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Learning Contextualized Music Semantics from Tags Via a Siamese
Neural Network

UBAI SANDOUK and KE CHEN, The University of Manchester

Music information retrieval faces a challenge in modeling contextualized musical concepts formulated by
a set of co-occurring tags. In this article, we investigate the suitability of our recently proposed approach
based on a Siamese neural network in fighting off this challenge. By means of tag features and probabilistic
topic models, the network captures contextualized semantics from tags via unsupervised learning. This leads
to a distributed semantics space and a potential solution to the out of vocabulary problem, which has yet
to be sufficiently addressed. We explore the nature of the resultant music-based semantics and address
computational needs. We conduct experiments on three public music tag collections—namely, CAL500,
MagTag5K and Million Song Dataset—and compare our approach to a number of state-of-the-art semantics
learning approaches. Comparative results suggest that this approach outperforms previous approaches in
terms of semantic priming and music tag completion.
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1. INTRODUCTION

Music information retrieval (MIR) is becoming increasingly necessary with the rising
rates of music production and demand [Serra et al. 2013]. Manual classification of
music is infeasible due to costs, biases, and contradictions introduced by individual
experts. As a result, automatic music understanding is vital for providing viable ser-
vices. Unfortunately, there exists a gap between what machines extract from music and
the corresponding human-level understanding, which is well known as the semantic
gap [Smeulders et al. 2000]. Efforts to bridge this gap include engineering features
[Lew et al. 2006], modeling users’ behavior [Schedl et al. 2013], and using concept
semantics. Aside from introducing expert knowledge as ontologies [Kim et al. 2008],
semantics learning has been dominated by music annotations or tags [Bertin-Mahieux
et al. 2010]. Music tracks are associated with textual tags to convey human inter-
pretable concepts describing these tracks. Music understanding is often reduced to
automatic annotation of music with suitable tags. Thanks to crowd-sourced [Turnbull
et al. 2008] and game-based tagging [Law et al. 2007], large collections of tagging
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information are accessible to music research. The overall quality of the learned seman-
tics is determined by the quality of the annotation and how they are used.

Traditionally, mapping music to tags is realized via multi-label classification. For
each tag, a dedicated binary classifier is used in order to predict its appropriateness to a
track [Turnbull et al. 2007]. This approach loses tag correlation information concerning
much of the intention of any tag’s use [Sordo 2011, p.34]. Additionally, this approach
depends on analyzing the musical content, which may vary radically when conveying
similar concepts. It is particularly difficult to extend this approach to different MIR
tasks and applications in the presence of out of vocabulary (OOV) tags. OOV tags
refer to those tags that appear in application but are not observed during semantics
learning. Generalizing semantics to new tasks as well as new tags is vital for music
understanding. Given that the majority of the musical concepts can be represented in
tag form, we believe that proper semantics can be learned solely from the analysis of
co-occurring tags describing music tracks. In this case, intention and meaning of tags
are not affected by the musical content, manually defined ontologies and dictionaries
or any other information source.

Semanitcs analysis of tag collections can be done in different ways. Levy and Sandler
[2008] suggest the use of semantically coherent methods to obtain tag representations,
for example, Latent Semantic Indexing (LSI) [Deerwester et al. 1990] and Probabilistic
Latent Semantic Analysis (PLSA) [Hofmann 1999]. These methods uncover statistics
that govern the collective use of tags. LSI produces one unique representation for each
tag regardless of how it is used in different tracks. We refer to this type of seman-
tics as global relatedness semantics. Another global relatedness model is obtained via
analyzing the tag collection using aggregation [Markines et al. 2009] followed by Prin-
ciple Component Analysis (PCA). Conversely, PLSA produces coherent representations
for groups of tags and produces multiple representations for each tag encoded within
a representation of a group of tags. We refer to this type of semantics as contextual
relatedness. Another contextual relatedness model is obtained via Latent Dirichlet Al-
location (LDA) [Blei et al. 2003], which produces a compact representation of a group
of tags encoded as activation levels of a set of latent topics. Alternatively, each group
of tags can be represented as a vector of binary tag-relevance indicators known as
Bag-of-Words (BoW) [Harris 1954]. The BoW can be smoothed by means of Conditional
Restricted Boltzmann Machines (CRBM), which results in a tag-based track repre-
sentation. The smoothed representation captures correlations among tags and is also
contextualized by the CRBM’s condition information [Mandel et al. 2011], where the
condition information is the one-hot representation of the training document carried
out by one “activated” unit corresponding to the ID of the document being used for
training. Evidently, such condition information cannot be applied to new documents in
application.

While the aforementioned methods are able to capture contextual track-to-tag re-
latedness, they struggle in capturing underlying tag-to-tag relatedness; leading to
inconsistent semantics and difficulty across different MIR tasks. For instance, LDA
provides a method for relating topics to tags but does not have a clear measure on re-
latedness among tags. Additionally, these approaches assume a close-set scenario; that
is, all tags have to be known during training and used according to their predefined
meanings. In reality, different tags may be used to mean the same musical concept, for
example, “drums”/ “drumset”; and the same tag may be used to describe more than one
musical concept, for example, “guitar” to mean different guitar types. In general, the
intended meaning of a single tag cannot be revealed unless all other tags used with
it for describing a track are examined. Hereinafter, we use companion tags to refer to
these co-occurring tags in an annotation of a track. Furthermore, new tags beyond a
predefined vocabulary may also be used by annotators, that is, OOV tags. In summary,
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the existing models fail to yield the proper contextualized relatedness semantics be-
tween individual tags and, in particular, there appear OOV tags in applications.

In contrast to the slow progress in tag semantics modeling, natural language pro-
cessing benefits from a class of distributed language models capturing underlying
relatedness among words [Mikolov et al. 2013]. Thanks to their simplicity and capacity
in providing generic semantics for numerous linguistic tasks, such models yield seman-
tic spaces where words are embedded based on their syntactic similarity. A distance
measure is often used within the semantic space to reflect syntactic relatedness of word
pairs. Unlike the dictionary-based models [Iacobacci et al. 2015], distributed language
models are trained using words in a corpus without considering any manually con-
structed information sources, for example, dictionary. Such success inspires further
research into distributed semantics. Unfortunately, applying linguistic models directly
to tag collections is unreasonable due to the lack of syntactic structure among tags.
Without the ordering information, these models can only capture global relatedness ne-
glecting contextualized meanings underlying tags uses. Furthermore, these linguistic
models falsely assume linguistic properties of tags as same as those of words. However,
tags are beyond words as music tags may be symbols, abbreviations and phrases, for
example, “r’n’b”, “80s” and “rhythmic loops.”

