
Biologically Inspired Cognitive Architectures (2016) 16, 87–104
Avai lab le a t www.sc ienced i rec t .com

ScienceDirect

journal homepage: www.elsev ier .com/ locate /b ica
RESEARCH ARTICLE
Towards real-world capable spatial memory
in the LIDA cognitive architecture
http://dx.doi.org/10.1016/j.bica.2016.02.001
2212-683X/� 2016 Elsevier B.V. All rights reserved.

* Corresponding author at: Austrian Research Institute for Artificial Intelligence, Vienna A-1010, Austria.
E-mail address: tamas.madl@gmail.com (T. Madl).
Tamas Madl a,b,*, Stan Franklin c, Ke Chen a, Daniela Montaldi d,
Robert Trappl b
a School of Computer Science, University of Manchester, Manchester M13 9PL, UK
bAustrian Research Institute for Artificial Intelligence, Vienna A-1010, Austria
c Institute for Intelligent Systems, University of Memphis, Memphis, TN 38152, USA
d School of Psychological Sciences, University of Manchester, Manchester M13 9PL, UK
Received 30 September 2015; received in revised form 11 February 2016; accepted 15 February 2016
KEYWORDS
Spatial memory;
LIDA;
Cognitive architecture;
Computational cognitive
modeling
Abstract

The ability to represent and utilize spatial information relevant to their goals is vital for intel-
ligent agents. Doing so in the real world presents significant challenges, which have so far
mostly been addressed by robotics approaches neglecting cognitive plausibility; whereas exist-
ing cognitive models mostly implement spatial abilities in simplistic environments, neglecting
uncertainty and complexity.
Here, we take a step towards computational software agents capable of forming spatial mem-
ories in realistic environments, based on the biologically inspired LIDA cognitive architecture.
We identify and address challenges faced by agents operating with noisy sensors and actuators
in a complex physical world, including near-optimal integration of spatial cues from different
modalities for localization and mapping, correcting cognitive maps when revisiting locations,
the structuring of complex maps for computational efficiency, and multi-goal route planning
on hierarchical cognitive maps. We also describe computational mechanisms addressing these
challenges based on LIDA, and demonstrate their functionality by replicating several psycholog-
ical experiments.
� 2016 Elsevier B.V. All rights reserved.
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Introduction

Spatial representations are important for biological and
artificial agents, to help them localize and navigate to
important objects and places (such as food sources or shel-
ters). Current computer models for learning spatial repre-
sentations either neglect cognitive plausibility in favour of
performance, such as simultaneous localization and map-
ping (SLAM) in robotics, or are incapable of running in
large-scale, complex, uncertain environments perceived
through noisy sensors.

Since biological cognition has been shaped by the
structure, constraints, and challenges of the physical
world, we argue that cognitive architectures should take
these into account, as well. This argument is in accor-
dance with the roadmap for the BICA Challenge, which
also places importance on real-life capability
(Samsonovich, 2012).

This paper describes an effort to take the LIDA (Learning
Intelligent Distribution Agent) cognitive architecture
(Franklin, Madl, D’Mello, & Snaider, 2014) closer to this
goal. We hypothesize and implement approaches to tackle
the sensory noise, uncertainty, and complexity of realistic
environments. We also introduce a novel, conceptual and
partially implemented, hierarchical spatial memory model,
inspired by the neural basis of spatial cognition in brains,
and provide a preliminary interface to realistic environ-
ments via the Robot Operating System (ROS) (Quigley
et al., 2009). We demonstrate these extensions to LIDA in
three-dimensional simulated environments that include sim-
ulated physics and high-quality graphics, based on the
Player/Stage/Gazebo simulator.1 This simulator presents
the same interface to the agent as real devices, and an
agent able to control a robot in Gazebo is also able to con-
trol the same robot in similar environments in the real
world, without any changes to the control code (Rusu,
Maldonado, Beetz, & Gerkey, 2007).

We build on and integrate our previous work investigat-
ing biologically and cognitively plausible implementations
of Bayesian localization (Madl, Franklin, Chen, Montaldi, &
Trappl, 2014), Bayesian nonparametric clustering for map
structuring (Madl, Franklin, Chen, Trappl, & Montaldi,
submitted for publication), and route planning based on
activation gradients2 (Madl, Franklin, Chen, & Trappl,
2013). The method for cognitive map correction (loop clos-
ing) is presented for the first time below. Although based on
established mathematical tools from robotics, it is – to our
knowledge – the first mechanism for large-scale cognitive
map correction implementable in brains, and consistent
with the replay phenomena observed in the rodent hip-
pocampus (Carr, Jadhav, & Frank, 2011).

The present work is also (to our knowledge) the first to
provide implementations of these mechanisms in a both
cognitively and biologically plausible fashion (fitting beha-
viour data and implementable in brains), and integrated
1 http://www.gazebosim.org/.
2 Route planning in navigation space based on activation gradients

has been proposed before (Burgess, Jackson, Hartley, & O’keefe,
2000; Schölkopf & Mallot, 1995), but not on a hierarchy – as it is in
this work – which significantly improves its performance on
multigoal problems.
within the same cognitive architecture. Further contribu-
tions include concrete implementations of some features
listed in the BICA Table (Samsonovich, 2010) which until
now were only part of conceptual LIDA, including basic
stereo colour vision, a cognitive map, spatial learning, and
fusing information from multiple types of sensors and
modalities via Bayesian update.

Related work

Apart from the complex perception problem, the most chal-
lenging problems for building spatial representations in real-
istic environments include localization and mapping under
sensory noise, and correcting incorrect representations
when revisiting known locations (loop closing). The robotics
community has developed several solutions to these prob-
lems – see Bailey and Durrant-Whyte (2006), Durrant-
Whyte and Bailey (2006), Thrun and Leonard (2008), and
Williams et al. (2009). They have been designed to be accu-
rate, not cognitively or biologically plausible, and rely on
mechanisms that are difficult to implement in brains (e.g.,
many iterations performing operations on large matrices).

An exception is the partially connectionist RatSLAM sys-
tem (Milford, Wyeth, & Rasser, 2004), which can learn
robust maps in outdoor environments (Prasser, Milford, &
Wyeth, 2006), and close large loops successfully if extended
by a sophisticated data association method (Glover,
Maddern, Milford, & Wyeth, 2010). Parts of it have been
argued to be biologically plausible (Milford, Wiles, &
Wyeth, 2010). However, RatSLAM has two disadvantages in
the context of a cognitive model with long-term learning
aiming for plausibility: (1) route planning only works along
established routes (novel detours or shortcuts have not been
demonstrated), (2) learned spatial information is mapped to
a finite structure (attractor network) of fixed size which
cannot be expanded.

On the other hand, models that emphasize plausibility –
cognitive architectures and plausible spatial memory mod-
els – mostly focus on simplistic simulated environments,
usually with no sensory noise and limited size/complexity.
There are a few neurally inspired spatial memory models
that can deal with a limited amount of uncertainty and noise
(Barrera, Cáceres, Weitzenfeld, & Ramirez-Amaya, 2011;
Burgess et al., 2000; Strösslin, Sheynikhovich, Chavarriaga,
& Gerstner, 2005), but have only been tested in small indoor
environments. See Madl, Chen, Montaldi, and Trappl (2015)
for a review.

