
DAY7

64) An electric potential φ is given by

φ(x, y, z) = xy sin z + x2y + y2z + z2x

Find the directional derivative of the electric potential φ at the point P (1,−1, π) in the direction of the vector n = i−j−k.

• First approach The gradient ∇φ is

∇φ =
d {φ}
dx

i+
d {φ}
dy

j +
d {φ}
dy

k

= (y sin z + 2xy + z2)i+ (x sin z + x2 + 2yz)j + (xy cos z + y2 + 2zx)k

The magnitude of n is |n| =
√
1 + 1 + 1 =

√
3. Therefore the unit vector of n is n

|n| =
i−j−k√

3
. So the

directional derivative at P (1,−1, π) is

∇φ · n

|n|

∣

∣

∣

∣

(x,y,z)=(1,−1,π)

=
y sin z + 2xy + z2 − (x sin z + x2 + 2yz)− (xy cos z + y2 + 2zx)√

3

∣

∣

∣

∣

(x,y,z)=(1,−1,π)

=
−2 + π2 − 1 + 2π − 2− 2π√

3
=

−5 + π2

√
3

• Second approach The gradient ∇φ is

∇φ =
d {φ}
dx

i+
d {φ}
dy

j +
d {φ}
dy

k

= (y sin z + 2xy + z2)i+ (x sin z + x2 + 2yz)j + (xy cos z + y2 + 2zx)k

At P (1,−1, π), the gradient is (−2+π2)i+(1−2π)j+(2+2π)k , v. Now we need to find the magnitude of n-

directional component of v. When the angle between n and v is θ, the magnitude of n-directional component

of v can be written as |v| cos θ. As n · v = |n||v| cos θ, we can obtain the magnitude as

|v| cos θ = |v| n · v
|n||v| =

n · v
|n|

The magnitude of n is |n| =
√
1 + 1 + 1 =

√
3. Therefore

n · v
|n| =

−2 + π2 − (1− 2π)− (2 + 2π)√
3

=
−2 + π2 − 1 + 2π − 2− 2π√

3
=

−5 + π2

√
3

65) A total resistance Z is given by the formula

1

Z
= ωL+

1

ωC
+

1

R

Find the derivative
dZ

dC
. Using the chain rule, we take the partial derivative of both sides with respect to C. Note

that L, C and R are all independent of each other because Z can take any values. Thus dL
dC

= dR
dC

= 0. On the

other hand Z changes depending on C. Therefore Z is the function of C and dZ
dC

does exist.

1

Z
= ωL+

1

ωC
+

1

R

∴
d

dC

1

Z
=

d
(

ωL+ 1
ωC

+ 1
R

)

dC

∴
dZ

dC

d

dZ

1

Z
=

d (ωL)

dC
+

d
(

1
ωC

)

dC
+

d
(

1
R

)

dC

∴
dZ

dC
(− 1

Z2
) =

d
(

1
ωC

)

dC
= ω

d
(

1
C

)

dC
= ω(− 1

C2
)

∴
dZ

dC
= ω(

Z2

C2
)
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66) Let P = P (x, y), and x = e
t and y = e

−t. Find the total derivative
dP

dt
in terms of partial derivatives

∂P

∂x
and

∂P

∂y
.

Hence find the second total derivative
d2P

dt2
in terms of partial derivatives

∂P

∂x
,
∂P

∂y
,
∂2P

∂x2
,
∂2P

∂y2
, and

∂2P

∂x∂y
. You may

assume that the two mixed partial derivatives are equal. From the chain rule, we can say that :

d {P}
dt

=
d {P}
dx

· d {x}
dt

+
d {P}
dy

· d {y}
dt

=
d {P}
dx

· d
{

e
t
}

dt
+

d {P}
dy

· d
{

e
−t
}

dt

=
d {P}
dx

· et + d {P}
dy

· (−e
−t)

