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A B S T R A C T

There have been research activities in the area of keystroke dynamics biometrics on physi-

cal keyboards (desktop computers or conventional mobile phones) undertaken in the past

three decades. However, in terms of touch dynamics biometrics on virtual keyboards (modern

touchscreen mobile devices), there has been little published work. Particularly, there is a

lack of an extensive survey and evaluation of the methodologies adopted in the area. Owing

to the widespread use of touchscreen mobile devices, it is necessary for us to examine the

techniques and their effectiveness in the domain of touch dynamics biometrics. The aim

of this paper is to provide some insights and comparative analysis of the current state of

the art in the topic area, including data acquisition protocols, feature data representa-

tions, decision making techniques, as well as experimental settings and evaluations. With

such a survey, we can gain a better understanding of the current state of the art, thus iden-

tifying challenging issues and knowledge gaps for further research.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Technological advancement in computing, communicational
devices, as well as network connectivity is shifting the usage
of conventional desktop computers to mobile devices. It is pre-
dicted that there will be a staggering amount of over 2 billion
smartphone users worldwide by the year 2016 (emarketer, 2014).
The increasing reliance on these devices inevitably implies the
increase in sensitive data stored on this platform. Unfortu-
nately, the portability of mobile devices also makes it vulnerable
to theft (Raghunathan et al., 2003). Data leakage and misuse
of stolen device are potentially more damaging than the cost
of the device itself (Crawford et al., 2013).

Knowledge-based authentication methods, such as pass-
words, PINs or pattern locks (hereafter referred to as passcode),
are still the primary methods used to authenticate mobile users
(Khan et al., 2014). However, these methods are vulnerable to

a number of security threats or attacks, including brute force
attacks (Kim, 2012), shoulder surfing (Zakaria et al., 2011), and
smudge attacks (Giuffrida et al., 2014). Also, the usage pattern
of mobile devices is usually in short bursts of intervals (Frank
et al., 2013), and this significantly increases the frequency of
authentication that is required as compared to the case of
desktop computers. Higher authentication frequency lowers
usability (Harbach et al., 2014). To balance the conflict between
security and usability, measures such as the delayed authen-
tication, e.g. a device is set to have some idle time before
reauthentication requests are required, can be used (Sen and
Muralidharan, 2014). Even so, the issue of how to enhance se-
curity, while, at the same time, still be able to maintain minimal
user intervention or maximum usability remains unsolved.

An alternative to the passcode approach to authentica-
tion is the biometrics authentication. The latter identifies a
person based on his/her physiological or behavioral charac-
teristics. Physiological biometrics is a relatively stable physical
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feature of a human body, such as fingerprint, facial charac-
teristics, and iris pattern. Behavioral biometrics, on the other
hand, is traits that are acquired from human behavior or habits
like signature, voice, gait and keystroke dynamics. Biomet-
rics authentication methods are considered to be more secure
than other authentication methods (e.g. passcode) because bio-
metrics cannot be lost or stolen (if used securely) and is harder
to be forged (Jain et al., 2008). To ensure that a biometrics au-
thentication method is effective, the method should not only
be secure, but also usable. Hanul Sieger et al. (2010) con-
ducted a survey to study how participants ranked the perceived
security protection and the usability (willingness to use the
method) of different types of biometrics authentication methods
on mobile devices. The survey reported that the iris and voice
biometrics authentication methods were ranked the highest
in terms of the perceived security protection, but the lowest
in terms of usability. This shows that a biometrics authenti-
cation method, regarded as providing a stronger level of security
protection, may not be the most usable method.

According to the survey results reported by De Luca et al.
(2015), one of the important factors influencing the partici-
pants’ choice as to which biometrics authentication method
they prefer to use on a mobile device is the usability factor.
They identified two primary usability issues that put off par-
ticipants’ adaptation of a biometrics authentication method,
namely: (i) slow authentication speed and inconvenience, and
(ii) social awkwardness. For the first issue, for example, in the
case of face biometrics, participants felt that it was difficult
and time consuming to align the face correctly in front of the
device’s camera. In the case of fingerprint biometrics, the par-
ticipants felt that it was hard to scan a fingerprint properly
when the fingers were too oily or dry, or when the device was
covered with a protective casing. For the second issue (i.e. social
awkwardness), for example, participants felt that it was
awkward to hold a device in front of a face to perform an au-
thentication task in a public area. This is more so the case in
the context of mobile devices, where the use of these devices
in a public area is very common and frequent.

Touch dynamics is a behavioral biometrics, which cap-
tures the way a person touches on a touchscreen device. Similar
to other biometrics data, touch dynamics biometrics can be used
to identify a person/user, and can also be used in conjunc-
tion with a passcode authentication method to achieve an
enhanced level of security in user authentication and in the
protection of mobile devices. This method can be imple-
mented by employing existing sensors embedded in a mobile
device, so it is comparatively cheaper than other biometrics
authentication method. In addition, this method is non-
intrusive and can operate in parallel with a person’s normal
mobile device usage activities (Shen et al., 2016). The existing
passcode authentication method has a wide social accep-
tance, and the touch dynamics authentication method is also
expected to be widely acceptable by the general public (Campisi
et al., 2009).

Owing to the potential of touch dynamics biometrics, there
have been increasing research efforts in this topic area, as
shown in Fig. 1. This paper provides a survey of these efforts
discussing their major contributions and identifying issues for
further research.The main contributions of this paper are three-
folds. Firstly, it presents a comprehensive survey of published

works in the topic area of touch dynamics biometrics high-
lighting their contributions and technological advances in the
topic area. Secondly, it critically analyzes these related works
from a range of perspectives, leading to the identification of
knowledge gaps and issues for further research. Finally, the ref-
erences cited in this paper provide a useful lead into this topic
area.

In detail, the structure of the paper is as follows. Section 2
provides an overview of touch dynamics biometrics in general.
Sections 3–8, respectively, compare the related works in terms
of their experimental designs, data acquisition methods, feature
selection strategies, decision making techniques, fusion ap-
proaches, and data adaptation approaches.Their performances
are discussed in Section 9. The identified knowledge gaps and
issues for further research are outlined in Section 10. Finally,
Section 11 concludes the paper. To the best of our knowl-
edge, there has not been a similar paper published in literature
at the time of this writing.

2. Touch dynamics biometrics

2.1. Overview

Touch dynamics biometrics refers to the process of measur-
ing and assessing human touch rhythm on touchscreen mobile
devices (e.g. smartphones and digital tablets). A form of digital
signatures is generated upon human interactions with these
devices. These signatures are believed to be discriminative and
unique for each individual, so may be used as a personal
identifier.

In the 1860s, when the telegraph was the main method for
long distance communication, operators “identified” each other
through ways in which they tapped on telegraph keys (Bryan
and Harter, 1897). Today, telegraph keys have been replaced by
computer keyboards, mobile keypads, and virtual keyboards.
Computer keyboards have been the most common input devices
since the late 20th century. It is well-known that human key-
board typing patterns are unique so they could be used as a
personal identifier (Obaidat and Sadoun, 1996).

Fig. 1 – The increasing trend of research works on touch
dynamics biometrics.
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One of the earliest research works on keystroke dynamics
authentication was conducted by Gaines et al. (1980). They
carried out an experiment to try to recognize 6 professional
secretaries by analyzing the way they typed three passages of
texts consisting of 300 to 400 words each. Since then, many
related efforts have been made. Crawford, Karnan et al. and
Teh et al. have, independently, written surveys of the pub-
lished works on keystroke dynamics authentication (Crawford,
2010; Karnan et al., 2011; Teh et al., 2013). However, these early
works largely focused on keystroke dynamics authentication
on computer keyboards. With the rapid development of mobile
communication technologies, more recent research efforts in
this area have been focused on mobile devices with physical
keypads (Campisi et al., 2009; Clarke and Furnell, 2007;
McLoughlin and Naidu, 2009). Most recently, research activi-
ties are largely carried out in the context of touchscreen mobile
devices. Fig. 2 summarizes the timelines of the touch dynam-
ics biometrics research as influenced by technological
developments in the sector.

Touch dynamics biometrics have their unique merits or
useful features, while at the same time, they also introduce
challenging issues. The sections below summarize the fea-
tures and the challenging issues.

2.2. Features

A touch dynamics authentication system can offer a number
of useful features compared to the other types of biometrics
authentication system. These are the following.

Distinctiveness: Touch dynamics patterns are capable of gen-
erating multi-dimensional features, such as timing, spatial
and motion features. These multi-dimensional features can
be measured up to a precision level that is significantly
higher than human perception (Zheng et al., 2014). These
unique features are hard to replicate consistently, and there-
fore can be used for authentication.
Enhanced Security: Despite its weaknesses, passcodes have
been the most widely accepted and deployed authentica-
tion method (Schlöglhofer and Sametinger, 2012). By
integrating touch dynamics biometrics into passcode au-
thentication method, the overall assurance level can be
increased.

Continuous Monitoring: Touch dynamics biometrics
can be used to verify the authenticity of a user beyond
the initial authentication by constantly monitoring the
user touch dynamics patterns. In other words, user
reauthentication can be performed easily and non-intrusively
throughout an active login session. In this way, security
protection goes beyond initial login without compromis-
ing usability. This is one of the most notable advantages
touch dynamics biometrics have over other physiological
biometrics.
Revocability: In an event when a passcode associated with
a touch dynamics template is compromised, a new touch
dynamics template can easily be generated when a new
passcode is created. This is not the case for other physi-
ological biometrics. For example, with iris or face biometrics,
once they are compromised, there will be no replacement,
and for fingerprints biometrics, the number of replace-
ments is limited (humans have only 10 fingers to use after
all).
Non-dependency: A mobile device usually operates in an
on-the-go manner, so the surrounding lighting condition and
background noise level are, in most cases, constantly chang-
ing. In comparison with other biometrics features, such as
face and voice biometrics, the feature acquisition of touch
dynamics biometrics is less sensitive to these environmen-
tal factors. Therefore, it is more suited to, and can be more
easily deployed to a mobile device.
Transparency: Touch dynamics authentication system re-
quires little or no additional interventions from a mobile
device user. This is because the acquiring and processing
of touch dynamics patterns can be carried out in the back-
ground while the user is using the device. Users may not
be aware that their touch dynamics patterns are being cap-
tured, the captured data are being used for authentication,
and the authentication is carried out periodically or they
are protected by an extra layer of authentication. This is in
a stark contrast to other biometrics authentication systems
that usually require explicit alignment of a biometrics feature
to a specific sensor. For example, in the case of iris authen-
tication, a user is required to look straight into a camera
to take an iris image, and in the case of fingerprint authen-
tication, a user needs to put one of his/her fingers on the
fingerprint sensor.

Fig. 2 – The evolution of touch dynamics biometrics research.
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Familiarity: The touch dynamics data used for authentica-
tion is acquired during mobile users’ routine input activities.
This is a process which mobile users are already familiar
with, so the data acquisition operation tends to have a
gentler learning curve with a higher usability level than other
biometrics data acquisition cases.
Cost Effectiveness: In contrast to other physiological bio-
metrics authentication methods such as iris and fingerprint
biometrics that typically require the use of specialized hard-
ware, touch dynamics authentication system only uses built-
in mobile sensors.This can reduce device costs and it is ideal
for large-scale deployments.

2.3. Challenging issues

The design of a touch dynamics authentication system imposes
a number of challenging issues as follows.

