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Abstract
Glioma is the most prevalent and aggressive primary brain tumor, with a poor prognosis of patients and a high mortality
rate. Standard treatment of surgery, radiation, and chemotherapy may not be effective for some patients as they suffer
from a stable progression of disease after treatment. Hence, it is crucial to predict the patient’s response to therapy as a
guide for the treatment plan. In this paper, we propose a multimodal model based on both magnetic resonance imaging
and genomic data. As the dataset has a majority of single-modality samples with a few ratios of multi-modality samples,
we propose a twin-tower architecture to solve the unimodal dominance issue and fully use the single-modality data. The
proposed architecture comprises an image encoder and a gene encoder trained on the single-modality samples for feature
extraction, along with a classification head trained on multi-modality samples. In this way, all the single-modality samples
can be beneficial to the whole model, and the need for the multi-modality is diminished. The proposed model outperforms
the comparison methods across all metrics, achieving an accuracy of 85% on the cross-validation. The ablation experiment
comparing the proposed architecture with single-modality models reflects the effectiveness of the proposed twin-tower
architecture.
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Introduction
Gliomas, a heterogeneous group of neuroepithelial tumors arising

from the glial cells, are the most common and deadly primary brain
tumors[12]. The prognosis of glioma is poor, with a median survival
of 14.6 months for glioblastoma (GBM), the most aggressive form of
glioma, and 7.3 years for lower-grade glioma (LGG)[9]. Currently,
the standard treatment for glioma includes surgical resection,
radiation, and chemotherapy[16]. However, some patients may suffer
from post-treatment tumor progression or recurrence. Generally,
tumor progressive diseases signify treatment failure, while post-
treatment effects, radiation necrosis, and pseudoprogression indicate
a positive response to treatment[13]. Accurately predicting the
patient’s response to therapy is critical for guiding treatment plans
and ultimately improving the patient’s prognosis.

Most of the current methods using medical imaging to predict
the patient’s response to treatment are based on the handcrafted
radiomic features extracted from medical imaging, such as the
shape, texture and intensity of the region of brain tumor and
developed into machine learning models, such as Support Vector
Machine (SVM) and Random Forest (RF)[21, 19, 5]. In addition to
medical imaging, genomic characteristics offer a novel perspective
for the diagnosis, treatment management, and early prediction of
glioma. The current methods using genomic data predominantly
rely on statistical analysis and machine learning methods to identify

specific gene expressions associated with brain tumors and potential
targeted treatment[1, 7, 11].

MRI images of brains can intuitively reflect the features of
brain tumors, such as the location, size, shape, etc., which is
highly relevant to the patient’s response to treatment. Genetic
data provide insights into tumor biology, including pathways
involved in proliferation, invasion, and treatment resistance, while
MRI captures spatial and morphological characteristics of the
tumor in vivo. The integration of gene expression and MRI
data in multi-modal analyses offers a powerful approach to
unraveling the biological underpinnings of GBM. By combining these
data modalities, understanding of tumor heterogeneity, identify
prognostic biomarkers is enhanced. Therefore, it is necessary
to delve into genomic data together with MRI data to more
comprehensively assess the patient’s response to treatment. [14]
proposed a model that combined clinical characteristics, genomic
data and quantitative imaging features to predict the patient’s
response to therapy.

The current multimodal models face several challenges. On
the one hand, the existing multimodal models generally employ
machine learning methods to handle genomic data and perform
the radiomic and genomic features fusion, while deep learning
approaches demonstrate advantages in terms of performance. On
the other hand, current multimodal methods generally merge the
handcrafted features extracted from image and genomic data, which
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requires samples to possess information from multi-modalities to
fulfill data alignment, however, for samples with single modality,
existing models lack the capability of features fusion. Hence, there
is a large amount of single-modality samples, which cannot be fully
utilized in the current models. Since obtaining sufficient multimodal
samples is challenging, effectively leveraging the vast amount of
single-modality samples becomes a critical factor for improving the
accuracy of this task. Hence, a multimodel deep-learning-based
architecture based on MRI and genomic data is worth exploring.

