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Modeling fechniques to perfectly match reality ?

'\:?ri?l Equations of Nug;?glrcm
physics
vxg=-8__,H
ot ot
Real world Computational
F) model
VxVxE=—ya—(VxH)

Model calibration:
prediction vs. measurement

The finite-difference time-domain (FDTD) method
numerically solves Maxwell equations.



Uncertainty Quantification

@ Two types of uncertainty
» Aleatory uncertainty: natural randomness.
» Epistemic uncertainty: arisen due to lack of exact
knowledge, i.e.,the uncertainty of input parameters.
@ Uncertainty Quantification(UQ) : estimating
mean,
standard deviation,
and probability density function of the system response.

@ UQ of the system response (FDTD observation |E|* ) from
epistemic uncertainty

Q@ Input parameters: complex permittivity of human tissue



Methods for uncertainty quantification

e Monte Carlo method (MCM)

e Non-intrusive polynomial chaos (NIPC) expansion
method

e Least angle regression (LARS) method
o Arfificial neural network (ANN)



Key ideas of MCM
Use random samples of parameters to explore the
behaviour of a complex system.

Run simulation Obtain the
with the chosen || response of the
sample system

Randomly choose
a sample

Repeat thousands
of times

Estimate v and ¢ using the first M system responses

M total number of samples
(m) 13 variables (Debye parameters)
v(M) = M mz_: YET) £m m-th sample for ¢

V(™) system response
v(M)  mean of Y(¢M)

M
o (M) = R S WE™)—v?  o(M)> variance of Y(£™)
m=1



Example of MCM for UQ
Calculate v of Y(£(M) using the first M Y(¢(M).
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Non-intrusive polynomial chaos (NIPC) expansion

e Approximate the outputs of a system by a series of
polynomials.

T(E) = Y aub(§) = aotho(€) + (&) + -+ + At (€),
=0

T (£): the approximation of system response.
Pe(€) 1 (-th polynomial basis for ¢ < [0, £]
a, : the coefficient of ().

e Calculate the coefficients based on a set of input
values and the corresponding system response.



NIPC for uncertainty quantification

eThemeanr : v =0
L

o The variance 2 : o =Y a/J;}.
=1

e Ex. Hermite polynomial 1), when random input variables
to be normal distribution

YPo(&r) =1
(&) =&
Uo(&1) =& — 1

Note: Type of polynomials depends on the probability
distribution of random input variables
Note: Values of » and ¢ depend on values of o,



Polynomial bases for multiple variables

@ Define the polynomial basis as ¢a,a,...ax (£1,62,- -+, €k)-
@ ajay - - - ax is the index of the polynomial basis.
@ The total number of polynomial bases L is calculated as in
(r+K)!
rigy
r: the highest order of polynomial bases, satisfying

L=

K
> ak<rax>0
k=1

For example, when r =2 and K = 2, £ = 6. These 6 1.,4,(&1, &) are presented
as.

Hermite polynomials The order of v
Yoo(&1,€2) = Yo(&1)Yo(&2) = 1 0
¥10(€1, &2) = ¥1(§1)Yo(&2) = 1
Y0161, €2) = Po(&)i1(&2) =
P20(€1,€2) = Pa(&1)bo(€2) = &1 — 1
Yo2(&1,€2) = Yo(&1)v2(82) = &5 — 1 2
P11(&1,62) = Wi(&)n (&) = Li&

€1
&
&




Calculation of g, by regression method
Calculate g, which gives minimum difference between Yy
and 7 (¢) based on the least squares regression method.

a-— (uﬂw)_] wly

e Coefficient vector a = [y, ..., a]’.
e K random variables ¢ = [¢, ..., &'

o M system responses Y = [y(g(”), V(EP), ..., y(g(M))] !

obtained from FDTD simulations using M sets of input
sample ¢(M,

e Polynomial basis matrix
W= (™), m=1~ M, =0~ L).

vo(€)) (€M) v (€)

v | D€ i€®)  we(€®)

