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ABSTRACT Much interest has recently been drawn to brain age prediction due to the significant
development in machine learning and image processing techniques. Studies based on brain magnetic
resonance images showed a strong relationship between the brain ageing process and accelerated brain
atrophy, suggesting using brain age prediction models for early diagnosis of neurodegenerative disorders,
such as Parkinson’s, Schizophrenia, and Alzheimer’s disease. However, data availability, acquisition
protocols diversity and models’ computational complexity remain limiting factors for clinical adoption. This
study proposes a low-complexity convolutional neural network (CNN) model that tackles these challenges,
focusing on three main aspects: performance accuracy, computational complexity, and adaptability to new,
external datasets. We developed a brain-age prediction system using a minimally preprocessed T1-weighted
MRI images with a multi-site dataset of healthy individuals covering the whole human lifespan (2251
subjects, age range 6-90 years). We proposed a lighter version of the Simple Fully Convolutional Network
(SFCN) that contain only 1.2 million parameters. Computational load was further reduced by cropping the
brain images. Finally, we employed transfer learning approach to achieve domain adaptation to external,
unseen sites. We demonstrated that leveraging the cropped brain images reduced the computational time
for training by 50%, maintaining a comparable accuracy to using the entire brain. The model achieved a
Mean Absolute Error (MAE) of 3.557 for the full brain and 4.139 for the cropped images with a Pearson
correlation r = 0.988 between the full and cropped brain predictions when evaluated on the same test set.
Domain adaptation of our model to new external data showed a significant improvement in the prediction
performance, reducing MAE from 7.219 to 4.750 for full brain images and from 12.107 to 5.770 for
the cropped images. This study is the first to demonstrate comparable prediction accuracy using only a
small segment of a 3D full brain MRI scan. Our results show that it is feasible to build lightweight CNN
models trained on small-scale, heterogeneous datasets and fine-tuned to new external clinical data, making
significant steps toward practical clinical application.

INDEX TERMS Biological age estimation, brain imaging, brain ageing, convolutional neural network, deep
learning, magnetic resonance imaging.

I. INTRODUCTION

Brain ageing produces a functional decline and a prob-
ability of developing neurodegenerative illnesses such as
Alzheimer’s disease (AD) [1]. Although the brain ageing
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process generally involves autophagy to prevent brain
atrophy, the efficiency of autophagy differs significantly
from one individual to another. This variation factor may
contribute to the different ages at which people develop age-
related diseases. These relate to lifestyle, health condition,
and environment [2]. Human chronological age is defined
as the age of a person from the date of their birth, while
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the biological age is determined by the effect of neural
development events involving progressive and regressive
processes in the brain [3].

A reliable measure of the difference between chronological
and biological age could strongly indicate future health risks
and diseases. The possibility of problems related to cognitive
ageing and diseases could be identified by how much a
person’s brain diverges from average healthy brain ageing tra-
jectories. Age estimation has been approached using various
media and methods in the past, each leveraging different types
of data and techniques such as facial images [4] and DNA
methylation [5]. However, brain age prediction based on
Magnetic Resonance Images (MRI) has recently become the
most popular method due to the limitations of non-imaging
approaches as they tend to indicate the whole body rather
than the ageing of individual organs, which is not always
accurate [6].

With the considerable development of machine learning
(ML) and deep learning, many studies have been carried out
on brain datasets using structural or functional data. Despite
the various methods, many challenges remain for more
reliable and robust brain age prediction systems. Shallow
learning techniques such as Support Vector Machines (SVM),
Relevance Vector Regression (RVR), and Gaussian Process
Regression (GPR) have been heavily implemented in the
neuroscience age prediction field [7], [8], [9]. However,
despite their good performance, the necessity of performing
feature extraction cannot be avoided.

Feature extraction processes can be time-consuming
and require deep domain knowledge. Additionally, they
can introduce subjectivity and may sometimes affect the
generalisation ability of models. The model performance
significantly depends on the quality of the manually extracted
features [10]. Such problems are overcome by how neural
networks and deep learning methods approach statistical
modelling in neuroimaging. The advancement in computer
infrastructures has allowed the use of sufficiently large
imaging data in their raw, minimally preprocessed form.
Convolutional Neural Networks (CNNs) achieved high
performance for computer vision tasks such as classification
and segmentation. They are widely utilised to predict brain
age based on MR images either using two- [11], [12]
or three-dimensional [13], [14] CNN backbones. Though
more computationally expensive, the latter can incorporate
information between MRI slices.

Despite the success of these methods, clinical adoption
faces several significant challenges. Various acquisition
protocols, scanner types, and demographic differences in
the training data are crucial factors that impact model
performance. Current state-of-the-art frameworks often rely
on large datasets that are either not publicly available or
encompass a narrow age range, failing to cover the entire
lifespan. Another critical challenge is the computational
complexity and training time of these models; training on
large MRI datasets can take considerable time, sometimes
extending to days or even weeks. While methods such as
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dimensionality reduction and optimised architectures can
improve efficiency, they may also compromise accuracy.
Therefore, it is essential to find a balance between efficiency
and accuracy. Furthermore, distributional differences due to
variabilities in acquisition protocols and image resolution
limit the clinical applicability of ML models. Models trained
on one dataset may not perform well when applied to the
same task in a different environment, especially when the
distribution of the new external test data differs from that of
the training data [15]. Therefore, there is a need for high-
performance, reliable models trained with easily obtainable,
representative data that can perform well across different
domains.

This study aims to provide a robust age prediction system
that addresses the aforementioned challenges limiting the
clinical application of current algorithms: (1) Develop a
low-complexity CNN model trained on publicly available
datasets acquired from various sources, covering almost the
entire human lifespan. (2) Utilise MR image size reduction
to enhance training time efficiency without compromising
performance accuracy. (3) Investigate the adaptability of the
model to data from external, unseen sites by employing a
transfer learning approach.

