
1

Accurate and Robust Prediction of Amyloid-B
Brain Deposition from Plasma Biomarkers and
Clinical Information Using Machine Learning
Jiayuan Xu 1, Andrew J. Doig 2, Sofia Michopoulou 3, Petroula Proitsi 4, Fumie
Costen 1,∗, for the Alzheimer’s Disease Neuroimaging Initiative 5

1Department of Electrical and Electronic Engineering, University of Manchester.
Oxford Road, Manchester, M13 9PL, UK
2Division of Neuroscience, Stopford Building, School of Biological Sciences, Faculty
of Biology, Medicine and Health, University of Manchester, Manchester, M13 9BL,
UK
3Medical Physics University Hospital Southampton NHS Foundation Trust, and
Clinical Experimental Sciences University of Southampton. Minerva House,
Mailpoint 29, Southampton General Hospital, Tremona Road, SO16 6YD,
Southampton, UK
4Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen
Mary’s University of London. Department of Basic and Clinical Neuroscience,
Institute of Psychiatry, Psychology, and Neuroscience, King’s College London,
London, United Kingdom
5Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf

Correspondence*:
Fumie Costen
fumie.costen@manchester.ac.uk

Word count: 6746, Figures: 7, Tables: 82

ABSTRACT3

Background: Alzheimer’s disease (AD) greatly affects the daily functioning and life quality of patients4
and is prevalent in the elderly population. Amyloid-B (AB) accumulation in the brain is the main hallmark5
of AD pathophysiology. Positron Emission Tomography (PET) imaging is the most accurate method to6
identify AB deposits in the brain, but it is expensive and not widely available. The development of a7
low-cost method to detect AB deposition in the brain, as an alternative to PET, would therefore be of8
great value. This study aims to develop and validate machine learning algorithms for accurately predicting9
brain amyloid-B (AB) positivity using plasma biomarkers, genetic information, and clinical data as a10
cost-effective alternative to PET imaging.11
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Methods: We analyzed 1043 patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)12
dataset and validated our models on 127 patients from the Center for Neurodegeneration and Translational13
Neuroscience (CNTN) dataset. Brain AB status was determined using plasma biomarkers (AB42, AB40,14
Phosphorylated tau (pTau) 181, Neurofilament light chain (NfL)), Apolipoprotein E (APOE) genotype, and15
clinical information (Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA),16
age, education year, and gender). Decision tree, random forest, support vector machine and multilayer17
perceptron (MLP) machine learning methods were used to combine all this information. We introduced a18
feature selection method to balance the performance and the number of features. We conducted a feature19
matching technique to enable our model to be tested on the external dataset without retraining.20

Results: Our system achieved a value of 0.95 for the Area Under the ROC curve (AUC) using the ADNI21
dataset (n=340) and the full set of 11 features. Our architecture was also tested on an external dataset22
(CNTN, n=127) and achieved an AUC of 0.90. When using only five features (pTau 181, AB42/40, AB42,23
APOE E4 count, and MMSE) on 341 ADNI patients, we achieved an AUC of 0.87 with the MLP method.24

Conclusion: The random forest, support vector machine and multilayer perceptron methods can25
accurately predict brain AB status using plasma biomarkers, genotype, and clinical information. The26
method generalizes well to an independent dataset and can be reduced to using only five features without27
losing much accuracy, thus providing an inexpensive alternative to PET imaging.28

Keywords: Alzheimer’s Disease, AB PET, plasma biomarkers, machine learning classification algorithm, feature selection, feature29
matching30

1 INTRODUCTION

Alzheimer’s Disease is the most common form of dementia that mostly happens in those aged 65 or above31
(1). According to the World Health Organization (WHO), more than 55 million people are living with32
dementia around the world in 2023, and 60-70% of them are Alzheimer’s disease patients (2).33

The accumulation of AB and tau neurofibrillary tangles are the two main pathological hallmarks of34
Alzheimer’s disease (3). AB is a peptide originating from the Amyloid Precursor Protein (4). It is found35
most commonly in two forms, AB40 and AB42, with the longer form being more toxic. In the brains36
of Alzheimer’s disease patients, AB cannot be cleared effectively, which leads to the accumulation of37
amyloid oligomers and plaques. Amyloid deposits inhibit synaptic function and ultimately kill neurons,38
predominantly in the hippocampus. Tau is a protein normally bound to microtubules in the axons, which39
play a role in transporting messages between neurons. For patients with Alzheimer’s disease, their tau40
proteins leave the microtubules to form neurofibrillary tangles, damaging neuronal structure and function.41

Although there is currently no cure for Alzheimer’s disease (1), amyloid-clearing therapies (most recently42
antibodies that target AB) can slow down the progress of the disease and improve the quality of life for43
patients in the first stages of the disease. This new generation of drugs is likely to be most effective44
when given as early as possible, ideally before any disease symptoms are evident. An early diagnosis and45
prognosis are therefore crucial for potential patients to receive timely treatments. The key to diagnosis is46
the accurate detection of AB deposits.47

PET imaging is currently the state-of-the-art method to diagnose Alzheimer’s disease. Using imaging48
agents that can bind to AB deposits, such as 11C-labeled Pittsburgh compound B (PIB), PET can clearly49
detect and quantify AB accumulation in the brain. However, PET imaging is expensive, the radioactive50
tracer is unsuitable for patients with specific health conditions, and few hospitals are equipped with PET51
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scanners. There is, therefore, an urgent need to develop a low-cost and easily accessible method for the52
diagnosis of Alzheimer’s disease that can substitute for PET imaging.53

Plasma blood biomarkers can be collected easily and are much cheaper than PET imaging. Antibody-54
based methods, such as ELISA, electrochemiluminescence, and Simoa, are typically used. The presence of55
specific plasma biomarkers has been found to be correlated with AB deposition in the brain. Therefore,56
estimating the brain AB status may be possible using the plasma biomarkers.57

