Integral by parts

Multiplication of f(x) and g(x)

$$\int f(x)g(x)dx$$

$$= \left[f(x)\int g(x)dx\right] - \int \left(\frac{d\left\{f(x)\right\}}{dx} \cdot \int g(x)dx\right)dx$$

f(x) is

- logarithmic (highest priority)
- polynomial

Multiplication of f(x) and g(x)

$$\int_{a}^{b} x^{2} e^{x} dx$$

Question: What is f(x)? and What is g(x)? f(x) is

- polynomial
- logarithmic

Multiplication of f(x) and g(x)

$$\int_{a}^{b} x^{2} e^{x} dx$$

Answer:

$$f(x) = x^{2}$$

$$g(x) = e^{x}$$

$$\left[x^{2} \cdot \int e^{x} dx\right]_{a}^{b} - \int_{a}^{b} \left(\frac{d\left\{x^{2}\right\}}{dx} \cdot \int e^{x} dx\right) dx$$

Multiplication of f(x) and g(x)

$$\int_{a}^{b} x \ln x dx$$

Question: What is f(x)? and What is g(x)? f(x) is

- polynomial
- logarithmic

Multiplication of f(x) and g(x)

$$\int_{a}^{b} x \ln x dx$$

Answer: a logarithmic fuction should have the higher priority for f(x) than the polynomial function

$$f(x) = \ln x$$

$$g(x) = x$$

$$\left[\ln x \cdot \int x dx \right]_{a}^{b} - \int_{a}^{b} \left(\frac{d \{ \ln x \}}{dx} \cdot \int x dx \right) dx$$

Multiplication of f(x) and g(x)

$$\int_{a}^{b} (\ln x)^{2} dx$$

Question: What is f(x)? and What is g(x)? f(x) is

- polynomial
- logarithmic

Multiplication of f(x) and g(x)

$$\int_{a}^{b} (\ln x)^{2} dx$$

Answer: When you see $\ln x$, always see an invisible 1!! as $1 \cdot (\ln x)^2$

$$f(x) = (\ln x)^2$$
$$g(x) = 1$$

$$\left[(\ln x)^2 \cdot \int 1 dx \right]_a^b - \int_a^b \left(\frac{d \left\{ (\ln x)^2 \right\}}{dx} \cdot \int 1 dx \right) dx$$

Multiplication of f(x) and g(x)

$$\int_{a}^{b} e^{-x} \sin x dx$$

Question: What is f(x)? and What is g(x)? f(x) is

- polynomial
- logarithmic

Multiplication of f(x) and g(x)

$$\int_{a}^{b} e^{-x} \sin x dx$$

Answer: We can not choose a suitable function for $f(x) \longrightarrow$ randome allocation.

$$f(x) = \sin x$$

$$g(x) = e^{-x}$$

$$\left[\sin x \cdot \int e^{-x} dx\right]_{a}^{b} - \int_{a}^{b} \left(\frac{d\left\{\sin x\right\}}{dx} \cdot \int e^{-x} dx\right) dx$$

Multiplication of f(x) and g(x): $\int_{0}^{b} e^{-x} \sin x dx$

$$\left[\sin x \cdot \int e^{-x} dx\right]_{a}^{b} - \int_{a}^{b} \left(\frac{d\left\{\sin x\right\}}{dx} \cdot \int e^{-x} dx\right) dx$$

$$= \left[\sin x(-e^{-x})\right]_{a}^{b} - \int_{a}^{b} \left(\cos x \cdot (-e^{-x})\right) dx$$

$$= -\left[\sin x \cdot e^{-x}\right]_{a}^{b} + \int_{a}^{b} \left(\cos x \cdot e^{-x}\right) dx$$

Question: You can not calculate the second term. What is the next step?

Multiplication of
$$f(x)$$
 and $g(x)$:
$$\int_{a}^{b} e^{-x} \sin x dx$$

$$\int_{a}^{b} e^{-x} \cos x dx$$

Answer: Another "Integral by parts" for

$$\int_{a}^{b} \left(e^{-x} \cdot \cos x \right) dx$$

Question: How about the allocation of f(x) and g(x) for this integral ?