The remainder of this work is organised as follows: Sec-
tions II, Il and I'V present the dataset, proposed approach, and
experimental results respectively, and Section V discusses the
outcomes and states final remarks.

Il. MATERIALS AND DATASET

A. COMPREHENSIVE MULTISITE DATASET

The neuroimaging dataset collected in this study com-
prises T1-weighted MRI scans of 2251 healthy subjects
(male/female = 1346/ 905, mean age = 32.96 + 24.29,
age range 6-90 years), stored in the NIFTI file format. These
images were compiled from various publicly accessible
neuroimaging databases and were acquired at 1.5T or 3T
using various types of scanner. All subjects included in
this study were free of major neurological or psychiatric
diagnoses. Hence, we assume that the chronological age
of the participants approximates their biological age, as no
clinical standard for biological age is available. Table 1
summarises the collected data, including the age and sex
of the participants. Due to data cleaning, the number of
samples per dataset is slightly less than in the original sources.
Images with missing information or inconsistent labeling
were excluded from the study. Fig. 1 shows the age range
distribution for each data site.

B. DATA AGE IMBALANCE

The data collected in this study is multi-site, resulting in
a significant imbalance in the distribution of participants’
ages and the number of MR images obtained from each
site. As illustrated in Fig.2, the majority of the samples
are concentrated in the younger age groups, with almost
half of the subjects lying in age ranges below 30 years.

6751



IEEE Access

F. Eltashani et al.: Brain Age Prediction Using a Lightweight Convolutional Neural Network

100

80+

60

wooe

40+

Age Distribution (Years)

20+

0 L

1]

1 1=

1 2 3 4

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Dataset Sources

FIGURE 1. Age range distribution of MRI samples collected from various dataset sources: source number 1 to

23 represent the dataset ABIDE, ABIDEII (BNI1), ABIDEII (EMC1), ABIDEI (ETH1), ABIDEII (GU1), ABIDEII (IP1), ABIDEII
(1U1), ABIDEII (KKI1), ABIDEII (NYU1), ABIDEII (OHSU1), ABIDEII (ONRC2), ABIDEII (SU2), ABIDEII (TCD1), ABIDEII
(MIA1), ABIDEII (UCD1), ABIDEII (UCLAT1), ABIDEII (USMT1), BeigingEn, Berlin, Clevend, IXI, ADNI and Train, respectively.
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FIGURE 2. Number of data in each age range. The dataset covers the
whole human lifespan with an average age of 30 years.

TABLE 1. Dataset information representing the number of samples, age
range, average age, and and male/female distribution.

Dataset Participants Age range  Mean Sex (M/F)
Berlin 49 20 — 60 31.00 24/25
Cleveland 31 24 — 60 43.55 11/20
Train 39 16 — 28 22.26 11/28
Beijing En. 180 17 — 28 21.22 73/107
ABIDE 554 6 — 56 16.91 458/96
ABIDE I 550 6 — 64 33.77 364/186
ADNI 270 70 — 90 79.38 132/138
IXI 562 20 — 86 48.64 250/312
Total 2251 6 —90 32.96 1346/905

This substantial imbalance in data distribution poses a
considerable challenge for predictive modeling, particularly
in regression models. An imbalanced dataset can easily lead
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to misleading performance metrics as MAE and R”> may
be overall acceptable but can hide poor performance on
underrepresented age groups. Additionally, the variability in
image sources, acquisition protocols, and scanner settings
across sites may result in a poorly generalised model.

To address the data imbalance issue, stratification tech-
niques were applied when partitioning the data into training,
validation, and testing sets. This ensures that each subset
accurately represents the original distribution, resulting in
a robust model that maintains high accuracy and reliability
throughout the entire spectrum of ages.

C. IMAGE PREPROCESSING

All acquired scans are preprocessed using the FMRIB Soft-
ware Library (FSL) [16]. The importance of preprocessing
is to have a common geometrically standardised coordinate
system so that the model learns the anatomical pattern of the
brain scans rather than focusing on other features, such as
non-brain tissues. First, a brain extraction is carried out to
remove all non-brain tissues. Then, an image registration step
aligns each brain image to the standard shape and pose of
the MNI152 average brain image. The MNI152 is a template
based on an average of 152 MRIs of healthy individuals
developed by the Montreal Neurological Institute [17].
Previous research showed that grey matter (GM) is a strong
indicator of brain ageing [18]. Unlike the white matter, the
GM volume declines linearly and constantly throughout the
ageing process [19]. Therefore, all 3D scans in this study are
segmented to extract their GM content. The resultant GM
scans are then padded or cropped to have a standard size of
91 x 109 x 91 voxels.
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lll. METHODOLOGY AND APPROACH

In this study, we address the primary challenges encountered
by brain age prediction algorithms, focusing on three main
aspects: performance accuracy, computational complexity,
and adaptability to new external datasets. We begin by
assessing the performance of our algorithm using full-sized
grey matter brain images. This initial evaluation serves to
establish a baseline against which we can measure the
impact of subsequent modifications. To enhance computa-
tional efficiency, we then modify the algorithm’s input to
process only regions of the brain images which include
the most informative regions by reducing the image size.
This step is designed to retain critical information while
minimising computational load. Finally, we validate the
performance of our models in both the full-sized and reduced-
image versions—on an external dataset. This is to test the
adaptability of our approach, ensuring its applicability in real-
world clinical settings.

