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Abstract Zero-shot learning for visual recognition, e.g.,
object and action recognition, has recently attracted a lot
of attention. However, it still remains challenging in bridg-
ing the semantic gap between visual features and their
underlying semantics and transferring knowledge to seman-
tic categories unseen during learning. Unlike most of the
existing zero-shot visual recognition methods, we propose
a stagewise bidirectional latent embedding framework of
two subsequent learning stages for zero-shot visual recog-
nition. In the bottom-up stage, a latent embedding space
is first created by exploring the topological and labeling
information underlying training data of known classes via
a proper supervised subspace learning algorithm and the
latent embedding of training data are used to form land-
marks that guide embedding semantics underlying unseen
classes into this learned latent space. In the top—down stage,
semantic representations of unseen-class labels in a given
label vocabulary are then embedded to the same latent space
to preserve the semantic relatedness between all different
classes via our proposed semi-supervised Sammon mapping
with the guidance of landmarks. Thus, the resultant latent
embedding space allows for predicting the label of a test
instance with a simple nearest-neighbor rule. To evaluate the
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effectiveness of the proposed framework, we have conducted
extensive experiments on four benchmark datasets in object
and action recognition, i.e., AwA, CUB-200-2011, UCF101
and HMDBS51. The experimental results under comparative
studies demonstrate that our proposed approach yields the
state-of-the-art performance under inductive and transduc-
tive settings.

Keywords Zero-shot learning - Object recognition -
Human action recognition - Supervised locality preserving
projection - Landmark-based Sammon mapping - Multiple
visual and semantic representations

1 Introduction

Visual recognition refers to various tasks for understanding
the content of images or video clips. Object recognition and
human action recognition are two typical visual recogni-
tion tasks studied extensively in computer vision community.
In the last decade, substantial progresses have been made
in object and human action recognition (Andreopoulos and
Tsotsos 2013). As a result, we witness a boost of various
benchmarks released with more and more classes, which
poses greater challenges to computer vision. For example,
the number of classes in object recognition benchmarks
has increased from 256 in Caltech-256 (Griffin et al. 2007)
to 1000 in ImageNet ILSVRC (Russakovsky et al. 2015),
while the number of classes in human action recognition has
increased from 51 in HMDBS51 (Kuehne et al. 2011) to 101 in
UCF101 (Soomro et al. 2012). Despite the increasing num-
ber of classes in consideration, they are still a small portion of
all classes existing in real world. According to Lampert et al.
(2014), humans can distinguish approximately 30,000 basic
object classes, and much more subordinate ones. Nowadays,
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new objects emerge rapidly. Practically, it is impossible to
collect and annotate visual data for all the classes to establish
a visual recognition system. This leads to a great challenge
for visual recognition.

To fight off this challenge, zero-shot learning (ZSL) was
recently proposed and applied in both object and human
action recognition with promising performances, e.g., Akata
et al. (2013, 2014, 2015, 2016), Al-Halah and Stiefelha-
gen (2015), Changpinyo et al. (2016a,b), Fu et al. (2015),
Gan et al. (2016), Kodirov et al. (2015), Lampert et al.
(2014), Mensink et al. (2014), Norouzi et al. (2014), Romera-
Paredes and Torr (2015), Xian et al. (2016), Xu et al. (2015b),
Zhang and Saligrama (2015, 2016a,b). Unlike the traditional
methods that can only recognize classes appearing in the
training data, ZSL is inspired by the learning mechanism of
human brain and aims to recognize new classes unseen during
learning by exploiting intrinsic semantic relatedness between
known and unseen classes. In general, three fundamental
elements are required in ZSL; i.e., visual representation con-
veying non-trivial yet informative visual features, semantic
representation reflecting the relatedness between different
classes (especially between known and unseen classes), and
learning model properly relating visual features to underly-
ing semantics.

Visual representations play an important role in visual
recognition. In particular, the visual representations learned
with deep Convolutional Neural Networks (CNNs) have
improved the performances of object recognition, e.g., Chat-
field et al. (2014), He et al. (2016), Simonyan and Zisserman
(2015), Szegedy et al. (2015), and human action recognition,
e.g., Simonyan and Zisserman (2014), Wang et al. (2016), Wu
etal. (2016), Zhao et al. (2015). Benefitting from deep learn-
ing, zero-shot visual recognition performances have also
been boosted, e.g., Akata et al. (2014), Al-Halah and Stiefel-
hagen (2015), Reed et al. (2016). In addition, it has been
reported that the joint use of multiple visual representations
can improve the performances and the robustness of visual
recognition, e.g., Fu et al. (2015), Shao et al. (2016).

Semantic representations aim to model the semantic relat-
edness between different classes. A variety of semantics
modelling techniques (Elhoseiny et al. 2015; Frome et al.
2013; Jiang et al. 2014; Lampert et al. 2014; Liu et al. 2011,
Mensink et al. 2014; Mikolov et al. 2013) have been devel-
oped, e.g., semantic attributes (Jiang et al. 2014; Lampert
et al. 2014; Liu et al. 2011) and word vectors (Frome et al.
2013; Mikolov et al. 2013). Semantic attributes are usually
manually defined for semantic labels that describe objects
and actions contained in images and video streams, while
word vectors are automatically learned from unstructured
textual data in an unsupervised way.

Given the low-level visual representations of images or
video streams and their underlying high-level semantics, the
central problem in zero-shot visual recognition is how to

transfer knowledge from the visual data of known classes
to those of unseen classes. A variety of zero-shot visual
recognition methods have been proposed, e.g., Akata et
al. (2013, 2014, 2015, 2016), Al-Halah and Stiefelhagen
(2015), Changpinyo et al. (2016a,b), Fu et al. (2015), Gan
et al. (2016), Kodirov et al. (2015), Lampert et al. (2014),
Mensink et al. (2014), Norouzi et al. (2014), Romera-Paredes
and Torr (2015), Xian et al. (2016), Xu et al. (2015b), Zhang
and Saligrama (2015, 2016a,b). A brief review on zero-shot
visual recognition will be described in the next section.

In zero-shot visual recognition, the semantic gap is the
biggest hurdle; i.e., the distribution of instances in visual
space is often distinct from that of their underlying seman-
tics in semantic space as visual features in various forms
may convey the same concept. This semantic gap results
in a great difficulty in transferring knowledge on known
classes to unseen classes. Apart from the semantic gap issue,
the hubness (Radovanovi¢ et al. 2010) is recently iden-
tified as a cause that accounts for the poor performance
of most existing ZSL models (Dinu et al. 2015; Shigeto
et al. 2015; Xu et al. 2015b). “Hubness” refers to the phe-
nomenon that some instances (referred to as hubs) in the
high-dimensional space appear to be the nearest neighbors
of a large number of instances. When nearest-neighbour
based algorithms are applied, test instances are likely to be
close to those “hubs” regardless of their labels and hence
incorrectly labeled as labels of “hubs”. In ZSL, the “hub-
ness” phenomenon becomes more severe. Apart from the
intrinsic property of high-dimensional space (Radovanovi¢
et al. 2010), the hubness is exacerbated by a lack of training
instances belonging to unseen classes in visual domain and
the domain shift problem, where the distribution of training
data is different from that of test data, which often occurs in
ZSL (Fu et al. 2015; Zhang and Saligrama 2016b).

In this paper, we propose a novel zero-shot visual recog-
nition framework towards bridging the semantic gap and
tackling the hubness issue. Unlike most of existing methods,
our framework consists of two subsequent stages: bottom—
up and top—down stages. In the bottom—up stage, a latent
space is learned from a visual representation via supervised
subspace learning that preserves intrinsic structures of visual
data and promotes the discriminative capability. We expect
that the latent space resulting from such subspace learn-
ing captures the intrinsic structures underlying visual data
and narrows the semantic gap between visual and semantic
spaces. After the bottom—up learning, in the latent space, the
mean of projected points of training data in the same class
forms a landmark specified as the embedding point of the cor-
responding class label. In the top—down stage, the semantic
representations of all unseen-class labels in a given vocabu-
lary are then embedded in the same latent space (created in
the bottom—up stage) by retaining the semantic relatedness
of all different classes in the latent space via the guidance of
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the landmarks. By exploring the intrinsic structure of visual
data in the bottom—up projection and preserving the seman-
tic relatedness in the top—down projection, we demonstrate
that the latent representation works effectively towards bridg-
ing the semantic gap and alleviating the adversarial effect
of the hubness phenomenon (Shigeto et al. 2015). In addi-
tion, the existing transductive post-processing techniques,
e.g., Fu et al. (2015), Zhang and Saligrama (2016b), are
easily incorporated into our proposed framework to address
the domain shift issue. Whenever multiple diversified visual
and/or semantic representations are available, our proposed
framework can further exploit the synergy among multiple
representations seamlessly.

Our main contributions in this paper are summarized as
follows: (a) we propose a novel stagewise bidirectional latent
embedding framework for zero-shot visual recognition and
explore effective and efficient enabling techniques to address
the semantic gap issue and to lessen the catastrophic effect
of the hubness phenomenon; (b) we extend our framework
to scenarios in presence of multiple visual and/or different
semantic representations as well as the transductive setting;
and (c) we conduct extensive experiments under a compara-
tive study to demonstrate the effectiveness of our proposed
framework on several benchmark datasets.

The rest of this paper is organized as follows. Section 2
reviews related works. Section 3 presents our bidirectional
latent embedding framework. Section 4 describes our experi-
mental settings, and Sect. 5 reports experimental results. The
last section draws conclusions.

2 Related Work

In this section, we review existing works in zero-shot visual
recognition and particularly outline connections and dif-
ferences between our proposed framework and the related
methods. We first provide a taxonomy on zero-shot visual
recognition to facilitate our presentation and then briefly
review relevant subspace learning methods that could be
enabling techniques used to realize our proposed framework.

2.1 Zero-Shot Visual Recognition

There are a number of taxonomies for zero-shot visual recog-
nition. For example, Akata et al. (2016) proposed a taxonomy
that highlights two crucial choices in ZSL, i.e., the prior
information and the recognition model, while the taxonomy
provided by Changpinyo et al. (2016a) is from a perspec-
tive of knowledge transfer. To facilitate our presentation in
this paper, we would divide the existing zero-shot visual
recognition methods into three categories from a perspec-
tive on how the existing methods bridge the semantic gap,
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namely, direct mapping, model parameter transfer and com-
mon space learning.

Direct mapping is a typical ZSL methodology. Its ultimate
goal is learning a mapping function from visual features to
semantic representations directly or indirectly (Akata et al.
2014, 2016, 2015; Al-Halah and Stiefelhagen 2015; Gan
et al. 2016; Jayaraman and Grauman 2014; Kodirov et al.
2015; Lampert et al. 2009, 2014; Romera-Paredes and Torr
2015; Shigetoetal. 2015; Xianetal. 2016; Xuetal. 2015a,b).
Such a mapping is carried out via either a classifier or a
regression model depending upon an adopted semantic rep-
resentation. As the relatedness between any class labels
are known in semantic space or its own embedding space,
a proper label may be assigned to a test instance in an
unseen class by means of semantic relatedness in differ-
ent manners, e.g., nearest neighbors (Xu et al. 2015a) and
probabilistic models (Lampert et al. 2009). However, direct
mapping may not be reliable in attribute predictions (Gan
et al. 2016; Jayaraman and Grauman 2014). This issue has
been addressed by different strategies. Jayaraman and Grau-
man (2014) use the random forests based post-processing to
handle the uncertainties of attribute predictions, while Gan
et al. (2016) propose to learn a representation transformation
in visual space to enhance the attribute-level discrimina-
tive capacity for attribute prediction. Alternatively, Al-Halah
and Stiefelhagen (2015) explore the additional underlying
attributes by constructing the hierarchy of concepts for reli-
ability. When the semantic representations are continuous,
regression models are used to map visual features to semantic
representations. A variety of loss functions along with var-
ious regularization terms have been employed to establish
regression models. For example, Akata et al. (2014, 2015,
2016) and Xian et al. (2016) use structured SVM to maxi-
mize the compatibility between estimated and ground-truth
semantic representations. Kodirov et al. (2015) formulate the
regression as a dictionary learning and sparse coding prob-
lem. Romera-Paredes and Torr (2015) make a distinction by
minimising the multi-class error rather than the error of the
semantic representation prediction and adding further con-
straints on the model parameters. In direct mapping, however,
the generalization of learned mapping models is considerably
limited by high intra-class variability. Furthermore, it does
not address the domain shift problem well when the train-
ing and test data are of different distributions. According to
Shigeto et al. (2015), a regression model tends to project the
instances closer to the origin than its ground-truth semantic
representation, which exacerbates the domain shift problem.

