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A B S T R A C T 

 

Background and Objective 

Malignant primary brain tumors cause the greatest number of years of life lost than any other 

cancer. Grade 4 glioma is particularly devastating: The median survival without any treatment 

is less than six months and with standard-of-care treatment is only 14.6 months. Accurate 

identification of the overall survival time of patients with brain tumors is of profound importance 

in many clinical applications. Automated image analytics with magnetic resonance imaging 

(MRI) can provide insights into the prognosis of patients with brain tumors. 

 

Methods 

In this paper, We propose SurvNet, a low-complexity deep learning architecture based on the 

convolutional neural network to classify the overall survival time of patients with brain tumors 

into long-time and short-time survival cohorts. Through the incorporation of diverse MRI 

modalities as inputs, we facilitate deep feature extraction at various anatomical sites, thereby 

augmenting the precision of predictive modeling. We compare SurvNet with the Inception V3, 

VGG 16 and ensemble CNN models on pre-operative magnetic resonance image datasets. We 

also analyzed the effect of segmented brain tumors and training data on the system performance. 

 

 

Results 

Several measures, such as accuracy, precision, and recall, are calculated to examine the perfor- 

mance of SurvNet on three-fold cross-validation. SurvNet with T1 MRI modality achieved a 

62.7% accuracy, compared with 52.9% accuracy of the Inception V3 model, 58.5% accuracy 

of the VGG 16 model, and 54.9% of the ensemble CNN model. By increasing the MRI 

input modalities, SurvNet becomes more accurate and achieves 76.5% accuracy with four MRI 

modalities. Combining the segmented data, SurvNet achieved the highest accuracy of 82.4%. 

 

Conclusions 

The research results show that SurvNet achieves higher metrics such as accuracy and f1-score 

than the comparisons. Our research also proves that by using multiparametric MRI modalities, 

SurvNet is able to learn more image features and performs a better classification accuracy. We can 

conclude that SurvNet with the complete scenario, i.e., segmented data and four MRI modalities, 

achieved the best accuracy, showing the validity of segmentation information during the survival 

time prediction process. 

 
 

 

1. Introduction 

According to the World Health Organization (WHO) 2021 Central Nervous System (CNS) tumor classification criteria, 

glioblastoma (GBM) is the most aggressive form of gliomas and represents approximately 57% of all gliomas and 48% 

of all primary malignant brain tumors [1]. GBM is commonly grade IV glioma, results in a poor prognosis, which is 
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about 14 months of survival time after standard treatment such as surgical resection, radiotherapy, and chemotherapy, 

or 4 months of survival time without any treatments [2]. 
 

Radiomics is a non-invasive method to extract quantitative features from medical images that may not be apparent 

through traditional visual inspection. Automated image analytics with magnetic resonance imaging (MRI) can provide 

insights into the diagnosis of brain tumors and contribute to monitoring tumor change and therapy planning. Accurate 

identification of the overall survival (OS) time of patients with brain tumors is of profound importance in many clinical 

applications, such as surgical treatment planning, image-guided interventions, and the generation of radiotherapy maps. 

Given the very poor survival rate of patients, tools to stratify patients into those who could be targeted for clinical trials 

would be invaluable. 
 

Machine learning algorithms, such as Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), 

and Random Forest, reported high classification performances on the Brain Tumor Segmentation (BraTS) and The 

Cancer Genome Atlas (TCGA[3]) datasets. Liao et al. [4] compared 4 machine learning methods with radiomic 

features extracted from the fluid-attenuated inversion recovery (FLAIR) MRI scan and several specific gene expression 

features, reported a highest accuracy of 81% with GBDT. Most of the top-ranked methods of survival prediction tasks 

in the BraTS dataset employed machine learning methods, such as Random Forest [5, 6], Decision Tree [7], Linear 

Regression [8] and a Fully Connected Neural Network [9]. However, classical machine learning algorithms require 

manual feature extraction before training the model. This process is time-consuming, labor-intensive, and highly 

dependent on domain expertise. 
 