A. PROPOSED CNN MODEL
A simple and low-complexity 3D Convolutional Neural
Network is developed for age prediction. The architecture
of the model is inspired by the Simple Fully Convolutional
Neural Network (SFCN), a deep CNN that won the Predictive
Analysis Challenge for brain age prediction, proposed in [14]
and [20]. Unlike the original SFCN, which treats the task
as a soft classification problem where the age prediction
is defined as the average of all predictions, our model is
tailored for regression, directly predicting the subject’s age
as a continuous output. Furthermore, to enhance the model’s
computational efficiency, the number of convolution blocks
is reduced to 4 as opposed to the original structure, which
compromises 5 blocks. This resulted in reducing the number
of parameters from 3 million [14] to only 1.2 million, which
leads to faster training times and lower memory usage.
Additionally, in our architecture, the batch normalisation
layer is placed after the activation function rather than before
it to enhance the training stability and model performance.
This decision is based on studies suggesting that post-
activation normalisation can lead to more stable training
dynamics and potentially better generalisation [21], [22].
By normalising the output of the activation function, we aim
to maintain desirable statistical properties of the network
activations, thereby improving convergence during training.
Fig. 3 illustrates the proposed model, consisting of four
convolutional blocks and additional fully-connected layers.
Blocks 1 to 4 include 3D convolutional layers with
kernel sizes of 3 x 3 x 3, a 2 x 2 x 2 max-pooling
layers followed by a ReL.U activation function and a batch
normalisation layer. The primary rationale behind these
blocks is to decrease the spatial dimensions of the input,
hence, reducing the number of trainable parameters. This
approach significantly improves the efficiency and memory
usage. By the end of the fourth block, the dimensionality of
the input is significantly reduced. The following block (block
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5) consists of a smaller kernel size (1 x 1 x 1) to reduce
each feature map without affecting the spatial dimensions
while increasing non-linearity. Further, block 6 includes a
global average pooling layer for feature map reduction and
a dropout layer for generalisation purposes, followed by
a1l x 1 x 1 convolution layer, acting as a dense layer to
further compact the learned features. The feature map is then
further reduced using sequential fully-connected layers with
128 and 64 neurons, respectively. A final dense layer with
a linear activation function generates the output. The output
is then flattened to produce a single continuous numerical
output representing the predicted age. This structure ensures
an efficient processing of volumetric data, optimizing the
network for the quick and effective prediction of age from
MRI scans.

B. BRAIN AGE ESTIMATION

We first evaluate the performance of the architecture using
full-sized brain grey matter images. The dataset, described
in Section II, is divided into training, validation and testing
sets with splits of 80%, 10%, and 10%, respectively, each
representing the age distribution that is identical to the
original dataset in Fig.2. To ensure robustness and reliable
performance metrics, we apply a repeated random subsplit-
ting strategy, where the data is randomly split into training,
validation, and test sets 5 times. The final results reported are
the average performance across these five independent runs.
Models are trained from scratch using Adaptive Moment
Estimation Optimiser (ADAM) [23]. To fairly compare
the training times of different models, we opted to train
each model for a fixed number of epochs. This ensures
consistency in training times, as convergence criteria, such
as early stopping, can result in variable training times,
complicating the comparative analysis. Different numbers
of epochs were evaluated and 100 epochs were selected
because they provided a good balance between performance
and training time. The best weights of the validation set are
saved for the accuracy calculation of the test set. A batch
size of 16 and a learning rate of 10~ are used throughout
the training process. The loss function for these tasks is
Mean Absolute Error (MAE). These parameters are selected
based on hyperparameter tuning to find the best performing
combination. All experiments are run on a NVIDIA A100-
SXM4-40GB GPU and developed using Python 3.10.12.

C. MR IMAGE SIZE REDUCTION

Although changes in brain structures are heterogeneous,
making it challenging to define which regions of the brain
are responsible for the ageing process, the cerebellum volume
represents about 10% of the human brain, suggesting the
high computational power of this structure [24]. Studies have
reported that the correlation between cerebellum volume and
age ranges from —0.30 to —0.43 [25], [26]. Additionally,
research studies have indicated that substantial annual
declines appear in the hippocampus and amygdala [27], [28].
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FIGURE 3. Overview of the proposed 3D Convolutional Neural Network (CNN) architecture for age prediction. The input to the network is either the
full brain image with grey matter extracted or a cropped version (lower part of the brain). Blocks 1 to 4 are highlighted in purple and consist of 3D
convolutional layers (3 x 3 x 3 kernels), max-pooling layers (2 x 2 x 2), RelLU activation, and batch normalization, as depicted in the color-coded
block underneath. The number of output channels is indicated above each block. Block 5 is shown in light blue, consisting of

1 x 1 x 1 convolutional layer to reduce feature map dimensions, followed by batch normalisation and ReLU activation. Block 6, in light grey,
includes a global average pooling layer, dropout for regularisation, and a final 1 x 1 x 1 convolutional layer. This block is followed by fully

connected layers, producing the final continuous output for age prediction.

The hippocampus, in particular, exhibits a yearly atrophy rate
ranging from 0.79% to 2.0% [29]. Therefore, we define the
Region of Interest (ROI) as the brain region that includes
the cerebellum, most of the amygdala, and the hippocampus.
We crop the brain image into a smaller segment, encompass-
ing major brain structures and optimizing size.

Fig.4 shows the sagittal, coronal, and axial cross sections
of the brain, which pass through the cerebellum, amygdala,
and hippocampus. These structures are located mainly within
the range 0 < z < 35 of the entire brain, where z is the
vertical index variable. Thus, we set the ROl as 0 < z <
35,the remaining two dimensions of x and y kept the same
as the dimensions of the original image. The resultant image
91 x 109 %35 image includes our ROI, which is approximately
one third of the entire brain data. This method of slicing does
not affect the coordinate system of the data, and therefore no
further registration is required.

