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Abstract In recent years wireless networks have been rapidly grown up, which leads to the
possibility of pervasive access to information systems. At present, the most com-
monly available ubiquitous access device to the network is still mobile telephone.
In particular, cellular phone can be used for ubiquitous access anytime and any-
where and, therefore, the only ubiquitous user access mode is spoken language.
Obviously, both a cellular phone handset and any private information access or
electronic transaction demand to be protected from being stolen or broken in,
which paves the way for personalized services. In this chapter, we envisage
a bilateral user authentication framework for applications in wireless environ-
ments. On the one hand, we use text-dependent speaker verification for handset
protection as the primary stage of our security system. On the other hand, a
more sophisticated speaker authentication system consisting of text-independent
speaker verification and verbal information verification is located in the authen-
tication center of a server site for further protection. Our framework attempts
to derive maximum synergy from biometric and non-biometric speech technolo-
gies without loss of easy-to-access properties. Under this framework, we have
conducted some experiments by enabling component technologies in terms of
Mandarin Chinese. Our simulation results indicate that the enabling component
techniques to support this framework are ready to build such an authentication
system for applications to personalized mobile access.

Keywords: Speaker authentication, personalized mobile access, speaker verification, text-
dependent, text-independent, verbal information verification, bilateral authenti-
cation, cellular phone, speech information system, server-client architecture
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5.1. Introduction

In recent years wireless networks have been rapidly developed and become
indispensable components in the telecommunication world. According to the
literature [11], there are over 100 million cellular and personal communication
service phones in use as of mid-2000 in the United States. Even in China,
a developing country, current estimates of China Telecom Inc. indicate that
there are over 70 million registered cellular phone users at the mid of 2001
and, moreover, such a market will be grown up rapidly. Thus, fraud becomes
a common yet serious problem that the cellular operating companies have to
tackle. In this circumstance, a fraud user is able to steal handsets or the phone
and serial numbers from the airwaves. Then they could use these numbers in
cellular phones and make long distance and even international calls. As a result,
the cellular providers may have to pay unexpected costs of millions of dollars
on a monthly basis [4].

Although the world of telecommunication in the future will be the seamless
integration of real-time multimodal communications in a single network, the
most commonly available ubiquitous access device to the network is cellular
phone for ubiquitous access anytime and anywhere. Therefore, the only ubiqui-
tous user access mode is spoken language, a natural mechanism for information
access. Given more and more services such as mobile stock quotes and trans-
actions are popular, security upon access becomes an unavoidable problem for
a speech information system of a private or confidential nature. How to authen-
ticate a user becomes critical to prevent unauthorized users from mobile access
to the private information conveyed in speech.

To solve the security problems existing in wireless environments, there are
two common approaches by the use of fraudpersonal identification number
(PIN) features and mathematical authentication technologies. A PIN feature
is usually a string consisting of digits or alphabets, which uniquely identifies
a specific person. In this way, therefore, different PINs are assigned to those
authorized or registered users. When such a user would like to make an outgoing
call or access a speech information system, he/she has to first unlock his/her
cellular phone or pass an authentication processing prior to any access by using
the PIN. On the other hand, mathematical algorithms provide a powerful tool for
protecting cellular phones. In this way, the phone is identified not only by the
phone number and the serial number but also by a a random key. This random
key is loaded in the cellular phone by the vendor. Once a new user is registered in
the network, the same random key is loaded in the authentication center. When
the user makes the first call, the cellular phone performs some calculations, by
certain algorithms, in terms of the phone number, the serial number, and the
random key. The results generated are transmitted in the airwaves. Accordingly,
the authentication center takes the same operations by using the same inputs
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and algorithms. As a consequence, user authentication is done by checking the
consistency between bilateral results; that is, the user is allowed to make the call
only if two results are identical. Although the aforementioned approaches can
reduce fraud activity, there exist explicit weaknesses. The use of PIN features
seems troublesome and unnatural; a user has to wait until the cellular phone
is unlocked to make a call. Moreover, clones are still able to steal the user’s
information from the airwaves. As a result, the clones eventually will be able to
crack the codes even if such algorithms may be complicated. When the handset
is occupied by an unauthorized person who knows the right PIN, the immediate
loss seems unavoidable.

Recently, systematic studies have shown thatbiometricsprovides an alter-
native yet natural way for user authentication [16, 32]. Biometrics handles
authentication of individuals on the basis of biological and/or behavioral char-
acteristics. In contrast to the traditional authentication approaches, the primary
advantage is that biometrics cannot be misplaced and forgotten since biometric
features are always inherently associated with human beings. As summarized
in the literature [16], biometrics has a number of salient and desirable properties
as follows: a) universality, b) uniqueness, c) permanence, d) collectability, e)
performance, f) acceptability, and g) circumvention. There are numerous bio-
metric features used for authentication. However, each of them is of its strengths
and limitations in terms of the above properties and has to appeal to a special
authentication application. In our circumstance, voice print or speech becomes
the biometric feature available only. According to perception of biometrics
experts [16], voice print is of the following properties: a) medium universality,
b) low uniqueness, c) low permanence, d) medium collectability, e) low perfor-
mance, f) high acceptability, and g) low circumvention. The properties of voice
print provide a two-fold insight. On the one hand, high acceptability suggests
that voice print be natural and become the ideal feature for user authentication
in wireless environments. On the other hand, other unsatisfactory properties
indicate that the voice print itself is insufficient to be a unique feature to perform
user authentication in the environments in question. Thus, it poses a dilemma
to us, and a solution to this dilemma is demanded such that user authentication
can be performed by using only speech without loss of its desirable advantage.

As one of automatic biometric technologies, automatic speaker recognition
has been studied for several decades [15, 21]. In general, speaker recognition
is classified into two categories: speaker identification, a process of identifying
an unknown voice token as belonging to one of registered speakers, and speaker
verification, a process of accepting or rejecting the identity claim of a speaker.
Apparently, speaker verification is more appropriate to user authentication in
most circumstances. Moreover, a speaker verification system often works in
either of two operating modes: text-dependent and text-independent. By text-
dependent, the same or known text is used for training and test. In contrast, any
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text is allowed to be uttered in the process of either training or test in the text-
independent mode. By comparison, a text-dependent system is conceptually
simple yet inflexible while a text-independent system seems complicated yet
flexible. Moreover, the performance of a text-dependent system is often reason-
ably better than that of a text-independent system while the text-independent
system can perform in a more secure way if the user is allowed to speak any
random phrase. No matter what the operating mode is, speaker recognition
theoretically belongs to non-verbal speech classification since the information
of speaker’s characteristics conveyed in speech waves plays a crucial role in
this process rather than those verbal contents carried by speech waves. As a
consequence, speaker verification provides a reasonably good measure of se-
curity for access to a wireless network and to private/confidential information
during a personalized service.