Many studies have presented deep learning algorithms, based on convolutional neural networks (CNN), for processing 

and analysis of medical images of patients with brain tumors [10]. A 3D DenseNet121 was also used and obtained 

an accuracy of 55.2% [11]. [12] introduce a CNN-based architecture and combined feature fusion method to achieve 

an accuracy of 65.57%. Ahmed et al. [13] used a snapshot ensemble to choose and combine models trained from 

different epochs, reporting an accuracy of 72%. Similarly, Ben Ahmed et al. [14] tested the snapshot ensemble model 

on MRI scans with different dimensionalities, reaching 60% and 74% accuracy with 2D and 3D MRI scans, respectively. 

The attention mechanism is also introduced into deep learning applications in medical imaging. Xu, Xuan et al. [15] 

proposed a DAAL(deep anchor attention learning) model based on an attention mechanism to achieve a classification 

accuracy of 70.29%. Wenxia Wu et al. [16] proposed a multi-task Transformer encoder model to implement semi- 

supervised segmentation and survival analysis, and achieved 75.38% on the survival prediction task. [17] introduced 

an encoder-based deep model in the BraTS dataset and achieved a 67.9% accuracy. 
 

The current methods mostly utilize merely a single modality of MRI images, while there is increasing evidence 

that quantitative analysis of radiographic features extracted from multiparametric MRI (mpMRI) scans leads to 

advanced image-based tumor phenotyping, which can be associated with predicting clinical outcomes[18]. Therefore, 

we explored a low-complexity architecture that extracts various deep features from diverse MRI modalities as well 

as the segmented data to improve classification accuracy. In this work, we address the application of convolutional 

neural network (CNN)-based deep learning methods for the overall survival prediction of patients with gliomas using 

mpMRI. The relevant code can be found at ’https://github.com/OriginLyu/SurvNet’. 
 

Our contributions are: 

1. We proposed SurvNet, a low-complexity CNN model to extract deep image features from MRI scans and classify 

the patients with GBM into long-survival and short-survival classes. 

2. We performed several experiments including: 

a. evaluated SurvNet with the T1 MRI modality and compared the result of cross-validation with Inception V3, VGG16 

and ensemble CNN models. 

b. examined the effect of increasing the number of input MRI modalities (from 1 to 4) on our proposed model and 

other comparisons. 

c. examined how adding segmented data to the input data might improve the models.
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2. Methods 

2.1. Data collection 

TCGA, an open-source, open-access information resource created by the National Cancer Institute (NCI), has 

collections of MRI images, gene expression, and clinical information. A pre-processed MRI dataset, namely pre- 

operative_TCGA-GBM [19, 20], was released based on The Cancer Genome Atlas Glioblastoma Multiforme Col- 

lection (TCGA-GBM) [21] dataset in 2017. Pre-operative_TCGA-GBM released segmentation labels and radiomics 

features for all pre-operative multimodal MRI (T1-weighted (T1), T2-weighted (T2), contrast-enhanced T1-weighted 

(T1ce), and FLAIR) of the multi-institutional glioma collections of TCGA. 

 

The pre-operative_TCGA-GBM features standardized pre-processing, an essential procedure for MRI classification 

because of the diversity of different institutes that generate MRI scans. Pre-processing starts with a co-orientation to the 

left-posterior-superior coordinate system, then co-registering to the same anatomical template, followed by resampling 

to a uniform 1mm3 voxel resolution. Skull-stripping is further applied to remove the skull in MR images, making the 

tumor region more conspicuous and mitigating potential facial reconstruction/recognition of the patients [22]. 

 

The pre-operative_TCGA-GBM dataset consists of 135 patients in total. Each patient has T1, T2, T1ce, FLAIR, and 

segmented MRI data. Out of these, we chose 119 cases with overall survival time (ranging from 5 to 2,126 days) and 

age (ranging from 17 to 84 years) to compose our subdata. 

 

The 119 patients were divided into a training set with 104 individuals and a testing set with 17 patients. Both training and 

testing sets contained long-survival and short-survival cohorts. Clinically, the division criterion of 1 year is considered 

the beginning of long-term survival, which is, therefore, taken for the threshold of long-survival and short-survival. 

The training/testing set consists of 49/8 patients with short and 55/9 patients with long survival. 

 
We produced 2D slices along the transverse axis from each of the original 3D MRI data. We chose a 2D slice with the 
largest area of the segmented brain tumor among the entire 2D slices using the maximum label voxel layer sampling 

method [23]. The input MR images (T1, T2, T1ce, and FLAIR) and the segmented data had a resolution of 240×240. 