Spatial memory in brains

Spatial memory encodes, stores and recalls spatial informa-
tion about the environment and the self-location of agents
(biological or artificial), which they need to keep track of
to navigate successfully. In most mammals, keeping track
of position is achieved by path integration, which refers to
updating the agent’s position based on a fixed point and
the estimated movement trajectory (based on information
from proprioceptive and vestibular systems as well as sen-
sory flow (Fortin, 2008; Mittelstaedt & Mittelstaedt,
1980)). It is a noisy process that accumulates large errors
if uncorrected (Etienne, Maurer, & Sguinot, 1996).

http://www.gazebosim.org/
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Spatial information can be encoded in an egocentric
fashion – relative to the agent’s body and head direction
– or as allocentric representations, relative to environmen-
tal landmarks/boundaries. Here, we will describe major
brain areas associated with these representations and their
correspondences in LIDA. For reasons of space, these
descriptions will be very brief. More detail can be found in
Madl et al. (2015).

The ability to recognize objects (e.g. landmarks, shel-
ters, food sources, etc.) is a prerequisite for encoding use-
ful spatial memories. The brain areas involved in this
complex functionality include the sensory cortices and the
areas marked (1a) and (1b) in Fig. 1 (Davachi, Mitchell, &
Wagner, 2003; Kiani, Esteky, Mirpour, & Tanaka, 2007;
Wilson et al., 2013; Winters & Bussey, 2005). The recogni-
tion of places is associated with its own area in the parahip-
pocampal cortex, often called the parahippocampal place
area (PPA) (Epstein, 2008).

Neural representations of allocentric (world-centered)
information in mammalian brains include place cells in the
hippocampus, which represent spatial locations, firing only
in small spatially constrained areas in an environment (rang-
ing from 20 cm or less to several meters in diameter,
Kjelstrup et al., 2008; O’Keefe & Burgess, 1996). They also
participate in associating objects with specific places (Kim,
Delcasso, & Lee, 2011; Manns & Eichenbaum, 2009).

In these cells, ‘hippocampal replay’ has been observed –
a sequence of place cells associated with visited locations is
frequently reactivated (replayed) either in the same order
or in reverse, on rapid (sub-second) timescales, suggested
to aid memory consolidation (Carr et al., 2011). When an
animal runs along a track with a food source at the end,
replay often occurs in reverse at the end of a run, and for-
ward when anticipating a run; and it contains distance infor-
mation between intersecting firing fields (Diba & Buzsáki,
2007). Head direction is encoded by cells in a network
including the anterior thalamic nuclei, mamillary body,
subiculum and EC (Taube, 2007). Border cells (Lever,
Burton, Jeewajee, O Keefe, & Burgess, 2009; Solstad,
Boccara, Kropff, Moser, & Moser, 2008) and boundary vector
cells (BVCs) (Barry et al., 2006; Burgess, 2008) in the subicu-
lum play a role in representing the distance (and, for BVCs,
the direction) to boundaries in the environment. Path inte-
gration, i.e. maintaining a location estimate by integrating
self-motion signals, is performed by grid cells in the medial
EC (Hafting, Fyhn, Molden, Moser, & Moser, 2005;
McNaughton, Battaglia, Jensen, Moser, & Moser, 2006).

Together, these cell types form a core part of the ‘cog-
nitive map’, i.e. a map-like allocentric representation of
the environment (Burgess, 2008; McNaughton et al.,
2006); and allow animals to keep track of where they are
(place cells and grid cells), which direction they are facing
(head direction cells), and where boundaries (border
cells/BVCs) and objects (place cells) might be in their vicin-
ity (see markers 2a–2c in Fig. 1).

In addition to allocentric representations, there are mul-
tiple egocentric brain areas encoding spatial information
relative to the animal. These include the visual and auditory
systems and the precuneus ((3) in Fig. 1), which is the main
brain area concerned with egocentric representations and
their use in controlling body and limb-centered actions
(Kravitz, Saleem, Baker, & Mishkin, 2011; Vogeley et al.,
2004; Zaehle et al., 2007) (for example, area 5d within
the precuneus encodes ‘reach vectors’ between hand and
target). The retrosplenial cortex (RSC) is involved with con-
verting between egocentric and allocentric representations
(Epstein, 2008) (marker 4 in Fig. 1). Finally, the basal gan-
glia (marker 5 in Fig. 1) encode guidance behaviours by
means of associating spatial relations relative to the animal
with actions (e.g., turn right at the rock). This is an effec-
tive strategy for well-known routes (Hartley, Maguire,
Spiers, & Burgess, 2003); however, allocentric representa-
tions (‘cognitive maps’) are required in order to be able
to plan novel routes or shortcuts.
Hypotheses

The LIDA cognitive architecture is based on Global Work-
space Theory (GWT) (Baars, 2002; Baars & Franklin, 2009),
an empirically supported theory of consciousness (Baars,
Franklin, & Ramsoy, 2013), and has been argued to be bio-
logically plausible (Franklin, Strain, Snaider, McCall, &
Faghihi, 2012, 2014). Just as the rest of LIDA can be mapped
on to the underlying neuroscience (Franklin et al., 2012)
(although not always in a one-to-one fashion), it is also
the aim of the model proposed here to have parts that func-
tionally correspond to the relevant areas of the brain repre-
senting space. This imposes some functional and
connectivity constraints.

Apart from well-established implications of the neural
representations in these brain areas, including the existence
of a neural path integrator (McNaughton et al., 2006) and
cells representing current location (hippocampal ‘place
cells’ (Moser, Kropff, & Moser, 2008)), the spatial memory
model presented here also proposes and requires the follow-
ing hypotheses. They are motivated by computational chal-
lenges facing agents operating in the real world – the ability
to represent uncertainty, to estimate locations based on
uncertain data, and to represent large amounts of spatial
information efficiently are all essential for a real-life,
embodied cognitive agent. Our choice of computational
approaches (among all possible mechanisms) directly follow
from these hypotheses.

1. Spatial uncertainty is encoded in brains, and spatial cues
are integrated in an approximately Bayes-optimal fash-
ion. The representation of uncertainty is a computa-
tional requirement for localization in the real world,
given the unavoidable sensory inaccuracies and noise,
and it implies the existence of a mechanism for combin-
ing modalities with different accuracies. Apart from
behavioural evidence substantiating such a mechanism
(Cheng, Shettleworth, Huttenlocher, & Rieser, 2007),
we have found neural evidence based on single-cell
recordings of rat hippocampal place cells in previous
work, implying that these cells are able not only to rep-
resent but also to combine information from different
modalities and the associated uncertainties (Madl
et al., 2014).