=
d {P}
dx

· x− d {P}
dy

· y

Now we differentiate again with respect to t as

∂2P

∂t2
=

d

{

d {P}
dt

}

dt
=

d

{

x
d {P}
dx

− y
d {P}
dy

}

dt

=
d {x}
dt

d {P}
dx

+ x

d

{

d {P}
dx

}

dt
− d {y}

dt

d {P}
dy

− y

d

{

d {P}
dy

}

dt

=
d {x}
dt

d {P}
dx

+ x(
d {x}
dt

d

{

d {P}
dx

}

dx
+

d {y}
dt

d

{

d {P}
dx

}

dy
)

−d {y}
dt

d {P}
dy

− y(
d {x}
dt

d

{

d {P}
dy

}

dx
+

d {y}
dt

d

{

d {P}
dy

}

dy
)

=
d
{

e
t
}

dt

d {P}
dx

+ x(
d
{

e
t
}

dt

d

{

d {P}
dx

}

dx
+

d
{

e
−t
}

dt

d

{

d {P}
dx

}

dy
)

−d
{

e
−t
}

dt

d {P}
dy

− y(
d
{

e
t
}

dt

d

{

d {P}
dy

}

dx
+

d
{

e
−t
}

dt

d

{

d {P}
dy

}

dy
)

= e
td {P}

dx
+ x(et

d

{

d {P}
dx

}

dx
− e

−t

d

{

d {P}
dx

}

dy
)

+e
−td {P}

dy
− y(et

d

{

d {P}
dy

}

dx
− e

−t

d

{

d {P}
dy

}

dy
)

= x
d {P}
dx

+ x(x
d2P

dx2
− y

∂2P

∂x∂y
)

+y
d {P}
dy

− y(x
∂2P

∂y∂x
− y

∂2P

∂y2
)

= x
d {P}
dx

+ x2
d2P

dx2
− xy

∂2P

∂x∂y
+ y

d {P}
dy

− yx
∂2P

∂y∂x
+ y2

∂2P

∂y2

= x
d {P}
dx

+ x2
d2P

dx2
− 2xy

∂2P

∂y∂x
+ y

d {P}
dy

+ y2
∂2P

∂y2
(∵

∂2P

∂y∂x
=

∂2P

∂x∂y
)
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DAY8

67) Locate all stationary points for the function f(x, y) = 2x3 + 3x2y + 2y3 − 144y + 7. How many stationary points are

there ?

At the stationary point,
d {f(x, y)}

dx
=

d {f(x, y)}
dy

= 0. Therefore we find (x, y) which satisfies
d {f(x, y)}

dx
=

d {f(x, y)}
dy

= 0 as follows:

d {f(x, y)}
dx

= 6x2 + 6xy = 6x(x+ y) = 0 ➀ ;
d {f(x, y)}

dy
= 3x2 + 6y2 − 144 = 0 ➁

➀ gives x = 0,−y. When x = 0, ➁ gives 6y2 = 144 i.e., y = ±2
√
6. When x = −y, ➁ gives 9y2 = 144 i.e., y = ±4.

Therefore the stationary points are 4 points of (x, y) = (0,±2
√
6), (∓4,±4).

68) A point (x, y) = (−4,−8) is one of the stationary points of the function f(x, y) = 12xy − 3y2 + 2x3. Find the nature

of this stationary point.

We need
d2f(x, y)

dx2
,
∂2f(x, y)

∂y∂x
,
∂2f(x, y)

∂y2
to find out the nature of the stationary point.

d2f(x, y)

dx2
=

d
{

12y + 6x2
}

dx
= 12x ➂ ;

∂2f(x, y)

∂x∂y
=

d {12x− 6y}
dx

= 12 ➃

∂2f(x, y)

∂y2
=

d {12x− 6y}
dy

= −6 ➄

The value of the discriminant at (x, y) = (−4,−8) is

d2f(x, y)

dx2
· ∂

2f(x, y)

∂y2
−
(

∂2f(x, y)

∂x∂y

)2
∣

∣

∣

∣

∣

(x,y)=(−4,−8)

= 12 · (−4) · (−6)− 122 > 0

d2f(x, y)

dx2

∣

∣

∣

∣

(x,y)=(−4,−8)

=
d
{

12y + 6x2
}

dx

∣

∣

∣

∣

∣

(x,y)=(−4,−8)

= 12x|(x,y)=(−4,−8) = 12 · (−4) < 0

Therefore the the stationary point at (x, y) = (−4,−8) corresponds to a local maximum point.

