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Abstract

In this paper, we extend the Hierarchical Mixtures of Experts (HME) to temporal processing
and explore it for a substantial problem, that of text-dependent speaker identification. For a
specific multiway classification, we propose a generalized Bernoulli density instead of the multi-
nomial logit density to avoid the instability during training. Time-delay technique is applied for
spatio-temporal processing in the HME and a combining scheme is presented for combining
multiple time-delay HMEs in order to complete multi-scale analysis for the temporal data. Us-
ing the time-delay HME along with the EM algorithm as well as the combination of multiple
time-delay HMEs, the speaker identification system has a good performance and yields signif-
icantly fast training. We have also addressed some issues about the time-delay techniques in
the HME.

1 Introduction

Speaker recognition is the process of automatically recognizing who is speaking on the basis of in-
dividual information included in speech waves. This technique will make it possible to verify the
identity of persons accessing systems, that is, access control by voice, in various services. These
services include banking transaction over a telephone network, telephone shopping, database ac-
cess services, information services, voice mail, security control for confidential information areas,
and remote access to computers [1]. From the viewpoint of technology, speaker recognition is a
general term which refers to any task to discriminate people based upon their voice characteris-
tics [2]. Within this general task description, there are two specific tasks that have been studied
extensively. These are referred to as speaker identification and speaker verification. The objective of
speaker identification is to determine which speaker is present based on the individual’s utterance,
whereas the speaker verification task is to verify the person’s claimed identity. Speaker identifi-
cation systems can be either text-dependent or text-independent. In this paper, only text-dependent
speaker identification is considered. By text-dependent, we mean that the text in both training and
testing is the same or is known. This is a different problem in comparison with text-independent
identification, where the text should be any text in either training or testing. Moreover, speaker
identification can be subdivided into two further categories, closed-set and open-set problems [3].
The closed set problem is to identify a speaker from a group of N known speakers. Alternatively,
one may want to decide whether the speaker of a test utterance belongs to a group of N known
speakers. This is called the open-set problem since the speaker to be identified may not be one of
the N known speakers. In this paper, the closed-set problem is simply considered. In general, the
technique of speaker identification includes feature extraction and classification. There have been
extensive studies in this field based upon conventional techniques of speech signal processing [4].
Employed as the classifier, recently, many kinds of neural networks have been adopted for speaker
recognition [5], such as MLP [6], neural tree [7] and a hybrid model [8] etc. Unfortunately, the sys-
tems based on neural networks often suffer from a high computational burden during training
and have only a limited improvement over conventional techniques in performance.
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There has recently been widespread interest in the use of multiple models for classification
and regression in the statistics and neural networks communities. The Hierarchical Mixtures of
Experts (HME) [9] is just a modular architecture in which the outputs of a number of modular
nets called ‘experts’, each mapping a particular portion of the input space, are combined in a
probabilistic way by ‘gating’ net which is modeling the probability that each portion of the input
space generated the output. The HME has been successful in a number of regression and some
classification problems [9]-[11], yielding significantly faster training through the use of the Expec-
tation Maximization (EM) algorithm. In addition, it is also applied successfully to the non-linear
prediction of acoustic vectors for speech processing [12]. In our previous work, we have already
applied HME along with EM algorithm to cope with the text-dependent speaker identification
[13]. In fact, many real-world applications require the processing of patterns that evolve over time
and speech processing is a typical case. However, all aforementioned applications of HME archi-
tecture simply consider patterns as static ones. For the current task of speaker identification, the
temporal characteristics of patterns play an important role in the final recognition results. Time-
Delay Neural Network (TDNN) architecture was originally designed for speech recognition [14]
and has strong abilities to spatio-temporal processing. Motivated by the TDNN architecture, in
the paper we introduce the time-delay concept to HME architecture. For the time-delay, a time
window with the fixed size should be chosen in advance [14]. In general, the larger window may
capture more temporal information, but it suffers from an expensive computational cost. Due to
the lack of understanding in features of speaker’s identity, moreover, it is rather hard for us to
choose an appropriate time window. This problem has already been encountered in our previous
work [15]. To handle the problem, in this paper, we propose a combining scheme in which multi-
ple time-delay HMEs with different short-term window sizes are combined under the framework
of Bayesian formalism, while this idea was originally adopted in combining multiple classifiers to
achieve the better performance of classification [16]. On the other hand, we also extend the HME
model to a specific multiway classification base on a proposed probability density called general-
ized Bernoulli density instead of multinomial logit density to improve the performance of the HME
and yield fast training. All aforementioned techniques have already been applied to the closed-set
text-dependent speaker identification.