Model parameter transfer is yet another ZSL method-
ology that estimates model parameters with respect to
unseen classes by combining those model parameters learned
from known classes via exploiting the inter-class relation-
ship between known and unseen classes in semantic space
(Changpinyo et al. 2016a; Gan et al. 2015; Mensink et al.
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2014; Norouzi et al. 2014). Unlike direct mapping, the zero-
shot visual recognition in model parameter transfer takes
place in visual space where the model parameters for unseen
classes are usually obtained by a convex combination of
base classifiers trained on known classes (Gan et al. 2015;
Mensink et al. 2014; Norouzi et al. 2014). More recently,
Changpinyo et al. (2016a) proposed a novel approach that
gains model parameters for unseen classes by aligning the
topology of all the classes in both semantic and model param-
eter spaces. As a result, model parameter transfer is carried
out by exploring base classifiers corresponding to “phantom”
classes, which are artificially created and not associated with
any real classes, to enhance the flexibility of the model. Since
the inter-class relationship among unseen classes is not taken
into account, model parameter transfer might be subject to
limitation due to a lack of sufficient information for knowl-
edge transfer.

Common space learning is a generic methodology towards
bridging the semantic gap and has been applied in ZSL
(Changpinyo et al. 2016b; Fu et al. 2015; Zhang and
Saligrama 2015, 2016a) as well as other computer vision
applications such as image retrieval (Gong et al. 2014) and
automatic image description generation (Karpathy and Fei-
Fei2015). This methodology learns acommon representation
space into which both visual features and semantic repre-
sentations are projected for effective knowledge transfer.
Consequently, zero-shot visual recognition is obtained in
this learned common representation space, which is differ-
ent from direct mapping, where the recognition is obtained
in semantic space or its own embedding space that dif-
fers from visual embedding space in some direct mapping
methods (Akata et al. 2015, 2016), and model parameter
transfer, where the recognition takes place in visual space. A
learned common space may be either interpretable (Zhang
and Saligrama 2015) or latent (Changpinyo et al. 2016b;
Fu et al. 2015; Zhang and Saligrama 2016a). Zhang and
Saligrama (2015) come up with a semantic similarity embed-
ding method, which leads to semantic space where similarity
can be readily measured for zero-shot visual recognition.
This method works on viewing any instance in unseen classes
as a mixture of those in known classes. More recently, Zhang
and Saligrama (2016a) further propose a probabilistic frame-
work for learning joint similarity latent embedding where
both visual and semantic embedding along with a class-
independent similarity measure are learned simultaneously.
As aresult, zero-shot visual recognition is obtained via opti-
mization in the joint similarity latent space. Fu et al. (2015)
use the canonical correlation analysis (CCA) to project mul-
tiple views of visual data onto a common latent embedding
space to address the domain shift issue. When we prepared
this manuscript, one latest zero-shot recognition method
(Changpinyo et al. 2016b) emerged, which involves two
subsequent learning stages. Nevertheless, the generalization

capability of the aforementioned common space learning
models is generally limited as the intra-class variability is
not tackled effectively.

Our proposed framework can be viewed as a common
space learning approach as zero-shot recognition is obtained
in the learned common representation space (c.f. Sect. 3).
While all common space learning methods share the same
ultimate goal to bridge the semantic gap, their strategies and
enabling techniques for attaining this goal may be quite dif-
ferent. To this end, our proposed framework consists of two
subsequent learning stages, while most of other common
space learning methods fulfil the joint embedding from both
visual and semantic spaces simultaneously, e.g., Fu et al.
(2015), Zhang and Saligrama (2015, 2016a). Furthermore,
our framework tackles the intra-class and inter-class variabil-
ity in the common space and knowledge transfer explicitly
with proper enabling techniques, while other common space
learning methods address such issues implicitly, e.g., Zhang
and Saligrama (2015, 2016a) or do not take into account
intra-class and inter-class variability in the latent space, e.g.,
Changpinyo et al. (2016b). In terms of enabling techniques,
other common space learning methods (Changpinyo et al.
2016b; Fu et al. 2015; Zhang and Saligrama 2015, 2016a)
employ different parametric learning models for common
space learning with their formulated objectives, while we
address this issue by using both parametric (bottom—up)
and non-parametric (top—down) learning models. The use
of non-parametric model in our proposed framework allows
for carrying out knowledge transfer explicitly, which readily
distinguishes ours from all the existing common space learn-
ing methods that realize knowledge transfer implicitly with a
parametric model that relies on the capacity in interpolation
and extrapolation for generalization.

2.2 Subspace Learning

Subspace learning aims to find a low-dimensional space
for high-dimensional raw data to reside in by preserving
and highlighting useful information retained in the data in
the high-dimensional space. In ZSL tasks, both the visual
and semantic representation spaces could be of a very high
dimensionality. To deal with the “curse of dimensionality”,
subspace learning is often employed to address this issue in
ZSL (Akata et al. 2016). In particular, it is essential for com-
mon space learning (Fu et al. 2015; Fu and Huang 2010;
Zhang and Saligrama 2015, 2016a). In general, subspace
learning models are either parametric or non-parametric.

A parametric model learns a projection from a source
high-dimensional space to a target low-dimensional sub-
space via optimizing certain objectives of interest. For
example, principle component analysis (PCA) (Jolliffe 2002)
learns a projection that maps data points to a set of uncorre-
lated components accounting for as much of the variability
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underlying a data set as possible. Locality preserving projec-
tion (LPP) (Niyogi 2004) learns a projection for preserving
the local neighborhoods in the source space. In a supervised
learning scenario, a discriminative subspace can be learned
by using label information. For example, linear discrimi-
nant analysis (LDA) (Cai et al. 2007) leads to a projection
that maximizes the separability of projected data points in
the LDA subspace. LPP has also been extended to its super-
vised version by taking the label information into account
(Cheng et al. 2005). In our work, we apply the supervised
LPP algorithm as an enabling technique for learning a low-
dimensional latent space from visual space.

Unlike the aforementioned parametric models, a non-
parametric subspace model often learns projecting a set of
high-dimensional data points onto a low-dimensional sub-
space directly to preserve the intrinsic properties in source
space. Non-parametric models are suitable especially for a
scenario that all the data points in the source space are known
or available and the embedding task needs to be undertaken
on a given data set without the need of extension to unseen
data points during learning. This is a salient characteristic
that distinguishes between parametric and non-parametric
subspace learning. As a typical non-parametric subspace
learning framework, multi-dimensional scaling (MDS) (Cox
and Cox 2000) refers to a family of algorithms that learn
embedding a set of given high-dimensional data points into a
low-dimensional subspace by preserving the distance infor-
mation between data points in the high-dimensional space.
Sammon mapping (Sammon 1969) is an effective non-linear
MDS algorithm. In our work, we extend the Sammon map-
ping to a semi-supervised scenario that for a given dataset
the embedding of some data points in the subspace is known
or fixed in advance and only remaining data points need to be
embedded via preserving their distance information to others.
To the best of our knowledge, this is a brand new problem that
has never been considered in literature but emerges from our
proposed framework for knowledge transfer between known
and unseen classes.

3 Bidirectional Latent Embedding

In this section, we propose a novel framework for zero-
shot visual recognition via bidirectional latent embedding
learning (BiDiLEL). We first provide an overview on
our basic ideas and the problem formulation. Then, we
present the bottom—up and the top—down embedding learn-
ing with proper enabling techniques, respectively. Finally,
we describe the learning model deployment for zero-shot
recognition as well as two post-processing techniques for the
transductive setting. To facilitate our presentation, Table 1
summarizes the notations used in this paper.

@ Springer

Table 1 Nomenclature

Notation Description

ny, ny Number of labelled (training) and
unlabelled (test) instances

dy, dy, dg Dimensionality of visual, latent and

semantic spaces
X[ e Rdxxnl,xl

i Visual representation matrix of all the
labelled instances, a column

corresponding to an instance

X" e Rx>mu x Visual representation matrix of
unlabelled instances, a column

corresponding to an instance

Yl e R, yﬁ Projections of X' in the latent
subspace ), a column corresponding
to an instance

Y4 e Rby>m, ¥ Projections of X* in the latent

subspace ), a column corresponding
to an instance

W e Rw*m_ [ e RM*M Similarity and Laplacian matrices of a

given data set of n; instances

P e R¥:xdy Projection matrix learned in the
bottom—up stage
¢ e |c, et Known and unseen class label sets and
the number of known and unseen
classes in two sets
1 .
B! e R&*IC |,b§ Latent embedding for known class

labels, a column corresponding to
one class

B" € R&>Ic”l b Latent embedding for unseen class
labels learned in the top—down stage,

a column corresponding to one class

3.1 Overview

The motivation behind our proposed framework is twofold:
(a) to narrow the semantic gap, a latent space is learned from
visual representations of training data in a supervised man-
ner by preserving intrinsic structures underlying visual data
and promoting the discriminative capability simultaneously
and (b) for knowledge transfer, the semantic representations
of unseen-class labels are then embedded into the learned
latent space of favorable properties by taking into account
both the embedding of training-class labels and the seman-
tic relatedness between all different classes; i.e., not only the
relationships between known and unseen classes but also that
between unseen classes. Based on our motivation described
above, we propose a framework of a sequential bidirectional
learning strategy: the bottom—up learning for creating the
latent space from visual data and then the top—down learn-
ing for embedding all the unseen-class labels in the learned
latent space, as illustrated in Fig. 1.

In the bottom—up stage, the visual representations of train-
ing examples are extracted. A proper supervised subspace
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Fig. 1 The proposed bidirectional latent embedding learning
(BiDiLEL) framework for zero-shot visual recognition. The BiDiLEL
framework consists of two subsequent learning stages. In the bottom—
up stage (left plot), visual representations in X are first extracted from
the labeled visual data of different training classes marked by open
triangle, open circle and open square, respectively. Then a projection
‘P is learned with a proper supervised subspace learning algorithm to
create a latent space ). The latent embedding of training-class labels
are formed by using the mean of the projections of their corresponding
training instances in ), named landmarks, marked by filled triangle,
filled circle and filled square, respectively. In the top—-down stage (mid-

learning algorithm is employed to learn a projection P for
preserving the intrinsic locality of instances within the same
class and promoting the separability of instances in different
classes. As a result, a discriminative latent space ) is cre-
ated. Then, we estimate the mean of projections of training
instances for every training class. All the estimated means of
training classes in ) are designated for their latent embed-
ding of training-class labels specified in C’. As a result, we
expect that the the bottom—up learning creates the latent
embedding of training-class labels that better reflects the
semantic relatedness among them and lowers the intra-class
variability simultaneously. Thus, we designate all the esti-

S : Semantic space
J : Latent space

A: Visual rep. space
P: Projection

{pr

Projection

dle plot), the unseen-class labels in the semantic space S, marked by
filled diamond and filled inverted triangle, are embedded into ) with
a landmark-based learning algorithm in order to preserve the seman-
tic relatedness between all different classes. For zero-shot recognition
(right plot), the visual representation of a test instance in X', marked by
), is projected into the latent space ) via P learned in the bottom—
up stage. For decision-making, the nearest-neighbor rule is applied by
finding out the unseen-class embedding that has the least distance to this
instance in ). That is, the unseen-class label marked by filled diamond
is assigned to this test instance marked by )

mated means of training classes as landmarks in the latent
space and would use them to guide the embedding of unseen-
class labels specified in C* into the same latent space. The
bottom—up latent space learning is carried out by a supervised
subspace learning algorithm, supervised locality preserving
projection (SLPP) (Cheng et al. 2005), which is presented
in Sect. 3.2. The motivation behind this choice is to deal
with intra-class and inter-class issues along with preserv-
ing the intrinsic structure underlying visual data. Locality
preserving projection (LPP) (Niyogi 2004) is an algorithm
that preserves intrinsic structure underlying data, as shown in
Niyogi (2004). Its supervised version, SLPP, further exploits
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the labeling information to lower the intra-class variabil-
ity and hence improves the separability between different
classes, as shown in Cheng et al. (2005), Zheng et al. (2007);
Zhang et al. (2010).