D. EVALUATION ON NEW EXTERNAL DATASET
The proposed algorithms, using full-sized and cropped brain
images, are evaluated on an unseen external dataset consisting
of the Dallas Lifespan Brain Study (DLBS) and the ABIDE
IT (SDSU) dataset. DLBS is recognised for its focus on
studying the early stages of a healthy brain’s progression
towards Alzheimer’s disease. The DLBS dataset includes
314 individuals spanning the adult lifespan with a balanced
distribution between different age groups (male/female:
117/197; mean age: 55 years; age range: 21-89 years).
Although the DLBS dataset includes a sufficient number
of participants to evaluate the model, it lacks participants
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TABLE 2. External unseen dataset information representing the number
of samples, age range, average age, and male/female distribution.

Dataset Participants Agerange Mean Sex (M/F)
DLBS 314 21 -89 55 117/197

ABIDEII (SDSU1) 25 8—18 13 23/2
Total 339 8 —89 51.66 140/199

from younger age groups, unlike the original dataset, which
includes almost the entire lifespan. Therefore, we include the
SDSU subset of the ABIDE II dataset. This subset is not
included in the original training set, and is chosen due to its
age range, which resembles the missing range in comparison
to the original dataset. It consists of images from 25 young
individuals (age range: 8-18 years, mean age: 13 years,
male/female: 23/2). This selection aims to closely resemble
the original dataset and provide a realistic representation of
the actual human lifespan, thus enabling a robust assessment
of the model’s ability to generalise across varied human
conditions. This resulted in a total external dataset consisting
of 339 images (male/female: 140/199; mean age: 51.66 +
24.29 years; age range: 8-89 years).

1) WEIGHTED LOSS FUNCTION

As discussed in Section II, the acquired data set is signifi-
cantly unbalanced, with a higher concentration of samples
in the younger age group of adults. To effectively address
this imbalance, a weighted mean absolute error (MAE) loss
function is implemented to assign higher importance to
samples from underrepresented age groups, particularly older
individuals. We hypothesise that this approach improves
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cerebellum

FIGURE 4. An example of MRI data used in the brain age prediction models representing the sagittal (left), coronal (middle), and axial (right)
planes of the image after the minimal preprocessing and normalisation to the MNI152 space using FSL software. The hippocampus is
highlighted in blue, while the amygdala is highlighted in red. The cerebellum is circled in red. The numbers on the left represent the values of
the z-axis used for image cropping; these values are not to scale. Cropping was performed at z = 35 to include the cerebellum and the

majority of the hippocampus and amygdala.

generalisation across all age groups and prevents the model
from being biased towards the majority age groups. Further-
more, it ensures that older individuals, which are often more
clinically significant, are accurately predicted.

In this scenario, we assign a weight to each sample, for
N number of samples, that is proportional to the true age y;.
This weight is then multiplied by the MAE calculated based
on the prediction y;. Therefore, the weighted loss L,, can be
expressed as:

1

Ly = 2 (v =3) - (1555) (M

1

N
i=
2) TRANSFER LEARNING

from scratch.

As we will demonstrate in Section IV, the model’s
performance on the external dataset exhibits a discrepancy
due to domain shift caused by the imbalanced age distribution
in the training data. This issue is effectively addressed by fine-
tuning the pre-trained model on new external subjects. Fine-
tuning, a widely used transfer learning technique [15], [30],
[31], adapts a pre-trained model to a new task or domain with
minimal additional training. This approach offers simplicity
and efficiency compared to training models from scratch,
making it particularly suitable for clinical applications, where
variability in resolution and field strengths across MRI scans
poses significant challenges.

Consider a model trained on a source domain Dg.
In transfer learning, we use the pre-trained model Mg as a
starting point for the new target domain Dr. Let 05 be the
weights learned from the source domain. The pre-trained
model will be initialised with 05 and fine-tuned to update the
weights Or for the target domain D7 using a smaller learning
rate. This process ensures that the model adapts to the new
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target domain efficiently, leveraging the knowledge gained
from the source domain.

In this study, we evaluate baseline models trained using
either MAE loss or weighted loss on full brain or cropped
brain images. The evaluation on an unseen external test set
is conducted through the following approaches: (1) External
Assessment without Fine-Tuning: We evaluate the model
performance on the external dataset without any additional
fine-tuning. (2) External Assessment with Fine-Tuning: We
apply transfer learning by splitting the external dataset
into 80% training, 10% validation, and 10% testing sets.
(3) Comparison with Age-Matched Data Distribution: We
compare the performance of the models between the external
dataset used as it is and when its age distribution is matched
to the original training set. All results are averaged across
the performance of 5 models, each trained using 5-fold cross-
validation in the baseline experiments.

For the fine-tuning process, we initially freeze the first
five convolution blocks, allowing only the last block and
fully-connected layers to adapt to the external dataset Dr.
The model is trained with a learning rate of 10~* and
employs checkpoints to save the best-performing model
on the validation set. Subsequently, the frozen layers are
unfrozen to fine-tune the model further, learning the detailed
features of the new dataset with a reduced learning rate of
1073, The rest of the hyperparameters and the choice of
optimiser remain identical to those used in the baseline model
trained from scratch.

