different terms in the query document
into a single document-level global ranked list with the same
distance metric in the semantic representation space. For a term
in the query document, however, priming itself actually results
in a zero distance situation. If this result is allowed, almost all
models can yield an error-free priming result. Therefore, we have
to exclude such priming results of zero distance in our extended
priming protocol. Given a query document δ and a vocabulary Γ ,
the extended priming is defined by

E_Prime (δ) =

τi|∀τi, τj ∈ Γ ; ∀τ̂ ∈ δ

∧τ̂ ≠ τi : min

e

τ̂ , τi|c


≤ min


e

τ̂ , τj|c


if i ≤ j

|Γ |

i=1 . (10)
Eq. (10) results in a ranking list of |Γ | terms by using the

minimum distance between any term τi in Γ and all the |δ| terms
in a document δ. As this protocol is designed for any semantic
learning models no matter whether it uses the context or not, the
distance measure e


τ̂ , τi|c


is decided by the nature of a semantic

learning model; i.e., c = δ for a contextualized model and c = null
otherwise. In Eq. (10), the condition ‘‘∀τ̂ ∈ δ ∧ τ̂ ≠ τi’’ ensures
that the zero distance information is never counted in finding out
theminimum distance. Thus, this protocol guarantees all semantic
learning models are fairly compared by performing document-
level semantic priming with the same input and formulation in
expressing their priming results.

6.1.3. Priming accuracy
In general, the priming performance is measured by the

precision at K denoted by P@K ; i.e., the precision when only the
top K entries in a ranked list are considered on a reasonable
condition that K is less than the number of in-vocabulary terms
|Γ |. Here, we denote the top K (K ≤ |Γ |) entries in a primed
list by PrimeK (τ , δ) = (τi)

K
i=1 in the priming protocol (cf. Eq. (9))

or E_PrimeK (δ) = (τi)
K
i=1 in the extended priming protocol (cf.

Eq. (10)). For a document δ, the priming list achieved based on a
priming protocol is thus defined by

PrimeK (x) =


PrimeK (τ , δ)

x = (τ , δ) for the priming protocol
E_PrimeK (δ)

x = δ for the extended priming protocol.
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Then P@K precision is defined as the ratio of primed terms in the
ground-truth (i.e., all the terms in the query document δ) out of all
K primed terms:

P@K (x) =
|PrimeK (x) ∩ δ|

K
.

Note that this measure is applicable to a query term in the priming
or a query document in the extended priming protocols. For an
evaluation dataset of multiple examples, X = {xi}

|X |

i=1, the overall
P@K precision is defined by

P@K (X) =

|X |
i=1

P@K (xi)

|X |
. (11)

Intuitively, up to a prime level K , P@K measures the precision
of primed terms against the ground-truth to find out how many
related terms appear in the top K primed terms. Due to the
limitation of the ground-truth, the P@K measure may be affected
by the cardinality of a query document, i.e., |δ|. In other words,
only up to |δ| primed terms can be confirmed definitely with
the ground-truth. As K exceeds |δ|, P@K values might decrease
rapidly for documents of few terms. Although P@K (X) may be
a reasonable measure of comparison when K ≤ |δ|, it does
not faithfully reflect the performance of any models when K >
|δ|. In contrast, the averaging precision on all the P@K(K =

1, . . . , |δ|), i.e., AP (x) =

|δ|
K=1 P@K(x)

|δ|
, automatically adapts for the

various lengths of different documents used as ground-truth by
only concerning the top |δ| entries of the primed list resulting from
a query instance, which provides a reliable performance measure.
The overall average precision on a test dataset of |X | examples is

MAP (X) =

|X |
i=1

AP (xi)

|X |
. (12)

In essence, semantic priming in response to a query concept is
an information retrieval task and hence the evaluation measures
commonly used in information retrieval are applicable. The Area
Under Curve (AUC) is a commonly usedmeasure by calculating the
area formed under the curve of precision as a function of recall at
the standard 11 recall levels: l = {0.0, 0.1, . . . , 1.0} (Manning,
Raghavan, & Schütze, 2008, pp. 158–163). Precision and recall at a
specific recall level l ∈ l are:

Precision (ℓ|x) =
|PrimeK (x) ∩ δ|

K
,

where ℓ = Recall (K |x) =
|PrimeK (x) ∩ δ|

|δ|
.

Recall (K |x) specifies a certain recall level l = k/ |δ| implying
that at least k out of all the |δ| related terms in the ranked list
have been retrieved and is used to form themeasure Precision (ℓ|x),
i.e., precision P@K at level l. Accumulating the precision values
at all the 11 recall levels across an evaluation dataset leads to an
overall AUC measure:

Precision (ℓ|X) =

|X |
i=1

Precision (ℓ|xi)

|X |
,

ℓ = 0.0, 0.1, . . . , 1.0. (13)
Intuitively, a larger AUC region formed by Precision (ℓ|X)

suggests that more of the related terms have been retrieved at the
standard recall levels and the precision–recall curve clearly shows
the performance of a tested model at different recall levels.

In summary, four criteria, P@K ,MAP , Precision/Recall and AUC ,
are used in our experiments to evaluate the priming/extended
priming performance of a semantic learning model.
6.2. Experimental protocols

For a thorough performance evaluation in semantic priming,
we have designed a number of experiments in different settings
corresponding to several real scenarios to test the learnt semantic
representations, including: (a) domain-specific semantics: test on
all the documents used in training a model and those unseen
documents in the same corpus; i.e., a subset of documentswere not
used in training; (b) transferability: test on the different corpora
where none of documents in those corpora were used in training;
(c) noisy data: test on incomplete local context; (d) OOV data:
testing on synthesized and real documents of OOV terms; and (e)
Comparison: comparing ours to those semantic learning models
reviewed in Section 2 with exactly the same settings. As described
in Section 5.2, we conducted the cross-validation in training a
semantic model for three trials. Hence, the averaging accuracy
along with standard error arising from three trials is reported in
terms of two priming protocols described above.

6.2.1. Within-corpus setting
The within-corpus setting refers to the evaluation that uses the

training or the test documents subsets from the training corpora
(cf. Section 5.1); i.e., CAL500, MagTag5K and Corel5K. The use of
training documents in this setting is expected to test the quality of
semantics learnt by amodel in terms of this application. Moreover,
measuring the priming accuracy on the train documents mimics a
real scenario where all available information is used in building up
a semantic space to be used in a variety of applications later on. On
the other hand, by using the test document subset in this setting,
we would evaluate the generalization of the learnt semantics into
unseen documents that were probably annotated by the same
cohort of users. We refer to such evaluation as within-corpus test
(WCT) and expect that this setting would examine the quality and
the generalization of learnt semantics in a domain-specific sense.

6.2.2. Cross-corpora setting
Unlike the WCT, we design experiments to test unseen

documents in corpora that were never used in semantic learning.
We refer to this type of evaluation as cross-corpora test (CCT).
As a result, the CCT would investigate the transferability of learnt
semantics in terms of this application. Table 2 summarizes our
cross-corpora settings including training and test datasets, the
number of common terms shared by training and test datasets,
the number of documents of shared terms and the number of
documents containing OOV terms in a test dataset.

6.2.3. Incomplete local context setting
To achieve a contextualized semantic representation of a term,

both the term and its local context, i.e., all accompany terms in
the document containing it, must be required as described in
our problem formulation in Section 1. In real applications, a test
document could mismatch training data. For instance, it could be
a subset of a training document using fewer yet more informative
terms or an enhanced version of a training document by adding
more terms. In this setting, we would design experiments to test
mismatched documents. As argued in Section 6.1.1, it does not
seem possible to attain all the concepts and their similarities in
terms of all possible contexts. Thus, it is impossible for us to
simulate on one mismatch situation that more terms are added
to existing documents. Fortunately, we can simulate the other
mismatch situation, incomplete local context, by removing a few
terms from existing documents.

To simulate the incomplete local context situation, a training
example of complete local context, x = (t (τ ) , l (τ |δ)), is altered
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Table 2
Summary of cross corpora (CC) experimental setting.

Training dataset Test dataset #Common term #CC document #CC-OVV document

MagTag5K MSD 75 817 39,507
Corel5K LabelMe 105 520 8,703
Corel5K SUNDatabase 90 266 11,935
into a corrupted version, x̃ =


t (τ ) , l


τ |δ̃
 

where δ̃ is a sub-
set of the original document δ achieved by removing a number
of terms randomly from δ. The incomplete context, l


τ |δ̃

, cor-

responds to the topics distribution obtained from the incomplete
document δ̃. As a result, the use of fewer accompany terms in δ̃ re-
sults in larger uncertainty in semantic priming and hence causes a
bigger difficulty in priming all the accompany terms in the origi-
nal document δ. Here, we emphasize that the ground-truth is the
original document but the local context is derived from a subset
of this document in semantic priming under this setting. In our
incomplete local context experiments, we used the missing rate

defined by

1 −

|δ̃|
|δ|


∗ 100% to control the number of terms re-

moved randomly from a complete document. In this paper, we re-
port results based on themissing rate in different ranges: up to 10%
and between 10% and 30% due to the variable length of different
documents.