The remainder of this paper is organized as follows. Section 2 reviews the HME architecture
with the use of EM algorithm and presents the generalized Bernoulli density. Section 3 introduces
the time-delay concept to the HME architecture and propose a method to combine multiple time-
delay HMEs. In section 4, an overview of the speaker identification system based the HME is
addressed. Experimental results and discussions are proposed in section 5 and section 6, respec-
tively. Conclusions are drawn in the final section.

2 Review of HME and Generalized Bernoulli Density

2.1 The HME Architecture

The HME is based on the principle of divide-and-conquer in which a large, hard to solve problem
is adaptively broken up into many, smaller, easier to solve problems. Unlike other systems with
‘hard’ decisions to partition the input space, the use of the gating net in the HME overcomes this
limitation and allows adjacent clusters in the input space to overlap. A typical HME architecture
is illustrated in Fig. 1. The architecture is a tree in which the gating nets sit at the nonterminals of
the tree. These nets receive the vector x as input and produce scalar outputs that are a partition
of unity at each point in the input space. The expert nets sit at the leaves of the tree. Each expert
produces an output vector for each input vector. These output vectors proceed up the tree, being
blended by the gating net outputs [9]. In Fig. 1, there are only two levels in the architecture with
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2-22. In general, it is easy to extend this architecture to multiple levels.
In the HME, we denote the output of expert net (i; j) as � ij , the ith output of the top-level gat-

ing net as gi and the jth output of the ith lower-level gating net as gjji, respectively. Accordingly,
expert net (i; j) produces an output as a generalized linear function, hereafter called link function
[17], of the input x: �ij = f(Wijx), whereWij is a weight matrix and f is a fixed continuous non-
linearity. Gating nets produce outputs of the input x based upon the softmax function3 as follows:

gi =
exp(vT

i
x)P

k
exp(vT

k
x)

and gjji =
exp(vTijx)P
k
exp(vT

ik
x)

where vi and vij are weight vectors, respectively. For the

two levels architecture, a probabilistic description of the HME is as follows

P (yjx; �) =
X
i

gi(x;vi)
X
j

gjji(x;vij)P (yjx; �ij) (1)

where �ij and � are free parameters in expert net (i; j) and the set of all free parameters in the
model, respectively. P (yjx; �ij) is the probabilistic component of the HME model and can be
generally modeled as a density in the exponential family [17] with the following form:

P (y; �; �) = expf
�y � b(�)

�
+ c(y; �)g (2)

where � is called the natural parameter and � is the dispersion parameter in Generalized Linear
Model (GLIM) [17]. Accordingly, the link function f(�) = b0(�) is known as the cononical link
and V ar(y) = b00(�)� is known as the variance function in the GLIM theory, respectively.

2.2 Expectation-Maximization (EM) Algorithm

The EM algorithm is a general technique for maximum likelihood estimation [20]. Assume that
Xobs denotes all observable data and a likelihood function based on the data is l(�;Xobs). An ap-
plication of the EM algorithm is to simplify the optimization of the likelihood function l(�;Xobs)
by introducing some additional unobservable data called missing data, Xmis, to the original data
in order to generate a new likelihood function lc(�;Xobs;Xmis). In this context, the original likeli-
hood, l(�;Xobs), is referred to as incomplete-data likelihood and the new likelihood, lc(�;Xobs;Xmis),
is referred to as complete-data likelihood. Obviously, the missing data is fictive and in fact unknown
so that the complete-data likelihood is a random variable. As a result, for maximum likelihood esti-
mation, the EM algorithm consists of two alternate steps, i.e. E-step and M-step, as follows,

E-step

Q(�; �(p)) = E[lc(�;Xobs;Xmis)jXobs]

where �(p) is the value of the parameters at the pth iteration and the expectation is taken with
respect to �(p). This step yields a deterministic function Q.

M-step

�(p+1) = argmax
�

Q(�; �(p))

This step maximizes the function with respect to � to find the new parameter estimates � (p+1). It
has already been shown that an iterative step of EM chooses a parameter value which increases

2This means that the HME consists of two modules of mixture-of-experts (ME) illustrated in the blocks in the Fig. 1
and there are two experts in each ME module.

