DAY7
64) An electric potential ¢ is given by

¢((IJ, Y, Z) =Ty sin z + xzy + y2z + 221.

Find the directional derivative of the electric potential ¢ at the point P(1, —1, 7) in the direction of the vector n = i—j—k.

« First approach The gradient V¢ is

Vo = dc{lf}i + déj}j + déj}k

= (ysinz + 2zy + 22)i + (wsinz + 22 + 2y2)j + (zycos z + y* + 2zx)k

The magnitude of n is [n| = 1+ 1+ 1 = /3. Therefore the unit vector of n is % = % So the
directional derivative at P(1,—1,7) is

Vo n _ ysinz + 2zy + 2% — (wsinz + 2? + 2yz) — (zycos z + y* + 2zx)

|n| (mvyvz):(L_l?ﬂ-) \/g (Z‘,y,Z):(l,—l,ﬂ')

247 —142r—2—-2r -5+’
V3 V3
« Second approach The gradient V¢ is
d d . d
o 0}, dlo} . dio},

dx dy dy

= (ysinz + 2zy + 2%)i + (wsinz + 2 + 2y2)j + (zycosz + y* + 2zx)k

At P(1,—1,7), the gradient is (—2+72)i+ (1—27)j + (2+27)k = v. Now we need to find the magnitude of n-
directional component of v. When the angle between n and v is 0, the magnitude of n-directional component

of v can be written as |v|cosf. As n - v = |n||v| cos §, we can obtain the magnitude as
n-v n-v

|v|cos b = || =
nflv]  |n|

The magnitude of n is |n| = /1 + 1+ 1 = v/3. Therefore
n-v —247*—(1-2m)—(2+21) -2+4n2—-1+2r—-2-21r —5+4n°

In| V3 N V3 V3

65) A total resistance Z is given by the formula

LI B
7z~ wC R
dz . . . L . .
Find the derivative o Using the chain rule, we take the partial derivative of both sides with respect to C. Note
that L, C' and R are all independent of each other because Z can take any values. Thus % = 4% — (. On the

dc
other hand Z changes depending on C'. Therefore Z is the function of C' and % does exist.

Z_]wL+jw10+]1%

d 1 d<ij+w%+%)

dC Z dC

d (-2 1

4z d 1 _d(wl) <ch> +d(§)
"dC dZ Z dC dC' dC'
z, 1, _4e) @) 1
wc @) T e T T )
az Z?
ac Jw(@)
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dpP oP oP
66) Let P = P(x,y), and = = ¢! and y = ¢~'. Find the total derivative g in terms of partial derivatives — and —

Ox oy’
d*pP P 0P 0°P 0O*P ’p
Hence find the second total derivative Gz in terms of partial derivatives ({;x ?9 ng (;;y and 8835 By You may

assume that the two mixed partial derivatives are equal. From the chain rule, we Can say that :
diPy _dipP} diz} d{P} diy}

dt dx dt dy dt
_a{py d{e'} At d{™'}
dx dt dy  dt
= dfgf} et + d;{ij} (=)
_d{pr} a{P}
- dx T dy .

Now we differentiate again with respect to ¢t as

d{P} d{r}y  d{Pr}
82P:d{ dt }_d{x dr T dy }
o2 dt dt
d{r} d{r}
_d{z}d{P) xd{ Iz b oamae yd{ i)
dt dx dt dy dt
{r} d{r}
_die}d(P) i) { } d{y}d{ z })
dt dx dy
a{P}
AP dl) { } d{y}d{ dy })
dt dy dt dy
d P} d{r}
_aleya(py | d{e) i }+d{e-t}d{ ds })
dt dx dt dx dt dy
a(P) a{r)
ety aqpy  d{e) o }+d{et}d{ ay })
dt dy dt dx dt dy
d{P) d{P)
(P x(ed{ s }_e_td{ s })
dx dx dy
a{ry a{ry
—|—e*td{P}— (etd{ dy }_etd{ dy })
dy dx dy
LA{P} 2P 9P
= ta(r——s —y5—>-)
dz dz? 0zd
d{P} 0?P 825
Ty dy y(@ oyor Y 0y? )
RAIN ,d2P ?r  d{p} 2P ,0%P
e Ty ety Y e Y
RAGIN deP 2d 2P 85?13} dea?P”%y?i B afzg
I dz? Iy@y@:z: Tty dy +y 8y2(' oyoxr 8x0y)
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67)