6.2.4. Out of vocabulary (OOV) setting
The OOV problem appears challenging in semantic learning

from descriptive terms. Based on our proposed approach, we have
proposed two methods to deal with OOV terms as described in
Section 4.4. Here, we would use semantic priming to evaluate our
proposed methods.

In our OOV experiments, we used the reserved subset of
MagTag5K as described in Section 5.1. In this reserved subset, there
are 1160 documents where each of them contains at least one
out of the 22 reserved terms used as simulated OOV terms. Their
concept CE representations achieved from the semantic model
trained on MagTag5K were used in semantic priming. Moreover,
we also used the real documents containing OOV terms in the test
corpora (cf. our CCT setting in Section 6.2.2). As a result, there
are 39,507 documents involving 23,619 OOV terms in the MSD,
8703 documents of OOV 2110 terms in the LabelMe and 11,935
documents containing 2068 OOV terms in the SUNDatabase used
in our OOV experiments. For those OOV documents in theMSD, the
semantic model trained on MagTag5K was used to generate their
CE representations. For those OOV documents in the SUNDatabase
and the LabelMe, the semantic model trained on Corel5K was
employed to yield their CE representations. The information on the
cross-corpora OOV setting is also listed in Table 2.

To the best of our knowledge, those approaches used in our
comparative studies do not address the OOV issue. Hence, the
OOV experiments only involve our proposed approach described
in Section 4.4 and the priming protocol is only employed for
performance evaluation.

6.2.5. Comparison settings
We use the learning models reviewed in Section 2 as baselines

for comparative studies. For training and test, we apply the exact
same cross-validation protocol described in Section 5.2 to each
semantic learning model. As a result, the information on training
those models is summarized as follows:

Latent Semantic Analysis (LSA): As described in Section 2, the
unsupervised dimensionality reduction technique is performed
using the training documents and model selection was done by
using the percentage of variance (POV) measure by monitoring
eigenvalues λi resulting from the matrix decomposition. As a
result, n features are employed when the top n eigenvalues
cover at least 90% of the variance of training data; i.e., POV =n

i=1 λi

/
|Γ |

i=1 λi


≥ 90%. As a result, we retained 35, 25 and

80 features for MagTag5K, CAL500 and Corel5K, respectively. The
same numbers of features were extracted for test data.

Principle Component Analysis (PCA): PCA relies on prepro-
cessing and aggregation of the document-term binary matrix fol-
lowed by dimensionality reduction of the aggregated matrix in
order to obtain per term feature vectors. In our experiments, we
applied preprocessing techniques including: using the binary term
frequency, the tfidf re-weighting and Positive Point-wise Mutual
Information (PPMI) re-weighting as preprocessing. Also we con-
sidered different distance metrics in measuring the term-to-term
relatedness such as the cosine, the co-occurrence (non-normalized
cosine), Kullback–Leibler divergence and Hellinger divergence as
aggregation measures. For each of those combinations of prepro-
cessing and aggregation, we performed unsupervised dimension-
ality reduction and evaluated the resultant semantic space by using
documents fromMagTag5K and CAL500 based on their P@2 prim-
ing performance. The combination that produced the best results
is the tfidf reweighedmatrix followed by the co-occurrence aggre-
gation measure. As a result, we shall report results based on this
combination.

Information Theoretic Smoothing (InfoTheo): This model
started with smoothing the binary BoW representation of each
document by using information regarding the pairwise use of
terms over an entire training dataset. Following the suggestions
in Mandel et al. (2011), we obtained this pairwise information by
using all the 12 aggregation methods listed in the PCA setting and
applied such information to the smooth document-term matrix
generation. This matrix requires a further tuning of the two
parameters, the number of associated terms k and the reweight
factor α. With the suggestions in Mandel et al. (2011), we tuned
those parameters by a grid search on a reasonable range for
each of training datasets with different aggregation methods,
respectively. We looked into the situations as k = 1, 3 and 5
terms while reweighting the matrix using different factors for
α = 0.1, . . . , 0.5. A total of 180 experiments were carried
out in each of MagTag5K and CAL500. We observed that the
tfidf reweighed matrix followed by the co-occurrence aggregation
measure performed significantly better than other 11 aggregation
methods. As a result, we applied the best aggregation method to
MagTag5K, CAL500 and Corel5K. We report results based on the
setting corresponding to the best P@2 training performance in this
paper. In detail, the optimal parameters are k = 1, α = 0.2 for
MagTag5K, k = 1, α = 0.1 for CAL500 and k = 3, α = 0.3 for
Corel5K. Furthermore, we conducted experiments by using a full
term-to-term matrix and PCA dimensionality reduced version of
this matrix. We observed that the dimensionality reduced version
generally outperforms the full matrix on different datasets. Also
this processing allows both InfoTheo and other global relatedness
learningmodel to have the same dimension in their representation
spaces. In this paper, we report only the results generated by the
dimensionality reduced version.

Skip Gram: In order to avoid capturing any unreal syntactic
structure, we randomize the order of terms in each document be-
fore the Skip Gram learning. Training a Skip Gram model requires
tuning two hyper-parameters: dimension of the embedding space
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and size of the neighborhood window used to specify the context.
Using a grid search, we trained a number of Skip Gram models for
a training dataset and selected the one with the best P@2 training
performance to report their results in this paper. We observed that
the performance on different datasets was not sensitive to the di-
mensionality of the embedding space but affected by the window
size. In general, the smaller the window size, the better the model
performed. As a result, we selected the models that had the win-
dowsizes of one, three and one forMagTag5K, CAL500 andCorel5K,
respectively, and the dimension of the embedding space on the
three datasets is the same used for PCA, i.e., 35, 25 and 80 for Mag-
Tag5K, CAL500 and Corel5K, respectively. In our experiments, we
use theword2vec code (Mikolov et al., 2013) to train the Skip Gram
models.

Latent Dirichlet Allocation (LDA) and Probabilistic LSA
(PLSA): The same number of features used in representing our
local context was employed for the LDA evaluation; i.e., 19, 25
and 20 features for MagTag5K, CAL500 and Corel5K, respectively.
The hyper-parameter tuningwas described in Section 5.2. For LDA,
we used the standard C implementation of LDA (Blei et al., 2003)
in our experiments. The same number of topics used in LDA was
adopted for the PLSA as the unique difference in the two methods
is the used distributions in capturing document-level semantics.
A PLSA model was trained using the expectation maximization
algorithm (Dempster, Laird, & Rubin, 1977) with convergence of
the likelihood as a stopping criterion.

CRBM: The use of binomial units in CRBM requires tuning the
number of units in the hidden layer. We conducted a number of
experiments with different latent space dimensions and observed
that the performance was insensitive to the dimensionality of
latent space. This can be explained by the fact that the CRBM is
designed to smooth the term-to-document relatedness rather than
term-to-term relatedness. In our experiments, we used the same
number of hidden units in CRBMas that used in our CE space. CRBM
models were trained with the contrastive divergence algorithm
(Hinton, 2002) where we used the recommended learning rate
of 0.1 with moment 0.5. Our implementation is based on the
MatRBM1 package.

Random: This is a model used to form a baseline without
learning. Depending on an evaluation criterion, the model worked
by returning a proper number of terms uniformly sampled from a
test dataset to form the primed list for a given query term.

Once those models were trained, the following methods were
used in semantic priming as well as ranking the different terms for
a query instance or a query document:

PCA, LSA, InfoTheo and Skip Gram: We have investigated
two distance metrics in our priming experiments, i.e., the cosine
and the Euclidean distances. As the cosine metric outperformed
Euclidean for all models, we used the cosine metric to measure the
distance between different terms in the semantic representation
space.

LDA and PLSA: The information theoretic distance between a
pair of terms given a topic distribution was used (cf. Section 2.2).

CRBM: The model was tested with 100 trials by using one-hot
representation of the query term, i.e., a vector with all zeros except
one unit corresponding to the query term set to one, and one-hot
representation of the query document as context. In each trial, the
model acted 100 forward and backward steps. The resultant 100
output vectors on the visible units achieved are averaged and the
averaged output of visible units was used to measure relatedness;
for the visible units of the higher activation values in output, their
corresponding terms are treated as having higher relatedness. Note
that due to the technical limitation of this model (cf. Sections 2.3

1 https://code.google.com/p/matrbm/.
and 7), it could be evaluated only on training sets in the WCT
experiments.

Random: The model ranks the terms randomly with a uniform
distribution.