As a matter of fact, the voice print is inherently subject to change and sen-
sitive to environments, which leads to a classification task of miscellaneous
mismatches. Thus, the use of voice print itself fails to yield the desirable per-
formance in contrast to other biometric features. Nevertheless, speech recogni-
tion, a verbal-content based speech classification task, has been well studied and
received satisfactory performance [17], which makes an automatic telephone-
banking like process feasible. Borrowing the telephone-banking concept, Li
et al. first propose an alternative speech-based authentication approach –ver-
bal information verification[22]. Other than the traditional speaker recogni-
tion, verbal information verification is a process that verifies spoken utterances
against the pre-registered information in a personal profile. For user authentica-
tion, a verbal information verification system mainly inspects the verbal content
conveyed in speech signals while a speaker recognition system takes advantage
of a speaker’s characteristics represented by the speech feature vectors [23]. Al-
though verbal information verification has nothing to do with biometrics, it has
generated considerably better performance (even error free) in user authentica-
tion [23, 24] assuming that the personal information is not stolen by unautho-
rized people. Therefore, the combination of traditional speaker verification and
verbal information verification provides a promising way for high-performance
user authentication without loss of the desirable property, easy-to-access, of
speech.

In this chapter, we propose a bilateral user authentication framework though
the combination of speaker verification and verbal information verification for
personalized mobile access to private/authorized device, e.g. cellular phone,
and confidential information, e.g. electronic financial transaction. In wireless
environments, client device and distributed authentication centers constitute a
server-client network and, dependent upon different tasks, user authentication
is performed in either of two sites or both. Considering complexity in im-
plementation and acceptability, text-dependent speaker verification is used in
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client device for primary user authentication, while the combination of text-
independent speaker verification and verbal information verification leads to an
innovative user authentication procedure in authentication centers. Thus, the hi-
erarchical and interactive authentication schemes constitute a new user authen-
tication framework for personalized mobile access in wireless environments.
Such a framework could provide a potential solution to the aforementioned
dilemma towards an error-reduction and easy-to-access service in personalized
mobile access. In terms of Mandarin Chinese dialect, we have investigated the
enabling component technologies. Our experimental results indicate that the
major component technologies to support this framework are ready for real use
though there are challenging implementation issues to be studied in the future.

The remainder of this chapter is organized as follows. Section 5.2 presents
the bilateral user authentication framework. Section 5.3 describes key enabling
component technologies developed in terms of Mandarin Chinese dialect. Sec-
tion 5.4 reports experimental results, and the last section draws conclusions.

5.2. Bilateral User Authentication Framework

In this section, we present a bilateral user authentication framework to per-
sonalize mobile access. On the basis of the framework, moreover, we describe
a scenario example for personalizing mobile access.

Text-dependent
Speaker Verification

Speaker-dependent
Speech Recognition

User List

Control Scheme

Verbal Information
Verification

Text-Independent User ProfileSpeaker Verification

Client Handset

(a) (b)

Authentication Center

Figure 5.1. The schematic diagram of a bilateral user authentication. (a) The client handset.
(b) The authentication center.

As illustrated in Figure 5.1, the bilateral user authentication framework con-
sists of two modules:client deviceandauthentication center. The client device
module is used for primary user authentication in order to enable the cellular
phone to work for authorized users. The authentication center module works
for further authentication when a user attempts to place a call of expensive cost
or access to an information system containing private or personal information.
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The communication between two modules is through the use of a simple yet
special protocol such that the components in the authentication center can be
activated.

In the client device module, there are three components related to user au-
thentication as shown in Figure 5.1(a). A text-dependent speaker verification
scheme is the key component to determine whether a user is given the right to
access to the cellular phone. It should be pointed out that the claim process can
be neglected since a cellular phone is usually assumed to belong to a specific
user. Thus, the serial number of the phone provides a way to automatically claim
identity. In case that a cellular phone may be shared by a small group of people,
e.g. people belonging to a family, the user list registers those authorized users
who are allowed to use this cellular phone handset. It should be stated that how
to organize a user list well is a research topic and some potential solutions have
been raised [6]. The speaker-dependent speech recognition scheme provides a
set of simple speech recognition engines for voice-based dialing according to
an address book. Note that due to the accessibility of multiple users there are
an independent speaker verification/speech recognition schemes for the users
enrolled in the user list. Thus, the population in the user list should not be large.

The authentication center provides a strict and final authentication mech-
anism for each user prior to some important mobile access. There are four
schemes in the module for such authentication as depicted in Figure 5.1(b).
The control scheme is used to globally control all the authentication mecha-
nism and selectively activate an authentication scheme. Once it is activated, the
text-independent speaker verification scheme always probes the specific user’s
identity during conversation to see if the identity of the current user occupying
the cellular phone is consistent with that of its registered users claimed auto-
matically. The user profile scheme stores the files of all the registered users
served by the authentication. The contents of each file includes the personal
and private information of each registered users, which provides the basis for
verbal information verification. When a user is initially registered as a new user
in the authentication center or the speaker verification scheme reports an incon-
sistent result, the verbal information verification scheme will be invoked. As a
result, the current user is asked to answer a set of questions randomly selected
from an elaborate questionnaire. Only if all the answers given are correct, the
user will be allowed to make a continuous access. For security, the user profile
could be updated regularly.

In order to intuitively understand our framework, we give a scenario example
of personalized mobile access, which demonstrates how our framework works.
For a new user, enrollment in the client device and the authentication center
becomes the first step. In the client device site, the user is asked to utter voice-
based commands and names to be dialed three times. In the authentication
center, the enrollment process is to finish a user profile, through filling out
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a form, including personal and private information and a set of self-defined
answers to some questions.

Once the enrollment has been done, the user may start the personalized ac-
cess to his/her cellular phone. After the power is turned on, the user list scheme
is activated, and thus, a list of authorized users are shown on the panel of the
cellular phone where each authorized user is labeled by a number. The user
utters the number represented him/her for identity claim. A special case is
that the cellular phone is owned by one authorized user. In this circumstance,
the identity claim is default and the user list is not shown. At this moment,
the cellular phone is still locked. Prior to access to the phone, the user has
to unlock the phone by a voice-based command. When the utterance of this
command is achieved, the text-dependent speaker verification scheme is acti-
vated and authenticates the current user based on the templates stored in the
enrollment process. If the user’s identity is authenticated, the cellular phone is
ready to enter any conversation phase. In order to be easy-to-access, a user is
encouraged to make a phone call by using the voice-based dialing. Thus, the
speaker-dependent speech recognition engine is activated for this task. After a
conversation is performed, the phone may be locked again by the user through
use of the voice-based command. There are the following cases for the client
device to send a request to the authentication center: (1) the first time a user
takes the cellular phone, (2) failure to unlock the phone or to dial by voice after
three trails, and (3) making a long distance phone call or access to the private
or personal information.