69) Explain why, for the function f(x, y) = (x + y)e−xy, the stationary point at x = 1√
2
, y = 1√

2
is a saddle point despite

both
d2f(x, y)

dx2
and

∂2f(x, y)

∂y2
being negative.

We need
d2f(x, y)

dx2
,
∂2f(x, y)

∂y∂x
,
∂2f(x, y)

∂y2
to find out the nature of the stationary points.

d2f(x, y)

dx2
= e

−xy(−2y + xy2 + y3) ➂ ;
∂2f(x, y)

∂x∂y
= e

−xy(−2x− 2y + xy2 + x2y) ➃

∂2f(x, y)

∂y2
= e

−xy(−2x+ yx2 + x3) ➄

When (x, y) = (− 1√
2
,− 1√

2
)

d2f(x, y)

dx2
= e

− 1

2 (
1√
2
) ;

∂2f(x, y)

∂x∂y
= e

− 1

2 (
3√
2
) ;

∂2f(x, y)

∂y2
= e

− 1

2 (
1√
2
)

The discriminant D is

D =
d2f(x, y)

dx2
· ∂

2f(x, y)

∂y2
−
(

∂2f(x, y)

∂x∂y

)2
∣

∣

∣

∣

∣

(x,y)=( 1
√

2
, 1
√

2
)

=
d2f(x, y)

dx2
· ∂

2f(x, y)

∂y2
−
(

∂2f(x, y)

∂x∂y

)2
∣

∣

∣

∣

∣

(x,y)=(− 1
√

2
,− 1

√

2
)

= e
− 1

2
− 1

2 (
1

2
− 9

2
) < 0

Thus the stationary point (x, y) = (− 1√
2
,− 1√

2
) is a saddle point.
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DAY4

46) The current, I , is given by

I(V ) = Is sinh(V )

where V is the applied voltage and Is is a constant. If the operating voltage is given by Va = π (measured in Volts),

find a second order Taylor approximation for I(V ) about this operating voltage.

A second order Taylor expansion for I(V ) about V = π is

I(V ) = I(π) + (V − π)
dI

dV

∣

∣

∣

∣

V=π

+
(V − π)2

2!

d2I

dV 2

∣

∣

∣

∣

V=π

We now need dI
dV

and d2I
dV 2 .

I(V ) = Is sinh(V ) = Is
e
V − e

−V

2
dI

dV
= Is

e
V + e

−V

2
d2I

dV 2
= Is

e
V − e

−V

2

Therefore

I(V ) = Is sinh(π) + (V − π) Is
e
V + e

−V

2

∣

∣

∣

∣

V=π

+
(V − π)2

2!
Is
e
V − e

−V

2

∣

∣

∣

∣

V=π

= Is sinh(π) + Is
e
π + e

−π

2
(V − π) + Is

e
π − e

−π

2

(V − π)2

2!

= Is sinh(π) + Is cosh(π)(V − π) + Is sinh(π)
(V − π)2

2

47) The current, I , is given by

I(V, t) = e
−V cos(ωt)

where V is the applied voltage and t is time. Find the term in t2V 3 in the Taylor series expansion around t = 0, V = 0.