Our Model: The terms are ranked based on their Euclidean
distances in the concept embedding (CE) space to a query concept.
It should be clarified that the prediction learning in ourmodel may
lead to a CE space that facilitates the final CE space formation via
distance learning (cf. Section 4). To evaluate the gain of distance
learning with our proposed Siamese architecture, we apply the CE
representations achieved via the initial prediction learning, named
CE, and the final distance learning, dubbed Siamese-CE, to semantic
priming.

In summary, our comparative studies in applying different
semantic learningmodels in semantic priming are based on exactly
the same experimental settings. While all of the aforementioned
semantic learning models were evaluated with the extended
priming protocol, only LDA, PLSA, CRBMand Randommodels along
with ours were evaluated in the priming protocol described in
Section 6.1 since only these models can generate their semantic
representations with a term and its local context simultaneously.

6.3. Within-corpus results

With the experimental setting described in Section 6.2.1, we
report the WCT experimental results on three training corpora:
MagTag5K, CAL500 and Corel5K in terms of two priming protocols.

6.3.1. Priming results
Fig. 5 illustrates the priming results of five different models

on MagTag5K in terms of four evaluation criteria defined in
Section 6.1.3. Fig. 5(a) shows the priming results on the training
subset in terms of P@K as K varies from one to 10 and the
MAP results, both indicated by the mean and standard error on
three trials. It is observed from Fig. 5(a) that all the models apart
from CRBM outperform the Random model regardless of K and
the length of evaluated documents. The CRBM performs worse
at K = 1 but much better than the Random for different K
values up to 10 in terms of P@K and the MAP. Normally, the
ground-truth for P@1 corresponds to the query term itself and
the stochastic nature of CRBM might be responsible for its failure
at K = 1. Fig. 5(b) shows the priming results on the training
subset in terms of the precision–recall performance at 11 standard
recall levels and the aggregated AUC. The same as seen in Fig. 5(a)
is observed. It is evident from Fig. 5(a) and (b) that our model
performs the best among all five models regardless of evaluation
criteria. In particular, Siamese-CE leads to the significantly better
performance by beating the runner-up, the CRBM, with a big
margin, e.g., 26% in MAP and 31% in AUC. Also we observe that
Siamese-CE performs slightly better than CE on the training subset.
Fig. 5(c) and (d) show the priming results on the test subset in
terms of four performance indexes, respectively. The exactly same
as seen on the training subset is observed on the test subset
although the performance of all the models on the test subset is
degraded in comparison to that on the training subset. While the
CRBM is no longer applicable to the test subset, Siamese-CE still
wins with a big margin of at least 22% in MAP and at least 37% in
AUC in comparison to other three models. It is also observed that
CE representation seems to have a better generalization capability
than Siamese-CE although Siamese-CE still performs better than
CE on the test subset. Overall, our model outperforms others with
the statistical significance (p-value < 0.01, Student’s t-test)
apart from K = 1. The experimental results on this dataset
demonstrate that the accurate concepts and their relatedness have
been captured by using both terms and their local context and such

https://code.google.com/p/matrbm/


U. Sandouk, K. Chen / Neural Networks 76 (2016) 65–96 81
100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5. Priming accuracy of different models in terms of P@K , MAP, Precision vs. Recall and AUC onMagTag5K. (a–b) Training subset. (c–d) Test subset. Error bars regarding
the P@K and the Precision vs. Recall curves indicate standard error and the numbers regarding the MAP and the AUC are mean and standard error of the MAP and AUC
priming accuracy. This notation is applied to all the figures hereinafter.
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Fig. 6. Priming accuracy of different models in terms of P@K , MAP, Precision vs. Recall and AUC on CAL500. (a–b) Training subset. (c–d) Test subset.
learnt semantics can be well generalized to those documents that
were never seen in training.

Fig. 6 shows the priming results of five different models on
CAL500 in terms of four evaluation criteria. It is observed from
Fig. 6(a) and (b) that our model performs significantly better than
other models on the training subset given the fact that Siamese-CE
yields at least 18% in MAP and at least 27% in AUC higher accuracy
than other models. It is also observed that the high document
cardinality of this dataset makes the Random model relatively
easy to guess a few related terms, i.e., results in relatively high
P@K for small K values, as evident in Fig. 6(a). In Fig. 6(b), it is
seen that higher precision at high recall levels is achieved than
that achieved on the training subset in MagTag5K. As a runner-
up, however, the performance of CRBM decreases rapidly as the
recall level increases. This suggests that the CRBMhad encountered
a difficulty in identifying all the terms related to a query concept.
The same problem can be found in other models except ours.
Fig. 6(c) and (d) illustrate the performance of different models
on the test subset. Overall, the same conclusions drawn on the
training subset are reached on the test subset; Siamese-CE yields
the statistically significant better performance (p-value < 0.01,
Student’s t-test) than othermodels bywinning at least 13% inMAP
and at least 17% in AUC on the test subset. In comparison to the
results on MagTag5K shown in Fig. 5, our model generally behaves
consistently though the generalization performance on CAL500 is
worse than that on MagTag5K. As described in Section 5.1, CAL500
is a music tag collection quite different from MagTag5K in terms
of length of documents or document cardinality and the tag usage
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distribution (cf. Table 1). In light of capturing the accurate concepts
and their relatedness, the experimental results on two distinct
music datasets suggest that ourmodel is not sensitive to document
cardinality and statistics underlying different collections in the
same domain as is evident in Figs. 5 and 6.

Fig. 7 illustrates the priming results of five different models on
Corel5K in the image domain in terms of four evaluation criteria.
Overall, our model yields the statistically significant better results
(p-value < 0.01, Student’s t-test) than other models. On the
training subset, it is evident from Figs. 7(a) and 8(b) that Siamese-
CE leads to at least 12% in MAP and at least 24% in AUC higher
than others. From Fig. 7(c) and (d), the favorable generalization
capability of our model is seen clearly; on the test subset, Siamese-
CE considerably outperforms other models by winning at least
12% in MAP and 33% in AUC. In addition, the gain of Siamese-CE
over CE is more visible on this dataset. From Fig. 7, however, it
is also observed that the performance is degrading rapidly across
the ranked list due to the nature of this dataset. As described in
Section 5.1, a document in this dataset contains only five labels
at maximum and 3.5 labels on average, but there is a vocabulary
of 292 different labels in this dataset. Once the value of K in
P@K and the recall level reach a certain degree beyond the length
of a query document, the performance is inevitably degraded
regardless of which model is used. Even in this situation, the
experimental results shown in Fig. 7 suggest that our model still
yields the significantly better performance, in particular, at high
recall levels, as is evident in Fig. 7(b) and (d). In general, the
results on this dataset demonstrate the capability of our model
in capturing the accurate concepts and their relatedness from
documents containing a small number of terms.

6.3.2. Extended priming results
Fig. 8 illustrates the extended priming results of nine different

models on MagTag5K in terms of four evaluation criteria defined
in Section 6.1.3. Regarding the results on the training subset
shown in Fig. 8(a) and (b), our model always outperforms all other
models with the statistical significance (p-value < 0.01, Student’s
t-test) in all four evaluation criteria. In particular, Siamese-CE
wins at least 26% in MAP and 34% in AUC over other models.
As shown in Fig. 8(c) and (d), our model also performs the best
on the test subset, and moreover, Siamese-CE beats the runner-
up with a big margin of 23% in MAP and 22% in AUC. On both
training and test subsets, our model performs particularly well
at high recall intervals as shown in Fig. 8(b) and (d). Overall,
CE performs equally well on both training and test subsets in
MagTag5K. A closer look suggests that Siamese-CE outperforms
CE at high recall levels on the training set but this advantage
disappears on the test subset. The better performance achieved by
Siamese-CE on the training subset is thanks to the distance learning
that refines the CE representation. On both training and test
subsets, LSA, Skip Gram, LDA and PLSA all perform poorly although
they win over the Random model. Interestingly, LDA and PLSA
are two probabilistic topic models (PTMs) that yield document-
level representations. In this document-level priming evaluation,
however, the PTMs do not seem to be able to capture the subtle
difference in the concepts conveyed in a query document, which
provides evidence to support our contextualized semantic learning
problem formulation. From Fig. 8, it is also evident that Skip Gram
cannot capture the semantics from tags well due to a lack of
syntactic context in documents of descriptive terms. In contrast,
the non-contextualized models, PCA and InfoTheo, perform well
given the fact they win over almost all other models apart from
ours as illustrated in Fig. 8. On the training subset, however, CRBM
performs better than PCA and InfoTheo at both small K in P@K
and low recall intervals, as shown in Fig. 8(a) and (b), due to
its capability in capturing document-term relatedness. It is worth
stating that the success of PCA and InfoTheo relies on the careful
weighting of the document-term matrix and proper aggregation
and those results reported here are those corresponding to the
optimal parameters. Finally, the results on MagTag5K in both
priming and extended priming shown in Figs. 5 and 8 also raise
an issue on why the distance learning by our Siamese architecture
does not lead to a substantial gain on this dataset, in particular,
regarding generalization, which will be discussed later on.

