28. Deep and Modular Neural Networks

Ke Chen

In this chapter, we focus on two important areas
in neural computation, i.e., deep and modular
neural networks, given the fact that both deep
and modular neural networks are among the most
powerful machine learning and pattern recogni-
tion techniques for complex Al problem solving.
We begin by providing a general overview of deep
and modular neural networks to describe the gen-
eral motivation behind such neural architectures
and fundamental requirements imposed by com-
plex Al problems. Next, we describe background
and motivation, methodologies, major building
blocks, and the state-of-the-art hybrid learning
strategy in context of deep neural architectures.
Then, we describe background and motivation,
taxonomy, and learning algorithms pertaining to
various typical modular neural networks in a wide
context. Furthermore, we also examine relevant

28.1 Overview

The human brain is a generic effective and efficient
system that solves complex and difficult problems and
generates the trait of intelligence and creation. Neural
computation has been inspired by brain-related research
in different disciplines, e.g., biology and neuroscience,
on various levels ranging from a simple single-neuron
to complex neuronal structure and organization [28.1].
Among many discoveries in brain-related sciences, two
of the most important properties are modularity and hi-
erarchy of neuronal organization in the human brain.
Neuroscientific research has revealed that the cen-
tral nervous system (CNS) in the human brain is
a distributed, massively parallel, and self-organizing
modular system [28.1-3]. The CNS is composed of sev-
eral regions such as the spinal cord, medulla oblongata,
pons, midbrain, diencephalon, cerebellum, and the two
cerebral hemispheres. Each such region forms a func-
tional module and all regions are interconnected with

28.1 OVerVieWccoeeiiiiiieiiiiiiiee e, 473

28.2 Deep Neural Networks.......................... L74

28.2.1 Background and Motivation L7y
28.2.2 Building Blocks

and Learning Algorithms............ 475

28.2.3 Hybrid Learning Strategy 480

28.2.4 Relevant Issuescccccoeeeennn... 483

28.3 Modular Neural Networks..................... L84

28.3.1 Background and Motivation L84

28.3.2 Tightly Coupled Models............... 4385

28.3.3 Loosely Coupled Models.............. 487

28.3.4 Relevant Issuesccocooeunee. 491

28.4 Concluding Remarks 492

References............coooeeeiiiiiiiiiic e 492

issues and discuss open problems in deep and
modular neural network research areas.

other parts of the brain [28.1]. In particular, the cerebral
cortex consists of several regions attributed to main per-
ceptual and cognitive tasks, where modularity emerges
in two different aspects: i.e., structural and functional
modularity. Structural modularity is observable from
the fact that there are sparse connections between dif-
ferent neuronal groups but neurons are often densely
connected within a neuronal group, while functional
modularity is evident from different response patterns
produced by neural modules for different perceptual
and cognitive tasks. Modularity evidence in the human
brain strongly suggests that domain-specific modules
are required by specific tasks and different modules
can cooperate for high level, complex tasks, which pri-
marily motivates the modular neural network (MNN)
development in neural computation (NC) [28.4, 5].
Apart from modularity, the human brain also ex-
hibits a functional and structural hierarchy given the fact

473

o
Q
-
=3
o
N
0
-

474 PartD

Neural Networks

8t | aned

that information processing in the human brain is done
in a hierarchical way. Previous studies [28.6,7] sug-
gested that there are different cortical visual areas that
lead to hierarchical information representations to carry
out highly complicated visual tasks, e.g., object recog-
nition. In general, hierarchical information processing
enables the human brain to accomplish complex percep-
tual and cognitive tasks in an effective and extremely
efficient way, which mainly inspires the study of deep
neural networks (DNNs) of multiple layers in NC.

In general, both DNNs and MNNs can be cate-
gorized into biologically plausible [28.8] and artificial

28.2 Deep Neural Networks

In this section, we overview main deep neural net-
work (DNN) techniques with an emphasis on the latest
progress. We first review background and motivation
for DNN development. Then we describe major build-
ing blocks and relevant learning algorithms for con-
structing different DNNs. Next, we present a hybrid
learning strategy in the context of NC. Finally, we ex-
amine relevant issues related to DNNs.

28.2.1 Background and Motivation

The study of NC dates back to the 1940s when Mc-
Cullod and Pitts modeled a neuron mathematically.
After that NC was an active area in Al studies until
Minsky and Papert published their influential book, Per-
ceptron [28.10], in 1969. In the book, they formally
proved the limited capacities of the single-layer percep-
tron and further concluded that there is a slim chance
to expand its capacities with its multi-layer version,
which significantly slowed down NC research until the
back-propagation (BP) algorithm was invented (or rein-
vented) to solve the learning problem in a multi-layer
perceptron (MLP) [28.11].

In theory, the BP algorithm enables one to train an
MLP of many hidden layers to form a powerful DNN.
Such an attractive technique has aroused tremendous
enthusiasm in applying DNNss in different fields [28.9].
Apart from a few exceptions, e.g., [28.12], researchers
soon found that an MLP of more than two hidden lay-
ers often failed [28.13] due to the well-known fact
that MLP learning involves an extremely difficult non-
convex optimization problem, and the gradient-based
local search used in the BP algorithm easily gets stuck
in an unwanted local minimum. As a result, most re-

models [28.9] in NC. The main difference between
biologically plausible and artificial models lies their
methodologies that a biologically plausible model of-
ten takes both structural and functional resemblance
to its biological counterpart into account, while an
artificial model simply works towards modeling the
functionality of a biological system without consider-
ing those bio-mimetic factors. Due to the limited space,
in this chapter we merely focus on artificial DNNs
and MNNs. Readers interested in biologically plausi-
ble models are referred to the literature, e.g., [28.4], for
useful information.

searchers gradually gave up deep architectures and
devoted their attention to shallow learning architectures
of theoretical justification, e.g., the formal but non-
constructive proof that an MLP of single hidden layer
may be a universal function approximator [28.14] and a
support vector machine (SVM) [28.15], instead. It has
been shown that shallow architectures often work well
with support of effective feature extraction techniques
(but these are often handcrafted). However, recent the-
oretic justification suggests that learning models of
insufficient depth have a fundamental weakness as they
cannot efficiently represent the very complicated func-
tions often required in complex Al tasks [28.16, 17].

To solve complex the non-convex optimization
problem encountered in DNN learning, Hinton and his
colleagues made a breakthrough by coming up with
a hybrid learning strategy in 2006 [28.18]. The novel
learning strategy combines unsupervised and super-
vised learning paradigms where a layer-wise greedy
unsupervised learning is first used to construct an ini-
tial DNN with chosen building blocks (such an initial
DNN alone can also be used for different purposes,
e.g., unsupervised feature learning [28.19]), and super-
vised learning is then fulfilled based on the pre-trained
DNN. Their seminal work led to an emerging machine
learning (ML) area, deep learning. As a result, differ-
ent building blocks and learning algorithms have been
developed to construct various DNNs. Both theoretical
justification and empirical evidence suggest that the hy-
brid learning strategy [28.18] greatly facilitates learning
of DNNs [28.17].

Since 2006, DNNs trained with the hybrid learn-
ing strategy have been successfully applied in differ-
ent and complex Al tasks, such as pattern recogni-

Deep and Modular Neural Networks I 28.2 Deep Neural Networks 475

tion [28.20-23], various computer vision tasks [28.24—
26], audio classification and speech information
processing [28.27-31], information retrieval [28.32—
34], natural language processing [28.35-37], and
robotics [28.38]. Thus, DNNs have become one of the
most promising ML and NC techniques to tackle chal-
lenging Al problems [28.39].

28.2.2 Building Blocks
and Learning Algorithms

In general, a building block is composed of two para-
metric models, encoder and decoder, as illustrated in
Fig. 28.1. An encoder transforms a raw input or a low-
level representation x into a high-level and abstract
representation A(x), while a decoder generates an out-
put X, a reconstructed version of x, from hk(x). The
learning building block is a self-supervised learning
task that minimizes an elaborate reconstruction cost
function to find appropriate parameters in encoder and
decoder. Thus, the distinction between two building
blocks of different types lies in their encoder and de-
coder mechanisms and reconstruction cost functions (as
well as optimization algorithms used for parameter es-
timation). Below we describe different building blocks
and their learning algorithms in terms of the generic ar-
chitecture shown in Fig. 28.1.

Auto-Encoders
The auto-encoder [28.40] and its variants are sim-
ple building blocks used to build an MLP of many
layers. It is carried out by an MLP of one hidden
layer. As depicted in Fig. 28.2, the input and the
hidden layers constitute an encoder to generate a M-

- Reconstruction
cost

Fig. 28.1 Schematic diagram of a generic building block
architecture

dimensional representation i(x) = (h;(x), ..., hy(x))
(hereinafter, we use the notation k(x) = (h,(x))?_, to
indicate a vector—element relationship for simplifying
the presentation) for a given input x = (x,)"_, in N-

dimensional space
h(x) =f(Wx +by) .

where W is a connection weight matrix between the
input and the hidden layers, b, is the bias vector for
all hidden neurons, and f(-) is a transfer function, e.g.,
the sigmoid function [28.9]. Let f(u) = (f(ux))5_, be
a collective notation for output of all K neurons in
a layer. Accordingly, the hidden and the output lay-
ers form a decoder that yields a reconstructed version
F= G,

E=f(Wh(x)+b,),

where W' is the transpose of the weight matrix W and
b, is the bias vector for all output neurons. Note that the
auto-encoder can be viewed as a special case of auto-
associator when the same weights are tied to be used
in connections between different layers, which will be
clearly seen in the learning algorithm later on. Doing
so avoids an unwanted solution when an over-complete
representation, i.e., M > N, is required [28.22].
Further studies [28.41] suggest that the auto-
encoder is unlikely to lead to the discovery of a more
useful representation than the input despite the fact that
a representation should encode much of the informa-
tion conveyed in the input whenever the auto-encoder
produces a good reconstruction of its input. As a re-
sult, a variant named the denoising auto-encoder (DAE)
was proposed to capture stable structures underlying
the distribution of its observed input. The basic idea is
as follows: instead of learning the auto-encoder from
the intact input, the DAE will be trained to recover the

Decoder
00 - 00|+
AWT
|00 - 00 | w
w
[@® @0]-

Encoder

Fig. 28.2 Auto-encoder architecture

'8t | aued

476 PartD

Neural Networks

8t | aned

original input from its distorted version of partial de-
struction [28.41]. As is illustrated in Fig. 28.3, the DAE
leads to a more useful representation k(X) by restoring
the corrupted input X to a reconstructed version X as
close to the clean input x as possible. Thus, the encoder
yields a representation as

hx) =f(Wx+b)) .

and the decoder produces a restored version X via the
representation /(x)

%= f(WTh@®E) +b,) .