As no training examples in unseen classes are available
in ZSL, we have no information on their properties in visual
space but clearly know the semantic relatedness between dif-
ferent class labels by means of their semantic representations.
In the top—down stage, we thus embed unseen-class labels
into the latent space by preserving the semantic relatedness
between all different class labels, including training-class to
unseen-class as well as unseen-class to unseen-class, guided
by the landmarks. Such top—down learning requires a proper
enabling technique. To the best of our knowledge, no exist-
ing algorithm meets this requirement. Therefore, we propose
a semi-supervised MDS algorithm based on the Sammon
mapping (Sammon 1969), named landmark-based Sammon
mapping (LSM), as our enabling technique to learn the latent
embedding of unseen-class labels, which is presented in
Sect. 3.3.

Once the two subsequent learning tasks are carried out,
zero-shot visual recognition is easily obtained in the latent
space with a nearest-neighbor rule presented in Sect. 3.4.

Now, we formulate the general problem statement for
zero-shot visual recognition. Given a set of labelled instances
X! = {xll,xlz, R xf“} e X, x; € R4 their labels are
denoted by Z! = {Zl], le, ...,zﬁ,l}, zf € C!, where C! is the
set of known class labels. For any given unlabelled instance
set X% € R4 the zero-shot visual recognition problem
is to predict their labels in C* that properly describe the test
instances by assuming {z!'} € C" and C'' NC* = @. Here, n;
and n,, are the number of labelled (training) and unlabelled
(test) instances, respectively, and d, is the dimensionality of
a visual representation.

3.2 Bottom-Up Latent Space Learning

The bottom—up latent space learning aims to find a projec-
tion matrix P that maps instances from their visual space
X to a latent space of a lower dimension ) to preserve the
intrinsic locality of instances within the same class and to pro-
mote the separability of instances in different classes. While
there are a number of candidate techniques to learn such a
latent space, we employ the (SLPP) (Cheng et al. 2005) as
the enabling technique since it generally outperforms other
candidate techniques, as validated in Sect. 5.

In SLPP, a graph is first constructed with all the train-
ing data in X' to characterize the manifold underlying this
data set in the visual representation space X'. Following the
original settings used in the LPP algorithm (Niyogi 2004), k
nearest neighbors (kNN) of a specific data point are used to
specify its neighborhood for the graph construction. Train-

@ Springer

ing instances xf € X! are represented by the nodes in the
graph, and an edge is employed to link two nodes when
one is in the other’s kNN neighborhood. Unlike the unsu-
pervised LPP algorithm, we further take into account the
labelling information of the instances when constructing the
graph (Cheng et al. 2005). As a result, the edge between
two nodes is removed when they do not share the same class
label. Therefore, we have a similarity matrix containing all
the weights of edges as follows:

exp(—|lx; —x11/2), xj € Ne(x)) or x; € Ni(x)),

1
_ ) l
Wij = Z; =2
0, otherwise

ey

where N (x) denotes the set of k nearest neighbours of x.
In order to preserve the intrinsic local structure, we use
the following cost function for learning a projection P:

L(P; W, X" = 11PTx; — PTx[15Wyj, )
i,J

where xf is the i-th column of the input data matrix X', cor-
responding to the feature vector of the i-th training example.

Minimizing the cost function in Eq. (2) enables the nearby
instances of the same class label in the visual space to stay
as close as possible in the learned latent space. Hence, the
intra-class variability is decreased and the inter-class vari-
ability is increased reciprocally. For the sake of robustness
in numerical computation, the above optimization problem
is converted into the following form with the mathematical
treatment (Niyogi 2004):

rr (PTX'Dx'"P)
max = 3)
Porr (PTXILXITP)

where L = D — W is the laplacian matrix and D is a diagonal
matrix with D;; = ) i Wij-

To penalize the extreme values in the projection matrix P,
we further employ a regularization term Tr(PT P). Thus the
cost function in Eq. (2) is now in the following form:

Tr (PTX’DX’TP)
max T @
P, (PT (XILXI + al) P)

Finding the optimal projection P is simply boiled down to
solving the generalized eigenvalue problem:

XIDXlszk(XILXlT+aI)p, Q)
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and the analytic solution is obtained by setting P =
[p1, ..., pal where p1, ..., pqg are those eigenvectors cor-
responding to the largest d eigenvalues.

Motivated by the treatment proposed by Akataetal. (2013,
2016) for binary label embedding, we further apply two nor-
malization strategies, centralization and l-normalization, to
the latent representations of training examples, Y*, to avoid
unfavorable situations in zero-shot recognition. Our moti-
vation behind the treatment is different from theirs (Akata
et al. 2013, 2016). For the sake of readability, we have to
describe our motivation at the end of Sect. 3.3 as it con-
cerns not only bottom—up but also top—down learning stages.
By using the centralization, the latent representations Y’ are
centralized to make all the features (i.e., rows) have zero
mean. Furthermore, />-normalization is applied on each col-
umn of ¥! to make all the instances have unit norms, i.e.,
j’f = y§/||y§||2 fori =1,2,...,n;. After the centralization
and />-normalization, the latent embedding of i-th training
class, bﬁ, is estimated by

1

! Al . !

bl:;Zyj, i=1,...,1c", (6)

' z1j=i

where n; is the number of training instances in the i-th train-
ing class, and |C!| is the number of training classes. Likewise,
all mean points of IC!| known classes estimated from train-
ing instances, bll, e bicl\’ are [p-normalized to have unit
norms. We specify all |C/| normalized mean points as land-
marks to provide the guidance for embedding unseen classes

into the learned latent space (c.f. Sect. 3.3).

3.3 Top—Down Latent Embedding Learning

The top—down algorithm aims to learn latent embedding
of unseen classes. With the guidance of landmarks, i.e.,
the latent embedding of known classes, all the unseen-class
labels are embedded into the same latent space learned in the
bottom—up stage via preserving their semantic relatedness
pre-defined by an existing semantic representation of class
labels (c.f. Sect. 4.3).

Let B! = (b}, b},....bl,} € R >IC collectively
denote the latent embedding of all the training classes
where dy, is the dimension of the latent space formed in
the bottom—up stage. Similarly, the latent embedding of
|C*| unseen classes are collectively denoted by B" =
{b{,b5, ..., rC"\} e RH*ICl In order to preserve the
semantic relatedness between all the classes, the distance
between two classes in the latent space should be as close
to their semantic distance in the semantic space as possi-
ble but the embedding of known classes are already settled
with Eq. (6) in the bottom—up learning stage. Hence, this
leads to a brand new semi-supervised MDS problem. By

Algorithm 1 Landmark-based Sammon Mapping (LSM)

Input: The semantic representations for training and unseen classes,
S! and S, (or the semantic distance matrix A = {8ij(si,5;)}), the
training-class latent embedding B!, learning rate 7.

Output: The latent unseen-class embedding B“*.

1: Initialize By for t = 0 randomly;

2: repeat

3:  Calculate gradient g; = Vg E(By') (c.f. Appendix A);

4:  Update B/, | := B/ + ng:;

5 t:=t+1;

6: until Stopping criteria are satisfied.

means of the Sammon mapping (Sammon 1969), we pro-
pose a landmark-based Sammon mapping (LSM) algorithm
to tackle this problem.

By using a proper semantic representation of all class
labels, we achieve the semantic representations of training
and unseen classes, S' € R%XICT and s € R4 *1C"1 | where
their i-th columns are sf and sl’f, respectively, and d; is the
dimensionality of the semantic space. Then, the LSM cost
function is defined by

E(Bu) —

o 0) o)’
\

CICT SIS o (sh)
) 1l o1t <d<b§‘,b@)—8<s?,su.>)2
e P3PS 8j(s$‘vSD‘-) -
@)

i=1 j=i+1

where d(x,y) and §(x,y) are the distance metrics in the
latent space and the semantic space, respectively. Intuitively,
the first term of Eq. (7) concerns the semantic relatedness
between known and unseen classes and the second term of
Eq. (7) takes into account the semantic relatedness between
unseen classes in the top—down learning. Minimizing E (B")
leads to the solution: B** = arg ming« E(B").

Following Sammon (1969), we derive the LSM algo-
rithm by using the gradient descent optimization procedure.
As a result, our LSM algorithm is summarized in Algo-
rithm 1, and the derivation of gradient Vg« E(B") used in
Algorithm 1 is described in Appendix A. Applying Algo-
rithm 1 to the semantic representations of |C*| unseen
classes results in their embedding in the latent space:
b, ....bl,.

12

Now we described our motivation underlying two nor-
malization strategies presented at the end of Sect. 3.2. In
general, our motivation underlying two normalization strate-
gies aims to facilitate the embedding of unseen-class labels in
the top—down stage. As advocated by Akata et al. (2016), the
instance-level /;-normalization of binary attributes of class
labels to the unit magnitude and zero-mean centering facili-
tate zero-shot recognition. For embedding unseen classes in
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the latent space, our LSM algorithm has to take into account
the distance information between known and unseen classes
in both the semantic and the latent spaces. Applying the /-
normalization to the embedding of training instances thus
ensures that the distances measured in two spaces are in
the same scale. Applying the centralization is due to the /-
normalization. All the /;-normalized training instances in the
latent space may concentrate in a small region (on the one
surface side of the unit hyper-sphere). This phenomenon may
cause no sufficient room or a difficulty to accommodate the
embedding of unseen-class labels in the top—down learning.
The zero-mean centralization ameliorates the detrimental
effect of this phenomenon by scattering training instances
in a larger region to facilitate the unseen class label embed-
ding.

3.4 Zero-Shot Recognition in the Latent Space

Once all the class labels are embedded in the latent space
by our Algorithm 1, zero-shot visual recognition is gained
in the learned latent space. Given a test instance x?, its label
is predicted in the latent space via the following procedure.
First of all, we apply projection P obtained in the bottom—up
learning stage to map it into the latent space:

y' = PTxt. (8)

After being subtracted by the mean estimated on all the train-
ing instances in the latent space, y; is then /;-normalized in
the same manner as done for all training instances. Thus, its
label, I*, is assigned to the class label of which embedding
is closest to y;‘; ie.,

[* = arg mlind (y?, bl”) , 9)

where b?’ is the latent embedding of /-th unseen class, and
d(x,y) is a distance metric in the latent space. In our exper-
iments, the Euclidean distance metric is used for measuring
the distance due to the nature of manifold learning in the LPP
algorithm (Niyogi 2004).

A recent study Shao et al. (2016) suggests that the use of
multiple visual representations can improve the robustness
in action recognition. As a result, we have extended our pro-
posed framework to the joint use of multiple complimentary
visual representations for robust zero-shot visual recognition,
which is presented in Appendix B. To promote robustness, we
also come up with a visual representation complementarity
measurement, as described in Appendix C.
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3.5 Post-processing Techniques

The post-processing in ZSL refers to those techniques that
exploit the information conveyed in test instances to improve
the ZSL performance. In our work, two existing post-
processing techniques, self-training (Xu et al. 2015b) and
structured prediction (Zhang and Saligrama 2016b), are
incorporated into our proposed framework.

3.5.1 Self-Training

The self-training (ST) is a post-processing technique pro-
posed by Xu et al. (2015b) in order to alleviate the domain
shift problem. The general idea behind the self-training is
adjusting the latent embedding of unseen classes according
to the distribution of all the test instance projections in the
latent space. It is straightforward to incorporate this post-
processing technique into our zero-short visual recognition
framework. Given the i-th unseen class (i =1, 2, ..., |C¥]),
Xu et al. (2015b) adjust the latent embedding b¥' to IA)?, where

AU 1
bl = -

k
>y (10)

yeNi(bY)

Here, N (b}) is a neighborhood of the latent embedding b
containing the k nearest test instances. In other words, this
nearest neighbour search in the self-training is confined to
only test instances. As all the test instances have to be used in
the self-training, this leads to a transductive learning setting.
Unlike their treatment in Xu et al. (2015b), in our experi-
ments, we adjust b to the arithmetic average between l;:t

and b, (IA)? +bY)/2, for a trade-off between preserving their
semantic relatedness and alleviating the domain shift effect.