IV. EXPERIMENTAL RESULTS

A. SIZE REDUCTION IMPROVES EFFICIENCY

The predictive accuracy for both full and cropped brain
images using our proposed CNN algorithm is presented
in Table 3. All models were trained on a training set
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(n = 1801), a validation set (n = 225), and tested on a
test set (n = 225). The age distribution was stratified to
ensure an accurate representation of all age groups across
the training, validation, and testing sets. Table 3 showcases
the results of evaluating five models while varying the
combination of the training, validation and testing sets.
All the models are trained from scratch and evaluated on
the test datasets. The performance measures include Mean
Absolute Error (MAE) in years, coefficient of determination
R2, Pearson r, and training time in minutes. A lower MAE
indicates that the model’s predictions are more accurate
on average, which is important in the context of brain
age prediction as it implies greater reliability in assessing
age-related changes in brain structure. A high RZ, close
to 1 suggests that the model effectively captures the age-
related patterns in brain structure, indicating a robust and
meaningful prediction across a broad population. Similarly,
a higher Pearson r implies a stronger correlation between
the actual and the predicted age, highlighting the model’s
reliability. Using full brain grey matter images, the model
achieved an accurate brain age prediction with a mean MAE
of 3.557 years and a Pearson r of 0.978. In contrast, using
only the lower segment of the brain yielded an MAE of
4.139 years and a Pearson r of 0.971, with the training
time being only half of that required for the entire brain
image. The consistency across experiments, as indicated by
the low standard deviations, suggests that the model performs
reliably across different subsets of the data. We further
evaluated the performance of the full brain and cropped brain
models when trained on the same data split and tested on
the same group of participants and the results showed a
Pearson correlation r = 0.988 between the two predictions.
The strong correlation proves the stability of the model
based on different inputs demonstrating highly consistent
predictions.

B. DATA IMBALANCE EFFECT

In both the full brain and cropped brain experiments, the
brain age gap is calculated and plotted in Fig. 5. This is to
visualise the difference of the prediction error as a function
of the chronological age of the test sets. The effect of the age
group on the model’s prediction is represented by the slope
of the line. Although the accuracy of the cropped image of
the brain is slightly lower when compared to using the full
brain image, we can see that the slope of the age gap line fit
is almost identical, suggesting that using the cropped brain
images does not affect specific age groups more than others
compared to using the full brain images. Another important
consideration is the prediction error around the mean. Brain
age estimation models generally suffer from overestimation
for younger subjects and underestimations for older subjects,
where the prediction error is close to zero around the mean
of the dataset. Although the overestimation error for subjects
younger than the mean is considered small, the underestima-
tion for older subjects could have a significant impact when
the model is applied to an external dataset. In this study,
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we explore if this issue is caused by the bias introduced by
the imbalanced training set by considering: (1) Age-matching
the distribution of the external dataset to ensure that any
overestimation or underestimation is identified; (2) Modify
the learning algorithm using the weighted loss function
discussed in Section III-D1 and evaluating them with the
external dataset; (3) Employing transfer learning methods to
fine-tune the trained model on the external dataset before
evaluation.

C. ADAPTATION TO EXTERNAL DATASET

External validation is crucial for assessing the performance
and generalisability of our predictive model. In this section,
we use a completely independent dataset that was not
involved in the training process. Details of the dataset are
described in Section III-D.

In this study, the distribution of the external dataset differs
from that of the training set, a phenomenon known as domain
shift. We hypothesise that this leads to a drop in model
performance due to certain age groups being inadequately
represented in the original training set.

1) WEIGHTED LOSS FUNCTION

The performance accuracy of our predictive model is detailed
in Table 4. Here, we evaluate the accuracy of models trained
using the weighted loss function described in Section I1I-D1,
compared to models trained using the original MAE loss. The
reported results represent the average of five cross-validation
models. The models were tested on the internal dataset (n =
225), an external dataset with the original distribution (n =
339), and the age-matched distribution (n = 195) without
fine-tuning, as well as age-matched test set of (n = 30) with
fine-tuning.

For the internal assessment, we compared the performance
of the model using the MAE loss, as illustrated in Sec-
tion IV-A, to the performance using the weighted loss, which
gives more importance to underrepresented samples. The
performance metrics of the models trained with the weighted
loss function yielded the following results: The full brain
model achieved a mean MAE of 4.276, a mean of R? of 0.945,
and a mean Pearson r of 0.974. In contrast, the cropped brain
model achieved a mean MAE of 4.804, a mean of R? of 0.926,
and a mean Pearson r of 0.964. Compared to the standard
MAE loss, we find that there is no statistically significant
difference between the two loss functions (P = 0.187 for the
full brain and P = 0.123 for the cropped brain). Although
the standard MAE loss provided slightly better performance
for both input types than the weighted loss, the disparity
between the full brain and cropped image performances
was very similar. Fig.7 shows a visual representation of the
performance accuracies using standard MAE and weighted
loss functions across the different adaptation methods for full
and cropped brain images.

For the external dataset, we further assessed the model’s
performance using the original distribution against an age-
matched distribution to minimise the effect of biased models.
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TABLE 3. Predictive accuracy comparison of the model’s performance on the test set using the brain MRI images versus using the cropped brain MRI
together with the models’ training time in minutes. The results obtained by training 5 different models and evaluating their performance on the test sets,
the overall accuracy is calculated by taking the mean and standard deviation (STD) of the five models. Performance metrics presented as MAE mean

absolute error, R2 coefficient of determination and Pearson r.