 

Apart from TCGA-GBM, we also used the BraTS dataset [2] to evaluate the performance of the proposed model. The 

BraTS dataset contains 236 samples with brain tumors (both GBM and low-grade glioma) and their MRI images. The 

BraTS dataset was divided into 201 and 35 samples for training and testing, respectively. The preprocessing of the 

BraTS dataset was the same as that of the TCGA-GBM dataset. 

2.2. Architecture 

The proposed approach was based on VGG 16 but simplified at several levels. SurvNet was comprised of three 

convolutional blocks, one pooling layer for feature extraction, and three dense layers for classification, as shown in 

Figure 1. Each convolutional block consisted of one convolutional layer and one activation layer with the Rectified 

Linear Unit (ReLU) function as the activation function. Apart from the deep features extracted from the MRI scans, 

the proposed model also made use of age information as one feature, combined with the deep features to predict the 

OS of patients. 

 
Table 1 presents a more detailed view of the proposed architecture’s parameters. The convolutional layer included a 

3 × 3 kernel and 32 channels and uses the ’padding=same’ method, which kept the image size the same after the 

convolutional layer by adding zero values into the edges of the image, followed by a ReLU activation layer. The 
pooling layer between the third convolutional block and the first fully connected layer used a max pooling method, 

with a 2 × 2 pooling window. As for the fully connected layers, the first and second layers contained 32 nodes and 16 

nodes, respectively. The output layer was a fully connected layer with two nodes and a softmax activation function. 

 

Table 2 presents the optimized hyperparameters’ values, i.e., learning rate, decay rate, and the total number of epochs, 

concerning SurvNet.
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Figure 1: Architecture of SurvNet. 

 
Table 1 
Parameters of SurvNet. 

Fully 
connected 

Fully 
connected 

Fully 
connected 

 

Layer Parameters 

Conv block 1 
3 × 3 × 32 

stride=1, padding=same 
activation=ReLU 

Conv block 2 
3 × 3 × 32 

stride=1, padding=same 
activation=ReLU 

Conv block 3 
3 × 3 × 32 

stride=1, padding=same 
activation=ReLU 

Pooling 
max pooling 2 × 2 

stride=2 

FC 1 
32 

activation=ReLU 

FC 2 
16 

activation=ReLU 

Output 
2 

activation=softmax 

 

Table 2 
Hyperparameters of SurvNet. 

 

Hyperparameter Value 

optimizer stochastic gradient descent 

learning rate 1 × 10−5
 

decay rate 2 × 10−7
 

epochs 80 

batch size 16 

 

3. Results 

3.1. Evaluation in T1 images 

T1 MRI was taken as the base modality due to its widespread use in tumors. We compared the Inception V3 (both 

pre-trained Inception V3 on Imagenet dataset and an end-to-end Inception V3 model), a VGG16 model, and a CNN 

ensemble [13, 14]. The pre-trained Inception V3 model used the Inception V3 model and pre-trained parameters based 

Age 
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on the Imagenet dataset. Three dense layers were added at the end of the whole pre-trained Inception V3 model as a 

classifier to be trained on our dataset. The end-to-end Inception V3 model trained the weights in all of its layers on our 

dataset. The frozen Inception V3 model froze Inception architecture and tuned the classifier only. The Inception V3 

models, the VGG16 model, and the CNN ensemble CNN employed the T1 MRI modality as input. 
 

We tuned the hyperparameters of SurvNet by the grid search of the learning rate, decay rate, and batch size. 

We selected the feasible range of hyperparameters and then chose the best hyperparameters according to the 

training loss and train accuracy. The number of epochs was chosen when the training loss converged. The 

comparison models were also optimized using the same procedure. 
 

