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I. PREREQUISITES

In order to successfully complete this Engineering Mathematics course you must be competent with the following
material. If you are unfamiliar with the any of the following material it is recommended that you attempt some
practice questions before undertaking the main course material.

1) Logarithms

loga (x) = m ≡ am = x

log (x) ≡ log10 (x)

ln (x) ≡ loge (x)

loga (a) = 1

loga (m · n) = loga (m) + loga (n)

loga

(m
n

)
= loga (m)− loga (n)

loga (mn) = n · loga (m)

loga b =
logc b

logc a

2) Indices

am · an = a(m+n)

am

an
= a(m−n)

(am)n = a(m·n)

a−m =
1

am

a(m/n) = n
√
am

a0 = 1

a1 = a

3) Trigonometric Identities

y = sin−1 x = arcsinx ⇐⇒ x = sin y

y = cos−1 x = arccosx ⇐⇒ x = cos y

y = tan−1 x = arctanx ⇐⇒ x = tan y

cosec x =
1

sinx

secx =
1

cosx

cotx =
1

tanx

y = cosec −1x ⇐⇒ x = cosec y =
1

sin y

y = sec−1 x ⇐⇒ x = sec y =
1

cos y

y = cot−1 x ⇐⇒ x = cot y =
1

tan y
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tan (x) =
sin (x)

cos (x)

sin2 (x) + cos2 (x) = 1

sec2 (x) = 1 + tan2 (x)

sin (A±B) = sin (A) cos (B)± cos (A) sin (B)

cos (A±B) = cos (A) cos (B)∓ sin (A) sin (B)

sin (2A) = 2 sin (A) cos (A)

cos (2A) = cos2 (A)− sin2 (A)

= 2 cos2 (A)− 1

= 1− 2 sin2 (a)

tan (2A) =
2 tan (A)

1− tan2 (A)

2 sin (A) cos (B) = sin (A+B) + sin (A−B)

2 cos (A) sin (B) = sin (A+B)− sin (A−B)

2 cos (A) cos (B) = cos (A+B) + cos (A−B)

−2 sin (A) sin (B) = cos (A+B)− cos (A−B)

4) Hyberbolic Identities

cosh (x) = (ex + e−x)/2

sinh (x) = (ex − e−x)/2

cosh2 (A)− sinh2 (A) = 1

5) Completing the Square

4x2 − 2x− 5 = 0

We can solve the above equation by completing the square as follows

4x2 − 2x− 5 = 0

4x2 − 2x = 5

x2 − 1

2
x =

5

4(
x− 1

4

)2

− 1

16
=

5

4(
x− 1

4

)2

=
5

4
+

1

16(
x− 1

4

)2

=
21

16

∴ x =
1

4
±
√

21

16
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6) Quadratic Equation
We can use completing the square to derive the quadratic equation.

ax2 + bx+ c = 0

ax2 + bx = −c
x2 +

b

a
x = − c

a(
x+

b

2a

)2

− b2

4a2 = − c
a(

x+
b

2a

)2

=
b2

4a2 −
c

a(
x+

b

2a

)2

=
b2

4a2 −
4ac

4a2(
x+

b

2a

)2

=
b2 − 4ac

4a2

x+
b

2a
= ±

√
b2 − 4ac

4a2

x+
b

2a
=
±
√
b2 − 4ac

2a

x = − b

2a
±
√
b2 − 4ac

2a

x =
−b±

√
b2 − 4ac

2a

7) Polynomial Long Division
If we know one factor of a polynomial equation, in order to find out the other factor we perform a division.
In this example we know that x2 − 9x− 10 has a factor of x+ 1. Therefore

x −10
x+ 1 )x2 −9x−10
−)x2 +x

−10x−10
−) −10x−10

0 0
Thus, we find the other factor to be

x− 10

In order to confirm this is correct we can multiply this factor by the known factor to find the original polynomial.

(x− 10)(x+ 1) = x2 + x− 10x− 10

= x2 − 9x− 10

8) Area of a Triangle in Vector Form
When a triangle is defined with two sides |p| and |q| and the angle between these two sides is θ, the area of
triangle is

1

2
|p| · |q| · sin θ

9) Inequalities
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Symbol Meaning
< is less than
> is greater than
≤ is less than or equal to
≥ is greater than or equal to

The one rule for inequalities is if you multiply or divide by a negative number the inequality sign is reversed
as follows

−ax+ c ≤ d

−ax ≤ d− c
x ≥ −(d− c)

a

x

−e − f > g

x

−e > g + f

x < −e(g + f)

10) Modulus
The modulus symbol is ||. Anything that is enclosed within this can not evaluate to a negative number. For
example | − 4 + 2| = 2.

y = x

x

y

x

y y = |x|
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II. KEY POINTS ON VECTORS

Key Points

1) A vector has a x component, y component, and z component

• A vector is expressed as i when it has only a x component and its modulus is 1.
• A vector is expressed as j when it has only a y component and its modulus is 1.
• A vector is expressed as k when it has only a z component and its modulus is 1.

Z

Y

X
i

jk1

1

1

2) When a vector has an amount of a in x component, an amount of b in y component, and an amount of c in z
component, the vector can be expressed as

n = ai + bj + ck

≡
 a

b
c

 (1)

ai

bj

ck
n

ck
bj

ai

n = a i +b j +c k

3) A unit vector can be found by dividing a vector by its modulus.

n̂ =
n

|n| (2)

where |n| is
√
a2 + b2 + c2 when n = ai + bj + ck ≡

 a
b
c

.

Z

n

n̂

Y

X
1

4) Vector addition

x

y

2i
j

q
−3j p

4i

p

q

p + q

−p

−p + q
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When there are two vectors

a = a1i + a2j + a3k =

 a1

a2

a3


and

b = b1i + b2j + b3k =

 b1
b2
b3


the addition of the vectors is

a + b =

 a1

a2

a3

+

 b1
b2
b3


=

 a1 + b1
a2 + b2
a3 + b3

 (3)

5) The position vector of P with coordinates (a, b, c) is
−→
OP = ai + bj + ck (4)

6) When there are two vectors

a = a1i + a2j + a3k =

 a1

a2

a3


and

b = b1i + b2j + b3k =

 b1
b2
b3


and these two vectors subtend an angle θ,

a

b

θ

the scalar product of a and b is

a · b = a1 · b1 + a2 · b2 + a3 · b3 = |a||b| cos θ (5)

7) When there are two vectors

a = a1i + a2j + a3k =

 a1

a2

a3


and

b = b1i + b2j + b3k =

 b1
b2
b3


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a

b

θ

a × b

Fig. 1. a× b is perpendicular to the plane containing a and b

and these two vectors subtend an angle θ, the vector product of a and b is

(
a b

)
=

 a1 b1
a2 b2
a3 b3


a× b =

∣∣∣∣ a2 b2
a3 b3

∣∣∣∣ i (6)

+

∣∣∣∣ a3 b3
a1 b1

∣∣∣∣ j
+

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣k
= (a2b3 − a3b2)i

+(a3b1 − a1b3)j

+(a1b2 − a2b1)k

= |a||b| sin θn̂

where n̂ is a unit vector and the direction of n̂ is the same as a× b in Fig. 1.
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8) The vector equation of the line which goes through a point A and is parallel to a vector c is

r = a + tc (7)

where t is the real number. Please note that ’x’,’y’,’z’ are not involved in the vector equation. The cartesian
form of Equation (9) is obtained as follows: x

y
z

 =

 a1

a2

a3

+ t

 c1
c2
c3


∴

 x
y
z

−
 a1

a2

a3

 = t

 c1
c2
c3


∴

 x− a1

y − a2

z − a3

 = t

 c1
c2
c3


This can be expressed in the scalar manner as

x− a1 = tc1

∴
x− a1

c1
= t

y − a2 = tc2

∴
y − a2

c2
= t

z − a3 = tc3

∴
z − a3

c3
= t

By getting rid of t in these three equations, we get the cartesian equation:
x− a1

c1
=
y − a2

c2
=
z − a3

c3
(8)

9) The vector equation of the line through points A and B with position vectors a, b is

r = a + t(b− a) (9)

where t is the real number. Please note that ’x’,’y’,’z’ are not involved in the vector equation. When 0 ≤ t ≤ 1,
then r is in-between A and B. The cartesian form of Equation (9) is obtained as follows: x

y
z

 =

 a1

a2

a3

+ t

 b1
b2
b3

−
 a1

a2

a3


∴

 x
y
z

 =

 a1

a2

a3

+ t

 b1 − a1

b2 − a2

b3 − a3


∴

 x
y
z

−
 a1

a2

a3

 = t

 b1 − a1

b2 − a2

b3 − a3


∴

 x− a1

y − a2

z − a3

 = t

 b1 − a1

b2 − a2

b3 − a3


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This can be expressed in the scalar manner as

x− a1 = t(b1 − a1)