To produce a corrupted input, we need to distort a clean
input by corrupting it with appropriate noise. Depend-
ing on the attribute nature of input, there are three
kinds of noise used in the corruption process: i.e.,
the isotropic Gaussian noise, N(0, o), masking noise
(by setting some randomly chosen elements of x to
zero) and salt-and-pepper noise (by flipping some ran-
domly chosen elements’ values of x to the maximum
or the minimum of a given range). Normally, Gaus-
sian noise is used for input of real or continuous
values, while and masking and salt-and-pepper noise
is applied to input of discrete values, e.g., pixel in-
tensities of gray images. It is worth stating that the
variance o2 in Gaussian noise and the number of ran-
domly chosen elements in masking and salt-and-pepper
noise are hyper-parameters that affect DAE learning.
By corrupting a clean input with the chosen noise, we
achieve an example, (¥,x), for self-supervised learn-
ing.

Given a training set of 7 examples {(x, x,)}_,
(auto-encoder) or {(5:,,x,)}[T=1 (DAE) two reconstruc-
tion cost functions are commonly used for learning
auto-encoders as follows

T N
1 .
L(w,bh,bo)=—2T§ » (tm—ka)®. (28.12)

t=1n=1

L(W.by.b,)

T N
1 R N
= T Z Z (xm logxy + (1 —x4) log (1 —Xp)) .

t=1n=1

(28.1b)

The cost function in (28.1a) is used for input of real
or discrete values, while the cost function in (28.1b) is
employed especially for input of binary values.

Decoder
00 - 00|
kWT
|00 - 00 |
w

Encoder

Fig. 28.3 Denoising auto-encoder architecture

To minimize reconstruction functions in (28.1),
application of the stochastic gradient descent algo-
rithm [28.12] leads to a generic learning algorithm for
training the auto-encoder and its variant, summarized as
follows:

Auto-Encoder Learning Algorithm. Given a train-
ing set of T examples, {(z;,x,)}'_, where z, = x, for
the auto-encoder or z; = X, for the DAE, and a transfer
function, f(-), randomly initialize all parameters, W, b,
and b,, in auto-encoders and pre-set a learning rate €.
Furthermore, the training set is randomly divided into

several batches of Ty examples, {(z,,x,)}tTi 1» and then

parameters are updated based on each batch:

® Forward computation
For the inputz, (t = 1,--- , Tp), output of the hidden
layer is

h(z) = f(un(z)) ,

And output of the output layer is

X =1(uo(z))) .

® Backward gradient computation
For the cost function in (28.1a),

aL(Wa bhabo) — ((a / N
T(Zt) - ((xm _xtn)f (uo,n(zt)))”=1 P

where f/(-) is the first-order derivative function of
f(-). For the cost function in (28.1b),

aL(Wa bha b())
aua(zt)

Then, the gradient with respect to h(z,) is

aL(W,bh,b()) _ 8L(W, bh,b(,)
oh(z) due, (z;)

u,(z) = Wz; + by, .

u,(z) = Wh(z,) +b, .

=X;—X;.

Deep and Modular Neural Networks | 28.2 Deep Neural Networks

Applying the chain rule achieves the gradient with
respect to u;,(z,) as

aL(Wa bha b()) _

/ aL(W, bh, bo) M
dur) (f (”hmz(zt))—)

0hy(2:)

m=1
Gradients with respect to biases are

OL(W.by.b,) _ OL(W.b;.b,)

ob, auo(zt) ’

and

OL(W.by,b,) IL(W,by,b,)

b, oup(z1)

® Parameter update
Applying the gradient descent method and tied
weights leads to update rules

Tp
¢ OL(W.by.b,) .
w W—— E _
- Tp |: oup(z,)]

=1

L(W.by,.b,))T
+hiz) (2 |
(Zt) (auv(zt)
Tp
€ dL(W,by,b,)
by <—b,——y el
Tp ; o, (z1)
and
Tp
e & AL(W, by, by)
by by— — 3 I To)
" " TB ; auh(zt)

The above three steps repeat for all batches, which
leads to a training epoch. The learning algorithm runs
iteratively until a termination condition is met (typically
based on a cross-validation procedure [28.12]).

The Restricted Boltzmann Machine
Strictly speaking, the restricted Boltzmann machine
(RBM) [28.42] is an energy-based generative model,
a simplified version of the generic Boltzmann machine.
As illustrated in Fig. 28.4, an RBM can be viewed
as a probabilistic NN of two layers, i.e., visible and
hidden layers, with bi-directional connections. Unlike
the Boltzmann machine, there are no lateral connec-
tions among neurons in the same layer in an RBM.
With the bottom-up connections from the visible to the

Hidden layer

Encoder
S
=
3
IOpO23(

Visible layer

Fig. 28.4 Restricted Boltzmann machine (RBM) architec-
ture

hidden layer, RBM forms an encoder that yields a prob-
abilistic representation b = (h,,)”_, for input data v =

(Vn)]y:/=1

M
P(hly) = [P(hnlv) .
m=1
N
P(th|V) = ¢ (Z Wmnvn + bh,m)) (28-2)
n=1

where W,,, is the connection weight between the vis-
ible neuron n and the hidden neuron m, and by,
is the bias of the hidden neuron m. ¢(u) = H—%
is the sigmoid transfer function. As #h,, is assumed
to take a binary value, i.e., h, € {0, 1}, P(h,|v) is
interpreted as the probability of h, =1. Accord-
ingly, RBM performs a probabilistic decoder via the
top-down connections from the hidden to the visi-
ble layer to reconstruct an input with the probabil-

ity

M
Pk = [POulh)
m=1
N
P(vlh) = ¢ (Z Wb + b) : (28.3)
m=1

where W,,, is the connection weight between the hid-
den neuron m and the visible neuron n, and b, , is
the bias of visible neuron n. Like connection weights
in auto-encoders, bi-directional connection weights are
tied, i.e., W, = W,,,, as shown in Fig. 28.4. By
learning a parametric model of the data distribution
P(v) derived from the joint probability P(v,h) for
a given data set, RBM yields a probabilistic repre-
sentation that tends to reconstruct any data subject
to P(v).

Lrr

'8t | aued

478 PartD

Neural Networks

8t | aned

The joint probability P(v, k) is defined based on the
following energy function for v, € {0, 1}

M N
E(V, h) = Z Z Wonhmvn

m=1n=1
M N
- Z hmbh,m - Z vnbv,m . (28“‘)
m=1 n=1

As aresult, the joint probability is subject to the Boltz-
mann distribution

e—E(v,h)

T

Thus, we achieve the data probability by marginalizing
the joint probability as follows

P(v.h) = (28.5)

PO) =) P(.h) =Y P|h)P().
h h

In order to achieve the most likely reconstruction, we
need to maximize the log-likelihood of P(v). Therefore,
the reconstruction cost function of an RBM is its nega-
tive log-likelihood function

L(W,by,b,) = —log P(v) = —log ZP(v|h)P(h) .
h
(28.6)

From (28.5) and (28.6), it is observed that the direct
use of a gradient descent method for optimal parame-
ters often leads to intractable computation due to the
fact that the exponential number of possible hidden-
layer configurations needs to be summed over in (28.5)
and then used in (28.6). Fortunately, an approximation
algorithm named contrastive divergence (CD) has been
proposed to solve this problem [28.42]. The key ideas
behind the CD algorithm are (i) using Gibbs sampling
based on the conditional distributions in (28.2) and
(28.3), and (ii) running only a few iterations of Gibbs
sampling by treating the data x input to an RBM as the
initial state, i.e., 0 = x, of the Markov chain at the vis-
ible layer. Many studies have suggested that only the
use of one iteration of the Markov chain in the CD algo-
rithm works well for building up a deep belief network
(DBN) in practice [28.17, 18, 22], and hence the algo-
rithm is dubbed CD-1 in this situation, a special case
of the CD-k algorithm that executes k iterations of the
Markov chain in the Gibbs sampling process.

" 000 »OO®®

AN

" @@ @@

k = O k = 1
Data Reconstruction

=}

Fig. 28.5 Gibbs sampling process in the CD-1 algorithm

Figure 28.5 illustrates a Gibbs sampling process
used in the CD-1 algorithm as follows

i) Estimating probabilities P(h%[v?), for m=1,
.-+, M, with the encoder defined in (28.2) and then
forming a realization of h° by sampling with these
probabilities.

ii) Applying the decoder defined in (28.3) to estimate
probabilities P(v,l,|h0), forn=1,---,N, and then
producing a reconstruction of v! via sampling.

iii) With the reconstruction, estimating probabilities
P(h,1n|vl), form=1,---, M, with the encoder.

With the above Gibbing sampling procedure, the
CD-1 algorithm is summarized as follows:

Algorithm 28.1 RBM (D-1 Learning Algorithm
Given a training set of 7 instances, {x,}IT: 1» randomly
initialize all parameters, W, b;, and b,, in an RBM and

pre-set a learning rate €:

® Positive phase

— Present an instance to the visible layer, i.e.,
W =x,.

— Estimate probabilities with the encoder:
P(h0) = (P(hO[v°))M_, by using (28.2).

® Negative phase

— Form a realization of h° by sampling with prob-
abilities P(h°|v°).

— With the realization of h°, apply the de-
coder to estimate probabilities: P(v!|h°) =
(POOIR%)N_, by using (28.3), and then pro-
duce a reconstruction v! via sampling based on
PO |h%).

— With the encoder and the reconstruction, es-
timate probabilities: P(h'|v') = (P(h} [v')M_,
by using (28.2).

® Parameter update
Based on Gibbs sampling results in the positive and

Deep and Modular Neural Networks I 28.2 Deep Neural Networks 479

the negative phases, parameters are updated as fol-
lows:

WeW+te (ﬁ(h°|v°)(v°)T —i’(h1|v1)(v1)T) ,
by < by +e (P(h°|v°) —ﬁ(h1|v1)) ,

and
b, < b, +e(VW—v').

The above three steps repeat for all instances in the
given training set, which leads to a training epoch. The
learning algorithm runs iteratively until it converges.

Predictive Sparse Decomposition
Predictive sparse decomposition (PSD) [28.43] is
a building block obtained by combining sparse cod-
ing [28.44] and auto-encoder ideas. In a PSD building
block, the encoder is specified by

h(x,) = Gtanh(Wgx, + by,) , (28.7)

where W is the MxN connection matrix between input
and hidden neurons in the encoder and G = diag(g,,)
is an MxM learnable diagonal gain matrix for an M-
dimensional representation of an N-dimensional input,
x;, by, are biases of hidden neurons, and tanh(-) is the hy-
perbolic tangent transfer function [28.9]. Accordingly,
the decoder is implemented by a linear mapping used in
the sparse coding [28.44]

%= Woh(x,) (28.8)

where Wp is an NxM connection matrix between hidden
and output neurons in the decoder, and each column of
Wp always needs to be normalized to a unit vector to
avoid trivial solutions [28.44].