Go(€MD) (€MD) L ()
Runze Hu !, Vikass Monebhurrun® Fumie Costen 1+2 Tuniversity of Manchester, UK 2RIKEN,Wako, Saitama.,351-0198, Japan 3CenfraleS.  11/49



Comparison of NIPC with MCM for I = 1
Estimates of » and ¢ from NIPC and MCM

Monte Carlo  —— | Monte Carlo ==

402 Regression method o 1 0.32 Regression method
4 . . . . . . . . . 0.3 L L L L L L L L L
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Experiments Number of Experiments

10000 FDTD simulations for MCM to obtain one » and one o~
3 FDTD simulations for NIPC to obtain one » and one o
1000 experiments of NIPC method to obtain 1000 » and
1000 o



Curse of dimensionality

e The regression method would be valid only if £ < M.
e The number of required FDTD simulations ~« the number
of random variables K.

1000

100 |

10




Least angle regression (LARS) method

e NIPC expansion

c
T(&) =~ ) anbe(€) = aoto(€) + o (§) + -+ + acve(€)
=0

has a collection of polynomial bases
{¢O(E)7 ¢1 (6)7 s a¢£(€)}

e The LARS method selects those ) which have significant
correlation to system response.

e The less number of v, the less number of FDTD
simulations.



Procedures of LARS method
@ Initialize a = [a1, a,...,a;]" =1[0,0,...,0]".
@ Calculate the correlation between ) and the residual
vector (Y — 7).
C=v'(y-T)

C =[C1,Ca,...,C]". Each element in C, such as C,,
indicates the correlation between v, and the residual
vector.

© Find the most correlated ) with the residual vector.

ICz| = max |Cyl.
1<e<c

Q Calculate a.

a=W"¥)'y=1[0..00a.0,.. .0

W: matrix with an additional k-th column of W at each
iteration. W = (y(¢M™),m=1~ M,k € [1, £]).



Procedure of the LARS method

@ Calculate 7(¢), and evaluate the error ¢, between y
and 7 using Leave-one-out cross-validation method. ¢,
is calculated as in

s"” (5‘”’)
-4 (4757

hm : the m-th diagonal element of the square matrix
Y o)




Procedure of the LARS method

O Repeat from step 2 to Step 5, until ¢, < the target error «;.
10 T T T T T T

2 6 10 14
LARS Iterations
e The setting of ¢; is application-dependent.

e Empirically, ¢; = 103 is a reasonable value in our
scenario enabling the LARS method to have a stable
performance.



Procedure of the LARS method

@ Estimate o using o; of the chosen polynomials as

0? = Z O‘IZQ@/)%.
4 T T T T T T
o o e  — — — —— —— — — — — ;'
3 - -
2 - -
O L -
Ir LARS —— |
O | | | MCMI __I_
2 6 10 14

LARS Iterations
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Pros and cons of LARS method

Advantages of LARS method

@ Computationally efficient.
Only use significant polynomial bases.

@ More stable than standard NIPC method.
The less number of polynomial bases, more stable

computation of (W' &),




Pros and cons of LARS method

Adaptive LARS method to overcome demerits of LARS

Issues LARS Adaptive LARS method
Setfting of | LARS procedure | Set minimum number of
£t stops too early | the LARS iterations to pre-

when ¢, < ¢; after | vent the LARS procedure
a few number of | from being terminated too
iterations. early.

Lack of | M should exceed | Introduce the L, regularisa-
flexibility the number of | tion to the LARS method to
chosen . obtain a pseudo-inverse of

(),

w




Experimental results from LARS method with 15 M
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LARS vs adaptive LARS

The LARS method
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UQ using artificial neural network (ANN)

Machine learning algorithms to model the underlying

relationships between the input variables and the system
output.

Repeat thousands of times

Obtai 1
Standard MCM Rar}domly choosg FDTD simulation am system
an input sample

response

MCM with surrogate Randomly choose| Surrogate model of Obtain estimate of
modelling technique an input sample FDTD simulation system response

Repeat thousands of times

ANN to build a surrogate model for the FDTD simulation



UQ using artificial neural network (ANN)

Surrogate models
e replace FDTD simulations required in the MCM.

e are computationally efficient compared with FDTD
simulations.

e improve the computational efficiency of MCM.