Fig. 9 shows the extended priming results of nine different
models on CAL500 in terms of four evaluation criteria. Once again,
our model outperforms other models regardless of evaluation
criteria. As shown in Fig. 9(a) and (b), the results on the training
subset indicate that Siamese-CE wins over other models at least
18% in MAP and at least 25% in AUC and, in particular, our model
performs much better at high recall levels. In comparison to
results on MagTag5K, there are two non-trivial changes: CRBM
outperforms PCA and InfoTheo considerably and Siamese-CE
performs significantly better than CE on the training subset of
this dataset. Nevertheless, the results on the test subset shown in
Fig. 9(c) and (d) reveal that all the models including ours seem to
face difficulty in extended priming especially at high recall levels.
The difficulty causes the performance of some models to be close
to that of the Random model. An analysis on the training subset
reveals that it may be caused by a lack of sufficient informative
training examples given the fact that 335 training documents
actually consist of 158 different tags. Due to insufficient training
data reflecting various concepts and intended terms’ use patterns,
it is likely that the learning may overfit the training data and
hence some unseen positive instances may be grouped incorrectly
with negative instances in our distance learning. Consequently, our
winningmargin over othermodels becomes smaller in comparison
to results on MagTag5K (cf. Fig. 8(a) and (b)), e.g., Siamese-CE
gains only 5% in MAP and nothing in AUC in comparison to
the runner-up, PCA. As a non-contextualized model, PCA learns
the global relatedness of tags. In the presence of insufficient
training documents for capturing the accurate concepts, the PCA
may be a choice after trade-off between performance gain and
computational efficiency in this document-level retrieval task.

Fig. 10 illustrates the extended priming results of nine different
models on Corel5K in the image domain in terms of four evaluation
criteria. Overall, ourmodel yields the statistically significant better
performance (p-value < 0.01, Student’s t-test) than other models
on both training and test subsets. As shown in Fig. 10(a) and (b), the
results suggest that Siamese-CE wins over other models at least
10% in MAP and at least 20% in AUC on the training subset. Once
again, non-contextualized models, PCA and InfoTheo, outperform
other models apart from ours. Fig. 10(c) and (d) illustrate the
results on the test subset where all the models are ranked as
same as done on the training subset in terms of their performance.
Siamese-CEwins over the runner-up, InfoTheo, 9% inMAP and 15%
in AUC and also leads to better generalization than CEwith the gain
of 5% inMAP and 9% in AUC. In particular, Siamese-CE outperforms
CE at high recall levels in both training and test subsets as shown in
Fig. 10(a) and (b). It indicates that the distance learning would be
paid off should there be sufficient informative training examples
regarding various concepts and intended term-use patterns. Once
again, LDA and PLSA perform poorly on this dataset as is evident in
Fig. 10, which lends further evidence to support our contextualized
semantic learning given the fact that a huge gain is brought by our
model based on LDA.

In summary, the WCT experimental results on different data
sets in two different priming protocols demonstrate that our
approach generally outperforms other state-of-the-art methods
in semantic priming and has the proven generalization capability
that the learnt semantics can be applied to unseen documents in
training for this retrieval task.
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Fig. 7. Priming accuracy of different models in terms of P@K , MAP, Precision vs. Recall and AUC on Corel5K. (a–b) Training subset. (c–d) Test subset.
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Fig. 8. Extended priming accuracy of different models in terms of P@K , MAP, Precision vs. Recall and AUC on MagTag5K. (a–b) Training subset. (c–d) Test subset.
6.4. Cross-corpora results

In the CCT experiments, we apply the semantic representation
achieved by a model trained on a corpus to another test collection
for semantic priming. Here, we report results for those semantics
trained on MagTag5K and applied to MSD as well as those trained
on Corel5K and applied to LabelMe and SUNDatabase in terms of
two priming protocols.

6.4.1. Priming results
Fig. 11 illustrates the priming results of four differentmodels on

three test collections in terms of four evaluation criteria defined in
Section 6.1.3.

Fig. 11(a) and (b) show the priming results onMSD. Overall, our
model outperforms other model with the statistical significance
(p-value < 0.01, Student’s t-test). It is observed from Fig. 11(a)
and (b) that Siamese-CE gains at least 9% in MAP and at least
19% in AUC higher than other models and, in particular, yields
the considerably better performance at high recall levels. Also
CE leads to a considerably better performance than other models
and its performance is slightly lower than that of Siamese-CE. In
contrast, LDA and PLSA yield the results close to those generated
by the Random model, which indicates the poor transferability
of semantics learnt by two models. By comparison to the results
on the test subset of MagTag5K shown in Fig. 5(c) and (d), we
observe that the performance of Siamese-CE on MSD is worse
than the WCT results, e.g., 12% in MAP and 14% in AUC lower.
As MagTag5K is a small subset of MSD, it is likely that there are
much more varied patterns and concepts associated with a tag
in MSD and different annotators working on the large collection,
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Fig. 9. Extended priming accuracy of different models in terms of P@K , MAP, Precision vs. Recall and AUC on CAL500. (a–b) Training subset. (c–d) Test subset.
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Fig. 10. Extended priming accuracy of different models in terms of P@K , MAP, Precision vs. Recall and AUC on Corel5K. (a–b) Training subset. (c–d) Test subset.
which could have more and alternative interpretations for those
tags in MagTag5K in a much larger tag vocabulary in MSD. Despite
the degraded performance on MSD, we believe that the priming
results generated by our model are quite promising in learning
transferable semantics.

Fig. 11(c) and (d) show the priming results on LabelMe.
It is observed that our model outperforms other model with
the statistical significance (p-value < 0.01, Student’s t-test);
Siamese-CE wins over the runner-up 12% in MAP and 27% in AUC
and displays significantly better performance at high recall levels.
Also the performance of CE is superior to that of other models but
lower than Siamese-CE. Unfortunately, LDA and PLSA yield poor
performance, roughly identical to the Random model, as clearly
seen in Fig. 11(c) and (d). In contrast to the results on the test
subset of Corel5K shown in Fig. 7(c) and (d), it is observed that the
performance of Siamese-CE on LabelMe is close to theWCT results,
e.g., only 4% in MAP and 9% in AUC lower. Also it still maintains the
good performance at high recall levels. Those results suggest quite
strongly that our model can capture the transferable semantics
when training and test corpora have a high agreement in intended
meanings of terms in annotation.

Fig. 11(e) and (f) show the priming results on SUNDatabase.
Once again, ourmodel outperformsothermodelwith the statistical
significance (p-value < 0.01, Student’s t-test); Siamese-CE wins
over the runner-up 13% in MAP and 25% in AUC and, in particular,
the significantly better performance at high recall levels. It is also
observed that all the models perform on this dataset very similarly
to those on LableMe although Siamese-CE yields a lower priming
accuracy in comparison to that on LabelMe, e.g., 3% in both MAP
and AUC.
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Fig. 11. Priming accuracy of different models in terms of P@K , MAP, Precision vs. Recall and AUC in the CCT experiments. (a–b) MSD. (c–d) LabelMe. (e–f) SUNDatabase.
For three image datasets, we notice that the document
cardinality is quite different given the fact that on average there
are 3.5, 7.3 and 11 labels per document in Corel5K, LabelMe
and SUNDatabase, respectively. This information implies that our
model is less sensitive to some statistical variation but more
sensitive to the semantics underlying co-occurring terms.

6.4.2. Extended priming results
Fig. 12 shows the extended priming results of nine different

models on three test collections in terms of four evaluation criteria
defined in Section 6.1.3.

Fig. 12(a) and (b) illustrate the extended priming results on
MSD. In comparison to the performance on the test subset on
MagTag5K shown in Fig. 8(c) and (d), all the models including
ours performpoorly, which demonstrates the challenge in learning
transferable semantics with limited training data. It is observed
that LSA performs the best in MAP while our model wins in AUC.
In general, our model performs better at large K and high recall
levels while LSA outperforms others at small K and low recall
levels. In particular, CE always outperforms Siamese-CE. For the
reason described in Section 6.4.1, a contextualized model is more
sensitive to the usage patterns and intended meanings of terms
in capturing concepts in context than a non-contextualized model
that learns only global relatedness. In general, both thepriming and
the extended priming results onMSD suggest that a contextualized
semantic model does not seem to transfer the semantics learnt
from a less informative dataset to those of richer information,
intricate concepts and alternative intended term-use patterns.
Fig. 12(c) and (d) show the extended priming results on
LabelMe. It is observed that our model outperforms other models
with the statistical significance (p-value < 0.01, Student’s t-
test). In general, the behavior of our model on this dataset is
remarkably similar to that on the test subset of Corel5K as shown
in Fig. 10(c) and (d) and Siamese-CE always performs better than
CE. Unfortunately, all othermodels performpoorly;most ofmodels
yield the performance roughly identical to the Randommodels’, as
seen in Fig. 12(c) and (d). In general, the performance of our model
is consistent in priming and extended priming on this dataset.
Hence, the same conclusion on the priming can be drawn on the
extended priming.