Multiplication of
$$f(x)$$
 and $g(x)$:
$$\int_{0}^{b} e^{-x} \sin x dx$$

$$\int_{a}^{b} e^{-x} \cos x dx$$

Answer: Try to keep f(x) and g(x) from the first "integral by parts" as much as possible

$$f(x) = \cos x$$

 $g(x) = e^{-x}$

$$\left[\cos x \cdot \int e^{-x} dx\right]_{a}^{b} - \int_{a}^{b} \left(\frac{d\left\{\cos x\right\}}{dx} \cdot \int e^{-x} dx\right) dx$$

Multiplication of f(x) and g(x): $\int_{0}^{\infty} e^{-x} \sin x dx$

$$\begin{aligned} \left[\cos x \cdot \int e^{-x} dx\right]_{a}^{b} - \int_{a}^{b} \left(\frac{d\left\{\cos x\right\}}{dx} \cdot \int e^{-x} dx\right) dx \\ &= \left[\cos x \cdot (-e^{-x})\right]_{a}^{b} - \int_{a}^{b} \left(-\sin x \cdot (-e^{-x})\right) dx \\ &= -\left[\cos x \cdot e^{-x}\right]_{a}^{b} - \int_{a}^{b} \left(\sin x \cdot e^{-x}\right) dx \end{aligned}$$

Multiplication of f(x) and g(x): $\int_{0}^{\infty} e^{-x} \sin x dx$

In the end we've got

$$\int_{a}^{b} \cos x e^{-x} dx = -\left[\cos x \cdot e^{-x}\right]_{a}^{b} - \int_{a}^{b} \left(\sin x \cdot e^{-x}\right) dx$$

We've started with

$$\int_{a}^{b} e^{-x} \sin x dx = -\left[\sin x \cdot e^{-x}\right]_{a}^{b} + \int_{a}^{b} \left(\cos x \cdot e^{-x}\right) dx$$

By adding these two equations we get:

Multiplication of
$$f(x)$$
 and $g(x)$:
$$\int_{0}^{\infty} e^{-x} \sin x dx$$

By adding these two equations we get:

$$\int_{a}^{b} e^{-x} \sin x dx$$

$$= -\left[\sin x \cdot e^{-x}\right]_{a}^{b} - \left[\cos x \cdot e^{-x}\right]_{a}^{b} - \int_{a}^{b} \sin x \cdot e^{-x} dx$$

We've got the original integral of $\int_{a}^{b} \left(\sin x \cdot e^{-x}\right) dx$ at the right hand side . Always expect this happens when random allocation is necessary.

Multiplication of f(x) and g(x): $\int_{0}^{b} e^{-x} \sin x dx$

Finally we get

$$\therefore 2 \int_{a}^{b} e^{-x} \sin x dx = -\left[\sin x \cdot e^{-x}\right]_{a}^{b} - \left[\cos x \cdot e^{-x}\right]_{a}^{b}$$
$$\therefore \int_{a}^{b} e^{-x} \sin x dx = -\frac{1}{2} \left[\sin x \cdot e^{-x} + \cos x \cdot e^{-x}\right]_{a}^{b}$$

Integral by substitution t = g(x)

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} h(t)dt$$

- simplify f(x) by setting t = g(x)
- ullet find the relationship between dx and dt such

as
$$\frac{dt}{dx} = \frac{dg(x)}{dx} \rightarrow \frac{dx}{dt} = \frac{1}{\frac{dg(x)}{dx}} \rightarrow dx = \frac{1}{\frac{dg(x)}{dx}} dt$$

Integral by substitution t = g(x)

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} h(t)dt$$

- manipulate the original function f(x)dx to remove x to achieve f(x)dx = h(t)dt
- ullet find the range of t, i.e.,lpha and eta
- solve $\int_{\alpha}^{\beta} h(t) dt$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} 2x \sqrt{1 + x^2} dx$$

Question: How do you set t to simplify $2x\sqrt{1+x^2}$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} 2x \sqrt{1 + x^2} dx$$

Answer : $t = 1 + x^2$

And

$$\frac{d\{t\}}{dx} = \frac{d\{1+x^2\}}{dx} = 2x$$

$$\therefore dt = 2xdx$$

$$\therefore dx = \frac{1}{2x}dt$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{dx}{\sqrt{x} + \sqrt[4]{x}}$$