3Some modified gating nets have already been presented and readers may be referred to the work [18][19].
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the value of Q, the expectation of the complete-data likelihood. Accordingly, an increase in Q implies
an increase in the incomplete-data likelihood [20]:

l(�(p+1);Xobs) � l(�(p);Xobs)

For training the HME, there are two methods [9], i.e. gradient-based and EM algorithms,
while the performance of the EM algorithm is usually much better than one of the gradient-based
algorithm [9]-[13][15][21]. Jordan and Jacobs have already applied the EM algorithm to the HME
architecture [9] by introducing indicator variables as missing data to the original observable data
for simplifying the original likelihood function only with the observable data. The indicators may
be explained as the labels that correspond to the decisions or specify the expert in the probability
model [9]. Therefore, if we simplify the notation in Eq.(1) as P (yjx; �) =

P
i gi
P

j gjjiPij(y), the
E-step of the EM algorithm by taking the expectation of the complete-data likelihood as follows:

Q(�; �(p)) =
X
t

X
i

X
j

hijfln g
(t)
i + ln g

(t)
jji + lnPij(y

(t))g (3)

where hi =
gi
P

j
gjjiPij(y)P

i
gi
P

j
gjjiPij(y)

, hjji =
gjjiPij(y)P
j
gjjiPij(y)

and hij = hi � hjji.

The M-step of the EM algorithm requires maximizing Q(�; �(p)) with respect to all parameters.
According to Eq.(3), thus, the M-step consists of the following separate maximization problems:

�
(p+1)
ij = argmax

�ij

X
t

h
(t)
ij lnPij(y

(t)) (4)

v
(p+1)
i = argmax

vi

X
t

X
k

h
(t)
k ln g

(t)
k (5)

and
v
(p+1)
ij = argmax

vij

X
t

X
k

h
(t)
k

X
l

h
(t)
ljk ln g

(t)
ljk (6)

Each of these maximization problems is itself a maximum likelihood problem. All of these optimal
problems belong to Iteratively Reweighted Least Squares(IRLS) problems. Since all components of the
HME architecture are based upon the GLIM theory which provides the basic statistic structure for
the HME, the likelihood is a product of densities from the exponential family of distributions.
It may be solved by using the Fisher scoring algorithm [17]. Using the Fisher scoring algorithm,
Jordan and Jacobs derive a particular iterative algorithm called IRLS algorithm for computing a
maximum likelihood estimate of the parameters of the HME.4. Here, we summarize the algorithm
as a general updated formula for IRLS problems as follows:

�r+1 = �r + �(XTUX)�1XTUe (7)

where � is the learning rate (0 < � � 1). �r is the value of the parameter � at the rth it-

eration in the M-step. U is a diagonal matrix whose diagonal elements are c(i)[f 0(�T x(i))]2

V ar(y(i))
and

e = [y
(1)�f(�T x(1))
f 0(�T x(1))

; ::: ;
y(N)�f(�T x(N))

f 0(�T x(N))
] if we assume (x(i);y(i)) is the ith observation data pair of

the training set with N samples and c(i) is an observation weight accordingly. As a result, we may
summarize the EM algorithm for the HME architecture as follows:

Algorithm: (Expectation-Maximization for the HME)

4For details, readers are referred to Appendix A in [9] for the complete derivation of the algorithm.
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1. E-step
For all data pairs f(x(t);y(t))gN1 , compute the posterior probabilities h(t)i and h

(t)
jji .

2. M-step

(a) For each expert (i; j), solve the IRLS problem in Eq.(4) using Eq.(7) with observations
f(x(t);y(t))gN1 and observation weights fh(t)ij g

N
1 , where h(t)ij = h

(t)
i h

(t)
jji .

(b) For each top-level gating network, solve the IRLS problem in Eq.(5) using Eq.(7) with
observations f(x(t); h(t)i )gN1 . And observation weights are fh(t)k gN1 .

(c) For each lower-level gating network, solve the weighted IRLS problem in Eq.(6) using
Eq.(7) with observations f(x(t); h(t)

jji)g
N
1 and observation weights fh(t)k gN1 , fh(t)

ljkg
N
1 .

In this algorithm, each complete update including both the E-step and the M-step. The training
is not completed until a pre-specified ‘stop’ condition is satisfied.