Various machine learning architectures have been proposed for the diagnosis of Alzheimer’s Disease58
using plasma biomarkers. Pan et al. (5) proposed a decision tree (DT) classification algorithm to predict the59
AB status using plasma biomarkers and cognitive test results. They enrolled 609 patients from hospitals60
and extracted 14 features from the patients as their dataset. They prepared three models with different61
numbers of features on their study cohort. Their DT model gave an AUC value of 0.94 on the dataset62
with 14 features, 0.83 on the dataset with 5 features, and 0.71 on the dataset with 3 features. Vergallo et63
al. (6) introduced a method to predict the brain AB status using the plasma AB40/42 ratio in cognitively64
normal individuals. They collected a dataset from the INSIGHT-preAD study (7). They identified the ratio65
of AB40/42 as the most relevant feature for the AB prediction by the random forest (RF) and classification-66
and-regression-trees algorithms. They showed the AB40/42 ratio was able to estimate the brain AB status67
with 0.79 AUC. Youn et al. (8) developed machine learning algorithms to estimate the brain AB PET68
positivity using plasma AB. Their dataset was from the Alzheimer’s Disease All Markers Study (9). They69
developed RF, support vector machine (SVM), logistic regression, and deep neural network algorithms70
using features of blood AB levels, age, APOE genotype, and Mini-Mental State Examination (MMSE)71
scores. The RF achieved the best performance with 0.77 accuracy. Yang et al. (10) used a stepwise logistic72
regression model to predict the positive AB PET with the plasma biomarkers. They collected the dataset73
from the Center for Neurodegeneration and Translational Neuroscience (CNTN) data center (11). Their74
model estimated the AB PET status using Glial fibrillary acidic protein (GFAP) and pTau 181 with 0.8675
AUC in all patients (57 cognitively unimpaired and 87 cognitively impaired) and 0.93 AUC in cognitively76
impaired patients. Moradi et al. (12) proposed a machine learning model to estimate the AB status based77
on demographics, APOE genotype, MRI, and neuropsychological assessments. The status of AB was78
defined by PET and Cerebrospinal Fluid (CSF) measurements. Their dataset was acquired from the ADNI79
database (13). They developed the ridge logistic regression (RLR) model and achieved a 0.68 AUC score80
in status estimation of AB PET. Ashton et al. (14) created an AB positivity classification model with plasma81
biomarkers. They acquired the dataset from the Australian Imaging, Biomarker and Lifestyle Flagship82
Study of Ageing (AIBL) (15) for their study. They developed an SVM algorithm to predict the amyloid83
burden positivity with a different number of features. Their models gave an AUC of 0.891, using 12 features84
(Prothrombin, Adhesion GPCR F4, AB A4 protein, NGN2, APOE E4 count, DNAH10 (axonemal), REST,85
NfL, RPS6KA3, GPSM2, FHAD1 and age) from the cognitively unimpaired cohort, 0.904 AUC using 1086
features (APOE E4 count, AB A4 protein, NfL, NGN2, DNAH10 (axonemal), REST, APBB3, GPSM2,87
Prothrombin, and FHAD1) from the Mild Cognitive Impairment (MCI) and AD cohort, and 0.725 AUC88
using only demographic features (gender, age, and APOE E4 count) in the cognitively unimpaired cohort.89
Ko et al. (16) developed a brain AB positivity prediction model with patients’ demographic information,90
APOE genotype, and neuropsychological test results. They used the ADNI dataset as their study dataset.91
They introduced an adaptive Least Absolute Shrinkage and Selection Operator algorithm to identify the92
highly relevant features to the AB PET status. Their model achieved 0.754 AUC in the mild change cohort93
(cognitively normal, significant memory concern, and early mild cognitive impairment), 0.803 in the94
moderate change cohort (significant memory concern, early mild cognitive impairment, and late mild95
cognitive impairment), and 0.864 in severe change cohort (early mild cognitive impairment, late mild96
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cognitive impairment, and Alzheimer’s disease). Kate et al. (17) proposed an estimation system to predict97
positive AB using non-invasive features, such as demographic information, cognitive data, and APOE498
genotype of the patients. Their study cohort was from the NeuGrid platform (18). Their SVM model gave99
prediction results of 0.81 AUC in MCI and 0.74 AUC in cognitively normal patients.100

Previous studies have thus demonstrated the feasibility and clinical utility of estimating brain AB101
PET status using plasma biomarkers, APOE genotype, and clinical information. The field has matured102
significantly, with multiple studies achieving AUC values above 0.90 and commercial assays receiving103
regulatory approval for clinical use. Various machine learning algorithms, such as DT and SVM, have104
been developed and shown to perform well in predicting AB PET status. These findings provide a strong105
foundation for our study.106

However, several challenges remain in translating these promising results to broader clinical practice.107
Existing studies primarily emphasize achieving high accuracy within single-cohort settings, often108
overlooking practical constraints related to feature quantity, computational efficiency, and model109
generalizability across different datasets and populations. Most published models require retraining when110
applied to new datasets or when key features are unavailable, limiting their practical utility. Additionally,111
there remains a need for systematic comparison of multiple machine learning approaches under standardized112
conditions and validation across independent external datasets.113

To address these practical challenges, we propose a comprehensive machine learning framework that114
incorporates feature selection methods to maintain high accuracy with minimal features, and feature115
matching techniques that enable external dataset testing without model retraining. Our approach emphasizes116
model robustness and generalizability, critical factors for real-world clinical implementation that have117
received limited attention in previous studies.118

Our system achieved a 0.95 AUC value to estimate the amyloid PET positivity in the ADNI dataset,119
which is competitive with existing approaches, and also achieved a high AUC of 0.90 when independently120
tested on the CNTN dataset. Building upon the established foundation of plasma biomarker research121
and commercial implementations, we developed four distinct machine learning classification algorithms122
with a focus on practical deployment challenges, including model generalizability without retraining123
and computational efficiency. Our specific contributions include systematic external validation and the124
development of methods to maintain performance with reduced feature sets, addressing key gaps in the125
translation from research to clinical practice.126

2 MATERIALS AND METHODS

2.1 ADNI and CNTN127

The ADNI database, a public dataset especially for Alzheimer’s disease research, contains various types128
of data, such as patient clinical information, biomarker data, and medical test results, making it suitable for129
this research target.130

Another dataset is required to verify the robustness and generalization ability of the machine learning131
algorithms. The CNTN data center, committed to studying neurodegenerative diseases in the aging132
population, such as Alzheimer’s and Parkinson’s, is an ideal test dataset.133

The data used in this study were obtained from the ADNI database (adni.loni.usc.edu) and134
CNTN data center (nevadacntn.org). The ADNI and CNTN studies were conducted with informed135
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consent from all participants or their authorized representatives, and the study protocols were approved by136
the institutional review boards of all participating institutions.137

2.2 Study Cohort138

In the ADNI dataset, 1043 patients were included in this study. We prepared three datasets with different139
groups of features for different purposes as follows:140

The full feature dataset with the most features was used to develop the four machine learning algorithms141
and tune the hyperparameters.142

The best feature dataset with fewer features was designed to optimize the trade-off between performance143
and the number of features.144