3.5.2 Structured Prediction

Structured prediction is yet another option for post-processing
recently proposed by Zhang and Saligrama (2016b). Similar
to self-training, structured prediction also takes advantage
of the batch of test instances under the transductive setting.
This method was originally proposed for their own zero-shot
recognition algorithm (Zhang and Saligrama 2016a). In our
work, we adapt it for our proposed framework, which is a
simplified version of their structured prediction algorithm
(Zhang and Saligrama 2016b) by using only its first step
and dropping out the rest steps due to incompatibility to our
approach.

In this simplified version, we update the latent embedding
of unseen classes B" by clustering analysis on the batch of
test instances. First of all, a number of clusters are generated
for all the test instances by the K-means algorithm where
the number of clusters is chosen the same as that of unseen
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E::;"i nzosr“:g’;ﬁ’n ‘;fmdsatasets Number AWA CUB-200-2011 UCFI101 HMDB5|
Attributes 85 312 115 -
Known classes 40 150 51/81 26
Unseen classes 10 50 50/20 25
Instances 30,475 11,788 13,320 6,676

classes |C*|. In our experiments, we always initialize the clus-
ter centers with the latent embedding of unseen-class labels
learned in the top—down stage.! After the K -mean clustering,
structured prediction needs to establish a one-to-one corre-
spondence between a cluster and a unseen class so that the
sum of distances of all possible pairs of cluster center and the
unseen-class embedding can be least. Let A € {0, 1}|Cu I>x1c|
denote the one-to-one correspondence matrix where A;; =1
indicates that cluster i corresponds to unseen class j. The
correspondence problem is formally formulated as follows:

IC"] 1C"]

Hgnz ZAkc -d (mk, b?)

c=1 k=1

s.t. Vk, Ve, ZAkczl,ZAk,;:l, (11
k c

where my is the center of k-th cluster, b} is the c-th unseen-
class latent embedding and d(-,-) is Euclidean distance
metric. This optimization problem in Eq. (11) can be solved
by linear programming (Zhang and Saligrama 2016b).

For zero-shot recognition, a test instance falling into a
specific cluster is assigned to the label of its corresponding
unseen class based on the correspondence matrix A.

4 Experimental Settings

In this section, we describe our experimental settings includ-
ing the information of benchmark datasets, the visual and the
semantic representations used in our experiments, the investi-
gation of different factors that may affect the zero-shot visual
recognition accuracy and our comparative study.

4.1 Dataset

In our experiments, we employ four publicly accessible
datasets to evaluate our proposed framework. The first two
are benchmarks for zero-shot object recognition, namely
animal with attributes (AwA) (Lampert et al. 2014) and
Caltech-UCSD Birds-200-2011 (CUB-200-2011) (Wah et al.

' Our empirical study suggests that the random initialization in the K -
mean clustering may lead to better performance but causes structured
prediction to be unstable.

2011). As both are among those most commonly used
datasets used to evaluate ZSL algorithms in literature, we
can directly compare the performance of our approach to
that of those state-of-the-art zero-shot visual recognition
methods. Other two datasets are UCF101 (Soomro et al.
2012) and HMDBS51 (Kuehne et al. 2011), which are bench-
marks widely used to evaluate the performance of a human
action recognition algorithm in presence of a large number
of classes. To evaluate the performance in zero-shot human
action recognition, we use the same class-wise data splits on
UCF101 and HMDB5S1 as suggested by Xu et al. (2015a,b)
in our experiments, which allows us to compare ours to theirs
explicitly.

Table 2 summarizes the main information of four datasets
used in our experiments. The specific setting for zero-shot
visual recognition is highlighted as follows:

e AwA there are 30,475 animal images belonging to 50
classes. The 40/10 (known/unseen) class-wise data split
has been originally set by the dataset collectors (Lampert
et al. 2014).

e CUB-200-2011 this is a fine-grained dataset of 11,788
images regarding 200 different bird species, collected by
Wahetal. (2011). The class-wise data splitis often 150/50
(known/unseen) on this dataset in previous works. In our
experiments, we follow the same 100/50/50 class-wise
data split for training/validation/test used in Akata et al.
(2015); Reed et al. (2016); Xian et al. (2016).

e UCFIOI it is a human action recognition dataset col-
lected from YouTube by Soomro et al. (2012). There
are 13,320 real action video clips falling into 101 action
categories. In our experiments, we use 51/50 and 81/20
(known/unseen) class-wise data splits. We use the same
30 independent 51/50 splits® randomly generated by Xu
et al. (2015a). Regarding 81/20 splits, we randomly gen-
erate 30 independent splits as this setting does not appear
in their work Xu et al. (2015a).

e HMDBS5] it contains 6,766 video clips from 51 human
action classes, collected by Kuehne et al. (2011). Once
again, we use the same 30 independent 26/25 splits ran-
domly generated by Xu et al. (2015a).

2 The dataset of all 30 splits are available online: http://staff.cs.

manchester.ac.uk/~kechen/BiDiLEL.
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4.2 Visual Representation

The latest progresses in computer vision suggest that features
learned by using deep convolutional neural networks (CNNs)
significantly outperform any of hand-crafted counterparts in
object recognition (Simonyan and Zisserman 2015; Szegedy
et al. 2015). Features learned by deep CNNs have also been
applied in zero-shot visual recognition (Akata et al. 2014;
Al-Halah and Stiefelhagen 2015; Fuetal. 2015). In our exper-
iments, we use two different pre-trained deep CNN models
to generate visual representations of images in AwWA and
CUB-200-2011. For a direct comparison with state-of-the-
art methods, we follow their settings by using the top fully
connected layer of GoogLeNet of 1024 dimensions (Szegedy
et al. 2015) and the top pooling layer of VGG19 of 4096
dimensions (Simonyan and Zisserman 2015) to generate fea-
ture vectors of images. In particular, MatConvNet (Vedaldi
and Lenc 2015) has been employed to extract the aforemen-
tioned deep features.

There are many different visual representations that char-
acterize video streams regarding human actions. After inves-
tigating the existing visual representations for human action
video streams, we employ two kinds of state-of-the-art visual
representations for human action video streams in our exper-
iments, i.e. the improved dense trajectory (IDT) (Wang and
Schmid 2013) and the convolutional 3D (C3D) (Tran et al.
2015). Our empirical studies described in Appendix C along
with those reported in literature suggest that two selected
visual representations not only outperform a number of can-
didate representations but also are highly complementary to
each other. The IDT is a class of state-of-the-art hand-crafted
visual representations proposed by Wang and Schmid (2013)
for human action recognition. Four different types of visual
descriptors, HOG, HOF, MBHx and MBHy, are extracted
from each spatio-temporal volume, and their dimensions are
reduced by a factor of two with PCA. Then the representa-
tions of a video stream are generated by the Fisher vector
derived from a Gaussian mixture model of 256 components.
Thus, the video representations have 24,576 features for
HOG, MBHx, MBHy and 27,648 for HOF (Peng et al. 2016;
Wang and Schmid 2013), respectively. For computational
efficiency, we further apply PCA on those video represen-
tations to reduce their dimensions down to 3,000 in our
experiments. Note that the visual representation, IDT(MBH),
in our experiments refers to a feature vector formed by con-
catenating MBHx and MBHy. C3D (Tran et al. 2015) is an
effective approach that uses deep CNNs for spatio-temporal
video representation learning. In our experiments, we use the
model provided by Tran et al. (2015). This model was pre-
trained on the Sports-1M dataset. Following the settings in
Tran et al. (2015), we divide a video stream into segments in
length of 16 frames and there is an overlap of eight frames
on two consecutive segments. As a result, the fc6 activations
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are first extracted for all the segments and then averaged to
form a 4096-dimensional video representation.

In our experiments for multiple visual representations,
different visual representations described above are jointly
used via our proposed combination approach described in
Appendix B.

4.3 Semantic Representation

To evaluate our proposed framework thoroughly, we employ
two widely used semantic representations, attributes and
word vectors, in our experiments.

As shown in Table 2, AwA and CUB-200-2011 self-
contain 85 and 312 class-level continuous attributes that char-
acterize each class label, respectively. UCF101 class labels
have been manually annotated with 115 binary attributes by
Jiang et al. (2014). To our knowledge, however, there are
no attributes for those class labels appearing in HMDBS51.
Hence, we cannot report attribute-based results on this
dataset. Table 3 exemplifies some typical attributes used in
different datasets. Following the suggestion made by Akata
et al. (2016), Changpinyo et al. (2016a) and Zhang and
Saligrama (2015), we also apply /»-normalization to each
of attributes vectors to facilitate their latent embedding. In
our experiments, we use Euclidean distance metric to mea-
sure the semantic distance between attributes of two class
labels during the top—down latent embedding learning.

Unlike attribute-based semantic representations, Mikolov
et al. (2013) propose a continuous skip-gram model to learn
a distributed semantic representation, word vectors, in an
unsupervised way. In our experiments, we employ the skip-
gram model (well known as Word2Vec) (Mikolov et al. 2013),
trained on the Google News dataset containing about 100
billion words for AwWA, UCF101 and HMDBS51, where the
word embedding space is of 300 dimensions. However, there
are a number of out-of-vocabulary words in CUB-200-2011.

Table 3 Exemplification of typical attributes used in different datasets

Dataset Attribute

AwA colours(black, brown, red, etc.), stripes, furry,
hairless, big, small, paws, longneck, tail,
chewteeth, fast, smelly, bipedal, jungle,

water, cave, group, grazer, insects

CUB-200-2011 bill_shape(curved, dagger, hooked, needle,
etc.), wing_color(blue, yellow, etc.),
upperparts_color, tail_shape(forked,

rounded, pointed, squared, etc.)

UCF101 object(ball_like, rope_like, animal, sharp,
etc.), bodyparts_visible(face, fullbody,
onehand, etc.), body_motion(flipping,

walking, diving, bending, etc.)
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As aresult, we employ 400-dimensional word vectors trained
on English-language Wikipedia (Akataetal. 2015; Xian et al.
2016) for CUB-200-2011. Following the existing works, we
use the “cosine” distance metric to measure the semantic
distance between two class labels in a word embedding space
during the top—down latent embedding learning.

4.4 On Hyper-Parameters

It is well known that hyper-parameters in a learning model
may critically determine its performance. Thus, we investi-
gate the impact of different hyper-parameters involved in our
proposed framework to search for “optimal” hyper-parameter
values. In general, there are four hyper-parameters; i.e., the
number of nearest neighbors (k) for the graph construction
in SLPP, the trade-off factor («) applied to the regularization
in SLPP and the dimensionality of a learned latent space (dy)
during the bottom—up latent embedding learning as well as
the number of nearest neighbors (kg7 ) when the self-training
(Xu et al. 2015b) is used.

In our experiments, we use the classwise cross-validation
to seek the optimal hyper-parameter values and investi-
gate how each hyper-parameter affects the performance. We
strictly follow the procedure suggested by Akataetal. (2016),
Zhang and Saligrama (2016a) to do the cross-validation on
all the datasets apart from CUB-200-2011 that has a standard
training/validataion/test split. In a trial, we randomly reserve
20% training classes as validation data and the rest of train-
ing classes are used as training data. In our experiments, we
repeat such a cross-validation experiment for multiple tri-
als and report the averaging performance on validation data.
For AwA, five trials were conducted in our cross-validation
based on its default training/test split. For two human action
datasets, UCF101 and HMDB51, each has 30 different train-
ing/test splits provided by Xu et al. (2015a). For each of 30
splits, we conducted three-trial cross-validation to achieve
the optimal hyper-parameter values for this split only. Hence,
our cross-validation experiment on a human action dataset
had to be repeated for 30 times on all the splits respectively.

Without considering the post-processing of self-training,
our approach has three hyper-parameters, o, dy and kg.
It would be extremely expensive computationally if an
exhausted grid search is conducted. In our experiments,
we adopt a two-stage procedure to find out optimal hyper-
parameters for different visual representations respectively.
We first conducted a coarse grid search with « = 0.1, 10,
dy = 10,100, 500, and kg = 1, 10, 50. Then, we further
fine-tune each of hyper-parameters sequentially by fixing the
remaining two hyper-parameters.