Minimizing Computation and Communication Costs: Com-
putational capabilities of mobile devices are typically lower
than desktop computers. This means that certain criteria
such as algorithm complexity, communication cost, and au-
thentication delay are important and should be considered
in the design of touch dynamics authentication solutions.
In other words, algorithm and communication costs intro-
duced as the result of deploying this authentication means
should be minimal.
Minimizing Energy Consumption: Mobile devices, unlike
desktop computers, are operated by batteries. The less the
energy an application consumes, the longer the device can
operate. Though communication is the major consumer of
the battery power of a mobile device (Perrucci et al., 2009),
the number and usage frequencies of various sensors em-
bedded in a mobile device, which are used to extract touch
dynamics data, also have a direct impact on the mobile
device battery consumption. Various measures, such as re-
ducing the sampling rate (Niu and Chen, 2012) or performing
complex computation only when a device is being re-
charged (Crawford et al., 2013), have been proposed to reduce
power consumption of a mobile device.
Maximizing Accuracy: The accuracy performance of touch
dynamics authentication system is relatively low in com-
parison to other physiological biometrics authentication
system (e.g. fingerprint and iris). This is because touch dy-
namics biometrics features (or feature data) acquired at
different occasions are likely to exhibit a certain degree of
variations due to external factors such as fatigue, mood,
or distraction. Therefore, consideration should be given
as to how to increase the accuracy performance of a touch
dynamics authentication system in the design of the
method.
Adaptation Capability: Human behavioral characteristics
typically change over time, and they usually change more
frequently than physiological characteristics. A user’s touch
dynamics patterns can gradually change as the user gets
more familiar with the passcode, input method, device, and
other external factors. A touch dynamics authentication
system should be capable of adapting itself to any changes
in a user’s touch dynamics pattern.

2.4. Operational process

A typical touch dynamics authentication system is illus-
trated in Fig. 3. From the figure, we can see that the operation
of this system can largely be captured in three major phases:
(i) User Enrollment, where touch dynamics data (or samples)
are acquired, processed, and stored as a reference template;
(ii) User Authentication, where a touch dynamics test sample
is compared against the stored reference template(s) to de-
termine the similarity or dissimilarity; and (iii) Data Retraining,
where reference template is updated to reflect any changes in
the latest touch dynamics data. The three operational phases
are accomplished by a number of functional blocks (i.e. archi-
tectural components), each of which performs a well-defined
function, and these components and their respective func-
tions are described below.

2.4.1. Data acquisition
Data acquisition is an operation by which raw touch dynam-
ics data are acquired.This is usually carried out as the first step
and during the setup stage of a touch dynamics authentica-
tion system.The acquired raw data are usually a set of repeated
(multiple) input samples acquired over a specified period of
time. Devices commonly used for data acquisition are com-
mercial off-the-shelf smartphones (Buschek et al., 2015; Trojahn
et al., 2013; Zheng et al., 2014) or, in some cases, digital tablets
(Saravanan et al., 2014).

2.4.2. Data preprocessing
Data preprocessing is carried out to remove outliers in the raw
data, improving data quality and accuracy performance.Tech-
niques used in this operation include outlier detection and
removal (Zheng et al., 2014). A dimension reduction technique
may also be used to ensure that raw data remain small yet rep-
resentable, for the sake of computational efficiency on resource
limited mobile devices (de Mendizabal-Vazquez et al., 2014).

2.4.3. Feature extraction
Feature extraction is a mandatory operation that is carried out
in both user enrollment and authentication phases. The main

Fig. 3 – A touch dynamics authentication framework.
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task of this operation is to identify and extract distinctive fea-
tures common to a user from the acquired raw data. These
features will be later used for template generation. Possible fea-
tures extracted from human touch dynamics data can be
categorized into three broad categories, namely timing, spatial
and motion features (further discussions in Section 5).

2.4.4. Template generation
Template generation is an operation carried out to transform
the extracted feature into a compact form that uniquely rep-
resents the user’s touch dynamics characteristic. Normally,
several different types of features are concatenated into a se-
quence of n-dimensional feature vectors, where n is the number
of feature elements (Cai et al., 2013; Serwadda et al., 2013).These
unique reference templates are then stored for user authen-
tication or data retraining purpose.

2.4.5. Data classification
Data classification is the major operation for most biomet-
rics authentication methods, where feature data are categorized
and compared against reference templates.The outcome of this
phase is normally associated with a matching score used for
decision making. Data classification is usually carried out using
machine learning techniques (also referred to as data classi-
fication algorithms or classifiers), and a number of machine
learning techniques have been used for this purpose in the lit-
erature of touch dynamics biometrics (further discussions in
Section 6).

2.4.6. Decision making
Decision making is an operation carried out to determine if
the touch dynamics data submitted by a user are indeed origi-
nated from the target user.This decision is made by comparing
the similarity or dissimilarity score generated from a machine
learning technique against a predefined threshold (Bo et al.,
2014; Kolly et al., 2012). Before the final decision is made, a
fusion approach may be applied to combine either the infor-
mation from multiple features (Buschek et al., 2015; Jeanjaitrong
and Bhattarakosol, 2013) or to combine the matching scores
from different machine learning techniques (Samura et al.,
2014), to increase accuracy performance.

2.4.7. Data adaptation
Data adaptation is an operation carried out to retrain or update
the reference template with the latest touch dynamics pat-
terns from a user. This operation is required because a user’s
touch dynamics patterns may gradually change over time,
causing the initially enrolled reference template to deviate from
the most recent touch dynamics patterns from the same user.
By adding an adaption component that performs the data ad-
aptation operation after each successful authentication, these
gradual changes can be captured and taken into account
(Crawford et al., 2013).

2.5. Evaluation criteria

A touch dynamics authentication system can be deployed in
one of the two modes, a verification (or authentication) mode
and an identification (or recognition) mode.These modes serve

different purposes and usage scenarios. The verification mode
is used to verify a claimed identity. It is used to answer the
question “is this person whom he/she claims to be”. The au-
thentication of a mobile user or a mobile device fits into this
mode. The identification mode, on the other hand, is used to
classify and identify some unknown identity. It is used to
answer questions such as “who is this person” or “is this person
in the database”. This mode is typically used for forensic in-
vestigations or intrusion detections. As shown in Fig. 4, the
fundamental difference between the two modes is that, in the
verification mode, the checking between the touch dynamics
data submitted by a user and the reference template is 1-to-
1, whereas, in the identification mode, this checking is 1-to-
many. According to our literature survey, the number of papers
published on the study of the verification mode (74%) is much
higher than the identification mode (26%).

The focus of this paper is on authentication using touch
dynamic biometrics, so hereafter our analysis is on the veri-
fication mode. To assess the suitability of a biometrics
authentication method to real-world applications, three major
criteria should be used to evaluate the system. These are veri-
fication accuracy, system efficiency, and system usability.

2.5.1. Verification accuracy
The metrics that are commonly used to evaluate the verifica-
tion accuracy of a biometrics authentication method are the
false rejection rate (FRR), false acceptance rate (FAR) and equal
error rate (EER).The relationship among these metrics is shown
in Fig. 5 and their definitions are given below.

2.5.1.1. False rejection rate (FRR). This is the percentage ratio
of the number of legitimate users who are falsely rejected
against the total number of legitimate user trials. A lower FRR
value indicates fewer legitimate users being falsely rejected.
It also means that the system usability level is higher. FRR is
also referred to as a false alarm rate, false negative rate, false
non-match rate, or Type II error.

2.5.1.2. False acceptance rate (FAR). This is the percentage ratio
of the number of illegitimate users who are falsely accepted

Fig. 4 – The deployment modes of a touch dynamics
authentication system.
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against the total number of illegitimate user trials. Again, a lower
FAR value indicates fewer illegitimate users being falsely ac-
cepted, and this also indicates that the system has a higher
security level. FAR is also referred to as miss alarm rate, false
positive rate, false match rate, or Type I error.

2.5.1.3. Equal error rate (EER). EER is a single-number perfor-
mance metric, which is commonly used to measure and
compare the overall accuracy level of different biometrics au-
thentication method. It is sometimes also referred to as
crossover error rate (CER). EER can be obtained by finding the
interception point of two graphs, one for FRR and the other
for FAR. Typically, the lower the FRR and the FAR values, the
lower the EER value, which in turn indicates a better accu-
racy performance of a biometrics authentication method.
However, FRR and FAR are negatively correlated, so it is not pos-
sible to lower both FRR and FAR values at the same time.
Therefore, in real-life applications, FRR and FAR are usually ad-
justed and determined based on the security and usability
requirements of the applications. In some literature, the
term “accuracy”, rather than EER, is used as an accuracy
performance metric. It is worth noting that “accuracy”
and EER are actually the same; “accuracy” is defined as the
inverse of EER. In other words, a higher “accuracy” value in-
dicates a better accuracy performance of a biometrics
authentication method.

The accuracy performance can also be graphically visual-
ized by using the receiver operating characteristic (ROC) curve
as shown in Fig. 6. This graph is obtained by plotting genuine
acceptance rate (GAR) against FAR at different matching thresh-
old values. GAR is the percentage ratio between the correctly
accepted legitimate users against the total number of legiti-
mate user trials. It is also referred to as the inverse of FRR (100-
FRR), true positive rate, or true match rate. A larger area under
the curve (nearer the curve towards the top left corner of the
graph) indicates a better performance.

2.5.2. System efficiency
The system efficiency refers to the computational cost or the
authentication delays imposed by a biometrics authentica-
tion method. Satisfying this criterion is particularly important
for computational resource-limited mobile devices. A complex
authentication method may impose a higher level of compu-
tational overhead, increasing authentication delays and reducing

system usability. Therefore, it is important to design authen-
tication methods that introduce as low computational overhead
as possible.

2.5.3. System usability
The system usability (or user acceptance) of an authentica-
tion system is also an important factor to the successful
deployment of a new authentication method. Users will even-
tually abandon or reluctant to use any system that is tedious
or slow to use, even if it can offer a higher level of security pro-
tection.Therefore, an authentication system should offer a good
level of system usability and this can be achieved by (i) reduc-
ing the workload imposed on a user as much as possible, (ii)
requiring users’ intervention as less as possible, and (iii) making
authentication delays as short as possible.

3. Experimental design

3.1. Working mode

The verification mode may operate in either a static or a
dynamic manner. The static and dynamic working modes are
complementary to each other, i.e. they may be deployed in-
dependently, or alongside with each other to enhance the
security protection level afforded to the deployed mobile
device. In the following, we discuss the two working modes.
Hereafter, we use the term, Verification-in-Static-Mode (ViSM),
to refer to the verification mode being used in the static
working mode and, Verification-in-Dynamic-Mode (ViDM), to
refer to the verification mode being used in the dynamic
working mode.

3.1.1. Verification-in-static-mode (ViSM)
One application scenario of the ViSM is static authentication,
which is also known as one-off authentication. In static au-
thentication, a user attempts to authenticate himself/herself
to a system at the beginning of a log-in session or at some pre-
defined intervals during a session. For example, a touch
dynamics authentication method may be integrated with an
existing passcode authentication method, forming a so-
called two-factor authentication system, in which the passcode

Fig. 5 – The relationship between the FRR, FAR, and EER.

Fig. 6 – The ROC curves of three performance scenarios.
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authentication method serves as the first factor and the touch
dynamics authentication method serves as an additional, i.e.
the second, authentication factor. This two-factor authentica-
tion system provides a stronger level of protection than any
of the two authentication methods when they are used alone.
In addition, the use of the second authentication factor can
also prevent passcode sharing.