Fig. 12(e) and (f) show the extended priming results on SUN-
Database. Once again, our model performs statistically significant
(p-value < 0.01, Student’s t-test) better than all other models;
Siamese-CE wins over the runner-up 22% in MAP and 13% in AUC
and, in particular, the significantly better performance at all 11 re-
call levels. It is also observed that all the models perform on this
dataset very similarly to those on LableMe.

In summary, the CCT experimental results demonstrate that
the semantics learnt by our model trained on a dataset may be
transferable to other collections if different annotators have a
high agreement on the intended meanings of terms and there
are sufficient training documents reflecting various concepts and
intended term-use patterns. Without meeting the requirement, all
themodels encounter the same problem in generalization of learnt
semantics cross corpora.
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Fig. 12. Extended priming accuracy of different models in terms of P@K , MAP, Precision vs. Recall and AUC in the CCT experiments. (a–b) MSD. (c–d) LabelMe. (e–f)
SUNDatabase.
6.5. Incomplete local context results

In the incomplete local context experiments, we randomly
remove a number of terms from an evaluation document to
synthesize an incomplete local context with two missing rates, up
to 10% and between 10% and 30%, as discussed in Section 6.2.3.
The training subsets in MagTag5K, CAL500 and Corel5K are used in
this experimental setting and we report the experimental results
in terms of the priming and the extended priming protocols. It is
also worth clarifying that the CRBM is generally ineligible as its
local context is the ID of a query document and hence cannot be
distorted. Nevertheless, we use the CRBM only in the extended
priming protocol although its local context is not distorted.

6.5.1. Priming results
Fig. 13 illustrates the priming results of four different models

at two missing rates on MagTag5K in terms of four evaluation
criteria defined in Section 6.1.3. As expected, it is observed from
Fig. 13 that the use of incomplete local context results in the
degraded performance for our model due to information loss. In
comparison to the results with the complete local context, the
performance of Siamese-CE shown in Fig. 13 is lower than those
shown in Fig. 5(a) and (b) by 0% and 4% in MAP as well as 1%
and 7% in AUC at two missing rates, respectively. In particular, the
incomplete local context generally causes the performance at high
recall levels to be degraded more than that at low recall levels.
In contrast, two PTMs, LDA and PLSA, show robust performance
in resisting noisy data as their performance on the incomplete
documents is comparable to that of the corresponding complete
version. Nevertheless, our model still outperforms other models
with the statistical significance (p-value < 0.01, Student’s t-test)
as seen in Fig. 13.

Fig. 14 shows the priming results of four different models at
two missing rates on CAL500 in terms of four evaluation criteria.
On this dataset, all the models exhibit almost the same behavior
as they work on MagTag5K in the presence of incomplete local
context. In comparison to the results with the complete local
context, the performance of Siamese-CE on this dataset is reduced
by 2% and 7% in MAP as well as 2% and 8% in AUC at two missing
rates, respectively. Unlike the behavior on MagTag5K, however, it
is observed from Fig. 15 that the performance of Siamese-CE at
high recall levels does not decrease sharply. Although LDA and
PLSA yield the robust performance, our model still generates the
statistically significant (p-value < 0.01, Student’s t-test) better
performance than all other models including LDA and PLSA in this
experimental setting, as is evident in Fig. 15.

Fig. 15 shows the priming results of four differentmodels at two
missing rates on Corel5K in terms of four evaluation criteria. It is
observed fromFig. 15 that ourmodel exhibits the better robustness
in the presence of incomplete local context. On this dataset, the
performance of Siamese-CE is only reduced by 0% and 2% in MAP
as well as 0% and 4% in AUC at two missing rates, respectively, in
comparison to thosewith complete local context shown in Fig. 7(a)
and (b). Recall that on average there are only 3.5 labels in this
dataset. By dropping up to 30% terms per document, on average,
there are less than two labels per document to form local context.
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Fig. 13. Priming accuracy of different models on MagTag5K at two missing rates. (a–b) Up to 10%. (c–d) Between 10% and 30%.
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Fig. 14. Priming accuracy of different models on CAL500 at two missing rates. (a–b) Up to 10%. (c–d) Between 10% and 30%.
Thus, our model leads to favorable results on this dataset. Once
again, our model yields the statistically significant (p-value <
0.01, Student’s t-test) better performance than other models on
Corel5K, as is evident in Fig. 15.

6.5.2. Extended priming results
Fig. 16 illustrates the extended priming results of nine different

models at two missing rates on MagTag5K in terms of four
evaluation criteria defined in Section 6.1.3. It is observed from
Figs. 13 and 16 that the behavior of our model generally remains
consistent in two different priming protocols; the performance
gradually decreases as the missing rate increases and a higher
missing rate causes Siamese-CE to have a sharper performance
reduction at high recall levels. With the incomplete local context,
the performance of Siamese-CE is reduced by 4% and 1% in MAP
as well as 2% and 6% in AUC at two missing rates, respectively,
in comparison to those with complete local context. It is also
observed from Fig. 16 that unlike ourmodel, othermodels perform
irregularly, e.g., the performance at a higher missing rate is even
better than that at a lower missing rate. Overall, their performance
is still significantly inferior to ours.

Fig. 17 shows the extended priming results of nine different
models at two missing rates on CAL500 in terms of four
evaluation criteria. We observe that on this dataset, all the models
including ours behave similarly in comparison to their behavior on
MagTag5K; all othermodels behave irregularly at differentmissing
rates while the performance of our model gradually decreases as
the missing rate increases. With the incomplete local context, the
performance of Siamese-CE is reduced by 1% and 4% in MAP as
well as 2% and 5% in AUC at two missing rates, respectively, in
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Fig. 15. Priming accuracy of different models on Corel5K at two missing rates. (a–b) Up to 10%. (c–d) Between 10% and 30%.
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Fig. 16. Extended priming accuracy of different models on MagTag5K at two missing rates. (a–b) Up to 10%. (c–d) Between 10% and 30%.
comparison to those with the complete local context. Thanks to
the use of the complete local context, i.e., the document ID, CRBM
performs well at all two missing rates although it is still inferior
to ours overall. Despite the performance reduction, our model still
outperforms all other models on this dataset and, in particular, can
prime a few top related terms correctly, as is evident in Fig. 17.

Fig. 18 illustrates the extended priming results of nine different
models at twomissing rates on Corel5K in terms of four evaluation
criteria. Unlike its behavior on two music datasets, our model
performs much better; the performance of Siamese-CE is only
reduced by 1% in MAP as well as 1% and 4% in AUC at two missing
rates, respectively, in comparison to those with the complete local
context. On this dataset, our model also behaves consistently in
two different priming protocols as shown in Figs. 15 and 18. In
contrast, all other models have the same behavior as they exhibit
on two music datasets. In general, our model still outperforms
othermodels at all twomissing rates in terms of all four evaluation
criteria.

In summary, the experimental results in the presence of
incomplete local context suggest that our model performs
reasonably well despite the performance reduction as expected
and generally outperforms all other models on three different
datasets in both the priming and the extended priming protocols.
In contrast, other models perform irregularly at different missing
rates. It is well known that accompany terms in a document may
not convey equal amount information. Dropping a term randomly
may exert different impacts on its local context. On one hand, it
may incur huge information loss and concept change if the term is
very informative. On the other hand, it could make little impact if
the term is redundant. In general, removing terms randomly from
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Fig. 17. Extended priming accuracy of different models on CAL500 at two missing rates. (a–b) Up to 10%. (c–d) Between 10% and 30%.
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Fig. 18. Extended priming accuracy of different models on Corel5K at two missing rates. (a–b) Up to 10%. (c–d) Between 10% and 30%.
a document may even cause the loss in coherence of co-occurring
terms in an incomplete document. Perhaps this setting might be
responsible for irregular yet unstable behavior of othermodels and
ours on a number of occasions, e.g., on CAL500.

6.6. Out of vocabulary results

With the experimental setting described in Section 6.2.4, we
report the OOV experimental results on the reserved OOV set in
MagTag5K and the real documents OOV sets in MSD, LabelMe and
SUNDatabase in terms of two priming protocols. We use CE(τoov)
and Siamese-CE(τoov) to indicate the representations achieved
by the feature-based OOV method, i.e., priming related terms
using query concept projection CE (τoov|δiv), and CE(Avg) and
Siamese-CE(Avg) to denote the representations achieved by the
concept-based method, i.e., priming related terms using query
concept projection, CE (x (τoov, δiv)) (cf. Section 4.4).