As illustrated in Figure 5.1(b), there are two authentication schemes in the
authentication center. During the enrollment, users provide the corresponding
user profiles such that the verbal information verification scheme can work for
any registered users. When a user makes his/her first phone call, the verbal
information verification scheme is activated by an automatic request from the
client device. Once the user identity is verified by the verbal information ver-
ification scheme, a text-independent speaker verification model is created for
this user. During the first conversation, all the utterances are automatically
used to train the speaker model. That is, the second authentication scheme,
text-independent speaker verification, is created based on the verbal informa-
tion verification scheme during the first phone call. Once the text-independent
authentication scheme is created, it would be activated by any long distance
phone call request from the client device site. The text-independent authenti-
cation scheme inspects the phone call by report a verification result in a fixed
interval. If the verification result indicates that an impostor is accessing the
personalized client device, the phone call is immediately suspended. It is fol-
lowed by a verbal information verification test. If the test is successful, the
phone call is activated again. As a consequence, the utterances during the ver-
bal information verification and conversations thereafter are used to update the
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text-independent speaker model. Note that in order to ensure a low error rate
the text-independent speaker model is always updated in an autonomous way
if the user’s identity is verified. Thus, a personalized mobile access is carried
out by the bilateral user authentication framework.

In the sequel, we are going to present some enabling technologies to support
our bilateral user authentication framework for personalized mobile access.

5.3. Enabling Speaker Authentication Technologies

In this section, we present enabling speaker authentication technologies to
support our bilateral user authentication framework. We first describe the
speaker verification technologies used in the client device and the authentication
center. Then, we present a verbal information verification technology in terms
of Mandarin Chinese dialect. Finally, we discuss how to derive maximum syn-
ergy for user authentication from both text-independent speaker verification,
a biometric technology, and verbal information verification, a non-biometric
technology.

5.3.1 Speaker Verification

Speaker verification is a biometric authentication technology. As illustrated
in Figure 5.2, the critical technical components in speaker verification include
speaker modeling and decision-making strategies. There are numerous ap-
proaches to speaker verification [3, 29, 13, 25, 15, 14, 5]. For the use in our
framework, the speaker modeling in text-dependent speaker recognition tends
to be as simple as possible and computationally efficient in the client device
site, while speaker modeling in text-independent speaker recognition would be
demanded to produce the error rate as low as possible. In addition, decision-
making strategies used are different in the client device and the authentication
center. Here, we present two enabling technologies to meet our requirements.

NFL-based Text-Dependent Speaker Verification. Theoretically, speaker ver-
ification belongs to the category of non-verbal speech classification regardless
of operating modes. However, most of text-dependent speaker verification ap-
proaches take advantage of verbal contents to capture speaker’s characteristics
[15], which often needs the strict temporal alignment. A temporal alignment
process usually suffers from a high computational load, e.g. dynamic time
warping [30]. Our previous studies showed that some instantaneous informa-
tion carried by certain frames within an utterance can play a more important
role in text-dependent speaker recognition and the use of transitional (inter-
frame) information may not be involved in a strict temporal alignment [10].
Our recent studies indicated that thenearest feature line(NFL) is able to be a
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Figure 5.2. The schematic diagram of a typical speaker verification system.

text-dependent speaker verification technique without the strict temporal align-
ment, which does not involve in high computational load and, in particular, the
performance of an NFL-based text-dependent system is better than that of a
dynamic temporal warping system [9]. Thus, the NFL-based text-dependent
speaker verification approach qualifies as the enabling technology in our frame-
work.

The NFL assumes that there are at least two prototypes (in our case, two
utterances of a fixed phrase) for each speaker. The line passing through two
feature points, extracting from two utterances after preprocessing, can extrapo-
late or interpolate to form a line, named byfeature linein the NFL approach, in
the feature space. Now we consider two feature points,xsi andxsj , belonging to
speakers. Thus, the distanced between the feature linexsix

s
j passing through

xsi andxsj and a query pointxq is calculated by

d(xq;xsix
s
j) = jjxq � p

s
i;jjj: (5.1)

Herepsi;j is a point on the feature line achieved by projectingxq to xsix
s
j . As

a result, such a point can be obtained by linearly combining two feature points
in terms of the query point as follows:

psi;j = �xsi + (1� �)xsj ; (5.2)
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where
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For speakers, any pair of his/her feature points constitute a feature line. For
a given query point,xq, there is the nearest feature line,xsi�x

s
j� , achieved by

xsi�x
s
j� = argmin

i;j
d(xq;x

s
ix

s
j): (5.3)

To build an NFL speaker model, we need to extract feature points or proto-
types from raw speech data. In our method, each utterance, corresponding to
a fixed phrase, is modeled to form a prototype (for details, see Section 5.4.2).
Thus, the NFL speaker model is created by constructing the feature line space
through the combination of prototypes in a pair-by-pair way. Note that the
aforementioned prototypes should be normalized prior to forming the feature
line space in order to facilitate the decision-making described later on.

Once a speaker model is built, the remaining task is how to make a right
decision for an unknown voice token. In our circumstance, there are only en-
rollment data from the registered user himself/herself and no other speech data
available since we allow a user to flexibly choose any phrase as the text. Obvi-
ously, we cannot use any traditional method to set a threshold and build either
a background or a cohort model [15]. Cohort modeling is a typical approach
to train a background model for decision-making in speaker verification. The
idea underlying this approach is to build a model by the use of speakers who
have acoustic characteristics similar to a specific speaker. Once a cohort model
is available, the decision-making can be performed by comparing scores pro-
duced by the speaker model with that by his/her corresponding cohort model.
Although a cohort model is merely available by associating with other speak-
ers, recent studies demonstrated that the use of only enrollment data to build
a background model, hereinafter named bypseudo-cohort model, leads to the
appreciably good performance [31]. Motivated by this work, we build such
pseudo-cohort models in terms of an NFL speaker model for each speaker
by perturbing statistical components in his/her speaker model (for details, see
Section 5.4.2). As a consequence, in our system, the decision-making on the
client handset site is performed by means of the speaker and the pseudo-cohort
models.

GMM-based Text-Independent Speaker Verification. As a typical approach,
Gaussian Mixture Model (GMM) has been used especially for text-independent
speaker recognition to characterize speaker’s voice in the form of probabilistic
model. It has been reported that the GMM approach outperforms other classical
methods for text-independent speaker recognition [28, 8]. Here, we briefly
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review the GMM-based speaker identification scheme that will be used, as a
technical component in our authentication center.