3.1.2. Verification-in-dynamic-mode (ViDM)
An example of application scenario of the ViDM is dynamic au-
thentication, also known as continuous authentication. A
dynamic authentication method performs authentication checks
on a user in an application or communication session (i.e. after
the initial authentication is performed). The dynamics feature
may be reflected by the use of information that is generated
in real-time during the session to authenticate the user and/
or by the use of multiple instances of authentication in the
session, but the intervals between the multiple authentica-
tion instances are not predefined, e.g. they may be determined
by the occurrence of some touch events. A touch dynamics au-
thentication system is particularly suited to this mode, as touch
dynamics data can be acquired transparently over a period of
time to revalidate the user’s identity without user’s interven-
tion, and this may be done at any point during the session.
Continuous authentication can reduce security risks in a
number of ways such as unauthorized device sharing, device
lost/theft, session hijacking, etc. Of course, as in the case of
any biometrics authentication method, it is important to achieve
a low FRR value to make the system more usable, as, other-
wise, a legitimate user may be locked out of the service in the
middle of a session. According to our literature survey, more
papers have been published for static authentication (77%) than
dynamic authentication (23%).

3.2. Acquisition devices

The device selection for data acquisition is also an important
factor. Different devices may be equipped with different sensors
that may have the ability to acquire different types of fea-
tures. For example, a conventional mobile device with a physical
keypad is only able to acquire timing feature. In contrast, a re-
cently manufactured touchscreen mobile device is more likely
to have multiple more powerful built-in sensors that can acquire
more features (such as pressure, movement, and orienta-
tion). As the focus of this paper is on touch dynamics
authentication, hereafter, we shall only center our discus-
sions on mobile devices with touchscreens. For existing works
on keystroke dynamics on mobile devices with physical
keypads, readers are referred to review articles such as
(Crawford, 2010; Teh et al., 2013).

The majority of the research works carried out in the domain
of touch dynamics use smartphones as their data acquisition
devices. The only exceptions are the work reported in Antal
and Szabó (2014), Bond and Ahmed Awad (2015) and Saravanan
et al. (2014), and in these cases, digital tablets were used. This
is largely due to the fact that a larger population of mobile
device users actually use smartphones rather than digital tablets
(Taylor, 2015). Researchers have been using more recent and
more powerful mobile devices to carry out their research works.

Modern devices usually come with higher precision and reso-
lution sensors that are able to capture higher quality features.
Modern devices also have greater computational capabilities
and resources, which can better support the use of more
complex algorithms and more able sensors. Another device se-
lection criterion is the intended development platform
associated with a mobile operating system and this issue is
discussed in the next section.

3.3. Development platform

To acquire touch dynamics data, we need to use some toolkit,
and, for the development of the toolkit, we need to choose a
development platform. Based on our literature study, Android
is the most popular development platform for touch dynam-
ics data acquisition, which is followed by iOS and then by
Windows. When selecting a development platform, these four
factors should be considered, i.e. its customizability, flexibil-
ity, cost and market shares.

3.3.1. Customizability
To acquire touch dynamics data, the ability to log various touch-
screen input events is essential. However, the native input
methods (such as a virtual keyboard or a virtual numeric
keypad) used by a mobile operating system do not provide
any function calls to acquire these data. This is typically
part of the security measure used to protect against the easy
implementation of spyware or touch-logger applications
(Kambourakis et al., 2014). Therefore, to acquire touch dynam-
ics data, we have to create our own custom input methods with
the necessary functionalities. Unlike its competitors (iOS and
Windows), Android has made this easier by providing open
source library functions, which allow developers to modify the
application framework (Meng et al., 2013), giving them greater
flexibility in their application design and customization.

3.3.2. Flexibility
Flexibility, in terms of cross-platform development, sideloading,
and file system visibility are among the criteria that contrib-
ute to the popularity of a chosen mobile development platform.
Android supports cross-platform development, and this means
that developers have the flexibility to develop mobile appli-
cations using any operating systems and to make use of existing
resources in their developments. Also, both Android and
Windows allow sideloading, which means that an applica-
tion can be directly installed on a mobile device without first
publishing it to the mobile application store. Application pub-
lishing involves rigid procedures and could be time-consuming.
Therefore, sideloading can reduce the time and effort on ap-
plication testing and developments. Furthermore, direct file
explorers have been provided by both Android and Windows
providers. This means that data and system files can be ac-
cessed directly without additional configurations or installations
of any third party applications. This provides a convenient way
for researchers to transfer acquired data files between differ-
ent devices for further analysis.

3.3.3. Cost
The cost required for acquiring a development tool and
device should also be taken into account when making the
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selection. The official integrated development environments
(IDEs) required for application developments for Android and
Windows devices are Android Studio and Visual Studio Express,
respectively.They are both available for download free of charge.
Xcode IDE (iOS devices), on the other hand, is only available
once an annual subscription fee for application publishing has
been paid for, and the cost of the fee is shown in Table 1. In
addition, Android has been used by a wide range of mobile
devices. Among the largest manufacturers of Android-powered
mobile devices are Samsung, HTC, and LG. This wider range
of devices can provide us with a cheaper option to conduct our
experiments.

3.3.4. Market share
Selecting a mobile platform with a larger market share (used
by more people) allows a greater accessibility to users. To date,
Android mobile devices have the strongest end-user demand
worldwide, followed by iOS and Windows (IDC, 2015).The similar
trend is reflected in the selection of prototype development plat-
forms by researchers, as shown in Fig. 7 (N/A indicates
unspecified).

3.4. Degree of control

The degree of control refers to restrictions or constraints
imposed when carrying out an experiment. It covers three dif-
ferent aspects, namely: (i) acquisition device selection, (ii)
experimental setting control, and (iii) input string selection.
Generally, the number of experiments that imposes restric-

tions outnumbers those that do not, and this is the case for
all three aspects, as shown in Fig. 8.

3.4.1. Acquisition device selection
The devices used in experiments can be selected with one of
the two approaches. One is to use a predetermined device and
the other is to use a subject (hereafter refers to a mobile device
user recruited for an experiment) specific device. Based on our
literature survey, a majority of the experiments published in
literature (94%), with an exception of the work reported in
Alotaibi et al. (2014), Johansen (2012) and Samura et al. (2014),
were undertaken by using the first approach. The primary
reason for using a predetermined device is to prevent any in-
consistencies in the features acquired. For example, the
availability of hardware sensors (Alotaibi et al., 2014) and the
variations in sensor resolution or sensitivity (Seo et al., 2012)
between different devices may cause inconsistencies in the data
acquired. Additionally, as subjects are usually more familiar
with their own devices, allowing subjects to use their own
devices to acquire data may introduce bias in their experi-
mental results. This can be avoided by requiring subjects to
use a predetermined device for the entire data acquisition op-
eration (Serwadda et al., 2013).

In contrast, some experiments reported in literature were
carried out without any restrictions on the types of device that
should be used, so subjects can use their own devices to acquire
data. In this way, more subjects from different population groups
may be attracted to take part in the experiments. For example,
Johansen (2012) allowed subjects to conduct data acquisition
using their own mobile devices via a mobile app, so subjects
do not need to be physically present or be supervised through-
out the entire data acquisition operation. In other words, as
this approach removes physical and geographical barriers in
conducting experiments, the data acquisition can be con-
ducted on a larger scale and can reach a wider audience. It has
also been argued by Samura et al. (2014) that by using a device
which the subjects are accustomed to, the experimental results
obtained may better reflect their actual usage behavior. This
is in line with our observation that experiments that did not

Table 1 – The different mobile development platforms.

Android iOS Windows

Development tool Free $99/year Free
Publishing fee $25 one-off $19/year
Sideloading Yes No Yes
Programming language Java Swift C# or VB
Open source Yes No No
Cross platform

development
Yes No No

File System visibility Yes No Yes
Market share High High Low

Fig. 7 – The distribution of underlying research
development platforms.

Fig. 8 – The number of publications on reporting the degree
of control of different aspects imposed in experiments.
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impose any restrictions on the input devices were also oper-
ated under uncontrolled environment so that a subject’s touch
dynamics can be acquired in a natural condition (further dis-
cussions in the following section).

3.4.2. Experimental setting control
The experimental setting control refers to the degree of re-
strictions that are imposed on an experiment during a data
acquisition operation. Data acquisition may be conducted under
two settings: (i) supervision with a stringent protocol or (ii)
unmonitored without any restrictions. The papers by Alotaibi
et al. (2014), Johansen (2012), Kolly et al. (2012) and Samura et al.
(2014) reported experiments that were carried out without any
specific restrictions. A majority of experiments (89%) re-
ported in literature were actually carried out under supervised
and controlled environments. The primary reason to control
an experiment is to reduce the level of variations in touch
dynamics patterns which may be caused by external factors
such as distractions, cognitive load, and sickness, etc. Con-
trolling an experiment with a stringent protocol can prevent
these external factors from inflicting noise (Trojahn et al., 2013),
allowing primary experimental variables (i.e. the discrimina-
tive capabilities of features or the accuracy performance of
classifiers) to be evaluated more accurately (Cai et al., 2013).
Also, the unmonitored and uncontrolled experimental setting
may risk the data acquired being distorted or tampered with,
resulting in the reduction of data quality.

There are also views that touch dynamics data should be
acquired in a natural manner without imposing any restric-
tions, or in an environment that can resemble a real-life
touchscreen device usage scenario (Alotaibi et al., 2014). The
reason given by the authors was that a subject’s interactivity
with his/her device may differ in different circumstances, e.g.
when performing a task at hand or doing a job in a con-
trolled environment. The authors in Rybnicek et al. (2014)
suggested that experimental results obtained under a con-
trolled environment are over optimistic compared to those
acquired in uncontrolled environments.

3.4.3. Input string selection
How to select the input strings or which input strings should
be used during experiments is another factor one should con-
sider when carrying out touch dynamics related experiments.
In the majority of the experiments reported in literature (72%),
the subjects were asked to provide a predefined set of input
strings during a data acquisition operation. In other words, the
input strings used in these experiments are identical across
all the subjects. This means that the samples acquired from
different subjects in the same dataset can be reused for evalu-
ation purposes (not just for template generation), and as a result,
a larger number of test samples can be acquired without ac-
quiring them separately. However, in certain situations, this
approach may not be practical. For example, the data acqui-
sition experiments conducted by Draffin et al. (2014), Y. Meng
et al. (2014) and Meng et al. (2013) were aimed at acquiring
all the touch dynamics data over an entire interaction session
with a device. Due to the nature and objective of these ex-
periments, predetermining a set of input strings would not be
practical.

4. Data acquisition

4.1. Subject size

The subject size used in an experiment is known to have an
impact on the obtained results of the experiment (Maxion and
Killourhy, 2010; Xu et al., 2014). The larger the subject size used
in an experiment, the better the experimental results can signify
the scalability of a study (Bartlow and Cukic, 2006) and reflect
the true accuracy performance of a biometrics authentica-
tion method when deployed in real-world (Jagadeesan and
Hsiao, 2009).

Most experiments recruited less than 50 subjects (Buschek
et al., 2015; Kambourakis et al., 2014; Y. Meng et al., 2014), with
some less than 5 subjects (Nixon et al., 2014; Rao et al., 2014).
We were only able to find three experiments (Gascon et al., 2014;
Serwadda et al., 2013; Trojahn et al., 2013), which used a large
number of subjects (315, 190 and 152 subjects, respectively).
The subject sizes used in the experiments published in litera-
ture are summarized in Fig. 9.

In most of the experiments (94%), subjects were recruited
on a voluntary basis, i.e. without receiving any monetary ben-
efits. Only in a few experiments, subjects were awarded cash
cards (Buschek et al., 2015; Xu et al., 2014) or some form of prizes
(Johansen, 2012). The awards or prizes were used to motivate
the subjects to take part in the experiments, increasing the
participation rates. A data acquisition operation could be a
resource-intensive process that requires some dedication and
efforts from the subjects. To increase the participation rate or
the number of subjects taking part in an experiment, Kolly et al.
(2012) suggested that the data acquisition tools can be dis-
tributed via a mobile application store. This may be a possible
way of recruiting a larger number of subjects, but, by doing so,
control over the data acquisition operation will certainly become
limited and the risk of data being tampered with or manipu-
lated becomes higher.