We took a 3-fold cross-validation to evaluate the performance of all models mentioned earlier, including the proposed 

one. The dataset was divided randomly into three parts, with two parts used for training and one part for testing. The 

hyperparameters of cross-validation were set as the optimized ones in Table 2. Let 𝑎𝑖,𝑗 be the accuracy of a particular 

model at the 𝑖th round (1 ≤ 𝑖 ≤ 3) and 𝑗th epoch (1 ≤ 𝑗 ≤ 80). We then computed the mean accuracy as follows: 

 

 
𝜇𝑖 =

1

3
∑𝑎𝑖𝑗

3

𝑖=1

(1)

 

 

 

and standard deviation according to: 

 

 
𝜎𝑗 = √

1

3
∑(𝑎𝑖𝑗 − 𝜇𝑗)

2
3

𝑖=1

(2)

 

 

 

Both measures were computed for each model, as depicted in Figure 2 (b), which illustrates the 𝜇80 value of each 

model, with lines reflecting the standard deviation. SurvNet achieved the best accuracy value of 62.7%. 
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Figure 2: (a) Confusion matrix on the testing set (T1 modality only), (b) µ80 and  𝛿80of: (a) SurvNet with 1 MRI modality, 
(b) Inception with 1 MRI modality, frozen, (c) Inception with 1 MRI modality, end-to-end, (d) VGG16 with 1 MRI modality, 
(e) Ensemble CNN with 1 MRI modality. 

 

The confusion matrix is shown in Figure 2 (a). We considered the accuracy, precision, recall, and F1-score as the 

evaluating measures over the 3-fold cross-validation to evaluate the classification ability of SurvNet. Table 4 presents 

the results. SurvNet achieved an accuracy of 62.7%, higher than Inception V3 models, VGG 16 model and the ensemble 

CNN approach. However, the F1-score of SurvNet was lower than that of the VGG 16 and ensemble CNN models, 

for our recall is relatively low. As for the performance on the BraTS dataset, SurvNet achieved an accuracy of 68.6%, 
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Table 3 
Model complexity 

 

    

 Model/Metrics Trainable parameters (M) FLOPS (GFLOPS) 

 SurvNet 14.8 2.19 
 Inception V3 31.2 5.72 
 VGG 16 138 15.35 

 Ensemble CNN[13] 2.9 0.136 

 

Table 4 
Experimental results considering the T1 modality. 

 

 

Dataset Model/Metrics Accuracy Precision Recall F1-score 
 

 SurvNet (1 modality) 0.627 0.783 0.407 0.535 
 Inception V3 (pre-trained, 1 modality) 0.529 0.552 0.556 0.553 

TCGA-GBM 
Inception V3 (end-to-end, 1 modality) 
VGG 16 

0.510 
0.588 

0.514 
0.524 

0.481 
0.630 

0.489 
0.570 

 Ensemble CNN (1 modality) [13] 0.549 0.576 0.556 0.562 
 Ensemble CNN (1 modality) [14] 0.609 0.586 0.739 0.654 

 

 SurvNet (1 modality) 0.686 0.636 0.824 0.718 

 Inception V3 (pre-trained, 1 modality) 0.514 0.5 0.647 0.564 

BraTS 
Inception V3 (end-to-end, 1 modality) 
VGG 16 

0.657 
0.543 

0.6 
0.52 

0.882 
0.765 

0.714 
0.619 

 Ensemble CNN (1 modality) [13] 0.588 0.625 0.556 0.588 
 Ensemble CNN (1 modality) [14] 0.67 0.7 0.65 0.674 

 

which was higher than the Inception V3, VGG16 and ensemble CNN model. With the introduction of more training 

samples, the performance of each model improved. 
 

As for the computational load, the Inception V3, VGG16, and the ensemble CNN models contained 31.2M, 138M, 

and 2.9M trainable parameters, respectively, while SurvNet contained 14.8M trainable parameters. The ensemble CNN 

model took about 87% of the training time of SurvNet. However, the inference time in the ensemble CNN model was 

almost fourfold higher than that in SurvNet, for the ensemble method had to compute the output of all its models. 

SurvNet with the T1 MRI modality was quicker than the ensemble CNN model. 

 

3.2. Evaluation in different modalities 

To examine the effect of increasing the number of input MRI modalities, we measured the performance of SurvNet with 

different input combinations of MRI modalities. We used T1 in our initial experiment given the good performance in 

previous experiments described above, because it does not require a contrast agent. Other than T1, we included FLAIR, 

as it can show abnormalities clearly [4]. Additionally, we set T2 as the third priority, for this modality is part of almost 

all brain tumor MRI protocols [24]. To avoid that other modalities may be more contributing than T1, we also 

tested the proposed model with every single modality and the SurvNet with other modalities has the same or 

similar performance as it with T1. 