For a feature vector denoted asxt belonging to a specific speakers, the GMM
is a linear combination ofK Gaussian components as follows:

P (xtj�s) =
KX
k=1

!s;k P (xtjms;k;�s;k): (5.4)

Here!s;k is a linear combination coefficient for speakers (s = 1; 2; :::; S).
P (xtjms;k;�s;k) is a Gaussian component parameterized by a mean vector,
ms;k, and covariance matrix,�s;k as follows:

P (xtjms;k;�s;k) =
1

(2�)
d

2 j�s;kj
1

2

exp

�
�

1

2
(xt �ms;k)

T
�
�1

s;k(xt �ms;k)

�
: (5.5)

Usually, a diagonal covariance matrix is used in Eq. (5.5). Given a sequence of
feature vectors,fx1;x2; � � � ;xt; � � �g, from a specific speaker’s utterances, pa-
rameters estimation for�s = (!s;k;ms;k;�s;k) (k = 1; � � � ;K, s = 1; � � � ; S)
is performed by the Expectation-Maximization (EM) algorithm. Thus, a spe-
cific speaker model is built through finding proper parameters in the GMM
based on the speaker’s own feature vectors.

To evaluate the performance, a sequence of feature vectors is divided into
overlapping segments ofT feature vectors for identification [28]:

segment lz }| {
x
l
;x

l+1
; � � � ;x

l+T�1
;x

l+T
; � � � � � �

x
l
;

segment l+1z }| {
x
l+1
; � � � ;x

l+T�1
;x

l+T
;x

l+T+1
; � � � � � �

For a testing segmentX(l) = fx
l
;x

l+1
; � � � ;x

l+T�1
g, the log-likelihood func-

tion of a GMM is as following:

L(X(l); �s) =
l+T�1X
t=l

logP (xtj�s) s = 1; � � � ; S: (5.6)

Thus, the likelihood value,L(X(l); �s), is a score produced by the speaker
model corresponding to the claimed identity which will be used for decision-
making.

Unlike the client handset site, there may be a large amount of data belonging
to other speakers available off-line, e.g. a standard speech corpus, in the authen-
tication center site. For the purpose of decision-making, therefore, it is feasible
to utilize the data for creating a speaker-independent background model. As a
result, we adopt a GMM of numerous Gaussian components and a non-diagonal
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covariance matrix,P (xtj�SI), to form such a background model (for details,
see Section 5.4.2). Similarly, the decision-making, corresponding to a testing
speech segment, is performed by means of the GMM-based speaker and back-
ground models. For an utterance of several segments, the final decision-making
is achieved by a majority voting on the basis of the decision-making results with
respect to all the testing speech segments comprised of this utterance.

5.3.2 Verbal Information Verification

Verbal information verification is an authentication technology recently de-
veloped in speech processing community [21, 23] where a claimed speaker is
accepted/rejected by verifying spoken utterances against the information stored
in a given personal data profile. Strictly to say, this technology does not be-
long to biometrics because it uses only the contents carried in speech for au-
thentication. As pointed out previously, there are a number of problems as
speaker verification is applied in real world, e.g., acoustic mismatch, quality
of the training data, inconvenience of enrollment, and the creation of a large
database to memorize all the registered speaker patterns. Obviously, the use of
verbal information verification is able to enhance speaker authentication tech-
nologies. Although verbal information verification is regardless of speakers’
acoustic characteristics, the technology is highly dependent on a dialect since
the contents carried in speech need to be verified. Here we present the verbal
information verification technology in terms of Mandarin Chinese.

General Description. Although verbal information verification has been
successful in English language, it is still questioned that such a technology is
effectively applicable to other languages. Mandarin Chinese is the most widely
used language in the world since there are around 1.3 billion Chinese native
speakers. Previous studies [19, 20] showed that Mandarin Chinese is different
from English in numerous aspects. Some salient features in Mandarin Chinese
are summarized as follows. First, every word of Chinese has only one sylla-
ble and consists of explicit semi-syllable configuration; INITIAL and FINAL.
INITIAL is always a consonant, while FINAL could be one of single vowels,
compound vowels, and vowels along with consonants. Next, all the Chinese
syllables include FINAL, while INITIAL may not be contained in a Chinese
syllable. Unlike phoneme in English, INITIAL and FINAL are basic acous-
tic unit in Mandarin Chinese instead. Thus, we need to use them for acoustic
modeling, which results in a large difference from other languages in acoustic
modeling. Finally, there are a few of words that are commonly used but make
no contribution to verbal information verification, such as ‘year’, ‘month’, and
‘day’ in Mandarin Chinese as a question about birthday is raised, since these
words are always present in the answer regardless of speakers. In addition, the
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same meaning can be represented by an alternative word; e.g., ‘day’ can be
spoken in two different ways in Mandarin Chinese. Such information is hardly
captured from users’ private data profile. All the aforementioned problems are
worth studying, which causes the Mandarin verbal information verification to
become a challenging task.
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Figure 5.3. The schematic diagram of a Mandarin verbal information verification system.

For Mandarin verbal information verification, we have presented an architec-
ture as depicted in Figure 5.3. Once an identity is claimed by a user, our system
transcribes the pass-utterance from his/her private data profile. For instance, an
answer to the question “What is your name?" is transcribed into a Chinese word
string. During this transcription, the pass-utterance is acoustically modeled as a
string consisting of INTIALs and FINALs. By the transcription, the system de-
codes the the pass-utterance. This process is summarized asforced decodingin
Figure 5.3. As a result, forced decoding yields the INITIAL-FINAL’s segmen-
tation boundaries for the string. Thus, the decision-making, accepting/rejecting
the claimed speaker in terms of the utterance, can be performed by a hypothesis
test.

According to Chinese linguistics, there are 22 INITIALs and 37 FINALs
in Mandarin Chinese dialect. In order to model the co-articulation between
them, we use the right context-dependent INITIAL-FINALs as basic acoustic
unit, hereinafter abbreviated byBiIF. In our system, we employ hidden Markov
models (HMMs) to model the acoustic units. As a result, an INITIAL-based
BiIF model is a left-to-right (without jump) connected HMM of three states,
while a FINAL-based BiIF model is a 5-state HMM of the same structure. By
combination, totally, there are 1260 BiIF models in Mandarin Chinese. It is
almost impossible to collect enough training data for those models. Instead we
adopt a decision-tree based clustering method to reduce the number of states
and models [24]. Moreover, we use segmentalK-means and import decision
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tree algorithms together in on iterative step during training as done in the work
[27]. In contrast, such a training method is more robust than the traditional
decision-tree clustering algorithm. As a consequence, the speaker-independent
acoustic models are achieved by fitting the training data to HMM models by the
Viterbi learning algorithm [18, 24]. Similarly, we also use the same method to
achieve anti-HMM models corresponding to those BiIF models by those data
used for training all the target BiIF models of the same context. More details
on implementation will be described in Section 5.4.3.