Given a training set of T instances, {x ,}tT: 1» the PSD
cost function is defined as

Lpsp (G, Wg, Wp, by: h™ (x,))
T
= Z IWoh™ (x;) — x5 + a[|B* (x,) |y

=1

+ Bllh* (x)) —h(x)3 . (28.9)

where h™(x,) is the optimal sparse hidden representa-
tion of x, while h(x,) is the output of the encoder in
(28.7) based on the current parameter values. In (28.9),
« and B are two hyper-parameters to control regular-
ization strengths, and ||-[[; and [|- | are £; and £,
norm, respectively. Intuitively, in the multi-objective

cost function defined in (28.9), the first term specifies
reconstruction errors, the second term refers to the mag-
nitude of non-sparse representations, and the last term
drives the encoder towards yielding the optimal repre-
sentation.

For learning a PSD building block, the cost function
in (28.9) needs to be optimized simultaneously with
respect to the hidden representation and all the param-
eters. As a result, a learning algorithm of two alternate
steps has been proposed to solve this problem [28.43]
as follows:

Algorithm 28.2 PSD Learning algorithm

Given a training set of 7 instances {x,}’_, randomly
initialize all the parameters, Wg, Wp, G, b, and the
optimal sparse representation {h*(x,)}’_, in a PSD
building block and pre-set hyper-parameters « and
as well as learning rates ¢; (i = 1,--- ,4):

® Optimal representation update
In this step, the gradient descent method is applied
to find the optimal sparse representation based on
the current parameter values of the encoder and the
decoder, which leads to the following update rule
h*(x,) < h*(x,) — € [asign(h™(x,))
+ B(h* (x) —h(x,))
+(Wp) (Wph™ (x)) —x))] .
where sign(-) is the sign function; sign(u) = +1 if
u = 0 and sign(u) =0if u =0.
® Parameter update
In this step, h™(x,) achieved in the above step is
fixed. Then the gradient descent method is applied
to the cost function (28.9) with respect to all en-
coder and decoder parameters, which results in the
following update rules
Wi < Wi —exg(x)(x)T
by < b, —exglx,) .

Here g(x,) is obtained by

g(xf) = [g};nll(gilm - hlzn(xt))
() — hux) M,

G < G —eydiag |:<h:; (x;) — hm(x,))

N
X tanh (Z[WE]mnxtn + bv,m):| ’
n=1

'8t | aued

480 PartD

Neural Networks

8t | aned

and
Wp < Wp —e4 [Woh* (x)) —x,] [h* ()]
Normalize each column of Wj such that
[(Wplall3=1forn=1,--- ,N

The above two steps repeat for all the instances in
the given training set, which leads to a training epoch.
The learning algorithm runs iteratively until it con-
verges.

Other Building Blocks
While the auto-encoders and the RBM are building
blocks widely used to construct DNNSs, there are other
building blocks that are either derived from existing
building blocks for performance improvement or are
developed with an alternative principle. Such build-
ing blocks include regularized auto-encoders and RBM
variants. Due to the limited space, we briefly overview
them below.

Recently, a number of auto-encoder variants have
been developed by adding a regularization term to
the standard reconstruction cost function in (28.1) and
hence are dubbed regularized auto-encoders. The con-
trastive auto-encoder (CAE) is a typical regularized
version of the auto-encoder with the introduction of the
norm of the Jacobian matrix of the encoder evaluated at
each training example x, into the standard reconstruc-
tion cost function [28.45]

;
Leas(W. by, by) = L(W. by b,) +a Y V()7

=1
(28.10)

where « is a trade-off parameter to control the regular-
ization strength and [|J(x,)||% is the Frobenius norm of
the Jacobian matrix of the encoder and is calculated as
follows

G 7 = Z Z

m=1n=1

(Mh m(xt))

Here, f7(-) is the first-order derivative of a transfer func-
tion f(-), and f'[up m(x;)] = hp(x)[1 — hy(x;)] when
f() is the sigmoid function [28.9]. It is straightfor-
ward to apply the stochastic gradient method [28.12]

to the CAE cost function in (28.10) to derive a learn-
ing algorithm used for training a CAE. Furthermore,
an improved version of CAE was also proposed by
penalizing additional higher order derivatives [28.46].
The sparse auto-encoder (SAE) is another class of
regularized auto-encoders. The basic idea underlying
SAEs is the introduction of a sparse regularization term
working on either hidden neuron biases, e.g., [28.47],
or their outputs, e.g., [28.48], into the standard re-
construction cost function. Different forms of sparsity
penalties, e.g., £, norm and student-¢, are employed
for regularization, and the learning algorithm is derived
by applying the coordinate descent optimization pro-
cedure to a new reconstruction cost function [28.47,
48].

The RBM described above works only for an input
of binary values. When an input has real values, a vari-
ant named Gaussian RBM (GRBM) [28.49], has been
proposed with the following energy function

E(v.h) = Z Z Wmnh
m=1n=1
_ Z h bh Z (Vn vn) (28 11)
" 202 ’ '
m=1 n=1

where o, is the standard deviation of the Gaussian
noise for the visible neuron n. In the CD learning al-
gorithm, the update rule for the hidden neurons remains
the same except that each v, is substituted by 2, and
the update rule for all visible neurons needs to use
reconstructions v, produced by sampling from a Gaus-
sian distribution with mean o, anll:l Wmhm + by, and
variance 03 forn=1,---,N. In addition, an improved
GRBM was also proposed by introducing an alternative
parameterization of the energy function in (28.11) and
incorporating it into the CD algorithm [28.50]. Other
RBM variants will be discussed later on, as they of-
ten play a different role from being used to construct
a DNN.

28.2.3 Hybrid Learning Strategy

Based on the building blocks described in Sect. 28.2.2,
we describe a systematic approach to establish-
ing a feed-forward DNN for supervised and semi-
supervised learning. This approach employs a hybrid
learning strategy that combines unsupervised and su-
pervised learning paradigms to overcome the optimiza-
tion difficulty in training DNNs. The hybrid learning

Deep and Modular Neural Networks I 28.2 Deep Neural Networks

strategy [28.18,40] first applies layer-wise greedy un-
supervised learning to set up a DNN and initialize
parameters with input data only and then uses a global
supervised learning algorithm with teachers’ informa-
tion to train all the parameters in the initialized DNN
for a given task.

Layer-Wise Unsupervised Learning
In the hybrid learning strategy, unsupervised learning
is a layer-wise greedy learning process that constructs
a DNN with a chosen building block and initializes pa-
rameters in a layer-by-layer way.

Suppose we want to establish a DNN of K (K>1)
hidden layers and denote output of hidden layer k as
hi(x) (k=1,---,K) for a given input x and output of
the output layer as o(x), respectively. To facilitate the
presentation, we stipulate i (x) = x. Then, the generic
layer-wise greedy learning procedure can be summa-
rized as follows:

Algorithm 28.3 Layer-wise greedy learning proce-
dure

Given a training set of 7 instances {x,}’_,, randomly
initialize its parameters in a chosen building block and
pre-set all hyper-parameters required for learning such
a building block:

® Train a building block for hidden layer k

— Set the number of neurons required by hidden
layer k to be the dimension of the hidden repre-
sentation in the chosen building block.

- Use the training data set {h;—;(x,)}'_, train the
building block to achieve its optimal parame-
ters.

® Construct a DNN up to hidden layer &

With the trained building block in the above step,

discard its decoder part, including all associated pa-

rameters, and stack its hidden layer on the existing

DNN with connection weights of the encoder and

biases of hidden neurons achieved in the above step

(the input layer ho(x) = x is viewed as the starting

architecture of a DNN).

The above steps are repeated for k=1,--- K.
Then, the output layer o(x) is stacked onto hidden layer
K with randomly initialized connection weights so as to
finalize the initial DNN construction and its parameter
initialization.

Figure 28.6 illustrated two typical instances for
constructing an initial DNN via the layer-wise greedy
learning procedure described above. Figure 28.6a

A jw @ee 000
Wi
) [00® - 000
Wk
hea) (@00 -000)

b))

hi1(x)

200 - 000 W
nw~@ee —seor{ Il
Wi

Fig. 28.6a,b Construction of a DNN with a building block via
layer-wise greedy learning. (a) Auto-encoder or its variants.

(b) RBM or its variants

shows a schematic diagram of the layer-wise greedy
learning process with the auto-encoder or its vari-
ants; to construct the hidden layer k, the output layer
and its associated parameters W,I and b, are re-
moved and the remaining part is stacked onto hid-
den layer k—1, and W, is a randomly initialized
weight matrix for the connection between the hid-
den layer K and the output layer. When a DNN is
constructed with the RBM or its variants, all back-
ward connection weights in the decoder are abandoned
after training and only the hidden layer with those
forward connection weights and biases of hidden neu-
rons are used to construct the DNN, as depicted in
Fig. 28.6b.

481

'8t | a Med

482

8t | aned

Part D

Neural Networks

Global Supervised Learning
Once a DNN is constructed and initialized based on
the layer-wise greedy learning procedure, it is ready
to be further trained in a supervision fashion for
a classification or regression task. There are a vari-
ety of optimization methods for supervised learning,
e.g., stochastic gradient descent and the second-order
Levenberg—Marquadt methods [28.9,12]. Also there
are cost functions of different forms used for various
supervised learning tasks and regularization towards
improving the generalization of a DNN. Due to the
limited space, we only review the stochastic gradi-
ent descent algorithm with a generic cost function for
global supervised learning.

For a generic cost function L(®,D), where ®
is a collective notation of all parameters in a DNN
(Fig. 28.6) and D is a training data set for a given su-
pervised learning task, applying the stochastic gradient
descent method [28.9, 12] to L(®, D) leads to the fol-
lowing learning algorithm for fine-tuning parameters.

Algorithm 28.4 Global supervised learning algo-
rithm

Given a training set of 7 examples D = {(x,,y,)}'_,
pre-set a learning rate € (and other hyper-parameters
if required). Furthermore, the training set is ran-
domly divided into many mini-batches of T examples
{(x,y ,)},TB=1 and then parameters are updated based on
each mini-batch. ® = ({Wk}f: 11, {bk}f: 11) are all pa-
rameters in a DNN, where W; is the weight matrix
for the connection between the hidden layers k and
k—1, and by, is biases of neurons in layer k (Fig. 28.6).
Here, input and output layers are stipulated as layers 0
and K + 1, respectively, i.e., ho(x,) = x;,, W, = Wg41,
b, = bkt and o(x;) = hgy(x,):

® Forward computation

Given the input x,, fork=1,---
of layer k is

, K+1, the output

hi(x)) = fur(x,) , ur(x)) = Wihy—1(x,) + by -
® Backward gradient computation
Given a cost function on each mini-batch, Lg(®, D)
calculate gradients at the output layer, i. e.,

BLB(@, D) _ aLB(('.)’ D)

Oy 41 (x;) do(x;)

ILy(@. D) (0Ly(0,D) ,)""
= u (X B

dug+1(x,) 3h(K+1)f(xz)f(=) =1

where f7(-) is the first-order derivative of the transfer
function f(-).