In our fine-tuning stage, we conduct the cross-validation
experiments for each of four hyper-parameters sequentially
based on the information (on how sensitive a hyper-parameter

is to the performance) obtained from the coarse grid search.
Thus, our fine-tuning stage performs in the following order:

e «a First of all, we investigate the impact of « in Eq. (4). In
our experiment, we fix the initial optimal value of dy, and
kg resulting from the grid search to look into the impact
of a by setting it to 0.001, 0.01, 0.1, 1, 10, 100 and 1000.

e dy As training class labels are used in the bottom-up
latent embedding learning, the proper value of dy may
depend on the number of training classes that varies
across different datasets. To investigate the zero-shot
recognition accuracy with different dy values in a large
range, we use the optimal values of « found in the pre-
vious step and fix the initial optimal value kg resulting
from the grid search. In our experiment, we look into
dy = 50, 100, 150, 200, 250 and 300.

e k¢ By making use of the optimal o and dy, values achieved
from two previous steps, we look into the impact of kg
defined in Eq. (1) for each dataset in the same manner by
fixing other hyper-parameters and allowing only kg to
change in a large range: kg = 5, 10, 15, 20, 25 and 30,
respectively, to see how kg affects the zero-shot recog-
nition accuracy on different datasets.

e kg7 For this post-processing, we fix the optimal values
of three hyper-parameters found as described above and
evaluate the zero-shot recognition accuracy with a large
range of kg7 in Eq. (10) from 20 to 200 with an interval
of 20 on each dataset, as suggested in Xu et al. (2015b).

As a result, the set of hyper-parameter values leading to
the best accuracy in the above fine-tuning process are treated
as “optimal” and used in test to yield the performance for
unseen classes.

4.5 On Enabling Techniques

This experimental setting aims to explore the proper enabling
techniques for our proposed framework and investigate the
role played by two subsequent learning stages. As stated in
Sect. 3.1, there are a number of candidate subspace learning
techniques that could be used in the bottom—up learning as
reviewed in Sect. 2.2. To the best of our knowledge, however,
none of the existing non-parametric subspace learning model
can be directly applied to the top—down learning where the
task emerges from our proposed framework (c.f. Sect. 3.3).
Motivated by the work Changpinyo et al. (2016b), we employ
a parametric learning model as a baseline for the top—down
learning. In all the experiments described below, the nearest-
neighbor rule described in Sect. 3.4 is used for zero-shot
recognition.

For the bottom—up latent space learning, we conduct
a comparative study on four candidate techniques (c.f.
Sect. 2.2): two unsupervised algorithms, PCA and LPP, and
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two supervised algorithms, LDA and SLPP? For fairness,
we apply the same cross-validation procedure described in
Sect. 4.4 to find out the optimal hyper-parameter values, i.e.,
dy for PCA, a, dy and kg for LPP. For LDA, however, the
dimension of the latent space is intrinsically determined by
the number of training classes. Hence, the dimension of its
latent space is set to the number of training classes subtracted
by one. Furthermore, we apply our LSM algorithm directly
to visual representations without the bottom—up learning.
This experiment yields a baseline that clearly exhibits the
role played by each of two subsequent learning stages in our
framework.

In addition, some existing ZSL methods could be enabling
techniques applied to our bottom—up latent space learning,*
e.g., SJE (Akata et al. 2015), LatEm (Xian et al. 2016) and
CCA (Fu et al. 2015). Unlike the aforementioned subspace
learning where no semantic representations of labels are
considered, those ZSL algorithms take into account seman-
tic representations during projection learning. For example,
SJE (Akata et al. 2015) learns a projection matrix W such
that given a pair of visual and semantic representations,
x and y, similarity score x” Wy is maximized if x has a
label represented by y. LatEm extends SJE to a nonlinear
model with multiple piecewise linear models by learning dif-
ferent projection matrices such that different instances can
select the most appropriate projection matrices. CCA is an
algorithm used to learn a common space from two multi-
dimensional variables such that the correlation between the
projections of the two variables in the common space can
be maximized. Furthermore, the canonical correlation prob-
lem may be converted into a distance minimization problem:
miny w||XW—Y W’||r (Hardoon et al. 2004), where ||-||| r
is the Frobenius norm and W and W’ are projection matrices
for source and target embedding (to the common space). In
our experiments, we strictly follow the experimental setting
described in the original literature and the learned projec-
tions from visual to target space are used to form the latent
space. As a result, the dimensionality of the latent space is
equal to the dimensionality of semantic representations for
SJE and LatEm, and the dimension of latent space learned
by CCA is found by the same cross-validation procedure
described in Sect. 4.4. It is worth mentioning that LatEm
yields multiple projection matrices, which results in multiple
“latent” spaces. Hence, zero-shot recognition has to take into
account all of such “latent” spaces. There are two manners for
the nearest-neighbor based decision-making: minimum dis-
tance and averaging distance to a label embedding in multiple

3 The implementation of PCA and LDA used in our experiments is
based on the open source available online: http://www.cad.zju.edu.cn/
home/dengcai/Data/DimensionReduction.html.

4 Ananonymous reviewer pointed out this fact and suggested this exper-
iment.
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“latent” spaces. As the averaging distance always outper-
forms the minimum distance, we only report the results based
on the averaging distance.

Our LSM algorithm described in Sect. 3.3 is always
employed for the top—down embedding learning in all the
aforementioned experiments regarding the bottom—up learn-
ing. We further conduct an experiment by employing the
support vector regression (SVR) (Smola and Vapnik 1997) to
replace the LSM for the top—down learning. This experiment
is based on SLPP used in the bottom—up stage. When SVR
is used, the top—down learning is formulated as a regression
task (Changpinyo et al. 2016b) and the regressor is trained
based on training data where the landmarks are targets used
for learning. As our LSM and the SVR work in a quite
different manner for the top—down learning, it is possible
to combine their results to improve the zero-shot recogni-
tion performance as well as to understand their behavior. To
this end, we further use a simple ensemble strategy to com-
bine the two methods. Let b;, and by, (u = 1,...,|C"])
denote the latent embedding for unseen classes resulting
from two different top—down techniques, respectively. Thus,
the combined embedding of unseen classes is defined by
by, +b5,,)/2 (w = 1,...,|C") to be used in zero-shot
recognition.

It is worth mentioning that the optimal hyper-parameter
values in various candidate techniques are also achieved via
the same classwise cross-validation protocol suggested by
Akata et al. (2016), Zhang and Saligrama (2016a).

4.6 On the Joint Use of Multiple Semantic
Representations

The joint use of multiple semantic representations can also
improve the robustness in zero-shot visual recognition (Akata
et al. 2014, 2015; Changpinyo et al. 2016a; Xian et al.
2016). Our framework allows for jointly using multiple
semantic representations easily. Since our recognition pro-
cess described in Algorithm 1 requires only between-class
semantic distances as inputs, we use a convex combination
of semantic distance matrices to exploit the information con-
veyed in multiple semantic spaces.

Given attributes and word vectors used in our experi-
ments, let A4" and AWV denote the corresponding semantic
distance matrices achieved by using attributes and word vec-
tors, respectively. The fused distance matrix is achieved by
A=yAYY 4 (1 — y)AA" where y is in the range of (0.0,
1.0) and used to trade-off the contributions of two different
types of semantic representations. In our experiments, we
investigate the optimal value of y via a grid search by setting
y =0.1,0.2, ..., 0.9 with the classwise cross-validation.

As the aforementioned strategy for the simultaneous use of
two semantic representations affects both the top—down and
the bottom—up learning, we have to apply the same cross-
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validation protocol described in Sect. 4.4 first to find the
optimal values of all other hyper-parameters, «, dy, kg and
ks, especially for the scenario that two semantic represen-
tations are jointly used. In our experiments, we exploited
experimental results on a single semantic representation to
achieve those optimal hyper-parameter values. As a result,
we chose the set of hyper-parameter values leading to the
best averaging accuracy regarding two semantic representa-
tions (when used individually on a visual representation) as
the optimal values. Thus, this set of optimal hyper-parameter
values are fixed to be used in the subsequent classwise cross-
validation that decides the optimal value of y.

4.7 On the Comparative Study

To evaluate our proposed framework thoroughly, we con-
duct a comparative study by comparing ours to most of
state-of-the-art zero-shot visual recognition methods on four
benchmark datasets described in Sect. 4.1. For a fair com-
parison, we adopt the same experimental settings and use the
optimal hyper-parameter values reported in literature so that
one can clearly see the results yielded by different methods
under the same conditions.

Below, we briefly describe the state-of-the-art zero-shot
visual recognition methods used in our comparative study.

e Directattribute prediction (DAP) DAP proposed by Lam-
pertetal. (2009) is among those earliest methods for ZSL,
whichis often used as a baseline in zero-shot visual recog-
nition (Al-Halah and Stiefelhagen 2015; Gan et al. 2016;
Xu et al. 2015b). It learns a direct mapping from visual
representation to attributes of their corresponding class
labels. In deployment, the attributes associated with a
test instance are predicted by the learned mapping func-
tions. Then the label of this test instance is inferred with
a probabilistic model.

e Indirect attribute prediction (IAP) IAP (Lampert et al.
2009) is yet another baseline ZSL method (Al-Halah and
Stiefelhagen 2015; Gan et al. 2016; Xu et al. 2015b).
Unlike DAP, in deployment, IAP first predicts the proba-
bility scores of all the known classes for the test instance
and then apply the known class-attribute relationship
in semantic space to estimate the probability scores of
attributes. With the prediction of attributes, the label of
this test instance is predicted in the same way as DAP.

e Structured joint embedding (SJE) SJE (Akata et al. 2014)
learns a joint embedding space by maximizing the com-
patibility of visual and semantic representations x’ Ws.
The objective used for learning W in SJE is similar to
that proposed for the structured SVM parameter learning
(Tsochantaridis et al. 2005).

e Synthesized classifiers (Syn-Classifier) Syn-Classifier
(Changpinyo et al. 2016a) is a recent zero-shot object

recognition method that exploits the relations between
known and unseen classes in the semantic space. As a
result, the so-called “phantom” classes are explored to
model the relations between known and unseen classes
for ZSL.

Exemplar prediction [EXEM(SynC)] Changpinyo et al.
(2016b) is yet another bidirectional latent space learning
method similar to ours where PCA and SVR are used to
learn the latent space and to predict the exemplars for
unseen classes. Once the exemplars of unseen classes are
predicted, they are treated as ideal semantic represen-
tations and Syn-Classifier (Changpinyo et al. 2016a) is
used for zero-shot recognition.

Latent embedding (LatEm) LatEm (Xian et al. 2016) is
a non-trivial extension of SJE. Instead of learning a sin-
gle mapping transformation in SJE, it learns a piecewise
linear compatibility function of K parameter matrices
W; (i = 1,...,K). Given a test instance x, it will be
labelled as the class whose semantic representation max-

imises max XTW,-S.
1<i<K

Hierarchical attribute transfer (HAT) HAT (Al-Halah
and Stiefelhagen 2015) explores the hierarchical struc-
tures underlying the set of attributes. Based on the
relations of the original attributes, additional high-level
attributes are exploited to enhance the knowledge trans-
fer.

Kernel-alignment domain-invariant component analysis
(KDICA) KDICA (Gan et al. 2016) learns a feature trans-
formation of the visual representations to eliminate the
mismatches between different classes in terms of their
marginal distributions over the input. Once the trans-
formation is learned, the representation yielded by this
transformation is used for its attribute prediction.
Semantic similarity embedding (SSE) SSE (Zhang and
Saligrama 2015) learns a model that decomposes the
visual and semantic representations into a mixture of
known classes. Thus, all the unseen classes can be repre-
sented by such “mixture patterns”. Given a test instance,
its visual representation is first decomposed into the mix-
ture of known classes, and its “mixture pattern” is used
against all the unseen classes. A label of the class with
the most similar mixture pattern is assigned to this test
instance.