In this paper, we propose a multimodal architecture that utilizes
both MRI and genomic data for predicting patients’ responses to
therapy. The purpose of the proposed model is to make full use
of single-modality data and avoid the unimodal dominance issue
as the dataset has a majority of single-modality samples. The
proposed model is designed as a twin-tower architecture, comprising
an image encoder and a gene encoder for feature extraction, and
a classification head for feature fusion and classification. The
image and gene encoder can be trained independently on the
single-modality samples and then transferred to the multi-modality
samples to train the classification head. The proposed twin-tower
architecture outperforms the baseline methods across all metrics,
such as accuracy, precision, recall, and F1-score. We conduct an
ablation experiment to evaluate the effectiveness of the proposed
twin-tower architecture compared to the single-modality models.
Moreover, the proposed model exhibits excellent scalability and can
accommodate the integration of additional modalities without the
requirement of too many multi-modality samples.

Methodology
Dataset

The dataset used in our study is derived under two publicly
available datasets from The Cancer Genome Atlas (TCGA) dataset,
an open-source, open-access information resource, namely, The
Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM)[18]
and The Cancer Genome Atlas Lower Grade Glioma (TCGA-
LGG)[15], which provide a diverse range of data types, including
MRI, genomic data, and clinical information.

In particular, the MRI data is sourced from the pre-
operative_TCGA-GBM[3] and pre-operative_TCGA-LGG[2] dataset,
which provides pre-processed MRI data obtained and then
pre-processed from the relative TCGA datasets. These two
datasets consist of various modalities of MRI data, including
T1-weighted (T1), T2-weighted (T2), T1-weighted after contras
(T1ce) and (Fuid-Attenuated Inversion Recover) FLAIR, as well as
segmentation data of brain tumors. Standardized pre-processing of
the MRI data was performed by the two datasets, starting with a
co-orientation to the left-posterior-superior coordinate system, co-
registering to the same anatomical template, followed by resampling
to a uniform 1mm3 voxel resolution and skull-stripping to remove
the skull in MR images, making the tumor region more conspicuous
and mitigating potential facial reconstruction/recognition of the
patients[4]. We utilized the maximum voxel layer sampling method
to extract 2D slices from 3D MRI images along the transverse axis.
Each slice of the input MR images (T1, T2, T1ce, and FLAIR) and
the segmented data has a resolution of 240×240.

Regarding the genomic data, we obtained the RNA sequence
(RNA-seq) data from TCGA-GBM and TCGA-LGG datasets in the
form of ’Gene Expression Quantification’, based on which an initial
gene expression matrix was generated from the calculation of the
expression levels for each gene. We employed the gene annotation file
’Homo_sapiens.GRCh38.105.chr.gtf.gz’ to convert features in the
gene expression matrix (Ensemble Transcript ID) to stable gene IDs

and remove the repeated gene IDs. In total, 19196 gene IDs were
obtained in each sample.

The genomic and clinical data from TCGA-GBM, TCGA-LGG
datasets and the MRI data from the relative pre-operative MRI
datasets were combined into one dataset. We transform the patients’
response task into a binary classification problem, where the labels
represent ”1” for positive response to therapy and ”0” for negative
response to therapy. Overall, we have 95 samples with MRI data
only, 452 samples with genomic data only, and the remaining 50
samples with all modalities. Samples with a single modality were
used to train the models specific to that particular modality with
the ratio of training and testing set as 80:20. The 50 samples with
all modalities were partitioned into a training set for transferring
learning and a testing set with a ratio of 3:2.