∴
x− a1

b1 − a1

= t

y − a2 = t(b2 − a2)

∴
y − a2

b2 − a2

= t

z − a3 = t(b3 − a3)

∴
z − a3

b3 − a3

= t

By getting rid of t in these three equations, we get the cartesian equation:
x− a1

b1 − a1

=
y − a2

b2 − a2

=
z − a3

b3 − a3

(10)

10) A plane perpendicular to the vector n and passing through the point with position vector a, has equation

r · n = a · n (11)

r

A R

a

n

O

r · n = a · n

11) A plane with unit normal n̂, which has a perpendicular distance d from the origin is given by

r · n̂ = d (12)

r

R

O
d

n̂
r · n̂ = d
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12) A plane which goes through A(a), B(b) and C(c) is given by

r =
−→
OA+ s

−→
AB + t

−→
AC (13)

If the point R(r) is inside of the triangle ABC then 0 ≤ s, 0 ≤ t, and s+ t ≤ 1.

B

CA

r

O

s ~AB

t ~AC

~OA

r = ~OA + s ~AB + t ~AC

13) A point R(r) which is inside the tetrahedron O, A(a), B(b) and C(c) is given by

r = αa + βb + γc (14)

where α, β, γ are real numbers and satisfy

α + β + γ < 1, 0 < α, 0 < β, 0 < γ (15)

α ~OA β ~OB

γ ~OC

r

O

r = αa + βb + γc
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←
r
→

θ
x

y

O

P

x

y

Fig. 2. The relashionship between polar and Cartesian coordinates

III. KEY POINTS ON COORDINATES

Key Points

1) If the Cartesian coordinates of a point P are (x, y) then P can be located on a Cartesian plane as indicated
in Fig. 2. r is the distance of P from the origin and θ is the angle, measured anti-clockwise, which the line
OP makes when measured from the positive x−direction. If (x, y) are the Cartesian coordinates and [r, θ] the
polar coordinates of a point P , then

x = r cos θ, y = r sin θ (16)

r =
√
x2 + y2, tan θ = y/x (17)

2) If the Cartesian coordinates (x, y) are any point P on a circle of radius r whose centre is at the origin. Then
since

√
x2 + y2 is the distance of P from the origin, the equation of the circle is,

r =
√
x2 + y2, x2 + y2 = r2 (18)

3) If the Cartesian coordinates (x, y) are any point P on a circle of radius r whose centre is (x0, y0). Then since√
(x− xo)2 + (y − y0)2 is the distance of P from the origin, the equation of the circle is,

r =
√

(x− xo)2 + (y − y0)2, (x− xo)2 + (y − y0)
2 = r2 (19)
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Note that if x0 = y0 = 0 (i.e. the circle is at the origin) then Equation (19) reduces to Equation (18).

x

y

r
(x0, y0)

P
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4) An ellipse with centre (x0, y0) satifies the equation

(x− x0)
2

a2 +
(y − y0)

2

b2
= 1 (20)

x

y

a
(x0, y0)

b

or
(x− x0)

2

b2
+

(y − y0)
2

a2 = 1 (21)

x

y

a

(x0, y0)

b

The parameter b is called the semiminor axis by analogy with the parameter a, which is called the semimajor
axis (assuming a > b). When the major axis is horizontal use Equation (20). If on the other hand the major
axis is vertical use Equation (21).
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5) The minimum distance between a point Q(α, β) and a line ax+ by + c = 0 is expressed as

|aα + bβ + c|√
a2 + b2

(22)

(α, β)

|aα+bβ+c|√
a2+b2

ax + by + c = 0
Proof: The line ax+ by + c = 0 goes through the point R(r) where

r =

(
0
− c
b

)
and it is parallel to

l =

(
b
−a

)
A point P (p) on the line can be written as

p = r + tl

where t is a real value. Since
−→
QP ⊥ l

we can express this as the following equation:
−→
QP · l

= (p− q) · l
= (r + tl− qv) · l

= (r − q) · l + t|l|2 = 0

∴ t =
(q − r) · l
|l|2
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Now we need to get
−→
QP as follows:

|−→QP |2 = |p− q|2

= |r + tl− q|2

= |r|2 + |q|2 + t2|l|2 + 2trl− 2tlq − 2rq

= |r|2 + |q|2 +
((q − r) · l)2

|l|4 · |l|2 + 2
(q − r) · l
|l|2 (rl− lq)− 2rq

= |r|2 + |q|2 +
((q − r) · l)2

|l|2 − 2
(q − r) · l
|l|2 (q − r)l− 2rq

= |r|2 + |q|2 +
((q − r) · l)2

|l|2 − 2
((q − r)l)2

|l|2 − 2rq

= |r|2 + |q|2 − ((q − r) · l)2

|l|2 − 2rq

=
|aα + bβ + c|2

a2 + b2

∴ |−→QP | = |aα + bβ + c|√
a2 + b2
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IV. KEY POINTS ON COMPLEX NUMBERS

Key Points

1) The symbol  is such that

2 = −1  =
√−1 (23)

←
r
=

√ a
2 +

b2
→

|←
b

=
r

si
n

θ
→
|

θ

θ + 2π

real

imaginary a + b ≡ reθ

| ←− 1 −→ ||
←−

1
−→
|

|←
−

1
−→
|

eπ
2 = 

e−π
2 = −

e−π

= −1

| ← a = r cos θ → |

2) In Argand diagram, the complex number a+ b can be expressed as

a+ b = reθ = r(cos θ +  sin θ) (24)

where

r =
√
a2 + b2 tan θ =

b

a
(25)

a = r cos θ b = r sin θ (26)

3) From the figure, ± can be expressed as

 = e
π
2
,− = e−

π
2
 (27)

4) If a+ b is any complex number then its complex conjugate is

a− b (28)

5) In the Argand diagram, the argument can be 2πn rotated to have an identical value:

eθ = e(θ+2πn) (29)

where n is an integer.
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6) De Moivre’s theorem

(reθ)n = [r(cos θ +  sin θ)]n = rn(cosnθ +  sinnθ) = rnenθ (30)

7) nth roots of complex numbers

If

zn = reθ = r(cos θ +  sin θ)

then

z = n
√
re(θ+2kπ)/n k = 0,±1,±2, . . . (31)

8) If a+ b = c+ d , where a, b, c, and d, are real, then we can say

a = c, b = d (32)

If a+ b = 0, then a = b = 0

9) coshx and sinhx are defined as

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
(33)
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V. KEY POINTS ON DIFFERENTIATION

Key points

1) Product rule

∂ {f(x)g(x)}
∂x

= f(x)
∂ {g(x)}
∂x

+
∂ {f(x)}
∂x

g(x) (34)

2) Chain rule When y = f(u) and u = g(x),

∂ {y}
∂x

=
∂ {u}
∂x

· ∂ {y}
∂u

(35)

It is important that you know the fundamental differentiable functions of Equation (40) ∼ Equation (47) so
that a complicated function can be simplified to one of the fundamental functions of Equation (40) ∼ Equation

(47). For example, if you know that 5x can be differentiable, you can change
∂
{

5x
4−2
}

∂x
to

∂
{

5X
}

∂x
where

X = x4 − 2.
3) Quotient rule

∂

{
f(x)
g(x)

}
∂x

=

∂ {f(x)}
∂x

g(x)− f(x)
∂ {g(x)}
∂x

(g(x))2 (36)

Check if g(x) is really a function. If g(x) is a constant, you do not have to use the quatient rule. If f(x) and
g(x) are polynomial, check the order of f(x) and g(x). If the order of f(x) is higher than that of g(x) then

modify f(x)
g(x)

so that the order of the numerator of the resultant function is always lower than the order of
denominator.

4) Multivariable higher order differentiation

∂2f(x, y)

∂x2
=

∂

{
∂ {f(x, y)}

∂x

}
∂x

(37)

∂2f(x, y)

∂y∂x
=

∂

{
∂ {f(x, y)}

∂x

}
∂y

(38)

Please pay attention

∂2f(x, y)

∂y∂x
6= ∂ {f(x, y}

∂y
· ∂ {f(x, y)}

∂x
.