2. Hippocampal replay (Carr et al., 2011) in awake mam-
mals aids correcting cognitive maps based on revisited
places (see Section ‘Loop closing – fixing previously
learned maps’). Despite local error correction by



Fig. 1 Spatially relevant brain areas and LIDA modules. Top: Neural correlates involved in spatial processing. Modified from Bird
and Burgess (2008) with permission. Bottom: functionally corresponding modules and processes in LIDA. Only spatially relevant
correspondences are marked here; see Franklin et al. (2012, 2014) for others.
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integrating spatial information, residual errors still accu-
mulate. This can lead to incorrect maps and to duplicate
representations of the same places. Thus, a mechanism
is required that can close loops and correct maps when
revisiting places.
3. Instead of a single unitary and global map, cognitive
maps are fragmented (Derdikman & Moser, 2010) and
hierarchical (Hirtle & Jonides, 1985), and their structure
arises from clustering, i.e. from a process grouping
together objects that are ‘close’ in some psychological
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space. Hierarchical representations are ubiquitous in
computer science and robotics, given their efficiency in
terms of access and search time and memory use. These
advantages are important for storing and accessing large-
scale cognitive maps. We found evidence for hierarchies
and a clustering mechanism accounting for them in Madl
et al. (submitted for publication).

4. Human multi-goal route planning is consistent with a
simple navigation strategy based on spreading activation
on a recurrently interconnected, hierarchical, grid-like
network of nodes representing locations (see Sec-
tion ‘Spatial extensions to LIDA – overview’, Supplemen-
tary Information, and Madl et al., 2013).

The LIDA cognitive architecture

Here, we will briefly introduce LIDA – see Franklin et al.
(2012, 2014) for a more detailed description of LIDA and
its relationship to the brain. The LIDA cognitive architecture
is based on prevalent cognitive science and neuroscience
theories (e.g., Global Workspace Theory, situated cogni-
tion, and perceptual symbol systems – see Baars &
Franklin (2009)), and is one of the few cognitive models that
are biologically plausible and to provide a plausible account
for consciousness (Baars & Franklin, 2009; Baars et al.,
2013), attention, feelings and emotions; and has been par-
tially implemented (Franklin et al., 2014; Goertzel, Lian,
Arel, de Garis, & Chen, 2010; Snaider, McCall, & Franklin,
2011).

Similarly to the action-perception cycle in neuroscience
(Freeman, 2002; Fuster, 2002), LIDA’s cognitive cycle has
the purpose of selecting an action based on percepts
(Fig. 1 bottom). During each cycle, the LIDA agent senses
its environment, stores information in Sensory Memory,
and tries to recognize familiar objects, which are repre-
sented as nodes in Perceptual Associative Memory (PAM).
It associates percepts with memories (declarative, episo-
dic, spatial) recalled from a Sparse Distributed Memory
(SDM) instance, creating models of the current situation
(CSM) in the Workspace, which consist of the relevant
PAM nodes copied to the Workspace. Several Structure
Building Codelets3 (SBC) – specialized ‘processors’ – oper-
ate on the pre-conscious representations in the Work-
space. Subsequently, Attention Codelets form coalitions
with salient pre-conscious representations, which are
moved to Global Workspace and compete for conscious-
ness. The most salient4 representations are broadcast con-
sciously, which enables the agent to choose actions
applicable in the current situation from Procedural Mem-
ory and to select the action best serving its goals (Action
Selection).
3 In LIDA, the term codelet refers to small, special purpose
processors or running pieces of software code; and corresponds to
‘processors’ in Global Workspace Theory (Baars & Franklin, 2009).
4 We use ‘salient’ as an umbrella term for percepts which are

important, urgent, insistent, novel, threatening, promising, arous-
ing, unexpected, etc.
Fig. 1 contains a tentative mapping from spatially rele-
vant modules and mechanisms in LIDA to those in the brain,
described below. It is intended to provide a starting point
for the implementation of these mechanisms (taking inspi-
ration from the underlying neural correlates), as well as to
clarify LIDA’s functionality to readers with relevant neuro-
science knowledge by pointing out functional correspon-
dences. This tentative mapping is by no means intended
to suggest that LIDA implements exact neural mechanisms.
Although heavily inspired by and resting on results from cog-
nitive neuroscience and psychology, LIDA is a model of
minds, not of brains (Franklin et al., 2012).

Towards real-world capable spatial memory in
LIDA

The following subsections describe computational exten-
sions made to LIDA in order to allow it to encode, store
and recall spatial information obtained from real-world
environments. Fig. 2 provides an overview of these
extensions. Note that some of these, such as the LIDA-
ROS interface and the visual recognition mechanism in
EPAM (Extended PAM), do not have correspondents in
conceptual LIDA, and are not claimed to plausibly model
minds. Rather, they use already existing technologies for
solving low-level problems (mainly vision and motor con-
trol), which are outside the scope of this work. Although
efforts are underway to implement these mechanisms in
a cognitively plausible fashion (see e.g. McCall &
Franklin (2013) and Agrawal & Franklin (2014) for per-
ceptual learning via cortical learning algorithms and
Dong & Franklin (2015a, 2015b) for action execution),
they are not yet mature enough to facilitate the present
application scenario.

Visual recognition and perceptual representation

LIDA’s PAM contains nodes and links which are the building
blocks of ‘node structures’, which are similar to and
inspired by Barsalou’s perceptual symbols (Barsalou, 1999;
Franklin et al., 2014). PAM nodes represent higher-level fea-
tures, such as objects, categories, relations, events, situa-
tions, and feelings/emotions; and are connected by PAM
links, which are weighted and allow passing activation
between the nodes. In the implementations in this paper,
we have extended LIDA’s PAM by an object recognition sys-
tem based on a convolutional neural network (CNN), yield-
ing EPAM (Extended PAM).

CNNs are a kind of deep learning architecture designed to
process 2D or 3D data such as images – on which they have
led to several breakthroughs (LeCun, Bengio, & Hinton,
2015) – and are usually trained by a gradient descent proce-
dure called backpropagation. This algorithm has been criti-
cized as not being biologically realistic (Stork, 1989)
(although there are versions of deep learning that can be
implemented by biological neurons (Bengio, Mesnard,
Fischer, Zhang, & Wu, 2015)). However, despite these argu-
ments concerning implementation, the representations
found by state-of-the-art CNNs trained on real-world
images are highly similar to those recorded in the inferior
temporal (IT) cortex of human and nonhuman primates



Fig. 2 Extensions to add spatial abilities to LIDA. From the bottom left, clockwise: the LIDA-ROS interface transmits image and
depth information (from stereo disparity) from the robot’s cameras to Sensory Memory (SM). Object recognition is performed by
CNNs in EPAM (Extended PAM), which pass activation to recognized PAM nodes representing objects. These can be associated with
place nodes corresponding to their most likely location in the Workspace (determined using the mean of the samples representing
their location probability distributions). Place nodes, links between them, and object associations constitute ‘cognitive maps’, and
are constructed, updated, and organized by Structure Building Codelets (SBCs). Place nodes with enough activation to be broadcast
consciously can be learned as long-term SDM representations; and can recruit route-following behaviours in Procedural Memory and
Action Selection, leading to the execution of a low-level action in Sensory-Motor Memory (SMM), which is transferred to ROS via the
LIDA-ROS interface. (Numbers in brackets: see Fig. 1.)