To facilitate our presentation, a document hereinafter refers to a set of co-occurring
tags, that is, δ = {τi}m

i=1, used to describe a music track. For any tag τi, δ forms its local
context used to disambiguate the intention of using τi for that track. As a result, the
specific meaning of a tag, dubbed a concept, is only identified after examining the tag
and its local context. In our recent work, we formulate the concept embedding, CE(τi, δ),
problem such that the distance between different concepts embedding reflects contex-
tualized relatedness [Sandouk and Chen 2016]. To solve this problem, we proposed a
contextualized semantic learning approach by means of Siamese architecture [Bromley
et al. 1993]. By using unsupervised learning, the Siamese neural network establishes
a semantics space that embeds concepts properly reflecting their relatedness as Eu-
clidean distance. The space contains multiple representations for each tag in different
contexts so that it co-locates with other tags that share the same intention and can
estimate the concept underlying an OOV tag from its local context. In this article, we
investigate the suitability of this approach in learning musical semantics based on
music tag collections. The main contributions in this work are summarized:

—We thoroughly investigate the suitability of Siamese CE approach [Sandouk and
Chen 2016] in modeling the musical concepts, including the proper capacity of the
network in learning musical semantics, highlighting the emergent structure of the
musical tag space and its smooth nature, and assessing the computational efficiency
of the network in music domain.

—To make a state-of-the-art contextualized semantic learning model comparable to
ours, we propose an improved version for the CRBM model [Mandel et al. 2011] so
that it can capture statistical co-occurrence likelihoods of tags as our Siamese archi-
tecture does. The semantics learned by the improved CRBM model is significantly
different from that done by its original version.

—As the learned CE model can be generalized to tags never seen during training,
we examine this nontrivial issue by applying it to the million song dataset, a large
dataset facing the long tail problem [Bertin-Mahieux et al. 2011].

—We conduct a thorough evaluation on the learned contextualized semantics based
on two benchmark MIR tasks, that is, semantic priming and tag completion, via a
comparative study to several state-of-the-art semantic learning models.

The articles is organized as follows: Section 2 reviews the CE model and achiev-
ing concepts embedding for tags. Sections 3 and 4 report experimental results in the
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semantic priming and the tag completion tasks, respectively. Section 5 discusses rel-
evant issues, while Section 6 concludes with future works related to this research,
including possible concrete uses of CE semantics in MIR tasks.

2. MODEL DESCRIPTION

For self-containment, we review our recently proposed approach for learning contextu-
alized semantics from tags [Sandouk and Chen 2016]. As the underpinning techniques,
this model is applied to learning semantics from musical tags.

2.1. Tag and Context Features

Tags are represented via aggregation [Markines et al. 2009], which captures their
global relatedness over the entire training set. Each tag use is weighted using tfidf
[Singhal 2001]. Given one training tag τ ∈ � and one training document δ ∈ � where
� is the vocabulary and � is the document collection: their binary relatedness is given

tf (τ, δ) =
{

1 when τ appears in δ
0 otherwise

The rarity of a tag is considered using inverted document frequency

idf (τ ) = log
( |�|

1 + |{δ ∈ � : t f (τ, δ) = 1}|
)

, where ‖.‖ is the cardinality of a set.

The tfidf weight is defined by the product of the binary relatedness and the inverted
document frequency as tfidf (τ, δ) = tf (τ, δ) × idf (τ ) .

Finally, each tag is described by its usage pattern across all training documents
as u(τ ) = {tfidf (τ, δi)}|�|

i=1. Consequently, global relatedness between two training tags
τ1, τ2 ∈ � is measured by the dot product of their respective usage vectors T (τ1, τ2) =<
u(τ1), u(τ2) >, which leads to tag representation of |�| features as

t (τ ) = {T (τ, τi)}|�|
i=1 . (1)

Local contexts are captured via LDA [Blei et al. 2003] over all tags in a document.
LDA assumes a set of latent independent topics � that softly cluster the documents
based on the used tags resulting in a probabilistic topic model (PTM) representation
of the entire document. During training, the process estimates scalar priors B for the
Dirichlet distributions to model the tags within each topic as well as the scalar prior
B0 in the Dirichlet distribution used to model the topics. After training, the probability
of a tag τ ∈ � is subject to p(τ |φ) ∼ Categorical(Dirichlet(B)) given a topic φ ∈ � where
p(φ) ∼ Dirichlet(B0). For a document δ, p(φ|δ) ∼ p(φ)

∏
τ∈δ p(τ |φ), the local context of a

tag is represented by a vector of |�| features corresponding to the |�| topic distribution
output with respect to δ:

l (δ) = {lc (δ)}|�|
c=1, lc (δ) = p (φc|δ) . (2)

2.2. Siamese Architecture

To learn contextualized semantics, we use the Siamese architecture illustrated in Fig-
ure 1. We train a deep neural network that predicts companion tags for a tag based on
the input features. Given an example xk, consisting of tag τ and document δ, input fea-
tures are the result of concatenating the tag and context features: xk (τ, δ) = {t (τ ) , l (δ)}.
The network consists of H hidden layers where a layer h is characterized by weight Wh
and bias bh parameters. The output of layer h, for example xk, is

zh(xk) = f
(
Wh.zh−1(xk) + bh

)
, 1 ≤ h ≤ H,
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Fig. 1. The Siamese network for contextualized music semantics learning (see Section 2.2 for notation).

where f (.) is the element-wise hyperbolic tangent function. The output of the (H − 1)th

hidden layer, that is, the penultimate layer, is used as the semantic representation.
We refer to this representation as contextual embedding (CE). We stipulate the raw
input features are x = z0(x), the contextualized embedding is CE(x) = zH−1(x) and
the prediction is ŷ(x) = zH(x). Lastly, for a pair of inputs to the Siamese network
x(1) = {t(τ (1)), l(δ(1))} and x(2) = {t(τ (2)), l(δ(2))}, the embedding similarity is defined by
the Euclidean distance between their contextual embedding:

E
(
x(1), x(2)) = CE

(
x(1)) − CE

(
x(2))

2.

Here in after, we shall drop all explicit parameters to simplify presentation, for
example, yk stands for yk (xk (τ, δ)) and ykj means the jth entry of yk.

2.3. Learning Algorithm

For each training document δ of m tags, we create m positive training examples where
each example consists of one focused tag and the shared local context features. The
prediction targets for these examples are the BoW of δ. Moreover, we artificially synthe-
size m negative training examples where each example consists of one focused tag that
does not appear in δ and the local context features of δ. The prediction targets for these
examples are the complement of BoW of δ. These examples reduce the domination of
context features in predicting the related tags.