4.2. Subject demography

Subjects can be selected based on three variables, namely, by
their age, affiliation, and profession.These three variables jointly

Fig. 9 – The number of publications on reporting different
subject sizes.
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correlate with a subject’s device usage frequencies and famil-
iarity.Therefore, if subjects are not selected properly, there may
be unintentional biases in the experimental results.

In the published experiments, subjects were often se-
lected from a specific group of population, e.g. from people (i)
with a narrow age distribution (i.e. 19–26) (Antal and Szabó,
2014; Buschek et al., 2015; Kambourakis et al., 2014), (ii) within
the same organization (i.e. within a research institute) (Alotaibi
et al., 2014; Giuffrida et al., 2014; Samura et al., 2014), or (iii)
with a specific profession (i.e. students) (Draffin et al., 2014; Y.
Meng et al., 2014; Meng et al., 2013). This is because a certain
group of population is more readily available and is cheaper
for researchers who often have limited resources to conduct
their experiments. However, it may be argued that the data ac-
quired from a special group of population may not realistically
represent the wider community.

Studies from Coakley et al. (2015), El-Abed et al. (2014) and
Kolly et al. (2012) are among the few pieces of work we were
able to find in literature, which recruited subjects from a popu-
lation with wide demography, e.g. people from dissimilar age
groups and/or with different professions. Their goal is to di-
versify the dataset’s subject demography so that the obtained
results of the experiments can better resemble real-world
scenarios.

4.3. Input string type

The input string type is an important experimental variable
in touch dynamics biometrics research, as the feature used
for touch dynamics biometrics is originated from a subject’s
input string. Generally, subjects are required to provide
character-based (i.e. alphabetic, special character, or alphanu-
meric input), digit-based (i.e. only numerical input), and/or
other non-specific touch events. The majority of touch dy-
namics experiments published required a subject to either
provide a character-based or a digit-based input as shown in
Fig. 10.

A character-based input string can be further categorized
into short and long character strings. A short input string is

usually consisted of a username or a password (Huang et al.,
2012; Mahnoush Babaeizadeh et al., 2014), a random charac-
ter combination (Antal and Szabó, 2014; Rao et al., 2014), or a
set of dictionary words (Buschek et al., 2015; Giuffrida et al.,
2014). A long input string is usually a segment of texts (Gascon
et al., 2014) or several paragraphs of texts (Feng et al., 2013;
Samura et al., 2014). Likewise, a digit-based input string can
also be classified into short and long digit strings. A short digit
string is typically 4 to 6 digits long. It usually resembles a mobile
device unlocking code (Zheng et al., 2014) or an ATM PIN number
(Sen and Muralidharan, 2014). The length of a long digit string,
on the other hand, usually exceeds 10 digits, similar to, e.g., a
social security number (Johansen, 2012) or a phone number (Jain
et al., 2014). Other non-specific input types include a random
acquisition of some continuous touch events (Draffin et al., 2014;
Y. Meng et al., 2014), a random multi-touch gesture input
(Sae-Bae et al., 2012), or touch input interactions with a common
user interface element (e.g. buttons, checkboxes and sliders)
(Kolly et al., 2012; Saravanan et al., 2014), made over a period
of time. As most of the published touch dynamics experi-
ments focused on the character-based or digit-based input,
hereafter we shall focus our discussions on these two input
types.

4.4. Input sample size

The input sample size of a dataset is known to have an impact
on the accuracy, robustness and conclusiveness of the outcome
of an experiment (Sen and Muralidharan, 2014; Wolff, 2013).
The larger the number of samples we use, the better the rep-
resentation of a subject’s touch dynamics behavior, and, as a
result, the higher the accuracy performance we could achieve
(Tasia et al., 2014).

There are two ways of acquiring multiple samples in one
data acquisition session: (i) acquiring a fixed input string
repeatedly (for character-based or digit-based input), or (ii)
continuously acquire touch events over a fixed period of
time (for non-specific input). According to the literature, the
benchmark number of samples per session per subject is
between 10 and 20 repetitions for the fixed input type
(Buschek et al., 2015; Kambourakis et al., 2014; Sen
and Muralidharan, 2014; Trojahn et al., 2013) and 5 to
10 minutes for non-specific input type (Meng et al., 2013; Xu
et al., 2014).

Requesting a large number of samples from a subject in
one data acquisition session is impractical. This is because
subjects may not be available for a long stretch of time, or
may feel uncomfortable with a lengthy acquisition session
(Tasia et al., 2014). Therefore, selecting an optimal number of
samples per data acquisition session is important. Alterna-
tively, instead of acquiring a large number of samples in
one lengthy acquisition session, we can carry out the data
acquisition operation in multiple shorter sessions spread
over a period of time. This approach can reduce the level
of discomfort imposed on a subject and also better capture
any intra-session variations (further discussions in the next
section).

Fig. 10 – The distribution of input string types used in
touch dynamics experiments.
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4.5. Acquisition session and interval

As mentioned above, a data acquisition operation for each
subject can be carried out and completed either within a
single session or spread over several sessions separated by a
predefined time interval. In the majority of the reported ex-
periments (64%), data from each subject were acquired within
a single session.

Though the above approach is relatively cheaper, it is not
always practical to request a large number of samples from
each subject in a single session. More importantly, touch dy-
namics biometrics, like other behavioral biometrics (i.e. voice,
gait and signature), is not stable over time (Xu et al., 2014). This
implies that there may be intra-session variations between dif-
ferent input samples in a session, even if the input samples
are provided by the same subject. If samples are acquired in
a single session, the intra-session variations may not be cap-
tured. This is evident in the experimental work reported by
Buschek et al. (2015), where the accuracy performance evalu-
ated using data acquired in a single session is two times better
than those obtained in different sessions. This means that ex-
perimental evaluation using data acquired in single sessions
may be over-optimistic, and may not reflect the true accu-
racy of a biometrics authentication method when deployed in
real-world.

Ideally, a data acquisition operation should be divided into
multiple sessions separated by some intervals. In this way, intra-
session variations can better be captured. This approach has
been adopted in several experiments reported in literature, and,
in these experiments, the selected intervals separating differ-
ent data acquisition sessions vary from minutes (Johansen,
2012), days (El-Abed et al., 2014; Serwadda et al., 2013; Xu et al.,
2014) to weeks (Buschek et al., 2015; Tasia et al., 2014). It is worth
noting that careful considerations should be given when de-
termining the number of samples and the lengths of intervals
separating different sessions. This is because these two factors
may influence the subject participation rate of an experi-
ment. For example, a data acquisition operation that spans
across a longer period of time is more likely to receive a lower
subject participation rate (due to subjects’ availabilities) or may
result in a higher subject dropout rate (due to a greater com-
mitment required of the subjects) (De Luca et al., 2012).
Therefore, there is a balance between better capturing sub-
jects’ natural touch dynamics patterns variation, and preserving
the subject participation rate and commitment to the data ac-
quisition operation.

4.6. Legitimate and illegitimate subject samples

The degree of accuracy of a touch dynamics authentication
system is measured by using the FAR and the FRR values (dis-
cussed in Section 2.5). To compute these values, two categories
of samples are required, namely, legitimate and illegitimate
samples. Acquiring the legitimate samples is a straightfor-
ward process that has been described above. However, for
acquiring the illegitimate samples from a subject, there are three
approaches: (i) partitioning the subject’s samples into two
subsets, one used as the legitimate samples, and the other used
for the illegitimate samples; (ii) acquiring additional samples
from a subset of the subjects involved in a dataset, and use

these additional samples as the illegitimate samples; or (iii)
recruiting additional subjects to provide the illegitimate samples.

Based on our literature research, the first approach is most
frequently adopted (85%). For example, in these experiments
(Giuffrida et al., 2014; Y. Meng et al., 2014; Trojahn et al., 2013;
Wolff, 2013), t out of i samples acquired were used as the il-
legitimate samples, with the rest, (t − i) samples, used as the
legitimate ones. The subset of illegitimate samples can be se-
lected in a randomized (Trojahn et al., 2013; Wolff, 2013) or a
predefined order (Giuffrida et al., 2014; Y. Meng et al., 2014). With
this approach, an equal number of the legitimate and the il-
legitimate samples can be obtained with minimal or no
additional resources. However, this approach has a limitation
when the input string is not the same across all subjects, as
it is not possible to compare the touch dynamics patterns of
two input strings when they are different.

The experiments that do not use the same input string
across all the subjects can use the second approach to obtain-
ing the illegitimate samples. For example, Tasia et al. (2014)
recruited 100 subjects to provide the legitimate samples. Then
10 subjects were randomly selected from the 100 subjects and
were given the PINs of all the other subjects. Each of these 10
subjects was given the additional task of providing 5 imper-
sonated samples of each of the other 99 subjects. With this
approach, the 10 selected subjects need to devote more time
and effort to the experiment, and this may discourage volun-
tary participations. For this reason, the number of the
illegitimate samples acquired is usually smaller than that ac-
quired using the first approach (by partitioning the already
acquired legitimate samples).

The third approach is to recruit a separate pool of sub-
jects specifically for providing the illegitimate samples. Take
Dhage et al. (2015), Gascon et al. (2014), and Sen and
Muralidharan (2014) for example, instead of requesting the sub-
jects recruited for providing the legitimate samples, the research
team recruited additional subjects for providing the illegiti-
mate samples. In this way, it is more likely to obtain a balanced
number of the legitimate and the illegitimate samples. It is
worth mentioning that, with this approach, for each incre-
ment of the subject size in a dataset, two subjects should be
recruited. This means that the resource and the effort needed
to obtain a dataset are doubled in comparison with the other
two approaches.

4.7. Public dataset

The availability of a public dataset for touch dynamics bio-
metrics research is vital. For example, with such a dataset, we
could do comparisons of different algorithms on the same
dataset and/or different experimental settings. The availabil-
ity of a public dataset also allows researchers to focus on more
challenging research issues, spending less time on data ac-
quisitions. However, the availability of open dataset in the
domain of touch dynamics biometrics is still limited. This may
be due to the fact that touchscreen devices have not been with
us for a very long time, and the creation or acquisition of such
data is a time and resource consuming process. At the time
of this writing, we are only able to find three public datasets
in relation to touch dynamics. These datasets are summa-
rized in Table 2.
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4.7.1. Dataset 1
The data acquisition experiment conducted by El-Abed et al.
(2014) involved 51 subjects inputting a fixed character-based
string “rhu.university” on a Nokia Lumia 920 Windows smart-
phone.The subjects were required to attend 3 different sessions
with an average inter-session interval of 5 days.The first session
was used as a practice session, so the actual data acquisition
commenced from the second session. A total of 15 samples were
acquired from each subject over the second and third sessions.

4.7.2. Dataset 2
Another dataset, published by Tasia et al. (2014), was based on
digit strings.The device used for acquiring the data was an early
generation smartphone running on Android 2.0.1 (Éclair) API
level 6, which was released in December 2009. Subjects were
only required to provide 2 samples per session and 5 ses-
sions were used with an inter-session interval of at least 1 week.
Data were acquired in a confined classroom environment in-
volving mostly university students. Input strings were not
predefined; subjects were allowed to freely choose their PINs,
most of which have the lengths of 4 to 8 digits.

4.7.3. Dataset 3
Another related effort to acquire and share dataset publicly was
made by Antal and Szabó (2014). The number of subjects in-
volved is the smallest among the three public datasets. The
data acquisition in this experiment was done by using a Nexus
7 tablet and an LG Optimus L7 P700 smartphone. The paper
did not explain why two different device types were used and
whether the use of different device types would have any per-
formance implications. The input string used for the data
acquisition was predefined as “.tie5Roanl”. Additionally, the
touch events acquired include not only the input string but also
shift key (toggle between lower and uppercase characters) and
keyboard switch key (toggle between characters and digits keys).
These secondary key events may capture valuable and dis-
tinctive information about a subject touch dynamics patterns.
Also, in this experiment, most of the subjects provided their
passwords 30 times each on 2 isolated sessions over a period
of 2 weeks (the duration between the two sessions was
unknown). Some invalid inputs were removed, so the dataset
was unified to only 51 input samples per subject (instead of
60 from both sessions).