For all hidden layers, i.e., k=K, --- , 1, applying
the chain rule leads to
ILz(©,D) ([0Lg(®,D) Vel
= ' (i (x,)) :
8uk(xt) ahkj(xt) =1
and
0Lp(®, D) o \' 0L(®, D)
An(©:D) _ (10 ' Ual®.D).
8hk(xt) 8uk+1(xt)
Fork=K+1,---,1, gradients with respect to bi-
ases of layer k are
ILp(O,D) ILg(O, D)
b du(x))

® Parameter update
Applying the gradient descent method results in the
following update rules:
Fork=K+1,---,1

Lp(O, D) T
Wi < W, — TB Z 7314/((17;) (hi—1(x)))",
dLp(®, D)
by < by — Z al;k(x,) .

The above three steps repeat for all mini-batches,
which leads to a training epoch. The learning algorithm
runs iteratively until a termination condition is met (typ-
ically based on a cross-validation procedure [28.12]).

For the above learning algorithm, the BP algo-
rithm [28.11] is a special case when the transfer func-
tion is the sigmoid function, i.e., f(u) = ¢ («), and the
cost function is the mean square error (MSE) function,
i. e., for each mini-batch

Tp
1
Ly(©.D) = > o) —yil3 -
=1

Thus, we have

¢'(u) =) (1—¢p),

0L(0,D) 1

o) Z(o(x» y).

t_l

Deep and Modular Neural Networks | 28.2 Deep Neural Networks

and
ILy(O, D)
BuK_H (x,)

=1 =1

I o]
) [TLB > (0(x) = yy)o) (1~ oj(x,)):| -
J

28.2.4 Relevant Issues

In the literature, the hybrid learning strategy described
in Sect. 28.2.3 is often called the semi-supervised learn-
ing strategy [28.17, 39]. Nevertheless, semi-supervised
learning implies the situation that there are few labeled
examples but many unlabeled instances in a training set.
Indeed, such a strategy works well in a situation where
both unlabeled and labeled data in a training set are
used for layer-wise greedy learning, and only labeled
data are used for fine-tuning in global supervised learn-
ing. However, other studies, e.g., [28.28,29, 51], also
show that this strategy can considerably improve the
generalization of a DNN even though there are abun-
dant labeled examples in a training data set. Hence we
would rather name it hybrid learning. On the other hand,
our review focuses on only primary supervised learn-
ing tasks in the context of NC. In a wider context, the
unsupervised learning process itself develops a novel
approach to automatic feature discovery/extraction via
learning, which is an emerging ML area named rep-
resentation learning [28.39]. In such a context, some
DNNSs can perform a generative model. For instance,
the DBN [28.18] is a RBM-based DNN by retaining
both forward and backward connections during layer-
wise greedy learning. To be a generative model, the
DBN needs an alternative learning algorithm, e.g., the
wake—sleep algorithm [28.18], for global unsupervised
learning. In general, the global unsupervised learning
for a generative DNN is still a challenging problem.
While the hybrid learning strategy has been success-
fully applied to many complex Al tasks, in general, it is
still not entirely clear why such a strategy works well
empirically. A recent study attempted to provide some
justification of the role played by layer-wise greedy
learning for supervised learning [28.51]. The findings
can be summarized as follows: such an unsupervised
learning process brings about a regularization effect that
initializes DNN parameters towards the basin of attrac-
tion corresponding to a good local minimum, which
facilitates global supervised learning in terms of gener-
alization [28.51]. In general, a deeper understanding of
such a learning strategy will be required in the future.

On the other hand, a successful story was recently re-
ported [28.52] where no unsupervised pre-training was
used in the DNN learning for a non-trivial task; which
poses another open problem as to when and where
such a learning strategy must be employed for training
a DNN to yield a satisfactory generalization perfor-
mance.

Recent studies also suggest that the use of arti-
ficially distorted or deformed training data and un-
supervised front-ends can considerably improve the
performance of DNNs regardless of the hybrid learning
strategy. As DNN learning is of the data-driven nature,
augmenting training data with known input deforma-
tion amounts to the use of more representative examples
conveying intrinsic variations underlying a class of
data in learning. For example, speech corrupted by
some known channel noise and deformed images by
using affine transformation and adding noise have sig-
nificantly improved the DNN performance in various
speech and visual information processing tasks [28.22,
28,29,51,52]. On the other hand, the generic build-
ing blocks reviewed in Sect. 28.2.2 can be extended
to be specialist front-ends by exploiting intrinsic data
structures. For instance, the RBM has several vari-
ants, e.g., [28.53-55], to capture covariance and other
statistical information underlying an image. After un-
supervised learning, such front-ends generate power-
ful representations that greatly facilitate further DNN
learning in visual information processing.

While our review focuses on only fully connected
feed-forward DNNSs, there are alternative and more
effective DNN architectures for specific tasks. Convo-
lutional DNN5s [28.12] make use of topological locality
constraints underlying images to form more effective
locally connected DNN architecture. Furthermore, var-
ious pooling techniques [28.56] used in convolutional
DNNss facilitate learning invariant and robust features.
With appropriate building blocks, e.g., the PSD re-
viewed in Sect. 28.2.2, convolutional DNNs work very
well with the hybrid learning strategy [28.43,57]. In
addition, novel DNN architectures need to be devel-
oped by exploring the nature of a specific problem, e.g.,
aregularized Siamese DNN was recently developed for
generic speaker-specific information extraction [28.28,
29]. As a result, novel DNN architecture development
and model selection are among important DNN re-
search topics.

Finally, theoretical justification of deep learning and
the hybrid learning strategy, along with other developed
recently techniques, e.g., parallel graphics processing
unit (GPU) computing, enable researchers to develop

483

'8t | aued

484 PartD

Neural Networks

€'8c|amed

large-scale DNNSs to tackle very complex real world
problems. While some theoretic justification has been
provided in the literature, e.g., [28.16, 17, 39], to show
strengths in their potential capacity and efficient rep-
resentational schemes of DNNs, more and more suc-
cessful applications of DNNSs, particulary working with
the hybrid learning strategy, lend evidence to support
the argument that DNNs are one of the most promis-

28.3 Modular Neural Networks

In this section, we review main modular neural net-
works (MNN) and their learning algorithms with our
own taxonomy. We first review background and moti-
vation for MNN research and present our MNN tax-
onomy. Then we describe major MNN architectures
and relevant learning algorithms. Finally, we exam-
ine relevant issues related to MNNs in a boarder
context.

28.3.1 Background and Motivation

Soon after neural network (NN) research resurged in the
middle of the 1980s, MNN studies emerged; they have
become an important area in NC since then. There are
a variety of motivations that inspire MNN researches,
e.g., biological, psychological, computational, and im-
plementation motivations [28.4,5,9]. Here, we only
describe the background and motivation of MNN re-
searches from learning and computational perspectives.

From the learning perspective, MNNs have several
advantages over monolithic NNs. First of all, MNNs
adopt an alternative methodology for learning, so that
complex problem can be solved based an ensemble of
simple NNs, which might avoid/alleviate the complex
optimization problems encountered in monolithic NN
learning without decreasing the learning capacity. Next,
modularity enables MNNSs to use a priori knowledge
flexibly and facilitates knowledge integration and up-
date in learning. To a great extent, MNNs are immune
to temporal and spatial cross-talk, a problem faced by
monolithic NNs during learning [28.9]. Finally, theoret-
ical justification and abundant empirical evidence show
that an MNN often yields a better generalization than
its component networks [28.5,59]. From the compu-
tational perspective, modularization in MNNs leads to
more efficient and robust computation, given the fact
that MNNs often do not suffer from a high coupling
burden in a monolithic NN and hence tend to have

ing learning systems for dealing with complex and
large-scale real world problems. For example, such evi-
dence can be found from one of the latest developments
in a DNN application to computer vision where it is
demonstrated that applying a DNN of nine layers con-
structed with the SAE building block via layer-wise
greedy learning results in the favorable performance in
object recognition of over 22 000 categories [28.58].

a lower overall structural complexity in tackling the
same problem [28.5]. This main computational merit
makes MNNs scalable and extensible to large-scale
MNN implementation.

There are two highly influential principles that are
often used in artificial MNN development; i. e., divide-
and-conquer and diversity-promotion. The divide-and-
conquer principle refers to a generic methodology that
tackles a complex and difficult problem by dividing it
into several relatively simple and easy subproblems,
whose solutions can be combined seamlessly to yield
a final solution. On the other hand, theoretical justifica-
tion [28.60, 61] and abundant empirical studies [28.62]
suggest that apart from the condition that component
networks need to reach some certain accuracy, the suc-
cess of MNNs are largely attributed to diversity among
them. Hence, the promotion of diversity in MNNs be-
comes critical in their design and development. To
understand motivations and ideas underlying different
MNNs, we believe that it is crucial to examine how two
principles are applied in their development.

There are different taxonomies of MNNs [28.4, 5,
9]. In this chapter, we present an alternative taxonomy
that highlights the interaction among component net-
works in an MNN during learning. As a result, there
is a dichotomy between tightly and loosely coupled
models in MNNS. In a tightly coupled MNN, all com-
ponent networks are jointly trained in a dependent way
by taking their interaction into account during a single
learning stage, and hence all parameters of different net-
works (and combination mechanisms if there are any)
need to be updated simultaneously by minimizing a cost
function defined at the global level. In contrast, training
of a loosely coupled MNN often undergoes multi-
ple stages in a hierarchical or sequential way where
learning undertaken in different stages may be either
correlated or uncorrelated via different strategies. We
believe that such a taxonomy facilitates not only un-

Deep and Modular Neural Networks | 28.3 Modular Neural Networks

derstanding different MNNs especially from a learning
perspective but also relating MNNSs to generic ensemble
learning in a broader context.

28.3.2 Tightly Coupled Models

There are two typical tightly coupled MNNSs: the mix-
ture of experts (MoE) [28.63, 64] and MNNSs trained via
negative correlation learning (NCL) [28.65].

Mixture of Experts
The MoE [28.63, 64] refers to a class of MNNs that
dynamically partition input space to facilitate learn-
ing in a complex and non-stationary environment.
By applying the divide-and-conquer principle, a soft-
competition idea was proposed to develop the MoE
architecture. That is, at every input data point, multiple
expert networks compete to take on a given supervised
learning task. Instead of winner-take-all, all expert net-
works may work together but the winner expert plays
a more important role than the losers.