68)

69)

DAYS

Locate all stationary points for the function f(x,y) = 2% + 32%y + 2y® — 144y + 7. How many stationary points are
there ? J J J
At the stationary point, {fc(la;,y)} = {fg/’ v} = 0. Therefore we find (z,y) which satisfies {fc(fx’y)} =
d
dif@y)} _ 0 as follows:
dy
d d
{fg);’ v} = 622 + 62y =6z(x +y) =0 @ ; {fila;/’ v} =322 +6y2—144=0 @

® gives z = 0, —y. When z = 0, @ gives 63> = 144 i.e., y = £2v/6. When z = —y, @ gives 93> = 144 j.e., y = +4.
Therefore the stationary points are 4 points of (z,y) = (0, £2v/6), (74, +4).

A point (z,y) = (—4, —8) is one of the stationary points of the function f(z,%y) = 12zy — 3y* + 22°. Find the nature
of this stationary point.

d*f(z,y) 0°f(z,y) 9*f(z,y)
dz?2 ° Oydx = Oy?

d*f(x,y) d{12y+6$2}

We need

to find out the nature of the stationary point.

0*f(w,y) _ d{12z — 6y}

dx? dx v ©; Oxdy dx ®
2 _

Prley) d{2e-6) o
Oy? dy

The value of the discriminant at (z,y) = (—4,—-8) is

Pf(,y) 0°f(z,y) <a2f<m,y>)2
dx? dy? Ozdy

=12-(—4) - (=6) — 122 >0
(2,y)=(—4,-8)

f(z,y) _ {12y +62%} = 122],
. _ —
dx (z,y)=(—4,-8) dz (z,y)=(—4,-8)

Therefore the the stationary point at (z,y) = (—4, —8) corresponds to a local maximum point.

Explain why, for the function f(z,y) = (z + y)e ™Y, the stationary point at x = %, Yy = % is a saddle point despite
2 2
both & f(zy) and O (@, y) being negative.
daz22 283/2 )
d . . .
We need f(l;’y),a f(m’y), O (@ y) to find out the nature of the stationary points.
dx Oyox Oy?
Pf@,y) _ ay Pf(2,y) _ —ay
—gz ¢ (—2y + z® + ) ® ; Tay_ (—2z — 2y + xy® + 2%y) @
2
vy J(;(;;’y)— ¢ (=22 4 ya? + 23) ®
When (z.y) = (~ &~ 1)
d*f(z,y) Y 1 ). O f(z,y) _ ok 3 ). O*f(z,y) _ ey 1 )
dz?2 V2 O0xdy V2© oyz V2

The discriminant D is

b Phay) Pfay)  (Pfy))
 da? 0y? 00y

(@9)=(25,25)
1 119

—e¢ 2 2(2—-2)<0

¢ (2 2)<

_ Pf(ry) Pflay) ()
© da? Y2 dxdy

(@)=~ 25— 2)

Thus the stationary point (z,y) = (— is a saddle point.

)

%\H
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DAY4
46) The current, I, is given by

I(V) = I, sinh(V)

where V is the applied voltage and I, is a constant. If the operating voltage is given by V, = 7 (measured in Volts),
find a second order Taylor approximation for (V') about this operating voltage.

A second order Taylor expansion for I(V') about V == is

A Ven? &l

av|y_,. 2! dv2|,_.

I(V)=1(r)+ (V —mn)

dI &1
We now need 3, and 7.

\%4 e—V

I(V)=Isinh(V) = [, —°

2
a _, VeV
av 7 2
d’I _ 7 ¢V —eV
vz % 2
Therefore
I(V) = I, sinh(n) + (V — 7) P E Ut il
2 V=r 72' 2 V=r
, em 4" " — e ™ (V —m)?
:Issmh(ﬂ)—i—lsT(V—w)—i—Is 5 51
(V —m)?