The deep network is pretrained with the greedy layer-wise initialization with sparse
autoencoders suggested in Bengio et al. [2007]. The initialization is followed by the
error back propagation training to predict the target representation from the tag and
context input. The loss is a variant of the cross-entropy cost. Given the entire training
dataset X = {xk (τ, δ)}K

k=1, the loss is thus defined by

LP(X; �) = − 1
2K|�|

K∑
k=1

|�|∑
j=1

(κk(1 + ykj) log(1 + ŷkj) + (1 − κk)(1 − ykj) log(1 − ŷkj)). (3)

Here, κk = |{i:yki=1}|�|
i=1|

|�| is a weight that highlights the cost of a false-negative error.
This optimization is carried out via the Stochastic Back Propagation (SBP) [Bottou
2012]. After completing the learning of this network, we obtain the initial embedding.
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We train the Siamese architecture by coupling two copies of the initial network
operating together for distance learning. Given an input examples pair x(1) and x(2), the
contextualized semantic similarity is reflected by the Kullback–Leibler (KL) divergence
of their respective contexts:

KL
(
x(1), x(2)) =

|�|∑
c=1

((
l(1)
c − l(2)

c

)
log

(
l(1)
c

l(2)
c

))
.

Moreover, the distance learning makes use of the semantic similarity to penalize
the embedding if distances deviate away from a target distance. Given a pair of input
examples x(1)

n and x(2)
n , we stipulate E = E(x(1)

n , x(2)
n ) and S = e

−λ
2 (KL(x(1)

n ,x(2)
n )), where λ is a

sensitivity parameter that affects the degree to which the embedding is dominated by
context similarity. Given two subsets X(1) and X(2) of cardinality N of randomly selected
examples via pairing from X, the following loss is used for Siamese learning:

LS
(
X(1), X(2); �

) = 1
N

N∑
n=1

(
I1 (E − β (1 − S))2 + I2ρ (E − β (1 − S))2 + I3 (E − β)2

S
)
, (4)

where
∑3

k=1 Ik = 1; Ik ∈ {0, 1} are indicators which distinguish three possible cases of
input pairs: I1 = 1 when both inputs are positive examples; I2 = 1 when both inputs
are negative examples; and I3 = 1 when one input is a positive example and the other
is a negative one. β is a scaling factor used to ensure tags spread over the embedding
space and 0 ≤ ρ < 1 is an importance factor which reduces the effects of case I2 = 1.

During distance learning, each component network is also trained simultaneously
to predict the BoW of its input to avoid an abrupt change of the CE learned initially
with a single network. Thus, the distance learning needs to combine two loss functions
defined in Equations (3) and (4), which leads to a multi-objective loss:

L
(
X(1), X(2); �

) =
2∑

i=1

LP
(
X(i); �

) + αLS
(
X(1), X(2); �

)
, (5)

where α is a trade-off parameter that reconciles two different losses.
The optimization problem defined in Equation (5) is solved via SBP. Iteratively, small

batches of examples are randomly selected, their loss measured, and the parameters
updated accordingly. The networks are kept identical by averaging the parameters after
each update. Training continues until validation P@2 (c.f. Section 3.5.) stops improving.
See the appendix of Sandouk and Chen [2016] for further details on learning algorithm.

2.4. Tag Contextual Embedding

For an input tag x(τ, δ) = {t(τ ), l(δ)}, an embedding network is used to obtain the CE
representation denoted by CE(τ, δ). For the two-stage learning procedure, the model
generates two CE(τ, δ) representations by using the network trained with only the
prediction loss in Equation (3) or using the multi-objective loss in Equation (5).

For an OOV tag τoov appearing in a document δ alongside in-vocabulary tags, that
is, δ = τoov ∩ δiv; δiv = {τi}|δiv |

i=1, we use CE representations of all |δiv| companion tags
denoted as {CE(τi, δiv)}|δiv |

i=1 and estimate an OOV tag representation as the centroid
of these vectors CE(τoov, δ) = 1

|δiv |
∑|δiv |

i=1 CE(τi, δiv). This CE representation allows the
estimation of intentions of OOV tags based on local contexts.
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Fig. 2. Frequency of tags used in different datasets. (a) CAL500. (b) MagTag5K. (c) MSDSub.

3. EVALUATION OF LEARNED SEMANTICS

In this section, we first describe the datasets and the settings used in our experi-
ments. Then we demonstrate the contextualized semantics learned by the CE model
via visualization. Finally, we report experimental results on semantic priming.

3.1. Dataset and Feature Extraction

In our experiments, we employ three publically available datasets: CAL500 [Turnbull
et al. 2007], MagTag5K [Marques et al. 2011], and Million Song Dataset (MSD) [Bertin-
Mahieux et al. 2011]. These datasets exhibit different tag usage distributions, as shown
in Figure 2. In tagging, there exists the so-called long-tail problem where the majority
of available tags are rarely used. From Figure 2, it is observed that CAL500 does not
suffer from this problem as severely as the other two datasets.

CAL500 is a dataset of 500 songs annotated using 158 unique tags via surveys. The
dataset uses tags densely given the fact that there are 25 tags per document, on average.
MagTag5K is a controlled version of MagnaTune where repeats and contradictions have
been removed. MagnaTune is the result of an online annotation game that allowed
users to evaluate the appropriateness of complete tag sets rather than individual tags
at a time [Law et al. 2009]. MagTag5K contains 5,259 documents and a vocabulary of
136 tags. It is sparser than CAL500 with five tags per document, on average. MSD is a
dataset of 1 million songs’ information. Many of the songs are tagged through last.fm,
a crowd-sourced annotation website. The original dataset contains a vocabulary of
520,539 tags. In our work, we use the 300 most used tags and the 14,627 documents
using only these tags to form a subset, named MSDSub. MSDSub has 3.2 tags per
document, on average.

We simulate OOV scenarios by reserving a number of tags away from semantics
learning; once a tag is reserved, any relevant documents containing it is never used
in training the model. We randomly select and reserve 22 tags and the 1,160 relevant
documents in MagTag5K and 100 tags and 7,054 relevant documents in MSDSub. The
remaining documents are used for feature extraction where we obtain 114 and 200
tag features for MagTag5K and MSDSub, respectively. However, the high density of
CAL500 does not allow for such setting because reserving a single tag would disable
around 160 relevant documents while there are only 500 documents in this dataset.
Thus, all 158 tags are used in training, which yields 158 tag features. To model local
contexts, we empirically sought the proper number of topics in LDA by using the
Dirichlet Hierarchical Process suggested in Teh et al. [2006]. As a result, 25, 19, and
23 topics are used for CAL500, MagTag5K, and MSDSub, respectively.