Fig. 19 illustrates the priming results of two OOV methods on
four different datasets in terms of four evaluation criteria defined
in Section 6.1.3. It is evident from Fig. 19 that two proposed
OOV methods yield favorable results on different datasets, and
CE(Avg) and Siamese-CE(Avg) significantly outperform CE(τoov)
and Siamese-CE(τoov) constantly on all four datasets. In particular,
the performance of CE(Avg) and Siamese-CE(Avg) on the OOV set
is roughly comparable to the performance of CE and Siamese-CE
on the test subset of MagTag5K, as is evident in Figs. 5(c), (d), 19(a)
and (b). For the feature-based method, Siamese-CE(τoov) performs
considerably better than CE(τoov) on all four datasets thanks to
the distance learning undertaken by our Siamese architecture.
However, the performance of CE(Avg) is marginally higher than



90 U. Sandouk, K. Chen / Neural Networks 76 (2016) 65–96
100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

Fig. 19. Priming accuracy of two OOV methods on different datasets. (a–b) MagTag5K. (c–d) MSD. (e–f) LabelMe. (g–h) SUNDatabase.
that of Siamese-CE(Avg) on all four datasets. It implies that a
subnetwork trained for the prediction has embedded the related
concepts conveyed in a document reasonably well so that their
centroid in the CE space can be used to approximately embed
a related OOV term that shares the same local context. On the
other hand, the distance learning undertaken by the Siamese
architecture is dedicated to the accurate concept embedding
concerning only in-vocabulary terms based on training data. Based
on the experimental results shown in Fig. 19, we couldmake better
use of CE and Siamese-CE; we use CE to represent OOV terms
while Siamese-CE is used only for in-vocabulary terms. Here, we
emphasize that our proposed OOV methods directly generate the
sameCE representation for anOOV termas that of an in-vocabulary
term. For any applications that employ our learnt semantics, there
is no additional processing required for OOV terms. In other words,
both in-vocabulary and OOV terms can be represented uniformly
in the CE space.

In summary, the experimental results reported in Sections 6.3–
6.6 provide solid evidence to support our problem formulation and
the proposed solution as our approach significantly outperforms
other state-of-the-art semantic learning methods. In semantic
priming, our approach exhibits its strength in capturing accurate
semantics from training corpora and, more importantly, the
capability of generalizing the semantics to unseen documents in
different situations, noisy documents (resulting in incomplete local
context) and documents containing OOV terms. Thus, we believe
that our approach is ready for different MMIR applications.

7. Discussion

In this section, we discuss several issues arising from our work
and relate our approach to previous work in learning semantics
from descriptive terms.

To learn semantics from descriptive terms, most of existing
techniques often undergo a preprocessing stage by filtering out
rarely used terms from those documents concerned (Law et al.,
2010; Mandel et al., 2011). Our observations suggest that some
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rarely used terms may play a critical role in local context to
facilitate understanding the accurate meaning of a specific term.
Therefore, our approach always uses all the natural documents
without removing any rarely used terms in our training and test.
On the other hand, we realize that the frequently used terms may
convey commonly used semantics and hence need to be handled
differently from rarely used terms. Technically, this could be done
in a semantic representation space by using the frequency of terms
to normalize the distance between different terms. As this is an
issue relating to a specific application, this potential solution needs
to be investigated when our approach is applied to a specific task.

In our approach, a novel Siamese architecture and its two-
stage learning procedure are proposed especially for learning the
concept embedding (CE) from co-occurring terms. As a result, two
CE representations, CE and Siamese-CE, could be obtained in the
first and the second learning stages, respectively; i.e., CE learnt
from the prediction task and Siamese-CE generated by working on
the distance learning and the prediction task simultaneously. From
the experimental results in semantic priming, we observe that
Siamese-CE outperforms CE whenever there are sufficient training
data reflecting different concepts conveyed in descriptive terms
and various intended term usage patterns, while CE may perform
slightly better than Siamese-CE for unseen documents in different
corpora if the training data do not complywith the aforementioned
conditions, e.g., training on MagTag5K, a small music annotation
dataset, and test on MSD, a huge and highly diversified music
annotation dataset. As the distance learning for Siamese-CE is
dedicated to accurate concept embedding based on information
carried in training documents, the lack of sufficient information on
various concepts and intended usage patterns in training data is
responsible for this problem. In contrast, CE does not involve in the
refinement via distance learning and hence does not overfit those
limited concepts and intended usage patterns in MagTag5K, which
leads to the better generalization onMSD. In general, we argue that
our Siamese architecture should be applied in generating the CE
representations if it can be trained on a highly informative dataset,
e.g., MSD in the music domain, and the computational efficiency
issues arising from our raw representations can be addressed
properly as discussed next.

Apparently, our proposed approach relies on the Siamese ar-
chitecture of deep neural networks to learn complex contextual-
ized semantics from descriptive terms. In general, training a deep
neural network involves the non-convex optimization and tedious
hyper-parameter tuning. Our proposed approach is inevitably sub-
ject to this limitation. Furthermore, we employ the tfidf represen-
tation to characterize a term (used as a part of input to the deep
neural network) and the BoW to represent the coherent terms
in a training document (as ‘‘target’’ to learn the prediction). Both
representations have the same number of features, equal to the
size of the term vocabulary in a training dataset. For a large term
vocabulary in a dataset, e.g., Million Song Dataset (MSD), our ap-
proach suffers from a heavy computational burden, which pro-
hibits us from training our Siamese architecture on a dataset like
MSD with our current computational facility. In general, a parsi-
monious representation of a large word vocabulary is demanded
by various natural language processing tasks and has been studied
previously. The potential solutions include applying a dimension-
ality reduction technique, e.g., PCA or compressed sensing (Hsu,
Kakade, Langford, & Zhang, 2009), to the representation and trans-
forming the high-dimensional binary BoW representation into a
low-dimensional continuous yet compressed representation (Hsu
et al., 2009). While the potential solutions still need to be investi-
gated, we anticipate that such techniques would effectively reduce
the computational burden in our approach.

For our proposed Siamese architecture, there are several salient
characteristics that distinguish our architecture from most of
existing Siamese architectures. First of all, most of existing Siamese
architectures are developed to learn a distance metric only in
the representation space (Bordes, Weston, Collobert, & Bengio,
2011; Bromley et al., 1993; Chopra, Hadsell, & LeCun, 2005).
Unlike those architectures that learn a single task, ours not only
learns a distance metric in the CE space but also simultaneously
establishes a predictor that infers the coherent terms from an
instance consisting of the raw representations of a focused term
and its local context. Next, the existing Siamese architectures
are generally trained via supervised learning. In contrast, ours is
trained in two stages via unsupervised learning. Finally, ours is
also different from those regularized Siamese architectures (Chen
& Salman, 2011; Salakhutdinov & Hinton, 2007). Such regularized
variants employ an auto-encoder as its subnetwork in order to
minimize information loss so as to achieve better generalization,
while ours learns two relevant yet different tasks, prediction
and distance metric learning, simultaneously. In addition, those
regularized Siamese architectures are still trained via supervised
learning. Apart from those salient characteristics, we believe that
our proposed Siamese architecture and learning algorithms can
be easily extended to other types of contextualized semantic
learning from descriptive terms by means of alternative context
information instead of our used local context, i.e., co-occurring
terms in an annotation document, defined in this paper.

In this paper, we have formulated a contextualized semantic
learning task from collections of textual descriptive terms inde-
pendent of any specific MMIR application tasks. We believe that
a solution to this problem would facilitate bridging the seman-
tic gap between media content and relevant high-level concepts.
Our work presented in this paper is different from the previous
studies phrased with term ‘‘contextual’’ in this area. For exam-
ple, the ‘‘contextual object recognition’’ (Rasiwasia & Vasconcelos,
2012) actually refers to a method of exploiting the relatedness of
object labels achieved from training an object recognizer (a multi-
class classifier) to improve the performance by using such in-
formation as context to train another classifier. That ‘‘context’’
achieved directly from media content for a specific application
task is by no means relevant to our contextualized semantic learn-
ing task and the proposed solution. In addition, the ‘‘contextual
tag inference’’ (Mandel et al., 2011) is an approach that exploits
descriptive terms in order to produce a smoothed representa-
tion for documents with CRBM. The smoothed representation is a
document-level summary of the document-term relatedness to
improve the term-based auto-annotation performance via provid-
ing smoothed target labels instead of binary ones. This smoothed
representation acts as a novel document-level representation but
does not capture the term-to-term relatedness explicitly. In other
words, this method does not provide an explicit continuous em-
bedding representation for a term. Technically, this approach is
subject to limitation in generalization as the learnt representa-
tion is merely applicable to the training documents due to the
context characterized by the document ID. Although this limita-
tion might be overcome by using some alternative contextual in-
formation, this method is still not a legitimate solution to our
formulated problem due to the lack of continuous embedding rep-
resentation. In nature, the work closest to ours is the ‘‘Associ-
ation Rules’’ (Agrawal, Imieliński, & Swami, 1993) that lead to
contextualized semantic representations on a conceptual level
(Yang, Huang, Shen, & Zhou, 2010). Unlike the local context used
in our approach, different rules may apply different contextual in-
formation for concept modeling, which could result in inconsis-
tency due to the intricate contextual information. Furthermore,
the mined rules can provide binary concept-to-concept related-
ness only, which confines itself to a limited range of applications.