Please also be aware the following difference: Let

f(x, y) = axy + bx+ cy.

When we need
∂ {f(x, y}

∂x
, then you assume x and y are independent and we obtain

∂ {f(x, y)}
∂x

= ay + b
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but if we need
∂ {y}
∂x

for f(x, y) = 0, then f(x, y) = 0 tells you that x and y are dependent of each other and
xy can be regarded as the multiplication of two function x and y and then we obtain

∂ {f(x, y)}
∂x

=
∂ {0}
∂x

∴
∂ {axy + bx+ cy}

∂x
= 0

∴ a
∂ {x}
∂x

y + ax
∂ {y}
∂x

+ b
∂ {x}
∂x

+ c
∂ {y}
∂x

= 0

∴ ay + ax
∂ {y}
∂x

+ b+ c
∂ {y}
∂x

= 0

∴ (ax+ c)
∂ {y}
∂x

= −ay − b

∴
∂ {y}
∂x

=
−ay − b
ax+ c

5) Local minimum and local maximum
When f(x, y) has a local minimum or a local maximum at x = a and y = b, then f(x, y) satisfies:

∂ {f(x, y)}
∂x

∣∣∣∣
x=a,y=b

= 0,
∂ {f(x, y)}

∂y

∣∣∣∣
x=a,y=b

= 0 (39)

This does NOT mean that if
∂ {f(a, b)}

∂x
= 0 ,

∂ {f(a, b)}
∂y

= 0, then f(a, b) is a local minimum or a local

maximum.
When

∂ {f(a, b)}
∂x

= 0 ,
∂ {f(a, b)}

∂y
= 0 is satisfied;

a) f(a, b) is the local maximum when

∂2f(a, b)

∂x2

∂2f(a, b)

∂y2
−
(
∂2f(a, b)

∂y∂x

)2

> 0

and
∂2f(a, b)

∂x2
< 0

b) f(a, b) is the local minimum when

∂2f(a, b)

∂x2

∂2f(a, b)

∂y2
−
(
∂2f(a, b)

∂y∂x

)2

> 0

and
∂2f(a, b)

∂x2
> 0

c) f(a, b) is a saddle point when

∂2f(a, b)

∂x2

∂2f(a, b)

∂y2
−
(
∂2f(a, b)

∂y∂x

)2

< 0

d) We do not know whether or not f(a, b) is a local maximum or minimum when

∂2f(a, b)

∂x2

∂2f(a, b)

∂y2
−
(
∂2f(a, b)

∂y∂x

)2

= 0

Attention:
∂2f

∂y∂x
is different from

∂ {f}
∂x

· ∂ {f}
∂y

.

Basic derivative:

∂ {xα}
∂x

= αxα−1 (40)
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Attention: When you see a fraction, get rid of a fraction such as 1
xa

immediately by changing it to x−a.

∂ {xa}
∂x

= a · xa−1 (41)

∂
{
ekx
}

∂x
= kekx (42)

∂ {ln(kx)}
∂x

=
1

x
(43)

∂ {ax}
∂x

= ax ln a (44)

∂ {sin kx}
∂x

= k cos kx (45)

∂ {cos kx}
∂x

= −k sin kx (46)

∂ {tan kx}
∂x

=
k

cos2 kx
(47)
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VI. KEY POINTS ON INTEGRATION

Key points

1) Integral by Parts ∫ b

a

f(x) · g(x)dx (48)

=

[
f(x) ·

∫
g(x)dx

]b
a

−
∫ b

a

(
∂ {f(x)}
∂x

·
∫
g(x)dx

)
dx

Hint: Let f(x)equal the polynominal part or logarithmic part of the intergral.

2) Integral by substitution

When a function f(x) can be written as h(g(x))
∂ {g(x)}
∂x

, you can let t = g(x) therefore,
∂ {t}
∂x

=
∂ {g(x)}
∂x

. ∫
f(x)dx =

∫
h(g(x))

∂ {g(x)}
∂x

dx (49)

=

∫
h(t)

∂ {t}
∂x

dx =

∫
h(t)dt

3) Integral of f(x)k
∂ {f(x)}
∂x

for k = −1

∫
1

f(x)

∂ {f(x)}
∂x

dx = ln |f(x)|+ c (50)

4) Integral of f(x)k
∂ {f(x)}
∂x

for k 6= −1∫
f(x)k · ∂ {f(x)}

∂x
dx =

1

k + 1
f(x)k+1 + c (51)

5) Line integrals of a function which has dx,dy, and dz.
Consider a curve C. The position vector of a point on the curve C is written as x

y
z

 =

 x(t)
y(t)
z(t)


a ≤ t ≤ b

Denote

r =

 x
y
z


and its derivative with respect to t as

∂ {r}
∂t

=


∂ {x}
∂t

∂ {y}
∂t

∂ {z}
∂t

 .
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When a vector function is expressed as

F(r) =

 Fx
Fy
Fz


a line integral of F(r) over a curve C is defined by∫

C

F · dr =

∫ t=b

t=a

 Fx
Fy
Fz

 · ∂ {r}
∂t

dt

=

∫ t=b

t=a

 Fx
Fy
Fz

 ·


∂ {x}
∂t

∂ {y}
∂t

∂ {z}
∂t

 dt

=

∫ t=b

t=a

(Fx
∂ {x}
∂t

+ Fy
∂ {y}
∂t

+ Fz
∂ {z}
∂t

)dt (52)

=

∫
(Fxdx+ Fydy + Fzdz) (53)

=

∫ x=b̂

x=â

(Fx + Fy
dy

dx
+ Fz

dz

dx
)dx (54)

Thus the procedure to solve the line integral is

a) Express x, y, z using t
b) Express F as the function of t

c) Express
∂ {r}
∂t

=


∂ {x}
∂t

∂ {y}
∂t

∂ {z}
∂t

 using t

d) Put all of them into
∫

F · ∂ {r}
∂t

dt

6) Line integrals of a function (which does not have dx, dy or dz explicitly) with respect to arc length.
Consider a curve C. The position vector of a point on the curve C is written as x

y
z

 =

 x(t)
y(t)
z(t)


a ≤ t ≤ b

Denoting

r =

 x
y
z


and its derivative with respect to t as

∂ {r}
∂t

=


∂ {x}
∂t

∂ {y}
∂t

∂ {z}
∂t


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the line integral of a function with respect to arc length is defined by∫
C

f(x, y, z)ds

=

∫ t=b

t=a

f(x, y, z)

√(
∂ {x}
∂t

)2

+

(
∂ {y}
∂t

)2

+

(
∂ {z}
∂t

)2

dt (55)

where

ds =

√(
∂ {x}
∂t

)2

+

(
∂ {y}
∂t

)2

+

(
∂ {z}
∂t

)2

dt

The procedure to solve this type of the line integral is

a) Express x, y, z using t
b) Express f(x, y, z) as the function of t

c) Express
∂ {r}
∂t

=


∂ {x}
∂t

∂ {y}
∂t

∂ {z}
∂t

 using t

d) Put all of them into ∫ t=b

t=a

f(x, y, z)

√(
∂ {x}
∂t

)2

+

(
∂ {y}
∂t

)2

+

(
∂ {z}
∂t

)2

dt

7) Multiple integration

I =

∫ b

a

∫ d

c

∫ f

e

f(x, y, z)dxdydz

has the following range:

e ≤ x ≤ f

c ≤ y ≤ d

a ≤ z ≤ b

The procedure for the calculation is

a)

A =

∫ f

e

f(x, y, z)dx

b)

B =

∫ b

a

∫ d

c

Ady

c)

I =

∫ b

a

Bdz

Please be aware that ∫ b

a

∫ d

c

∫ f

e

fdxdydz 6=
∫ b

a

fdx×
∫ d

c

fdy ×
∫ f

e

fdz

Integrals of common functions.
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Some are very similar to the fundamental functions for differentiation. So please do not mix up!, especially signs
such as + or −.

n 6= −1 and
∫
kxndx =

1

n+ 1
· kxn+1 + c (56)

n = −1 and
∫
kxndx =

∫
k

x
dx = k ln |x|+ c (57)∫

cos kxdx =
1

k
sin kx+ c (58)∫

sin kxdx = −1

k
cos kx+ c (59)∫

tan kxdx = −1

k
ln | cos kx|+ c (60)∫

ekxdx =
1

k
ekx + c (61)∫

akxdx =
akx

k ln a
+ c(a > 0) (62)∫

cos2(kx)dx =
1

2k
(kx+ sin(kx) cos(kx)) (63)∫

1

cos2(kx)
dx =

tan kx

k
(64)∫

1

sin2(kx)
dx = − 1

k tan kx
(65)∫

sin2(kx)dx =
1

2k
(kx− sin(kx) cos(kx)) (66)∫
ln kxdx = x ln kx− x (67)
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VII. KEY POINTS ON SEQUENCES AND SERIES

Key points

1) Sequences and Series

a) Arithmetic progressions. Consider a sequence that starts at r and we add d each time. This forms the
Arithemtic series as follows.

a1 = r

a2 = r + d

a3 = r + 2d

a4 = r + 3d

· · ·
an = r + (n− 1)d

Here d is the difference or common difference between successive terms. The sum of an arthimetic
progression is as follows.