92 T. Madl et al.
(Khaligh-Razavi & Kriegeskorte, 2014; Yamins, Hong,
Cadieu, & DiCarlo, 2013).

We have extended PAM with pre-trained CNNs5 for object
recognition (Szegedy et al., 2014) and road detection
(Brust, Sickert, Simon, Rodner, & Denzler, 2015) – see
Fig. 3. The top layer (softmax layer) of the former was
replaced by a classifier trained offline using a dataset of
the buildings used in the Gazebo simulation, which was ren-
dered from different perspectives and distances. (Learning
should happen in a development fashion in LIDA, not offline;
but this exceeds the scope of the current work.) Since CNNs
perform best on images containing a single object in the
foreground, and have difficulties with clutter, camera
images were first segmented, and object recognition per-
formed on the individual segments.

Spatial extensions to LIDA – overview

As described in Section ‘Spatial memory in brains’, in
brains, hippocampal place cells encode animals’ current
location in the environment, as well as providing object-
5 These CNNs were available from https://github.com/
BVLC/caffe/wiki/Model-Zoo and https://github.com/cvjena/cn24.
place associations. Their equivalent in LIDA is implemented
via a special type of PAM nodes, ‘place nodes’, each of
which represent a specific region in the environment, and
which reside in the Workspace (as part of the Current Situ-
ational Model). Place nodes can be associated with objects
perceived to be at that particular location via PAM links –
for example, agents’ self-representation (‘self’ PAM node)
can be associated with the place node representing their
most likely location (which needs to be regularly updated).
They are also initially connected recurrently to all their
neighbours via PAM links. This has been argued to be a plau-
sible connectivity pattern of the hippocampus (Csizmadia &
Muller, 2008; Moser et al., 2008; Samsonovich &
McNaughton, 1997).

Any PAM node in the Workspace representing currently or
recently perceived objects (obstacles, landmarks, goals,
etc.) in LIDA’s Workspace can be associated via PAM links
with spatial locations represented by place nodes. A node
structure comprised of such object nodes, association links,
and place nodes together constitute a ‘cognitive map’.
Multiple ‘cognitive maps’ can be used within the same envi-
ronment in a hierarchical fashion. (There can be maps and
sub-maps on different scales and resolutions, and relative
position and containment relations between them.) This is

http://https://github.com/BVLC/caffe/wiki/Model-Zoo
http://https://github.com/BVLC/caffe/wiki/Model-Zoo
http://https://github.com/cvjena/cn24


Fig. 3 Representations in Extended PAM (A)–(D) in one of the environments recreated in the Gazebo simulator (E). (A) Camera
image with detected road. (B) Depth image from binocular disparity. (C) Likely objects from segmentation (hot colours), recognized
by a CNN. (D) Perceived road after denoising and projection based on the depth image.
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consistent with neural and behavioural evidence that the
human cognitive map is structured (Derdikman & Moser,
2010) and hierarchical (Hirtle & Jonides, 1985) (see Madl
et al. (submitted for publication) for more extensive litera-
ture and evidence). It should be mentioned that the regular
grid-like pattern of these place nodes, imposed for compu-
tational simplicity, is not biologically realistic, as no regu-
larities have been found in the distribution of firing fields
of place cells. (However, a regular grid has been observed
in the EC.)

Although these maps are temporary, created and
updated in the Workspace, they can be stored in the Spatial
Memory module (which can encode trees and sequences
(Snaider & Franklin, 2014)) as long-term memories if they
are salient enough to be broadcasted consciously. This
long-term memory storage mechanism has not been imple-
mented yet.

Cognitive maps are assembled and updated by structure-
building codelets (SBC) in the Workspace (LIDA’s pre-
conscious working memory). Each of these SBCs addresses
a computational challenge associated with endowing an
autonomous agent with spatial capabilities (see Fig. 2):

� The ‘Object-place SBC’ associates large objects recog-
nized by EPAM with place nodes, making use of distance
information from stereo disparity to infer their approxi-
mate position and size.

� The ‘Boundary SBC’ detects boundaries in the Work-
space, removing links at the locations of these bound-
aries (currently performed at the boundaries of
recognized roads), only leaving links between traversable
places (facilitating planning).

� The ‘Localization SBC’ is responsible for updating the link
between the Self PAM node and the place node repre-
senting the agents most likely current position in the
environment, using Bayesian inference to combine
spatial cues.
� The ‘Map correction SBC’ corrects the map (closes the
loop) based on revisited locations (see next section).

� The ‘Map structure SBC’ spawns new cognitive maps from
parts of the current map, based on the proximity of
objects represented on a map, in a process resembling
clustering; and

� The ‘Route plan extraction SBC’ extracts shortest routes
if a goal representation is present in the Workspace.

Map structuring

The Map structure SBC processes all place nodes that have
associated objects, and clusters these objects based on (1)
their spatial location; (2) functional similarity; and (3) the
boundaries separating them, using Bayesian nonparametric
clustering (as described and substantiated experimentally
in Madl et al. (submitted for publication)). Apart from
accounting for the structure of cognitive maps, Bayesian
nonparametric models have also been successful at
accounting for category learning (Sanborn, Griffiths, &
Navarro, 2006) and unifying rational models of categoriza-
tion (Griffiths, Canini, Sanborn, & Navarro, 2007). This SBC
groups together objects that are close to each other along
the given features (in our case, spatial distance and func-
tional similarity). The Map structure SBC spawns a new
cognitive map (sub-map) for each identified cluster, con-
sisting of the objects in that cluster and their place nodes;
and adjusts the density of place nodes depending on the
area of this cognitive map (so that large-scale maps con-
tain a low-resolution and small-scale maps a high-
resolution place node grid). This process leads to a hierar-
chy of cognitive maps, a structure suggested to be
employed by human spatial memory (Hirtle & Jonides,
1985; Madl et al., submitted for publication; McNamara,
Hardy, & Hirtle, 1989).
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Localization and mapping

The Localization SBC is responsible for updating the agents’
estimated location after each movement, by linking its Self
PAM node with the place node representing this location, as
well as for updating landmark locations in a similar fashion.
Simply using path integration (odometry) to add up self-
motion signals keeps accumulating errors (Etienne et al.,
1996; Jeffery, 2007). This problem has been tackled in
robotics in the framework of Bayesian inference, integrating
information from odometry with sensory observations in a
statistically optimal fashion (Thrun & Leonard, 2008). It
has been argued that brains might employ a similar mecha-
nism (Cheung, Ball, Milford, Wyeth, & Wiles, 2012; Madl
et al., 2014).

Probability distributions representing the location of the
agent, as well as the locations of recognized objects, are
encoded by means of a set of samples attached to EPAM
nodes in the Workspace and manipulated by the Localization
SBC (see Fig. 2). There are strong arguments for the neural
plausibility of sampling-based uncertainty representations
and inference (Fiser, Berkes, Orbán, & Lengyel, 2010). After
every movement, the Localization SBC performs three
steps. First, the location estimate of the agent is moved
based on the self-motion signal. Second, the self-location
estimate and the landmark location estimates are corrected
in a Bayesian fashion. Finally, the links of the nodes repre-
senting them are updated to the place node corresponding
to the best estimate.