3.2. Experimental Settings

In our experiments, we adopt three-fold cross-validation (CV) by randomly splitting a
dataset into three subsets of equal sizes. In each fold, two-thirds are used for training
the CE model, and the remaining third is used for validation and testing. As a result, in
each fold, there are 40, 300, and 500 documents for validation and 127, 1,007, and 3,487
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Table I. Averaging Time (Second) Taken in Different Training Stages and Test

Dataset CAL500 MagTag5K MSDSub

Pre-training (/fold) 190 134 177
Prediction training (/fold) 6,149 12,406 20,495
Siamese training (/fold) 3,032 3,068 3,928
CE representation extraction (/instance) 2.3 × 10−3 1.5 × 10−3 3.3 × 10−3

documents for test in CAL500, MagTag5K, and MSDSub, respectively. Determining
the hyper-parameters is done via grid search. It is worth stating that the initialization
of the deep network is done with sparse auto-encoders in a greedy layer-wise way
instead of a random initialization. Consequently, we found a proper network structure:
input→100→100→10→output, where λ = 0.5, β = 3, and α values are in the range
[0.1, 1] for all three datasets.

For thorough evaluation, the CE model is evaluated in two forms: the trained ini-
tial semantics (CE) and the fine-tuned Siamese semantics (Siamese CE). Further-
more, we compare our approach to several state-of-the-art approaches reviewed in
Section 1, including PLSA [Levy and Sandler 2008], LDA [Law et al. 2010], and CRBM
[Mandel et al. 2011]. Unfortunately, CRBM uses a one-hot representation for condi-
tion or context. While this condition produces smoothed BoW representations for all
the training documents, learned semantics cannot be applied to new documents and
across MIR tasks. For proper comparison between CE and CRBM, we come up with an
improved version for CRBM by replacing the one-hot condition representation with the
same context representation used in CE, that is, PTM. We name this nontrivial exten-
sion CRBM(PTM). The architecture and cost function in Mandel et al. [2011] remain
the same in CRBM(PTM). It is worth highlighting that the semantics learned with
CRBM(PTM) are significantly different from those learned by the original CRBM and
the biggest difference appears in those documents of similar PTM context features hav-
ing maximally dissimilar one-hot context representations. The CRBM model implicitly
encodes the “popularity” of tags in its bias vector so that it is more likely to predict
popular tags. Among all the models used for comparison, the resultant semantics of
CRBM(PTM) are the closest to those obtained from the CE model. We also include the
Random model, which responds with random relatedness values between pairs of tags.
All the results reported in this section are based on the test subset in three folds. Such
results indicate the generalization ability of the learned semantics. Apart from the goal
from a learning perspective, results on training data are also meaningful and can be
directly employed in various IR tasks. Due to the limited space, however, we have to
report results on training sets in an appendix.

3.3. Computational Efficiency

It is well known that training deep neural networks often takes long times and may
need the use of GPUs to speed up the training [Raina et al. 2009]. In our experiments,
we use a Linux server with 24 CPUs running at 2.0GHz and memory of 128GB. All our
algorithms were implemented in Matlab [2012a].

For three-fold CV, the average training time at different training stages is listed in
Table I. Also, the average time in extracting the CE representation of an instance in
test is reported. Obviously, the training time generally depends on the number of input
features and the size of different datasets. In particular, we observe that the pretraining
on CAL500, a dataset of densely used tags, takes longer than that on MagTag5K and
MSDSub. Time spent during test for CE representation extraction is similar in the
three datasets despite the difference in the number of input features.
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Fig. 3. 2D projection of CE representations of exemplar tags. (a) All tags in 200 randomly selected documents
form MagTag5K. (b)–(e) Annotations of tags inside four boxed regions in (a). (f) All 388 “guitar” tag instances
in MagTag5K.

3.4. Visualization

By using unsupervised t-SNE [van der Maaten and Hinton 2008], we project the CE
representations of all tags used in 200 randomly selected documents from MagTag5K
onto a 2D plane for visualization. As illustrated in Figure 3(a), each dot represents a tag
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in one document. To see the space clearly, we annotate dots with their corresponding
tags. However, the annotations render the plot overly crowded and difficult to read.
Therefore, we highlight only four densely populated regions confined in these boxes
in Figure 3(a) and illustrate the details of four regions in Figures 3(b) through 3(e)
by zooming in on four regions. Within these plots, close duplicates of any tag were
annotated only once for better visual effect. Moreover, we label each region with the
captured concepts according to human knowledge. It is observed that four regions in
Figures 3(b) through 3(e) correspond to the concepts of “Pop and Dance,” “New Age and
Ambient,” “Types of Singing,” and “Classical Music,” respectively.

From Figures 3(a) through 3(e), it is observed that there is a swift transition be-
tween different musical concepts and the continuous nature of the embedding space is
noticeable. For example, there is a clear transition in Figure 3(c) from electrical new
age music (up left) to acoustic classical ambient (down right). In Figure 3(e), there
is a clear transition from concepts associated with piano-based classical music (down
right) through baroque music (middle center) to folk classical music (up left). In ad-
dition, transitions between the different regions are swift as well, for example, those
tags concerning Rock music (loud, electric, rock, etc.) near the right boundary of the
“Pop and Dance” region in Figure 3(b) and those near the left boundary of the “Types of
Singing” region in Figure 3(d). A similar effect is also observed between the “Pop and
Dance” and the “New Age and Ambient” boundaries in Figures 3(b) and 3(c).

As stated previously, a complete musical concept is often formulated by using a set
of coherent tags collectively instead of an individual tag. This has been carried out by
co-locating such coherent tags in CE space. For instance, tags “eerie,” “scary,” “deep,”
and “ambient” seen on the middle left in Figure 3(c) collectively form a single musical
concept corresponding to a specific type of chilling ambient music. Similarly, “harp,”
“no.singing,” and “piano” at the bottom center of Figure 3(e) collectively form another
musical concept describing a specific type of classical music. We also observe that many
tags are located in multiple regions in order to describe different musical concepts in
context. For instance, the tag “slow” has been found simultaneously in Figures 3(c),
3(d), and 3(e) to express slow and quiet types of ambient sounds and music relevant
to the “New Age and Ambient,” slow songs and singing voice linked to the “Types of
Singing,” and slow classical music often correlated with the use of violins and flutes
pertaining to “Classical Music,” respectively.

Figure 3(f) shows a 2D projection of CE representations of all 388 instances of the
“guitar” tag found in MagTag5K, where three clusters emerge. According to our genre
knowledge, we identify that two clusters marked by “�” are associated with the docu-
ments of acoustic nature and the third one marked by “�” corresponds to the documents
of electric nature. This visualization clearly demonstrates the polysemous aspects of
a tag in different contexts. Here, we emphasize that our learning model captures dif-
ferent meanings of a tag based on the intention of using this tag rather than mere
co-occurrence with other tags.