The architecture of ANN

Hidden layers

' 28 N
Input 1st-layer 2nd-layer Output
X
& N
AR £ 1 (1)
- 5(1) (G 1(13) ()
gr—

e Three types of layers of input, hidden and output layers.

e Two hidden layers of the 1sf-hidden layer with G, nodes
and the 2nd-hidden layer with G, nodes.




The architecture of ANN

e Three sets of weights
Wi ={Wy,,kK=1~K g =1~C}
W2 - {W2(9192)’ Q] =1~ G]’QQ =1~ G2}

2
Wo = [Wom, Wopy: -+ Woe,

e The input and output of each neuron in hidden layers :
T and f, (T) = T + T2 respectively.

e fp (T) : our original activation function, inspired from
NIPC expansion method.
When a system has one random variable,
Yo(é) =1 5 (&) =& 5 val&) =&° =1
are the Hermite polynomial bases with the highest order
equalling 2. Replacing ¢, with 7, we design 7, (7) as in

2



Training process - Forward propagation

X Wy
é(m)\»
1
&

fy >L’2<fp(7-2)(1)
1) Ef——1,(1) (¢

Q@ T1=X(MW; = Io(Th) = o (T)Wa=T>

= fo(T2) = H(T2)Wo="To

@ T.=1 (fp (f(M)vw) -Wz) W




Training process - Backpropagation
@ Quantify the influence of weights on the loss function of

1 2
LO 2(T _y) )

i
where Y = [y(sm) V(ED), .. V(e (M>)] obtained from M
FDTD simulations.

@ Use error signals to measure how much L, varies with
the changes of 7, 7T»,, and 7.
The error signal at the output layer:

Ol 05(To—-Y) _ NTo-Y) _
ST, T e Ve Y, T
The error signal at the 2nd- and 1sf- hidden layer:

_ 95 (T2) n. s _ (T T
0y = o7, ®© (5oWo ) ;0 = aT ®© (52W2 ) .



Derivation of d, and 6

Assuming we have 1 (= M) set of input samples to an ANN, and G, = G, = 1.
The error signal o, is written by 6, = (7o — )). 6, is calculated as in

_alo Olo  0f(T2)  05(To—Y)? 0fs(T2)

2= T, T AL (T, 9T, 0h(Ta) | oTs
oy ATo=9) 0b(Te) o OTe  0h(T2)
o (To) 0T, 9% (T2)  0T»
s OB(TDWe OR(TD) s 96 (T2
0 (T2)  0Ts T

oo (T

When G, = G; > 1, §; can be written as in 5, = 5OW°(1)w’ R
2(1)

pr(TQ(G2))

5OWO(GZ) BTQ(Gz)

] = WL O afpg}). For M sets of input samples to an ANN,
2

o
o (T2(mgy)

&, is presented as in §, = {5o(m)WO(gz) 9T
2(mgy)

,m=1~M,g2:1~<;2}.



Training process - Weights update

@ Weight update to minimise L.

Wo(ﬂ+1) _ Wo(ﬁ) —nf, (Tz)(ﬁ)T(go(ﬁ)
W0+ — W, (7)) 5,
WD — W@ (M) 5.

v indicates the v-th ANN iteration(gradient descent).
© The ANN iteration, each with updated weights.

© Termination of the ANN iteration when the accuracy of
the trained ANN model reaches our expectation.