Sn = a1 + a2 + a3 + a4 + a5 + an

Sn = r + (r + d) + (r + 2d) + · · ·+ r + (n− 1)d

Sn = rn+
n(n− 1)d

2
(68)

b) Geometric progressions. Suppose we let the first term equal a and times each successive term by r then
we get.

a1 = a

a2 = ar

a3 = ar2

a4 = ar3

a5 = ar4

· · ·
an = arn−1

To find the sum of this progression to n terms, we sum all the terms up until n.

Sn = a+ ar + ar2 + ar3 + ar4,+ · · ·+ arn−1

Since r · Sn is written as

rSn = ar + ar2 + ar3 + ar4,+ · · ·+ arn−1 + arn

Using these two equations, we calculate Sn − rSn as follows:

Sn − rSn = a− arn
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This leads to :
Sn =

a(rn − 1)

r − 1
=
a(1− rn)

1− r (69)

If −1 < r < 1 therefore the sum to infinity of an geomteric series is given by the following

S∞ =
a

1− r (70)

2) Taylor series with one variable.
A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an
expansion of a real function f(x) about the point x = a upto terms of degree n in h (|h| � 1) which is given
by

f(x) = f(a) + (x− a)
∂f

∂x

∣∣∣∣
x=a

+
(x− a)2

2!

∂2f

∂x2

∣∣∣∣
x=a

(71)

+
(x− a)3

3!

∂3f

∂x3

∣∣∣∣
x=a

+ · · ·+ (x− a)n

n!

∂nf

∂xn

∣∣∣∣
x=a

or by substituing x = a+ h into Equation (71) we get the following taylor polynomial of degree n:

f(a+ h) = f(a) + h
∂f

∂x

∣∣∣∣
x=a

+
h2

2!

∂2f

∂x2

∣∣∣∣
x=a

(72)

+
h3

3!

∂3f

∂x3

∣∣∣∣
x=a

+ · · ·+ hn

n!

∂nf

∂xn

∣∣∣∣
x=a

If a = 0, the expansion is known as a Maclaurin series.
In the end, in order to obtain the taylor series

a) Obtain ∂f
∂x

, ∂2f
∂x2 , . . . ∂

nf
∂xn

b) Substitute x = a into f(x), ∂f
∂x

, ∂2f
∂x2 , . . . ∂

nf
∂xn

c) Put all of them into Equation (72).

3) Taylor series with two variables.
The taylor series for two variables is very similar to that of one variable the same method is used to find
the series. The Taylor series expansion about the point (a, b), where a and b are known constants, up to and
including terms of degree three in h and k (|h| � 1 and |k| � 1) where, in the usual notation, x = a+ h and
y = b+ k is expressed as

f(a+ h, b+ k) = (73)

f(a, b) + h
∂ {f(x, y)}

∂x

∣∣∣∣x = a
y = b

+ k
∂ {f(x, y)}

∂y

∣∣∣∣x = a
y = b

+
1

2!

h2∂
2f(x, y)

∂x2

∣∣∣∣x = a
y = b

+ 2hk
∂2f(x, y)

∂y∂x

∣∣∣∣x = a
y = b

+k2∂
2f(x, y)

∂y2

∣∣∣∣x = a
y = b


+

1

3!

h3∂
3f(x, y)

∂x3

∣∣∣∣x = a
y = b

+ 3h2k
∂3f(x, y)

∂y∂x2

∣∣∣∣x = a
y = b
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+3hk2∂
3f(x, y)

∂y2∂x

∣∣∣∣x = a
y = b

+ k3∂
3f(x, y)

∂y3

∣∣∣∣x = a
y = b


In the end, in order to obtain the taylor series

a) Obtain
∂ {f(x, y)}

∂x
,
∂ {f(x, y)}

∂y
and if you need the second degree, then obtain

∂2f(x, y)

∂x2
,
∂2f(x, y)

∂y∂x
,
∂2f(x, y)

∂y2

as well, and if you need the third degree, then obtain
∂3f(x, y)

∂x3
,
∂3f(x, y)

∂y∂x2
,
∂3f(x, y)

∂y2∂x
,
∂3f(x, y)

∂y3
as well.

b) Substitute x = a and y = b into
∂ {f(x, y)}

∂x
,
∂ {f(x, y)}

∂y
,
∂2f(x, y)

∂x2
,
∂2f(x, y)

∂y∂x
,
∂2f(x, y)

∂y2
,
∂3f(x, y)

∂x3
,

∂3f(x, y)

∂y∂x2
,
∂3f(x, y)

∂y2∂x
,
∂3f(x, y)

∂y3

c) Put all of them into Equation (73).
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VIII. KEY POINTS ON ORDINARY DIFFERENTIAL EQUATIONS

Key points

1) The solution of the equation
∂ {y}
∂x

= f(x)g(y) may be found from separating the variables and integrating∫
1

g(y)
dy =

∫
f(x)dx (74)

Procedure:

a) Allocate f(x) and g(x)

b) Calculate ∫
1

g(y)
dy =

∫
f(x)dx

2) When f can be written as a function of y/x , z, the solution of the equation
∂ {y}
∂x

= f(y/x) may be found
as ∫

dz

f(z)− z =

∫
1

x
dx = lnx+ c (75)

Procedure:

a) Find f(
y

x
)

b) Calculate ∫
dz

f(z)− z , g(z)

c) Set ln(x) + c = g(z)

d) Replace z with
y

x
so that ln(x) + c = g( y

x
) is the answer

Proof: y/x , z can be written as y = zx. Thus
∂ {y}
∂x

=
∂ {z}
∂x

x + z
∂ {x}
∂x

= x
∂ {z}
∂x

+ z. Thus
∂ {y}
∂x

=

f(y/x) = f(z) can be written as

x
∂ {z}
∂x

+ z = f(z)

∴ x
∂ {z}
∂x

= f(z)− z

∴
1

x
dx =

1

f(z)− zdz

∴
∫

1

f(z)− zdz =

∫
1

x
dx = lnx+ c

3) When the differential equation can be written as f(x, y)dx+ g(x, y)dy = 0 and if

∂ {f(x, y)}
∂y

=
∂ {g(x, y)}

∂x
, (76)

then there is a function U(x, y) which satisfies

dU(x, y) =
∂ {U(x, y)}

∂x
dx+

∂ {U(x, y)}
∂y

dy (77)

≡ f(x, y)dx+ g(x, y)dy = 0

dU(x, y) = 0 gives

U(x, y) = c (78)
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which is the answer. In order to find U(x, y), we first perform

U(x, y) =

∫
f(x, y)dx+ h(y) (79)

then we find h(y) from

∂ {U(x, y)}
∂y

=
∂
{∫

f(x, y)dx+ h(y)
}

∂y
(80)

= g(x, y)

The alternative approach to obtain U(x, y) is

U(x, y) =

∫ x

x0

f(x, y)dx+

∫ y

y0

g(x0, y)dy (81)

where x0 and y0 are arbitrary constants. Please be aware of g(x0, y) which is not g(x, y)

x0 and y0 can be added into c in Equation (78) as they are arbitrary constants.
Procedure:

a) Allocate f(x, y) and g(x, y)

b) Confirm
∂ {f(x, y)}

∂y
=
∂ {g(x, y)}

∂x

c) Apply
∫ x

x0

f(x, y)dx+

∫ y

y0

g(x0, y)dy = c

d) Merge all the terms which have x0 and y0

Proof: Let’s assume there is a function

U(x, y) =

∫ x

x0

f(x, y)dx+

∫ y

y0

g(x0, y)dy = c À

When you calculate
∫ x
x0
f(x, y)dx, you assume y is a constant and let it be y0. Thus we can write∫

f(x, y)dx ≡
∫
f(x, y0)dx , F (x, y0) Á

In the similar way we can write ∫
g(x0, y)dy , G(x0, y) Â

By putting Á and Â into À, we get

U(x, y)

= F (x, y0)− F (x0, y0) +G(x0, y)−G(x0, y0) = c Ã

Since U(x, y) = c from À, we can write

∂U(x, y) =
∂ {U(x, y)}

∂x
dx+

∂ {U(x, y)}
∂y

dy = 0 Ä

Using Ã, we obtain
∂ {U(x, y)}

∂x
and

∂ {U(x, y)}
∂y

as follows:

∂ {U(x, y)}
∂x

= f(x, y0) Å

∂ {U(x, y)}
∂y

= g(x0, y) Æ
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By putting Å and Æ into Ä, we get

∂ {U(x, y)}
∂x

dx+
∂ {U(x, y)}

∂y
dy

= f(x, y0)dx+ g(x0, y)dy = 0 Å

Now since
∂ {f(x, y0)}

∂y
=
∂ {g(x0, y)}

∂x
(= 0) Æ

we can conclude that À satisfies Å and Æ. In other words, when Å and Æ are given, we can say À is valid.