47) The current, I, is given by
I(V,t) = ¢V cos(wt)

where V is the applied voltage and ¢ is time. Find the term in t?V3 in the Taylor series expansion around ¢ = 0,V = 0.

o 1 oI
When t = 0,V = 0, the term that has ¢tV in it must be the term = 5C4

— 23 as the overall order
O2OV3,_ov—o

is equal to 5. Therefore

I(V,t) = ¢V cos(wt)
or v

—we” " sin(wt)

5=
0?1
2 = —w?e™V cos(wt)
B3I
ToE —(—1Dw?e™V cos(wt) = w?e™ cos(wt)
o
V2o —w?e™V cos(wt)
o1 N
W = wQe Vcos(wt)
. 1 o°I
When we put this into 5 502W t2v3
: t=0,V=0
1 2. -V 21,3 _ 1 2,0 21,3 1 5:4 998 1 5903
= t 213 = — 273 = £2V3 = — 2V
= 5Cowe™ " cos(wt) o 1% = 5Cow?e ™" cos(w0)t=V £ 4.3.2.12. lw 12w
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48) The current, I, is given by

<

¢

I(V.R) = —

where V' is the applied voltage and R is a variable.

a) Find the second order Taylor series for [ around V =0, R =1
The first derivatives of I with respect to V and R are

or _ v
oV R
or . 5
@ =—¢ R
The second derivatives of I with respectto V and R are
0’1 v

ov? R
R 2¢V R~3
%I
orov = ¢ B
We evaluate these derivatives at (V, R) = (0, 1) as follows.
oI
v
or — 1
IR | (v r)=(0,1) -
o
ov?
%I
OR?
01
ORIV

=1
(V,R)=(0,1)

=1
(V,R)=(0,1)

=2
(MR):(OJ)

=1
(V,R)=(0,1)

Therefore

ol
+(R-1)2
(V.R)=(0,1) OR

01
+(R—1)
(V,R)=(0,1) OR?

I(V,R) = I(0,1) + (V — o)g‘i

(V,R)=(0,1)
0?1
OROV

1

021
2
o

(V=073

572 L2V —0)(R—1)

(V,R)=(0,1)

(VvR):(Ovl)]
1 1
=1+V—R+1—|—§[V2—2V(R—1)—(R—1)2] :2+V—R+§[V2—2V(R—1)—(R—1)2}

b) Using the series estimate 7(0.1,0.9) and compare it with the exact value of 7(0.1,0.9)
We substitute V' = 0.1, R = 0.9 into the second-order Taylor series we found in question 48a.

1
1(0.1,0.9) =2+ 01 =09+ 3 (0.1 —2-0.1(0.9— 1) — (0.9 — 1)*] =1.21

1% 0.1
If we work it out manually using I(V, R) = % it becomes 7(0.1,0.9) = — = 1.22797 Therefore the two

0.9
results differ by 0.0179677.

<
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DAY7
71) A loudspeaker cone is generated by rotating the curve y = coshx — 1 about the x— axis through 27 radians from z = 0

to x = 1. Calculate the surface area of the cone excluding the two ends.

[5 marks]

v oo d{coshz} ¢ —
A

Since coshx = & . Surface area is

/2wy\/M—/ 2my) /1 + d{y} /2ﬂ'y\/1+< >dx

1 2x —2x 1 2x —2x 2z 2z
—2 4 — 2
:/ (gﬂy)\/1+e4'ild$ :/ (27Ty)\/ +e +e 2. _/ (27y) gdgc
0 0

27ry U —1—2 dx—/ (2my) X dq:

1
= O.57T/ (e +e7 % —2) x (e" “)dx = 0. 57T/ 2 —2¢" —2e"")dx
0 0

1 1 1 1
= 0.57r[§e21 - Qe’h + 22 — 2¢% + 277} = 0.57r(§e2 - 5(2 +2—2e+2e71)