Model Full brain image Cropped brain image
MAE R? Pearsonr  Training time (mins) MAE R? Pearsonr  Training time (mins)
1 3.602 0.953 0.977 6.74 4.054 0944 0.973 3.53
2 3.453  0.959 0.980 6.67 4.347  0.940 0.973 3.46
3 3.756  0.945 0.977 6.80 4.237  0.928 0.966 3.54
4 3.664 0.953 0.978 6.74 3.857  0.949 0.975 3.52
5 3317  0.960 0.980 6.76 4.200 0.939 0.970 3.56
Mean 3.557 0.954 0.978 6.74 4.139  0.940 0.971 3.52
STD 0.189  0.008 0.003 0.05 0.174  0.005 0.002 0.03
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FIGURE 5. Comparison between the best-performing brain age prediction algorithms performance when the input is the entire brain
image and when the input is the cropped brain image. Scatter plots show the predicted age versus chronological age with full brain
images (a, dark blue), cropped brain images (b, dark red). In both plots, the dashed grey lines represent the linear regression and the
black line indicates the ideal prediction. Scatter plots (c and d) represent the brain age gap versus the chronological age for both full
brain (blue circles) and cropped brain images (red circles). The red lines represent the linear regression lines, and the horizontal dashed
grey lines represent ideal prediction where the error is zero. The vertical dashed grey lines show the prediction around the mean age of
our dataset. MAE, mean absolute error, R2 coefficient of determination.

As expected, the performance of the model improved when
the distribution was matched to the original training set.
Additionally, the results suggest that there was no significant
difference between the performance measures of the two loss
functions when the full brain image was used. However, the
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weighted loss function outperformed the original MAE loss
when the cropped brain image was used, with a mean MAE
of 9.930, a mean R? of 0.712, and a mean Pearson r of 0.937,
compared to an MAE of 12.107, R? 0f 0.569, and a Pearson
r of 0.913 for the MAE loss function. While matching the
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TABLE 4. Predictive accuracy of the model’s evaluation on the internal and external test sets. The results were obtained following the application of the
MAE loss function, weighted loss function, original distribution of internal and external datasets and age-matched distribution of external datasets.
Performance metrics were calculated based on the models generated by the five experiments and presented as mean values. MAE mean absolute error,
R? coefficient of determination and Pearson r. The standard deviation of the reported results are visualised in Fig.7.

Method Loss function Dataset Full brain image Cropped brain image
MAE R? Pearsont  MAE R? Pearson r
Internal assessment MAE Loss original 3.557  0.954 0.978 4.139  0.940 0.971
Weighted loss original 4.276  0.945 0.974 4.804 0.926 0.964
external 8.608 0.760 0.949 14.413  0.351 0.876
MAE Loss
External assessment without fine-tuning age-matched  7.219  0.848 0.967 12.107  0.569 0.913
Weighted loss external 8.279  0.780 0.946 11.754  0.559 0.909
age-matched  7.131  0.854 0.963 9.930 0.712 0.937
MAE Loss external 6.160 0.886 0.953 6.625 0.848 0.931
- . age-matched  4.750  0.919 0.968 5.770 0.903 0.954
External assessment with fine-tuning ) external  6.020 0890 0954 6149 0883 0947
Weightedloss o matched  4.669 0921 0964 6464 0873 0941

70

[ External dataset distribution
60 | £ZZ] Age matched distribution

50

30

10

7

0 10 20 30 40 50 60 70 80 90 100

Number of Participants

Age Range (Years)

FIGURE 6. Representing the original age distribution of the external
dataset and the age-matched distribution to the dataset used to pre-train
the models shown in Fig.2. Age groups from 10 to 20 years were not
matched due to the small number of samples from ABIDEII (SDSU).

age distribution improved the performance in this controlled
experimental setting, this option might not be available in
real-world applications where the data are highly variable
and may not match the training set. Therefore, opting for the
weighted loss function in these scenarios would be better,
as demonstrated in Fig.7.

2) TRANSFER LEARNING
Baseline models trained using both MAE loss and custom
weighted loss exhibited a significant reduction in gener-
alisability when evaluated in the external dataset without
additional fine-tuning. This discrepancy is likely due to the
varying data acquisition protocols between different sites.
Notably, the impact of this variability was more pronounced
when using the cropped brain compared to the full brain
image. Although custom weighted loss demonstrated better
performance in the external dataset than the MAE loss
(MAE = 9.930, Pearson r = 0.937), the deviation from the
baseline internal assessment remained substantial (Internal
assessment: MAE = 4.804, Pearson r = 0.964).

The application of transfer learning to fine-tune the
baseline models markedly improved their performance on
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the external dataset, resulting in accuracy metrics closely
aligning with those from the internal assessment when the
MAE loss is used with the age-matched data distribution,
with P = 0.176 (larger than 0.05) indicating that there is
no statically significant difference between the internal and
the external evaluation. Similarly to the initial evaluation
without fine-tuning, there was no significant difference in
performance between the MAE loss and the custom weighted
loss for the full brain images (MAE loss: MAE = 4.75,
Pearson r = 0.968 ; Weighted loss: MAE = 4.669, Pearson
r = 0.964). However, for the cropped brain image, the MAE
loss outperformed the weighted loss (MAE loss: MAE =
5.770, Pearson r = 0.954 ; Weighted loss: MAE = 6.464,
Pearson r = 0.941).

Interestingly, for the cropped brain models, the custom
weighted loss performed better on the external data without
age-matching than with age-matching. This suggests that the
weighted loss function may be more robust to certain types
of variability in external datasets, making it a suitable choice
when the distribution of external data differs from the original
dataset.

V. DISCUSSION
This paper proposes an estimation of brain chronological
age for healthy individuals based on minimally preprocessed
T1-weighted MR images using a low-complexity convolu-
tional neural network. Our focus is to address the main
challenges that limit the clinical adoption of brain age
prediction systems, including achieving a balance between
performance accuracy, computational efficiency, and adapt-
ability to unseen domains and datasets. We demonstrated that
an accurate prediction of brain age can be achieved using
a small-scale publicly available dataset representative of the
entire lifespan. Furthermore, we showed that computational
efficiency can be significantly improved by using only the
cropped brain, which reduces training time by half. Finally,
we illustrated that models pre-trained on small-scale but
diverse datasets can generalise to new external datasets with
some fine-tuning.