4) When the differential equation can be written as
∂ {y}
∂x

+ P (x)y = Q(x) then the answer is

y =
1

Φ(x)

[∫
Φ(x)Q(x)dx+ c

]
(82)

where

Φ(x) = e
R
P (x)dx (83)

Procedure:

a) Allocate P (x) and Q(x)

b) Calculate
∫
P (x)dx

c) Calculate Φ(x) = e
R
P (x)dx

d) Calculate y =
1

Φ(x)

[∫
Φ(x)Q(x)dx+ c

]
Proof:

When we multiply
∂ {y}
∂x

+ P (x)y = Q(x) with Φ(x), we get:

Φ(x)
∂ {y}
∂x

+ Φ(x)P (x)y = Φ(x)Q(x). Since,

∂ {Φ(x)}
∂x

=
∂
{
e

R
P (x)dx

}
∂x

= e
R
P (x)dx∂

{∫
P (x)dx

}
∂x

= e
R
P (x)dxP (x)

= Φ(x)P (x),

Φ(x)Q(x) = Φ(x)
∂ {y}
∂x

+ Φ(x)P (x)y

= Φ(x)
∂ {y}
∂x

+
∂ {Φ(x)}

∂x
y

=
∂ {yΦ(x)}

∂x

because
∂ {y}
∂x

+ P (x)y = Q(x) and
∂ {Φ(x)}

∂x
= Φ(x)P (x).
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When we integrate
∂ {yΦ(x)}

∂x
= Φ(x)Q(x) with respect to x,∫

∂ {yΦ(x)}
∂x

dx =

∫
Φ(x)Q(x)dx

∴ yΦ(x) =

∫
Φ(x)Q(x)dx+ c

∴ y =
1

Φ(x)

[∫
Φ(x)Q(x)dx+ c

]
5) The solution of Jean Bernoulli equation

∂ {y}
∂x

+ p(x)y = q(x)yα (α 6= 0, 1) (84)

is obtained by solving

∂ {Y }
∂x

+ (1− α)p(x)Y = (1− α)q(x) (85)

where

Y = y1−α. (86)

In other words, Y ( = y1−α, be aware that this is not y but Y !!) is obtained from
Y = 1

Φ(x)

[∫
Φ(x)Q(x)dx+ c

]
where Φ(x) = e

R
P (x)dx and P (x) = (1 − α)p(x) and Q(x) = (1 − α)q(x).

The steps to the solution are:

a) allocate p(x) and q(x)

b) identify the value of α
c) allocate P (x) = (1− α)p(x) and Q(x) = (1− α)q(x)

d) calculate
∫
P (x)dx

e) calculate Φ(x) = e
R
P (x)dx

f) calculate y1−α =
1

Φ(x)
[

∫
Φ(x)Q(x)dx+ c]

Proof:
∂ {y}
∂x

+ p(x)y = q(x)yα

∴ y−α
∂ {y}
∂x

+ p(x)y · y−α = q(x)

∴ y−α
∂ {y}
∂x

+ p(x)y1−α = q(x)

Since
∂ {y1−α}
∂x

=
∂ {y1−α}

∂y

∂ {y}
∂x

= (1− α)y1−α−1∂ {y}
∂x

= (1− α)y−α
∂ {y}
∂x

∴
1

1− α
∂ {y1−α}
∂x

= y−α
∂ {y}
∂x
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we can manipulate the equation as follows:

y−α
∂ {y}
∂x

+ p(x)y1−α = q(x)

∴
1

1− α
∂ {y1−α}
∂x

+ p(x)y1−α = q(x)

∴
∂ {y1−α}
∂x

+ (1− α)p(x)y1−α

= (1− α)q(x)

∴
∂ {Y }
∂x

+ (1− α)p(x)Y = (1− α)q(x)

The answer can be obtained from Equation (82) where

P (x) = (1− α)p(x) (87)

Q(x) = (1− α)q(x) (88)

6) Clairaut type

y = x
∂ {y}
∂x

+ f

(
∂ {y}
∂x

)
(89)

can be solved as follows:

a) Allocate f(
∂ {y}
∂x

)

b) Write down the general solution of
y = ax+ f(a)

which is the answer!. State a is a constant value.
c) Differentiate

y = ax+ f(a)

with respect to a
d) Express a as a function of x, let’s say a = g(x)

e) Insert a = g(x) into the general solution to get a particular solution of

y = x · g(x) + f (g(x))

Proof:

∂ {y}
∂x

=

∂

{
x
∂ {y}
∂x

+ f

(
∂ {y}
∂x

)}
∂x

=
∂ {x}
∂x

∂ {y}
∂x

+ x
∂2y

∂x2
+

∂

{
f

(
∂ {y}
∂x

)}
∂x

=
∂ {y}
∂x

+ x
∂2y

∂x2
+

∂

{
f

(
∂ {y}
∂x

)}
∂

{
∂ {y}
∂x

} ∂

{
∂ {y}
∂x

}
∂x

=
∂ {y}
∂x

+ x
∂2y

∂x2
+

∂

{
f

(
∂ {y}
∂x

)}
∂

{
∂ {y}
∂x

} ∂2y

∂x2
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∴ 0 = x
∂2y

∂x2
+

∂

{
f

(
∂ {y}
∂x

)}
∂

{
∂ {y}
∂x

} ∂2y

∂x2

∴ 0 =

x+

∂

{
f

(
∂ {y}
∂x

)}
∂

{
∂ {y}
∂x

}
 ∂2y

∂x2

Thus we obtain
∂2y

∂x2
= 0

or

x+

∂

{
f

(
∂ {y}
∂x

)}
∂

{
∂ {y}
∂x

} = 0

From
∂2y

∂x2
= 0 we obtain

∂2y

∂x2
= 0

∴
∂

{
∂ {y}
∂x

}
∂x

= 0

∴ ∂(
∂ {y}
∂x

) = 0 · ∂x

∴
∫
d(
∂ {y}
∂x

) =

∫
0 · dx

∴
∂ {y}
∂x

= a

∴ dy = a · dx
∴
∫
dy =

∫
a · dx

∴ y = ax+ b

∴
∂ {y}
∂x

=
∂ {ax+ b}

∂x
= a

where a and b are the arbitrary constants. Substituting y = ax + b and
∂ {y}
∂x

= a into the original equation,
we get

y = x
∂ {y}
∂x

+ f

(
∂ {y}
∂x

)
∴ ax+ b = x · a+ f(a)

∴ b = f(a)

Therefore

y = ax+ f(a) (90)
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is a general solution with an arbitrary constant of a. Furthermore, when we take the differentiation of the
equation with respect to a, we get

∂ {y}
∂a

=
∂ {ax+ f(a)}

∂a

∴ 0 =
∂ {ax}
∂a

+
∂ {f(a)}
∂a

∴ 0 = x+
∂ {f(a)}
∂a

We solve the equation for a. Let’s assume a = A(x) satisfies x +
∂ {f(a)}
∂a

= 0. The resultant expression of
a using x, which is A(x) is put into y = ax+ f(a) to obtain a particular solution of Equation (91).

y = A(x) · x+ f(A(x)) (91)

7) In order to solve second order differential equations

∂2y

∂x2
+ v

∂ {y}
∂x

+ wy = r(x), (92)

where v, w are the constant values,

a) Production of an auxiliary equation by forcing r(x) to 0

By substituting

∂2y

∂x2
= λ2,

∂ {y}
∂x

= λ, y = λ0 = 1 (93)

into the original original equation, forcing r(x) to zero, we solve the auxiliary equation of