The MoE architecture is composed of N expert net-
works and a gating network, as illustrated in Fig. 28.7.
The n-th expert network produces an output vector,
0,(x), for an input, x. The gating network receives the
vector x as input and produces N scalar outputs that
form a partition of the input space at each point x. For
the input x, the gating network outputs N linear combi-
nation coefficients used to verdict the importance of all
expert networks for a given supervised learning task.
The final output of MoE is a convex weighted sum of
all the output yielded by N expert networks. Although
NNs of different types can be used as expert networks,
a class of generalized linear NNs are often employed
where such an NN is linear with a single output non-

o(x)
g, vy)

Gating
network ERIVAN

T 01(x) on(x)

Expert Expert
X network 1 ot network N
X X

Fig. 28.7 Architecture of the mixture of experts

linearity [28.64]. As a result, output of the n-th expert
network is a generalized linear function of the input x

0, (x) =f(W,x) ,

where W, is a parameter matrix, a collective notation
for both connection weights and biases, and f(-) is
anonlinear transfer function. The gating network is also
a generalized linear model, and its n-th output g(x, v,)
is the softmax function of v;x

ele

glx,vy) = W ,
where v, is the n-th column of the parameter matrix V
in the gating network and is responsible for the linear
combination coefficient regarding the expert network 7.
The overall output of the MoE is the weighted sum re-
sulted from the soft-competition at the point x

N
0(x) =) g(x,v,)0,(x) .

n=1

There is a natural probabilistic interpretation of the
MOoE [28.64]. For a training example (x,y), the values
of g(x, V) = (g(x,v,))"_, are interpreted as the multi-
nomial probabilities associated with the decision that
terminates in a regressive process that maps x to y.
Once a decision has been made that leads to a choice
of regressive process n, the output y is chosen from
a probability distribution P(y|x, W,). Hence, the over-
all probability of generating y from x is the mixture of
the probabilities of generating y from each component
distribution and the mixing proportions are subject to
a multinomial distribution

N
Pyl ©) =) g(x.v)POlx. W) . (28.12)

n=1

where @ is a collective notation of all the parameters in
the MoE, including both expert and gating network pa-
rameters. For different learning tasks, specific compo-
nent distribution models are required. For example, the
probabilistic component model should be a Gaussian
distribution for a regression task, while a Bernoulli dis-
tribution and multinomial distributions are required for
binary and multi-class classification tasks, respectively.
In general, MoE is viewed as a conditional mixture
model for supervised learning, a non-trivial extension
of finite mixture model for unsupervised learning.

485

€8z | aimed

486 PartD

Neural Networks

€'8c|amed

By means of the above probabilistic interpretation,
learning in the MoE is treated as a maximum likeli-
hood problem defined based on the model in (28.12).
An expectation-maximization (EM) algorithm was pro-
posed to update parameters in the MoE [28.64]. It is
summarized as follows:

Algorithm 28.5 EM algorithm for MoE learning
Given a training set of T examples D = {(x,,y,)}_,
pre-set the number of expert networks, N, and randomly
initialize all the parameters © = {V, (W,)"_,} in the
MoE:

® E-step
For each example, (x,,y;) in D, estimate posterior
probabilities, k, = (h,,)"_,, with the current pa-

n=
rameter values, V and {W,}'_

g0,)Py |x:, W,)

hnt = N - ~ .
Zk:l gxi, Vi) P(y:|x:, Wy)
® M-step
— For expert network n (n=1,--- ,n), solve the

maximization problems

T
W, = arg max Z I log P(yslx,, Wy,)

"o=1

with all examples in D and posterior probabili-
ties {,}1_, achieved in the E-step.

— For the gating network, solve the maximization
problem

T N
V = arg max Z Z hylogg(x,,vy) ,

t=1n=1

with training examples, {(x,,k,)}T_,, derived
from posterior probabilities {h,}T_,.

Repeat the E-step and the M-step alternately until
the EM algorithm converges.

To solve optimization problems in the M-step, the
iteratively re-weighted least squares (IRLS) algorithm
was proposed [28.64]. Although the IRLS algorithm
has the strength to solve maximum likelihood prob-
lems arising from MOoE learning, it might result in
some instable performance due to its incorrect assump-
tion on multi-class classification [28.66]. As learning
in the gating network is a multi-class classification

task in essence, the problem always exists if the IRLS
algorithm is used in the EM algorithm. Fortunately,
improved algorithms were proposed to remedy this
problem in the EM learning [28.66]. In summary, nu-
merous MoE variants and extensions have been de-
veloped in the past 20 years [28.59], and the MoE
architecture turns out to be one of the most successful
MNNS.

Negative Correlation Learning
The NCL [28.65] is a learning algorithm to establish
an MNN consisting of diverse neural networks (NNs)
by promoting the diversity among component networks
during learning. The NCL development was clearly in-
spired by the bias-variance analysis of generalization
errors [28.60,61]. As a result, the NCL encourages co-
operation among component networks via interaction
during learning to manage the bias-variance trade-off.

In the NCL, an unsupervised penalty term is in-
troduced to the MSE cost function for each com-
ponent NN so that the error diversity among com-
ponent networks is explicitly managed via training
towards negative correlation. Suppose that an NN en-
semble F(x,®) is established by simply taking the
average of N neural networks f(x, W,) (n=1,--- ,N),
where W, denotes all the parameters in the n-th com-
ponent network and © = {W,}"_,. Given a training
set D = {(x;,y,)}]_, the NCL cost function for the
n-th component network [28.65] is defined as fol-
lows

1

.
LD, W) = 72 DI e W) =33
=1

:
A
— 57 DG W) = Fxr)3

=1
(28.13)

where F(x;, ®) = % Zﬁlzlf(x,, W,) and A is a trade-
off hyper-parameter. In (28.13), the first term is the
MSE cost for network n and the second term refers
to the negative correlation cost. By taking all compo-
nent networks into account, minimizing the second term
leads to maximum negative correlation among them.
Therefore, A needs to be set properly to control the
penalty strength [28.65].

For the NCL, all N cost functions specified in
(28.13) need to be optimized together for parameter es-
timation. Based on the stochastic descent method, the
generic NCL algorithm is summarized as follows:

Deep and Modular Neural Networks | 28.3 Modular Neural Networks

Algorithm 28.6 Negative correlation learning al-
gorithm

Given a training set of 7 examples D = {(x;, y,)}I:1
pre-set the number of component networks, N, and
learning rate, €, as well as randomly initialize all the
parameters @ = {W,}_ | in component networks:

® Output computation
For each example, (x,,y,) in D, calculate output of
each component network f(x;, W,) and that of the
NN ensemble by

1 N
F, ©) = =3 fx, W)

n=1

® Gradient computation
For component network n (n =1, --- , N), calculate
the gradient of the NCL cost function in (28.13)
with respect to the parameters based on all training
examples in D

IL(D.W,) 1«
D)] ; { LG W) =il
_Aw-1 Yt W)

s)~ 001

oW,

® Parameter update
For component network n (n=1,--- ,N), update
the parameters

IL(D, W,)
W, <« W, —e———.

aw,

Repeat the above three steps until a pre-specified
termination condition is met.

While the NCL was originally proposed based on
the MSE cost function, the NCL idea can be extended to
other cost functions without difficulty. Hence, applying
appropriate optimization techniques on alternative cost
functions leads to NCL algorithms of different forms
accordingly.

28.3.3 Loosely Coupled Models

In a loosely coupled model, component networks are
trained independently or there is no direct interaction
among them during learning. There are a variety of
MNNs that can be classified as loosely coupled mod-

els. Below we review several typical loosely coupled
MNNS.

Neural Network Ensemble
An neural network ensemble here refers to a committee
machine where a number of NNs trained indepen-
dently but their outputs are somehow combined to reach
a consensus as a final solution. The development of
NN ensembles is explicitly motivated by the diversity-
promotion principle [28.67, 68].

Intuitively, errors made by component NNs can be
corrected by taking their diversity or mutual comple-
ment into account. For example, three NNs, MN; (i =
1,2,3), trained on the same data set have different yet
imperfect performance on test data. Given three test
points, x;, (t = 1,2, 3), NN, yields the correct output for
x, and x3 but does not for x;, NV, yields the correct out-
put for x;, and x3 but does not for x, and NN; yields the
correct output for x; and x, but does not for x3, respec-
tively. In such circumstances, an error made by one NN
can be corrected by other two NNs with a majority vote
so that the ensemble can outperform any component
NNs. Formally, there is a variety of theoretical justifica-
tion [28.60, 61] for NN ensembles. For example, it has
been proven for regression that the NN ensemble per-
formance is never inferior to the average performance
of all component NNs [28.60]. Furthermore, a theo-
retical bias-variance analysis [28.61] suggests that the
promotion of diversity can improve the performance of
NN ensembles provided that there is an adequate trade-
off between bias and variance. In general, there are
two non-trivial issues in constructing NN ensembles;
i.e., creating diverse component NNs and ensembling
strategies.

Depending on the nature of a given problem [28.5,
62], there are several methodologies for creating diverse
component NNs. First of all, a NN learning process
itself can be exploited. For instance, learning in a mono-
lithic NN often needs to solve a complex non-convex
optimization problem [28.9]. Hence, a local-search-
based learning algorithm, e.g., BP [28.11], may end up
with various solutions corresponding to local minima
due to random initialization. In addition, model selec-
tion is required to find out an appropriate NN structure
for a given problem. Such properties can be exploited
to create component networks in a homogeneous NN
ensemble [28.67]. Next, NNs of different types trained
on the same data may also yield different performance
and hence are candidates in a heterogeneous NN en-
semble [28.5]. Finally, exploration/exploitation of input
space and different representations is an alternative

487

€8z | aimed

488 PartD

Neural Networks

€'8c|amed

methodology for creating different component NNs. In-
stead of training an NN on the input space, NNs can be
trained on different input subspaces achieved by a par-
titioning method, e.g., random partitioning [28.69],
which results in a subspace NN ensemble. Whenever
raw data can be characterized by different represen-
tations, NNs trained on different feature sets would
constitute a multi-view NN ensemble [28.70].

Ensembling strategies are required for different
tasks. For regression, some optimal fusion rules have
been developed for NN ensembles, e.g., [28.68], which
are supported by theoretical justification, e.g., [28.60,
61]. For classification, ensembling strategies are more
complicated but have been well-studied in a wider con-
text, named combination of multiple classifiers. As is
shown in Fig. 28.8, ensembling strategies are gener-
ally divided into two categories: learnable and non-
learnable. Learnable strategies use a parametric model
to learn an optimal fusion rule, while non-learnable
strategies fulfil the combination by directly using the
statistics of all competent network outputs along with
simple measures. As depicted in Fig. 28.8, there are
six main non-learnable fusion rules: sum, product, min,
max, median, and majority vote; details of such non-
learnable rules can be found in [28.71]. Below, we focus
on the main learnable ensembling strategies in terms of
classification.