2.3 Generalized Bernoulli Density

Consider a special multiway classification problem in which the output is binary(yi 2 f0; 1g) with
a single non-zero component, we may define a generalized Bernoulli density as follows

P (y1; y2; :::; yK) =
KY
k=1

p
yk
k (1� pk)

1�yk (8)

We show the generalized Bernoulli density is also a member of the exponential family as follows,

P (y1; y2; :::; yK) = expfln
KY
k=1

p
yk
k (1� pk)

1�ykg

= expf
KX
k=1

ln(pykk (1� pk)
1�yk)g

= expf
KX
k=1

(yk ln pk + (1� yk) ln(1� pk))g

= expf
KX
k=1

yk ln
pk

1� pk
+

KX
k=1

ln(1� pk)g (9)

Accordingly, we may also derive its link and variance functions [17] from Eq.(2) and Eq.(4) as
f(t) = 1

1+exp(�t) and V ar(t) = f(t)(1� f(t)).
For a general multiway classification, the multinomial logit density has already been chosen in

the original HME model [9]. From the viewpoint of neural computing, when both the multinomial
logit density and the generalized Bernoulli density are used as the probabilistic model of an expert net,
the difference between them lies in that they define different activation functions for the expert net.
Accordingly, the activation function of each output neuron of the expert net is the sigmoid function
if the generalized Bernoulli density is employed, while the activation function of each output neuron
of the expert net is the softmax function if the multinomial logit density is employed. Obviously, the
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aforementioned specific multiway classification definition provides a very convenient represen-
tation for an identification problem. For such a multiway classification, unfortunately, the HME
with the multinomial logit density suffers from instability during training in our experiments so that
the training procedure either takes quite a long time or often cannot reach a steady state proba-
bly due to the exponential operation and accumulated errors in the numerical calculations. As a
result, we adopt the proposed generalize Bernoulli density as the probabilistic model of expert nets
for speaker identification.

3 Time-Delay HMEs And Their Combination

In this section, we shall introduce the time-delay concept to the HME and propose a combining
scheme for integrating multiple time-delay HMEs with different time windows to complete multi-
scale analysis for the temporal data.

3.1 Time-Delay in The HME Architecture

he basic principle of spatio-temporal processing with time-delay is to make the decision of the
neural network at time t based on the inputs at time (t� n); (t� n+1); � � � ; t. This way, a well de-
fined history of the temporal sequence is considered. For the use of time-delay techniques, a fixed
size window, hereafter called input-window, is first chosen for catching the temporal features from
the input patterns over time. The primary goal is to design an architecture that provides non-linear
classification invariant under translation in time. This can be realized by sliding the input-window
along the temporal input patterns. For speech processing, the temporal input patterns are some
successive frames of acoustic data corresponding to an utterance after preprocessing. In this pa-
per, we introduce this technique to HME architecture and Fig. 2 illustrates the input of component
nets, i.e. gating and expert nets, in the time-delay HME architecture. For an utterance, after prepro-
cessing and feature extraction, it can be denoted as x = ff (1); � � � ; f (T )g where f (t) is the frame at
time t. If the time-delay processing occurs at time t, the new feature vector x(n)

t will be composed
of n + 1 successive feature vectors f (t); f (t�1); � � � ; f (t�n) subject to x(n)t = ff (t); f (t�1); � � � ; f (t�n)g
instead of the previous feature vector f (t) if we choose the input-window size as n.

It is worth pointing out that the time-delay used in the HME is slightly different from the
original one in the time-delay neural network (TDNN) architecture [14] due to the different archi-
tectures. For the TDNN architecture, it employs a multilayer perceptron structure. Accordingly,
the time-delay processing occurs between any two adjacent layers. For the HME, each component
net can be modeled as a specific probability density belonging to the exponential family based
upon GLIM theory [9][17]. Thus, it results in that each component net is simply a net without any
hidden layer and the activation function of a neuron in the output layer is uniquely determined
by the link function corresponding to the specific probability density. In addition, the HME is a
modular neural network and the time-delay processing merely occurs between input and output
layers of each component net in the HME.

3.2 The Scheme of Combining Multiple Time-Delay HMEs

For the time-delay HME architecture, there is a problem of the input-window size to be open for
solution. As mentioned above, an input window must be chosen in advance for the time-delay
processing. In general, the larger window may capture more temporal information, but it suffers
from an expensive computational cost. The problem involves in a dilemma on the window size
and the computational cost. Actually, it is also quite hard for us to determine which one is more
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efficient for two short input-windows, such as n = 1 and n = 2. In fact, the efficiency of a short
time window strongly depends upon the intrinsic statistical characteristics of the processed tem-
poral input data. Usually, the knowledge of the intrinsic statistical characteristics is also hard to be
available. In particular, the exact understanding of dependence among several successive frames
for identifying a speaker is still not available. Here, we propose a method to attack the the afore-
mentioned dilemma. The basic idea is as follows, first, we choose several short input-windows.
Then we train several time-delay HMEs with these chosen different input-windows, respectively.
After finishing the training, indeed, we may achieve several results with these trained time-delay
HMEs for a given test pattern during test. Using an elaborate combining scheme, we can draw
the integrated result based upon individual results. This idea has already been extensively used
in combining multiple classifiers to improve the performance of individual classifiers for the de-
velopment of highly reliable character recognition systems [16][22]-[25]. Here, we adopt the com-
bining scheme in Bayesian formalism proposed in [16] to combine multiple time-delay HMEs
with different short time windows. Fig. 3 illustrates such a scheme in which n + 1 time-delay
HMEs(n > 0), labeled as TD-HME[i] (i = 0; 1; � � � ; n), are combined. Here, TD-HME[i] represents
the time-delay HME which uses an input-window with the size of i for temporal processing. In
particular, TD-HME[0] denotes the HME without time-delay when i = 0.