72) For the force
F = (y+32%2%)i+ (z — 2)j + (2252 — y)k

find the potential ¢ such that F = V¢. Hence evaluate

(1,2,3)
/ (y + 32%2%)dx + (z — 2)dy + (2232 — y)dz
(0,0,0)

d{o}; , Ao}, o},

= (y+32%27)i+ (v — 2)j + (22°2 — y)k
Therefore
ORI N () B O s
dx dy dz

This is written as
¢ = (y+ 32222)0x ; dp = (x —2)dy ; dp = (22°2 —y)0z
Thus
/% = /(y +3222%)0r ;o =ay+a® +caly,2)
/Ogb: /(:c—z)@y ;Lo =xy —yz+cg(x, 2)
/8q§ = /(stz — )0z 5 o =2 —yr+e (2,y)
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Thus we can tell that ¢ = 2y — yz + 2322 When we define

dr = dzi+ dyj + dzk, (y + 32222)dz + (v — 2)dy + (2232 — y)dz = F - dr. Since F = V¢, the integral in question

is manipulated as

(1,2,3) (1,2,3) (1,2,3) (1,2,3)
/ F-dr:/ V¢-dr:/ a{gﬁ}dr:/ do
(0,0,0) (0,0,0) (0,0,0) o{r} (0,0,0)
(1,2,3) (1,2,3)

:[¢](0,0,0)— [xy—y2+$ Z}(o,o,o)_1'2_2'3+1 .32 =5

Alternatively

T t
r=|y | =1 2t
z 3t
where 0 <t < 1.
y + 32222 2t + 3t%(3t)* 2t + 27t
F = T—z = t—3t = —2t
2232 —y 2t3(3t) — 2t 6t — 2t
1
afry _ |,
dt 3

Thus the integration in question can be re-written as

1
/ r. My,
; dt

1 1
:/ 2t+27t4—2t-2—|—(6t4—2t)-3dt:/ 2t + 27t* — 4t + 18t — 6tdt
0 0

1
:/ 45t1 — 8tdt = [9t° — 4ty =9 —-4=5
0

73) For the double integral

0 —z?
/ / 12zydydx
—-1Jz

draw a clear, labelled sketch of the region of integration and evaluate the integral using any suitable method.

From the given equation we get the range of x and y as follows
r<y< —z? —-1<2<0

From these four conditions, we obtain
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X

N
X

0 —a? 0 . 0
/ / 12zydydx = / [12:Uy2]xz dr = / 12z(z* — 2%)dx

—1Ja —1 —1

0 6 470

:/ 1227 — 2¥)dz =12 |5 — 2| =[225 324" =—(2-3) =1

» 6 4], 1

74) Find the work

W:/F-dr
c

done by the force F = 2%i + zyj in moving a particle along the curve given parametrically by
z(t)y=1—1t
and
y(t) =t

where 0 < ¢t < 1.

a) Express z,y, z on the curve C using t and set the range of ¢

z(t)y=1—1t
y(t) =t
0<t<1

b) Express F as the function of ¢
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d{x}

t
c) Express@: @ using t

dt 61#

d{z}

dt

d{z} d{1—t}
d{T}_ t _ t o —1
R I e B G
dt dt

d) Putall of them into [ F - dflz}dt

d{r} (Y[ 14822 ~1 ! 9 5
/F- 7 dt—/0< PR . 1 dt—/o—l—t 4+ 2t +t —t°dt

1 t=1
2, 3 2 3 -1
= [ 122 43tdt=|—t—t3 4+t =-1--4+-=——
/0 " [ 3" T3 0 37276
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DAYS
65) Consider the differential equation

d{I}
LT =9
i r(t)
a) For the homogeneous equation with r(t) = 0, find the general solution.
a{ly o _ . .diy_ o 1o 1. T — e ol
7 —0, 7—[, jdl—dt, /IdI—/dt7 ..lnI—t—i-C—lne

oI =t = Det

—t

b) Find the general solution to the homogeneous equation charaterised by r(¢) = ¢~* and the particular solution for

I = 0.5 at £ = 0 and describe the behavior for large ¢

i) Allocate P(t) and Q(t)
When we compare the equation with Equation (85), we obtain P(t) = —1 and Q(t) = ¢!