The gradient descent method

e An optimisation algorithm to minimise a function.
e The linear regression model

T(é]a"')é-/C;W]?"' ;W’C):W1£1 ++WIC£K
=T(EW)=¢W,

W=[W,--- ,WK]T
T(&,V) : the prediction of Y (¢).
¢ Find the optimal W enabling the cost function of

1 X 2
_ (m) _ (m)
aw) =53 2 (T(€™. W) - ¥(e™))
to reach local minimum.



The gradient descent method
e Derive the gradient of Q(W) with respect to W

0 R (m) (M) ¢ (m)
a—WkQ(W)—H;Q(T(E W) = V(& ))fk :

e Update W

%Y (i+1) _ W(/ i nV @
n: the qurning rate. i
VWQ 8W1 QW),--- >61?v,c QW)

w : W at i-th gradient descent iteration.
e Repeat gradient descent iteration until W converges.

w large 7
' '

1 1
minimum minimum

wY




Detection of overfitting in ANN iferation

Oveffitting: The frained ANN is able to accurately predict
the outputs for the fraining data, whereas the predictive
accuracy for the test / validation data is substantially lower
than those for the fraining data.

@ Split the dataset into three parts: _
fraining data X’ (M), validation data X (M,,), and fest

data X (M), where M = My + M, + My.

@ At each ANN iteration, update W using X(M;,) and
utilise the updated WV to calculate the output of ANN for
X (M) of the ¥-th ANN iteration as

Tuo” =1 (fp (f(Mv/)W#ﬁ)) : Wg“”) W@,
T
where 7-’V/o(ﬁ) - [Tvlo(ﬁ)(])a T 7TVIO(§)(MVI)] .



Detecftion of overfl’r’rlng in ANN iteration
' ' CEtr—

10 &
i~
>
W
g "o potential
<L \\overﬁtting
g A -
(L) s‘ ———————————————————————
0.1 . |
0 250 500 750 1000

@ Calculate the validation error ¢, of the ¥-th ANN

iteration.

My 2
«9)_ ( («9)(”7) (f(m)))7

m:



Detection of overfitting in ANN iferation

@ Detection of ovelffitting at when tv > w, where

)
w> 1.

Usage of validation error

o Hyperparameters set to minimize the local minimum of
()
Ev

o Termination of the ANN iteration when ample data
available




Criteria to terminate ANN iteration

Use the entire dataset as fraining data to maximise the
number of training data, and terminate ANN iteration when
¢+ reaches stable status (convergence), judged by the
conditions of

}ar(’” — 07|

er(?=D

<b

and

W=1) _ ¢, (9-2)

€ €

| : (19_2); } <b,
Etr

b > 0: a small constant , say 0.01



Numerical simulation setup
e Five influential tissues (fat, skin, muscle, bone and

prostate).

o Two Debye parameters of interest for each influential
tissue.

o 10(= k) Debye parameters as uncertain inputs. |E|? is
the output of the FDTD simulation.

HO!QH/ﬁlQSqO

Distance(xAy)



Each Debye parameter of infterest yielding the
normal distribution (K = 10)

Frequency

26.8488  30.639

€ for muscle

£ Meaning of ¢ Mean | Standard deviation
& €~ Of fat 6.80 0.68
& | Ace of fat 7.37 0.74
& | e Of skin 18.07 1.81
& | Acof skin 29.87 2.99
& | es Of muscle 28.93 2.88
& | Ae of muscle 28.02 2.81
& | ex Of bOne 1.53 0.15
& | Aeof bone 4.01 0.40
& | e Of prostate | 32.82 3.28
&0 | Ae of prostate | 27.73 2.78




Generation of input dataset

@ Generate 10* samples for each Debye parameter.
o

» MCM with FDTD runs: Randomly pick one sample out
of 10* samples for each Debye parameter and
combine those chosen samples to produce 1
combination

» MCM with ANN: Use the Latin hypercube sampling
method for M inputs for each Debye parameter and
combine those chosen samples to produce M
combination

of 10 Debye parameters £ = [¢, &, - - - ,£1o]T

@ Repeat 10° times to produce 10* ¢ for MCM with FDTD
runs. We do not choose the same samples as those
chosen earlier



The Latin hypercube sampling method. Ex. M =3
A sampling method to generate random samples based on

the probability distribution of the random variable.
3 random samples from LHS

.
] N
f ;f;?i choose fhoo.si
1 point pout
randomly randomly randomly

. 1 T
3333 points 3333 points 3333 points
V=
i

.