When t = 0, V = 0, the term that has t2V 3 in it must be the term
1

5!
5C2

∂5I

∂t2∂V 3

∣

∣

∣

∣

t=0,V=0

t2V 3 as the overall order

is equal to 5. Therefore

I(V, t) = e
−V cos(ωt)

∂I

∂t
= −ωe−V sin(ωt)

∂2I

∂t2
= −ω2

e
−V cos(ωt)

∂3I

∂V ∂t2
= −(−1)ω2

e
−V cos(ωt) = ω2

e
−V cos(ωt)

∂4I

∂V 2∂t2
= −ω2

e
−V cos(ωt)

∂5I

∂V 3∂t2
= ω2

e
−V cos(ωt)

When we put this into
1

5!
5C2

∂5I

∂t2∂V 3

∣

∣

∣

∣

t=0,V=0

t2V 3

1

5!
5C2ω

2
e
−V cos(ωt)

∣

∣

∣

∣

t=0,V=0

t2V 3 =
1

5!
5C2ω

2
e
−0 cos(ω0)t2V 3 =

1

5 · 4 · 3 · 2 · 1
5 · 4
2 · 1ω

2t2V 3 =
1

12
ω2t2V 3
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48) The current, I , is given by

I(V,R) =
e
V

R

where V is the applied voltage and R is a variable.

a) Find the second order Taylor series for I around V = 0, R = 1

The first derivatives of I with respect to V and R are

∂I

∂V
=

e
V

R
∂I

∂R
= −e

V R−2

The second derivatives of I with respect to V and R are

∂2I

∂V 2
=

e
V

R
∂2I

∂R2
= 2eV R−3

∂2I

∂R∂V
= −e

V R−2

We evaluate these derivatives at (V,R) = (0, 1) as follows.

∂I

∂V

∣

∣

∣

∣

(V,R)=(0,1)

= 1

∂I

∂R

∣

∣

∣

∣

(V,R)=(0,1)

= −1

∂2I

∂V 2

∣

∣

∣

∣

(V,R)=(0,1)

= 1

∂2I

∂R2

∣

∣

∣

∣

(V,R)=(0,1)

= 2

∂2I

∂R∂V

∣

∣

∣

∣

(V,R)=(0,1)

= −1

Therefore

I(V,R) = I(0, 1) + (V − 0)
∂I

∂V

∣

∣

∣

∣

(V,R)=(0,1)

+ (R− 1)
∂I

∂R

∣

∣

∣

∣

(V,R)=(0,1)

+
1

2!

[

(V − 0)2
∂2I

∂V 2

∣

∣

∣

∣

(V,R)=(0,1)

+ 2(V − 0)(R− 1)
∂2I

∂R∂V

∣

∣

∣

∣

(V,R)=(0,1)

+ (R− 1)2
∂2I

∂R2

∣

∣

∣

∣

(V,R)=(0,1)

]

= 1 + V −R+ 1 +
1

2

[

V 2 − 2V (R− 1)− (R− 1)2
]

= 2 + V −R+
1

2

[

V 2 − 2V (R− 1)− (R− 1)2
]

b) Using the series estimate I(0.1, 0.9) and compare it with the exact value of I(0.1, 0.9)

We substitute V = 0.1, R = 0.9 into the second-order Taylor series we found in question 48a.

I(0.1, 0.9) = 2 + 0.1− 0.9 +
1

2

[

0.12 − 2 · 0.1(0.9− 1)− (0.9− 1)2
]

= 1.21

If we work it out manually using I(V,R) =
e
V

R
it becomes I(0.1, 0.9) =

e
0.1

0.9
= 1.22797 Therefore the two

results differ by 0.0179677.
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DAY7

71) A loudspeaker cone is generated by rotating the curve y = coshx− 1 about the x− axis through 2π radians from x = 0

to x = 1. Calculate the surface area of the cone excluding the two ends.