The trimmed feature dataset with the same features as the CNTN dataset was used to test the145
generalization ability of the algorithms.146

Table 1 indicates the details of each dataset used in this research project. The first three datasets are from147
the ADNI database by selecting different groups of features. There are 340 patients with 11 features that148
can be found in the ADNI database as the full feature dataset, 341 patients with the 5 features as the best149
feature dataset, and 1043 patients with the 8 features as the trimmed feature dataset.150

The features used in this study are as follows:151

• Plasma biomarkers: pTau 181 is the tau protein with Ser181 phosphorylated. Tau hyperphosphorylation152
is common in AD (19) (20) (21). The higher pTau 181 level is correlated to AB positivity. AB42 and153
AB40 are the most common forms of AB. AB42 is more prone to aggregation, while AB40 is relatively154
stable (22). When the AB42 accumulates in deposits in the brain, the concentration of AB42 in the155
plasma decreases, which leads to a lower AB42/40 ratio in the plasma (23). NfL forms part of the156
neurofilament within large-calibre myelinated axons. When axons are damaged or neurons degenerate,157
NfL levels increase and are released into the blood (24). A higher plasma NfL concentration is related158
to a severe brain AB burden.159

• There are three main APOE genotypes: APOE E2, E3 and E4. The APOE E4 genotype is a significant160
genetic risk factor for Alzheimer’s Disease (25). Being homozygous for APOE E4 has a higher risk for161
AD than being heterozygous. The number of APOE E4 was counted as the feature in this study.162

• Demographic information: age, gender, and years of education.163

• Neuropsychological tests: The MMSE test includes 30 questions covering language, memory, attention,164
reading, and writing ability. The total score range is from 0 to 30. Patients with lower scores are more165
likely to be at risk of cognitive impairment. The MoCA test also includes 30 questions but is more166
complex than the MMSE. MoCA includes a visuospatial test component. MoCA is more sensitive to167
the early stage of cognitive impairment.168

The plasma biomarkers, APOE genotype, and clinical information data were downloaded from the ADNI169
database (‘University of Gothenburg Longitudinal Plasma P-tau181 [ADNI1, GO, 2] Version 2020-06-170
18.csv’, ‘ADNIMERGE - Key ADNI tables merged into one table [ADNI1, GO, 2, 3].csv’ and ‘Blennow171
Lab ADNI1-2 Plasma neurofilament light (NFL) longitudinal [ADNI1, GO, 2] Version 2018-10-03.csv’).172

2.3 Feature Selection173

For the full feature dataset, we used features known to be relevant to AD.174
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For the best feature dataset, we calculated the importance scores of the features from the full feature175
dataset using RF, which achieved the highest AUC value among the DT, RF, SVM, and MLP algorithms176
(Results section 4.1).177

During the training process, RF evaluates the importance of each feature by measuring its contribution178
to the Gini impurity reduction when it is used to split the dataset. The importance score of each feature179
can be calculated by averaging the decrease in Gini impurity caused by this feature across all trees in the180
forest. The feature with the higher importance score is considered the more important, indicating a stronger181
contribution to the model’s predictive power. The importance score of each feature is shown in Figure 1.182
For a fair comparison, we selected five features for our best feature dataset, the same feature amount as183
the best model of the state-of-the-art work (5). The five features with the highest importance scores were184
selected for the best feature dataset. The features were pTau 181, AB42/40, AB42, APOE E4 count, and185
MMSE.186

Figure 1. Feature Importance Scores

The features were used in the trimmed feature dataset to match those in the CNTN dataset, as the CNTN187
dataset lacks some information compared to the full feature dataset.188

2.4 Feature Matching189

To enable direct testing of our model on the external dataset, we selected the same group of features190
for the trimmed feature dataset as those used in the CNTN dataset. Since the CNTN dataset and the191
ADNI trimmed feature dataset originate from different data sources, we applied z-score standardization192
to both datasets, ensuring consistency in feature value range and distribution. We also utilized z-score193
standardization for the remaining datasets to eliminate the impact of feature scale differences on the model194
performance.195

2.5 Amyloid B PET Status196

ADNI database provided processed labels for the AB PET status, 0 for negative and 1 for positive.197
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The AB PET status information data was downloaded from the ADNI database (‘UC Berkeley - amyloid198
PET 6mm Res analysis [ADNI1, GO, 2, 3, 4].csv’)199

2.6 Raw Data Preprocessing200

The data collected from the ADNI and CNTN databases are distributed in different files and formats. To201
make the data suitable for machine learning algorithms, the collected data needs to be preprocessed. The202
steps of data preprocessing are as follows:203

1. Locate the label (AB PET status) and features (each plasma biomarker test result, APOE genotype, and204
clinical information) data in corresponding data files.205

2. Make uniform the format of the sampling date.206

3. Extract sampling results and corresponding sampling date for the label and each feature.207

4. Combine the label with all required features into the complete samples. Only keep the samples with all208
the features sampled within 90 days before or after the label sampled date.209

5. Transfer categorical features into numbers and standardize the continuous value features with the210
z-score standardization method.211

2.7 8-fold Cross Validation212

The 8-fold cross validation was conducted to tune the hyperparameters and test the models. Figure 2213
shows the process of 8-fold cross validation.214

Figure 2. 8-fold Cross Validation

20% of the patients were randomly picked as the test set, and the remaining 80% of the patients were split215
into 8 equal-sized groups. Each group was used as the validation set once, and the remaining 7 groups were216
pooled to be used as the training set. The hyperparameters were tuned to optimize the performance of the 8217
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validation sets. Finally, the entire training data (80% patients) was used to train the model with the optimal218
hyperparameters, and the model was tested on the test set (20% patients) to evaluate the performance.219

3 MACHINE LEARNING ALGORITHM DESIGN

Four machine learning classification algorithms, DT, RF, SVM, and multilayer perceptron (MLP), were220
selected for the AB PET positivity estimation task.221

3.1 Rationale for Algorithm Selection222

We selected four machine learning algorithms, DT, RF, SVM, and MLP, which are widely used223
and achieved good performance in related works. The architectures of these algorithms have good224
interpretability, and the characteristics of these algorithms are very suitable for our research as follows.225

DT is straightforwardly interpretable because its structure can be visualized to explain the classification226
process. Since it is widely used in many related works and performs well, it was considered in our study.227

RF is an ensemble learning method consisting of multiple DTs. By combining the results of multiple228
DTs, the ensemble method can achieve better performance than a single tree.229

SVM is a robust classification algorithm capable of addressing both linear and non-linear problems. It is230
particularly effective in handling high-dimensional data and is well-suited for classification tasks involving231
a large number of features. In this study, we chose the SVM algorithm due to its strong performance on232
small to medium-sized non-linear datasets.233