In general, learnable ensembling strategies are
viewed as an application of the stacked generalization
principle [28.72]. In light of stacked generalization,
all component NNs serve as level O generalizers, and
a learnable ensembling strategy carried out by a combi-
nation mechanism would perform a level 1 generalizer
working on the output space of all component NNs to

improve the overall generalization. In this sense, such
a combination mechanism is trained on a validation
data set that is different from the training data set used
in component NN learning. As is shown in Fig. 28.8,
combination mechanisms have been developed from
different perspectives, i. e., input-dependent and input-
independent.

An input-dependent mechanism combines compo-
nent NNs based on test data; i.e., given two inputs,
x; and x,; there is the property: c(x|®) # c(x2|®)
if x1 # x2, where ¢(x|@) = (c,(x|®))N_, is an input-
dependent mechanism used to combine an ensemble of
N component NNs and ® collectively denotes all learn-
able parameters in this parametric model. As a result,
output of an NN ensemble with the input-dependent en-
sembling strategy is of the following form

0(x) = £2(01(x),--- . on(x) | c(x]O)).

where 0, (x) is output of the n-th component NN for
n=1,---,N and £2 indicates a method on how to ap-
ply ¢(x|®) to component NNs. For example, §2 may be
a linear combination scheme such that

N
0(x) =) calx|@)o,(x) .

n=1

(28.14)

As listed in Fig. 28.8, soft-competition and associative
switch are two commonly used input-dependent com-
bination mechanisms. The soft-competition mechanism
can be regarded as a special case of the MoE described
earlier when all expert networks were trained on a data
set independently in advance. In this case, the gating
network plays the role of the combination mechanism

Ensembling
strategies
Learnable Non-learnable
Input Input . Majority
dependent independent Sum | Prod || Min || Max || Med vote
Soft Associative Bayesian Evidence Linear
competition switch fusion reasoning || combination

Fig. 28.8 A taxonomy of ensembling strategies

Deep and Modular Neural Networks | 28.3 Modular Neural Networks

by deciding the importance of component NNs via soft-
competition. Although various learning models may be
used as such a gating network, a RBF-like (radial ba-
sis function) parametric model [28.73] trained on the
EM algorithm has been widely used for this purpose.
Unlike a soft-competition mechanism that produces the
continuous-value weight vector ¢(x) used in (28.14),
the associative switch [28.74] adopts a winner-take-all
strategy, i.e., Zivzl ¢, (x|®) =1 and ¢, (x|®) € {0, 1}.
Thus, an associative switch yields a specific code for
a given input so that the output of the best performed
component NN can be selected as the final output of
the NN ensemble according to (28.14). The associative
switch learning is a multi-class classification problem,
and an MLP is often used to carry it out [28.74].
Although an input-dependent ensembling strategy is ap-
plicable to most NN ensembles, it is difficult to apply it
to multi-view NN ensembles, since different represen-
tations need to be considered simultaneously in training
a combination mechanism. Fortunately, such issues
have been explored in a wider context on how to use dif-
ferent representations simultaneously for ML [28.70,
75-79] so that both soft-competition and associative
switch mechanisms can be extended to multi-view NN
ensembles.

In contrast, an input-independent mechanism com-
bines component NNs based on the dependence of their
outputs without considering input data directly. Given
two inputs x; and x;, and x| # x;, the same ¢(®)
may be applied to outputs of component NNs, where
¢(0) = (c,(®))N_, is an input-independent combina-
tion mechanism used to combine an ensemble of N
component NNs. Several input-independent mecha-
nisms have been developed [28.62], which often fall
into one of three categories, i.e., Bayesian fusion, ev-
idence reasoning, and a linear combination scheme, as
shown in Fig. 28.8. Bayesian fusion [28.80] refers to
a class of combination schemes that use the informa-
tion collected from errors made by component NNs
on a validation set in order to find out the optimal
output of the maximum a posteriori probability, C* =
argmax; <<z, P(Cilo1(x),- -+ ,on(x), ®), via Bayesian
reasoning, where C; is the label for the I-th class
in a classification task of L classes, and ® here en-
codes the information gathered, e.g., a confusion matrix
achieved during learning [28.80]. Similarly, evidence
reasoning mechanisms make use of alternative reason-
ing theories [28.80], e.g., the Dempster—Shafer theory,
to yield the best output for NN ensembles via an ev-
idence reasoning process that works on all outputs of
component NNs in an ensemble. Finally, linear com-

bination schemes of different forms are also popular
as input-independent combination mechanisms [28.62].
For instance, the work presented in [28.68] exemplifies
how to achieve optimal linear combination weights in
a linear combination scheme.

Constructive Modularization Learning
Efforts have also been made towards constructive mod-
ularization learning for a given supervised learning
task. In such work, the divide-and-conquer principle
is explicitly applied in order to develop a constructive
learning strategy for modularization. The basic idea be-
hind such methods is to divide a difficult and complex
problem into a number of subproblems that are eas-
ily solvable by NNs of proper capacities, matching the
requirements of the subproblems, and then the solu-
tions to subproblems are combined seamlessly to form
a solution to the original problem. On the other hand,
constructive modularization learning may alleviate the
model selection problem encountered by a monolithic
NN. As NNs of simple and even different architectures
may be used to solve subproblems, empirical stud-
ies suggest that an MNN generated via constructive
modularization learning is often insensitive to compo-
nent NN architectures and hence is less likely to suffer
from overall overfitting or underfitting [28.81]. Below
we describe two constructive modularization learning
strategies [28.81-83] for exemplification.

The partitioning-based strategy [28.81,82] per-
forms the constructive modularization learning by ap-
plying the divide-and-conquer principle explicitly. For
a given supervised learning task, the strategy consists
of two learning stages: dividing and conquering. In
the dividing stage, it first recursively partitions the
input space into overlapping subspaces, which facili-
tates dealing with various uncertainties, by taking into
supervision information into account until the nature
of each subproblem defined in generated subspaces

Fig. 28.9 A self-generated tree-structured MNN

489

€8z | aimed

490 PartD

Neural Networks

€'8c|amed

matches the capacity of one pre-selected NN. In the
conquering stage, an NN works on a given input sub-
space to complete the corresponding learning subtask.
As a result, a tree-structured MNN is self-generated,
where a learnable partitioning mechanism P, is situ-
ated at intermediate levels and NNs works at leaves
of the tree, as illustrated in Fig. 28.9. To enable the
partition-based constructive modularization learning,
two generic algorithms have been proposed, i. e., grow-
ing and credit-assignment algorithms [28.81,82] as
summarized below.

Algorithm 28.7 Growing algorithm

Given a training set D, set X < D. Randomly initialize
parameters in all component NN in a given repository
and pre-set hyper-parameters in a learnable partitioning
mechanism and compatibility criteria, respectively:

® Compatibility test
For a training (sub)set X, apply the compatibility
criteria to X to examine whether the learning task
defined on X matches the capacity of a component
NN in the repository.

® Partitioning space
If none in the repository can solve the problem de-
fined on X, then train the partitioning mechanism
on the current X to partition it into two overlapped
X and X,. Set X < X, then go to the compatibility
test step. Set X <— X, then go to the compatibility
test step.
Otherwise, go to the subroblem solving step.

® Subproblem solving
Train this NN on X with an appropriate learning
algorithm. The trained NN resides at the current leaf
node.

The growing algorithm expands a tree-structured
MNNSs until learning problems defined on all parti-
tioned subspaces are solvable with NNs in the reposi-
tory.

For a given test data point, output of such a tree-
structured MNN may depend on several component
NNs at the leaves of the tree since the input space
is partitioned into overlapping subspaces. A credit-
assignment algorithm [28.81, 82] has been developed to
weight the importance of component NNs contributed
to the overall output, which is summarized as follows:

Algorithm 28.8 Credit-assignment algorithm
P(x) is a trained partitioning mechanisms that resides
at a nonterminal node and partitions the current input

(sub)space into two subspaces with an overlapping de-
fined by —t < P(x) <t(t > 0). C.(-), and Cg(:) are
two credit assignment functions for two subspaces, re-
spectively. For a test data point X:

® [nitialization
Set (x¥) <— 1 and Pointer <« Root.
® C(Credit assignment
As a recursive credit propagation process to assign
credits to all the component NNs at leaf nodes that
X can reach, CR[x(X), Pointer] consists of three
steps:
— If Pointer points to a leaf node, then output
«(X) and stop.
- IfP(X) <1, a(¥) < a(x)xC.(P(¥)) and invoke
(R[a(X), Pointer.Leftchild].
- If P(X) > —1, a(X) < a(¥)xCr(P(¥)) and in-
voke CR[x(X), Pointer.Rightchild].

Thus, the output of a self-generated MNN is

0® = Y a,(®)x0,(%).

neN

where N denotes all the component NNs that X can
reach, and «,,(¥) and 0,(¥) are the credit assigned and
the output of the n-th component NN in N for X, re-
spectively.

To implement such a strategy, hyper-planes placed
with heuristics [28.81] or linear classifiers trained with
the Fisher discriminative analysis [28.82] were first
used as the partition mechanism and NNs such as
MLP or RBF can be employed to solve subproblems.
Accordingly, two piece-wise linear credit assignment
functions [28.81,82] were designed for the hyper-
plane partitioning mechanism, so that Cr(x) + Cgr(x) =
1. Heuristic compatibility criteria were developed by
considering learning errors and efficiency [28.81, 82].
By using the same constructive learning algorithms
described above, an alternative implementation was
also proposed by using the self-organization map as
a partitioning mechanism and SVMs were used for sub-
problem solving [28.84]. Empirical studies suggest that
the partitioning-based strategy leads to favorable results
in various supervised learning tasks despite different
implementations [28.81, 82, 84].

By applying the divide-and-conquer principle, task
decomposition [28.83] is yet another constructive mod-
ularization learning strategy for classification. Unlike
the partitioning-based strategy, the task decomposition
strategy converts a multi-class classification task into

Deep and Modular Neural Networks | 28.3 Modular Neural Networks

a number of binary classification subtasks in a brute-
force way and each binary classification subtask is
expected to be fulfilled by a simple NN. If a subtask
is too difficult to carry out by a given NN, the subtask is
allowed to be further decomposed into simpler binary
classification subtasks. For a multi-class classification
task of M categories, the task decomposition strategy
first exhaustively decomposes it into %M (M — 1) differ-
ent primary binary subtasks where each subtask merely
concerns classification between two different classes
without taking remaining M — 2 classes into account,
which differs from the commonly used one-against-rest
decomposition method. In general, the original multi-
class classification task may be decomposed into more
binary subtasks if some primary subtasks are too dif-
ficult. Once the decomposition is completed, all the
subtasks are undertaken by pre-selected simple NN,
e.g., MLP of one hidden layer, in parallel. For a final
solution to the original problem, three non-learnable op-
erations, min, max, and inv, were proposed to combine
individual binary classification results achieved by all
the component NNs. By applying three operations prop-
erly, all the component NNs are integrated together to
form a min-max MNN [28.83].