5. Feature extraction

Human touch dynamics patterns contain unique features
that can be used to distinguish one another. In feature extrac-

tion phase, these features are extracted by processing the raw
touch dynamics data acquired from a subject. Common fea-
tures discussed in literature can be classified into three
categories, namely: (i) timing, (ii) spatial, and (iii) motion. The
research efforts made on these features are summarized in
Fig. 11.

5.1. Timing feature (TM)

The timing feature is the most widely used feature in touch
dynamic biometrics. A touch event (finger touching down or
lifting up) on a virtual keyboard generates digital interrupts
that can be detected by the mobile OS API function calls
(Kambourakis et al., 2014). Each of these events can be coupled
with a timestamp value. These timestamp values do not have
semantic meaning and need to be further manipulated. Based
on these timestamp values, two different types of timing feature
with varied lengths can be extracted.

5.1.1. Timing feature types
By performing mathematical operations on two touch event
timestamp values, two types of timing feature types can be ob-
tained. The first one is the Dwell Time (DT) and it refers to the
time duration of a touch event with the same key. It is also
known as interval, press or hold time in literature. This value
can be obtained by subtracting a key release timestamp value
from its key press timestamp value.The second one is the Flight
Time (FT). It refers to the time interval between the touch events
of two successive keys. It is also known as latency. As shown
in Fig. 12, there are four variants of FT. It is worth noting that,

Table 2 – The three public touch dynamics biometrics datasets.

Dataset 1 Dataset 2 Dataset 3

Input string type Character-based Digit-based Character-based
Subject size 51 100 42
Number of sessions 3 5 2
Session interval 3–30 Days 1 Week -
Input sample size/session 5 2 30
Total acquisition duration/subject - 5 Weeks 2 Weeks
Total sample size/subject 15 10 51
Separate illegitimate samples No Yes No

Fig. 11 – The number of publications on reporting different
touch dynamics feature types.
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according to Sheng et al. (2005), FTA may have a negative value.
This scenario happens when a subject presses the next key
before releasing the previous one. However, this scenario is
more likely to happen when acquiring the timing feature using
a computer keyboard rather than using a virtual keyboard.This
is due to the difference in physical and geometrical size of
virtual keys against physical keys; it is very rare for a subject
to use multiple fingers simultaneously when providing their
input on virtual keys. As a result, the chances of pressing the
next key before releasing the previous one is significantly
reduced or in some cases do not exist when using a virtual
keyboard.

5.1.2. Timing feature length
A timing feature can be extracted with different feature lengths.
The shortest feature length is known as uni-graph, which is
the timing feature extracted by taking the touch event time-
stamp values of the same key. The timing features extracted
from two or more keys are called di-graph and n-graph, re-
spectively. A graphical illustration of the different n-graph
lengths is shown in Fig. 13. In the majority of the experi-
ments reported in literature, the uni-graph and di-graph are
used. The only two exceptions were the experiments con-

ducted by Giuffrida et al. (2014); Trojahn et al. (2013), where
the n-graph with the size of 3 or larger were extracted. The
reason why a large n-graph size is not commonly used is that
a larger n-graph contains a lower feature granularity (Trojahn
et al., 2013). This has been experimentally proven by Giuffrida
et al. (2014). In their experiment, the authors compared the ac-
curacy performances of different n-graph sizes.The comparison
result showed that a larger n-graph size produces a lower ac-
curacy performance.

5.2. Spatial feature (SP)

A spatial feature is a characteristic associated with physical
interactions between a fingertip and a device touchscreen
surface, and it can be acquired when a touch event is per-
formed. The three most commonly reported spatial features
in literature are touch size, pressure, and position. Visual ex-
amples of these three spatial features extracted using an
Android mobile device are reported in Y. Meng et al. (2014).

5.2.1. Touch size
The touch size represents an approximation of the screen area
being touched in a touch event. Each touch event is associ-
ated with a touch size value. The value is typically returned
from an API function and is scaled to a value in the range
between 0 and 1 (Zheng et al., 2014).This value is normally used
as feature data without further manipulation. The touch size
value captured from a subject is determined by the subject’s
fingertip size. For example, Nixon et al. (2014) observed that
an adult male subject usually produces a larger touch size value
than a child or an adult female subject. This means that it is
hard for people with different fingertip sizes to mimic each
other.

5.2.2. Touch pressure
The touch pressure is another feature that is often used along
with the touch size. A touch pressure value measures the ap-
proximated force asserted on the screen upon each touch event.
It is expressed in an abstract unit, with a value in the range
between 0 (softer touch) and 1 (harder touch) (Zheng et al., 2014).
Similar to the case for the touch size, a touch pressure value
extracted by an API function can be used directly without
further manipulation. A touch pressure value is linked to a sub-
ject’s finger muscle that is unique to each subject. Therefore,
it is hard for one subject to imitate another subject’s touch pres-
sure purely by observations, making a touch dynamics
authentication system that uses touch pressure feature highly
resistant to shoulder surfing attacks (Feng et al., 2013).

5.2.3. Touch position
The touch position is a two-dimensional matrix feature that
captures a fingertip landing location on a device screen (or key).
Each touch event can be associated with an x and y-coordinate
measured in pixel units (Kolly et al., 2012). The touch posi-
tion of a key varies with a subject’s fingertip size and cognitive
preference. This variation allows the touch position to be used
as a discriminative feature to identify a subject. This is further
supported by the observations reported by Johansen (2012),
where the touch positions provided by different subjects are

Fig. 12 – Timing feature types.

Fig. 13 – The different timing feature lengths.
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highly different among different subjects in their experi-
ment. The touch position can be expressed using two different
ways: (i) as the absolute coordinates of a touch event relative
to the entire screen (Y. Meng et al., 2014), or (ii) as an offset to
the center of a key used (Draffin et al., 2014). Also, by some
mathematical manipulations, additional features can be derived.
These include the distance (Buschek et al., 2015; Kambourakis
et al., 2014), speed (Kambourakis et al., 2014), or angle (Serwadda
et al., 2013), between two touch events. However, there is a
concern with this coordinate representation of touch posi-
tion values (Alotaibi et al., 2014); that is, the coordinate system
of a screen is device dependent. Using different devices, the
captured touch position values are not consistent. Therefore,
touch position values should be normalized, unless data ac-
quisition operation is conducted on a device with a similar
model (Jain et al., 2014).

5.3. Motion feature (MO)

Modern mobile devices are embedded with two hardware
motion sensors, the accelerometer and the gyroscope. These
sensors have been widely used in applications, such as device
pairing and sleep cycle monitoring applications, that make use
of movement data or are movement dependent (Owusu et al.,
2012). Each touch event usually inflicts a small amount of move-
ment and/or rotation to the device. These motion features can
be captured and used to identify a subject.

The accelerometer sensor measures the linear movement
rate applied to a device over time. It is designed to detect the
movement along the x, y, and z-axis in both positive and nega-
tive directions. These three values are measured in the unit
of m/s2 (Aviv et al., 2012). On the other hand, the gyroscope
sensor measures the rotation rate applied to a device against
the three axes: (i) tilt forward and backward (pitch), (ii) twist
from side to side (roll), and (iii) turn from portrait to land-
scape (yaw). These values are measured in the unit of rad/s
(Giuffrida et al., 2014). Fig. 14 shows a graphical representa-
tion of the different motions captured by both sensors.

Normally, raw motion data obtained from these two sensors
are not readily usable as feature data.This is because each touch
event generates more than one movement and rotation values.
To make the data usable as feature data, we should apply some
statistical computations, such as min, max, mean and vari-
ance, on the raw data, and the results of these computations

can be used as meaningful feature data (de Mendizabal-Vazquez
et al., 2014; Ho, 2013). Also, as Zheng et al. (2014) pointed out,
both sensors are sensitive to tiny movement changes. There-
fore, they chose to combine sensor values of x, y and z-axis
into a vector of feature, instead of using them individually.

Researchers are divided as to whether the accelerometer
sensor actually provides a better discriminative property than
the gyroscope sensor. For example, the experimental results
from Giuffrida et al. (2014) show that the accelerometer data
can better capture a subject’s touch dynamics patterns than
the gyroscope data. However, the observations made by Cai and
Chen (2012) show a different result, i.e. the gyroscope data
provide a better accuracy, especially if a subject uses the device
while moving. In literature, a majority of the touch dynamics
motion feature data are from both types of sensors.This is good
because data from both types of sensors may complement each
other, leading to a better accuracy in identifying a subject.

6. Decision making

Decision making is an operation carried out to determine if
the touch dynamics patterns submitted by a subject have indeed
originated from the target subject. This decision is made by
comparing the similarity or dissimilarity score generated from
a machine learning technique against a predefined thresh-
old. A number of such techniques have been used in a touch
dynamics research reported in literature, namely: (i) Probabi-
listic Modeling, (ii) Cluster Analysis, (iii) Decision Tree, (iv)
Support Vector Machine, (v) Neural Network, (vi) Distance
Measure, and (vii) Statistical. Fig. 15 summarizes the machine
learning techniques against the number of papers that adopted
them in touch dynamics research.

6.1. Probabilistic modeling (PM)

The main idea behind the probabilistic modeling technique is
to predict the likelihood of a given test sample belonging to a

Fig. 14 – The different motion data captured by different
mobile sensors.

Fig. 15 – Machine learning techniques vs the number of
papers that employed them.
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particular subject using the prior probability calculated from
training samples (touch dynamics data acquired during user
enrollment phase). One widely used probabilistic modeling tech-
nique is the Bayesian Network (Feng et al., 2013; Saravanan
et al., 2014). It uses an acyclic graph model to find the proba-
bilistic relationship between parent and child node (Antal and
Szabó, 2014). For example, feature data from a reference tem-
plate will be used as the parent node and the associated subject
identity as a child node. Then, given a test sample (touch dy-
namics data acquired during user authentication phase), the
intended child node is determined by the probability of the
parent node (Jeanjaitrong and Bhattarakosol, 2013). Other vari-
ants of the probabilistic modeling technique include the Naive
Bayes (Buschek et al., 2015; Crawford et al., 2013) and the Gauss-
ian Probability Density Function (Mahnoush Babaeizadeh et al.,
2014).

6.2. Cluster analysis (CA)

The cluster analysis technique assumes that samples belong-
ing to the same subject have similar properties (Meng et al.,
2013). The goal is to group sample with similar properties to
form a homogeneous cluster. Then the label of a test sample
is decided by the degree of proximity toward a cluster (Antal
and Szabó, 2014). Samples from different clusters are highly
dissimilar but very similar among the samples in the same
cluster. There are variants of the cluster analysis technique,
including the K-means (Trojahn et al., 2013), K-Star (Sen and
Muralidharan, 2014; Trojahn and Ortmeier, 2013) and k-Nearest
Neighbors (k-NN) (Buschek et al., 2015; Crawford et al., 2013;
Giuffrida et al., 2014).