MLP is the most basic neural network with a good ability for generalization. The MLP was chosen234
for this study due to the medium size of the dataset, its ability to handle non-linear data, and the ease of235
implementing and adjusting the MLP’s network structure.236

3.2 DT237

3.2.1 Structure of DT238

Figure 3 shows a demonstration of DT structure. The tree was built from a root node, and all the training239
data were included. Then, the node was split into two child nodes following the condition of the feature,240
which minimized the Gini impurity. Although the right child tree did not distinguish the classes, the Gini241
impurity was reduced by the condition. The whole tree was constructed by recursively splitting the node242
until the stop conditions (the maximum depth, the minimum sample split, and the minimum sample leaf)243
were reached.244

Figure 3. Demonstration of DT Structure
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3.2.2 Hyperparameter Tuning of DT245

The grid search technique was used to tune the hyperparameters of the DT. Grid search is a hyperparameter246
tuning method (26), which can find the hyperparameter combination in the given grid with the best score247
in a specific performance metric (27). Table 2 shows the hyperparameters tuning setup for the DT. Max248
depth limits the maximum depth of the tree. Min samples split specifies the minimum number of samples249
required to split an internal node. Min samples leaf sets the minimum number of samples required to be a250
leaf node.251

According to the grid search, the optimum combination of the hyperparameters is the maximum depth of252
4, the minimum sample split of 11, and the minimum sample leaf of 2.253

3.3 RF254

3.3.1 Diversity of the RF255

The RF is an ensemble architecture that consists of multiple DTs. In order to achieve better performance,256
the core idea of the ensemble method is to make each individual tree different from each other. One method257
that can maximize the diversity of the individuals is random feature selection, which randomly selects a258
subset of features for each individual tree.259

3.3.2 Hyperparameter Tuning of RF260

Since the RF is based on the DT, the hyperparameters include the tree and ensemble hyperparameters. The261
tree hyperparameters are reused from the DT optimized from the previous section 3.2.2, with a maximum262
depth of 4, a minimum sample split of 11, and a minimum sample leaf of 2. The ensemble hyperparameters263
are the number of trees and the maximum features. Table 3 shows the grid search setting.264

The optimum ensemble hyperparameters of the RF model were found to be a number of trees of 100 and265
the maximum features of 2.266

3.4 SVM267

3.4.1 Kernel Selection268

The kernel function is the core of the SVM algorithm. The most commonly used kernel functions are269
linear, polynomial, and Gaussian (radial basis function) kernels. Three kernels were tested in this study.270

The computational resource requirement for the linear kernel is the lowest. It can only handle linearly271
separable data. The linear kernel function is272

K(x, x′) = xTx′ (1)

where x, x′ are the two distinct data points. Superscript T represents the transpose of the vector. xTx′ is273
the dot product of the data points.274

Polynomial kernel and Gaussian kernel can be used to process non-linear separable data. Both map the275
data into a higher-dimensional space to realize linear separability. The difference between them is the276
mapping method.277

The Gaussian kernel uses the Gaussian function to map the data into a higher dimensional space (28).278
The Gaussian kernel function is279

Frontiers 9



Xu et al. Prediction of Amyloid-B Brain Deposition from Plasma Biomarkers

K(x, x′) = exp(−γ||x− x′||2) (2)

where G is the hyperparameter which controls the width of the Gaussian function. The larger G narrows280
the Gaussian function. ||x− x′|| is the Euclidean distance between the data points.281

The Gaussian kernel excels at processing data with local correlations because it calculates the distance282
between the data points.283

The polynomial kernel uses the polynomial function to map the data into a higher dimensional space.284
The polynomial kernel function is285

K(x, x′) = (λxTx′ + r)d (3)

where ń is the hyperparameter that controls the scaling of the dot product, r is the hyperparameter that286
controls the bias, d is the degree of the polynomial, xTx′ is the dot product of the data points.287

The polynomial kernel is well-suited for data with global correlations since it calculates the dot product288
of the data points.289

3.4.2 Hyperparameter Tuning of SVM290

The hyperparameters were tuned using a grid search. The grid setting was shown in Table 4. C is the291
regularization parameter. Too large C narrows the margin of SVM, which may lead to overfitting. Too292
small C widens the margin, which may lead to underfitting. The ń in the polynomial kernel by default is293
1.0 / number of features (29), which is adaptive for datasets with various numbers of features.294

According to the grid search, the optimal hyperparameters were found, the Gaussian kernel with the G of295
0.01 and the C of 10.296

3.5 Multilayer Perceptron (MLP)297

3.5.1 Structure of MLP298

The structure of the designed MLP algorithm is illustrated in Figure 4. There is one input layer with299
many neurons for feature input, two hidden layers with 10 neurons for each, and one neuron as the output300
layer for the estimation result. The MLP is a fully connected neural network, which means all the neurons301
in the previous layer are connected to all the neurons in the next layer. The output neuron presents the302
probability of the positive class calculated by a sigmoid function. If the probability is greater than 0.5, the303
result is positive; otherwise, the result is negative.304

3.5.2 Hyperparameter Tuning of MLP305

The hyperparameter tuning is an essential part of implementing the MLP algorithm. The ReLU function306
(below) is infinitely differentiable, and its formula 4 is concise for calculation (30). The ReLU function is307
the most widely used activation function in neural networks’ hidden layers, and it usually performs very308
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Figure 4. Structure of MLP

well.309
f(x) = max(0, x) (4)

The Adam optimizer can adaptively adjust the learning rate during the network training process (31). The310
Adam optimizer was selected for the designed MLP algorithm because the Adam optimizer converged311
faster and was more robust than basic optimizers such as stochastic gradient descent (32).312

The remaining hyperparameters, such as hidden layer structure, batch size, dropout rate, and epochs,313
were tuned with the help of a grid search, as presented in Table 5. The hidden layer sets the number of314
neurons in each hidden layer. The dropout rate is the probability of the neurons to be dropped out to prevent315
overfitting. The epoch is the number of times the entire training set passed to the network. The batch size is316
the number of samples used in each iteration to update the weights.317

The optimum hyperparameter combination for the MLP is a hidden layer structure of (10, 10), a dropout318
rate of 0.5, an epoch of 750, and a batch size of 50.319

The entire workflow of the system is shown in Figure 5. The framework of machine learning architecture320
implementation is shown in Figure 6.321
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Figure 5. Entire Workflow. In the data acquisition part, the data was collected from the ADNI database
and CNTN dataset. The feature selection was conducted to prepare various datasets with different numbers
of features. The data was preprocessed and ready to be used for the algorithm development part. In the
algorithm development part, four machine learning algorithms were designed. The hyperparameters were
fine-tuned. The various performance metrics were used to evaluate the comprehensive performance of
each algorithm. The results of all the algorithms were compared. An external dataset was used to test the
generalization ability and robustness of the model.