In the sequel, we describe a combining scheme based upon the Bayesian formalism for combin-
ing multiple time-delay HMEs. This scheme was originally proposed for combining multiple clas-
sifiers with the static input [16]. Here, we extend it to sequence processing. In the context of com-
bining multiple classifiers, all combined classifiers must be used on the same static input [16]. For
sequence processing, here, we have to relax the condition so that all combined time-delay HMEs
can be used on the different inputs which belong to the same sequence (utterance). For the purpose
of combining different time-delay HMEs, we stipulate that ff (t)g; ff (t); f (t�1)g; � � � ; ff (t); � � � ; f (t�n)g
are valid inputs at time t if f (t�i) denotes the speech frame of an utterance x at time t�i and all out-
puts of time-delay HMEs based upon these inputs are permitted to be combined. Based upon this
extension with respect to inputs, time-delay HMEs with different input-windows may be viewed
as several different classifiers.

For the convenience to description, we relabel TD-HME[k] as CLk which is still referred to as
the time-delay HME which uses an input-window with the size of k. For the purpose of combi-
nation, it is necessary to acquire some prior knowledge about all combined time-delay HMEs. It
leads us to take errors of all time-delay HMEs into consideration. Given a pattern space C con-
sisting of N mutually exclusive sets C = C1

S
� � �
S
CN with each of Ci;8i 2 � = f1; 2; � � � ; Ng

representing a set of specified patterns called a class (e.g. the population of speakers in the prob-
lem of speaker identification). The errors of each combined time-delay HME CLk are usually
described by its confusion matrix [16] as follows,

PTk =

2
66664

n
(k)
11 n

(k)
12 : : : n

(k)
1N

n
(k)
21 n

(k)
22 : : : n

(k)
2N

. . . . . . . . . . . . . . . . . . . . .
n
(k)
N1 n

(k)
N2 : : : n

(k)
NN

3
77775

(10)

for k = 0; 1; � � � ;K � 1 if there are K time-delay HMEs to be combined; where each row i cor-
responds to class i and each column j corresponds to the event CLk(x

(k)
t ) = j where x(k)t is a

time-delay feature vector at time t for the time-delay HME CLk. All confusion matrices can be de-
rived from outputs that each combined time-delay HME works on a subset of its test data. For an
event CLk(x

(k)
t ) = j of an error-bearing time-delay HME CLk, its truth has uncertainty. With the

knowledge of its confusion matrix PTk, such an uncertainty could be described by the conditional
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probabilities that propositions x(k)t 2 Ci(i = 1; � � � ; N ) are true under the occurrence of the e vent
CLk(x

(k)
t ) = j, that is,

P (x
(k)
t 2 CijCLk(x

(k)
t ) = j) =

n
(k)
ijPN

i=1 n
(k)
ij

; i = 1; � � � ; N: (11)

By means of the conditional probabilities, we may define a belief value bel(�). For each of N mutu-
ally exclusive propositions x(k)t 2 Ci;8i 2 �, the higher the bel(�) which gives to a proposition, the
more likely it is true. Such a bel(�) is defined as follows,

bel(x
(k)
t 2 CijCLk(x

(k)
t ); EN) = P (x

(k)
t �nCijCLk(x

(k)
t ) = jk); i = 1; � � � ; N: (12)

That is, bel(�) is defined as the probability under the condition of CLk(x
(k)
t ) = jk and the envi-

ronment EN where EN means the common classification environment that consists of any event
which is independent of any of events CLk(x

(k)
t ) = jk at time t, k = 1; � � � ;K . For instance,

the environment at least contains the occurrence of a specific input pattern x(k)t at time t for the
time-delay HME CLk.