Decision-Making Procedure. Like speaker verification, decision-making is
also involved into verbal information verification. In order to facilitate presen-
tation, we first describe the verbal information verification process in a more
formal way. Then, the decision-making procedure is presented based on the
formal description.

Based on achieved HMMs and anti-HMMs, utterance segmentation is per-
formed as follows. When our system prompts one single question at a moment,
it knows the expected critical information, registered in his/her personal profile
of the claimed speaker, to the prompted question and the corresponding sub-
word sequence ofN acoustic units,S = fSng

N
n=1. Thus, the acoustic unit

models,�1; � � � ; �N , in the same order ofS are applied to decode the answer
utterance in the forced decoding process. In this process, Viterbi algorithm is
employed to find the maximum likelihood segmentation of the acoustic units,
i.e.,

P (OjS) = max
t1;t2;���;tN

P (Ot1
1 jS1) � � �P (Ot2

t1+1
jS2) � � �P (OtN

tN�1+1
jSN ); (5.7)

where

O = fO1;O2; � � � ;ONg =

�
Ot1
1 ; � � � ; O

t2
t1+1

; � � � ; OtN
tN�1+1

�
: (5.8)

Here O is a set of segmented feature vectors related to acoustic units, and
t1; t2; � � � ; tN are the end frame numbers of acoustic unit segments.On =
Otn
tn�1+1 is the segmented sequence of observations corresponding to the acous-

tic unit Sn from frametn�1 + 1 to frametn, wheret1 � 1 andti > ti�1.
For a decoded acoustic unit,Sn, in an observed speech segment,On, a

decision-making strategy is demanded where the acoustic unit will be assigned
to either hypotheses ofH0 andH1. HereH0 is the hypothesis thatOn is
consistent with the corresponding items in the personal profile andH1 is the
alternative hypothesis. According to the Neyman-Person lemma [26, 12], the
hypothesis test is described as

r(On) =
P (OnjH0)

P (OnjH1)
=
P (Onj�n)

P (Onj��n)
: (5.9)
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Here�n and��n are the target HMM and the corresponding anti-HMM for the
acoustic unit,Sn. Thus, thelog-likelihood ratio(LLR) for Sn is

R(On) = log r(On) = logP (Onj�n)� logP (Onj��n): (5.10)

Accordingly, the averaging frame LLR,�Rn, is

�Rn =
1

Ln

�
logP (Onj�n)� logP (Onj��n)

�
; (5.11)

whereLn is the length of the speech segment. For each acoustic unit, a decision
can be made by the following rule

Acceptance : �Rn � Tn; Rejection : �Rn < Tn:

Here either an acoustic-unit dependent threshold,Tn, or a content-independent
common threshold,T , can be determined numerically or experimentally.

Since a single utterance may contain numerous acoustic units, an utterance
level decision is further needed to be made as well. For this purpose, we employ
a normalized confidence measure as used in the work [23]. For an acoustic-unit
string characterized by the INITIAL-FINAL model,�n, a confidence measure
is defined as

Cn =
logP (Onj�n)� logP (Onj��n)

logP (Onj��n)
; (5.12)

whereP (Onj��n) 6= 0 indicates that this target score is larger than the anti-score
and vice versa. Thus, a normalized confidence measure for an utterance ofN

acoustic units (subwords) as

�C =
1

N

NX
n=1

H(Cn) (5.13)

Here,H(Cn) is the Heaviside step function defined as

H(Cn) =

�
1, if Cn � �,
0, otherwise.

(5.14)

�C is located in the fixed interval between zero and one. Due to the normalization
in Eq. (5.12), the threshold,�, is content-independent that can be determined
separately. According to Eq. (5.14), an acoustic unit is accepted only if itsCn

score is not less than the threshold�. In other words, only those acoustic unit
of Cn � � can make a contribution to acceptance. As a result,�C would be
viewed as the percentage of acceptable acoustic units in an utterance. Hence,
an utterance threshold may be set or adjusted in terms of the specification of
our system and performance.
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For verbal information verification, a test may include a number of utterances
corresponding to the answers to several questions randomly selected from an
elaborate questionnaire. Therefore, the sequential utterance verification must
be considered for real applications. Fortunately, the above single utterance
decision-making strategy, defined in Eqs. (5.12)-(5.14), can be directly ex-
tended to a sequence of subsets, which is similar to the step-down procedure in
statistics [1]. Each of the subsets is an independent single utterance verification.
As long as a subset is rejected,H1 is chosen to be true and the testing procedure
is terminated. In contrast, the claimed identity (user) is acceptable only if every
subset passes the test, i.e., eachH0 is accepted.

5.3.3 Combination of Speaker and Verbal Information Verification

As presented in Section 5.2, the authentication center adopts a new speaker
authentication strategy by combining text-independent speaker verification and
verbal information verification. In such a strategy, the authentication center
works in a natural way; the text-independent speaker verification scheme per-
forms identity authentication in an automatic and transparency way, while the
verbal information verification scheme is activated only if those circumstances
listed in Section 5.2 occurs.

Text-Independent
Speaker Verification Verification

Feature Extraction
Preprocessing 

Data
Pool

Verbal Information

Speech

Control  Scheme

Figure 5.4. The schematic diagram of a combination mechanism in the authentication center.
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As illustrated in Figure 5.4, the control scheme is the key component of this
combination scheme. When a special call request, e.g. international call, is
received, the control scheme is activated and its default mode is to activate the
text-independent speaker verification system based on the information of the
registered caller. Thus, all the utterance in the current call is monitored by the
text-independent speaker verification system during this phone call. Once a
speech stream of a certain length is rejected, the system immediately breaks the
call and keeps the transaction information, e.g. dialed number, in the mean-
while. Then, the control scheme suspends the text-independent speaker verifi-
cation system and activates the verbal information verification system instead.
Thus, a verbal information verification process proceeds; a number of ques-
tions are asked one by one and the answers from the current caller are verified
based on the private profile of the handset owner. The answering utterances are
stored in the data pool as shown in Figure 5.4. If any of the caller’s answers is
inconsistent with the corresponding item in the private profile twice, the control
scheme also suspends the verbal verification system. Thus, the authentication
center will terminate this call and put the memo information in the logout file.
Otherwise, the control scheme redials the memorized number and makes a valid
connection. In addition, the control scheme directs the speaker model in the
text-independent speaker verification system to be adapted on the data avail-
able in the data pool. After the adaptation is performed, the control scheme
will empty out the data pool.