[5 marks]

Since coshx = e
x + e

−x

2 ,
d {coshx}

dx
=

e
x − e

−x

2
. Surface area is

∫ 1

0
(2πy)

√

dx2 + dy2 =

∫ 1

0
(2πy)

√

1 +

(

d {y}
dx

)2

dx =

∫ 1

0
(2πy)

√

1 +

(

e
x − e

−x

2

)2

dx

=

∫ 1

0
(2πy)

√

1 +
e
2x + e

−2x − 2

4
dx =

∫ 1

0
(2πy)

√

4 + e
2x + e

−2x − 2

4
dx =

∫ 1

0
(2πy)

√

e
2x + e

−2x + 2

4
dx

=

∫ 1

0
(2πy)

√

(

e
x + e

−x

2

)2

dx =

∫ 1

0
(2πy)× e

x + e
−x

2
dx

= 0.5π

∫ 1

0
(ex + e

−x − 2)× (ex + e
−x)dx = 0.5π

∫ 1

0
(e2x + e

−2x + 2− 2ex − 2e−x)dx

= 0.5π[
1

2
e
2x − 1

2
e
−2x + 2x− 2ex + 2e−x]10 = 0.5π(

1

2
e
2 − 1

2
e
−2 + 2− 2e+ 2e−1)

72) For the force

F = (y + 3x2z2)i+ (x− z)j+ (2x3z − y)k

find the potential φ such that F = ∇φ. Hence evaluate

∫ (1,2,3)

(0,0,0)
(y + 3x2z2)dx+ (x− z)dy + (2x3z − y)dz

F = ∇φ =
d {φ}
dx

i+
d {φ}
dy

j+
d {φ}
dz

k

≡ (y + 3x2z2)i+ (x− z)j+ (2x3z − y)k

Therefore

d {φ}
dx

= y + 3x2z2 ;
d {φ}
dy

= x− z ;
d {φ}
dz

= 2x3z − y

This is written as

∂φ = (y + 3x2z2)∂x ; ∂φ = (x− z)∂y ; ∂φ = (2x3z − y)∂z

Thus
∫

∂φ =

∫

(y + 3x2z2)∂x ; ∴ φ = xy + x3z2 + cα(y, z)
∫

∂φ =

∫

(x− z)∂y ; ∴ φ = xy − yz + cβ(x, z)
∫

∂φ =

∫

(2x3z − y)∂z ; ∴ φ = x3z2 − yz + cγ(x, y)
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Thus we can tell that φ = xy − yz + x3z2 When we define

dr = dxi+ dyj+ dzk, (y + 3x2z2)dx+ (x− z)dy + (2x3z − y)dz = F · dr. Since F = ∇φ, the integral in question

is manipulated as
∫ (1,2,3)

(0,0,0)
F · dr =

∫ (1,2,3)

(0,0,0)
∇φ · dr =

∫ (1,2,3)

(0,0,0)

∂ {φ}
∂ {r} · dr =

∫ (1,2,3)

(0,0,0)
dφ

= [φ]
(1,2,3)
(0,0,0) =

[

xy − yz + x3z2
](1,2,3)

(0,0,0)
= 1 · 2− 2 · 3 + 13 · 32 = 5

Alternatively

r =





x

y

z



 =





t

2t
3t





where 0 ≤ t ≤ 1.

F =





y + 3x2z2

x− z

2x3z − y



 =





2t+ 3t2(3t)2

t− 3t
2t3(3t)− 2t



 =





2t+ 27t4

−2t
6t4 − 2t





d {r}
dt

=





1
2
3





Thus the integration in question can be re-written as
∫ 1

0
F · d {r}

dt
dt

=

∫ 1

0
2t+ 27t4 − 2t · 2 + (6t4 − 2t) · 3dt =

∫ 1

0
2t+ 27t4 − 4t+ 18t4 − 6tdt

=

∫ 1

0
45t4 − 8tdt = [9t5 − 4t2]10 = 9− 4 = 5

73) For the double integral

∫ 0

−1

∫ −x2

x

12xydydx

draw a clear, labelled sketch of the region of integration and evaluate the integral using any suitable method.