Due to the complex nature of 3D CNN-based brain
age estimation systems, it is challenging to provide a fair
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comparison of our model’s performance to the literature. The
huge variation in datasets, age ranges, model architectures,
and computational powers are limiting factors. Therefore,
this work was compared to previous studies based on the
brain images used, the training time of CNN models, and the
dataset size.

A. BRAIN AGE ESTIMATION

As adirect comparison to Peng et al. [14], our 3D CNN archi-
tecture was inspired by the SFCN model proposed in their
work. However, we introduced several key modifications to
enhance performance and stability. Both architectures include
repeated blocks of convolution + batch normalisation + max-
pooling and activation layers. This block architecture was
repeated four times in our work, whereas it was repeated
five times in the original SFCN architecture. Moreover,
we found that positioning the batch normalisation layer
after the activation layer yielded to a more stable training
compared to the original SFCN architecture. Furthermore, the
SFCN treats age prediction as a soft classification problem
where each possible age is a separate class. In contrast,
our model is a regression problem that directly predicts
the age.

Performance-wise, when comparing our model to
Peng et al. [14], it is important to consider the characteristics
of the datasets used. Our model’s full brain achieved an MAE
of 3.55 years on a dataset of 2251 publicly available images,
whereas Peng et al. reported an MAE of 2.19 years using
the UK Biobank dataset with 12949 images. The superior
performance of UK Biobank is expected due to the large
enough representation of variability in data. In contrast,
although our dataset is small, it contains images from
diverse sources and is acquired using different protocols
and scanner types. This diversity increases the variability
within the data, thus increasing the complexity of the training
process.

However, our model demonstrates better performance
compared to the SFCN when trained from scratch on the
multi-site PAC 2019 GM dataset [20], as evaluated by
Peng et al. [14]. In their study, the SFCN achieved a mean
absolute error (MAE) of 3.93 years on 2,198 images from
PAC 2019. Although the PAC 2019 dataset is similar in
size to ours, it includes only adult subjects aged 17 to
90, whereas our dataset spans a broader age range of 6 to
90 years, representing the full human lifespan. Furthermore,
a recent study by Lietal. [32] employed a larger dataset
with 3,479 samples and reported a slightly lower MAE of
2.941 years. However, this dataset also covers only adult
subjects within the 18- to 90-year age range. The inclusion
of a wide age span in our study, from childhood through
to old age, presents additional complexity to the prediction
task due to the substantial variations in brain morphology
across different developmental and atrophic phases. This
performance comparison suggests that our model is robust,
as MAE values tend to be lower in studies focusing on
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narrower age ranges. Additionally, error values are typically
smaller when the predictions are closer to the mean age of the
dataset [33].

Therefore, it is challenging to achieve low MAE values
with a wide age, particularly with a limited sample size.
Studies that include age ranges similar to ours, such
as [34], [35], [36], and [37] used significantly large datasets
(minimum 8379 scans). The performance of our model
highlights its robustness and training quality. Fig.8 shows
a comparison of the performance of our model with the
literature, where the axes y and x— represent the MAE, and
the age range of the datasets (maximum age — minimum
age), respectively. The area of the circles is proportional
to the number of samples in each dataset of these studies.
The result of our study is highlighted in red. It can be
seen that the MAE values tend to be smaller for studies
that include a large number of samples with narrower age
ranges, and the MAE values tend to be higher for studies
that included a smaller number of samples. Therefore,
achieving a low MAE with a small number of samples
and a wide age range is an indication of a well-trained
model.

B. TRAINING TIME EFFICIENCY

Without significantly compromising performance, our net-
work was designed with only 1.2 million parameters,
significantly fewer than most state-of-the-art models such
as VGGI16 (138 million parameters) and ResNet-50 (25
million parameters) [43], [44]. The SFCN model, which
inspired our architecture, contains approximately 3 million
parameters. Although alternative large models make use of
complexity reduction tools such as pruning and distillation,
these techniques introduce an additional post-processing
stage, increasing the complexity of the pipeline. In contrast,
our lightweight CNN model ensures complexity reduction by
design, without the need for such tools, achieving efficiency
directly during training.

CNNss are particularly well-suited for brain age prediction
due to their ability to efficiently capture spatial hierarchies
and local dependencies in MRI data. Unlike transformers
or MLP backbones, which often require larger datasets and
computational resources to achieve comparable performance
on spatially dependent tasks, CNNs leverage inductive
biases such as locality and translational invariance. These
characteristics make CNNs computationally efficient and
effective at modeling the changes associated with brain
ageing.

Furthermore, utilising the lower brain segment reduced the
number of data points per sample, reducing training time by
50% while maintaining comparable accuracy. This approach
effectively reduced memory usage and computational load,
making our model feasible for deployment in clinical settings.
Although some studies reduce complexity by defining brain
atlases or using predefined ROIs, our method relies on
cropping based on standard brain dimensions. This eliminates
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FIGURE 8. A comparison of the proposed model’s performance
(highlighted in red) against some state-of-the-art works that used CNNs
and MR images of healthy individuals, « [38], 8 [14], y [11], § [39], & [40],
v [13], € [30], ¢ [41], n [42], 0 [35], i [34], A [14], « [37]. The area of the
circles is proportional to the number of samples used in each study.

the need for atlas-based preprocessing or anatomical priors,
resulting in a model that is more adaptable to diverse datasets
and does not require domain-specific anatomical knowledge
of brain structures.