Joint latent similarity embedding (JLSE) JLSE (Zhang
and Saligrama 2016a) is one of the latest zero-shot recog-
nition methods. It formulates zero-shot recognition as a
binary prediction problem by assigning a binary label to a
pair of source and target domain instances. The visual and
semantic representations are mapped to their correspond-
ing latent spaces via dictionary learning and the joint
latent similarity embedding is learnt with a probabilistic
model via a joint optimization on two latent spaces so that
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a pair of matched source and target domain instances can
be found.

e Unsupervised domain adaptation (UDA) UDA (Kodirov
etal. 2015) is proposed to tackle the domain shift problem
in zero-shot recognition by regularizing the projection
learning for unseen instances with the projection learned
with training data in known classes. Due to using test
instances in projection learning, it is a typical transductive
ZSL algorithm.

e Transductive multiview-hypergraph label propagation
(TMV-HLP) TMV-HLP (Fuetal. 2015) employs multiple
visual and semantic representations to learn a common
space. Heterogeneous hyper-graphs are constructed for
multiple views and label propagation in zero-shot object
recognition. This method is proposed especially for trans-
ductive ZSL.

e Ridge regression + nearest-neighbor (RR + NN) RR+
NN (Xuetal. 2015b) is one of latest methods proposed for
zero-shot human action recognition. In Xu et al. (2015b),
aridge regression from visual to semantic representations
is learned with the training data. Then the learned regres-
sion model is first used to map a test instance from visual
to semantic spaces. Then a nearest neighbour algorithm
is employed to assign a class label to this test instance in
the semantic space.

e Manifold regression + self-training + normalized
nearest-neighbor (MR 4+ ST + NRM) MR + ST+ NRM
(Xu et al. 2015b) is one of latest methods proposed for
zero-shot human action recognition. Similar to ours, the
manifold of visual space is considered to learn a smooth
regression model towards enhancing the generalisation to
unseen classes. The self-training (ST) and the normalized
nearest neighbour (NRM) (Dinu et al. 2015) techniques
are further employed towards further improving the zero-
shot recognition accuracy.

5 Experimental Results

In this section, we report our experimental results® corre-
sponding to our settings described in Sects. 4.4—4.7, where
the per-class accuracy is used in evaluation.

5.1 Results on Hyper-Parameters

By using the cross-validation protocol described in Sect. 4.4,
we report experimental results via the mean and the stan-
dard error of per-class recognition accuracy over multiple
cross-validation trials for all the datasets unless a dataset

5 The source code used in our experiments as well as more experimental
results not reported in this paper are available on our project website:
http://staff.cs.manchester.ac.uk/~kechen/BiDiLEL.
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has a standard classwise split. The initial grid search sug-
gests that the initial optimal values of dy and k¢ are 100 and
10, respectively, regardless of different visual representations
and are hence used in the hyper-parameter fine-tuning stage
described in Sect. 4.4.

Figure 2 shows the detailed cross-validation results in
terms of statistics (mean and standard error) obtained in the
fine-tuning stage for two object recognition datasets. It is
evident from Fig. 2 that different values of « affect the recog-
nition accuracy significantly, while kg has the least effects
on performance. Based on results illustrated in Fig. 2, we
choose the set of hyper-parameter values leading to the best
accuracy in each case when specific visual and semantic rep-
resentations work together as “optimal” for such a case. For
clarity, we explicitly list all the optimal hyper-parameter val-
ues for different scenarios on two object recognition datasets
in Table 4. Itis worth stating that the optimal hyper-parameter
values for the scenario that two semantic representations are
jointly used are easily achieved with the results shown in
Fig. 2; i.e., for a specific visual representation, the averaging
accuracy on two semantic representations can be immedi-
ately achieved at each grid point of a hyper-parameter and
the optimal value can hence be found easily for this combi-
nation scenario.

As there are 30 different training/test splits (Xu et al.
2015a) for each of two human action datasets, UCF101
and HMDBS51, we have 30 sets of optimal hyper-parameter
values on a dataset for each of scenarios that combine spe-
cific visual and semantic representations. As we used four
different visual representations and up to two semantic rep-
resentations in our experiments, there are totally up to eight
different scenarios. Due to the limited space, it is impossible
to include all the details in this paper but we have made all the
experimental results on two human action datasets available
on our project website.

The optimal hyper-parameter values achieved via the
aforementioned classwise cross-validation experiments are
used in the comparative study reported in Sect. 5.4.

5.2 Results on Enabling Techniques

By using the settings described in Sect. 4.5, we conduct the
experiments to explore proper enabling techniques. Table 5
shows the zero-shot recognition performance resulting from
the baseline without the bottom—up learning and the use
of different enabling techniques, where a bold-font figure
indicates the best performance of statistical significance in
a specific setting, and a italic-font figure suggests that the
performance has been improved due to the combination of
different embedding of unseen-class labels resulting from
our LSM and SVR.

Regarding those enabling techniques for the bottom—up
learning, it is evident from Table 5 that SLPP generally per-


http://staff.cs.manchester.ac.uk/~kechen/BiDiLEL

Int J Comput Vis (2017) 124:356-383

371

—— GoogleNet ——Vgg19 * Attribute O WordVector |
AwA AwA AwWA AwA
) 90 90 <)
85 85 85 85
80 80 80 80]
— — —~ 75 —
S 75 S 75) S 7 S 75,
§ 70 - § 7 § 7 § 70
5 65 l 5 65 5 65 5 65
3 3 3 3
< 60 < 60 < 60 < 60
56 55 58] 55
50 50 50 50
45 45 45 45
0.0010.01 04 1 10 100 1000 50 100 150 200 250 300 10 15 20 25 30 20 40 60 80 100120140160180200
o dy ke kg,
CUB-200-2011 CUB-200-2011 CUB-200-2011 CUB-200-2011
60
55 55 55 55
50 50 50 50’%
a%—:
SN S e | B 8 ‘
§ 40 3 § 407 § 40 § 40
5 35 5 35 5 35 5 35
S . 3 3 3
< <9 _gg—g—s—p < Y—s—g—s—u—p < yEoeecocoy
25 24 25 25
20 20 20 20
15 15 15 15
0.0010.01 04 1 10 100 1000 50 100 150 200 250 300 10 15 20 25 30 20 40 60 80 100120140160180200
o dy k. ko,

Fig. 2 The classwise cross-validation results on AwA and CUB-200-2011 used to determine the optimal hyper-parameter values

Table 4 Optimal

hyper-parameter values in our Dataset Vis. Rep. Sem. Rep. Hyper-parameter
approach on two object o dy kg kst
recognition datasets,
corresponding to different visual AwA GoogLeNet wv 1000 300 15 200
and semantic representations, Att 1000 50 5 180
obtained with the Comb 1000 50 200
cross-validation protocol
described in Sect. 4.4 Vegl9 wv 1000 300 10 160
Att 1000 150 180
Comb 1000 150 200
CUB-200-2011 GoogLeNet WV 0.01 250 10 60
Att 10 100 30 40
Comb 10 100 30 60
Vggl9 WV 1 250 30 40
Att 10 100 20 20
Comb 1 100 30 40

Vis. Rep., visual representation; Sem. Rep., semantic representation; Att, attributes; WV, word vectors; Comb,
the combination of attributes and word vectors

forms the best regardless of datasets and representations. By
a closer look at Table 5, we observe that the performance
of PCA and LPP is comparable to that of SLPP when deep
representations, e.g., GoogleNet, Vgg19 and C3D, are used.
This suggests that the additional use of labeling information

in SLPP does not improve the generalization performance
substantially. It is also evident from Table 5 that the aggres-
sive use of labeling information in LDA usually results in
poor generalization. Such performance is attributed to the
fact that, to some extent, the visual features generated by

@ Springer



Int J Comput Vis (2017) 124:356-383

372

SIOJOA PIOM ‘AAA ‘SAINGLIIE ‘NY ‘uonejuasaidar onuewas “doy "wog ‘uonejuasaidar fensia “doy “SIA

9°0F 091 9°0F 8¢l 90F 91 SOF VSl LOF LTl ¥'0F L0l VOF Tl AM Ldl
SOF el 7'0F 6°CL 90F 0¥I YO0+ 07Cl SOoOF STl V'OF LI ¥'0F90I AM HAN
90F <6l LOF €61 LO0F 981 90F I'SL LOF €81 LOF S8l L'0F 88l AM aed [S4ANH
70+ 691 Y0+ 69l €0F 991 voFELI ¥'0F €€l €0F90I E0F L6 nv
E0Fovl COF eVl voF Sl YO+ ¥yl ¥'0F Sl C0FT6 COF¢S8 AM Ldl
£0F091 yo+TsI €0F TSI c0F SVl €0F 87l E0F oIl £0F 001 nv
€0F el €0F 87l €0F 0PI cO0F LTI e0F <ol co0F Lol €0F L6 AM HAN
So0F e 90+ 8¢ S0F¢coc Y0+ o6l S0F¢coc Y0+ 70T ¥'0F ¥81 nw
S0F 6781 SOFO6'LI Y0+ 681 ¥'0F €91 Y0+ 98I Yo+ S8l Y0+ 8LI AM aesd (05/19) 101400
L0F0sE LOFLee 80FTHe 60FSPe 6'0F v'8¢C 80F6'CC LOFTIC nv
I'iF¢le 6'0F v'6C I'T+97te I'tF+¢le 6'0F v'8¢C 90+ 60T SOF 8l AM LdI
§0Fcce 80F90¢ 80 FVIE 80F¢'LC 80+ ¢9¢ 6'0F9vC 60F1'IC nv
80FLLC 6'0F+99¢C I'TF+66¢ 6'0F0YC 60F¢€LC 6'0F8¢C 80F91¢ AM HAN
I'r+.2¢v 0L FE¢er 0l FT6¢c CTLFSye CLFL8E 0'1F¢8¢ I'TFese nv
6'0F ¢9¢ 80F I'S¢ TLF €8¢ 60F6'I¢ L FF18€ I'I+9LE I'TF+99¢ AM aed (02/18) 101400
Sov L6y 9Ly 8¢y 0S¥ 8¢y Ly nv
6'v¢ (%13 0'LE L9¢ 6'v¢ 6'8¢ §'6C AM 6135A
443 L0s L6y 0cr 6'St 6t Sev nv
L'ee ¥70¢ Sve L9¢ L'ce £6¢ §'6C AM 10N°13000 1102-00C-dNDO
9'8L L'SL I'6L 6'¢L 06L 6'8L 8'6L nv
968 L'LS L9S 0'IS 98 9¢ €LS AM 6183A
SrL I'vL ¥CL 9CL I'cL £EL (a7’ nv
LS 6°SS 1°9¢ I'1s c9s ¥'9¢ 0LS AM 1ONP[300D) vay
ddIS ddIS ddIS val dd1 vod “doy 'sIA
YAS B NST JAS NST “doy "urag “doy 's1A Jesereq

soge)s Surures] umop—doy ay) pue dn—woyoq oy ut
sonbruyo9) Furjqeud JUAIIJIP JO asn Y pue Jurures] dn—wo)oq Y} INOYIIM dul[aseq Yy woij Sunpnsal yoeoidde 1o Jo 9, (10110 prepue)s F ueowr) douewIojIod UONIUS0I2I [BNSIA JOYS-0197 G J[qRL,

pringer

A



Int J Comput Vis (2017) 124:356-383 373
Table 6 Results on SJE, LatEm X
and CCA used as the enabling Dataset Vis. Rep. Sem. Rep. SIE LatEm CCA
techniques for the bottom—up AWA GoogLeNet WV 47.8 53.1 48.9
learning while the LSM is used
for the top—down learning Att 70.0 73.2 72.7
Vggl9 \A% 48.2 57.4 51.9
Att 75.7 76.5 75.5
CUB-200-2011 GoogLeNet WV 26.8 26.6 37.1
Att 39.2 34.8 49.7
Vggl9 \A% 26.7 25.1 37.9
Att 37.2 36.0 49.2

deep CNNs via supervised learning on a much larger dataset
characterize the intrinsic structure of visual data and dis-
criminative aspects of images or video streams belonging to
different classes. Further supervised learning on such visual
representations may lead to overfitting to training classes. It
is particularly true on AwWA where the deep features of visual
data sufficiently capture the intrinsic “cluster” structure; it is
observed from Table 5 that without the bottom—up learning,
our LSM algorithm yields the better performance than that
of itself working on four candidate subspace learning algo-
rithms used in the bottom—up learning. This suggests that the
bottom—up learning might be redundant for a dataset such as
AwA. As clearly shown in Table 5, however, the bottom—up
learning on other three datasets leads to a performance gain
regardless of different visual and semantic representations
used. On the other hand, we observe that the performance
of LDA is also comparable to that of SLPP when a ker-
nel representation space is used by the joint use of multiple
visual representations, e.g., IDT on UCF101. This suggests
that after being mapped onto a kernel representation space,
the instances in different classes are not separated well, and
the use of labeling information improves the discriminative
aspects in the latent space. Based on the baseline perfor-
mance, we conclude that the proper bottom—up learning is
required by taking into account preserving intrinsic struc-
ture underlying visual data and promoting the discriminative
capability simultaneously unless a visual representation has
already captured the intrinsic “cluster” structure of a visual
data set.