λ2 + vλ+ w = 0 (94)

and we obtain the answers λ = α and β.
b) Set complementary function as follows:

i) α and β are real and α 6= β

Set the complementary function Y1(x) as

Y1(x) = aeαx + beβx (95)

where a, b are constant value which is found from the initial condition.
ii) α and β are real and α = β

Set the complementary function Y1(x) as

Y1(x) = aeαx + bxeαx (96)

iii) α and β are complex numbers and p± q (where p, q are real)
Set the complementary function Y1(x) as

Y1(x) = epx(a cos qx+ b sin qx) (97)

c) Check the characteristics of r(x) and set the particular integral

i) r(x) is proportional to ecx, where c is a constant value

A) α 6= c and β 6= c

Set the particular integral Y2(x) as

Y2(x) = gecx (98)
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where g is a constant value which is found from Equation (92).
B) α = c

Set the particular integral Y2(x) as

Y2(x) = gxkecx (99)

where k is 1 or 2 or 3 . . .

ii) r(x) is nth order polynomial

A) α 6= 0 and β 6= 0

Set the particular integral Y2(x) as

Y2(x) =
n∑

m=0

gmx
m (100)

where gm is a constant value which is found from Equation (92).
B) α = 0

Set the particular integral Y2(x) as

Y2(x) = xk

(
n∑

m=0

gmx
m

)
(101)

where k is 1 or 2 or 3 . . .

iii) r(x) is in the form of P (x)ecx where P (x) is the nth order polynomial.

A) α 6= c and β 6= c

Set the particular integral Y2(x) as

Y2(x) = ecx

(
n∑

m=0

gmx
m

)
(102)

where gm is a constant value which is found from Equation (92).
B) α = c

Set the particular integral Y2(x) as

Y2(x) = ecxxk

(
n∑

m=0

gmx
m

)
(103)

where k is 1 or 2 or 3 . . .

iv) r(x) is the combination of cosωx and sinωx

A) α 6= ±ω and β 6= ±ω
Set the particular integral Y2(x) as

Y2(x) = g cosωx+ h sinωx (104)

where g and h are constant values which is found from Equation (92).
B) α = ±ω

Set the particular integral Y2(x) as

Y2(x) = xk(g cosωx+ h sinωx) (105)

where k is 1 or 2 or 3 . . .

v) r(x) is the combination of ecx cosωx and ecx sinωx
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A) α 6= c± ω and β 6= c± ω
Set the particular integral Y2(x) as

Y2(x) = ecx(g cosωx+ h sinωx) (106)

where g and h are constant values which is found from Equation (92).
B) α = c± ω

Set the particular integral Y2(x) as

Y2(x) = xkecx(g cosωx+ h sinωx) (107)

where k is 1 or 2 or 3 . . .

d) Find the constant values g and h by

∂2Y2(x)

∂x2
+ v

∂ {Y2(x)}
∂x

+ wY2(x) = r(x) (108)

e) Get the general solution of The general solution is y = Y1(x) + Y2(x) leaving a and b unknown.

f) Find the constant values a and b

Usually there are initial conditions for y(0) and
∂ {y}
∂x
|x=0. Using these conditions, a and b are found.

g) The particular solution is y = Y1(x) + Y2(x).

Summary Procedure of 2nd order ODE
∂2y

∂x2
+ v

∂ {y}
∂x

+ wy = r(x)

a) Produce and solve an auxiliary equation by setting r(x) = 0

b) Set the complementary function Y1(x) with the unknown variables a and b
c) Set particular integral Y2(x) with the unknown variables g and h

d) Find g and h from
∂2Y2(x)

∂x2
+ v

∂ {Y2x}
∂x

+ wY2(x) = r(x)

e) Get the general solution y = Y1(x) + Y2(x) with unknown a and b
f) Find a and b using the initial condition
g) Get the particular solution y = Y1(x) + Y2(x) with known a and b

8) Lookup table for 2nd order ODE
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r(x) particular integral Y2(x)
ecx, α 6= c, β 6= c gecx

ecx, α = c gxkecx
n∑

m=0

ρmx
m, α 6= 0, β 6= 0

n∑
m=0

gmx
m

n∑
m=0

ρmx
m, α = 0 xk

(
n∑

m=0

gmx
m

)
ecx

n∑
m=0

ρmx
m, α 6= c, β 6= c ecx

n∑
m=0

gmx
m

ecx
n∑

m=0

ρmx
m, α = c xkecx

n∑
m=0

gmx
m

ρ1 cosωx + ρ2 sinωx, α 6= ±ω, β 6= ±ω g cosωx + h sinωx
ρ1 cosωx + ρ2 sinωx, α = ±ω xk(g cosωx + h sinωx)

ecx(ρ1 cosωx + ρ2 sinωx), α 6= c± ω, β 6= c± ω ecx(g cosωx + h sinωx)
ecx(ρ1 cosωx + ρ2 sinωx), α = c± ω xkecx(g cosωx + h sinωx)

TABLE I
PARTICULAR INTEGRAL FOR THE SECOND ORDER ODE
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9) Summary for 1st order ODE

Equation type Procedure to follow

∂ {y}
∂x

= f(x)g(y)

a) Allocate f(x) and g(x)
b) Calculate ∫

1

g(y)
dy =

∫
f(x)dx

∂ {y}
∂x

= f(
y

x
)

a) Find f(
y

x
)

b) Calculate ∫
dz

f(z)− z , g(z)

c) Set ln(x) + c = g(z)

d) Replace z with
y

x
so that ln(x) + c = g( y

x
) is the

answer

∂ {y}
∂x

= −f(x, y)

g(x, y)

a) Allocate f(x, y) and g(x, y)
b) Confirm

∂ {f(x, y)}
∂y

=
∂ {g(x, y)}

∂x

c) Apply
∫ x

x0

f(x, y)dx+

∫ y

y0

g(x0, y)dy = c

d) Merge all the terms which have x0 and y0

∂ {y}
∂x

= −P (x)y +Q(x)

a) Allocate P (x) and Q(x)

b) Calculate
∫
P (x)dx

c) Calculate Φ(x) = e
R
P (x)dx

d) Calculate y =
1

Φ(x)

[∫
Φ(x)Q(x)dx+ c

]

∂ {y}
∂x

= −p(x)y + q(x)yα

a) allocate p(x) and q(x)
b) identify the value of α
c) allocate P (x) = (1−α)p(x) and Q(x) = (1−α)q(x)

d) calculate
∫
P (x)dx

e) calculate Φ(x) = e
R
P (x)dx

f) calculate y1−α =
1

Φ(x)
[

∫
Φ(x)Q(x)dx+ c]

∂ {y}
∂x

=
y

x
+

1

x
f

(
∂ {y}
∂x

)

a) Allocate f(
∂ {y}
∂x

)

b) Write down the general solution of

y = ax+ f(a)

which is the answer!. State a is a constant value.
c) Differentiate

y = ax+ f(a)

with respect to a
d) Express a as a function of x, let’s say a = g(x)
e) Insert a = g(x) into the general solution to get a

particular solution of

y = x · g(x) + f (g(x))
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IX. WORKED EXAMPLES ON ODEDAY7

1) Obtain the particular solution of the equation

∂2y

∂x2
− 2

∂ {y}
∂x
− 3y = (4x + 2)e3x

satisfying y(0) = 0 and
∂ {y}
∂x

∣∣∣∣
x=0

= −15/4

Hint Equation (92),Equation (95),Equation (103),Table I
When the auxiliary equation

λ2 − 2λ− 3

= (λ + 1)(λ− 3) = 0

is solved, λ = 3,−1 ≡ α, β is obtained. From Equation (95), we set

Y1(x) = ae3x + be−x

because α 6= β in Equation (95). Since r(x) has the factor of e3x, we tell
that c = 3 which is the same as α, i.e. , α = c. Since r(x) has the factor
of 4x + 2, we tell that n = 1. Thus from Equation (103), we set

Y2(x)

= e3xxk

(
1∑

m=0

gmx
m

)
= e3xx(g1x + g0)

with k = 1 because Y1(x) does not have the term e3xx.