Question: How do you set t to simplify $\frac{1}{\sqrt{X} + \sqrt[4]{X}}$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{dx}{\sqrt{x} + \sqrt[4]{x}}$$

Answer : $t = \sqrt[4]{x}$

And

$$d \begin{cases} t^4 = x \\ d \begin{cases} t^4 \end{cases} = \frac{d \{x\}}{dx}$$

$$d \begin{cases} t^4 \end{cases} = \frac{d \{x\}}{dx}$$

$$d \begin{cases} t^3 \\ dx \end{cases} = 1$$

$$dx = 4t^3 dt$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} (3x+5)^{6} dx$$

Question: How do you set t to simplify $(3x + 5)^6$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_a^b (3x+5)^6 dx$$

Answer : t = 3x + 5

And

$$\therefore \frac{d\{t\}}{dx} = \frac{d\{3x+5\}}{dx}$$

$$\therefore \frac{d\{t\}}{dx} = 3 \longrightarrow dt = 3dx$$

$$\therefore dx = \frac{1}{2}dt$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{dx}{\sqrt{3-\sqrt{x}}}$$

Question: How do you set t to simplify $\frac{1}{\sqrt{3-\sqrt{x}}}$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{dx}{\sqrt{3-\sqrt{x}}}$$

Answer: $t = \sqrt{3 - \sqrt{x}}$

$$t^{2} = 3 - \sqrt{x}$$

$$\therefore \sqrt{x} = 3 - t^{2} \longrightarrow x = (3 - t^{2})^{2}$$

$$\therefore \frac{d\{x\}}{dt} = \frac{d\{(3 - t^{2})^{2}\}}{dt} = 2(3 - t^{2})(-2t)$$

$$\therefore dx = -4t(3 - t^{2})dt$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{e^{x}}{e^{x} + 1} dx$$

Question: How do you set t to simplify $\frac{\mathfrak{e}^x}{\mathfrak{e}^x + 1}$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{e^{x}}{e^{x} + 1} dx$$

Answer: $t = e^x + 1$

And

$$\frac{d\{t\}}{dx} = \frac{d\{e^{x} + 1\}}{dx} = e^{x}$$

$$\therefore dt = e^{x} dx$$

$$\therefore dx = \frac{1}{e^{x}} dt = e^{-x} dt$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{x}{\sqrt{x^2 + 1}} dx$$

Question: How do you set t to simplify $\frac{x}{\sqrt{x^2+1}}$

Note: this is NOT
$$\frac{1}{\sqrt{x^2+1}}$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{x}{\sqrt{x^2 + 1}} dx$$

Answer : $t = x^2 + 1$

And

$$\frac{d\{t\}}{dx} = \frac{d\{x^2 + 1\}}{dx} = 2x$$

$$\therefore dt = 2xdx \longrightarrow dx = \frac{1}{2x}dt$$

.
$$dt = 2xdx \longrightarrow dx = \frac{1}{2x}dt$$

Integral by substitution x = k(t)

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} h(t) dt$$

- simplify f(x) by setting x = k(t)
- find the relationship between dx and dt such

as
$$\frac{dx}{dt} = \frac{dk(t)}{dt} \rightarrow dx = \left(\frac{dk(t)}{dt}\right) dt$$

Integral by substitution x = k(t)

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} h(t)dt$$

- manipulate the original function f(x)dx to remove x to achieve f(x)dx = h(t)dt
- ullet find the range of t, i.e.,lpha and eta
- solve $\int_{\alpha}^{\beta} h(t) dt$

Integral by substitution x = k(t)

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} h(t)dt$$

f(x) involves	X = k(t)
$\sqrt{x^2-a^2}$	$x = a \frac{e^t + e^{-t}}{2} \equiv \cosh(t)$
$\sqrt{X^2+a^2}$	$x = a \frac{e^t - e^{-t}}{2} \equiv \sinh(t)$
$\sqrt{a^2-x^2}$	$x = a \sin t$
$\frac{1}{X^2 + Q^2}$	$x = a \tan t$

Note: The bottom 4 lines in the Yellow card may save your time and effort

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{1}{\sqrt{3+x^2}} dx$$

Question: How do you set x to simplify $\frac{1}{\sqrt{3+x^2}}$

$$\frac{1}{\sqrt{3+x^2}}$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{1}{\sqrt{3+x^2}} dx$$