 

We considered four scenarios: (i) T1 only, (ii) T1 and FLAIR, (iii) T1, FLAIR, and T2, and (iv) T1, FLAIR, T2, and 

T1ce. The hyperparameters of SurvNet with different combinations of input MRI modalities are set as presented in 

Table 2. The 3-fold cross-validation is applied to all models.
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Figure 3 shows the mean accuracy at epoch 𝑖 of SurvNet, denoted here by 𝜇𝑗 . One can observe that SurvNet reached 

the highest accuracy with all MRI modalities. We compared the µ0 and 𝛿𝛿80 of each model, as shown in Figure 4 (b). 

The points indicate each model’s µ80, and the lines reflect the 𝜎𝛿80 values. As a result, the µ80 of SurvNet increased 

from one modality to four, which did not necessarily happen with the other architectures. The end-to-end Inception, 

for instance, had a considerably high standard deviation. 
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Figure 3: Evaluation of 𝜇𝑗 considering different MRI modalities in SurvNet. 
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Figure 4: (a) Confusion matrix on the testing set (4 modalities), (b) µ80 and 𝛿80 of: (a) SurvNet with 4 MRI modalities, (b) 
SurvNet with 3 MRI modalities, (c) SurvNet with 2 MRI modalities, (d) SurvNet with 1 MRI modality, (e) Inception with 
3 MRI modalities, end-to-end, (f) Inception with 1 MRI modality, frozen, (g) Inception with 1 MRI modality, end-to-end, 
(h) Ensemble CNN with 1 MRI modality. 

 

Table 5 presents the outcomes of the experimental results concerning different modalities. As we increased the 

number of MRI modalities, SurvNet improved its generalization ability in all measures, which is presented in Figure 4 

(a). SurvNet achieved the overall best result with all modalities, with 76.5% accuracy and 0.760 F1-score on pre- 

operaitve_TCGA-GBM and 77.1% accuracy and 0.778 F1-score on BraTS. The receiver operative characteristic (ROC) 

of SurvNet with one to four modalities is depicted in Figure 5, yielding an area under the curve (AUC) value presented 

in Table 5. Figure 5 represents the true positive rate (y-axis) and false positive rate (x-axis) for each input combination 

at various classification thresholds. The optimal thresholds for each model are selected to achieve maximal true positive 

and minimal false positive rates. As shown in Figure 5, SurvNet performance significantly improved as the number of 
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Table 5 
Performance of the models with various input modalities. 

 

 

Dataset Model/Metrics Accuracy Precision Recall F1-score AUC 
 

 SurvNet with 4 MRI modalities 0.765 0.827 0.704 0.760 0.875 

 SurvNet with with 3 MRI modalities 0.706 0.833 0.556 0.667 0.764 

TCGA-GBM 
SurvNet with with 2 MRI modalities 
SurvNet with with 1 MRI modality 

0.686 
0.627 

0.794 
0.783 

0.556 
0.407 

0.653 
0.535 

0.736 
0.722 

 Inception with 3 MRI modalities 0.549 0.545 0.704 0.607 0.646 
 Ensemble CNN (1 modality) [14] 0.609 0.586 0.739 0.654 - 

 

 SurvNet with 4 MRI modalities 0.771 0.8 0.766 0.750 0.788 

 SurvNet with with 3 MRI modalities 0.714 0.889 0.471 0.615 0.778 

BraTS 
SurvNet with with 2 MRI modalities 
SurvNet with with 1 MRI modality 

0.714 
0.686 

0.889 
0.636 

0.471 
0.824 

0.615 
0.718 

0.708 
0.690 

 Inception with 3 MRI modalities 0.686 0.636 0.824 0.718 0.690 
 Ensemble CNN (1 modality) [14] 0.67 0.7 0.65 0.674 0.67 

 

MRI modalities increased as shown by the AUCs. Therefore, SurvNet with all MRI modalities was chosen because it 

presents higher accuracy. SurvNet started with a convolutional layer that outputs 32 feature maps, therefore, SurvNet’s 

parameters stayed constant regardless of the number of input MRI modalities. 
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Figure 5: ROC analysis of SurvNet with various input MRI modalities. 
 

 

3.3. Evaluation with different modalities and segmented data 

Besides the four MRI modalities, the pre-operative_TCGA-GBM dataset provided the segmented data, where the brain 

tumor sections were segmented from the original MRI using all the T1, T2, FLAIR and T1ce MRI modalities [19]. 