6.3. Decision tree (DT)

The decision tree technique is popular and used in many areas.
It is well known for its low computational complexity (Antal
and Szabó, 2014).This technique is particularly suitable for clas-
sification problems that involve a small number of output labels.
For example, in the case of touch dynamics authentication, it
is often used to check whether a test sample is legitimate or
not. The J48 (Y. Meng et al., 2014; Saravanan et al., 2014; Sen
and Muralidharan, 2014; Trojahn and Ortmeier, 2013) and the
Random Forest (RF) (Feng et al., 2013; Kambourakis et al., 2014;
Saravanan et al., 2014) are the two widely used decision tree
techniques in touch dynamics research. The main objective of
these techniques is to create a tree-like model that predicts
the class label of a given test sample based on previously known
training samples. A decision tree is constructed by continu-
ously splitting feature data into subsets so that the information
gain ratio at each node of the tree is maximized. This itera-
tive process stops when a node has only a single label, or when
further splitting a tree node no longer provides additional in-
formation gain. The RF differs from the J48 in that it adds a
randomized procedure in the process of splitting each tree node
(Antal and Szabó, 2014). The experimental results reported in
Feng et al. (2013) and Serwadda et al. (2013) show that the RF
performs better than the J48 in classifying subject touch dy-
namics patterns. However, it requires a longer time to formulate
a decision tree (Kambourakis et al., 2014). When using a de-

cision tree technique, considerations should be given to prevent
over-fitting the tree, which could result in a higher level of com-
putational complexity and a lower level of performance.

6.4. Support vector machine (SVM)

The support vector machine is another technique commonly
used in many biometrics studies (Gascon et al., 2014; Jain et al.,
2014). The fundamental concept of this technique is to first de-
termine how two classes of feature data differ from each other
and then create a boundary that best separate them. Having
this boundary, subsequent test samples can be classified as
either legitimate or illegitimate according to which side of the
boundary they are located. The search for this boundary can
be performed within a 2-dimensional hyperplane using a linear
kernel (separating) function. However, distinguishing the touch
dynamics patterns between legitimate and illegitimate sub-
jects are non-linear in nature (Xu et al., 2014). A non-linear
kernel function such as Radial Basis Function (Antal and Szabó,
2014; Serwadda et al., 2013) can be used to map feature data
onto a higher dimensional feature space to create more complex
boundaries that can optimally split both classes (i.e. legiti-
mate and illegitimate). As a result, it can more accurately
determine which side of the feature space a test sample belongs.

6.5. Neural network (NN)

The neural network technique simulates the information pro-
cessing structure of biological neurons. Typically, a neural
network architecture consists of three interconnected layers
(the input, hidden and output layer). To start with, the feature
data from all subjects are fed into the input layer of the network
as a set of neurons. An activation function is used to assign
weights to each neuron. Then the information of the acti-
vated neurons is passed from one to another within the hidden
layer. This process iterates until an output is produced. Finally,
based on the output values, a learning process is used to update
the weights of each neuron in the hidden layer to improve the
network. Some commonly used neural network techniques are
Radial Basis Function networks (RBFN) (Meng et al., 2013;
Trojahn and Ortmeier, 2013) and Multi-Layer Perceptron (MLP)
(Antal and Szabó, 2014; Sen and Muralidharan, 2014; Serwadda
et al., 2013). A neural network generally produces a higher level
of accuracy in identifying a subject but is more computationally
expensive (Draffin et al., 2014) and more time consuming to
be used (de Mendizabal-Vazquez et al., 2014). According to
Kambourakis et al. (2014), it is impractical to run on mobile
devices with less than 512MB of memory.

6.6. Distance measure (DM)

The distance measure technique calculates a dissimilarity or
similarity score between a test sample and the training sample
of a given subject.The score is then compared against a thresh-
old to determine if the test sample belongs to the target subject.
Most frequently used distance measure techniques include Eu-
clidean (Crawford et al., 2013; de Mendizabal-Vazquez et al.,
2014; Samura et al., 2014; Sen and Muralidharan, 2014), Man-
hattan (Ho, 2013; Johansen, 2012; Serwadda et al., 2013),
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Mahalanobis (Antal and Szabó, 2014; Giuffrida et al., 2014) and
Bhattacharyya (Wolff, 2013).

6.7. Statistical (ST)

There are several statistical techniques that have been used
in biometrics research.These techniques include the mean and
standard deviation (Tasia et al., 2014; Zheng et al., 2014) and
the deviation tolerance (Dhage et al., 2015; Huang et al., 2012).
There are a number of advantages associated with these tech-
niques. For example, in comparison with the techniques
discussed above, they are less complex and easy to imple-
ment, cost less computational time, and consume less resource
such as battery power. These advantages are important for
resource-limited mobile devices.

7. Fusion

Fusion is an approach used to combine information from mul-
tiple sources to improve the accuracy performance of a
biometrics authentication method. The multiple sources
may be from multiple features or by using multiple machine
learning techniques. The information from these sources may
be combined at three different stages, which are, respec-
tively, referred to as (i) feature level fusion, (ii) score level fusion,
and (iii) decision level fusion.

7.1. Feature level fusion (FLF)

The feature level fusion is the most used fusion approach in
touch dynamics research. The fusion approach involves con-
catenating more than one feature data into a single feature
vector and is performed before the template generation or the
data classification operation. Fusion may be performed on
feature data acquired from the same (Jeanjaitrong and
Bhattarakosol, 2013) or different sensors (Giuffrida et al., 2014;
Zheng et al., 2014). Although feature level fusion is simple to
implement and it enables the utilization of additional prop-
erties of multiple feature data, it can result in an overly large
joint feature vector known as the curse of dimensionality (Shi
et al., 2011). Some machine learning techniques, such as de-
cision tree, may not work well with a high dimensional feature
vector (Shimshon et al., 2010).Therefore, the number of feature
data fused may influence the selection of machine learning
technique.

7.2. Score level fusion (SLF)

The score level fusion, unlike the feature level fusion, is per-
formed after the data classification operation. For example, in
Samura et al. (2014), two different machine learning tech-
niques (the Weighted Euclidean Distance and the Array Disorder)
were used independently on one set of feature data, result-
ing in two matching scores, one from each machine learning
technique.The two scores are then combined into a single score
for decision making. Methods such as the sum, weighted-
sum, or product rules are commonly used to combine multiple
scores (Dhage et al., 2015). If the scores from different machine

learning techniques are not comparable, they will need to be
normalized prior to fusion (Tresadern et al., 2013).

7.3. Decision level fusion (DLF)

The decision level fusion is the least complex among the three
fusion approaches. It requires minimum changes being applied
to the internal structure of each data classification algo-
rithm. Fusion is performed by combining decisions (accept or
reject) made by multiple machine learning techniques using
voting rules, such as the AND or OR rules (Dhage et al., 2015).

8. Data adaptation

Human touch dynamics, unlike physiological biometrics (e.g.
fingerprint or iris), are not permanent and are likely to evolve
over time. After some time, a subject’s reference template (gen-
erated using samples acquired during enrollment phase) may
no longer reflect the subject’s most recent touch dynamics pat-
terns. One way to deal with this issue is by introducing an
adaptation component. The component uses the most recent
touch dynamics patterns to update the reference template of
the subject, allowing gradual adjustment of the reference tem-
plate based on the touch dynamics pattern changes.

To control unintended or unnecessary changes imposed on
a reference template, two different policies can be used
(Crawford et al., 2013), e.g., selecting samples from different
input instances or mixing the most recent samples with a
portion of the existing template samples. These policies can
reduce the effect of short-term pattern changes of the legiti-
mate subjects or prevent unauthorized modifications made to
reference template by the illegitimate subjects.

Although the adaptation component requires additional
computation time and resource, if implemented correctly, it
may not degrade device performance, reduce battery life span
or affect usage experience. For example, an adaptation module
can be executed during the period when the execution of the
component have the least effect on a device (e.g. when the
device is in the standby mode or is plugged into a power source
for recharging, or when the processor is idle) (Crawford et al.,
2013).

9. Performance analysis and discussion

This section provides an overview of the performances achieved
by related works, i.e. touch dynamics authentication re-
ported in literature. For the sake of clarity, the performances
are discussed based on the authentication modes that they
support, static or dynamic modes, input string lengths used,
feature discriminative capabilities, fusion approaches used, and
the system overheads they each impose.

9.1. Static mode

In the static mode, the identity of a subject is verified based
on the input provided by the subject on the first instance of
accessing a system. This is the first line of protection and also
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the most commonly seen security protection measure de-
ployed on mobile devices. According to our literature research,
character-based and digit-based passcodes are the most used
input types in the static mode.

To test the viability of integrating touch dynamics biomet-
rics with password, Kambourakis et al. (2014) has conducted
experiments to acquire passwords using touch dynamics from
20 subjects. The password is a predefined alphanumeric char-
acter string (“7q56n5ll44”). To acquire each password string, a
subject is required to move their finger from one side of the
device to the other to complete the input by touching on dif-
ferent keys on the touchscreen keyboard.The feature extraction
was performed using two different methods: individual key-
based extraction and overall key-based extraction. With the first
method, the feature values of every single touched key are ex-
tracted and analyzed by the classifier. With the second method,
the average feature value of all the touched keys is calcu-
lated before being analyzed by the classifier. Experimental
results show that regardless of the classifiers used, the first
method always outperforms the second. This is because more
fine-grained information can be captured in the feature value
of individual touched key than the average feature value of all
touched keys.

Sen and Muralidharan (2014) attempted to use touch dy-
namics biometrics to enhance digit-based passcode (PIN). In
the experiment, 10 subjects were asked to provide 100 input
samples of a predefined PIN (“1593”) each. Using the Multi-
Layer Perceptron classifier, legitimate subjects were able to be
correctly classified up to 86% of the time (FRR 14%). The FAR
test was conducted somewhat differently. Two additional sub-
jects were recruited (acting as an attacker) to imitate the PIN
input pattern of all the 10 legitimate subjects. To facilitate the
impersonation attempt, the two attackers were given a visu-
alization tool. The tool is designed to reveal the correct timing
and pressure information of each digit of the PIN input of the
legitimate subjects. Even by deliberately exposing the timing

and pressure feature data of the PIN, the authors were still able
to archive an FAR of 16%.

As can be seen from Table 3, the work by Jeanjaitrong and
Bhattarakosol (2013) is the only one that uses a symbolic pass-
code instead of a character-based or digit-based passcode. The
symbolic passcode consisted of spade, heart, diamond, and club.
Each of the symbols can be represented in 4 different colors.
A total of 16 symbols arranged in a 4 × 4 matrix block were de-
signed as the input screen layout. To control the screen size
inequality of different mobile devices, the data acquisition tool
is developed as a web application so that the input screen layout
can automatically scale to the screen size of different mobile
devices. An accuracy performance of 82.18% was achieved by
employing the Bayesian network to classify the timing and
spatial feature of the 10 subjects.

9.2. Dynamic mode

In the dynamic mode, a subject’s identity is continuously veri-
fied throughout the active session of a mobile device. An
authentication deployed in the dynamics mode can detect un-
recognized touch dynamics patterns when a subject’s mobile
device is used by someone else. Once any unrecognized touch
dynamics patterns are detected, restriction to sensitive appli-
cation can be imposed and/or additional reauthentication
request can be triggered. To authenticate a subject in the
dynamic mode, a longer input string is normally required than
in the static mode. The longer input string is commonly ac-
quired by researchers using three different ways: (i) requiring
subject to input a long input string, (ii) accumulating touch
events over a predefined period of time, or (iii) setting a pre-
defined number of touch events to accumulate.

Feng et al. (2013) attempted to identify a subject based on
the character strings commonly used in emails and chat mes-
sages. It is noted that storing feature data of each character
combination of the character string may impose system

Table 3 – The research works conducted in static mode.