With K time-delay HMEs,5 CL0; CL1; � � � ; CLK�1, there are K matrices PK0; � � � ; PKK�1.
When these time-delay HMEs are used on the valid inputs, K events CLk(x

(k)
t ) = jk; (k =

0; 1; � � � ;K � 1) will occur at time t. As discussed previously, each CLk(x
(k)) = jk and its cor-

responding PTk could supply a set of bel(x(k)t 2 CijCLk(x
(k)
t ); EN); i = 1; � � � ; N , each of which

supports one of the N propositions. Next, the task is to integrate these individual supports to give
the combined belief values. For an utterance x, at time t, we define the combined belief values as
follows,

bel(i) = bel(x 2 CijCL0(x
(0)
t ); � � � ; CLK�1(x

(K�1)
t ); EN)

= P (x 2 CijCL0(x
(0)
t ) = j0; � � � ; CLK�1(x

(K�1)
t ) = jK�1; EN); i = 1; � � � ; N: (13)

where x(k)t = ff (t); � � � ; f (t�k)g is the time-de lay feature vector consisting of k+1 successive frames
from time t � k to time t. Since time-delay HMEs CL0; CL1; � � � ; CLK�1 perform independent of
each other, the events CL0(x

(0)
t ) = j0; � � � ; CLK�1(x

(K�1)
t ) = jK�1 are independent of each other

either under the condition of x(k)t 2 Ci as well as EN or the condition of merely EN . For an
utterance x, according to the Bayesian formula, we have

bel(i) = P (x 2 CijCL0(x
(0)
t ) = j0; � � � ; CLK�1(x

(K�1)
t ) = jK�1; EN)

=
P (CL0(x

(0)
t ) = j0; � � � ; CLK�1(x

(K�1)
t ) = jK�1jx 2 Ci; EN)P (x 2 CijEN)

P (CL0(x
(0)
t ) = j0; � � � ; CLK�1(x

(K�1)
t ) = jK�1jEN)

=

QK�1
k=0 P (CLk(x

(k)
t ) = jkjx 2 Ci; EN)P (x 2 CijEN)

QK�1
k=0 P (CLk(x

(k)
t ) = jkjEN)

= P (x 2 CijEN)

QK�1
k=0 P (x 2 CijCLk(x

(k)
t ) = jk)QK�1

k=0 P (x 2 CijEN)
(14)

5Here, the original HME is regarded as the time-delay HME in which the size of input-window is 0.
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Since
P (CLk(x

(k)
t ) = jkjx 2 Ci; EN)

P (CLk(x
(k)
t ) = jkjEN)

=
P (x 2 CijCLk(x

(k)
t ) = jk)

P (x 2 CijEN)
(15)

where P (x 2 CijCLk(x
(k)
t ) = jk) could be estimated by Eq.(11) and P (x 2 CijEN) represents the

probability that x 2 Ci is true under occurrence of x and the common environment. Although
there may exist a better estimation of P (x 2 CijEN), here, we still follow the original estimation
in [16] so that we may achieve the integrated belief values as follows,

bel(i) = �

K�1Y
k=0

P (x 2 CijCLk(x
(k)
t ) = jk) (16)

where � = [
PN

i=1

QK�1
k=0 P (x 2 CijCLk(x

(k)
t ) = jk)]

�1. Based upon these integrated belief values,
we may classify an unknown utterance x into a class s 2 � at time t according to the decision rule
as follows,

CL(x) = s; if bel(s) = max
i2�

bel(i) (17)

It is necessary to note that for an utterance x = ff (1); � � � ; f (T )g, the different numbers of time-
delay feature vectors on x will be achieved if we choose different input-windows for time delay.
That is, the time-delay feature vector cannot be available when time t is shorter the size of the
chosen input-window. For the x, only T � n feature vectors will be available if the size of time
window is n(n � 0). Accordingly, T � n results are merely produced with the TD-HME[n]. For
the purpose of combination, we shall have to add the same result(s) for the TD-HME[n] through
averaging n previous T � n results. The new added result(s) will be used as output(s) of the TD-
HME[n] when time t < n. Using this trick, the current combination of time-delay HMEs is as
same as the one of multiple classifiers in [16][22-25].

4 System Overview

We have already developed a closed-set text-dependent speaker identification system based upon
the time-delay HME (TD-HME) architecture in Sun Sparc II workstation. The scheme of the sys-
tem is illustrated in Fig. 4.