Answer: $x = \sqrt{3} \frac{e^{\tau} - e^{-\tau}}{2}$

Note: this is not necessary if you remember the one in yellow card:

$$\int \frac{dX}{\sqrt{X^2 + a^2}} = \sinh^{-1}\left(\frac{X}{a}\right) \text{ where } a = \sqrt{3}$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \sqrt{5 + x^2} dx$$

Question: How do you set x to simplify $\sqrt{5+x^2}$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \sqrt{5 + x^2} dx$$

Answer: $X = \sqrt{5} \frac{e^{\tau} - e^{-\tau}}{2}$

Note: You can NOT use the one in yellow card:

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \sinh^{-1} \left(\frac{x}{a} \right)$$

$$\frac{d\{x\}}{dt} = \frac{d\left\{\sqrt{5}\frac{e^t - e^{-t}}{2}\right\}}{dt} = \sqrt{5}\frac{e^t + e^{-t}}{2}$$

$$\therefore dx = \sqrt{5}\frac{e^t + e^{-t}}{2}dt$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \sqrt{3-2x^2} dx$$

Question: How do you set x to simplify $\sqrt{3-2x^2}$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \sqrt{3 - 2x^2} dx$$

Answer: Modify

$$\sqrt{3-2x^2} = \sqrt{2(3/2-x^2)} = \sqrt{2}\sqrt{3/2-x^2}$$
 and then

 $\mathbf{set} \ x = \sqrt{3/2} \sin t$

Note: You can NOT use the one in yellow card:

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right)$$

$$\frac{d\{x\}}{dt} = \frac{d\left\{\sqrt{3}\sin t\right\}}{dt} = \sqrt{3}\cos t; \therefore dx = \sqrt{3}\cos t \cdot dt$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{1}{\sqrt{3-x^2}} dx$$

Question: How do you set x to simplify $\frac{1}{\sqrt{3-x^2}}$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{1}{\sqrt{3-x^2}} dx$$

Answer: $x = \sqrt{3} \sin t$

Note: This is not necessary if you remember the

one in the yellow card : $\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right)$

where $a = \sqrt{3}$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{1}{2x^2 + 6} dx$$

Question: How do you set x to simplify $\frac{1}{2x^2+6}$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_{a}^{b} \frac{1}{2x^2 + 6} dx$$

Answer: $x = \sqrt{3} \tan t$

Note: This is not necessary if you remember the one in the yellow card

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) \text{ where } a = \sqrt{3}$$
because
$$\frac{1}{2x^2 + 6} = \frac{1}{2(x^2 + 3)} = \frac{1}{2} \cdot \frac{1}{x^2 + 3}$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_0^1 \frac{x+1}{(x^2+1)^2} dx$$

Question: How do you set x to simplify $\frac{x+1}{(x^2+1)^2}$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_0^1 \frac{x+1}{\left(x^2+1\right)^2} dx$$

Answer: $x = \tan t$

Note: You can NOT use the one in the yellow

card:
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$$
$$\frac{d\{x\}}{dt} = \frac{d\{\tan t\}}{dt} = \frac{1}{\cos^2 t}$$
$$\therefore dx = \frac{dt}{\cos^2 t}$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_0^1 \frac{x+1}{\left(x^2+1\right)^2} dx$$

Manipulate f(x)dx with $x = \tan t$

$$\frac{x+1}{(x^2+1)^2}dx = \frac{\tan t + 1}{(\tan^2 t + 1)^2} \frac{dt}{\cos^2 t}$$

=
$$(\tan t + 1)(\cos^2 t)^2 \frac{dt}{\cos^2 t} = (\tan t + 1)\cos^2 t dt$$

$$= (\tan t + 1)(\cos^2 t)^2 \frac{dt}{\cos^2 t} = (\tan t + 1)\cos^2 t dt$$
$$= (\cos t \sin t + \cos^2 t) dt = (\frac{1}{2}\sin 2t + \frac{1 + \cos 2t}{2}) dt$$

f(x) can be expressed as a *simpler* function of t as h(t)

$$\int_0^1 \frac{x+1}{(x^2+1)^2} dx$$

Find the range of t with $x = \tan t$

$$0 = \tan t \longrightarrow t = 0$$
$$1 = \tan t \longrightarrow t = \frac{\pi}{4}$$

f(x) can be expressed as a *simpler* function of t as h(t)