∂ {Y2(x)}
∂x

=
∂
{
e3x(g1x

2 + g0x)
}

∂x
= e3x

(
3g1x

2 + (3g0 + 2g1)x + g0

)
∂2Y2(x)

∂x2
=
∂
{
e3x
(
3g1x

2 + (3g0 + 2g1)x + g0

)}
∂x

= e3x

(
3(3g1x

2 + (3g0 + 2g1)x + g0) + (6g1x + (3g0 + 2g1))

)
= e3x

(
9g1x

2 + (9g0 + 12g1)x + (6g0 + 2g1)
)

When we put
Y2(x) = e3xx(g1x + g0)
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and
∂ {Y2(x)}

∂x
= e3x

(
3g1x

2 + (3g0 + 2g1)x + g0

)
and

∂2Y2(x)

∂x2
= e3x

(
9g1x

2 + (9g0 + 12g1)x + (6g0 + 2g1)
)

into Equation (108), we get

e3x
(
9g1x

2 + (9g0 + 12g1)x + (6g0 + 2g1)
)

−2e3x
(
3g1x

2 + (3g0 + 2g1)x + g0

)
−3e3x(g1x

2 + g0x) = (4x + 2)e3x

∴ e3x (8g1x + (4g0 + 2g1)) = (4x + 2)e3x

By equating coefficients of x and x0, we obtain

8g1 = 4

4g0 + 2g1 = 2

From these two equations, we obtain g1 = 1/2 and g0 = 1/4. Thus the
general solution

y = ae3x + be−x + e3xx(
1

2
x +

1

4
)

is obtained. In order to use the initial condition, we produce
∂ {y}
∂x

from
the general solution and we get

∂ {y}
∂x

= 3ae3x − be−x + 3e3x(
1

2
x2 +

1

4
x) + e3x(x +

1

4
).

By using the initial condition

y(0) = a + b = 0

and
∂ {y}
∂x

∣∣∣∣
x=0

= 3a− b +
1

4
= −15

4
,

we get a = −1 and b = 1. Thus the particular solution is

y = −e3x + e−x + e3xx(
1

2
x +

1

4
)

2) Obtain the particular solution of the equation
∂2y

∂x2
− 4

∂ {y}
∂x

+ 4y = 8x + 4
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satisfying y(0) = 4 and
∂ {y}
∂x

∣∣∣∣
x=0

= 2

Hint Equation (92),Equation (96),Equation (100),Table I
When the auxiliary equation

λ2 − 4λ + 4

= (λ− 2)2 = 0

is solved, λ = 2 = α = β is obtained. From Equation (96), we set

Y1(x) = ae2x + bxe2x

because α = 2 in Equation (96). From Equation (100), we set

Y2(x) =

1∑
m=0

gmx
m = g0 + g1x

∂ {Y2(x)}
∂x

=
∂ {g1x + g0}

∂x
= g1

∂2Y2(x)

∂x2
=
∂ {g1}
∂x

= 0

When we put
Y2(x) = g1x + g0

and

∂ {Y2(x)}
∂x

= g1

and

∂2Y2(x)

∂x2
= 0

into Equation (108), we get

−4g1 + 4(g1x + g0) = 8x + 4

∴ 4g1x + 4g0 − 4g1 = 8x + 4

By equating coefficients of x and x0 we obtain

4g1 = 8 À

4g0 − 4g1 = 4 Á
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From the equation À, we obtain g1 = 2 and from the equation Á we get
g0 = 3. Thus the general solution

y(x) = ae2x + bxe2x + 2x + 3

is obtained. In order to use the initial condition, we produce
∂ {y}
∂x

from
the general solution and we get

∂ {y}
∂x

= 2ae2x + be2x + 2bxe2x + 2.

By using the initial condition

y(0) = a + 3 = 4

and
∂ {y}
∂x

∣∣∣∣
x=0

= 2a + b + 2 = 2,

we get a = 1 and b = −2. Thus the particular solution is

y(x) = e2x − 2xe2x + 2x + 3
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X. QUESTIONS ON ODEDAY7

1) Find the roots of the quadratic equation

λ2 − 3λ + 2 = 0

.

λ2 − 3λ + 2 = 0

∴ (λ− 2)(λ− 1) = 0

∴ λ = 2, λ = 1

2) Find the roots of this quadratic equation

λ2 − 4λ + 13 = 0

.
When we compare

λ2 − 4λ + 13 = 0

with ax2 + bx + c = 0, we obtain

a = 1

b = −4

c = 13

Thus we can obtain the answer from

λ =
−b±

√
b2 − 4ac

2a

∴ λ =
4±

√
(−4)2 − 4 · 1 · 13

2

∴ λ =
4±√16− 52

2

∴ λ =
4

2
±
√−36

2

∴ λ = 2± 6

2
∴ λ = 2± 3
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3) Find the roots of this quadratic equation

λ2 − 2λ + 1 = 0

λ2 − 2λ + 1 = 0

∴ (λ− 1)(λ− 1) = 0

∴ (λ− 1)2 = 0

∴ λ = 1

4) Find the roots of this quadratic equation

λ2 − 4λ + 4 = 0

λ2 − 4λ + 4 = 0

∴ (λ− 2)(λ− 2) = 0

∴ (λ− 2)2 = 0

∴ λ = 2

5) Find the general solution of

2
∂2y

∂t2
+ 4

∂ {y}
∂t
− 6y = e2t

and then find the particular solution which satisfies y(0) = 6 and
∂ {y}
∂t

∣∣∣∣
t=0

=

−4

5
.

Hint: Equation (95), Equation (98)
To solve the following we must first find the complementary function Y1(t)
and and then the particular integral Y2(t) . The final answer will be the
sum of both:

y(t) = Y1(t) + Y2(t)
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In order to find out Y1(t), substituting Equation (93) into 2
∂2y

∂t2
+ 4

∂ {y}
∂t
−

6y = 0, we produce auxiliary equation:

2λ2 + 4λ− 6 = 0

∴ 2(λ + 3)(λ− 1) = 0

∴ λ = −3, 1 ≡ α, β

Since α and β are real and α 6= β, the complementary function Y1(t) is

Y1(t) = ae−3t + bet

Now to find the particular solution, you need to know the correct substi-
tution. r(x) = e2t means the coefficient of t, i.e., c = 2. Since c 6= α, β,
the particular integral is Equation (98)

Y2(t) = ge2t

∴
∂ {Y2(t)}

∂t
= 2ge2t

∴
∂2Y2(t)

∂t2
= 4ge2t

Substituting these into the original ODE

2
∂2y

∂t2
+ 4

∂ {y}
∂t
− 6y = e2t

∴ 2 · 4ge2t + 4 · 2ge2t − 6ge2t = e2t

∴ 8ge2t + 8ge2t − 6ge2t = e2t

∴ 10ge2t = e2t

∴ 10g = 1

∴ g =
1

10
Thus the particular integral is

Y2(t) =
1

10
e2t

Therefore the general solution for this ODE is

y(t) = Y1(t) + Y2(t)

= ae−3t + bet +
1

10
e2t
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To find a and b we need to differentiate y(t).

y(t) = ae−3t + bet +
1

10
e2t

∴
∂ {y(t)}
∂t

= −3ae−3t + bet +
2

10
e2t

∴
∂ {y(t)}
∂t

= −3ae−3t + bet +
1

5
e2t

Since
∂ {y}
∂t

= −4

5
at t = 0, we put (t,

∂ {y}
∂t

) = (0,−4

5
) into the equation

of
∂ {y(t)}
∂t

as follows:

−4

5
= −3ae0 + be0 +

1

5
e0

∴ −4

5
= −3a + b +

1

5

∴ −4

5
− 1

5
= −3a + b

∴ −1 = −3a + b À

Since y(0) = 6, i.e., (t, y) = (0, 6), we get

y(t)|y=6 = ae−3t + bet +
1

10
e2t|t=0

∴ 6 = ae0 + be0 +
1

10
e0

∴ 6 = a + b +
1

10

∴ 6− 1

10
= a + b

∴
59

10
= a + b Á

Á - À is
59

10
+ 1 = a + 3a

∴
59

10
+

10

10
= 4a

∴
69

10
= 4a

∴
69

40
= a
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By putting a = 69
40 into Á, we get

a + b =
59

10

∴
69

40
+ b =

59

10

∴ b =
59

10
− 69

40

∴ b =
59 · 4
40
− 69

40

∴ b =
236

40
− 69

40

∴ b =
167

40
Therefore the particular solution to the ode is

y(t) =
69

40
e−3t +

167

40
et +

1

10
e2t

6) Obtain the particular solution of the equation
∂2y

∂x2
− 2

∂ {y}
∂x
− 3y = 3xe2x

satisfying y(0) = 4/3 and
∂ {y}
∂x

∣∣∣∣
x=0

= −25/3

Hint Equation (92),Equation (95),Equation (102),Table I
When the auxiliary equation