Regarding the enabling top—down learning techniques, the
results shown in Table 5 reveal that LSM generally performs
better than SVR, although its performance is inferior to that of
SVR in some occasions for specific visual and semantic rep-
resentations used on different datasets: GoogleNet + Att and
Vggl9+WV on AwA, Att on CUB-200-2011 and C3D + Att
on UCF101. Furthermore, an interesting phenomenon is
observed from Table 5 that the combination of LSM and
SVR in unseen-class embedding always improves the per-
formance of SVR whenever SVR outperforms LSM but the
further improvement does not always happen when our LSM

outperforms SVR. The experimental results exhibit the dif-
ference between the SVR, a parametric model, and our LSM,
a non-parametric model in knowledge transfer.

Regarding the use of existing ZSL methods for bottom—up
learning, we have only done the experiments on two object
recognition benchmark datasets since results on these two
datasets are only reported in the literature regarding three
candidate methods, SJE, LatEm and CCA. It is evident from
Table 6 that SLPP generally outperforms three methods on
AwA although the performance of LatEm is better than that
of using specific visual and semantic representation combi-
nations, GoogleNet+ Att and Vggl9+WYV. However, CCA
outperforms SLPP on CUB-200-2011 for those visual and
semantic representation combinations: GoogLeNet+ WYV,
Vggl9+WV and Vggl9+ Att. This suggests that a proper
enabling technique for the bottom—up learning may be depen-
dent of a specific dataset. Fortunately, different enabling
techniques can be easily and flexibly applied in our frame-
work.

In summary, the above experimental results suggest that
SLPP can preserve intrinsic structure underlying visual data
and facilitate discriminating different classes in the latent
space. Thus, SLPP provides a proper enabling technique for
the bottom—up learning. On the other hand, our proposed
LSM works effectively in comparison to SVR and is hence
a proper enabling technique for the top—down learning.

5.3 Results on the Joint Use of Multiple Semantic
Representations

By using the settings described in Sect. 4.6, we conduct
experiments to seek the optimal value of y used in com-
bining two semantic representations: attributes and word
vectors. As there are many candidate visual representations,
we adopt only those that lead to the state-of-the-art perfor-
mance in our experiments. As there are no attributes available
in HMDBS51, our experiments are done on AwA, CUB-
200-2011 and UCF101. While different values of y in its
permissible range are used in the experiments, y = 0.0 cor-
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Fig. 3 The classwise cross-validation results on AwA and CUB-200-2011 when two semantic representations are jointly used

responds to the situation that attributes are only used and
y = 1.0 indicates that word vectors are only used.

Figure 3 illustrates the classwise cross-validation results
for different values of y in the joint use of two semantic repre-
sentations on two object recognition datasets. From Fig. 3, we
see the optimal hyper-parameter values for different visual
representations in different settings, which are used in the
comparative study reported in Sect. 5.4. Under the inductive
setting, y = 0.4 for AwA regardless of visual representations
and y = 0.2, 0.4 for CUB-200-2011 when GoogleNet and
Vggl9 are used, respectively. When the self-teaching is used
in the transductive setting, y = 0.3 for AWA regardless of
visual representations and y = 0.3, 0.2 for CUB-200-2011
when GoogleNet and Vggl9 are used, respectively. When
the structure prediction is used in the transductive setting,
y = 0.8, 0.3 for AwA and y = 0.3, 0.1 for CUB-200-2011
when GoogleNet and Vgg19 are used, respectively.

Likewise, the classwise cross-validation was done on 30
training/test splits for different scenarios on each of two
human action datasets, respectively, as same as described in
Sect. 5.1. Consequently, those optimal y values on 30 splits,
which are also available on our project website, are used in
the comparative study reported in Sect. 5.4.

5.4 Results on Comparative Study

By using the settings described in Sect. 4.7, we conduct
experiments to compare ours to a number of state-of-the-art
zero-shot visual recognition methods. By using the identi-
cal experimental protocol as suggested in literature, we can
directly compare the performance to that reported in liter-
ature. For our approach, we report the mean and standard
deviation resulting from five random initial conditions used
in the top—down learning on AwA and CUB-200-2011 as
well as the mean and standard error of the mean resulting
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from 30 training/test splits on UCF101 and HMDBS51 while
the detailed experimental results can be found on our project
website. To facilitate our presentation, we group the experi-
mental results in terms of zero-shot object and human action
recognition.

5.4.1 Results on Zero-Shot Object Recognition

Table 7 shows the performance of different approaches in
zero-shot object recognition where the best performance is
highlighted with bold font and the results from the inductive
and the transductive settings are separated with a delimiter.
For AwA, it is evident from Table 7 that in the attribute-
based inductive setting our approach based on Vgg19 visual
features outperforms all other state-of-the-art approaches
with a high accuracy of 79.1% in terms of per-class accuracy
except JLSE that reports the per-image accuracy of 80.5%. In
its corresponding transductive setting, the use of self-training
(ST) in our approach based on Googl.eNet and Vgg19 visual
features lifts the accuracy to 86.2 and 88.5%, respectively,
and the use of structured prediction (SP) further improves the
accuracy to 92.6 and 95.0%, respectively. In the word-vector
based inductive setting, our approach based on Vgg19 visual
features and 300-dimensional word vectors® yields an accu-
racy of 56.1%, which is lower than that of SJE but higher than
that of LatEm where 400-dimensional word vectors are used
in their experiments. In the transductive setting, we observe
that both ST and SP lead to a higher accuracy. Especially, the
use of SP dramatically improves the accuracy from 56.1% to
76.0% based on GoogleNet features. Our results suggest that
SPis constantly superior to ST under the transductive setting.
While the combination of two semantic representations sig-

6 In our experiments, we use the pre-trained 300-dimensional word
vectors available online: https://code.google.com/archive/p/word2vec,
where 400-dimensional word vectors are unavailable.
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nificantly improves the performance of some methods, e.g.,
SJE, it is not a case for our approach on this dataset. It is
observed that the combination of attributes and word vec-
tors generally does not improve the performance on AwA
regardless of visual representations.

For CUB-200-2011, EXEM(SynC) yields the best accu-
racy of 59.8% in the attribute-based inductive setting but
their classwise data split protocol is unavailable publicly. In
contrast, the best performance of our approach is 49.7% with
GoogleNet features, which is better than that of DAP, LatEM,
SSE, JLSE and KDICA but worse than that of SJE, HAT
and SynC. The use of SP in the attribute-based transductive
setting leads our approach to an accuracy of 62.8%. In the
word-vector based settings, it is evident from Table 7 that our
approach outperforms all others; 37% accuracy is achieved
with Vgg19 features under the inductive setting and the use of
ST and SP under the transductive setting lifts the the accuracy
to 40.9 and 40.6%, respectively. Similar to other methods,
e.g., SJE and LatEm, the joint use of two semantic repre-
sentations further improves the performance of our approach
on CUB-200-2011 in the inductive setting. Nevertheless, the
combination of semantic representations under the transduc-
tive setting leads to limited improvement only when ST is
used but does not work when SP is applied in our approach.

It is worth pointing out that the cost function used in our
LSM algorithm is non-convex and the gradient-based local
search only leads to a local optimum. However, our experi-
mental results shown in Table 7 suggest that the LSM learning
on two benchmark object recognition datasets is insensitive
to different unseen-class embedding initialization and almost
always converges to the same solution.

5.4.2 Results on Zero-Shot Human Action Recognition

For zero-shot human action recognition, to the best of our
knowledge, there are much fewer studies than zero-shot
objectrecognition in literature. Hence, we compare ours to all
the existing approaches (Gan et al. 2016; Kodirov et al. 2015;
Xu et al. 2015b). It is worth clarifying that our experiments
concern only zero-shot human action recognition while the
previous work Xu et al. (2015b) addresses other issues, e.g.,
action detection, which is not studied in our work. In addi-
tion, Xu et al. (2015b) come up with the data augmentation
technique to improve the performance. However, we notice
that in their experiments, some classes from auxiliary data
used for training are re-used in test, which violates the funda-
mental assumption of ZSL that training and test classes must
be mutually excluded. Thus, we do not compare ours to theirs
(Xu et al. 2015b) in terms of the data augmentation. Since
SP almost always outperforms ST for the post-processing, we
only report the results yielded by SP under the transductive
setting in Table 8.

@ Springer

Table 8 shows the zero-shot recognition results of different
methods on UCF101 and HMDBS51. In the inductive setting,
our approach yields the best performance on two different
UCF101 classwise splits, 51/50 and 81/20. It is clearly seen
from Table 8 that our approach leads to the highest accuracy
of 22.2 and 19.6% on average for the 51/50 split and the
highest accuracy of 43.3 and 40.8% on average for the 81/20
split by using attributes and word vectors, respectively, along
with appropriate visual representations. Despite the use of the
same visual representations, our approach outperforms all the
others regardless of semantic representations. Moreover, it is
evident from Table 8 that the exactly same conclusion on
the results achieved in the inductive setting can be drawn in
the transductive setting, where our approach results in the
highest accuracy of 29.8 and 23.0% on average for the 51/50
split and the highest accuracy of 57.1 and 49.3% on aver-
age for the 81/20 split by using attributes and word vectors,
respectively, along with appropriate visual representations.
Furthermore, the results shown in Table 8 suggest that the
joint use of two semantic representations always improve
the performance of our approach substantially regardless of
visual representations and classwise splits; for the 51/50 and
the 81/20 splits, the highest accuracy is 26.4 and 51.1% on
average, respectively, in the inductive setting and the high-
est accuracy is 35.1 and 66.9% on average, respectively, in
the transductive setting. For HMDBS51, the behavior of our
approach is identical to that on the 51/50 split of UCF101
in both inductive and transductive settings when word vec-
tors are used. Ours yields the highest averaging accuracy of
20.6% in the inductive setting and 22.3% with SP along with
C3D+1IDT features in the transductive setting, respectively,
although our approach underperforms MR + ST + NRM when
IDT(HOG,HOFMBH) features are used. Here, it is worth
pointing out that neither of the optimal hyper-parameter
search methods were described nor the detailed experimen-
tal results on each of 30 training/test splits were reported in
Gan et al. (2016), Kodirov et al. (2015), Xu et al. (2015b).
In general, we summarize the main results shown in Table 8
as follows: (a) the use of attributes always outperforms that
of word vectors when the same visual representations are
employed, which is consistent with Akata et al. (2016); (b)
the deep representation C3D outperforms the state-of-the-
art hand-crafted visual representations significantly in all the
settings; (c) the joint use of two semantic representations
substantially improves the performance of our approach;
and (d) under the transductive setting, SP does not always
improve the zero-shot recognition performance probably due
to the highly complex intrinsic structure underlying visual
data.

In summary, the experimental results achieved from our
comparative study suggest that our proposed framework
yields the favorable performance and is generally comparable
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to all the existing state-of-the-art zero-shot visual recognition
methods described in Sect. 4.7.

6 Concluding Remarks

In this paper, we have proposed a novel bidirectional latent
embedding learning framework for zero-shot visual recogni-
tion. Unlike the existing ZSL approaches, our framework
works in two subsequent learning stages. The bottom—up
learning first creates a latent space by exploring intrinsic
structures underlying visual data and the labeling informa-
tion contained in training data. Thus, the means of projected
training instances of the same class labels form the embed-
ding of known class labels and are treated as landmarks. The
top—down learning subsequently adopts a semi-supervised
manner to embed all the unseen-class labels in the latent
space with the guidance of landmarks in order to preserve the
semantic relatedness between all different classes in the latent
space. Thanks to the favorable properties of this latent space,
the label of a test instance is easily predicted with a nearest-
neighbor rule. Our thorough evaluation under comparative
studies suggests that our framework works effectively and
its performance is competitive with most of state-of-the-art
zero-shot visual recognition approaches on four benchmark
datasets.