Architecture
Based on the analysis in the Dataset section, it can be concluded

that multimodal samples are in the minority, while the majority of
samples merely possess data from a single modality(MRI or gene).
With the purpose of addressing the issue of unimodal dominance
in multimodal datasets, we develop a twin-tower structure that
extracts the single-modality features parallelly from two single-
modality models and a concatenate layer for the image/gene feature
fusion. The schematic diagram of our proposed twin-tower structure
is shown in Fig 1 (a). We build up the image tower and gene
tower independently based on two encoders to extract the feature
from image and gene samples and train the two towers based on
the samples that consist of a single modality. Following that, the
features (image features and gene features) extracted from the two
single-modality towers are merged into MLP layers, for modality
fusion and classification purposes.

We utilize a low-complexity CNN-based architecture[10] for the
image encoder, as shown in Fig 1 (b), where three convolutional
blocks consisting of convolution, pooling, and activation layers
(ReLU) and two dense layers with 32 and 16 nodes are employed
for the feature extraction from MRI. The input MRI data includes
T1, T2, T1ce, FLAIR, as well as the segmented data of the tumor
region. For gene data, we employ an AutoEncoder model to compress
and extract features from raw RNA sequence, which is shown in Fig
1 (c). The encoder of our AE model consists of two dense layers with
64 and 32 nodes, respectively, to compress the gene data, while the
decoder reverses the encoder, with 32 and 64 nodes sequentially, to
reconstruct the gene data from the compressed features inside the
bottleneck. We utilize the mean squared error as the reconstruction
loss for optimization of the AE model. Two dense layers with 64 and
16 nodes are connected to the bottleneck for the classification task
after the AE is trained. The two towers used for feature extraction
with 32 features obtained from the gene encoder and 16 features
obtained from the image encoder, are then scaled separately with
Gaussian normalization with mean of 0 and variance of 1, and
connected with three dense layers with 64, 128, and 16 nodes,
respectively, for classification, followed by a dense layer for output.
When conducting transfer learning on the multi-modality samples,
the single-modality encoders are frozen and only the concatenate
and classification head are trained on the multi-modality samples.

Through this architecture, we maximize the utilization of single-
modality samples to reach a high capability of feature extraction
and a better modal fusion and transfer effects on the whole dataset
without the need for a large number of multi-modality samples. This
architecture significantly enhances the scalability of the model.
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Fig. 1. Overflow of the twin-tower framework. (a) The main architecture based on a twin-tower framework comprises an image encoder and a gene
encoder, which are trained from single-modality samples, for feature extraction, and MLPs for classification. (b) The image encoder uses CNN and MLP
to extract image features from MRI. The image encoder is a low-complexity CNN-based architecture from our previous paper[10] (c) The gene encoder
is an AutoEncoder architecture. The encoder of AE model consists of two dense layers to compress the gene data, while the decoder reverses the encoder
to reconstruct the gene data from the compressed features inside the bottleneck. The image encoder and gene encoder will be frozen when transferring
the model on the multimodel samples while merely the MLPs will be tuned.

Experiemnts and Results
Experimental setup

To solve the issue of unimodal dominance, the proposed twin-
tower model underwent a two-stage training procedure. In the
first stage, we started with training the two single-modality towers
on the single-modality samples, therefore, an image tower and a
gene tower were obtained as image and gene encoder, respectively.
After that, the output features from the two single-modality

towers were merged into the feature fusion layer after a separate
normalization. The second stage would transfer the scaled features
on the multi-modality samples to train the feature fusion layer
and the classification head, while the two encoders were frozen.
The whole two-stage training had hyperparameters as shown in
Table 1. The hyperparameters for the first stage were obtained
from the grid search method based on the validation set, while the
hyperparameters for the second stage were set based on the first
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Table 1. Hyperparameters for the proposed model

hyperparameters Value
Image encoder gene encoder transfer

optimizer SGD Adam SGD
momentum 0.9 0.9 0.9
loss function cross entropy MSE cross entropy
learning rate 2 × 10−5 1 × 10−4 1 × 10−4