4 RESULTS

Multiple performance metrics, AUC, accuracy, precision, recall, and F1 score, were used to evaluate and322
compare the performance of the four machine learning architectures tested on the three ADNI datasets (the323
full feature dataset, the best feature dataset, and the trimmed feature dataset) and an external dataset (the324
CNTN dataset). AUC was used to evaluate the comprehensive performance of a model as it considers both325
the true positive rate and the false positive rate. The other four performance metrics were used to evaluate326
the model performance from different perspectives, and their formulas are as follows:327

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

328

Precision =
TP

TP + FP
(6)

329

Recall =
TP

TP + FN
(7)

330

F1 = 2 · Precision ·Recall

Precision+Recall
(8)

4.1 Result of Full Feature Dataset331

The performance metrics outcomes for four algorithms applied to the full feature dataset are presented in332
Table 6. The RF achieved the highest scores in all performance metrics. MLP achieved higher scores in333
AUC and precision and lower scores in accuracy, recall, and F1 than the SVM. DT has the lowest scores in334
all performance metrics except for recall.335
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Figure 6. Machine Learning Framework. First, the preprocessed ADNI dataset was split into the training
data and test set. The training set and validation set were split by 8-fold cross validation from training data.
Then, the training and validation sets were used to train the model and help with hyperparameter tuning.
The hyperparameters of each algorithm were tuned on the full feature dataset and were kept the same on
the best feature dataset and the trimmed feature dataset. Finally, the model was evaluated on the test set.
Various performance metrics such as ROC curve, AUC value, accuracy, precision, recall, and F1 score
were calculated to evaluate the model performance. In addition, the CNTN dataset was used as an external
test set.

Figure 7a illustrates the ROC curve comparison for each algorithm on the test set of the full feature336
dataset. The curve represents the relationship between the true positive rate and the false positive rate when337
the threshold changes. The RF, SVM, and MLP performed better than the DT on this dataset.338

4.2 Result of Best Feature Dataset339

The results of the performance metrics using four algorithms on the best feature dataset are illustrated in340
Table 6. MLP achieved the highest scores in all performance metrics. SVM has a close AUC score to RF341
and higher accuracy, precision, recall, and F1 than RF. Except for recall, DT got the lowest scores in the342
remaining performance metrics.343

The ROC curves of the four algorithms, tested on the best feature dataset, are compared in Figure 7b.344
The curves demonstrate that the DT substantially underperformed the other algorithms on this dataset.345

4.3 Result of Trimmed Feature Dataset346

The performance metrics for the four algorithms tested on the trimmed feature dataset are displayed in347
Table 6. The MLP achieved the highest AUC, the SVM achieved the highest accuracy, precision and F1,348
and DT achieved highest recall. All four algorithms had closely similar performances on this dataset with349
this set of features.350
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Figure 7a. ROC Curves on Full Feature Dataset
Test Set

Figure 7b. ROC Curves on Best Feature
Dataset Test Set

Figure 7c. ROC Curves on Trimmed Feature
Dataset Test Set Figure 7d. ROC Curves on CNTN Dataset

Figure 7. Receiver Operating Characteristic (ROC) Curves Comparing Machine Learning Algorithm
Performance Across Different Feature Sets and Datasets. ROC curves show the trade-off between true
positive rate (sensitivity) and false positive rate (1-specificity) for decision tree (DT), random forest (RF),
support vector machine (SVM), and multilayer perceptron (MLP) algorithms. (a) Performance on full
feature dataset (n=340, 11 features) with RF achieving the highest AUC (0.95). (b) Performance on
best feature dataset (n=341, 5 features) with MLP achieving the highest AUC (0.87). (c) Performance
on trimmed feature dataset (n=1043, 8 features) showing similar performance across all algorithms. (d)
External validation on CNTN dataset (n=127, 8 features) demonstrating model generalizability with MLP
achieving AUC of 0.90.

In Figure 7c, the comparison of the ROC curve for each algorithm on the trimmed feature dataset’s test351
set is displayed. The four curves are close to each other, indicating that the four algorithms performed352
similarly on this dataset.353

4.4 Result of CNTN Dataset354

The CNTN dataset was tested with the four algorithms trained on the entire trimmed feature dataset.355
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The performance metrics of four algorithms on the CNTN dataset are summarized in Table 6. MLP356
reached the highest AUC. SVM and MLP achieved the same scores in the other four performance metrics,357
which means they gave the same prediction results and achieved the highest accuracy, recall, and F1. RF358
achieved the same AUC as SVM and the highest precision but lower recall and F1. DT performed in an359
unbalanced way with a precision of 1.0 but very low recall and F1.360

Figure 7d presents a comparison of the ROC curves for all algorithms on the test set derived from the361
CNTN dataset. The DT performed much worse than the other algorithms on this dataset.362

4.5 Comparison of Architectures363

Table 7 compares the AUC performance of each machine learning architecture.364

The RF model achieved the highest AUC value on the full feature dataset, and the MLP model achieved365
slightly higher AUC values on the remaining three datasets. The DT’s overall performance is inferior to366
that of the RF, SVM, and MLP.367

Table 8 compares our work with recent studies on estimating Amyloid B PET using plasma biomarkers368
on the whole cohort with the AUC values reported. Our study achieves an AUC of 0.95 using a random369
forest model with 11 features, which is competitive with the established literature including landmark370
studies by Pan et al. (5) and Nakamura et al. (33) that demonstrated AUCs exceeding 0.90. Our best feature371
model, using a MLP with 5 features, achieves an AUC of 0.87, which is competitive compared to the best372
feature models of other studies.373

5 DISCUSSION

Four machine learning algorithms, DT, RF, SVM, and MLP, were selected for the AB PET positivity374
prediction. DT has high interpretability, and the tree structure of the decision rules can be visualized.375
RF is well known for robustness and can reduce overfitting by averaging multiple DTs. SVM often376
performs efficiently on not-too-large datasets. MLP is a neural network with a simple structure and good377
generalization ability. All these algorithms achieved previous success in biomarker-based models. The378
hyperparameters of the four machine learning architectures were optimized using the full feature dataset379
and subsequently reused for both the best feature dataset and the trimmed feature dataset. This approach380
was adopted to maintain consistent hyperparameters, thereby ensuring a fair comparison and enabling an381
assessment of the model’s generalization ability across different feature sets. In the full feature dataset, the382
RF achieved the highest AUC value of 0.951, followed by the MLP with 0.938 and SVM with 0.918, while383
the DT model produced the lowest AUC value of 0.831.384