These steps correspond to the common implementation
of the Kalman filter (Thrun, Burgard, & Fox, 2005),
extended versions of which are still in use for SLAM in
robotics, where large matrices are used to keep track of
the locations and covariances of all landmarks (requiring

the updating of OðN2Þ entries at each movement). Another
computationally more efficient method (Montemerlo &
Thrun, 2007), with a sampling-based representation of prob-
ability distributions, inspired our solution (together with
evidence that place cell activity spikes can be seen as sam-
ples from a Bayesian posterior (Madl et al., 2014)).

We begin by formalizing path integration, given a motion
model pðxjmÞ prescribing how the location x changes with a
movement m (Table 1 provides a list of all the symbols used
in the text). The location at time t can be inferred based on
the most recent movement mt�1 by integrating out the pre-
vious location:

pðxtjm1:tÞ ¼
Z

pðxtjxt�1;mt�1Þ � pðxt�1jm1:t�1Þdxt�1: ð1Þ

Uncorrected, adding up movements like this would incur
ever-increasing errors (Etienne et al., 1996). However, we
can use Bayes’ theorem to calculate the posterior location
estimate xt�1 of the previous timestep, corrected by obser-
vations o1; . . . ; oN 2 Ot�1 of landmark positions l1; . . . ; lN 2 L
in that timestep (making use of the conditional indepen-
dence of landmark positions given a location (Montemerlo
& Thrun, 2007)):

pðxt�1jOt�1; Lt�1;m1:t�1Þ ¼ cpðxt�1jm1:t�1Þ �
YN
j¼1

pðljjot�1;j;xt�1Þ;

ð2Þ
where c is a normalization constant. We can use this cor-
rected posterior instead of the uncorrected previous path
integration estimate pðxt�1jm1:t�1Þ in Eq. (1), yielding a
recursive equation for corrected location estimation
(Montemerlo & Thrun, 2007):

pðxtjm1:t;O1:t;LÞ¼ c
YN
j¼1

pðljjot;j;xtÞ

�
Z

pðxtjxt�1;mt�1Þpðxt�1jOt�1;L;m1:t�1Þdxt�1:

ð3Þ

This recursive location estimation equation can be imple-
mented by iterating the three mentioned steps – move-
ment, correction, update – and by using rejection
sampling to approximate the statistically optimal posterior
in the correction step.

We recently presented evidence that hippocampal place
cells are able to perform Bayesian correction, based on neu-
ronal recordings of several hundred place cells and multiple
different environments, in which the firing fields of these
cells corresponded to the predictions of a Bayesian cue inte-
gration model (Madl et al., 2014). In the same paper, we
have also suggested how coincidence detection, observed
in place cells (Jarsky, Roxin, Kath, & Spruston, 2005;
Katz, Kath, Spruston, & Hasselmo, 2007; Takahashi &
Magee, 2009), can implement multiplication required to cal-
culate a Bayesian posterior, as well as rejection sampling.
The Localization SBC solves Eq. (3) in a manner similar to
this coincidence detection mechanism in place cells. The
Self-location node keeps track of a number of samples rep-
resenting the estimated location distribution (however, only
the expected value, i.e. the mean of these samples, is con-
nected to a place node and can be broadcast consciously in
the model). New samples are generated (and old samples
moved) based on the current movement speed v and some
Gaussian noise reflecting movement errors whenever the

agent moves: sit ¼ st�1 þ T vDt � N 1;
r2
v 0
0 r2

x

� �� �� �
,

where rv and rx are linear and angular path integration
error parameters, and T transforms from polar (linear and
angular speed) to Cartesian coordinates, and st�1 is the

arithmetic mean of all previous samples sit�1. Note that
the self-movement vDt is itself noisy and inaccurate (the
multiplicative Gaussian ensures that the samples are spread
out enough to likely encompass the unknown true location,
if the path integration error parameters are greater than or
equal to the actual path integration error).

This movement equation alone would accumulate errors,
and spread out samples more and more. To avoid this, it is
corrected in a Bayes-optimal fashion by rejection sampling,

i.e. by rejecting (discarding) samples sit inconsistent with
current observations. Specifically, samples are retained
with a probability proportional to the product of distribu-
tions representing currently observed landmarksQN

j¼1pðljjot;j;xtÞ (see Supplementary Information in Madl

et al. (2014) for proof that this approximates the Bayesian
posterior location). The most likely corrected location can
be subsequently obtained from the mean of the remaining

samples, xt ¼ s0t. The Localization SBC then updates a link



Table 1 Mathematical symbols used in the text.

Symbol Description

xt Location in 2D space at time t
mt Motion vector in 2D space at time t, based on motor command
oi Observed distance of landmark i
Ot Observed distances of all landmarks at time t : Ot ¼ fot;1; . . . ; ot;ng
li Location of landmark i in 2D space
Lt Locations of all landmarks at time t : Lt ¼ flt;1; . . . ; lt;ng
v Movement speed
Nðl; SÞ Normal (Gaussian) distribution with mean l and covariance S
sit Sample i from the location distribution at time t
st Mean of all samples from the location distribution
ci Constraint i specifying the measured distance of two locations xa and xb (e.g. from path integration,

or recognized revisited places)
di Discrepancy between constraint i and the corresponding estimated locations: di ¼ xa � xb � ci
Si Covariance matrix expressing the uncertainty associated with a constraint
C All constraints (measurements) acquired in the current loop: C ¼ fc1; . . . ; cn}
X All recent locations (entire path) estimated in the current loop: X ¼ fx1; . . . ;xm}
c Normalization constant
J Jacobian (matrix of all first-order partial derivatives of a function)
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between the Self-location node and the correct place node
corresponding to xt.

Analogously, the same rejection sampling mechanism
can also be used to keep track of most likely landmark loca-
tions, implementing:

pðljjot;j;xtÞ ¼ cpðot;jjlj;xtÞpðljjot�1;j; xt�1Þ; ð4Þ
under the assumption that the data association problem
(the question which landmark the measurements o belong
to) can be solved accurately using the CNN described above.

The movement step (path integration) has been shown to
be performed by grid cells in the entorhinal cortex
(McNaughton et al., 2006), and the correction step by place
cells (Madl et al., 2014). Finally, we have argued that phase
resetting observed in grid cells can implement the update
step, completing the localization cycle. Based on the obser-
vation that it partially accounts for single-cell recording
data in multiple environments (Madl et al., 2014) and that
it can be implemented as a biological neural network in a
straightforward fashion, we think this kind of Bayesian cor-
rection constitutes a plausible model of local spatial error
correction (see Fig. 4).