decay rate 2 × 10−7 2 × 10−7 2 × 10−7

epoch 20 20 10
batch size 16 16 16

stage. We used stochastic gradient descent (SGD) as the optimizer
for the image encoder and transfer learning, and Adam for the gene
encoder, with a learning rate of 2 × 10−5 for the image encoder,
1 × 10−4 for the gene encoder and the transfer learning, and a
decay rate of 2× 10−7 for all the models. For the loss functions, we
used cross entropy for the image encoder and transfer learning and
the mean squared error (MSE) for the gene autoencoder. The epoch
was set to 20 for the image and gene encoders and 10 for the transfer
learning as it was only transferred on a minority of multi-modality
samples.

Results
We chose several references [6, 17, 5, 20] as baseline models

for comparison. [6] proposed a fusion model that used the
InceptionResentV2 network to extract distinct features from each
MRI slice and transformer network incorporate spatial dependencies
between MRI slices based on the T1 and FLAIR image and clinical
information. [17] includes multiresolution radiomic feature (MRF)
extraction extracted from mpMRI (T1, T2, T1ce, FLAIR) and
selected with statistical significance testing, followed by a CatBoost
classifier, a method of gradient boosting decision trees class. [5]
proposed a multiparametric MRI model consisting of predictive
probabilities of tumor progression computed from diffusion and
perfusion MRI-derived parameters. [20] investigated a machine
learning model combining clinical characteristics, and texture
features extracted from T1ce.

We measured accuracy, precision, recall, and F1-score to
evaluate the proposed model, which are all calculated on the 3-
fold cross-validation. Accuracy, precision, recall and F1-score denote
the proportion of proportion of correct predictions among the total
number of predictions, the proportion of true positive predictions
among all positive predictions, the proportion of true positive
predictions among all actual positive cases and the harmonic average
of precision and recall, respectively. The calculation of accuracy,
precision, and recall are shown as equations 1, 2, 3, 4.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 = 2 ·
precision · recall
precision + recall

(4)

where True Positive(TP) is the number of positive examples
correctly predicted as positive, True Negative(TN) is the number
of negative examples correctly predicted as negative, False
Positive(FP) is the number of negative examples wrongly predicted

as positive, and False Negative(FN) is the number of positive
examples wrongly predicted as negative.

As shown in Table 2, our proposed model demonstrated a
significant performance improvement over several baseline models.
Specifically, our proposed twin-tower model achieved the highest
accuracy of 85%, which is 2.5% higher compared to the
InceptionResNet model Additionally, in terms of precision, recall
and F1-score, our proposed model reached 93.3%, 87.5% and
90.3%, respectively, indicating an enhanced classification capability
and a lower rate of false positives. These experimental results
verify the effectiveness of our proposed model in this task and
further underscore our proposed model’s potential value in medical
applications. Theoretically, image features such as location, size,
and shape, are contributive to the diagnosis of brain tumors and
the prognosis of patients. Hence, an image-based model can have a
good performance in the task of prediction of patients’ response
to treatment. However, pathologically, once a tumor starts to
spread and metastasize, which frequently occurs for glioma, the
recurrence or stable progression may happen after treatment. This
kind of information is not able to be obtained from MRI, while
the gene expression level can reflect it. Hence, a multimodal
architecture combining the MRI and genomics data can outperform
the single-modality methods.

Ablation experiment
We conducted an ablation experiment to evaluate the

effectiveness of the twin-tower architecture versus the two single-
modality models and the concatenate layer versus the mixture-
of-expert (MoE) layer[8]. In this comparison, we used the single-
modality samples for training the single-modality towers and the
abovementioned transfer learning method for training the twin-
tower model, and the same testing set to evaluate all the models.