In summary, the visualization in Figure 3 demonstrates several useful properties
that facilitate MIR, including co-located musical concepts, semantic distance within
the CE space reflecting the corresponding contextualized relatedness, swift transition
between musical concepts and the polysemous aspects of a tag in different contexts.

3.5. Semantic Priming

For evaluation of learned semantics, we use semantic priming, a benchmark IR task,
where all semantically related tags are expected to be identified given a query tag [Lund
and Burgess 1996]. Successful priming is observed when the model is presented with
a query tag in context and the model is able to identify related tags without including
any nonrelated ones. This abstract task acts as a generic natural evaluation test bed
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for semantics without favoring any application. In order to complete the evaluation,
we need a set of query tags in context along with their ground truth information that
associates related tags under that context. However, due to the lack of such ground-
truth information, we iteratively use one evaluation document as a coherent set of
semantically related tags that should be identified as a response to a query tag. As a
result, all tags in an evaluation document δ are used as ground truth, and each of these
tags is used as a query tag in turn. In other words, the quality of semantics learned by
different models can be evaluated by examining how well one query tag and its local
context can identify its companion tags in the same evaluation document. For such a
task, a learning model is assessed by measuring the performance of retrieving the top
k tags in response to a query tag. Given r, the predicted ordered list of tags, and r̄k,
the top k tags of r, Precision at k is

P@k(k; δ, r) = |δ ∩ r̄k|
k

,

which indicates the accuracy of the model in correctly identifying k related tags given
one query tag. Unfortunately, this measure is affected by the length of an evaluation
document such that its values drop quickly when k exceeds the length of the evaluation
document, and hence evaluation across multiple documents becomes meaningless. This
issue can be solved using Mean Average Precision (MAP): the average P@k values for
a query up to the number of tags in the evaluation document

MAP = 1
|δ|

|δ|∑
i=1

P@k(i; δ, r)

Intuitively, MAP measures the percentage of the identified tags that are “correct.”
High MAP results mean that the assessed model identifies relevant tags at the top
of the retrieved list or in the low recall range. However, it does not measure the
performance over the entire retrieved list. In fact, the performance in the high recall
range is often important for tasks such as tag completion and query expansion where all
the related tags need to be identified. Therefore, we also evaluate the performance over
the entire retrieved list by measuring the numbers of retrieved tags required to achieve
the standard 11 recall levels: 0.0, 0.1, 0.2, . . . , 1.0 and their corresponding precision
[Manning et al. 2009] with Recall(δ, r̄) = |δ∩r̄|

|δ| and Precision (δ, r̄) = |δ∩r̄|
|r̄| . Finally, we

aggregate all the results in a single figure of merit by using the Area Under Curve
(AUC). Unlike the Receiver Operating Characteristic (ROC) for binary classification,
our used AUC allows the assessment of a ranked list. For two models with similar
MAP levels, higher AUC suggests better performance in the high recall range, that
is, identifying all the relevant tags. Figures 4, 5, and 6 depict the MAP and the AUC
results for different contextualized semantic learning models to be compared on three
datasets, CAL500, MagTag5K, and MSDSub, respectively.

Figure 4 shows the semantic priming results on CAL500. As this is a dense dataset,
relevant tags are correctly predicted in small k values by most models. For example,
the Random model achieves 56% in P@2 shown in Figure 4(a). Moreover, CRBM(PTM)
is comparable to Siamese CE in terms of MAP and has a higher precision in the recall
range of [0.1,0.3] because it tends to predict popular tags. The good performance at
the high recall range of CE is evident in Figure 4(b) and reciprocally results in a clear
advantage in AUC. Overall, Siamese CE outperforms other models with statistical
significance (Student’s t-test p-value < 0.01). Confidence intervals at 95% reveal a gain
in accuracy when using Siamese CE as indicated by AUC. Moreover, we measure the
standardized difference, that is, effect size, between the reported statistics. For our
purposes, we report Cohen’s d effect size, which measures the standardized difference
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Fig. 4. Semantic priming performance of different models on test subsets of CAL500. (a) The priming
accuracy at different k levels as well the MAP mean and standard errors. (b) The Precision-Recall curves as
well as the AUC mean and standard errors. This notation is applied to all the figures hereinafter.

Fig. 5. Semantic priming performance of different models on test subsets of MagTag5K.

Fig. 6. Semantic priming performance of different models on test subsets of MSDSub.

between two independent samples means [Cohen 1977]. Cohen’s d effect size between
Siamese CE and CRBM(PTM) is 0.42 in MAP and 7.00 in AUC, and the effect size
between Siamese CE and CE is 1.04 in MAP and 1.27 in AUC. These results suggest
a clear advantage for Siamese CE over CRBM(PTM) in the low recall range as well as
a significant advantage in the high recall range as shown in Figure 4(b). In contrast,
it is evident from Figure 4 that the performance of LDA and PLSA is inferior to that
of CRBM(PTM) and that of the CE model. It is also observed from Figure 4(b) that all
models struggle in the high recall range due to having only 335 training documents. The
lack of sufficient training data on this dense dataset inevitably limits the generalization
ability of any model.

Figure 5 shows the semantic priming results on MagTag5K. In this case, the CE
model performs better than all other models especially in the high recall range with

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 2, Article 24, Publication date: October 2016.



Learning Contextualized Music Semantics 24:13

statistical significance (Student’s t-test p-value < 0.01). Short documents in this dataset
account for the high MAP accuracy of the Random model. We observe that LDA and
PLSA perform similar to each other with little improvement over the Random model. In
contrast, CRBM(PTM) performs better than both LDA and PLSA but less significantly
than observed on CAL500 due to the sparsity of MagTag5K. We notice that the Siamese
CE outperforms CE as well as reduces variance of results amongst different folds.
The confidence intervals reveal a slight advantage by using Siamese CE in MAP and
a significant advantage in AUC. Moreover, the effect size between Siamese CE and
CRBM(PTM) is 5.49 in MAP and 5.56 in AUC, and the effect size between Siamese
CE and CE is 0.16 in MAP and 0.41 in AUC. It is worth clarifying that the advantage
of Siamese CE over CE looks modest in terms of generalization but the nature of this
dataset, the difficulty in understanding tags, and the advantage gained by Siamese CE
in the high recall range, as evident in Figure 5(b), suggest that Siamese CE may be
more suitable to some MIR applications.