Few studies have reported the time required to train models
for brain age prediction. For example, Cole et al. [13] reported
18 to 48 hours to train their CNN model, and Peng et al.
[14] mentioned that it took 50 hours to train the SFCN on
the UK Biobank dataset. Li et al. [32] reported training times
of 36, 110, and 237 minutes for their 3D-DenseNet, 3D-
ResNeXt, and 3D-Inception-v4 models, respectively, using
four NVIDIA GeForce RTX 3090 GPUs. In comparison, our
model achieved average training times of 6.743 minutes for
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the full brain and 3.519 minutes for the cropped brain, using
an NVIDIA A100-SXM4-40GB GPU.

To the best of our knowledge, this is the first study to
achieve comparable prediction accuracy (within 0.7 years
of full-brain predictions) using only a small segment of
a 3D brain MRI scan. This significant improvement in
computational efficiency reduces training time, operational
costs, and memory usage, enabling faster real-time feedback
and model updates, which are critical for real-world clinical
applications.

C. ADAPTAION TO EXTERNAL DATASETS

The substantial variability in MRI data acquisition—
including differences in resolution, field strength, and
orientations—poses significant challenges for developing
models that generalise well across diverse datasets. An essen-
tial element of this study is addressing this issue by demon-
strating the effectiveness of transfer learning in achieving
promising results in overcoming these challenges.

Transfer learning involves leveraging knowledge gained
from one task to enhance performance on a related but distinct
task. Although this technique has been used in brain age
prediction studies, many of these studies rely on models pre-
trained on unrelated tasks, such as image recognition using
datasets like ImageNet [30], [34].

In contrast, our research adopts a novel approach by
initially training a model from scratch using a small-scale,
diverse dataset with a broad age range and utilising both full
and lower segments of brain MRI images. We then apply
transfer learning to fine-tune this model on specific data
from external, unseen sites. This methodology offers two
significant benefits: (1) Task-specific pre-training: Models
pre-trained on the same task can leverage specific features
and patterns directly relevant to the task, facilitating better
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adaptation and improved performance. (2) Efficacy of small-
scale Datasets: Models pre-trained on small-scale but diverse
datasets can achieve accurate predictions when fine-tuned
with smaller datasets. This finding challenges the common
notion that models must be pre-trained on large-scale datasets
to achieve high performance.

Therefore, our study demonstrates that transfer learning
can be effectively applied to models pre-trained on the same
task. Pre-training on small-scale but diverse datasets can yield
robust models capable of fine-tuning for specific tasks with
high accuracy. This approach underscores the adaptability
and efficiency of using targeted, representative datasets in
model training and fine-tuning for brain age prediction.

VI. LIMITATIONS AND CONCLUSION

This study addresses the challenges facing brain age pre-
diction systems; however, several limitations remain to be
considered. Despite the satisfactory performance of the CNN
model, understanding the learned model remains challenging
due to the black-box nature of deep learning. Furthermore,
while this study aims to enhance our understanding of brain
ageing, it is not clear how the model would perform in clinical
settings, as all samples used in this study are from healthy
individuals without abnormalities.

Additionally, the lower brain segment was selected as ROI
due to its inclusion of key structures related to ageing (e.g.,
hippocampus, cerebellum, amygdala) and its computational
efficiency. However, no systematic evaluation of the indi-
vidual contributions of these regions was performed. Future
investigations could focus on the predictive significance
of smaller subregions within the ROI to further refine
the cropping strategy. Although our study highlights the
capability of the CNN model to achieve high accuracy
with just 1 million parameters, the exploration of alternative
methods, such as State-Space Models (SSMs), may offer
significant advantages. SSMs are particularly effective in
capturing long-range dependencies and global context across
brain regions, enabling them to model interactions between
distant areas of the brain that contribute to ageing. This
could provide deeper insight into the brain regions that most
strongly influence the ageing process. A promising future
direction would be the integration of CNNs with SSMs to
develop lightweight models that combine CNNs’ ability to
extract localised spatial features with the ability of SSMs
to capture global patterns. Such hybrid models could offer
improved accuracy and interpretability, which are crucial for
clinical applications.

Further, although we demonstrated similar performance
on external datasets compared to internal ones, this study
has additional limitations. Our method relies on adapting the
external domain to match the source domain and benefits
from fine-tuning the model based on external data. There
is still a need to explore techniques that allow models to
be directly applied to external clinical applications without
requiring domain adaptation or fine-tuning.
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In conclusion, we presented a low-complexity, accurate
CNN model capable of estimating precise brain age based
on MR scans acquired from different sites with minimal
preprocessing. This study significantly improved training
speed by using only a segment of the brain while maintaining
accuracy comparable to whole-brain scans, demonstrating
the adaptability of small-scale models to data from external,
unseen sites.

VII. DATA AVAILABILITY STATEMENT

The participants used for this study come from pub-
licly available datasets and can be accessed through:
Autism Brain Imaging Data Exchange I (ABIDE I, http://
fcon_1000.projects.nitrc.org/indi/abide/abide_I/),  Autism
Brain Imaging Data Exchange II (ABIDE II, http://fcon_1000.
projects.nitrc.org/indi/abide/abide_II/), Beijing Normal Uni-
versity (BNU,http://fcon_1000.projects. nitrc.org/indi/retro/
BeijingEnhanced/), Berlin (Berlin, https//fcon_1000.projects.
nitrc.org/) Cleveland Clinic (Cleveland CCF, https://fcon_
1000.projects.nitrc.org/), Dallas Lifespan Brain Study
(DLBS, https://fcon_1000.projects.nitrc.org/indi/retro/),
Alzheimer’PDisease Neuroimaging Initiative database(ADNI,
https://adni.loni.usc.edu),Information eXtraction from Images
(IXI, https://brain- development.org/), and Train (Train-39,
http://fcon_1000.projects. nitrc.org/indi/retro/Train-39/).
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