In general, the solution presented in this paper leads tomultiple
continuous CE representations for a descriptive termdepending on
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the local context. In essence, one CE representation of a term tends
to accurately model a concept intended by annotators. Moreover,
the CE representation space and the learnt semantic distance met-
ric allow similar concepts to associate with each other and make
different concepts readily distinguished. As a result, our CE repre-
sentation scheme significantly distinguishes from other semantic
representations learnt fromdescriptive terms.Without taking con-
textual information into account, the learnt semantic representa-
tion reflects only the global term-to-term relatedness and hence
each term has a unique representation (Deerwester et al., 1990;
Markines et al., 2009). In the existing work in addressing contex-
tualized semantics, most of those methods, e.g., smoothing (Man-
del et al., 2011) and probabilistic topic models, LDA (Blei et al.,
2003) and PLSA (Hofmann, 1999), offer only a document-level rep-
resentationbut donot address the contextualized term-to-term re-
latedness issue directly. It is well known that several documents
may together specify a single concept, while one document may
convey multiple concepts. Therefore, a concept-level representa-
tion is always required even though an application works on the
level of documents relatedness. Here, we emphasize that for a
document of m terms, we employ all m concept-level representa-
tions arising from this document collectively to form a document-
level representation and the learnt semantic distancemetric by our
Siamese architecture can easily adapt tomeasuring the document-
to-document relatedness as demonstrated in the extended seman-
tic priming.

Finally, it is worth mentioning that there are alternative
methods for solving our formulated problem. Most of those
methods fall into the ontology area and rely on human expertise
such as ‘‘tag ontologies’’ (Kim et al., 2008; Wang et al., 2010) and
‘‘property lists’’ semantics (Sun, Kim, Kohli, & Savarese, 2013).
On the one hand, experts’ specialist knowledge regarding terms
and their inter-relatedness is harvested so that a system can use
such semantics to perform human-like tasks. On the other hand,
such acquisition of semantics has to be handcrafted and time-
consuming, which is laborious and hence incurs a huge cost.
Moreover, the acquired semantics may result in experts’ bias,
and the subjective opinion differences may even cause conflicting
semantics. In contrast, our approach presented in this paper lends
clear evidence to favor learning semantics from descriptive terms
as our approach is much less costly and can automatically capture
concepts underlying terms in context by following trends of the
crowd in meaning.

8. Conclusion

Wehave presented an approach to acquiring contextualized se-
mantics from co-occurring descriptive terms. In our approach, we
have formulated the problem as learning a contextualized term-
based semantic representation via concept embedding in the rep-
resentation space. As a result, we have proposed a solution by
developing a novel Siamese architecture of deep neural networks
and a two-stage learning algorithm. We have also addressed the
OOV issues in our solution. By means of visualization, we have
demonstrated that our approach can capture domain-specific and
transferable contextualized semantics conveyed in co-occurring
terms. Moreover, we have applied our approach to semantic prim-
ing, a benchmark information retrieval task. We have conducted
a thorough evaluation via a comparative study with different set-
tings. Experimental results suggest that our approach outperforms
a number of state-of-the-art approaches and the effectiveness of
our proposed OOV methods in this benchmark task.

While our proposed Siamese architecture and learning algo-
rithms provide a solution to the formulated problem, there are
still several issues to be tackled including the computational ef-
ficiency in using a training corpus of a large term vocabulary; ex-
ploring alternative contextual information sources and modeling
techniques; and extension of our Siamese architecture to learn-
ing other types of contextualized semantics other than the lo-
cal context defined in this paper. In our ongoing work, we shall
be dealing with the aforementioned issues and applying the
learnt contextualized semantic representations to a number of real
MMIR applications, e.g., auto-annotation of multimedia content,
term/media content recommendation and query expansion, mul-
timedia retrieval with textual queries as well as zero-shot learning
in various multimedia classification tasks. We anticipate that the
formulated problem and our solution presented in this paper
would pave a new way towards bridging the semantic gap.
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Appendix

In this appendix,we derive the learning algorithms used to train
our proposed architecture. To minimize the loss functions defined
for the prediction and the distance metric learning described in
Section 4 of the main text, we use the stochastic back propagation
(SBP) algorithm for parameter estimation. To establish a deep
subnetwork, the pre-training is carried out in a greedy layer-
wise fashion with each layer’s weights obtained via training a
sparse autoencoder with a Quasi-Newton method as described
in Appendix A.1. In Appendices A.2 and A.3, we present the
derivation of gradients of loss functions with respect to relevant
parameters used to train a subnetwork for the prediction and to
train the Siamese architecture for the distance metric learning,
respectively. Finally, we summarize the SBP algorithm that can be
used in training one subnetwork for the prediction and the Siamese
architecture for the distance learning.

A.1. Sparse auto-encoder learning

A sparse autoencoder can be used to initialize weights
of a deep neural network by reconstructing the input via a
single hidden and preferably sparse layer (Ranzato, Boureau, &
LeCun, 2007). In our experiments, the sparse autoencoder was
trained using batch training using the Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) method, a variant of Quasi-
Newton method in the popular implementation of minFunc
(Schmidt, 2005).

Let x be an input vector. The hidden layer’s activations are

z1 (x) = f (W1x + b1) ,

and the corresponding output layer’s activations are

x̃(x) = f (W2z1(x) + b2) ,

where W1, b1, W2 and b2 are encoding weights and biases and
decoding weights and biases, respectively. f (x) =

ex−e−x

ex+e−x is the
hyperbolic tangent function used in our experiments.

Encouraging sparsity is carried out via a regularizer to the cost
which consists of penalizing the magnitude of the hidden layer’s
output regardless of the sign:

R =

Q
q=1


(z1 (x) [q])2 + ϵ,

where Q is the number of units in the hidden layer.



U. Sandouk, K. Chen / Neural Networks 76 (2016) 65–96 93
The objective of the training is minimizing the following loss
averaged over all the examples:

LA (X; Θ) =

K
k=1

x̃ (xk) − xk
2
2

+ α

K
k=1


Q

q=1


(z1 (x) [q])2 + ϵ


.

Hence, we achieve ∂LA(X;Θ)

∂ x̃(x) = 2
x̃ (x) − x


1 and ∂R

∂z1(x)
=

z1(x)√
(z1(x))2+ϵ

.

Let∇f (x) be the gradient of the hyperbolic function given input
x. We have

∇f (x) =
∂f (x)

∂x
= ∇tanh (x) = 1 − (tanh (x))2 .

Given a training dataset X of K examples, we apply the chain rule in
order to obtain the derivatives with respect to a specific parameter
as follows:

∂LA (X; Θ)

∂W2
=

K
k=1

∂LA (X; Θ)

∂ x̃ (xk)
·
∂ x̃ (xk)
∂W2

= 2
K

k=1


x̃ (xk) − xk


· ∇f (W2z1(xk)

+ b2) · z1

xk
 

∂LA (X; Θ)

∂b2
=

K
k=1

∂LA (X; Θ)

∂ x̃ (xk)
·
∂ x̃ (xk)
∂b2

= 2
K

k=1


x̃ (xk) − xk


· ∇f (W2z1 (xk) + b2)


∂LA (X; Θ)

∂W1

=

K
k=1

∂LA (X; Θ)

∂ x̃ (xk)
·

∂ x̃ (xk)
∂z1 (xk)

·
∂z1 (xk)
∂W 1

+ α
∂R

∂z1 (xk)
·
∂z1 (xk)
∂W 1

= 2
K

k=1


x̃ (xk) − xk


· ∇f (W2z1 (xk)

+ b2) · W2 · ∇f (W1xk + b1) · xk)

+ α

K
k=1


z1 (xk)

(z1 (xk))2 + ϵ
· ∇f (W1xk + b1) · xk


∂LA (X; Θ)

∂b1

=

K
k=1

∂LA (X; Θ)

∂ x̃ (xk)
·

∂ x̃ (xk)
∂z1 (xk)

·
∂z1 (xk)

∂b1

+ α
∂R

∂z1 (xk)
·
∂z1 (xk)

∂b1

= 2
K

k=1


x̃ (xk) − xk


· ∇f (W2z1(xk)

+ b2) · W2 · ∇f (W1xk + b1))

+ α

K
k=1


z1 (xk)

(z1 (xk))2 + ϵ
· ∇f (W1xk + b1)


. (A.1)

The sparse auto-encoder is employed to initialize a subnetwork
recursively where each layer is trained based on the output of its
previous layer until a specified number of layers are achieved.
A.2. Subnetwork learning for prediction

As defined in Eq. (4) of the main text, the prediction loss is

LP (X; Θ) = −
1

2K |Γ |

K
k=1

LP (xk; Θ) ,

where LP (xk; Θ) =
|Γ |

i=1


κk (1 + yk [i]) log


1 + ŷk [i]


+

(1 − κk) (1 − yk [i]) log

1 − ŷk [i]


.