λ2 − 2λ− 3

= (λ− 3)(λ + 1) = 0

is solved, λ = −1, 3 ≡ α, β is obtained. From Equation (95), we set
Y1(x) = ae−x + be3x

because α = −1, β = 3 in Equation (95). From Equation (102), we set

Y2(x) = e2x

(
1∑

m=0

gmx
m

)
= e2x(g0 + g1x)

because c = 2 in Equation (102).
∂ {Y2(x)}

∂x
=
∂
{
e2x(g1x + g0)

}
∂x

= 2e2x(g1x + g0) + g1e
2x

= e2x(2g1x + 2g0 + g1)
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∂2Y2(x)

∂x2
=
∂
{
e2x(2g1x + 2g0 + g1)

}
∂x

= 2e2x(2g1x + 2g0 + g1) + e2x(2g1)

= e2x(4g1x + 4g0 + 4g1)

When we put
Y2(x) = e2x(g1x + g0)

and
∂ {Y2(x)}

∂x
= e2x(2g1x + 2g0 + g1)

and
∂2Y2(x)

∂x2
= e2x(4g1x + 4g0 + 4g1)

into Equation (108), we get

e2x(4g1x + 4g0 + 4g1)−2e2x(2g1x + 2g0 + g1)

−3e2x(g1x + g0) = 3xe2x

∴ e2x(4g1x + 4g0 + 4g1−4g1x−4g0−2g1−3g1x−3g0) = 3xe2x

∴ e2x(2g1 − 3g0 − 3g1x) = 3xe2x

By equating coefficients of x and x0 we obtain

2g1 − 3g0 = 0

−3g1 = 3

From these equations, we obtain g1 = −1 and g0 = −2/3. Thus the
general solution

y = ae−x + be3x + e2x(−x− 2/3)

is obtained. In order to use the initial condition, we produce
∂ {y}
∂x

from
the general solution and we get

∂ {y}
∂x

= −ae−x + 3be3x + 2e2x(−x− 2/3)−e2x.

By using the initial condition

y(0) = a + b− 2/3 = 4/3

and
∂ {y}
∂x

∣∣∣∣
x=0

= −a + 3b− 7/3 = −25/3,
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we get a = 3 and b = −1. Thus the particular solution is

y = 3e−x − e3x + e2x(−x− 2/3)

7) Obtain the particular solution of the equation

∂2y

∂x2
+ 4

∂ {y}
∂x

+ 3y = 3x2 + 2x

satisfying y(0) = 1 and
∂ {y}
∂x

∣∣∣∣
x=0

= 1

Hint Equation (92),Equation (95),Equation (100),Table I
When the auxiliary equation

λ2 + 4λ + 3 = (λ + 1)(λ + 3) = 0

is solved, λ = −1,−3 is obtained. From Equation (95), we set

Y1(x) = ae−x + be−3x

because α 6= β in Equation (95). From Equation (100), we set

Y2(x) =

2∑
m=0

gmx
m = g2x

2 + g1x + g0

∂ {Y2(x)}
∂x

=
∂
{
g2x

2 + g1x + g0

}
∂x
= 2g2x + g1

∂2Y2(x)

∂x2
=
∂ {2g2x + g1}

∂x
= 2g2

When we put
Y2(x) = g2x

2 + g1x + g0

and
∂ {Y2(x)}

∂x
= 2g2x + g1

and
∂2Y2(x)

∂x2
= 2g2
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into Equation (108), we get

2g2 + 4(2g2x + g1) + 3(g2x
2 + g1x + g0)

= 3x2 + 2x

∴ 3g2x
2 + (8g2 + 3g1)x + 2g2 + 4g1 + 3g0

= 3x2 + 2x

By equating coefficients of x2, x and x0, we obtain

3g2 = 3

8g2 + 3g1 = 2

2g2 + 4g1 + 3g0 = 0

From these three equations, we obtain g2 = 1, g1 = −2 and g0 = 2. Thus
the general solution

y = ae−x + be−3x + x2 − 2x + 2

is obtained. In order to use the initial condition, we produce
∂ {y}
∂x

from
the general solution and we get

∂ {y}
∂x

= −aex − 3be−3x + 2x− 2.

By using the initial condition

y(0) = a + b + 2 = 1

and
∂ {y}
∂x

∣∣∣∣
x=0

= −a− 3b− 2 = 1,

we get a = 0 and b = −1. Thus the particular solution is

y = −e−3x + x2 − 2x + 2.

8) Obtain the particular solution of the equation
∂2y

∂x2
+
∂ {y}
∂x

= 2x + 4

satisfying y(0) = 8 and
∂ {y}
∂x

∣∣∣∣
x=0

= −3

Hint Equation (92),Equation (95),Equation (101),Table I
When the auxiliary equation

λ2 + λ = λ(λ + 1) = 0
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is solved, λ = −1, 0 is obtained. From Equation (95), we set

Y1(x) = a + be−x

because α = 0, β = −1 in Equation (95). From Equation (101), we set

Y2(x) = xk

(
1∑

m=0

gmx
m

)
= x(g0 + g1x)

= g0x + g1x
2

with k = 1 because Y1(x) does not have x or x2.

∂ {Y2(x)}
∂x

=
∂
{
g1x

2 + g0x
}

∂x
= 2g1x + g0

∂2Y2(x)

∂x2
=
∂ {2g1x + g0}

∂x
= 2g1

When we put
Y2(x) = g1x

2 + g0x

and
∂ {Y2(x)}

∂x
= 2g1x + g0

and
∂2Y2(x)

∂x2
= 2g1

into Equation (108), we get

2g1 + 2g1x + g0 = 2x + 4

By equating coefficients of x and x0 we obtain

2g1 = 2

2g1 + g0 = 4

From these one equation, we obtain g1 = 1 and g0 = 2. Thus the general
solution

y = a + be−x + x2 + 2x
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is obtained. In order to use the initial condition, we produce
∂ {y}
∂x

from
the general solution and we get

∂ {y}
∂x

= −be−x + 2x + 2.

By using the initial condition

y(0) = a + b = 8

and
∂ {y}
∂x

∣∣∣∣
x=0

= −b + 2 = −3,

we get a = 3 and b = 5. Thus the particular solution is y = 3+5e−x+x2 +
2x

9) Obtain the particular solution of the equation

∂2y

∂x2
− 3

∂ {y}
∂x

+ 2y = ex

satisfying y(0) = 1 and
∂ {y}
∂x

∣∣∣∣
x=0

= 2

Hint Equation (92), Equation (95),Equation (99),Table I
When the auxiliary equation

λ2 − 3λ + 2

= (λ− 1)(λ− 2) = 0

is solved,
λ = 1, 2 , α, β

is obtained. From Equation (95), we set

Y1(x) = aex + be2x

because
α 6= β

in Equation (95).
Since

c = 1

and
α = 1,
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from Equation (99) we set

Y2(x) = gxkex.

Since Y1(x) does not have a term of xex, we try to set k = 1. As Y2(x)
is in the same form as Y1(x) we need to add an x to make it a unique
solution.
Now we need to find out g by using Equation (108). Thus we need the
first and second derivative of Y2(x).

∂ {Y2(x)}
∂x

=
∂ {gxex}
∂x

= g
∂{xex}
∂x

= g(xex + ex)

= gxex + gex

∂2Y2(x)

∂x2
=
∂ {gxex + gex}

∂x

= g
∂(xex + ex)

∂x
= g(ex + xex + ex)

= gxex + 2gex

When we put
Y2(x) = gxex

and

∂ {Y2(x)}
∂x

= gxex + gex

and

∂2Y2(x)

∂x2
= gxex + 2gex

into Equation (108), we get
∂2y

∂x2
− 3

∂ {y}
∂x

+ 2y = ex

∴ gxex + 2gex − 3(gxex + gex) + 2gxex = ex

∴ −gex = ex

∴ g = −1
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Thus the general solution

y = aex + be2x − xex
is obtained.
In order to use the initial condition to find out a and b, we produce

∂ {y}
∂x

from the general solution and we get
∂ {y}
∂x

= aex + 2be2x − xex − ex.

By using the initial condition

y(0) = a + b = 1

and
∂ {y}
∂x

∣∣∣∣
x=0

= a + 2b− 1 = 2,

we get
a = −1

and
b = 2.

Thus the particular solution is

y = −ex + 2e2x − xex
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