Feature selection facilitates clinical feasibility. Identifying the important and dominant features can385
significantly reduce the detection costs and patients’ body burden, and RF, with highly predictive accuracy386
and interpretability, is a feasible choice for selecting important features in clinical applications. The387
importance score of each individual feature was calculated according to the contribution to the Gini388
impurity reduction in the RF algorithm (Feature Selection section 2.3). The AUC values for the RF and389
SVM models were very close, 0.863 and 0.864, respectively, while the MLP model displayed a slightly390
higher AUC of 0.870 on the best feature dataset. We balanced the trade-off between feature reduction391
and model performance. Despite reducing the number of features, the selected feature set demonstrated392
a high correlation with AB PET status. This dataset used significantly fewer features and preserved the393
robust performance. In clinical applications, the reduced feature group can also provide reliable prediction394
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results. Clinicians can flexibly choose from the full feature group or the reduced feature group to satisfy395
the practical requirement of the highest accuracy or further cost-efficiency.396

Many features are costly to measure in blood, particularly those that quantify the concentrations of397
proteins using antibodies. It is, therefore, of great value to remove any features that are expensive to collect398
and add little power to any prediction. A very high performance can be achieved using only five features,399
namely: pTau 181, AB42/40, AB42, APOE E4 count, and MMSE. The APOE genotype and the MMSE test400
are cheap to measure, and only three antibodies are needed to measure pTau 181, AB40 and AB42 with an401
ELISA. Applying our method to patients is, therefore, straightforward and inexpensive. The finding that402
only five features provided high AUC has significant clinical and diagnostic implications, addressing the403
challenge of limited feature availability, making biomarker-based AD diagnosis more cost-effective and404
easier to implement in clinical settings.405

The performance of the four algorithms on the trimmed feature dataset is not significantly different. The406
MLP model achieved an AUC of 0.806, 0.797 for SVM, 0.791 for RF, and 0.792 for DT. On the external407
dataset, the CNTN dataset was only used for an external test set and was not used to train our model. The408
hyperparameter tuning process only depends on the performance of the validation set of the ADNI dataset,409
as shown in Figure 6. Therefore, the overfitting issue can be prevented. The MLP model reaches its highest410
AUC of 0.896, while the SVM and RF follow closely with an AUC of 0.886 for both. This indicated411
that RF, SVM, and MLP effectively applied the available information in the trimmed dataset to test the412
CNTN dataset. However, the DT model achieved poor and unbalanced performance across all performance413
metrics on this dataset, indicating that the DT model had difficulty generalizing to the external dataset. The414
results on the CNTN dataset emphasize the effectiveness of the feature matching technique in enhancing415
the model’s generalization ability to external datasets.416

According to the results of four algorithms on each dataset, the RF model performed best on the full417
feature dataset, which is the main research target. The MLP achieved stable and high performance across all418
the datasets, exhibited powerful generalization ability, and excellent comprehensive predictive performance.419
The SVM showed a slightly lower performance than MLP in each dataset and also achieved a good420
generalization ability. The DT, the simplest model, performed poorest. Since DT is easy to overfit when421
handling high-dimensional data, the rigid decision boundaries of DT are not flexible enough to separate422
the complex data distributions. Instead, MLP and SVM have more flexible decision boundaries and more423
efficient overfitting prevention methods, such as regularization for MLP and margin maximization for424
SVM, enabling them to handle non-linear and high dimensional data well and have a better generalization425
ability. To address DT’s overfitting problem, RF utilized the ensemble method by aggregating multiple426
DTs to achieve better performance and stability than a single DT. In real-world clinical practice, MLP427
and SVM can be applied to detect AB PET status for patients with various types and amounts of features.428
Although the generalization ability of RF was not as good as MLP and SVM, RF has the potential to be429
used to obtain the most accurate prediction in circumstances of patients with a large number of features.430

Our study demonstrated the efficacy of feature selection and feature matching techniques. These431
techniques offer the potential to tackle the problem of feature amount constraints, reduce computational432
resource demands, and increase model generalization capability in practical applications. By comparing433
with existing approaches, our work used a smaller dataset and fewer features yet achieved competitive AUC434
values when compared to established methods in the field. Within the rapidly evolving landscape of plasma435
biomarker-based AD diagnosis, where commercial solutions such as PrecivityAD™, Elecsys pTau181,436
and Simoa-based platforms have already demonstrated clinical utility, our contribution lies in addressing437
specific methodological gaps related to model generalizability and practical deployment challenges. Hence,438
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using plasma biomarkers as a low-cost alternative to PET is of established significance in clinical and439
diagnostic applications, and our work contributes to improving model robustness and addressing practical440
implementation challenges in diverse clinical settings.441

5.1 Clinical Applicability and Translation442

The clinical translation of our plasma biomarker-based pipeline presents both significant opportunities443
and practical challenges. From a clinical workflow perspective, our system offers several advantages over444
current diagnostic approaches. Our best model (pTau 181, AB42/40, AB42, APOE E4 count, and MMSE)445
can be readily integrated into existing clinical practice, as APOE genotyping and MMSE testing are already446
standard procedures in many memory clinics. The plasma biomarker collection requires only a standard447
blood draw, making it accessible across diverse healthcare settings, including primary care facilities that448
lack specialized neuroimaging capabilities.449

However, clinical implementation faces several hurdles. Current clinical decision-making relies heavily450
on imaging-based confirmation of AB pathology, and clinicians may require substantial evidence before451
accepting plasma biomarkers as reliable substitutes for PET imaging. The probabilistic nature of machine452
learning predictions must be carefully communicated to clinicians who are accustomed to more definitive453
diagnostic results.454

The economic implications are substantial. With PET scans costing $3,000-$8,000 compared to $100-455
$1,250 for plasma biomarker panels (34), our approach could significantly reduce healthcare costs while456
enabling broader population screening. This cost-effectiveness is particularly relevant given the increasing457
focus on early AD detection and the growing availability of disease-modifying treatments that are most458
effective when administered early in the disease course.459