Route planning

The Route plan extraction SBC creates PAM node structures
representing the shortest path to the agent’s current goal if
such a goal is currently present in the Workspace. If there
are multiple cognitive maps present in the Workspace, it
selects the highest-resolution map containing both start
and goal location. Such maps are implemented as recur-
rently interconnected place node networks, which facilitate
a very simple path planning mechanism (Fig. 5). Assuming
that every goal location G passes activation through the net-
work, the distance to the goal can be decreased by moving
to the adjacent neighbour node with the highest activation.
If the nodes representing the locations of possible obstacles
are connected with zero or near-zero weights, this mecha-
nism can implement obstacle avoidance as well as path
planning. Crucially, this activation-based planning mecha-
nism operates on a hierarchy of ‘cognitive maps’ rather than
on a single level. We argue that this allows better solutions
of multi-goal navigation problems such as the travelling
salesman problem. The evaluation of this planning mecha-
nism against human data was briefly described in Madl
et al. (2013) (for details see the Supplementary
Information).

Loop closing – fixing previously learned maps

If uncorrected, accumulating path integration errors even-
tually render learned spatial representations useless – a
problem necessitating the use of other modalities for map
learning. Integrating spatial information in an approxi-
mately statistically optimal (Bayesian) fashion, as described
above, helps correct local maps. However, only the agent’s
current location and the locations of currently perceived
objects are updated with our procedure. When traversing
large cycles (loops) in an environment and returning to a
previously visited location, the remaining errors still accu-
mulate and prevent this loop from being represented cor-
rectly, causing multiple representations of the same
places (of subsequently revisited places) – see Fig. 6.

Therefore, a mechanism is needed to correct the repre-
sentation of locations encountered during loops (such a cor-
rection is called ‘loop closure’ or ‘closing the loop’ in the
robotics literature (Williams et al., 2009)). This section out-
lines a biologically plausible solution to this problem, as
well as its relation to phenomena observed in hippocampal
neurons. This solution is also used by the Map correction
SBC to correct errors in learned cognitive maps.

Although the problem of accumulating errors and the
resulting need to correct maps with sensory information
has been identified early in spatial modelling literature
(McNaughton et al., 1996), the question how brains might
‘close the loop’ has received very little attention, and no



Fig. 4 Approximate Bayesian cue integration in spiking neurons. Calculating the posterior probability distribution of the current
location (Eq. (2)) requires multiplying a prior location distribution from path integration (represented by grid cells) with likelihood
distributions from measurements of objects or boundaries (here represented by a border cell). Each spike can be seen as a sample
from a probability distribution. If the place cell receiving input from the grid and border cells performs coincidence detection, which
can be seen as approximate multiplication or rejection sampling (Madl et al., 2014), yielding an approximate Bayesian posterior, and
representing the associated uncertainty via the size of its firing field. A Bayesian model can account for hippocampal place field sizes
in behaving rats. Figure adapted from Madl et al. (2014).

Fig. 5 Route planning on recurrently interconnected place nodes. (A) Single goal routes can be obtained by following an activation
gradient to a goal. (B) Obstacle avoidance can be implemented by setting connection weights to zero near boundaries (red lines). (C)
On a flat grid, following activation gradients can lead to sub-optimal paths for multi-goal navigation. (D) However, when operating
on a hierarchy – planning rough, low-resolution routes first, and then refining them on higher resolution maps – this mechanism can
yield near-optimal solutions.

6 Unlike the strong evidence for hippocampal replay concerning
place cells representing recently visited locations, it is unclear
whether cells associated with landmarks are also ‘replayed’.
Therefore, we forego separate landmark correction in loops for
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plausible mechanisms have been proposed to the authors’
knowledge. The large majority of robotics solutions to this
problem require many iterations over huge matrices con-
taining information regarding every position ever visited
(Bailey & Durrant-Whyte, 2006; Durrant-Whyte & Bailey,
2006; Thrun & Leonard, 2008; Williams et al., 2009), and
they are thus neurally implausible. However, a probabilistic
perspective on this problem can still help find a plausible
candidate algorithm, consistent with hippocampal replay
as the correction mechanism, which we summarize below.

First, let us assume that it is sufficient to correct the
route taken during the loop. Local, currently perceived
landmark positions are corrected separately as described
above. When performing large-scale loop closing, our
scheme applies the same correction to a position and the
local landmarks around it.6 We also make the assumption
that correction only concerns position representations and
not angular representations, since there is neuronal evi-
dence for the former but not the latter (replay of encoun-
tered information happens in place cells, but has not been
observed for direction-sensitive neurons such as head-
direction cells in the postsubiculum (Brandon, Bogaard,
Andrews, & Hasselmo, 2012)).

The available information includes the path X consisting
of estimated, recently visited locations x0; . . . ; xm 2 X, and
now.



Fig. 6 Loop closing performed by the Map correction SBC.
Correcting estimated positions along a path when re-visiting a
known place (large green dot), after traversing a large loop.
Recognizing this place yields the knowledge that current
estimated location xb should equal xa; and the correction di

based on the discrepancy is applied proportionally to all visited
places along the loop. This backward correction is consistent
with hippocampal replay.
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a set of constraints c1; . . . cm 2 C specifying how far two
locations should be from each other – this includes dis-
tances from the path integration system for subsequent
locations, and equivalence constraints (with zero distance)
when revisited places are recognized. We will temporarily
assume simultaneous access to all path integration con-
straints, and will drop this implausible requirement later.
Each constraint between two locations is represented as a
Gaussian with the measured distance ci as the mean, and
the associated uncertainty represented by the covariance
Si (e.g. path integration is inexact – high uncertainty; but
a recognized revisited place is at the same location – low
uncertainty). The correct path is the one that is most con-
sistent with all known constraints (known distances
between the locations); or, from a probabilistic perspec-
tive, the one that maximizes the conditional probability of
the locations constituting the path, given the constraints7:

PðXjCÞ /
Ym
i¼1

PðcijXÞ: ð5Þ

Since each constraint is represented as a Gaussian over
the distance between a pair of locations ai and bi,
PðcijXÞ / N ðxa � xb; ci; SiÞ, and the conditional probability
is

PðXjCÞ /
Ym
i¼1

exp� 1

2
kxa � xb � cikSi

� �
: ð6Þ

We will denote the discrepancy between the constraint i
and the difference between corrected locations ai and bi as
di ¼ xa � xb � ci. Under ideal conditions without noise and
7 In robotic SLAM solutions, the path likelihood would also depend
on all landmark observations. We omit them here because our loop
closing procedure updates each position along with the path
together with its local landmarks, applying the same translation
to both, which renders the observation conditionals constant; once
again sacrificing accuracy for plausibility.
errors, all di would be zero; but in realistic environment
there will be discrepancies between estimated and mea-
sured differences. The ‘best’ path estimate maximizes
PðXjCÞ, or equivalently minimizes its negative logarithm
�logPðXjCÞ (minimizes the discrepancies):

XML ¼ arg max
X

PðXjCÞ ¼ arg min
X

Xm
i¼1

kdikS�1
i

ð7Þ

Eq. (7) can be written in matrix form and solved via
Gauss–Seidel iteration, in a way that only requires a few
alternating forward and backward passes over the path
(see Supplementary Information); however, alternating
replay has not been observed in the hippocampus.