Study Subject size Input type Input length Feature Method EER (%)

Dhage et al. (2015) 15 C 10 TM ST 0.806
Trojahn and Ortmeier (2013) 16 C 11 TM, SP DT 2.03b, 2.67c

Kambourakis et al. (2014) 20 C 10 TM, SP DT 26
Giuffrida et al. (2014) 20 C 8–9 TM, MO DM 0.08
Bond and Ahmed Awad (2015) 25 C 34 TM NN 9.3
Buschek et al. (2015) 28 C 6–8 TM, SP PM 21.02
Huang et al. (2012) 40 C 11 TM ST 7.5
Antal and Szabó (2014) 42 C 10 TM, SP DM 12.9
Sen and Muralidharan (2014) 10 D 4 TM, SP NN 15.2
Jain et al. (2014) 30 D 10 TM, SP SVM 2.8
Ho, (2013) 55 D 4 TM, SP, MO SVM 4.4b, 5.3c

de Mendizabal-Vazquez et al. (2014) 80 D 4 TM, SP, MO DM 20
Zheng et al. (2014) 80 D 4 TM, SP, MO ST 3.65
Tasia et al. (2014) 100 D 4–10 TM, SP ST 8.4
Wu and Chen (2015) 100 D 8 TM, SP, MO SVM 0.556
Trojahn et al. (2013) 152 D 17 TM, SP CA 4.19b, 4.59c

Jeanjaitrong and Bhattarakosol (2013) 10 O 4 TM, SP NN 82.18a

C: Character; D: Digit; O: Other.
a
Accuracy.

b
FAR.

c
FRR.
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overhead on a mobile device. Therefore, only the 40 most fre-
quently used English language character combinations were
stored and used for analysis. The subjects’ inputs were ana-
lyzed through a series of character strings with the lengths of
20, 40 and 60. If the touch dynamics patterns within the char-
acter string are unrecognized, the subject is declared as an
impersonator and a reauthentication request will be invoked.
The result shows that the best accuracy performance achieved
was 1% EER by using the random forest classifier based on a
40 character string. The authors also suggested that for au-
thentication in the dynamic mode, maintaining high usability
is the highest priority. This means that achieving a low FRR
value is important.

The experiment conducted by Gascon et al. (2014) is rather
different from the one discussed above, as in the input strings
are some predefined 160 characters pangrams (words or sen-
tences containing every letter of the alphabet at least once).
One example given was “the quick brown fox jumps over the
lazy dog”. The reason for using pangrams is to ensure that all
characters on the virtual keyboard are used at least once. As
shown in Table 4, the number of subjects recruited in the ex-
periment is the largest (315 subjects) among the research works
conducted in the dynamic mode. The FRR test was con-
ducted somewhat differently; among all the 315 subjects’
samples, only 12 subjects’ samples were used to calculate the
FRR value, with the remaining 303 subjects’ samples used for
the FAR test. An accuracy performance of 1% FAR and 18% FRR
was obtained by using a support vector machine classifier with
the linear separating function.

Data acquisition operation conducted by (Y. Meng et al., 2014)
did not use a predefined input string. Data acquired was in the
form of touch events generated by these routine activities. For
example, subjects were requested to use an Android smart-
phone to perform their usual activity, such as text messaging
and web browsing. Unlike their previous study (Meng et al., 2013),
where a 10-minute session was used to acquire touch events,
their latest study predefined a fixed number of touch events to
be acquired in each data acquisition session.The changes were
made because the number of touch events acquired by using
the time-based session was unpredictable.The latter approach
was able to supply a more consistent and sufficient number of
touch events for analysis, and thus improves the effectiveness
of the experiment. In the experiment, the performances of five

different classifiers were compared. The results show that the
radial basis function network achieved the best EER of 2.46%.

9.3. Input string length

Previous studies suggested that the input string length has a
direct relationship with the accuracy performance of a clas-
sifier. For example, the experiment conducted by Zheng et al.
(2014) compared the accuracy performance between a 4-digit
and an 8-digit PIN. The dissimilarity scores between the le-
gitimate and the illegitimate subjects have been calculated and
plotted in a frequency distribution graph. The authors discov-
ered a clear gap in the dissimilarity scores graph of the 8-digit
PIN, but an overlap for the 4-digit PIN.This shows that the longer
the PIN, the better it is at representing a subject touch dy-
namics patterns, and the higher the accuracy performance of
the classifier. A likely explanation is that the 8-digit PIN is two
times the length of the 4-digit PIN and has twice as many fea-
tures as the 4-digit PIN, allowing it to hold more information
about a subject’s touch dynamics patterns.

The above study was not the only one that reported the cor-
relation between the input length and the accuracy performance
of a classifier. Draffin et al. (2014) also discovered that by in-
creasing the number of touch events (from 5 to 15) used for
data classification, the accuracy performance can be im-
proved by 27%. Table 5 shows similar observation by other
research works.

9.4. Feature discriminative capability

The timing feature has been the most frequently used feature
since the early stage of keystroke dynamics research (prede-
cessor to touch dynamics). More recent mobile devices are
embedded with various sensors that are capable of providing
additional features that can be used to describe a subject’s
touch dynamics patterns. It is interesting to compare the
discriminative capabilities of these new features (i.e. the spatial
feature and the motion feature) against the timing feature.

In an experiment conducted by Buschek et al. (2015), the
spatial feature, such as the touch size, pressure, and position
were extracted from the touchscreen sensor of a mobile device.
The result shows that these spatial features always perform

Table 4 – The research works conducted in dynamic authentication mode.

Study Subject size Input length Input freedom Method EER (%)

Kolly et al. (2012) 5 15 touch events Yes PM 80a

Wolff (2013) 6 15 min touch events - DM 83a

Draffin et al. (2014) 13 6000 touch events Yes NN 86a

Meng et al. (2013) 20 10 min touch events Yes NN 2.92
Xu et al. (2014) 32 5 min touch events No SVM <10
Feng et al. (2013) 40 14–53 Characters No DT 1
Y. Meng et al. (2014) 50 120 touch events Yes NN 2.46
Shen et al. (2015) 51 800 touch events Yes SVM <8
Serwadda et al. (2013) 190 80 touch events No PM ~13.8
Gascon et al. (2014) 315 160 Characters No SVM 1b, 8c

a
Accuracy.

b
FAR.

c
FRR.
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better than the timing feature in most of the experimental set-
tings. The best EER was obtained using the touch location and
the touch size feature, and it was approximately 14% better
than the timing feature.

The motion feature extracted from the motion sensor pro-
vides additional movement information that can be used to
describe a touch event performed by a subject on a mobile device.
The experiment conducted by Giuffrida et al. (2014) reported
that the EER of their proposed method was markedly reduced
from 4.97% (by using the timing feature) to 0.08% after using
the motion feature. This shows that the motion feature pro-
vides richer discriminative capability than the timing feature.

Table 6 clearly shows that some of the features perform
better than the other. However, this does not mean that the
lower performed features are not useful. This is because each
feature data type captures a different aspect of the subject’s
touch dynamics patterns (Zheng et al., 2014). Studies (Buschek
et al., 2015; Samura et al., 2014) suggested that by combining
multiple features (using fusion approach), the accuracy per-
formance of the classifier can be further improved (further
discussions in the following section).

9.5. Fusion

To increase the overall accuracy performance, researchers have
attempted to use different fusion approaches. For example,

Zheng et al. (2014) suggested that different feature captures
a different aspect of a touch dynamics patterns, and combin-
ing them allows a subject’s touch dynamics patterns to be more
precisely represented. To prove this assumption, the authors
conducted four experiments using four features: (i) accelera-
tion (motion), (ii) pressure (spatial), (iii) size (spatial) and (iii)
time (timing). When the features are used individually, each
obtained an EER of 19%, 12%, 25%, and 21%, respectively,
whereas when all four features are used together, the EER has
decreased to 4.5%. This shows that using the combination of
all features produces a better result than using the features
individually.

As has been discussed in the section above, there are three
different types of fusion approaches. We can use more than
one of the approaches simultaneously to improve the accu-
racy performance of a classifier. For example, Samura et al.,
(2014) uses both the feature level fusion and the decision level
fusion approaches in their experiment. To start with, they
first combined different types of feature extracted from a 300
character input text (feature level fusion). Then the indi-
vidual score produced by two different data classification
techniques (Weighted Euclidean Distance and Array Disor-
der) are combined (decision level fusion) to collectively make
an authentication decision.The accuracy performance was suc-
cessfully improved from 55% (before fusion) to 95.7% (after
fusion).

Table 5 – The accuracy performance of short and long input string lengths.

Study Working mode Input type Input length EER (%) Improvement (%)

Kambourakis et al. (2014) Static C 10 26 +47.69
47 13.6

Samura et al. (2014) Static C 200 90.7a +5.51
300 95.7

Zheng et al. (2014) Static D 4 5.98 +24.75
8 4.5

Chang et al. (2015) Static D 6 23 +21.74
10 18

Feng et al. (2013) Dynamic C 20 8.93b, 5.6c +88.8, +46.43
40 1, 3

Draffin et al. (2014) Dynamic O 5 67.7a +27.03
15 86

C: Character; D: Digit; O: Other.
a
Accuracy.

b
FAR.

c
FRR.

Table 6 – The accuracy performance of different feature data types.

Study Input string EER (%) Better off by (%)

Timing Spatial Motion

Samura et al. (2014) 300 Character 39a 38 - +2.56
Buschek et al. (2015) 6–8 Character 21.75 18.65 - +14.25
Jain et al. (2014) 10-Digit 10.5 3.5 - +66.67
Zheng et al. (2014) 16-Digit 16.5 11.5 15 +30.03 (Timing), +30.43 (Motion)
Wu and Chen (2015) 8-Digit 71.3a 69.03 98.26 +37.81 (Timing), +42.34 (Spatial)
Giuffrida et al. (2014) 8 Character 4.97 - 0.08 +98.39

Note: Best performed feature highlighted in bold.
a
Accuracy.
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Table 7 summarizes the research work in touch dynamics
biometrics that uses different fusion approaches. All of the ex-
periments show an improvement in accuracy performance after
applying fusion approach.

9.6. System overhead

The accuracy performance has been the primary evaluation
metric for a touch dynamics authentication. Nevertheless,
system overhead in terms of computational speed and
resource consumption is also an important evaluation crite-
rion. The lower the system overhead of a proposed
authentication method, the less the impact it has on the
performance of a mobile device (Meng et al., 2013). The
trade-off between these two metrics was normally not re-
ported. This is because only a small number of research work
(13%) conducted both the data acquisition and the data
classification operation on a mobile device. Most of the
research work conducted the data classification operation on
a desktop computer.

To evaluate the computational speed and the resource con-
sumption of a proposed method, one has to implement both
the data acquisition and data classification operation on a
mobile device. For example, Kambourakis et al. (2014) con-
ducted their experiment entirely on a Sony Ericsson Xperia
smartphone. The Random Forest (RF) and the k-Nearest Neigh-
bor (k-NN) techniques were implemented to identify subjects
based on a 47 character input string. The experimental result
shows that the k-NN not only achieves a better EER but also
consumes relatively the same amount of computational time,
memory, and CPU resource than the RF.

The number of features used to represent a subject’s touch
dynamics patterns can also influence the computational time
and the resource consumption of a mobile device. The more
the number of features used to represent a subject’s touch dy-
namics patterns, the more the computational time and the
resource consumption incurred by a mobile device. Ideally, one
would want to minimize the number of features used and yet
maintaining a reasonable accuracy performance.This has been
shown in an experiment conducted by Y. Meng et al. (2014),
where, even when the number of features was reduced from

37 to 8, the accuracy performance was maintained at a rea-
sonable level. By reducing the number of features used, the
computational time and the resource consumption have been
reduced.