28.3.4 Relevant Issues

In general, studies of MNNs closely relate to several
areas in different disciplines, e.g., ML and statistics. We
here examine several important issues related to MNN's
in a wider context.

As described above, a tightly coupled MNN leads
to an optimal solution to a given supervised learn-
ing problem. The MoE is rooted in the finite mixture
model (FMM) studied in probability and statistics and
becomes a non-trivial extension to conditional models
where each expert is a parametric conditional prob-
abilistic model and the mixture coefficients also de-
pend on input [28.64]. While the MoE has been well
studied for 20 years [28.59] in different disciplines,
there still exist some open problems in general, e.g.,
model selection, global optimal solution, and conver-
gence of its learning algorithms for arbitrary component
models. Different from the FMM, the product of ex-
perts (PoE) [28.42] was also proposed to combine
a number of experts (parametric probabilistic mod-
els) by taking their product and normalizing the re-
sult into account. The PoE has been argued to have
some advantages over the MoE [28.42] but has so
far merely been developed in the context of unsu-
pervised learning. As a result, extending the PoE to

conditional models for supervised learning would be
a non-trivial topic in tightly coupled MNN studies.
On the other hand, the NCL [28.65] directly applies
the bias-variance analysis [28.60,61] to construction
of an MNN. This implies that MNNs could be also
built up via alternative loss functions that properly
promote diversities among component MNNs during
learning.

Almost all existing NN ensemble methods are now
included in ensemble learning [28.85], which is an
important area in ML, or the multiple classifier sys-
tem [28.62] in the context of pattern recognition. In
statistical ensemble learning, generic frameworks, e.g.,
boosting [28.86] and bootstrapping [28.87], were devel-
oped to construct ensemble learners where any learning
models including NNs may be used as component
learners. Hence, most of common issues raised for
ensemble learning are applicable to NN ensembles.
Nevertheless, ensemble learning researches suggest that
behaviors of component learners may considerably af-
fect the stability and overall performance of ensemble
learning. As exemplified in [28.88], properties of dif-
ferent NN ensembles are worth investigating from both
theoretical and application perspectives.

While constructive modularization learning pro-
vides an alternative way of model selection, it is gener-
ally a less developed area in MNNSs, and existing meth-
ods are subject to limitation due to a lack of theoretical
justification and underpinning techniques. For example,
a critical issue in the partitioning-based strategy [28.81,
82] is how to measure the nature of a subproblem to
decide if any further partitioning is required and the
appropriateness of a pre-selected NN to a subproblem
in terms of its capacity. In previous studies [28.81, 82],
a number of heuristic and simple criteria were proposed
based on learning errors and efficiency. Although such
heuristic criteria work practically, there is no theoretical
justification. As a result, more sophisticated compatibil-
ity criteria need to be developed for such a constructive
learning strategy based on the latest ML development,
e.g., manifold and adaptive kernel learning. Fortunately,
the partitioning-based strategy has inspired the latest
developments in ML [28.89]. In general, constructive
modularization learning is still a non-trivial topic in
MNN research.

Finally, it is worth stating that our MNN review here
only focuses on supervised learning due to the limited
space. Most MNNs described above may be extended
to other learning paradigms, e.g., semi-supervised and
unsupervised learning. More details on such topics are
available in the literature, e.g., [28.90,91].

4o

€8z | aimed

492 PartD I Neural Networks

8¢ | a 1ed

28.4 Concluding Remarks

In this chapter, we have reviewed two important ar-
eas, DNNs and MNNs, in NC. While we have pre-
sented several sophisticated techniques that are ready
for applications, we have discussed several challeng-
ing problems in both deep and modular neural net-
work research as well. Apart from other non-trivial
issues discussed in the chapter, it is worth empha-
sizing that it is still an open problem to develop
large-scale DNNs and MNNs and integrate them for

References

modeling highly intelligent behaviors, although some
progress has been made recently [28.58]. In a wider
context, DNNs and MNNs are closely related to two
active areas, deep learning and ensemble learning, in
ML. We anticipate that motivation and methodolo-
gies from different perspectives will mutually ben-
efit each other and lead to effective solutions to
common challenging problems in the NC and ML
communities.

28.1 E.R. Kandel, J.H. Schwartz, T.M. Jessell: Principle of
Neural Science, 4th edn. (McGraw-Hill, New York
2000)

28.2 G.M. Edelman: Neural Darwinism: Theory of Neural
Group Selection (Basic Books, New York 1987)

28.3 1.A.Fodor: The Modularity of Mind (MIT Press, Cam-
bridge 1983)

28.4 F. Azam: Biologically inspired modular neural net-
works, Ph.D. Thesis (School of Electrical and Com-
puter Engineering, Virginia Polytechnic Institute
and State University, Blacksburg 2000)

28.5 G. Auda, M. Kamel: Modular neural networks:
A survey, Int. J. Neural Syst. 9(2), 129-151 (1999)

28.6 D.C. Van Essen, C.H. Anderson, D.J. Fellman: In-
formation processing in the primate visual system,
Science 255, 419-423 (1992)

28.7 J.H. Kaas: Why does the brain have so many visual
areas?, J. Cogn. Neurosci. 1(2), 121-135 (1989)

28.8 G. Bugmann: Biologically plausible neural compu-
tation, Biosystems 40(1), 11-19 (1997)

28.9 S.Haykin: Neural Networks and Learning Machines,
3rd edn. (Prentice Hall, New York 2009)

28.10 M. Minsky, S. Papert: Perceptrons (MIT Press, Cam-
bridge 1969)

28.11 D.E. Rumelhurt, G.E. Hinton, R.J. Williams: Learn-
ing internal representations by error propagation,
Nature 323, 533-536 (1986)

28.12 Y. LeCun, L. Bottou, Y. Bengio, P. Haffner: Gradient
based learning applied to document recognition,
Proc. IEEE 86(9), 22782324 (1998)

28.13 G. Tesauro: Practical issues in temporal difference
learning, Mach. Learn. 8(2), 257-277 (1992)

28.14 G. Cybenko: Approximations by superpositions of
sigmoidal functions, Math. Control Signals Syst.
2(4), 302-314 (1989)

28.15 N. Cristianini, J. Shawe-Taylor: An Introduction to
Support Vector Machines and Other Kernel-Based
Learning Methods (Cambridge University Press,
Cambridge 2000)

28.16 Y. Bengio, Y. LeCun: Scaling learning algorithms to-
wards Al. In: Large-Scale Kernel Machines, ed. by

L. Bottou, 0. Chapelle, D. DeCoste, J. Weston (MIT
Press, Cambridge 2006), Chap. 14

28.17 Y. Bengio: Learning deep architectures for Al,
Found. Trends Mach. Learn. 2(1), 1-127 (2009)

28.18 G.E. Hinton, S. Osindero, Y. Teh: A fast learning al-
gorithm for deep belief nets, Neural Comput. 18(9),
1527-1554 (2006)

28.19 Y. Bengio: Deep learning of representations for un-
supervised and transfer learning, JMLR: Workshop
Conf. Proc., Vol. 7 (2011) pp. 1-20

28.20 H. Larochelle, D. Erhan, A. Courville, J. Bergstra,
Y. Bengio: An empirical evaluation of deep archi-
tectures on problems with many factors of vari-
ation, Proc. Int. Conf. Mach. Learn. (ICML) (2007)
pp. 473-480

28.21 R. Salakhutdinov, G.E. Hinton: Learning a nonlin-
ear embedding by preserving class neighbourhood
structure, Proc. Int. Conf. Artif. Intell. Stat. (AISTATS)
(2007)

28.22 H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin:
Exploring strategies for training deep neural net-
works, J. Mach. Learn. Res. 10(1), 1-40 (2009)

28.23 W.K. Wong, M. Sun: Deep learning regularized
Fisher mappings, IEEE Trans. Neural Netw. 22(10),
1668-1675 (2011)

28.24 S. Osindero, G.E. Hinton: Modeling image patches
with a directed hierarchy of Markov random field,
Adv. Neural Inf. Process. Syst. (NIPS) (2007) pp. 1121-
128

28.25 1. Levner: Data driven object segmentation, Ph.D.
Thesis (Department of Computer Science, University
of Alberta, Edmonton 2008)

28.26 H. Mobahi, R. Collobert, J. Weston: Deep learning
from temporal coherence in video, Proc. Int. Conf.
Mach. Learn. (ICML) (2009) pp. 737-74L4

28.27 H. Lee, Y. Largman, P. Pham, A. Ng: Unsupervised
feature learning for audio classification using con-
volutional deep belief networks, Adv. Neural Inf.
Process. Syst. (NIPS) (2009)

28.28 K. Chen, A. Salman: Learning speaker-specific
characteristics with a deep neural architec-

Deep and Modular Neural Networks

References

28.29

28.30

28.31

28.32

28.33

28.34

28.35

28.36

28.37

28.38

28.39

28.40

28.41

28.42

28.43

28.44

ture, IEEE Trans. Neural Netw. 22(11), 1744-1756
(2011)

K. Chen, A. Salman: Extracting speaker-specific
information with a regularized Siamese deep net-
work, Adv. Neural Inf. Process. Syst. (NIPS) (2011)

A. Mohamed, G.E. Dahl, G.E. Hinton: Acoustic mod-
eling using deep belief networks, IEEE Trans. Audio
Speech Lang. Process. 20(1), 14—22 (2012)

G.E. Dahl, D. Yu, L. Deng, A. Acero: Context-
dependent pre-trained deep neural networks for
large-vocabulary speech recognition, IEEE Trans.
Audio Speech Lang. Process. 20(1), 30-42 (2012)

R. Salakhutdinov, G.E. Hinton: Semantic hashing,
Proc. SIGIR Workshop Inf. Retr. Appl. Graph. Model.
(2007)

M. Ranzato, M. Szummer: Semi-supervised learn-
ing of compact document representations with
deep networks, Proc. Int. Conf. Mach. Learn. (ICML)
(2008)

A. Torralba, R. Fergus, Y. Weiss: Small codes and
large databases for recognition, Proc. Int. Conf.
Comput. Vis. Pattern Recogn. (CVPR) (2008) pp. 1-
8