Frequency

26.8488 30.639 38.65 46.74
€~ for muscle



UQ using synthetic FDTD outputs
ANN
@ Form 10 £(™ out of the 10* ¢ based on LHS

@ Obtain 10 system responses |Em|2 by the FDTD
simulations using for ¢,
@ Train ANN with 10 sets of data pair of ¢(™ and |E,,|?

@ Use the trained ANN model to make predictions 7,") for
10% ¢, where n =1~ 10%.

MCM

@ Run 10* FDTD simulations to obtain 10 |E,,|* using 10°
g(m)_

@ Estimate the uncertainty of system outputs by
calculating the mean and standard deviation of 10

En2. |
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ANN prediction varying v
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UQ using synthetic FDTD outputs

Computational time for each element

Activity Time
1 FDTD simulation 5.5 hours
415 ANN iterations | less than 1 second

Computational efficiency comparison

Approach Activity elements
MCM with FDTD 10000 FDTD simulations
MCM with ANN | 10 FDTD simulations + 415 ANN iterations




UQ using synthetic FDTD outputs

104 75" ot ¥ = 415 to estimate the mean »(\) and
standard deviation 5 (V) of |E|>. : the number of samples
used as inputs to the trained ANN model to predict |E|°.

N ] X )
ZJT/’Z T 4 ( :N_]Z<%()_V(N))
M) from MCM a(/\/l) from MCM

V(
p(N) from ANN ¢ (N) from ANN

ANN D(N) ——
MCM v(M) — 1 1.6 1/\\41::1:4 Z((AA;))




Comparisons of the proposed method with others

EDID Accuracy of Accuracy of
UQ methods runs v v estimation o o estimation

NIPC method | 65 | 20.942 | 99.92% | 4.083 | 78.11%
Work in (1) 221 | 21.154 | 98.91% | 3.267 | 97.52%
Work in (2) 30 | 20.720 | 99.02% | 4.027 | 79.79%

Proposed ANN | 10 | 20.849 | 99.63% | 3.311 | 98.83%

Standard ANN | 10 | 20.835 | 99.57% | 2.983 | 89.06%

e The standard ANN for regression analysis uses f (7) =T
as its activation function and stops ANN iteration based
on preset iteration number.

@ Work 1: J. S. Ochoa and A. C. Cangellaris. Random-space dimensionality

reduction for expedient yield estimation of passive microwave structures.
IEEE Trans. Microw. Theory Tech., 2013.

@ Work 2: X. Cheng and V. Monebhurrun. Application of different methods to
quantify uncertainty in specific absorption rate calculation using a
cad-based mobile phone model. /[EEE Trans. Electromagn. Compat., 2017.



UQ using synthetic FDTD outputs

1000 y(]O“) from 1000 experlments 1000 & (104) from 1000 experlments

216} ANN © ] ANN ©
MCM = 51 MCM e

&(10%)

20471

2
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Experiments Number of Experiments

@ The mean and standard deviation of the 1000 7(10%)
are 20.927 + 0.098, while »(10%) from the MCM is 20.925.

@ The mean and standard deviation of the 1000 & (10%)
are 3.375 + 0.222, while +(10%) from the MCM is 3.348.



Conclusions and future plan

Background

e NIPC expansion method is

» an ideal alternative o MCM.
» incapable of handling the high-dimensional UQ
problem due to the curse of dimensionality.

e The LARS method alleviates the curse of dimensionality. )

Proposals

o An adaptive LARS method to improve the accuracy of
LARS method.

o An ANN based technique to quantify the uncertainty of
the FDTD simulation in the human body.

The proposed ANN outperforms other UQ techniques in
terms of accuracy and computational efficiency.

v




Conclusions and future plan

@ Extend the proposed UQ techniques to handle the data
whose correlated uncertainties satisfy non-Gaussian
distribution.

@ Explore effective sample selection techniques to select
most informative simulation samples.




Finally.........

Thank you for your attention
v
Any questions ?
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