Figure 6 shows the semantic priming results on MSDSub. Due to the extremely short
document lengths (3.2 tags, on average) in MSDSub, the P@k drops quickly after k = 3
for all models. It is seen from Figure 6(a) that both CE and Siamese CE outperform
other models with statistical significance (Student’s t-test p-value < 0.01). In particular,
the CE model performs extremely well in the high recall range while LDA and PLSA
perform poorly and similarly to the Random model. The deteriorated performance of
other models in the high recall range is due to the size of the vocabulary and the
sparsity of this dataset, which does not affect the CE model. Although CRBM(PTM)
still outperforms LDA and PLSA, it clearly underperforms the CE model as evident
in Figure 6. Similar to results on MagTag5K, the Siamese CE slightly outperforms
CE and reduces the variance amongst different folds. The effect size between Siamese
CE and CRBM(PTM) on MSDSub reaches 26.88 in MAP and 117.64 in AUC, and
the effect size between Siamese CE and CE is 1.67 in MAP and 1.54 in AUC. The same
conclusion drawn from results in MagTag5K is applicable in this dataset. Hence, the
CRBM(PTM), our extension of the CRBM [Mandel et al. 2011], is a good candidate
for capturing contextualized relatedness between tags, as it always outperforms LDA
and PLSA. Nevertheless, the CE model generally yields statistically significant better
results than the CRBM(PTM) on all three datasets according to all four evaluation
criteria. In particular, the good performance in the high recall range suggests that
semantics learned by the CE model would facilitate auto-annotation or auto-tagging,
tag completion and semantic query expansion required by MIR tasks.

The OOV problem is not unique to the CE model. It is encountered whenever the
semantics is used in applications where tags’ use is not restricted, such as online
tagging services, which allow users to tag music using any tag no matter if such tag
had been used before. Although the concept conveyed in an OOV tag is less certain
than an in-vocabulary tag, it is very important to exploit semantics underlying the
OOV tag. To the best of our knowledge, none of the existing semantic learning models
address the OOV issue. Fortunately, we can infer the intention of an OOV tag based on
the CE representations of co-occurring companion tags in the document containing the
OOV tag. In our experiments, OOV tags are used as query tags for semantic priming
and then the primed lists are compared against their ground truth in-vocabulary tags
in the evaluation document. To demonstrate the effectiveness of our approach, we also
applied the Random model for baseline performance.

Figures 7 and 8 show the priming results on the OOV tags reserved in MagTag5K
and MSDSub (c.f. Section 3.1). It is observed that Siamese CE performs slightly better
than CE due to the learned semantic distance reflecting the contextualized relatedness
better. By comparing to results on test subsets of in-vocabulary tags shown in Figures 5
and 6, the OOV performance of the CE model is quite close on two datasets, while
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Fig. 7. Semantic priming performance of our model on the OOV tags in MagTag5K.

Fig. 8. Semantic priming performance of our model on the OOV tags in MSDSub.

the Random model completely fails. By using the Cohen’s d effect size, the difference
between Siamese CE and CE is –0.36 in MAP and 0.08 in AUC for in MagTag5K as well
as 0.29 in MAP and 0.28 in AUC for MSDSub. In general, the consistent performance
has been observed for both datasets.

In summary, the semantics learned by the CE model considerably outperforms that
obtained by other state-of-the-art models (even with a nontrivial extension). In partic-
ular, the CE model is good at capturing semantics in the sparse BoW scenario and has
the unique capability of inferring the semantics from the OOV tags. Hence, we firmly
believe that the contextualized semantics learned by the CE model would facilitate
various MIR tasks.

4. TAG COMPLETION

In this section, we demonstrate the effectiveness of the semantics learned by the CE
model in tag completion, a benchmark MIR task that requires suggesting complemen-
tary tags to an existing group of tags describing a music track. Likewise, we also
compare the CE model to those models used in the semantic priming evaluation and
report comparative results in the tag completion task.

Unlike semantic priming where a query concept is used to identify only its related
tags, a query concept in tag completion would result in a score for all tags in descending
order in terms of semantic relatedness. Performance evaluation in this task requires
the continuous relatedness ground truth that properly reflects semantic coherence
among all tags in different contexts. Such information is neither required nor available
in the semantic priming task described in Section 3.5. This new information used
for evaluation properly differentiates the two tasks. Tag completion evaluation uses
only the semantics learned from co-occurring tags. Thus, tag completion becomes an
appropriate task to evaluate the quality of semantics learned by the CE model. It is
worth stating that the two selected evaluation tasks are not to be confused with Audio
Tag Classification task. In the later, music is associated with the relevant tags in one
of two modes, binary mode and ranking mode. In both modes, the music content is
considered, which is not true for our evaluations. Indeed, semantic priming and tag
completion are technically similar as they both operate on the same semantic space,
but the difference in nature of the used data results in different evaluation settings.
Furthermore, semantic priming, being most generic, is used for early stopping of the CE
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model training (see Section 2.3), while tag completion only measures the performance
of such semantics in this specific setting.

4.1. Dataset

Continuous track-tag relatedness ground-truth is rarely available for music tag collec-
tions as generating such information demands a high level of expertise and is extremely
laborious. Fortunately, CAL500 and MSDSub provide the continuous track-tag related-
ness ground truth alongside the binary relatedness information [Turnbull et al. 2007;
Bertin-Mahieux et al. 2011]. Thus, we employ these two datasets in this evaluation. As
a result, each evaluation document from either dataset has two annotation versions,
the binary one and the continuous one. In our experiments, we assume that an eval-
uation document has already been annotated with a group of existing tags based on
its binary relatedness version. This assumption is based on the fact that it is impos-
sible to split documents into coherent sets of tags automatically. The evaluation was
conducted on the subsets of two datasets, that is, 127 and 3,487 documents in CAL500
and MSDSub, respectively.

4.2. Evaluation

Given a tag in local context, all tags are ranked according to the predicted relevance
in terms of contextualized semantics learned by a model. This predicted tag rank-
ing, r, is evaluated against the continuous relevance ground truth. For evaluation, we
employ the Normalized Discounted Cumulative Gain (NDCG) measure [Järvelin and
Kekäläinen 2002] across an entire retrieved and ranking list. Given r[i] is the ith ele-
ment in r, and rel (r[i]) is the ground-truth relevance value of tag r[i]; we measure Dis-
counted Cumulative Gain (DCG) up to position k as DCGk (r) = rel (r[1])+∑k

i=2
rel(r[i])
log(i) .

Similar to P@k, this measure is affected by the length of the document. Therefore, we
normalize the DCG by using the best possible DCG for each evaluation document, that
is, the list rideal, the ideal ranking of tags derived from the ground truth given the query
tag in context. Thus, the NDCG is measured

NDCGk = DCGk (r)
DCGk (rideal)

,

which assigns higher values to predicted lists with tag ranking closer to the ideal
ranking. Changing parameter k, we achieve different NDCGk values. An Averaging
NDCG up to K is obtained by averaging all the NDCGk values for k ≤ K.

4.3. Results

In our experiments, a document with m tags results in m separate queries for eval-
uation, although they share the same local context. It is worth mentioning that an
alternative setting could be aggregating m tags into one query and rank all other tags
according to their relatedness to the document query. However, the latter setting does
not provide any better insight and may, in fact, cause loss in granularity.