R. Collobert, J. Weston: A unified architecture for
natural language processing: Deep neural networks
with multitask learning, Proc. Int. Conf. Mach.
Learn. (ICML) (2008)

A. Mnih, G.E. Hinton: A scalable hierarchical dis-
tributed language model, Adv. Neural Inf. Process.
Syst. (NIPS) (2008)

J. Weston, F. Ratle, R. Collobert: Deep learning via
semi-supervised embedding, Proc. Int. Conf. Mach.
Learn. (ICML) (2008)

R. Hadsell, A. Erkan, P. Sermanet, M. Scoffier,
U. Muller, Y. LeCun: Deep belief net learning in
a long-range vision system for autonomous of-
froad driving, Proc. Intell. Robots Syst. (IR0S) (2008)
pp. 628-633

Y. Bengio, A. Courville, P. Vincent: Representa-
tion learning: A review and new perspectives, IEEE
Trans. Pattern Anal. Mach. Intell. 35(8), 1798-1827
(2013)

Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle:
Greedy layer-wise training of deep networks, Adv.
Neural Inf. Process. Syst. (NIPS) (2006)

P. Vincent, H. Llarochelle, I. Lajoie, Y. Bengio,
P.A. Manzagol: Stacked denoising autoencoders:
Learning useful representations in a deep network
with a local denoising criterion, J. Mach. Learn.
Res. 11, 3371-3408 (2010)

G.E. Hinton: Training products of experts by min-
imizing contrastive divergence, Neural Comput.
14(10), 1771-1800 (2002)

K. Kavukcuoglu, M. Ranzato, Y. LeCun: Fast infer-
ence in sparse coding algorithms with applications
to object recognition. CoRR, arXiv:1010.3467 (2010)

B.A. Olshausen, D.J. Field: Sparse coding with an
overcomplete basis set: A strategy employed by V1?,
Vis. Res. 37, 3311-3325 (1997)

28.45

28.46

28.47

28.48

28.49

28.50

28.51

28.52

28.53

28.54

28.55

28.56

28.57

28.58

28.59

28.60

S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Ben-
gio: Contracting auto-encoders: Explicit invariance
during feature extraction, Proc. Int. Conf. Mach.
Learn. (ICML) (2011)

S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Ben-
gio, Y. Dauphin, X. Glorot: Higher order contractive
auto-encoder, Proc. Eur. Conf. Mach. Learn. (ECML)
(20m)

M. Ranzato, C. Poultney, S. Chopra, Y. LeCun: Ef-
ficient learning of sparse representations with an
energy based model, Adv. Neural Inf. Process. Syst.
(NIPS) (2006)

M. Ranzato, Y. Boureau, Y. LeCun: Sparse feature
learning for deep belief networks, Adv. Neural Inf.
Process. Syst. (NIPS) (2007)

G.E. Hinton, R. Salakhutdinov: Reducing the di-
mensionality of data with neural networks, Science
313, 504-507 (2006)

K. Cho, A. llin, T. Raiko: Improved learning
of Gaussian-Bernoulli restricted Boltzmann ma-
chines, Proc. Int. Conf. Artif. Neural Netw. (ICANN)
(20m)

D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol,
P. Vincent, S. Bengio: Why does unsupervised pre-
training help deep learning?, J. Mach. Learn. Res.
1, 625-660 (2010)

D.C. Ciresan, U. Meier, L.M. Gambardella, J. Schmid-
huber: Deep big simple neural nets for handwrit-
ten digit recognition, Neural Comput. 22(1), 1-14
(2010)

M. Ranzato, A. Krizhevsky, G.E. Hinton: Factored 3-
way restricted Boltzmann machines for modeling
natural images, Proc. Int. Conf. Artif. Intell. Stat.
(AISTATS) (2010) pp. 621-628

M. Ranzato, V. Mnih, G.E. Hinton: Generating more
realistic images using gated MRF's, Adv. Neural Inf.
Process. Syst. (NIPS) (2010)

A. Courville, J. Bergstra, Y. Bengio: Unsupervised
models of images by spike-and-slab RBMs, Proc.
Int. Conf. Mach. Learn. (ICML) (2011)

H. Lee, R. Grosse, R. Ranganath, A.Y. Ng: Unsuper-
vised learning of hierarchical representations with
convolutional deep belief networks, Commun. ACM
54(10), 95-103 (20M)

D. Hau, K. Chen: Exploring hierarchical speech rep-
resentations with a deep convolutional neural net-
work, Proc. U.K. Workshop Comput. Intell. (UKCI)
(2011)

Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen,
G.S. Corrado, J. Dean, AY. Ng: Building high-
level features using large scale unsupervised
learning, Proc. Int. Conf. Mach. Learn. (ICML)
(2012)

S.E. Yuksel, J.N. Wilson, P.D. Gader: Twenty years of
mixture of experts, IEEE Trans. Neural Netw. Learn.
Syst. 23(8), 1177-1193 (2012)

A. Krogh, J. Vedelsby: Neural network ensembles,
cross validation, and active learning, Adv. Neural
Inf. Process. Syst. (NIPS) (1995)

493

8¢ | a 1ed

4oy PartD

Neural Networks

8¢ | a 1ed

28.61

28.62

28.63

28.64

28.65

28.66

28.67

28.68

28.69

28.70

28.71

28.72

28.73

28.74

28.75

28.76

N. Ueda, R. Nakano: Generalization error of ensem-
ble estimators, Proc. Int. Conf. Neural Netw. (ICNN)
(1996) pp. 90-95

L.I. Kuncheva: Combining Pattern (lassifiers
(Wiley-Interscience, Hoboken 2004)

R.A. Jacobs, M.I. Jordan, S. Nowlan, G.E. Hinton:
Adaptive mixture of local experts, Neural Comput.
3(1), 79-87 (1991)

M.I. Jordan, R.A. Jacobs: Hierarchical mixture of ex-
perts and the EM algorithm, Neural Comput. 6(2),
181-214 (1994)

Y. Liu, X. Yao: Simultaneous training of negatively
correlated neural networks in an ensemble, IEEE
Trans. Syst. Man Cybern. B 29(6), 716-725 (1999)

K. Chen, L. Xu, H.S. Chi: Improved learning algo-
rithms for mixture of experts in multi-class classi-
fication, Neural Netw. 12(9), 1229-1252 (1999)

L.K. Hansen, P. Salamon: Neural network ensem-
bles, IEEE Trans. Pattern Anal. Mach. Intell. 12(10),
993-1001 (1990)

M.P. Perrone, L.N. Cooper: Ensemble methods for
hybrid neural networks. In: Artificial Neural Net-
works for Speech and Vision, ed. by R.J. Mammone
(Chapman-Hall, New York 1993) pp. 126142

T.K. Ho: The random subspace method for con-
structing decision forests, IEEE Trans. Pattern Anal.
Mach. Intell. 20(8), 823-844 (1998)

K. Chen, L. Wang, H.S. Chi: Methods of com-
bining multiple classifiers with different feature
sets and their applications to text-independent
speaker identification, Int. J. Pattern Recogn. Ar-
tif. Intell. 11(3), 417-445 (1997)

J. Kittler, M. Hatef, R.P.W. Duin, J. Matas: On com-
bining classifiers, IEEE Trans. Pattern Anal. Mach.
Intell. 20(3), 226-239 (1998)

D.H. Wolpert: Stacked generalization, Neural Netw.
2(3), 241-259 (1992)

L. Xu, M.l. Jordan, G.E. Hinton: An alternative
model for mixtures of experts, Adv. Neural Inf. Pro-
cess. Syst. (NIPS) (1995)

L. Xu, A. Krzyzak, CY. Suen: Associative switch
for combining multiple classifiers, J. Artif. Neural
Netw. 1(1), 77-100 (1994)

K. Chen: A connectionist method for pattern classi-
fication with diverse feature sets, Pattern Recogn.
Lett. 19(7), 545-558 (1998)

K. Chen, H.S. Chi: A method of combining multiple
probabilistic classifiers through soft competition

28.77

28.78

28.79

28.80

28.81

28.82

28.83

28.84

28.85

28.86

28.87

28.88

28.89

28.90

28.91

on different feature sets, Neurocomputing 20(1-3),
227-252 (1998)

K. Chen: On the use of different representations for
speaker modeling, IEEE Trans. Syst. Man Cybern. C
35(3), 328-346 (2005)

Y. Yang, K. Chen: Temporal data clustering via
weighted clustering ensemble with different rep-
resentations, IEEE Trans. Knowl. Data Eng. 23(2),
307-320 (2011)

Y. Yang, K. Chen: Time series clustering via RPCL
ensemble networks with different representations,
IEEE Trans. Syst. Man Cybern. C 41(2), 190-199 (2011)
L. Xu, A. Krzyzak, C.Y. Suen: Methods of combining
multiple classifiers and their applications to hand-
writing recognition, IEEE Trans. Syst. Man Cybern.
22(3), 118-435 (1992)

K. Chen, X. Yu, H.S. Chi: Combining linear discrimi-
nant functions with neural networks for supervised
learning, Neural Comput. Appl. 6(1), 19-41 (1997)

K. Chen, L.P. Yang, X. Yu, H.S. Chi: A self-generating
modular neural network architecture for super-
vised learning, Neurocomputing 16(1), 33-48 (1997)
B.L. Lu, M. Ito: Task decomposition and module
combination based on class relations: A modu-
lar neural network for pattern classification, IEEE
Trans. Neural Netw. Learn. Syst. 10(5), 1244-1256
(1999)

L. Cao: Support vector machines experts for time
series forecasting, Neurocomputing 51(3), 321-339
(2003)

T.G. Dietterich: Ensemble learning. In: Handbook of
Brain Theory and Neural Networks, ed. by M.A. Ar-
bib (MIT Press, Cambridge 2002) pp. 405-408

Y. Freund, R.E. Schapire: Experiments with a new
boosting algorithm, Proc. Int. Conf. Mach. Learn.
(ICML) (1996) pp. 148-156

L. Breiman: Bagging predictors, Mach. Learn. 24(2),
123-140 (1996)

H. Schwenk, Y. Bengio: Boosting neural networks,
Neural Comput. 12(8), 1869-1887 (2000)

J. Wang, V. Saligrama: Local supervised learning
through space partitioning, Adv. Neural Inf. Pro-
cess. Syst. (NIPS) (2012)

X.J. Zhu: Semi-supervised learning literature sur-
vey, Technical Report, School of Computer Science
(University of Wisconsin, Madison 2008)

J. Ghosh, A. Acharya: Cluster ensembles, WIREs Data
Min. Knowl. Discov. 1(2), 305-315 (2011)

	28 Deep and Modular Neural Networks
	28.1 Overview
	28.2 Deep Neural Networks
	28.3 Modular Neural Networks
	28.4 Concluding Remarks
	References