ii) Calculate A = / P(t)dt
A= /P(t)dt: /1dt: —t

iii) Obtain ®(t) = ¢*
From Equation (86),

d(t) =et =t
iv) Calculate B = / O(t)Q(t)dt

B = /q)(t)Q(t)dt = /e_te_tdt = /e_%dt = —%e_% ®

1
v) Obtain the general solution 7 = —— [B + (]

o(t)
1 1 1 1
IziB e — _772t :_7715 t
(I)(t)[ + ] et[ 5¢ +c} ¢ e
- 1 . . . .
vi) Apply the conditionto / = 0] [B + | in order to find out c and thus the particular solution
As the condition (¢, 1) = (0,0.5)
1
0.5 = —56_0 + ce? ;o c.e=1
. L 1
Thus the particular solution is I = ——¢~! + ¢'. For large t, the term of —%e—t goes to zero and the term
of ¢! diverges and in the end I goes to infinite.
66) Solve the differential equation
01
—— —I=2"-1
12 ¢

subject to the conditions that  remains finite for large ¢ and that / =2 when t =0
To solve the following we must first find the complementary function Y;(¢) and and then the particular integral
Y5(t) . The final answer will be the sum of both:

I(t) = Yi(t) + Ya(t)
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0?1
92
N-1=0; " A=-11=a,8

In order to find out Y7 (¢), substituting Equation (103) into — I =0, we produce an auxiliary equation:
Since « and g are real and « # (3, the complementary function Y; (¢) is
Yi(t) = ae™t + bet

Now in order to find the particular solution, you need to know the correct substitution. One of two terms in r(¢) is
2¢~!. This means the coefficient of ¢, i.e., c = —1. Since ¢ = «, the particular integral is Equation (109). By taking
into account of the fact that the other term in r(¢) is —1, we set Ya(t) as

d{Ya(t
Ya(t)=gte " +h; .. {th()} = ge " —gte™
DYy (t
. 81:22( ) — _ge—t _ (ge—t _ gte_t) _ ge—t _ ge—t +gte_t — _2ge—t —|—gt2_t
Substituting these into the original ODE
%1 L
ﬁ — 1 =2 -1

. —2ge_t + gte_t — gte_t —h=2"t-1
=29t —h=2¢"—1
—29=2; .g=-1; —h=-1; -~ h=1
Thus the particular integral is
Ya(t) = —te P +1
Therefore the general solution for this ODE is
I(t) =Yi(t) + Ya(t) = ae " 4+ be! —te ™ +1
For the value of I to be finite for large ¢, the value of b must be zero. Thus
I(t)=aet —te ' +1
To find a we need to substitute 7 =2 and ¢ = 0.
2=a’+1; ~a=1
Therefore the particular solution to the ODE is

It)=e¢t—tet+1

67) The current I(t) at time ¢ in an electric circuit with total resistance R and self-inductance L satisfies

I
d{}+RI—e Dt

where 0 < D < %
a) Find the general solution to the problem.

i) Allocate P(t) and Q(¢)
When we compare the equation with Equation (85), we obtain P(t) = & and Q(t) = _LDt
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ii) Calculate A = /P(t)dt

iii) Obtain ®(t) = ¢4
From Equation (86),

iv) Calculate B = /@(t)Q(t)dt

_ _ Ete_Dt _l Ey_Dt
B= [ ot)Q(t)dt = [ ez I dt—L er dt

1 R 1 R 1 R
L/e =I1E-D) R—LD" v
. . 1
v) Obtain the general solution I = 0] (B + (]
1 1 1 R R 1 R 1 R
I=——|B = — (Z_D)t — —ft (f_D)t - - — Dt _ft
@(t)[ *d e%t {R—LDQ te ¢ R—LDe +c R—LDe + ce

b) The switch is closed at t = 0 and the initial value of the current is 7(0) = 2. When R = 6,L = 1, D =5, find the

solution to this initial value problem.

i) Obtain the general solution 7 =

B whenR=6,L.=1,D =
@(t[ + c] whenR = 6, , 5

—_ ~—

_ _R _ —6
R e A

I:
R—-LD

1
ii) Apply the conditionto 7 = 0] [B + ¢] in order to find out c and thus the particular solution
As the condition (¢, 1) = (0, 2)
2 =¢" 4 ¢ ; ce=2—-1=1

—5t 6t

Thus the particular solutionis I = ¢ " + ¢~

¢) Write down the steady-state value I of the current
The particular solution is 7 = ¢~5t + ¢ 7%, When ¢ is infinite, both ¢~°* and ¢~% approach zero. Thus I =0 is
the steady-state value.
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