From the given equation we get the range of x and y as follows

x ≤ y ≤ −x2 − 1 ≤ x ≤ 0

From these four conditions, we obtain
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y
=
−
x
2

0-1

0

-1

x

y

y = x

∫ 0

−1

∫ −x2

x

12xydydx =

∫ 0

−1

[

12xy2
]−x2

x
dx =

∫ 0

−1
12x(x4 − x2)dx

=

∫ 0

−1
12(x5 − x3)dx = 12

[

x6

6
− x4

4

]0

−1

=
[

2x6 − 3x4
]0

−1
= −(2− 3) = 1

74) Find the work

W =

∫

C

F · dr

done by the force F = x2i+ xyj in moving a particle along the curve given parametrically by

x(t) = 1− t

and

y(t) = t

where 0 ≤ t ≤ 1.

a) Express x, y, z on the curve C using t and set the range of t

x(t) = 1− t

y(t) = t

0 ≤ t ≤ 1

b) Express F as the function of t

F =

(

x2

xy

)

=

(

(1− t)2

(1− t)t

)

=

(

1 + t2 − 2t
t− t2

)
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c) Express
d {r}
dt

=













d {x}
dt

d {y}
dt

d {z}
dt













using t

d {r}
dt

=







d {x}
dt

d {y}
dt






=







d {1− t}
dt

d {t}
dt






=

(

−1
1

)

d) Put all of them into
∫

F · d {r}
dt

dt

∫

F · d {r}
dt

dt =

∫ 1

0

(

1 + t2 − 2t
t− t2

)

·
(

−1
1

)

dt =

∫ 1

0
−1− t2 + 2t+ t− t2dt

=

∫ 1

0
−1− 2t2 + 3tdt =

[

−t− 2

3
t3 +

3

2
t2
]t=1

t=0

= −1− 2

3
+

3

2
=

−1

6
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DAY5

65) Consider the differential equation

d {I}
dt

− I = r(t)

a) For the homogeneous equation with r(t) = 0, find the general solution.

d {I}
dt

− I = 0 ; ∴
d {I}
dt

= I ; ∴
1

I
dI = dt ; ∴

∫

1

I
dI =

∫

dt ; ∴ ln I = t+ c = ln et+c

∴ I = e
t+c = De

t

b) Find the general solution to the homogeneous equation charaterised by r(t) = e
−t and the particular solution for

I = 0.5 at t = 0 and describe the behavior for large t

i) Allocate P (t) and Q(t)

When we compare the equation with Equation (85), we obtain P (t) = −1 and Q(t) = e
−t

ii) Calculate A =

∫

P (t)dt

A =

∫

P (t)dt =

∫

−1dt = −t

iii) Obtain Φ(t) = e
A

From Equation (86),

Φ(t) = e
A = e

−t

iv) Calculate B =

∫

Φ(t)Q(t)dt

B =

∫

Φ(t)Q(t)dt =

∫

e
−t
e
−tdt =

∫

e
−2tdt = −1

2
e
−2t

➀

v) Obtain the general solution I =
1

Φ(t)
[B + c]

I =
1

Φ(t)
[B + c] =

1

e
−t

[

−1

2
e
−2t + c

]

= −1

2
e
−t + cet

vi) Apply the condition to I =
1

Φ(t)
[B + c] in order to find out c and thus the particular solution

As the condition (t, I) = (0, 0.5)

0.5 = −1

2
e
−0 + ce0 ; ∴ c = 1

Thus the particular solution is I = −1

2
e
−t + e

t. For large t, the term of −1
2e

−t goes to zero and the term

of et diverges and in the end I goes to infinite.