In our ongoing research, we would further explore poten-
tial enabling techniques to improve the performance and
extend our proposed framework to other kinds of ZSL prob-
lems in computer vision, e.g., multi-label zero-shot visual
recognition. Despite being proposed for zero-shot visual
recognition, we expect that our proposed framework also
works on ZSL problems in different domains, e.g., zero-shot
audio classification, zero-shot music genre recognition and
and zero-shot multimedia information retrieval.
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Appendix A: Derivation of Gradient on the LSM
Cost Function

In this appendix, we derive the gradient of E(B") defined in
Eq. (7). To facilitate our presentation, we simplified our nota-
tion as follows: dl“ dl‘;“, 85;‘ and 8“” denote d (bl. b’f) d(b?,
b") 5(s s“) and 8(st s“) respectlvely, where d( -) and
1) ( -) are dlstance metrlcs used in the latent and semantic

spaces.

@ Springer

Based on the simplified notation, Eq. (7) is re-written as
follows:

2
! 1 1
I (dtju 817)

E(B") =

ICT]|CH] 4 sl
i=1 1
, (A
N 5 | (d;fju - (w)
_ uu
e =1 Ao
Let b“ (b RIRERE b? dy) denote the embedding of unseen

class j in the latent space, where b;fk is its k-th element. By
applying the chain rule, we achieve

IE(BY) _ 9E(B“) Bd,-l,‘-‘ JE(B") 9d;}" A2
Bb?k adl.l;.‘ ab’;k ad;;“ E)bjk
For the first term in Eq. (A.2), we have
! l l
IE(BY) r (d,-}’ —Si}-‘)
ad  IcliCr] s A3
i i=1 1y
and
1
odif 2 (b — i) _ b — b (A4)
b, 2 djt '
Zk ( ]k)
Likewise, for the second term in Eq. (A.2), we have
u IC*] (quw — guu
J0E(B") 4 ij ij (A5)
ot lCH(C =) o '
and
Bdl.“j" -2 ( o= b;fk> b?k — b
", 2 A (A.6)
1
oy (o - b ’
Inserting Egs. (A.3)—(A.6) into Eq. (A.2) leads to
IC u sl
L
u
0bj e T gy
IC*| _
T i . (PR
_ uu Juu J ik ) -
CUraC =1 A s
(A7)

Thus, we obtain the gradient of E(B") with respect to B

din Algorithm 1: Vgu E(B") = (2£F2)
used in Algorithm 1: Vg« E(B") 07 )\ cuxd
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Appendix B: Extension to the Joint Use of Multiple
Visual Representations

In this appendix, we present the extension of our bidirectional
latent embedding framework in the presence of multiple
visual representations.

In general, different visual representations are often of
various dimensionality. To tackle this problem, we apply
the kernel-based methodology (Cristianini and Shawe-Taylor
2000) by mapping the original visual space X’ to a pre-
specified kernel space K. For the visual representations X,
the mapping leads to the corresponding kernel representa-
tions K! € R"*" where K ll is the i-th column of the kernel
matrix K and Kfj = k(xf,xlj.). k(xﬁ,xlj) stands for a kernel
function of certain favorable properties, e.g., the linear ker-

. . . . T
nel function used in our experiments is k(xf,xlj.) = xé xlj.

As there is the same dimensionality in the kernel space, the
latent embedding can be learned via a joint use of the kernel
representations of different visual representations regardless
of their various dimensionality.

Given M different visual representations X O x@
XM we estimate their similarity matrices wh w@
W) with Eq. (1), respectively, and generate their respective
kernel matrices KW, K (2), ..., K™ a5 described above.
Then, we combine similarity and kernel matrices with their
arithmetic averages:

T % wom, (A.8)
M m=1

and

[ % K™, (A.9)
M m=1

Here we assume different visual representations contribute
equally. Otherwise, any weighted fusion schemes in Yu
etal. (2015) may directly replace our simple averaging-based
fusion scheme from a computational perspective. However,
the use of different weighted fusion algorithms may lead to
considerably different performance. How to select a proper
weighted fusion algorithm is non-trivial but not addressed in
this paper.

By substituting W and X' in Eq. (2) with W in Eq. (A.8)
and K in Eq. (A.9), the projection P can be learned from mul-
tiple visual representations with the same bottom—up learning
algorithm (c.f. Egs. (2-5). Applying the projection P to the
kernel representation of any instance leads to its embed-
ding in the latent space. Thus, we can embed all the training
instances in X' into the learned latent space by

y! = pTK!, (A.10)

where K! is the combined kernel representation of train-
ing data X ! For the same reason, the centralization and the
I>-normalization need to be applied to Y/ prior to the land-
mark generation and the top—down learning as presented in
Sects. 3.2 and 3.3. As the joint use of multiple visual represen-
tations merely affects learning the projection P, the landmark
generation and the top—down learning in our proposed frame-
work keep unchanged in this circumstance.

After the bidirectional latent embedding learning, how-
ever, zero-shot recognition described in Sect. 3.4 has to
be adapted for multiple visual representations accordingly.
Given a test instance x, its label is predicted in the latent
space via the following procedure. First of all, its represen-
tation in the kernel space K is achieved by

= T 1 0 1 0 1 r
K!'= {k (x;‘,xl) Jk (x;‘,xz) Lok (x;‘,xm>} ,

(A.11)

where E(-, -) is the combined kernel function via the arith-
metic averages of M kernel representations of this instance
arising from its M different visual representations. Then we
apply projection P to map it into the learned latent space:
yi = PTK!. (A.12)
After y! is centralized and normalized in the same manner
as done for all the training instances, its label, /*, is assigned
to the class label of which embedding is closest to y;‘; ie.,
I* = argmlind (vi. b)), (A.13)
where b} is the latent embedding of /-th unseen class, and
d(x,y) is a distance metric in the latent space.

Appendix C: Visual Representation Complementar-
ity Measurement and Selection

For the success in the joint use of multiple visual repre-
sentations, diversity yet complementarity of multiple visual
representations play a crucial role in zero-shot visual recog-
nition. In this appendix, we describe our approach to
measuring the complementarity between different visual rep-
resentations and a complementarity-based algorithm used
in finding complementary visual representations to max-
imize the performance, which has been used in our
experiments.

C.1: The Complementarity Measurement

The complementarity of multiple visual representations have
been exploited in previous works. Although those empiri-

@ Springer
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cal studies, e.g., the results reported by Shao et al. (2016),
strongly suggest that the better performance can be obtained
by combining multiple visual representations in human
action classification, little has been done on a quantitative
complementarity measurement. To this end, we propose an
approach to measuring the complementarity of visual rep-
resentations based on the diversity of local distribution in a
representation space.

First of all, we define the complementarity measurement
of two visual representations X() e R¥*" and X® ¢
R%*" where d; and dy are the dimensionality of the two
visual representations, respectively, and » is the number of
instances. For each instance x;,i = 1,2, ..., n, we denote
its k nearest neighbours (kNN) in space X! and X® by
j\fk(l)(i ) and /\/,((2) (i), respectively. To facilitate our presen-
tation, we simplify our notation of ./\/k(m) (i) to be J\/;(m).
According to the labels of the instances in the XNN neighbor-
hood, the set /\/i(m) can be divided into two disjoint subsets:

N =TMye™ m=1,2, i=12,....n

where Il.(m) and Ei(m) are the subsets that contain nearest
neighbours of the same label as that of x; and of different
labels, respectively. Thus, we define the complementarity
between representations X1 and X® as follows:

min (|Z(1)|, |I(2)|) _ |I(1) 01(2)|
IZD| + |ZD| — 12D NZID|
(A.14)

C<X<1>,X(2>> —

where 70" = U?ZII[(’") form = 1,2, and | - | denotes the
cardinality of a set. The value of ¢ ranges from 0 to 0.5.
Intuitively, the greater the value of c is, the higher comple-
mentarity between two representations is.

In the presence of more than two visual representations,
we have to measure the complementarity between one and
the remaining representations instead of another single one
as treated in Eq. (A.14). Fortunately, we can extend the
measurement defined in Eq. (A.14) to this general scenario.
Without loss of generality, we define the complementarity
between representation X1 and a set of representations
S = {X(z), e, X(M)} as follows:

min (|I(1)|, |IZ~~»M|) —1ZM N 72 M
|ZD| 4 |Z2-M| — 7D N2 M|
(A.15)

c(xM,8) =

where [Z%M| = 2P UZ® ...uZM)| Thus, Eq. (A.15)
forms a generic complementarity measurement for multiple
visual representations.

@ Springer

C.2: Finding Complementary Visual Representations

Given a set of representations {X(l), X, ..., X(M)}, we
aim to select a subset of representations Sgejecreq Where the
complementarity between each element and another is as
high as possible. Assume we already have a set Sgejecred
containing m complementary representations, and a set
Scandidate containing M — m candidate representations, we
can decide which representation in Scangidare Should be
selected to join Ssejecreq DY using the complementarity mea-
surement defined in Eq. (A.15). In particular, we estimate
the complementarity between each candidate representation
and the set of all the representations in Ssejecred, and the one
of highest complementarity is selected. The selection pro-
cedure terminates when a pre-defined condition is satisfied.
For example, a pre-defined condition may be a maximum
number of representations to be allowed in Sgeecreq O @
threshold specified by a minimal value of complementarity
measurement. The complementary representation selection
procedure is summarized in Algorithm A.1.

Algorithm A.1 Finding Complementary Representations.

Input: Scandidate and Ssejecred = 0 .

Output: Sserecred-

Initialize: Compute the classification performance of each represen-
tation in Scundidare, and move the one with best performance from
Scandidate 1O Sselected -

1: while Termination condition is not satisfied do

2:  for Each candidate representation X" € Scandidate A0

3 Compute C(X(m)s Sselected)-

4: end for

5. Select the X", with highest ¢(X ™, Sserecred)-

6:  Move the X from Seandidate tO Sselected-

7: end while

C.3: Application in Zero-shot Human Action
Recognition

Here, we demonstrate the effectiveness of our proposed
approach to finding complementary visual representations
for zero-shot human action recognition. We apply Algo-
rithm A.1 to candidate visual representations ranging from
handcrafted to deep visual representations on UCF101 and
HMDB51. For the hand-crafted candidates, we choose the
state-of-the-art improved dense trajectory (IDT) based rep-
resentations. To distill the video-level representations, two
different encoding methods, bag-of-features and Fisher vec-
tor, are employed to generate four different descriptors, HOG,
HOF, MBHx and MBHy (Wang and Schmid 2013). Thus,
there are a total of eight different IDT-based local repre-
sentations. Besides, two global video-level representations,
GIST3D (Solmaz et al. 2013) and STLPC (Shao et al. 2014),
are also taken into account. For deep representations, we use
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the C3D (Tran et al. 2015) representation. Thus, all the 11
different visual representations constitute the candidate set,
Scandidate-

On UCF101 and HMDB51, we set the termination condi-
tion to be five visual representations at maximum in Ssejecred
in Algorithm A.1. Applying Algorithm A.1 to 11 candidate
representations on two datasets leads to the same Sejecred
consisting of C3D and four FV-based IDT representations.
To verify this measured result, we use our bidirectional latent
embedding framework working on incrementally added rep-
resentations with the same settings described in Sect. 4. As
illustrated in Figs. 4, 5 and 6, the performance of zero-shot
human action recognition achieved in 30 trials is constantly
improved as more and more selected representations are used,
which suggests those selected representations are indeed

Visual representation combinations on UCF101(51/50)

[ VBH
30| O HOGHHOFHMBHH e :
C—_1c3D

Il HOG+HOF+MBH+C3D

Zero-shot recognition accuracy(%)

Wwv WV+ST Att

Att+ST

Fig. 4 Resultsregarding the joint use of multiple visual representations
(mean and standard error) on UCF101 (51/50 split)

Visual representation combinations on UCF101(81/20)

I ViBH
] HOG+HOF+MBH
C_Jc3D
50 I HOG+HOF+MBH+CD, "+ e

Zero-shot recognition accuracy(%)

wv WV+ST Att

Att+ST

Fig. 5 Resultsregarding the joint use of multiple visual representations
(mean and standard error) on UCF101 (81/20 split)

Visual representation combinations on HMDB51

I viBH
C_JHOG+HOF+MBH
C_Jc3D

Zero-shot recognition accuracy(%)

wv WV+ST

Fig. 6 Resultsregarding the joint use of multiple visual representations
(mean and standard error) on HMDBS51

complementary. In particular, the combination of the deep
C3D representation and four IDT-based hand-crafted repre-
sentations yields the best performance that is significantly
better than that of using any single visual representations.

In conclusion, we anticipate that the technique presented
in this appendix would facilitate the use of multiple visual
representations in not only visual recognition but also other
pattern recognition applications.
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