We compared the twin-tower model with the two single-modality
models, as shown in Table 3 and the ROC curve in Fig 2. The twin-
tower architecture outperformed the two single-modality models,
with an accuracy of 85%, while the image-only model and gene-
only model achieved an accuracy of 74% and 72.3%, respectively.
From precision it can be concluded that the image and gene models
classify positive and negative samples more accurately, respectively.
After employing the twin-tower structure, the model effectively
utilizes the strengths of two single-modality models, resulting in
a significant improvement in precision. The twin-tower architecture
also performed better in recall, and F1-score than the two single-
modality models, indicating that this architecture is more capable
of predicting the patient’s response to therapy than the two single-
modality models. In the comparison of the two fusion methods, the
concatenate layer outperformed the MoE layer, with an accuracy of
85%, while the MoE layer achieved an accuracy of 75%. However,
this is not a fair comparison, as the MoE layer requires a large
number of multimodal samples to train the model. When more
modalities are introduced into the model, the MoE layer may be
more effective as the number of experts in the MoE layer can be
increased to handle a large number of modalities.

In the model selection for genomic data, we compared the
performance of the AE model against the traditional machine
learning methods, including SVM, RF, Gradient Boosting Decision
Tree (GBDT), and k-nearest Neighbors (kNN), and PCA for
feature compression before the classifications with machine learning
methods. The results of AE the machine learning methods are as
shown in Table 4. Compared to the machine learning methods,
AE achieved an accuracy of 72.3%, outperforming the SVM, RF,
GBDT, and kNN, which achieved an accuracy of 67.6%, 67.1%,
65.6%, and 64.3%, respectively. PCA improved the performance
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Table 2. Comparison between our proposed model and the baseline

Model/Metrics Accuracy Precision Recall F1-score

proposed model 0.85 0.933 0.875 0.903
InceptionResNet[6] 0.825 87 0.765 0.814
MRF[17] 0.801 0.8 0.85 0.824
mpMRI model[5] 0.765 0.889 0.727 0.80
random forest[20] 0.728 0.613 0.784 0.688

Table 3. Results of the Ablation experiment

Model/Metrics Accuracy Precision Recall F1-score

twin-tower model 0.85 0.933 0.875 0.903
image model only 0.74 0.762 0.865 0.81
gene model only 0.723 0.630 0.725 0.674

concatenate 0.85 0.933 0.875 0.903
MoE 0.75 0.9 0.69 0.78
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Fig. 2. ROC curve of the twin-tower model compared to the image
encoder and gene encoder.

Table 4. Results of AE against machine learning method with and
without PCA

Models Accuracy Precision Recall F1-score

AE 0.723 0.630 0.725 0.674

SVM 0.676 0.681 0.676 0.651
RF 0.671 0.672 0.671 0.652

GBDT 0.656 0.650 0.656 0.643
kNN 0.643 0.633 0.643 0.622

PCA+

SVM 0.706 0.713 0.706 0.690
RF 0.698 0.704 0.698 0.684

GBDT 0.686 0.684 0.686 0.676
KNN 0.696 0.696 0.697 0.685

of the traditional machine learning methods, with an accuracy of
70.6%, 69.8%, 68.6%, and 69.6% for SVM, RF, GBDT, and kNN,
respectively, but still falls short compared to AE.

Discussion
In this paper, we propose a twin-tower architecture for predicting

the patient’s response to therapy based on MRI and genomic data.
The proportion of multimodal samples in the dataset is quite small,
with the majority of samples consisting of either image or gene
modality. To address this unimodal dominance issue, the proposed
twin-twoer architecture features two single-modality towers for

extracting features from MRI and genomic data, respectively. These
features are then combined into a feature fusion layer.

We trained the image tower and gene tower with the
MRI-only samples from the pre-operative_TCGA-GBM and pre-
operative_TCGA-LGG datasets and gene-only samples from the
TCGA-GBM and TCGA-LGG datasets, respectively. The feature
fusion layer along with the classification head is trained on the
multimodal samples using transfer learning, while the two single-
modality towers are frozen. The single-modality tower for MRI was
built based on a low-complexity CNN-based architecture, while that
for gene data was built based on an AE model.