The segmented data is cropped MRI images, including the whole tumor (WT), the tumor core (TC), the enhancing part 

of the tumor core (ET), the non-enhancing part of the tumor core (NET), and the peritumoral edema (ED). To further 

evaluate the effect of segmented data, we conducted a series of experiments based on the combination of input data as 

follows: segmented data only; segmented data and T1; segmented data, T1 and FLAIR; segmented data, T1, FLAIR, 
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and T2; segmented data, T1, FLAIR, T2 and T1ce. These experiments’ hyperparameters were the same as presented 

in Table 2. 

Figure 6 (b) presents the results of the 3-fold cross-validation. Again, the 𝜇80 values of SurvNet increased as the number 

of input modalities grew. SurvNet using segmented data and four MRI modalities achieved the best performance of 

82.4% accuracy and 0.822 F1-score on pre-operative_TCGA-GBM and 80% accuracy and 0.788 F1-score on BraTS. 

Additionally, Figure 7 displays the ROC curves concerning SurvNet with five input image combinations. The increased 

number of input MRI modalities results in a larger area under the ROC. SurvNet with the segmented data and four 

MRI modalities reached the highest AUC. 
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Figure 6: (a) Confusion matrix on the testing set (4 modalities and seg), (b) µ80 and 𝛿80 of SurvNet with various inputs: 
(a) Segmented data and 4 MRI modalities, (b) Segmented data and 3 MRI modalities, (c) Segmented data and 2 MRI 
modalities, (d) Segmented data and 1 MRI modality, (e) Segmented data only 
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Figure 7: ROC analysis of SurvNet with different input MRI modalities and segmented data 

 

Fig 9 depicts a comparison of the 𝜇80 values concerning SurvNet with different MRI modalities and segmented data. We 

can conclude that SurvNet with the complete scenario, i.e., segmented data and four MRI modalities, achieved the best 

accuracy, showing the validity of segmentation information during the survival time prediction process. We visualized 

the feature maps of the last convolutional layer of SurvNet, as shown in Figure 8. The feature maps present the highly 
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Figure 8: Feature map of SurvNet, (a)-(h) are the T1 images, and (i)-(p) are the feature maps 

 
Table 6 
Performance of the models with segmented data and different input modalities. 

 

 

Dataset Model/Metrics Accuracy Precision Recall F1-score AUC 
 

 SurvNet with segmented data and 4 modalities 0.824 0.889 0.778 0.822 0.931 

 SurvNet with segmented data and 3 modalities 0.765 0.804 0.740 0.769 0.847 

TCGA-GBM 
SurvNet with segmented data and 2 modalities 
SurvNet with segmented data and 1 modality 

0.725 
0.687 

0.813 
0.822 

0.630 
0.519 

0.708 
0.635 

0.736 
0.750 

 SurvNet with segmented data 0.647 0.756 0.519 0.603 0.708 
 

 SurvNet with segmented data and 4 modalities 0.8 0.813 0.765 0.788 0.853 

 SurvNet with segmented data and 3 modalities 0.743 0.9 0.529 0.667 0.737 

BraTS 
SurvNet with segmented data and 2 modalities 
SurvNet with segmented data and 1 modality 

0.714 
0.657 

0.733 
0.667 

0.647 
0.588 

0.688 
0.625 

0.712 
0.655 

 SurvNet with segmented data 0.629 0.625 0.588 0.606 0.627 

 

concatenated features inside and around the region of the brain tumor. The lightweight architecture can benefit from 

the high contrast between different tissues from MRI, therefore, learning the features efficiently and accurately. 
 

 

4. Discussion 

In this paper, we proposed SurvNet, a low-complexity CNN, for predicting the overall survival time of patients affected 

by GBM. The pre-operative_TCGA-GBM dataset with 119 individuals was divided into long-survival and short- 

survival cohorts via the threshold of one year and into training and testing sets with a ratio of 85:15. The BraTS 

with 236 samples are also used to validate the performance of SurvNet. Firstly, we evaluated SurvNet with the T1 

modality and compared it with Inception V3, VGG16 and ensemble CNN models. Secondly, we examined the effect 

of increasing input MRI modalities on our proposed model. Finally, we examined how adding segmented data to the 

input data might improve the models. 
 