Here, ŷk [i] and yk [i] represent the prediction and the true label
related to term i in example k, respectively. By applying the chain
rule, we have

∂LP (X; Θ)

∂x
=

1
K

K
k=1


∂LP (xk; Θ)

∂ ŷk
·
∂ ŷk
x


,

where ŷk is the output vector of prediction, a collective notation of
all ŷk [i], also operator is the element wise multiplication. We have

∂LP (xk; Θ)

∂ ŷk
=

−1
2 |Γ |

|Γ |
i=1


κk

1 + yk [i]
1 + ŷk [i]

·
∂ ŷk [i]
∂ ŷk

− (1 − κk)
1 − yk [i]
1 − ŷk [i]

·
∂ ŷk [i]
∂ ŷk


=

−1
2 |Γ |


κk

1 + yk
1 + ŷk

− (1 − κk)
1 − yk
1 − ŷk


,

where 1+y
1+ŷ and 1−y

1−ŷ are the collective notations of 1+yk[i]
1+ŷk[i]

and 1−yk[i]
1−ŷk[i]

with the element-wise division.
Let ∂LP (X;Θ)

∂ Ŷ
be the matrix formed by stacking all training

∂LP (xk ;Θ)

∂ ŷk
and zH−1 (X) be the matrix formed by stacking all

zH−1 (xk). Back propagation starts at the top layer with the partial
of the cost on the last layer’s parameters (weights and biases),
∂LP (X;Θ)

∂WH
and ∂LP (X;Θ)

∂bH
given by

∂LP (X; Θ)

∂WH
=

1
K

K
k=1


∂LP (xk; Θ)

∂ ŷk
· ∇f (WHzH−1(xk)

+ bH) ·
∂ (WH × zH−1(xk) + bH)

WH


=

1
K


∂LP (X; Θ)

∂ Ŷ
· ∇f (WHzH−1 (X)

+ bH)


∗ (zH−1 (X))T ,

∂LP (X; Θ)

∂bH

=
1
K

K
k=1


∂LP (xk; Θ)

∂ ŷk
· ∇f (WHzH−1 (xk) + bH)


=

1
K


∂LP (X; Θ)

∂ Ŷ
· ∇f (WHzH−1 (X) + bH)


, (A.2)

where ∗ is the matrix multiplication.
Derivatives with respect to all the parameters, Wh and bh, of

hidden layer h = (H − 1, . . . , 1) are obtained by the successive
use of the chain rule for error back-propagation:
∂LP (X; Θ)

∂Wh

=
∂LP(X; Θ)

∂(Whzh−1(X) + bh)  
ζh

·
∂ (Whzh−1 (X) + bh)

∂Wh
,

ζh = ζh+1 ·
∂ (Wh+1zh (X) + bh+1)

∂zh (X)
·

∂zh (X)

∂ (Whzh−1 (X) + bh)
= Wh+1 ∗ (ζh+1 · ∇f (Whzh−1 (X) + bh)) ,
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∂ (Whzh−1 (X) + bh)

∂Wh
= zh−1 (X) ,

∂LP (X; Θ)

∂bh

=
∂LP (X; Θ)

∂(Whzh−1 (X) + bh)
·
∂ (Whzh−1 (X) + bh)

∂bh
= ζh. (A.3)

A.3. Siamese architecture learning

As defined in Eq. (7) of the main text, the Siamese loss is

LS

X (1), X (2)

; Θ


=
1
K

K
k=1


I1 (E − β (1 − S))2

+ I2ρ (E − β (1 − S))2 + I3 (E − β)2 S

.

Here E = E

x(1)
k , x(2)

k


is the Euclidean distance between

the embedding vectors of pairs of input examples and S =

e−
λ
2 KL


x(1)k ,x(2)k


the target distance is based on contexts similarity

following KL

x(1), x(2)


=
|Φ|

c=1


l(1) [c] − l(2) [c]


log


l(1)[c]
l(2)[c]


where |Φ| features in the context representation and l(i) [c]
represents the cth feature value in the context input provided for
subnetworknumber i. Note thatβ (1 − S) is a constant irrespective
of the weights and biases. Moreover, this loss is also unaffected
by any weights connected between the CE (i.e., hidden layer

H − 1) and the prediction layers. Thus,
∂LS


X(1),X(2);Θ


∂WH

= 0 and
∂LS


X(1),X(2);Θ


∂bH

= 0.
As two subnetworks always need to be kept identical, all

the parameters in each subnetwork are updated by using the
averaging derivatives obtained based two subnetworks after each
back propagating iteration. As there is no interaction between the
two subnetworks apart from the CE layers, we can write

∂LS


x(1)
k , x(2)

k ; Θ


∂Θ

=
1
2

∂LS


x(1)
k , x(2)

k ; Θ


∂CE


x(1)
k

 ·

∂CE

x(1)
k


∂Θ

+

∂LS


x(1)
k , x(2)

k ; Θ


∂CE


x(2)
k

 ·

∂CE

x(2)
k


∂Θ

 .

As the loss is symmetric in terms of the embedding vectors, the
derivatives have a uniform form for subnetworks i = 1, 2:

∂LS

X (1), X (2); Θ


∂CE


X (i)
 =

1
K

K
k=1

∂LS


x(1)
k , x(2)

k ; Θ


∂CE


x(i)
k


∂LS


x(1)
k , x(2)

k ; Θ


∂CE


x(i)
k

 = 2 (I1 (E − β (1 − S))

+ ρI2 (E − β (1 − S))

+ I3 ((E − β) S)) ·

∂E

x(1)
k , x(2)

k


∂CE


x(i)
k

 .

Focusing on
∂E

x(1)k ,x(2)k


∂CE


x(i)k

 , we have

∂E

x(1)
k , x(2)

k


∂CE


x(i)
k

 =

CE x(1)
k


− CE


x(2)
k


1

E

x(1)
k , x(2)

k

 ; E

x(1)
k , x(2)

k


=

CE x(1)
k


− CE


x(2)
k


2
.

Effectively, we can now estimate the partial derivatives for the
embedding layer’s weights and biases regarding subnetworks i =

1, 2:

∂LS

X (1), X (2); Θ


∂W (i)

H−1

=
1
K

K
k=1

∂LS


x(1)
k , x(2)

k ; Θ


∂CE


x(i)
k

 ·

∂CE

x(i)
k


∂W (i)

H−1

=
1
K

K
k=1

∂LS


x(1)
k , x(2)

k ; Θ


∂CE


x(i)
k

 · ∇f

WH−1zH−2


x(i)
k



+ bH−1

 ·

∂

WH−1zH−2


x(i)
k


+ bH−1


∂WH−1

=
1
K

∂LS


x(1)
k , x(2)

k ; Θ


∂CE


x(i)
k

 · ∇f

WH−1zH−2


x(i)
k



+ bH−1

 ∗


zH−2


x(i)
k

T
,

∂LS

X (1), X (2); Θ


∂b(i)

H−1

=
1
K

K
k=1

∂LS


x(1)
k , x(2)

k ; Θ


∂CE


x(i)
k


· ∇f


WH−1zH−2


x(i)
k


+ bH−1

 . (A.4)

The rest of the derivatives are obtained by back propagating the
cost in the same fashion as presented in Eq. (A.3).

A.4. Stochastic gradient descent procedure

Here, we present a generic stochastic gradient descent (SGD)
procedure applicable to training a subnetwork for the prediction
and the Siamese architecture with the derivatives in Eqs. (A.2)–
(A.4). Given a training dataset (X, Y ) where X is the set of input
instances consisting of tfidf and context features and Y is the set
of corresponding documents represented in the BoW, the SGD
procedure is summarized as follows:

It is worth clarifying that the stopping condition in the SGD
is generic and applicable to any applications. However, we used
a specific stopping condition in our experiments as described in
Section 5.2.
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