Finally

$$\int_{0}^{1} \frac{x+1}{(x^{2}+1)^{2}} dx$$

$$= \int_{0}^{\frac{\pi}{4}} (\frac{1}{2} \sin 2t + \frac{1+\cos 2t}{2}) dt$$

$$= \left[\frac{-1}{4} \cos 2t + \frac{t}{2} + \frac{\sin 2t}{4} \right]_{0}^{\frac{\pi}{4}}$$

$$= \frac{\pi}{8} + \frac{1}{4} + \frac{1}{4} = \frac{\pi}{8} + \frac{1}{2}$$

Integral of
$$\frac{P(x)}{Q(x)}$$

$$Q(x) = (ax + b)(cx + d)(ex + f)$$
 where a,b,\cdots are real, not complex

• separate $\frac{P(x)}{Q(x)}$ into several small fractions such

$$as \frac{A}{ax+b} + \frac{B}{cx+d} + \frac{C}{ex+f}$$

Integral of
$$\frac{P(x)}{Q(x)}$$

$$Q(x) = (ax + b)(cx + d)(ex + f)$$
 where a,b,\cdots are real, not complex

• separate $\frac{P(x)}{Q(x)}$ into several small fractions such

as
$$\frac{A}{ax+b} + \frac{B}{cx+d} + \frac{C}{ex+f}$$

$$\int \frac{P(x)}{Q(x)} dx$$

$$= \int \frac{A}{ax+b} dx + \int \frac{B}{cx+d} dx + \int \frac{C}{ex+f} dx$$

Integral of $\frac{P(x)}{Q(x)}$ - Summary

$$Q(x) = h\{(x + a)^2 + b^2\}$$
 where a and b are real, not complex

- Note: the order of $P(x) \ge$ the order of Q(x)
- Find a, b, h.
 Find A(x), C and E
 - A(x) : answer of P(x)/Q(x)
 - ► C : answer of $\frac{\frac{P(x)}{Q(x)}$'s remainder
 - E: remainder of $\frac{\frac{P(x)}{Q(x)}$'s remainder

 $\int A(x)dx + C \ln |Q(x)| + \frac{E}{h \cdot h} \tan^{-1} \left(\frac{x+a}{h}\right) + c$

Integral of
$$\frac{P(x)}{Q(x)}$$
 -Proof

$$Q(x) = h\{(x + a)^2 + b^2\}$$
 where a and b are real, not complex

polynomial division

$$Q(x) \frac{P(x)}{P(x)}$$

$$\frac{R(x)}{R(x)}$$

Note:
$$P(x) = Q(x)A(x) + R(x)$$

Integral of
$$\frac{P(x)}{Q(x)}$$
 -Proof

$$Q(x) = h\{(x + a)^2 + b^2\}$$
 where a and b are real, not complex

Note:
$$R(x) = Q'(x) \cdot C + E$$

In the end $P(x) = Q(x)A(x) + Q'(x) \cdot C + E$

Integral of
$$\frac{P(x)}{Q(x)}$$
 -Proof

$$Q(x) = h\{(x + a)^2 + b^2\}$$
 where a and b are real, not complex

re-write the original fraction

$$\frac{P(x)}{Q(x)} = A(x) + C\frac{Q'(x)}{Q(x)} + \frac{E}{Q(x)}$$

$$\text{Note:} \frac{d \ln |Q(x)|}{dx} = \frac{Q'(x)}{Q(x)}$$

$$\int \frac{d \ln |Q(x)|}{dx} dx = \ln |Q(x)| = \int \frac{Q'(x)}{Q(x)} dx$$

Integral of
$$\frac{P(x)}{Q(x)}$$
 -Proof

$$Q(x) = h\{(x + a)^2 + b^2\}$$
 where a and b are real, not complex

solve the re-written integral

$$\int \frac{P(x)}{Q(x)} dx$$

$$= \int A(x) dx + \int C \frac{Q'(x)}{Q(x)} dx + \int \frac{E}{Q(x)} dx$$

$$= \int A(x) dx + C \ln|Q(x)| + \frac{E}{h \cdot b} \tan^{-1} \left(\frac{x+a}{b}\right)$$

Note: see the bottom line of the yellow card