SurvNet with T1 MRI modality achieved a 62.7% accuracy, compared with 52.9% accuracy of the Inception V3 

model, 58.5% accuracy of the VGG 16 model, and 54.9% of the ensemble CNN model. By increasing the MRI 

input modalities, SurvNet becomes more accurate and achieves 76.5% accuracy with four MRI modalities. Combining 

the segmented data, SurvNet achieved the highest accuracy of 82.4% on pre-operative_TCGA-GBM and 80% on 

BraTS. The segmented data appear as helpful for OS prediction as a single whole-brain MRI modality. We also 

calculated other metrics, such as precision, recall, f1-score, and AUC, which show the same tendency as accuracy 

when increasing the number of input MRI modalities. To the best of our knowledge, our results are state-of-the-art on 

the pre-operative_TCGA-GBM dataset. As for the computational load, SurvNet compared favorably to the alternative 

models assessed.
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Figure 9: Evaluation of SurvNet: with and without the segmented data 
 

 

The proposed model has advantages in the model complexity. The feature maps present the highly concatenated features 

inside and around the region of the brain tumor. The improvement that the lightweight architecture brings is from the 

high contrast between different tissues and significant features of MRI. Low-complexity models can learn from these 

clear features more efficiently and make accurate predictions. Besides, the low-complexity model can avoid the risk of 

overfitting in the small dataset. 
 

In the clinical application, SurvNet can improve risk stratification by providing accurate survival predictions, to 

categorize patients into different risk groups more accurately. With a more accurate prognosis, SurvNet can help in 

choosing the most appropriate treatment plan. For instance, patients with a predicted survival of less than 1 year 

might more benefit from having no treatment, while those with higher survival prediction might benefit from 

intensification. The clinical practice is complicated and a single model is not decisive for the treatment plan, but 

we still hope that this kind of research can help better understand and evaluate the patient’s prognosis. In the 

meanwhile, SurvNet also meets some challenges and limitations. The best performance of SurvNet requires the input 

of all MRI modalities and segmented data, which might not be available in some clinical settings. The small dataset 

size may have a potential bias against a large number of clinical data, therefore limiting the generalization of the model. 

 

5. Conclusion 

We have built an accurate tool to stratify patients into those with poor OS who could be targeted for clinical trials. 

Given the very poor survival rate of patients, this has a large potential value. 
 

Through the incorporation of diverse MRI modalities as inputs, we facilitate deep feature extraction at various 

anatomical sites, thereby augmenting the precision of predictive modeling. Four MRI modalities, T1, T2, FLAIR 

and T1ce as well as the segmented data are tested as various input combinations into the low-complexity CNN-based 

model we proposed. In the meanwhile, we compared SurvNet with Inception V3, VGG 16 and ensemble CNN models. 

Three series of experiments are performed: 1. compared SurvNet with T1 MRI modality with Inception V3, VGG 16 

and ensemble CNN models with T1 MRI modality; 2. compared SurvNet by increasing the number of input MRI 

modalities; 3. tested SurvNet by adding segmented data with MRI modalities. In the three-fold cross-validation, 

SurvNet with T1 modality achieved 62.7% accuracy, which is better than the comparisons. Inputting more MRI 

modalities and including segmented data, SurvNet achieved more accurate and stable performance in the three-fold

with segmented data 
without segmented data 
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cross-validation, where SurvNet with the input of 4 MRI modalities and segmented data achieved 82.4% accuracy. 

We can conclude that SurvNet with the complete scenario, i.e., segmented data and four MRI modalities, achieved 

the best accuracy, showing the validity of segmentation information in the task of OS prediction. Apart from the 

pre-operative_TCGA-GBM, we also tested SurvNet on the BraTS dataset, where SurvNet with the input of 4 MRI 

modalities and segmented data achieved the highest 80% accuracy. 
 

One limitation of our research is the small dataset, with only 119 patients. Although this is not small compared 

to other GBM studies, large datasets are required to evaluate the performance further. In particular, whilst TCGA 

data is obtained from multiple sites, further validation using data from an entirely different dataset might prove the 

generalisability. Another limitation is that other MRI modalities that might be helpful for the classification task, such 

as diffusion-weighted imaging or advanced imaging have not been included. Apart from the GBM, many other types 

of brain tumors have a better prognosis than GBM, which is not suitable for the two-way classification task. 
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