Integration with existing diagnostic pipelines requires careful consideration. Our system is best positioned460
as a pre-screening tool rather than a standalone diagnostic method. In practice, patients with high-risk461
predictions could be prioritized for PET imaging, while those with low-risk scores might undergo continued462
monitoring or alternative diagnostic workups. This tiered approach maximizes the clinical utility of both463
plasma biomarkers and PET imaging while optimizing resource allocation.464

5.2 Regulatory and Implementation Challenges465

The regulatory pathway for clinical implementation presents complex challenges. Regulatory agencies466
such as the FDA and EMA require extensive clinical validation demonstrating not only analytical validity467
but also clinical utility and actionability. Our current validation, while promising, represents only the initial468
phase of the regulatory requirements. Large-scale, multi-site clinical trials will be necessary to demonstrate469
consistent performance across diverse populations and healthcare settings.470

Data harmonization emerges as a critical challenge for widespread implementation. Our feature matching471
technique addresses some inter-dataset variability, but significant challenges remain in standardizing plasma472
biomarker measurements across different laboratories, analytical platforms, and patient populations. The473
observed performance difference between ADNI (AUC 0.95) and CNTN (AUC 0.90) datasets, while474
encouraging, highlights the importance of robust standardization protocols. Different laboratory techniques,475
storage conditions, and processing procedures can significantly impact biomarker measurements, potentially476
affecting model performance.477

Patient diversity represents another significant regulatory challenge. The ADNI dataset, while valuable,478
predominantly includes well-educated, Caucasian participants from high-resource settings. Regulatory479
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approval will require demonstration of model performance across diverse demographic groups, including480
underrepresented racial and ethnic minorities, varying socioeconomic backgrounds, and different healthcare481
systems. The potential for algorithmic bias in healthcare AI systems has become a major regulatory concern,482
necessitating comprehensive fairness assessments.483

The international nature of healthcare requires consideration of varying regulatory frameworks. While484
the FDA’s recent guidance on AI/ML-based medical devices provides some clarity, the European Union’s485
Medical Device Regulation (MDR) and other international standards introduce additional complexity.486
Our system’s requirement for periodic retraining or updating to maintain performance may necessitate487
continuous regulatory oversight rather than traditional one-time approval processes.488

Quality assurance and clinical laboratory standards present additional implementation challenges. The489
Clinical Laboratory Improvement Amendments (CLIA) requirements in the US and similar international490
standards mandate rigorous quality control procedures for clinical laboratory tests. Implementing our491
machine learning pipeline within these regulatory frameworks requires careful attention to result reporting,492
quality metrics, and laboratory personnel training.493

5.3 Interpretability and Clinical Decision-Making494

The interpretability challenge in clinical machine learning represents a fundamental tension between495
model performance and clinical acceptance. While our MLP model achieved the highest performance496
across datasets, its ”black box” nature poses challenges for clinical implementation. Clinicians require497
understanding of how predictions are generated, both for clinical decision-making and for patient498
communication. The superior interpretability of our decision tree model, despite its lower performance.499

Our random forest-based feature importance analysis provides some interpretability insights, identifying500
pTau 181 and AB42/40 ratio as the most predictive features. However, feature importance alone may not501
satisfy clinical interpretability requirements. Clinicians need to understand not just which features are502
important, but how specific feature values contribute to individual patient predictions. Figure 8 illustrates503
the use of SHAP (SHapley Additive exPlanations) values to provide global and local interpretability for504
our RF and MLP models. SHAP values quantify the contribution of each feature to the model’s prediction,505
allowing clinicians to see how individual feature values influence the final risk score.506

Patient communication represents another interpretability challenge. Patients and families require clear507
explanations of what AB positivity means, how the prediction was generated, and what the implications are508
for their care. The probabilistic nature of our predictions must be communicated in ways that patients can509
understand and act upon. This is particularly important given the emotional and psychological impact of510
AD-related diagnoses.511

6 CONCLUSION

We developed an AB PET positivity estimation system utilizing cost-effective plasma biomarkers, genetic512
information, and clinical data. We devised a feature selection method to reduce the number of features513
while maintaining high accuracy, which largely decreased the computational costs and plasma biomarker514
test costs. Additionally, we conducted a feature matching technique to align the features of the research515
target dataset with those of an external dataset, allowing our trained model to be evaluated on the external516
dataset without retraining. Our machine learning model exhibited highly accurate performance results on517
both the ADNI and CNTN datasets, so it generalizes well.518
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Figure 8a. Beeswarm Plot for RF
Figure 8b. Waterfall Plot for RF

Figure 8c. Beeswarm Plot for MLP Figure 8d. Waterfall Plot for MLP

Figure 8. SHAP (SHapley Additive exPlanations) Value Analysis for Model Interpretability of Random
Forest and Multilayer Perceptron Algorithms. SHAP values quantify the contribution of each feature to
individual predictions, providing both global feature importance and local explanations. (a) Beeswarm plot
showing SHAP value distribution for RF model - each dot represents one patient, with color indicating
feature value (red=high, blue=low) and x-axis position showing impact on prediction. (b) Waterfall plot for
RF showing cumulative contribution of each feature to a single patient prediction, starting from baseline
probability. (c) Beeswarm plot for MLP model showing similar feature importance patterns with AB42/40
ratio as the most influential predictor. (d) Waterfall plot for MLP demonstrating how individual feature
values combine to produce final prediction probability for amyloid positivity.

Distinguishing AD from other forms of dementia is difficult at present as diagnosis usually relies on519
cognitive assessments only. The new generation of AD therapies targets AB and its deposits, in particular.520
These drugs are likely to only work on brains that contain AB deposits. The work described here, which521
predicts which patient brains are AB positive, could therefore be of great value in determining which522
patients would benefit from these drugs, as well as helping identify different forms of dementia.523
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6.1 Limitations and Future Work524

6.1.1 Dataset Bias Concerns525

This study faces limitations regarding dataset representativeness and generalizability that warrant careful526
consideration. The ADNI cohort, while valuable for research purposes, exhibits substantial demographic527
homogeneity that may limit the clinical applicability of our findings. Specifically, ADNI participants528
are predominantly well-educated, Caucasian individuals from high-resource healthcare settings, with529
systematic underrepresentation of racial and ethnic minorities, lower socioeconomic groups, and individuals530
with limited educational backgrounds. This demographic skew introduces potential algorithmic bias that531
could result in reduced model performance or increased prediction errors when applied to more diverse532
patient populations.533

The implications of this bias extend beyond simple performance metrics. Different demographic groups534
may exhibit varying baseline biomarker levels, genetic polymorphisms affecting biomarker expression, and535
distinct disease progression patterns.536