It is worth mentioning that there are several differences between the com-
bination strategy here and that proposed in the work [23]. First, two different
verification systems in our combination strategy do not work simultaneously.
Instead they work in an alternate way, while two verification systems in their
approach have to work in a cascade way [23]. Next a text-independent speaker
verification system can be used in our strategy, while a text-dependent speaker
verification system is merely used for that combination [23]. Finally, automatic
enrollment in the component speaker verification system is quite different. In
their work [23], the speaker verification system can be trained only if the verbal
verification system works for several times. In contrast, the data for automatic
enrollment can be achieved while a valid user makes a local phone call. Fur-
thermore, sufficient data can be collected from multiple calling phases such that
the speaker model in the text-independent speaker verification system can be
adapted regularly. Thus, the mismatch problem can be resolved by adaptation
in our framework.

5.4. Simulations

In this section, we report some simulation results on a Mandarin Chinese
speech database. As addressed in Section 5.3, there are two component en-
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abling technologies to support our bilateral user authentication framework for
personalized mobile access. We report simulation results on two component
technologies separately, and moreover, some speaker verification results en-
hanced by verbal information verification. Due to the limited space here, we
report only the overall performance in all trials.

5.4.1 Database

For simulations, we use a Mandarin Chinese speech database of 50 people
including 25 male and 25 female native speakers. The database consists of there
sets for use in text-dependent and text-independent speaker verification as well
as verbal information verification. In general, all the data in different sets are
recorded in five sessions, labeled byS1; � � � ;S5, from one week to three weeks.

In the text-dependent data set, several fixed Chinese voice commands, e.g.
‘unlock’, ‘turn on’, and ‘hello’, are uttered three times in each session. For a
voice command, thus, there are 15 fixed phrase utterances for each speaker in
the set.

In the text-independent data set, we provide a set of conversation materials.
In each session, a speaker in our database is asked to randomly select several
sentences of over 30 seconds from the conversation set. As a result, there are
the utterances of at least 30 seconds for each speaker in each session.

In the verbal information verification set, each speaker is asked to utter all
the items in his/her private profiles registered in the system. Thus, there are
five utterances for each item in the set. The use of five sessions is two-fold:
enabling us to simulate multiple transactions and investigating the performance
of our speaker-independent acoustic models, the kernel component of our verbal
information verification system, in terms of voice aging. This data set will be
used to test our Mandarin verbal information verification system.

As presented in Section 5.3.2, a set of speaker-independent HMMs are used
for modeling Chinese acoustic units. For training the HMMs, we employ a
benchmark Mandarin Chinese corpus, 863 corpus, in China. The population
of this corpus is 200 people including 100 male and female speakers. For each
speaker, there are a number of utterances ranging from 520 to 625 sentences
elaborately selected from the database of the most famous Chinese newspaper
– People Daily. Totally, all the utterances in this corpus correspond to up to
2185 sentences. Basically, almost all the phonetic information on Mandarin
Chinese is covered by this corpus.

5.4.2 Speaker Verification

In this section, we report speaker verification results in terms of the text-
dependent and text-independent data sets. For evaluating the performance of
our methods, two different testing methods are used. one is to useequal error



Personalize Mobile Access by Speaker Authentication 117

rate (EER), where the false rejection rate is equal to the false acceptance rate,
without the need of a background model for decision-making. The other is to
use a background model to yield real results, where we usehalf total error rate
(HTER), defined as the average of the normalized false acceptance and false
rejection rates, to evaluate the performance. For a specific speaker, speech data
belonging to other people in the database are used as impostors’ data during
test.

Text-Dependent Experiments. For building an NFL speaker model, three
utterances of a fixed phrase recorded in a specific session are used. Once one
session is used for training, other four sessions are used for test. For reliability,
we have performed five trials in the above way; five sessions are equally used
as training and testing sets in five trials.

Now we present the acoustic analysis in text-dependent speaker verification.
Before feature extraction, an utterance is pre-emphasized with the filter response
H(z) = 1�0:95z�1 and blocked into fixed-length frames. Each frame has 256
samples (2.56 ms) with 11.5 ms frame shift. The feature used is the statistical
parameters of 19-orderMel-scaled cepstrum coefficients(MFCCs). The 19-
order adaptive component weighted cepstrum coefficients [2] are superposed
on MFCCs. Adaptive component weighted cepstrum is a robust feature to
discriminate the speakers through emphasizing the formants of speakers.

Suppose that for an utterance belonging to speakers, a set ofN feature
vectors,X = fx

(s)
n gNn=1 wherexn = (x

(s)
n;1; � � � ; x

(s)
n;19)

T , are extracted by the
above procedure. The mean and standard-deviation vectors,

�x(s) = (�x
(s)
1 ; � � � ; �x

(s)
19 )

T

and
�
(s)
X = (�

(s)
X;1; � � � ; �

(s)
X;19)

T ;

are defined as

�x(s) =
1

N

NX
n=1

x(s)n

and

�
(s)
X;i =

vuut 1

N

NX
n=1

�
x
(s)
n;i � �x

(s)
i

�2
; i = 1; � � � ; 19:

Thus, a new feature vector of this utterance, by integrating two statistics, is
formed as

x̂(s) =

�
(�x(s); �

(s)
X )

�
;

which is viewed to be a prototype of the NFL model corresponding to this
speaker.
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Table 5.1 The list of constitutions in five trails.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Training Set S1 S2 S3 S4 S5

Testing Set S2 � S5 S1,S3,S4,S5 S1,S2,S4,S5 S1,S2,S3,S5 S1 � S4

On the basis of such a feature vector, each speaker’s NFL model consists of
three prototypes and, therefore, there are three feature lines resulting from three
prototypes. In order to produce the pseudo-cohort models, each prototype is
perturbed by two randomly produced vectors,Æ�x(s) andÆ�(s)X , respectively to
form two pseudo-prototypes:

x̂
(s)
+ =

�
(�x(s)+Æ�x(s); �

(s)
X +Æ�

(s)
X )

�
; x̂� =

�
(�x(s)�Æ�x(s); �

(s)
X �Æ�X)(s)

�
:

Accordingly, three pairs of pseudo-prototypes are formed to construct feature
lines of pseudo cohort models corresponding to the speaker. It should be stated
that the above perturbation is motivated by our previous studies on settinga
prior threshold for speaker verification[7]. As a result, an acceptance/rejection
decision is made through the competition between the speaker model and his/her
pseudo-cohort models.