Fortunately, there is a more plausible solution which can
be implemented neurally. It has been argued that Spike-
Time Dependent Plasticity (STDP) can implement gradient
descent in biological neurons (Bengio et al., 2015; Bengio,
Mesnard, et al., 2015). Our starting point is the stochastic
gradient descent-based maximization of PðXjCÞ described
in (Olson, Leonard, & Teller, 2006), which suggests the fol-
lowing gradient with respect to constraint i:

DX � aðJS�1JÞ�1
JTi S

�1
i di; ð8Þ

where a is a learning rate, J is the full Jacobian of all con-
straints with respect to the locations, and Ji the Jacobian
of constraint i. Because constraints apply to locations incre-
mentally (with zero sensory errors, the correct current loca-
tion would be xc ¼

P
i ci), the Jacobian is also incremental,

spreading out the discrepancy di ¼ ðxa � xb � ciÞ over an
entire loop (by means of having a structure similar to the
incidence matrix). This means the Jacobian needs not be
explicitly computed or represented. For a given loop closed
by ci with uncertainty Si, let us assume unchanging path
integration uncertainties SP for each movement within the
loop, and introduce a loop precision parameter Ai specifying
the uncertainty of the current loop closure in relation to
that of path integration, Ai ¼ Si=SP. The correction applied
to any single location xj visited after the recognized previ-
ous location ai (i.e. if j > ai) thus becomes:

Dxj � adi

P j
k¼aþ1 S

�1
iPminðj;bÞ

k¼aþ1 S�1
P

¼ aAidipj; ð9Þ

where pj ¼ ðminðj; biÞ � ai � 1Þ=ðbi � ai � 1Þ denotes how

far xj lies along the loop, with 0 6 pj 6 1.

Conveniently, we can neglect path integration con-
straints – they are already included in the path X, and, since
they concern subsequent locations with b ¼ aþ 1, they lead
to Dx ¼ 0 according to Eq. (9). The updates only concern
loop closing constraints. Given that the distance to the
same place when re-visiting it is zero, di ¼ xa � xb. Further-
more, we don’t have to re-activate all locations ever vis-
ited; only those in the loop. The ensuing correction
mechanism is simple (and easily implementable with neu-
rons): when a loop closure is detected, the locations along
the loop are iteratively corrected with the discrepancy
between estimated and observed location according to
Eq. (9). The iteration proceeds backwards, starting at the
estimated location at the re-visited place, and has to run
several times to approximate a near-optimal solution. This
is consistent with backward replay of visited locations in
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hippocampal place cells (Carr et al., 2011), with the pres-
ence of distances between locations encoded in such
replays (Diba & Buzsáki, 2007), and with the observation
that replay happens significantly more often than the num-
ber of times the animal re-visits places.

The described procedure is carried out regularly by the
Map correction SBC after a loop closure has been detected
(when recognizing an already encountered landmark via
the CNN in EPAM). It simply spreads out the discrepancy di

proportionally along the place nodes representing the tra-
versed loop, according to Eq. (9) (see Fig. 6). The Map cor-
rection SBC also corrects the positions of encountered
buildings, and of the traversed road, stored on the cognitive
map (i.e., the same correction is applied to building nodes
and road nodes as to the xj closest to them). The location
of a part of a road or that of a building is corrected by link-
ing the node representing it with the correct place node.

Apart from behavioural predictions regarding cognitive
map accuracy, validated in the next sub-section, and the
prediction that hippocampal replay (Carr et al., 2011) might
(also) serve the purpose of correcting cognitive maps, this
suggested mechanism also yields a quantitative prediction
on a cellular level, assuming that the synaptic strength
place cells depends on the distance dpf between their place
fields. For example, Csizmadia and Muller (2008) suggest
that the synaptic weight converges to S ¼ expð�kdpfÞ.
which for small kdpf can be approximated by S ¼ 1� kdpf.
Furthermore, STDP implies a weight change proportional
to the change in post-synaptic voltage potential (Bengio,
Mesnard, et al., 2015). Under these assumptions, our sug-
gested cognitive map correction mechanism implies that
after re-visiting a location, during subsequent hippocampal
replay, for a pair of place cells which are sufficiently close
together for the approximation to hold, changes in post-
synaptic voltage potential will be approximately propor-
tional to the correction magnitude Dx, i.e. to the amount
the place field has shifted during replay. It is clear from
empirical data that place fields shift after re-visiting loca-
tions in an environment (Mehta, Quirk, & Wilson, 2000),
and that backward replay contains distance information
between place fields (Diba & Buzsáki, 2007). We leave the
verification of the mentioned prediction for future work.

Results

This section reports results obtained by LIDA agents with the
extensions described above, reproducing data from psycho-
logical experiments. These experiments were chosen to
compare the agent’s spatial estimation accuracies, and cog-
nitive map structures, with those of human subjects.

Instead of free exploration, the routes in the experi-
ments below were pre-programmed into the agents’ long-
term memory, by storing the turns to be taken in the form
of schemes (percept-action mappings) in Procedural Mem-
ory, for the following reasons. In Experiment 1, closely
reproducing the participant trajectories (as opposed to
exploration behaviour) was crucial to modelling accumulat-
ing uncertainty. In Experiments 2 and 3, subjects’ explo-
ration trajectories in their hometowns were not known
(having happened years or decades before the experiment).
Furthermore, exploring environments on the scale of the
participant cities modelled in Experiment 2 in tractable
timeframes would have required an intelligent exploration
strategy, which we have not implemented yet in LIDA.
Therefore, the agent was given the turns it should take.

All other information came from noisy sensors, and no
ground truth information was provided to the agents, which
makes the experiments suitable for evaluating spatial repre-
sentation accuracy.

Experiment 1 – Localization and cue integration

In order to substantiate the Bayesian localization and cue
integration mechanism, we have replicated a behavioural
experiment (Nardini, Jones, Bedford, & Braddick, 2008)
investigating the integration of self-motion and sensory
information in location estimation. In this experiment, sub-
jects were asked to pick up three glowing objects in a dark
room (see Fig. 7B) and, subsequently, to return the first
object to its original location. In the self-motion + land-
marks condition, there were three landmarks available for
orientation, and subjects were not disoriented – both
sources of information were available. In the landmarks
condition, subjects were disoriented by turning in order to
deprive them of orientation information. In the self-
motion condition, subjects were not disoriented, but the
glowing landmarks were turned off and were not perceiv-
able in the dark.

To simulate this experiment, the same environmental
layout (with accurate object distances) was reproduced in
a simulation. The agent went through the same procedure
as the participants, and performed Bayesian localization
after every movement, as described above. The noise
parameters affecting the agent’s measurements were set
as follows. Distance estimation inaccuracies were set to
3%, which is a frequently observed distance estimation error
in virtual (Murgia & Sharkey, 2009; Waller, 1999) and real
environments (Grechkin, Nguyen, Plumert, Cremer, &
Kearney, 2010; Plumert, Kearney, Cremer, & Recker,
2005). The two remaining noise parameters (linear and
angular self-motion estimation inaccuracies) were adjusted
to fit the data using coordinate descent. Path integration
errors were modelled by multiplicative 1-mean Gaussian
noise, since variability in human odometry is proportional
to magnitude (Durgin, Akagi, Gallistel, & Haiken, 2009).
The agent was allowed both path integration and landmark
information in the first, only landmark information in the
second, and only self-motion information in the third condi-
tion. Fig. 7 shows the simulation results, which are consis-
tent with the empirical data for adult subjects.