The performance of the proposed twin-tower model outperforms
the baseline methods with an accuracy of 85% through cross-
validation. The proposed model also had a better performance than
the baseline models in terms of precision, recall, and F1-score.
This improved performance indicates that the proposed twin-tower
architecture is more capable of predicting the patient’s response
to therapy than the comparisons. In the ablation experiments, we
compared the proposed twin-tower architecture with the two single-
modality models and the concatenate layer with the MoE layer.
Based on the results of precision, it can be concluded that the
image and gene models classify positive and negative samples more
accurately, respectively. After employing the twin-tower structure,
the model effectively utilizes the strengths of two single-modality
models, leading to a significant improvement in precision.

When additional modalities, such as computerized tomography
(CT) and biomarkers, are introduced into the model, it is sufficient
to train the single-modality model separately for feature extraction
on the new modality and the network for modalities fusion, without
retraining the feature extraction layers of existing modalities. With
more types of data integrated into the proposed architecture, the
MoE layer may have an improvement as it is suitable for dealing
with various types of data.

Conclusion
In this paper, we propose a twin-tower architecture to predict the

patient’s response to therapy, with MRI and gene data. To utilize
the single-modality samples to the maximum extent, the proposed
two-twoer architecture consists of two single-modality models and
a feature fusion layer. The two single-modality models are trained
from the single-modality samples for feature extraction, which are
merged into the feature fusion layer for classification. The feature
fusion layer and the classification head are then trained on the
multimodal samples by transfer learning, while the two single-
modality models are frozen. The single-modality model for MRI was
built based on a low-complexity CNN-based architecture, while that
for gene data was built based on an AE model. The key advance
with this designed architecture is that we overcame the issue of
unimodal dominance in multimodal datasets and achieved a high
performance without using too many multimodal samples. In the
meantime, this architecture has the capability of scalability for more
modalities introduced into the proposed model.
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Fig. 3. Performance of the proposed model compared to the baseline methods. The blue, green and red bars represent the model with gene only, image
only and multi-modality, respectively.

We collected MRI data from the pre-operative_TCGA-GBM
and pre-operative_TCGA-LGG datasets and gene data from the
TCGA-GBM and TCGA-LGG datasets and combined them into
one dataset. The single-modality samples in our dataset consist of
95 samples with MRI data, 452 samples with gene data, and 50
samples with all modalities. We trained the image encoder and gene
encoder with the MRI-only and gene-only samples, respectively, and
then transferred the encoders to the multi-modality samples to train
the feature fusion layer and the classification head. We compared
the performance of the proposed twin-tower model with baseline
methods and the proposed method outperformed them with an
accuracy of 85% through cross-validation. The proposed model also
has a better performance than the comparisons in precision, recall,
and F1-score. The ablation experiment reflected the effectiveness
of the designed twin-tower architecture compared to the single-
modality models. This model can help in formulating personalized
treatment plans, providing more accurate prognostic assessments,
and identification of suitable treatments for patients.

Key Points
• A twin-tower architecture using MRI and genomic data is

proposed, which can make full use of single-modality data and
mitigate the unimodal dominance issue.

• Compared to the baseline models using MRI only and gene only,
the proposed model has a better performance in all metrics.

• The usage of twin-tower architecture improves the scalability of
the model and can accommodate the integration of additional
modalities.

Future work
This paper combines the two datasets and uses the pre-processing

MRI data, which consists of 502 samples in total. The scale of
the number of data is insufficient to demonstrate the absolute
effectiveness of the model in clinical applications. Hence, it is

necessary to collect more data to further evaluate the proposed
model. Apart from the number of data, we would like to expand the
modality of samples, such as CT or biomarkers, to further benefit
the performance of the proposed model.

Data availability
This paper utilizes the clinical data from TCGA-GBM, TCGA-

LGG and pre-processed MRI data from pre-operative_TCGA-GBM
and pre-operative_TCGA-LGG. The datasets can be downloaded
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