Figure 9 shows the NDCG results on CAL500 including the Averaging NDCGk values
at different k levels with the standard error due to the three-fold CV as well as the
averaging NDCG value up to K = 20. All models perform similarly at the small k
levels due to the high density underlying this dataset. However, predicting up to 20
reasonable tags appears to be a challenging problem given the fact that the NDCGk

values drop sharply as k increases. Nevertheless, the CE model generally outperforms
all others especially for k > 10, as shown in Figure 9. The same results are confirmed
by the averaging NDCG values up to K = 20. Overall, Siamese CE performs slightly
better than CE due to the semantic distance learning.
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Fig. 9. Normalized Discounted Cumulative Gain evaluation results using CAL500. NDCG values at different
K levels with the standard error as well as the Averaging of NDCG up to 20 levels.

Fig. 10. NDCG performance of different models on MSDSub.

Similarly, Figure 10 shows the NDCG results on MSDSub. Unlike the results on
CAL500, the CE model yields the better performance even at small k levels as shown
in Figure 10. In MSDSub, the average document length is 3.2. Hence, the performance
for k > 3 would clearly reflect the capability of a model in identifying those reasonable
“negative” tags specified in the ground truth. The evidence seen in Figure 10 strongly
suggests that the contextualized semantics learned by the CE model leads to better
performance with statistical significance (Student’s t-test p-value < 0.01).

In summary, the tag completion evaluation further demonstrates the effectiveness of
the resultant contextualized semantics learned by the CE model in capturing the inten-
tion of tags’ use beyond the co-occurrence statistics. Results reported in two benchmark
tasks suggest that the semantics learned by the CE model is ready for use in various
MIR applications. It is also worth stating that the CE model may be applied flexibly
given the fact that in general, Siamese CE merely outperforms CE slightly on test
data but performs considerably better than CE on training data (see the appendix for
details). That is, CE would be employed for those MIR tasks that involve many unseen
documents in training in order to reduce the training time (c.f. Table I). Otherwise,
Siamese CE should be applied for retrieval purposes only.

5. DISCUSSION

Unlike previous approaches in semantics learning, the CE model learns distributed
semantics without taking any particular MIR tasks into account. This should bring us
closer to bridging the semantic gap encountered by various MIR tasks. By considering
the local context, our approach leads to distributed multi-representations of a tag
associated with different semantic contexts. This salient characteristic distinguishes
our approach from others in learning music semantics from tags.
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Previous work in music understanding [Turnbull et al. 2007; Miotto and Lanckriet
2012] focused on performance in one task, namely music annotation or auto-tagging.
Indeed, good performance in mapping acoustic content to tags should assist music
understanding. However, the resulting models are limited to the training tags only.
Moreover, the reliance on acoustic content may result in inconsistent semantics since
the contextualizing cues of a tag may have different patterns and are often mixed
with other content components. Furthermore, blindly learning to annotate the data by
following the given labels may result in biases toward the opinions of the labelers as
well as overly fitting any noisy labels in the data [Sturm 2014]. We argue that these
limitations can be overcome by using knowledge in the form of semantics learned from
crowd-sourced tag collections, as demonstrated in the tag completion task.

In general, expertise-based semantics is transferable across MIR tasks, including
(a) attributes listing: the attributes of a tag are manually listed and comparisons are
made on the attribute level; (b) ontology: concepts are manually associated [Kim et al.
2008]; and (c) knowledge base: first-order logic rules governing relatedness of tags are
maintained [Wang et al. 2010]. Moreover, ontologies have been employed as a categoriz-
ing scheme and as a filtering step for tags that happen to be in a dictionary [Cantador
et al. 2011]. In comparison to expert-based semantics, CE learned semantics is less
interpretable unless additional information is available. Nevertheless, expert-based
semantics incurs intensive handcrafted work and suffers from an intrinsic difficulty in
quantifying relatedness. These difficulties become more severe in the presence of OOV
tags and contexts to consider. In contrast, our approach effortlessly leads to the con-
textualized semantics and is capable of dealing with OOV tags. Thanks to the limited
human intervention in establishing and maintaining CE semantics, which are auto-
matically learned from public tag collections, we firmly believe that it is transferable
without biases and, hence, is greatly applicable in various MIR tasks.

Sometimes semantics may be obtained from multiple sources, including artist/track
information, users’ playlists preferences, tagging information and music production
information [Mandel et al. 2011; Weston et al. 2011]. Furthermore, personal intention
has been investigated in previous studies [Mika 2005; Mandel et al. 2011]. In such
work, the personal meaning of a tag is inferred by analyzing user’s tagging activities.
Other information sources might include the manual categorization of documents into
semantic classes [Font et al. 2014; Font 2015], which allows for better within-class
tag similarity estimation once the proper class of a test document is identified. The
motivation behind such methods is the construction of rich, transferrable, and often
personalized semantics. Aside from the high labor cost, there is no guarantee that the
multiple semantics sources are complementary and consistent as integrated semantics.
Moreover, finding out possible contradictions between multiple sources may require
additional human intervention and more training data. Incomplete and noisy sources
further aggravate the semantics fusion. In contrast, our approach does not rely on
such information and explores the objective meaning of tags instead. Such objective
semantics might easily be used in personalization systems later when coupled with
users’ information sources or profiles. Thus, we believe that learning semantics from
co-occurring tags, a single informative source, is sufficient and justifiable.

Throughout this article, we focused on the contextualized relatedness models. How-
ever, global relatedness models have also been used in semantics acquisition due to
their simplicity and ease of use. For instance, a specific PCA model is proposed in
Lebret et al. [2013] that improved the accuracy of movie review sentiment evaluation.
Another successful model is presented in Mandel et al. [2011], where an information
theoretic method is used to produce a smoothed representation of a training document
which is subsequently applied in music annotation. Other examples include [Mika
2005], where a tag is represented via the information of who used it, and [Font et al.
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2014], where the similarity of tags within each “class” is established via aggregation
(c.f. Section 2.1). We acknowledge the usefulness of such models in the music annota-
tion tasks. However, there is evidence that music annotations are contextualized and
that meaning cannot be uniquely identified without considering the companion tags
as described in Section 1. Similarly, syntactic models learned from large text corpora
[Mikolov et al. 2013] yield a single representation for each word. Apart from the fact
that these models encode global relatedness only, musical tags are not always in single
word form and may contain phrases (e.g., “acoustic guitar”), symbols (e.g., “90s”), and
abbreviations (e.g. “r’n’b”). On one hand, it is infeasible to apply these models without
domain adaptations into MIR. On the other, adapting such models demands semantics
governed by linguistic rules that are absent in tags.