Nardini et al. (2008) point out that adults can integrate
spatial cues in a nearly statistically optimal fashion, in
accordance with earlier animal studies indicating Bayesian
spatial cue integration in brains (Cheng et al., 2007). Thus,
the good fit of the Bayesian localization model described
above with the human data in Fig. 7 is not surprising. The
observation that not only the magnitude of the errors but
also the response variances (Fig. 7C) are similar for humans
and the model lends credence to our particular implementa-
tion of Bayesian localization (using rejection sampling).



Fig. 7 Position errors and standard deviations in the cue integration experiment by Nardini et al. (2008). (A) Mean RMSE (root
mean squared errors) of participants, and mean SD (standard deviation), for the responses of human subjects (green) and the agent
(blue), respectively. (B) The experiment environment. Participants had to pick up objects 1–3 in order, and then replace object 1.
The colored objects (moon, star, lightning) are the landmarks (from Nardini et al. (2008)). (C) Mean SD of participants (green) and
the agents (blue).
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However, the present model is unable to account for the
behaviour of children younger than eight years of age,
who seem to alternate between self-motion and landmark
cues, instead of integrating them. A model of the develop-
ment of cue integration is outside the scope of the present
paper.

Experiment 2 – Cognitive map accuracy (real
environments)

Here we replicate map accuracies of Experiment 3B in Madl
et al. (submitted for publication),8 in which participants
were asked to pick 8 very familiar buildings in cities they
knew well, within walking distance (such that they knew
how to walk from any one to the other). They were then
asked to create a sketch map, by indicating the relative
positions of these buildings on a featureless canvas on a
computer. Sketch maps were linearly translated, rotated
and scaled to fit the correct map best using Procrustes anal-
ysis (Gower, 1975). Each subject produced three sketch
maps, of which those not significantly better than random
8 A pre-print of Madl et al. (submitted for publication) is available
at http://madlnet.net/tamas/mapstructure.pdf.
guessing were excluded. Sketch maps spanning an area lar-

ger than 4 km2 were also excluded to reduce computational
load. This left 19 participants and a total of 28 different
maps (environments) in 21 cities (maps in the same cities
concerned different regions).

To reduce computational load, only the roads (and adja-
cent buildings) were recreated in the simulation, which
allowed getting from one of these buildings to the other,

i.e., which lay along one of the 8
2

� � ¼ 28 shortest routes

between two respective buildings for each map. These
roads and buildings were placed at positions with correct
real-world distances in the simulation (geospatial informa-
tion was obtained via Google Maps API9), yielding multiple
routes several kilometers long.

Within these simulated environments, the agent was ini-
tially placed at a randomly selected building, and subse-
quently traversed the shortest path visiting all buildings.
(For reasons described at the beginning of this section,
the correct turns were provided to the agent in advance.)
Each movement incurred linear and angular path integra-
tion errors, which once again were adjusted to fit the
data. Each recognized building was stored on the agent’s
9 https://developers.google.com/maps/.

http://madlnet.net/tamas/mapstructure.pdf
http://https://developers.google.com/maps/


Fig. 8 Comparison with human and model errors over all environments (top), and plots containing the ground truth (black) and
learned (blue) street and salient building locations. Titles indicate the city name and region area for the ground truth, and (H) uman
and (M) odel errors for the model subplots. Human data from Madl et al. (submitted for publication).
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cognitive map, and the map was corrected upon returning
to the starting building (loop closure) as described in Sec-
tion ‘Loop closing – fixing previously learned maps’, yield-
ing the final maps plotted in Fig. 8 (bottom). Agents
traversed each environment 12 times in total, and the
errors between the learned building positions and the cor-
rect map were averaged for comparison with the human
map errors.
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Fig. 8 compares the errors of the maps learned by the
agent with human sketch maps, after adjustment of the lin-
ear and angular path integration noise parameters by coor-
dinate descent. Map errors are measured as the sum of
squared errors (SSE) between the correct geographical
building locations, and the locations estimated by the par-
ticipants/by the model. Unlike the model predictions, which
are already in the correct reference frame, human data is
linearly translated, rotated and scaled first to fit the correct

map. The errors averaged over all maps are 1:07 km2

(r ¼ 0:85) for humans, and 1:08 km2 (r ¼ 1:39) for the
model, and the model errors correlate with human errors

with rm;h ¼ 0:80 (p ¼ 2:42 � 10�7), with a coefficient of
determination (proportion of explained variance) of

R2 ¼ 0:60 which suggests that the model explains the major-
ity of the variance in human map error data.

The similar ratio of errors between smaller or simpler
environments (e.g. Carthage, environment 0) and larger or
more complex environments (e.g. Kansas City, environment
1) substantiates the plausibility of the proposed mechanism.
The biggest shortcoming of the described experimental
setup is that the agent always explored the environment
along the shortest route connecting the buildings, whereas
the human participants may have taken different routes
(they explored their respective cities many years ago, and
were unable to recall the exact initial routes). Future work
will be required to compare learned cognitive map errors in
settings with equivalent routes (e.g. by asking subjects to
memorize a novel environment, recording their exact
routes, and using them for more accurate replication).

Note that this model only uses the eight buildings the
participant indicated as being very familiar, in order to rec-
ognize having revisited a place and to correct maps. Along
routes of this size, humans can presumably re-identify more
than these eight places. Even in areas without salient land-
marks, a matching visual sequence while walking can trigger
a feeling of familiarity. Furthermore, declarative memories
(e.g. knowing facts regarding modern city layouts) may help
infer and constrain spatial knowledge and correct represen-
tations (e.g. planned cities are unlikely to have irregularly
shaped roads). We will implement episodic sequence-
based place recognition and interactions with declarative
memory in future work.

Conclusion

In order to tackle challenges posed by noisy sensors and
complex, uncertain environments, we have extended LIDA
by CNN-based perception, and by mechanisms for learning
and correcting cognitive maps facilitating navigation. These
include novel reinterpretations of coincidence detection in
place cells as approximate Bayesian cue integration, and
hippocampal replay as cognitive map correction; and sug-
gested computational and algorithmic models of these phe-
nomena, consistent with the ‘Bayesian brain’ paradigm
(Knill & Pouget, 2004). We have also compared spatial rep-
resentation accuracies to human subjects. Although a large
number of issues remain to be solved for real-world-capable
autonomous agents (including developmental learning of
perceptual representations and affordances, visual place
recognition, long-term spatial and episodic memories,
transferring learned spatial knowledge and expectations
between environments, and spatial reasoning, to name just
a few), we believe these extensions provide a first step
towards a cognitive architecture combining biological plau-
sibility and real-world functionality.
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