66) Solve the differential equation

∂2I

∂t2
− I = 2e−t − 1

subject to the conditions that I remains finite for large t and that I = 2 when t = 0

To solve the following we must first find the complementary function Y1(t) and and then the particular integral

Y2(t) . The final answer will be the sum of both:

I(t) = Y1(t) + Y2(t)
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In order to find out Y1(t), substituting Equation (103) into
∂2I

∂t2
− I = 0, we produce an auxiliary equation:

λ2 − 1 = 0 ; ∴ λ = −1, 1 ≡ α, β

Since α and β are real and α 6= β, the complementary function Y1(t) is

Y1(t) = ae−t + bet

Now in order to find the particular solution, you need to know the correct substitution. One of two terms in r(t) is

2e−t. This means the coefficient of t, i.e., c = −1. Since c = α, the particular integral is Equation (109). By taking

into account of the fact that the other term in r(t) is −1, we set Y2(t) as

Y2(t) = gte−t + h ; ∴
d {Y2(t)}

dt
= ge−t − gte−t

∴
∂2Y2(t)

∂t2
= −ge−t − (ge−t − gte−t)− ge−t − ge−t + gte−t = −2ge−t + gte−t

Substituting these into the original ODE

∂2I

∂t2
− I = 2e−t − 1

∴ −2ge−t + gte−t − gte−t − h = 2e−t − 1

∴ −2ge−t − h = 2e−t − 1

∴ −2g = 2 ; ∴ g = −1 ; − h = −1 ; ∴ h = 1

Thus the particular integral is

Y2(t) = −te−t + 1

Therefore the general solution for this ODE is

I(t) = Y1(t) + Y2(t) = ae−t + bet − te−t + 1

For the value of I to be finite for large t, the value of b must be zero. Thus

I(t) = ae−t − te−t + 1

To find a we need to substitute I = 2 and t = 0.

2 = ae0 + 1 ; ∴ a = 1

Therefore the particular solution to the ODE is

I(t) = e
−t − te−t + 1

67) The current I(t) at time t in an electric circuit with total resistance R and self-inductance L satisfies

L
d {I}
dt

+RI = e
−Dt

where 0 < D < R
L

.

a) Find the general solution to the problem.

i) Allocate P (t) and Q(t)

When we compare the equation with Equation (85), we obtain P (t) = R
L

and Q(t) = e
−Dt

L
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ii) Calculate A =

∫

P (t)dt

A =

∫

P (t)dt =

∫

R

L
dt =

R

L
t

iii) Obtain Φ(t) = e
A

From Equation (86),

Φ(t) = e
A = e

R

L
t

iv) Calculate B =

∫

Φ(t)Q(t)dt

B =

∫

Φ(t)Q(t)dt =

∫

e

R

L
t e

−Dt

L
dt =

1

L

∫

e

R

L
t−Dtdt

=
1

L

∫

e
(R

L
−D)tdt =

1

L(R
L
−D)

e
(R

L
−D)t =

1

R− LD
e
(R

L
−D)t

➀

v) Obtain the general solution I =
1

Φ(t)
[B + c]

I =
1

Φ(t)
[B + c] =

1

e

R

L
t

[

1

R− LD
e
(R

L
−D)t + c

]

= e
−R

L
t

[

1

R− LD
e
(R

L
−D)t + c

]

=
1

R− LD
e
−Dt + ce−

R

L
t

b) The switch is closed at t = 0 and the initial value of the current is I(0) = 2. When R = 6, L = 1, D = 5, find the

solution to this initial value problem.

i) Obtain the general solution I =
1

Φ(t)
[B + c] whenR = 6, L = 1, D = 5

I =
1

R− LD
e
−Dt + ce−

R

L
t = e

−5t + ce−6t

ii) Apply the condition to I =
1

Φ(t)
[B + c] in order to find out c and thus the particular solution

As the condition (t, I) = (0, 2)

2 = e
0 + ce0 ; ∴ c = 2− 1 = 1

Thus the particular solution is I = e
−5t + e

−6t

c) Write down the steady-state value Is of the current

The particular solution is I = e
−5t + e

−6t. When t is infinite, both e
−5t and e

−6t approach zero. Thus I = 0 is

the steady-state value.
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