6. FUTURE WORKS AND CONCLUSIONS

Exploring intrinsic semantics underlying tags demands a powerful context model that
can model the contextual information effectively. PTMs used in the CE model provide a
powerful yet generic tool for information aggregation from documents. Unfortunately,
such models lack interpretability of the modeled semantics and hence cause the CE
model to suffer from the same limitation. For a specific application, however, there is
often alternative contextual information and relevant modeling techniques, for exam-
ple, the labeled LDA [Ramage et al. 2009] trained with meaningful topic labels such as
genre or instrument types. In this situation, it is straightforward to incorporate such
context representations into the CE model proposed in Section 2. An extension of the
CE model by using different context representations may facilitate some MIR tasks
that require the self-defined context by users, for example, a playlist of music in a
specific style or mood. Moreover, a context modeling the user’s behavior can be inferred
and issued along with the user’s query tags for semantically-coherent query expansion.
In fact, the success of the CE model in the Tag completion task hints its suitability
for proper query expansion where we explicitly add semantically related keywords to
a user’s query in order to better describe the user’s need in their specific scenario and
improve the results of a retrieval task.

Given proper music and/or artist representation within the semantics space, for
example, using aggregation of their tags, it becomes straightforward to prime music
tracks or artists given user’s query concepts. For instance, we can semantically describe
a music track as the centroid and the spread statistics of its tags within the semantic
space, effectively achieving a semantically descriptive location for each track within
the semantic space. As a result, not only a user can query a system for musical content,
but also a semantic-level similarity measure between tracks is achieved and can be
used for music discovery. Moreover, it becomes easy to annotate music or measure the
similarity of artists’ work. For example, using a mapping function from the content to
the semantic space would facilitate annotating music with known and OOV tags. Such
function can also be used to query by example systems.

Finally, the CE model requires the tag features and the BoW output representation.
This requirement may prevent the CE model from being applied to these datasets of a
large vocabulary, for example, the complete Million Song Dataset (MSD), due to the high
computational burden. There are some technique that could potentially overcome this
limitation by generating parsimonious representations, for example, PCA, compressed
sensing [Hsu et al. 2009], and filtering techniques [Cantador et al. 2011]. However,
such techniques are still under investigation in our ongoing work.

In conclusion, we presented a comprehensive argument for the suitability of contex-
tualized music semantic representations from co-occurring tags in the music domain.
The contextualized semantics learned by CE approach significantly outperforms sev-
eral state-of-the-art semantic learning methods as suggested in our semantic priming
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and tag completion evaluation. Moreover, the semantics learned by the CE model prop-
erly deals with the sparse BoW situation as well as the OOV tags. While the work
presented in this article is only regarding the contextualized semantic learning from
tags and the evaluation was conducted on two generic benchmark tasks, the seman-
tics learned by our approach can be potentially applied to various MIR tasks. As the
approach described in this article is a generic approach in learning semantics from
any types of tags or descriptive terms regardless of media type, we plan to apply our
approach to other domains in our ongoing work.
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Berlin, 211–226.

Edith Law, Kris West, Michael Mandel, Mert Bay, and J. Stephen Downie. 2009. Evaluation of algorithms
using games: The case of music tagging. In Proceedings of the 10th International Society for Music
Information Retrieval Conference (ISMIR’09). 387–392.
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Online Appendix to:
Learning Contextualized Music Semantics from Tags Via a Siamese
Neural Network

UBAI SANDOUK and KE CHEN, University of Manchester

In this appendix, we report the semantic priming results achieved by different
models in learning semantics from tags on training subsets of three music datasets
described in Section 3.1 in the main text. The same experimental protocol and notation
specified in Section 3.5 is also used here.

Figure A.1 shows the semantic priming results on CAL500. The dataset is highly
dense and predicting the first few tags (small k values) appears relatively easy. How-
ever, the CE model seems to be overfitting in Siamese training as observed from the
Precision-Recall curves despite the use of a validation procedure during training. By
comparison to the results on the test subsets shown in Figure 4 in the main text, it
is seen from Figure A.1 that Siamese CE considerably outperforms all other models
including CE on the training subsets, while it performs only slightly better than CE
where the confidence intervals reveal its statistically significant advantage. Moreover,
the effective difference between Siamese CE over CRBM(PTM) is 16.32 in MAP and
26.5 in AUC, and the effective difference between Siamese CE and CE is 7.43 in MAP
and 8.98 in AUC. These results suggest a clear advantage for Siamese CE over other
models in all recall ranges on the training subsets.

Figure A.2 shows the semantic priming results on MagTag5K. It is evident from Fig-
ure A.2 that Siamese CE also outperforms other models including CE with statistical
significance although the gain is smaller than that on CAL500. We also observe that
LDA and PLSA perform similarly and achieve little improvement over the Random
model. The overfitting is less on this dataset than CAL500, as the Siamese CE not only
outperforms CE but also reduces variance of results among different CV folds. Finally,
effective difference between Siamese CE and CRBM(PTM) is 15.51 in MAP and 24.61
in AUC, and the effective difference between Siamese CE and CE is 1.62 in MAP and
3.14 in AUC.

Figure A.3 shows the semantic priming results on MSDSub. Due to the very short
document length (i.e., 3.2 tags, on average) in MSDSub, the P@k performance drops
quickly after k = 3 for all the models. The sparse nature of this dataset also causes
Siamese CE to slightly outperform CE. Nevertheless, our model performs very well in
the high recall range, while LDA and PLSA perform merely slightly better than the
Random model. The large vocabulary and the sparsity of this dataset account for the
deteriorated performance of other models but affect our model very little. In addition,
the effective difference between Siamese CE and CRBM(PTM) reaches 56.1 in MAP
and 90.31 in AUC, while the effective difference between Siamese CE and CE is 1.97 in
MAP and 1.82 in AUC. Due to the size of the dataset, the effective difference in MAP is
larger than that observed on MagTag5K. Once again, we emphasize that the seemingly
modest advantage of Siamese CE is difficult to obtain but useful for real-world MIR
applications.

In summary, we report the experimental results on the training subsets to present
a complete picture on the contextualized semantics learning by the CE model. While
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Fig. A.1. Semantic priming performance of different models on the training subsets of CAL500.

Fig. A.2. Semantic priming performance of different models on the training subsets of MagTag5K.

Fig. A.3. Semantic priming performance of different models on the training subsets of MSDSub.

the generalization capability is very important from a machine learning perspective,
the good performance on training data may be helpful in information retrieval. Our
experimental results on training data just reported clearly shows that Siamese CE
outperforms all other models including CE, in particular, in the high recall range.
Thus, we firmly believe that Siamese CE offers an additional gain for various MIR
applications that benefit from identifying all related tags.
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