Figure 5.5 depicts simulation results in our experiments. Figure 5.5(a) shows
the EERs in different trials, as listed in Table 5.1, by using only speaker models.
By the pseudo-cohort models, we examine the performance of our system and
show the HTERs in Figure 5.5(b). From Figures 5.5(a) and 5.5(b), the per-
formance of our NFL-based system is reasonable for a fixed phrase of around
1.0 second. However, such error rates are still not acceptable for practical use.
Therefore, we need to further improve the performance of our NFL system.

In fact, the error may result from miscellaneous mismatches, in particular,
due to voice aging. Fortunately, new speech data should be always available as
long as the handset is used. The availability of new data provides possibilities
to update those prototypes in both the speaker and pseudo-cohort models. In
order to alleviate the mismatch effects, we present a unsupervised on-line update
method as follows. When the unknown utteranceU , characterized bŷxU =
f(�xU ; �U )g, corresponding to a fixed phrase is accepted by the speaker model
no matter whether this decision is right or wrong, the system will update one
of the previous prototypes in the speaker and the corresponding pseudo-cohort
models. Assume that̂x(s)i� is the prototype satisfying the following condition:

i� = arg min
1�i�3

jjx̂U � x̂
(s)
i jj;
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Figure 5.5. The performance of our NFL-based text-dependent speaker verification system
installed in a handset. (a) Equal error rates in different trials. (b) The performance without
update in different trials. (c) The performance with update in different trials.
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Table 5.2 The list of constitutions in five update trails.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Training Set S1 S1;S2 S1 � S3 S1 � S4 S1 � S5
Testing Set S2 � S5 S2 � S5 S3 � S5 S4;S5 S5

wherejj � jj is the Euclidean norm. Then, we replace this prototype with a new
prototype,x̂(s), achieved by

x̂(s) =
x̂U + x̂

(s)
i�

2
:

Accordingly, the corresponding prototypes,x̂(s)i�;+ and x̂(s)i�;�, in the pseudo-

cohort model are updated based on the new prototypex̂(s).
To evaluate the performance of our system with the above on-line update

mechanism, we conduct some experiments as listed in Table 5.2. As a result,
Figure 5.5(c) illustrates the performance of our system with update. From Fig-
ure 5.5(c), it is observed that the performance in trail 1 is the same as the previous
one shown in Figure 5.5(b) since there is no additional information available in
trail 1. In trials 2-5, new data recorded in different sessions are available and, to
some extent, the prototype update compensates for the mismatch due to voice
aging. As illustrated in Figure 5.5(c), the error rate is lowered as more and
more speech data recorded in different sessions are used for update. Here we
emphasize that our update procedure performs autonomously and provides an
alternative perspective towards the reduction of error rate in an adaptive way.

Text-Independent Experiments. For building a GMM-based speaker model,
all the utterances recorded in a session are used. For reliability, we have per-
formed five trials in the above way; five sessions are equally used as training
and testing sets in five trials. In other words, one session is used for training
and other four sessions are used for test in this trial.

Prior to training of a GMM speaker model, the acoustic analysis is performed
as follows: a) pre-emphasizing with filter responseH(z) = 1 � 0:95z�1, b)
32ms Hamming windowing without overlapping, c) removing the silence and
unvoiced part of speech in terms of short-term average energy, and d) extract-
ing weighted 19-order Mel-scaled cepstral feature vector from each short-term
frame.

In our simulations, the GMM of 32 Gaussian components is employed to
characterize each speaker and a GMM of 512 Gaussian component is used
to build a world background model. The GMM models are trained by the
EM algorithm. All the data in the text-independent set are used to train the
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Figure 5.6. The performance of our GMM-based text-independent speaker verification system
corresponding to speech segments of eight seconds. (a) Equal error rates in different trials. (b)
Half total error rates in terms of the world background model.

world background model as done in the work [33]. As a result, all scores are
normalized based on the world model prior to decision-making.

For decision-making, we adopta priori speaker-dependent threshold setting
method developed by ourselves [7]. In our method, we attempt to make a
proper use of all the reliable statistics available. We believe that more reliable
statistics provide more useful information, which might lead to a better thresh-
old for decision-making. As a consequence, a speaker-dependent threshold is
estimated by a linear combination of all the reliable statistics mentioned above:

TS = b(��+ a��) + (1� b)�; (5.15)

wherea andb are two speaker-independent parameters and optimized on the
population of speakers used for building the world model.�, ��, and �� are
the statistics of normalized scores belonging to a speaker and the ensemble of
impostors. Thus, Eg. (5.15) encodes the useful information conveyed by the re-
liable statistics, and the decision threshold becomes a monotonically increasing
function of�, ��, and��.

For test, we use the segment-based method presented in Section 5.3.1 to
evaluate the performance of our system. Due to the limited space, we report
only the results tested by speech segments of eight seconds. Figure 5.6 shows
the performance of our GMM-based speaker verification system. Figure 5.6(a)
depicts the EERs of our system in different trials, the same constitutions as used
in the text-dependent experiments (c.f. Table 5.1), as by the use of only speaker
models. In addition, the performance of our system by the use of the world
background model is shown in Figure 5.6(b). From Figures 5.6(a) and 5.6(b),
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the performance of the GMM-based system is logic, which is consistent with
other tests of a GMM-based text-dependent speaker verification system [28, 8].

As illustrated in Figure 5.6, simulation results by only text-independent
speaker verification system may lead to unacceptable error rates in practice.
As pointed out in this paper, such a speaker verification system needs enhanc-
ing by incorporating other technologies, e.g. verbal information verification,
to reduce error rates.

5.4.3 Mandarin Verbal Information Verification

In this section, we present simulation results of verbal information verifica-
tion in terms of Mandarin Chinese. Moreover, we demonstrate how the verbal
information verification system can enhance text-independent speaker verifica-
tion.

Verbal Information Verification Experiments. To establish a Mandarin verbal
information verification system, we use HMMs to model Mandarin Chinese
acoustic units, INTIALs and FINALs. By a training and pruning procedure on
the 863 corpus, totally, 467 tied models and 893 tied states form our speaker-
independent acoustic modeling system. As a result, the performance of our
acoustic modeling system reaches the accuracy rate of 71.8% in single syllable
recognition. For test, a speaker is viewed as a true speaker only if the speaker’s
utterances are verified against his/her provide profile. On the other hand, this
speaker will be considered as an impostor when the utterances are verified
against other speakers’ private profiles. For each true speaker, therefore, there
areK utterances and49K utterances from other 49 speakers as impostors (see
Section 5.4.1), whereK is the number of questions that a speaker is asked
to answer. In the following experiments, the sequential utterance verification
method presented in Section 5.3.2 is evaluated. Since there are five sessions, the
overall performance in five trials are reported here. In our experiments, different
thresholds, speaker-independent and context-dependent thresholds, are used to
test our system.