The preprocessing of the acoustic data consists of several steps. First, an utterance is sampled
with 11.025 KHz sampling frequency and 16 bits digitization. Then it is processed by a silence-
removing algorithm followed by the application of a pre-emphasis fileter H(z) = 1 � 0:95z�1. In
the current system, we adopt the linear predictive coding (LPC) power spectrum. With respect to
speaker features used for training neural networks, there were an investigation and a comparison
among several common LPC-based features [26], such as power spectrum, cepstral coefficient and
autocorrelation coefficient etc. The experiment shows that the LPC power spectrum has the best
performance for text-dependent speaker identification. In the phase of feature extraction, the
processed acoustic data is segmented with 25.6 ms per frame and there is 12.8 ms overlapping
between two successive frames. A 16th-order linear predictive analysis is first performed for
each speech frame, then LPC power spectrum is computed with a 256 points FFT for each frame.
Moreover, a critical bandwidth filter is employed for processing the LPC power spectrum further
[26], which is considered as a simulation of the processing mechanism in the human peripheral
auditory system. For this purpose, the power spectrum is divided from low frequency to high
one (0 � 5:512 KHz) into 24 channels. In each channel, the energy is accumulated and denoted as
Ei (i = 1; 2; :::; 24). For simulating the firing of inner hair cells, an entropy is defined over each
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channel for producing a 24-order feature vector I = (I1; I2; � � � ; I24) for each frame where

Ii = �Pi logPi and Pi =
EiP24

j=1
Ej

; i = 1; 2; :::24:

Using feature vectors of the acoustic data, we can train the time-delay HME with the EM algorithm
in the supervised manner for classification so that the speaker identity can be achieved.

For an utterance, we can create a set of 24-order features after preprocessing and feature ex-
traction. For a supervised task, training patterns include input feature vectors and their corre-
sponding target vectors. Here, we adopt an encoding scheme to form a target vector as follows.
For class i, only the ith component of a target vector is one and other components are zero. So
feature vectors and their corresponding target vectors are lumped together to form training pairs.
In the current system, we choose 10 isolated digits from ‘0’ to ‘9’ as the fixed text. Depending
upon the fixed text, 10 time-delay HMEs or combination of time-delay HMEs are established so
that 10 classifiers correspond to 10 digits from ‘0’ to ‘9’ respectively. The EM algorithm in section
2 is used for training these classifiers. Furthermore, using the combining scheme, the system may
produce the integrated result if there are multiple time-delay HMEs. During test, for an unknown
utterance, the system may produce several results. Using the principle of majority, the system can
decide who is the speaker.

5 Experiments

In this section, we shall describe the database and experimental results relevant to the compar-
ison between the proposed generalized Bernoulli density and multinomial logit density for multiway
classification, the individual time-delay HME and combination of multiple time-delay HMEs in
detail.

5.1 Database and Results on Multiway Classification

We have created an acoustic database for the experiments of speaker identification. The database
consists of 10 isolated digits from ’0’ to ’9’ uttered in Chinese and 10 male speakers are registered
currently. For training and evaluating the performance of the system, we record the utterances
at three different sessions, in which each digit is uttered 6 times in the first session and 10 times
in the additional two sessions. There is an interval of one month between any two successive
sessions. As a result, all utterances are divided naturally into three sets chronologically. The first
set consists of some utterances recorded in the first session which are the first 5 times of utterances
of each digit as the training set called Set-1. Other two sets are composed of all utterances recorded
in the second and the third sessions; these as test sets are called Set-2 and Set-3 respectively. After
preprocessing and feature extraction, we achieve three sets consisting of 24-order features. TABLE
I lists the number of feature vectors in all three sets.

TABLE I
The number of feature vectors in training and test sets

Text ’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’
Set-1 1162 1163 1159 1125 1141 1174 1204 1173 1171 1198
Set-2 2399 2379 2335 2215 2164 2424 2403 2261 2318 2408
Set-3 2204 2175 2210 2149 2192 2348 2270 2148 2194 2298

We have already applied both the proposed generalized Bernoulli density (GBD) and multinomial
logit density (MLD) to the HME without time delay in speaker identification in order to compare
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them for the multiway classification. An HME with the 2-8 structure has been chosen and the GBD
and the MLD are employed to model the probabilistic description of expert nets for multiway
classification, respectively. Here, we define an epoch as the one consisting of E-step and M-step
in the EM algorithm. Thus, the training time with the GBD and the MLD is shown in TABLE II.
Using the trained HME with the GBD and the MLD, we may test data in Set-2 and Set-3 and the
tests on Set-2 and Set-3 are hereafter called Test-1 and Test-2. In order to evaluate the performance
of the system, we use a way called digit-based method to test the system. In this method, we simply
use the utterance of single digit to determine the speaker’s identity. The identifying accuracies of
the HMEs with the GBD and the MLD are shown in TABLE III. According to TABLE II and TABLE
III, obviously, the HME with the GBD yields faster training than the one with the MLD, though
their identifying accuracies are quite similar. Actually, in our other experiments, the HME with
the MLD often suffers from the instability so that it cannot reach a steady state.