10. Open problems and opportunities

10.1. Optimal input length

In general, the longer the input length, the better the accu-
racy performance of a touch dynamics authentication system.
However, the increase in the length of an input reduces the
usability (in the static mode) and the security (in the dynamic
mode) of the authentication system in different ways. In the
case of the static mode, the longer the input length (or pass-
code), the harder it is for the subject to remember the longer
passcode, thus reducing the usability. In the case of the dynamic
mode (continuous authentication), the longer the input length,
the more time (to acquire more inputs) is required by the au-
thentication system before making an authentication decision.
This potentially allows an illegitimate user to use a device longer
(duration) before being detected, thus reducing the security.
Present continuous authentication in literature is carried out
in the form of a periodic authentication mode, where the users
are reauthenticated based on a block of fixed number of inputs
(Feng et al., 2013) or a collection of inputs over a fixed period
of time (Y. Meng et al., 2014).This method has a limitation; that
is, if the system could detect an illegitimate user before the
fixed number of inputs is acquired, then there is no reason to
allow the illegitimate user to have continued access to the
device. A realistic continuous authentication should take each
input into consideration immediately when making an au-
thentication decision or make sure that the authentication time
is as short as possible. One possible way to address this problem
is to use the streaming classifier such as those by Abdulsalam
et al. (2011) and (Gaber et al. (2007), by which we may be able
to use a lesser amount of inputs to make a quicker authenti-
cation decision with an acceptable level of accuracy
performance.

Table 7 – The accuracy performance before and after applying the fusion approach(es).

Study Input Fusion EER (%) Improvement
(%)

Before fusion After fusion

Jeanjaitrong and Bhattarakosol (2013) Symbol FLF 62.64a 82.18 +31.19
Zheng et al. (2014) 8-Digit FLF 12 4.5 +62.5
Trojahn et al. (2013) 17-Digit FLF 9.28b, 6.72c 4.19, 4.59 +54.8, +31.7
Jain et al. (2014) 10-Digit FLF 3.5 2.8 +20
Wu and Chen (2015) 8-Digit FLF 98.26a 99.17 +0.93
Buschek et al. (2015) 6–8 Char FLF 18.65 13.74 +26.33
Antal and Szabó (2015) 10 Char FLF 6.6 3.1 +53.03
Feng et al. (2013) 4 Char FLF 17.8b, 60c 10.4, 11.1 +41.57, +81.5
Samura et al. (2014) 300 Char FLF, SLF 55a 95.7 +74
Dhage et al. (2015) 10 Char SLF, DLF 4.032 0.806 +80
a
Accuracy.

b
FAR.

c
FRR.
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10.2. Feature data selection

In general, the more the number of feature data is used to rep-
resent the subject’s touch dynamics patterns, the higher the
accuracy performance of the classifier, and the more effec-
tive the authentication method (Alghamdi and Elrefaei, 2015).
However, it is usually undesirable to use all of the available
feature data as input for a classifier because of three reasons:
(i) using more feature data to train and test a classifier will result
in more processing time and CPU overhead (W. Meng et al.,
2014), (ii) storing more feature data will be costlier in terms
of memory efficiency (Zheng et al., 2014), and (iii) not all of the
feature data offer the same degree of discriminative capabil-
ity; some of the feature data provide higher degree of
discriminative capability, and so is more important than the
other. To address this problem, a feature selection process can
be used to choose a smaller subset of feature data that con-
tains only the most important feature data.The feature selection
process can be implemented using algorithms such as those
by Ververidis and Kotropoulos (2009) and Peng et al. (2005). The
discriminative capability of the selected feature data can be
evaluated by its intra-class and inter-class variations. This can
be quantitatively assessed by using the intra-class and inter-
class distribution to show their degree of separations
(discriminative capabilities).

10.3. Unary classifier vs. binary classifier

The primary input for a data classification operation (to build
a data classification model) for a touch dynamics authentica-
tion system is the user’s touch dynamics pattern samples. The
samples are often associated with the user class label (i.e. le-
gitimate or illegitimate class). Therefore, the data classification
algorithms can be categorized into two types based on the class
label of the samples they use to build a model, namely: (i) unary
classifier, which uses only the samples from a single class (i.e.
only the legitimate user samples); and (ii) binary classifier, which
uses the samples from all the classes (i.e. both the legitimate
and the illegitimate user samples), to build a model.

The binary classifiers have been the norm for building data
classification models (Bellinger et al., 2012). However, in some
practical cases, the samples of a particular class outnum-
bered the others or only the samples from a single class are
available. In such imbalanced cases, the binary classifiers may
not perform well, as they rely on samples from all classes to
build a model that separates the different classes apart
(Bellinger et al., 2012). This is the case for a touch dynamics
authentication on a mobile device, where a mobile device is
a highly personal device (rarely shared between multiple users),
so obtaining the illegitimate user samples is not easy in prac-
tice. In this case, using the unary classifiers to build a model
may be a better option. A unary classifier uses only a single
class to build a model, so the model creation is not affected
by the imbalanced dataset. Additionally, the time taken to build
the model is shorter, as a lesser number of samples are used
to train the classifier. Algorithms such as the one-class support
vector machine (Manevitz and Yousef, 2002) and the density
and probability estimates (Hempstalk et al., 2008) can be used
to implement a unary classification model. The effectiveness
of using the unary classifiers over the binary classifiers for touch

dynamics authentication is still not clearly evaluated and is
open for future investigation.

10.4. Larger form factor

A subject’s touch dynamics patterns may vary when provid-
ing their input on the mobile device of different sizes. This
variation can be exploited to achieve a better accuracy per-
formance. For example, Saravanan et al. (2014) shows that the
accuracy performance is higher when the inputs are ac-
quired on a 7-inch mobile device than when they are acquired
on a 4.7-inch version. The better performance can be attrib-
uted to a higher variation in touch dynamics patterns on the
device with a larger screen size. If this assumption is true, and
given that the average size of the mobile devices in the market
is getting bigger year after year (Ben Taylor, 2014), then the vi-
ability of implementing a touch dynamics authentication
system on future mobile devices is promising. The majority of
the devices used in touch dynamics biometrics literature are
smartphones (approximately 5-inch or less). To understand the
impact of the different device sizes on the accuracy perfor-
mance, devices with larger screen size, such as a 10-inch digital
tablet or beyond (table-top or touchscreen panel) should be used
in future studies.

10.5. Continuous identification

Although there is an increasing number of literature about the
use of touch dynamics biometrics for continuous authentica-
tion, there are still limited works on the study of touch dynamics
biometrics in the context of continuous identification on mobile
devices. In some application scenario, e.g., a mobile device
sharing scenario, the continuous identification may be a better
choice than the continuous authentication. This can be ex-
plained using the case as follows. When a mobile device is
shared with a guest, often, the identity of the guest is not known
or predetermined. So establishing a credential (e.g. an ID and
a PIN for verification) for the unknown guest could be trouble-
some and impractical. Without an established credential for
the guest, revalidating the guest’s identity could be difficult to
perform in the continuous authentication. In such a sce-
nario, the continuous identification (one-to-many matching)
could be a better option.

A continuous identification can be implemented on a mobile
device in such a way that when a guest is observed, a privacy
protection mechanism (PPM) will be activated automatically.
The PPM protects and prevents unauthorized or uninten-
tional access or modification to the owner’s data, files, and
system settings. After the guest leaves and the device returns
to the owner’s possession, the PPM will be deactivated, re-
turning the full access privilege of the device back to the owner.
If an impersonator is detected, the mobile device will be locked
and/or alert the owner through e-mail.

Implementing an effective and robust continuous identi-
fication in a mobile device is not easy. Unlike the other
biometrics identification systems (e.g. forensic investigations
or intrusion detections) that involve searching for a matched
identity over a large number of subjects/classes, the identifi-
cation task in a mobile device is usually limited to three classes,
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i.e. the owner, guest, and impersonator. Despite the much
smaller number of classes involved, which may seem to
have reduced the complexity of the identification task, two prob-
lems still exist: (i) the touch dynamics data for the owner need
to be incrementally accumulated, and (ii) the touch dynam-
ics data for the guest and the impersonator are often
very limited or even unavailable and so the owner/guest/
impersonator data classification operation is rather difficult.
This makes training the classifier to perform continuous iden-
tification a challenging problem. Therefore, how to devise a
proper, robust, and effective continuous identification module
deserves more attention in future work.

10.6. Cross-session performance evaluation

In contrast with other physiological biometrics, which pro-
duces a more stable pattern across different acquisition sessions
(e.g. the iris, face or fingerprint pattern), the touch dynamics
patterns acquired from different sessions have a certain degree
of variations from one to the other. These variations occur
because the touch dynamics patterns can be affected by be-
havioral variability. The source of behavioral variability comes
from several factors such as the (i) cognitive factor (e.g. in-
creasing familiarity with the operations or input methods of
a device), (ii) psychological factor (e.g. tiredness, anger, or dis-
tressed), (iii) physiological factor (e.g. sickness or injury), or (iv)
environmental factor (e.g. distraction or position when using
the device). It is imperative to find out whether touch dynam-
ics patterns variabilities between different sessions may have
any implications to the accuracy performance of a touch dy-
namics authentication system. To conduct such a study, the
data should be acquired from several sessions spread over a
longer period of time. For example, after the first data acqui-
sition session, subsequent sessions should be conducted at least
1 week apart from each of the other sessions. This will in-
crease the chances that the acquired dataset captures the touch
dynamics patterns’ variabilities. The findings or insights from
this kind of study could facilitate another stream of related work
on touch dynamics authentication, called the data adaptation,
which employ effective relearning framework (Crawford et al.,
2013) or online incremental learning algorithms (He et al., 2011)
to continuously learn the new incoming touch dynamics pattern
samples to increasingly enhance the accuracy performance,
validity, and flexibility of the authentication model.

10.7. Realistic and open dataset

Often, the subject size recruited are small in numbers (e.g. less
than 30), confined to a specific age group (e.g. 19–26), or people
from the nearby population (e.g. within a research institute).
The dataset acquired under such conditions are often consid-
ered as the convenience samples, as it is relatively easier to
acquire the data from the nearby population (Kenneth N. Ross,
1978). Sometimes, the samples analyzed or the conclusions
drawn from the convenience samples could not realistically
generalize to a wider population.This is more so the case when
the convenience samples consist of people who are familiar
with or frequently use mobile devices. To ensure that the con-
clusions drawn from a dataset generalized to a wider

population, the best practice is to recruit a large group of sub-
jects (e.g. at least 100 people) and the subjects have to be
selected from diversified age groups or with different levels of
device familiarity/usage frequency.

Besides, the availability of public datasets is still very limited
in this field. Without properly documented and realistic
datasets, cross-comparison between different methodologies
employed may not be conclusive. Sharing datasets or data ac-
quisition tools is a highly recommended practice as it comes
with a three-fold benefit. Firstly, by using a common dataset
a more conclusive cross-comparison between different meth-
odologies can be made. Secondly, the availability of open
datasets facilitates researchers whom may not have the re-
source to develop a proper dataset for the experiment. Thirdly,
using shared data acquisition tool, other researchers from dif-
ferent institutes can expand a dataset with subjects across
different geographical locations.

11. Conclusions

Touch dynamics biometrics have promising potentials to
strengthen the security of mobile devices or on-line services
accessible via mobile devices without additional hardware re-
quirements.The availability of various sensors in recent mobile
devices provides added opportunities for such potentials to be
explored. This paper gives a comprehensive review of the re-
search work or efforts made on touch dynamics biometrics on
mobile devices. The paper first provides an overview, outlines
the primary operational process and defines a set of criteria
for the evaluation, of a touch dynamics authentication system.
Then it presents detailed implementations, experimental set-
tings, and approaches of each of the process, namely, data
acquisition, feature extraction, and decision making. Next, the
performances reported in published work have been dis-
cussed. Finally, it discusses open issues in the topic area and
recommends areas for further research. The review pre-
sented in this paper may provide a roadmap and stimulate
further research in this area.
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