Furthermore, the clinical characteristics of ADNI participants may not reflect real-world patient537
presentations. ADNI enrolls individuals who are generally healthier, more cognitively intact, and more538
compliant with study protocols than typical patients presenting to memory clinics. This selection bias may539
result in an overestimation of model performance when applied to more heterogeneous clinical populations540
with comorbidities, medication effects, and varying levels of cognitive impairment.541

6.1.2 Model Fragility and Missing Biomarker Challenges542

The performance degradation observed in the CNTN dataset reveals a vulnerability in our modeling543
approach that extends beyond the specific case of missing AB42/40 ratios. While we identified the AB42/40544
ratio as the most important feature through random forest analysis, the model’s dependence on this single545
biomarker exposes a fragility that could limit clinical utility. When this key biomarker is unavailable -546
whether due to laboratory constraints, cost considerations, or technical failures - the model’s performance547
drops substantially, undermining its practical applicability.548

The observed performance difference between ADNI (AUC 0.95) and CNTN (AUC 0.90) datasets, while549
numerically favorable, masks underlying model instability. The fact that performance can vary substantially550
based on feature availability suggests that our model may not be sufficiently robust for widespread clinical551
deployment.552

6.1.3 Future Research Directions553

Addressing these limitations requires a multi-faceted approach that extends beyond simple dataset554
expansion. Future work should prioritize multi-cohort validation studies that specifically include diverse555
demographic groups, with particular attention to underrepresented populations. This should include556
collaboration with international research consortia to validate model performance across different healthcare557
systems and patient populations.558

The development of robust imputation methods for missing biomarkers represents a critical research559
priority. Advanced techniques such as multiple imputation, matrix factorization, or deep learning-based560
approaches could potentially maintain model performance even when key biomarkers are unavailable.561
However, such approaches require careful validation to ensure they do not introduce additional bias or562
reduce prediction accuracy.563
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Longitudinal validation studies are essential to understand how model performance changes over time564
and across different disease stages. This includes assessment of prediction stability, biomarker trajectory565
modeling, and validation of the model’s utility for disease monitoring in addition to diagnostic classification.566

The development of standardized protocols for plasma biomarker measurement and quality control567
represents another critical research need. This includes harmonization of analytical platforms, establishment568
of reference standards, and development of quality assurance procedures that can be implemented across569
diverse clinical settings.570

Finally, comprehensive health economic analyses are needed to establish the cost-effectiveness of our571
approach compared to current diagnostic standards. This should include assessment of downstream clinical572
outcomes, healthcare resource utilization, and patient quality of life measures to fully evaluate the clinical573
utility of plasma biomarker-based AD diagnosis.574
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Table 1. Study Cohort Information
Source ADNI CNTN
Dataset Full Best Trimmed External

feature feature feature dataset
Patients 340 341 1043 127

pTau181 pTau181 pTau181 pTau181
APOE4 AB42/40 APOE4 APOE4
NfL AB42 NfL NfL
AB42/40 MMSE MoCA MoCA
AB42 APOE4 MMSE MMSE

Features AB40 Age Age
MoCA Education Education
MMSE Gender Gender
Age
Education
Gender
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Table 2. Grid Search Setting of DT
Max Depth 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Min Samples Split 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Min Samples Leaf 2, 3, 4, 5, 6, 7, 8, 9, 10

Table 3. Grid Search Setting of RF
Number of Trees 30, 50, 100
Max Features 2, 3, 4

Table 4. Grid Search Setting of SVM
Linear kernel

C 0.1, 0.2, 0.5, 1, 5, 10, 20, 50, 100
Gaussian kernel

G 0.001, 0.01, 0.02, 0.05, 0.1, 0.5, 1, 2, 5, 10
C 0.1, 0.2, 0.5, 0.7, 1, 1.5, 2, 3, 5, 6, 7, 8, 9, 10

Polynomial kernel
Degree, d 2, 3

r 0.1, 1, 10, 20, 50
C 0.1, 1, 2, 3, 5

Table 5. Grid Search Setting of MLP
Hidden Layer (10, 10), (30, 10), (30, 30), (10, 10, 10), (30, 10, 10)
Dropout rate 0.2, 0.5, 0.7
Epoch 500, 750, 1000
Batch size 50, 100, 200, 400
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Table 6. Performance Metrics on Each Dataset
Full feature dataset AUC Accuracy Precision Recall F1

DT 0.831 0.779 0.769 0.690 0.727
RF 0.951 0.897 0.958 0.793 0.868

SVM 0.918 0.824 0.815 0.759 0.786
MLP 0.938 0.794 0.826 0.655 0.731

Best feature dataset AUC Accuracy Precision Recall F1
DT 0.776 0.765 0.811 0.769 0.789
RF 0.863 0.794 0.879 0.744 0.806

SVM 0.864 0.809 0.882 0.769 0.822
MLP 0.870 0.824 0.886 0.795 0.838

Trimmed feature dataset AUC Accuracy Precision Recall F1
DT 0.792 0.716 0.686 0.735 0.709
RF 0.791 0.712 0.707 0.663 0.684

SVM 0.797 0.736 0.731 0.694 0.712
MLP 0.806 0.707 0.713 0.633 0.670

CNTN dataset AUC Accuracy Precision Recall F1
DT 0.677 0.504 1.0 0.074 0.137
RF 0.886 0.661 0.963 0.382 0.547

SVM 0.886 0.787 0.936 0.647 0.765
MLP 0.896 0.787 0.936 0.647 0.765

Table 7. Performance Comparison on AUC
Full
feature
dataset

Best
feature
dataset

Trimmed
feature
dataset

CNTN
dataset

DT 0.831 0.776 0.792 0.677
RF 0.951 0.863 0.791 0.886

SVM 0.918 0.864 0.797 0.886
MLP 0.938 0.870 0.806 0.896

Table 8. Recent work of Amyloid B PET estimation with plasma biomarkers
Author Dataset Size Feature Amount Model AUC

Xu et al. (2025) (this article) 340 11 (full features) Random forest 0.95
341 5 (best features) MLP 0.87

Pan et al. (2023) 609 14 (full features) Decision Tree 0.94
609 5 (best features) Decision Tree 0.83

Palmqvist et al. (2019) 842 5 Logistic regression 0.87

Nakamura et al. (2018) 373 2 Youden’s index 0.914

Vergallo et al. (2019) 276 1 ROC analysis 0.79

Yang et al. (2023) 144 2 Stepwise logistic regression 0.86

Moradi et al. (2024) 231 4 Ridge logistic regression 0.68

Ashton et al. (2019) 169 10 SVM 0.90
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