Figure 5.7 illustrates the performance of our verbal information verification
system by a single fixed threshold as three questions are asked. Figure 5.7(a)
shows a receiver operating curve where the error rates in false rejection and false
acceptance are achieved by changing the threshold value. Note that the above
threshold is used for the utterance-level decision-making. In this experiment,
we fix the subword threshold,� = 2:0, as defined in Eq. (5.14). As a result, our
system reaches an EER of 2.0% in the experiment. Indeed, the performance of
our system is also dependent upon the subword threshold,�. For evaluating the
performance of our system thoroughly, we also do an experiment by varying
the subword threshold value in Eq. (5.14). As a consequence, the EERs of
our system are depicted in Figure 5.7(b). It is observed from Figure 5.7(b)
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Figure 5.7. The performance of our Mandarin verbal information verification system on a
population of 50 people (K = 3, i.e., three questions are asked for each speaker). (a) Receiver
operating curve at the subword threshold� = 2:0. (b) Equal error rates as the subword threshold
� varies from 0.0 to 5.0.

that the subword threshold� results in the different performance though the
utterance-level threshold is fixed.

Although the speaker-independent threshold used in our verbal information
verification leads to the satisfactory performance in contrast to speaker verifi-
cation, lower error rates are demanded for enhancing speaker verification. As a
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Figure 5.8. The performance of our Mandarin verbal information verification system on a
population of 50 people when a speaker-dependent threshold is used.

result, we conduct another experiment by using a context-dependent threshold
in our verbal information verification system. That is, different utterances are
verified by different thresholds. Thus, the decision rule becomes

Acceptance : U(i) � T (i); Rejection : U(i) < T (i) 1 � i � K:

HereU(i) is the normalized confidence measure for each utterance andT (i)
is an original context-dependent utterance threshold. Since the variations in
speech and environments lead to different testing scores for different speakers
even for utterances of the same text. In order to characterize the variation and
the system robustness, each utterance threshold is allowed to have a robust
interval,� . As a result, the threshold is adjusted as

T (i) = T (i)� �; 0 � � � T (i): (5.16)

In this circumstance, there areK thresholds associated withK questions. In our
experiment, the thresholds are determined by first settingT (i) such that the false
rejection rate of our system is 0.0%. Then the thresholds are shifted to evaluate
the false acceptance rate on different robust intervals� as defined in Eq. (5.16).
Figure 5.8 shows the relation between robust interval and false acceptance rates
when two and three questions (K = 2; 3) are asked. As the robust interval
varies, the evolutionary process of false acceptance rates are clearly shown in
Figure 5.8. We can see that using two questions the system cannot reach an
EER of 0.0% though some EERs are quite close to 0.0% . With three questions,
our verbal information verification system yields an EER of 0.0% with 8.2%
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robust interval. This three-question based result indicates that even though a
true speaker’s utterance scores are 8.2% lower than previous due to mismatch,
the speaker still can be accepted while all the impostors in the database can be
rejected correctly. Such a robust interval provides compensation for mismatch
to ensure robust performance of our system, which makes the verbal information
verification system qualify as a supervisor to enhance speaker verification.

Speaker Verification Enhanced by Verbal Information Verification. In our
bilateral user authentication framework, the kernel technologies include text-
independent speaker verification and verbal information verification. As pre-
sented in Sections 5.4.2 and 5.4.3, the text-independent speaker verification
system does not yield satisfactory results for practical use, while the verbal
information verification system reaches an EER of 0.0%. On the other hand,
as pointed out in Section 5.1, text-independent speaker verification can work
in a transparent way, while verbal information verification has to perform by
an explicit query-based way. Therefore, a synergistic integration is to enhance
text-independent speaker verification by verbal information verification as pre-
sented in Section 5.3.3.
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Figure 5.9. The performance of a text-independent speaker verification system enhanced by
verbal information verification in terms of testing speech segments of eight seconds.

To evaluate the performance of the combination scheme presented in Section
5.3.3, we conduct an experiment to observe how the enhanced text-independent
speaker verification system performs. Given a GMM-based speaker verification
system, an unknown voice token is tested by this system. If the voice token
is rejected, a verbal information verification procedure is started. If the user
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can pass the test of verbal information verification, it implies that the previous
rejection caused by text-independent speaker verification is incorrect; that is,
it is a false rejection. Thus, the user’s utterances in this conversation is used
to update the corresponding GMM-based speaker model. Similar to the work
[33], we adopt an on-line EM algorithm to retrain a GMM for fast update. In
our simulation, we use the whole session to update the current GMM-based
speaker model once a speech segment in this session is incorrectly rejected. In
our simulation, we use the GMMs trained on session 1 as a baseline system and
the three-question based verbal information verification system with context-
dependent thresholds for enhancement. As a result, we show the performance
of the enhanced text-independent speaker verification system in Figure 5.9. For
comparison, wedepict theoriginal performanceof the baseline text-independent
speaker verification system in trial 1. Trials 2-5 indicate that speech data in
sessions 2-5 are sequentially used for test and update. From Figure 5.9, it is
evident that the error rates are dramatically reduced during such a sequential
update. Here, we emphasize that the above update is error-free since our verbal
verification system reaches an EER of 0.0%, which provides an effective way
towards reduction of error rates in speaker verification.

5.5. Conclusion

In this chapter, we have presented a bilateral user authentication to per-
sonalize mobile access in wireless environments where speaker verification,
a biometric technology, and verbal information verification, a non-biometric
technology, are integrated seamless to drive maximum synergy for user au-
thentication. Enabling component speaker authentication technologies are de-
scribed in terms of our own work. Simulations have been done separately for
different enabling technologies and experimental results demonstrate that these
enabling component technologies are ready for real application by building a
complete bilateral user authentication system under our framework.

In our framework, we attempt to derive maximum synergy from the com-
plementary capabilities of different speaker authentication technologies for se-
curity, easy-to-access, and friendly user interface in wireless environments. A
salient feature is that such a framework can enhance the security and personalize
mobile access in an adaptive way. Due to miscellaneous mismatches in voice
characteristics, channels, and environments, our bilateral update strategies work
efficiently towards continuous reduction of error rates in speaker authentication;
the text-dependent speaker verification system in the client site is updated in
an autonomous way, while the text-independent speaker verification system in
the server site is updated in a supervised way by means of error-free verbal
information verification. Indeed, several implementation issues for a complete
bilateral user authentication system in real applications are not addressed in this
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chapter. Like component technologies presented in this chapter, these issues
are not trivial at all and will be studied in the future development.
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