TABLE II
The training time of the HME with the GBD and the MLD

Text ’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’ mean
Epoches (GBD) 4 3 5 4 4 3 3 4 5 3 3.8

Time(min) (GBD) 16 12 20 16 16 12 12 16 20 12 15.2
Epochs (MLD) 5 4 5 5 6 4 4 5 6 4 4.8

Time(min) (MLD) 20 16 20 20 24 16 16 20 24 16 19.2

TABLE III
The identifying accuracies of the HME with the GBD and the MLD

Text ’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’ mean
Test-1 (GBD) 91 96 87 86 83 90 85 89 86 91 88.4
Test-2 (GBD) 89 95 88 85 80 90 84 91 82 90 87.4
Test-1 (MLD) 90 95 89 85 84 89 86 87 86 90 88.1
Test-2 (MLD) 89 93 89 84 82 91 83 92 81 88 87.2

5.2 Results Using Individual Time-Delay HME

Like the problem appearing in the multilayer perception, there is also a pre-determined archi-
tecture problem before training for the HME. For solving this problem, we employ the 2-fold
cross-validation method to remedy it. In the stage, we first divide the training set into two subsets;
one for training and the other for test. Using this method, we have investigated 7 architectures
covering from one level to three levels. Using a time-delay HME architecture, TD-HME[2], in
which the size of input-window is 2(n = 2) for instance, we show the results in TABLE IV.

TABLE IV
The results of cross-validation for the TD-HME[2]

Architecture 1-16 2-2 2-8 2-16 2-2-8 2-4-8 2-4-16
Epoches 11 21 4 5 5 5 6

Time(min) 48 82 23 38 54 69 92
Identifying Accuracy(%) 97.0 96.0 99.0 96.0 98.0 98.0 98.0

According to the performance and training time, finally, we choose the two levels HME with
2-8 as the classifier. Using such an architecture, usually, 4 or 5 epoches are merely needed to
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reach the steady state for a given error threshold. The mean-square-error threshold is 0.05 and the
learning rate � is 0:4 in Eq.(9) in all our experiments.

In experiments, we have already applied three different time-delay HMEs, i.e. TD-HME[1],
TD-HME[2] and TD-HME[3], to the problem of speaker identification. In order to evaluate the
performance of the system, we also adopt the digit-based method to test the system. The experi-
mental results are summarized in TABLE V and TABLE VI, respectively.

TABLE V
The identifying accuracies of three time-delay HMEs in Test-1

Text ’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’ mean
TD-HME[1] 92.0 96.0 89.0 88.0 84.0 91.0 90.0 88.0 85.0 92.0 89.5
TD-HME[2] 91.0 95.0 91.0 85.0 86.0 88.0 93.0 93.0 85.0 92.0 89.9
TD-HME[3] 90.0 97.0 87.0 85.0 86.0 87.0 88.0 92.0 86.0 95.0 89.3

TABLE VI
The identifying accuracies of three time-delay HMEs in Test-2

Text ’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’ mean
TD-HME[1] 87.0 95.0 91.0 84.0 82.0 88.0 87.0 88.0 86.0 89.0 87.7
TD-HME[2] 89.0 95.0 88.0 86.0 85.0 92.0 86.0 87.0 87.0 89.0 88.4
TD-HME[3] 90.0 95.0 92.0 87.0 85.0 87.0 85.0 91.0 84.0 92.0 88.8

According to the above experimental results in TABLE II, TABLE V and TABLE VI, we may
make a conclusion that the performance of time-delay HMEs is really better than one of the HME
without time-delay, but the improvement is limited. Furthermore, the use of different time-delay
HMEs with a short input-window for speaker identification does not bring about the quite differ-
ent performance of the system. Since the voice of a speaker changes over time, usually the longer
the time interval between training and test is, the more difficult it is for the system to identify
the speaker. With the consideration, based on the above experimental results in TABLE VI, we
may draw an outcome that the longer input-window seems to be better in capturing a speaker’s
individual features. However, the computational cost is quite expensive; in comparison with the
TD-HME[1], the training time of the TD-HME[3] is about twice as much as one of TD-HME[1] for
the same problem.

We also adopt another method called sequence-based method to test the systems supported by
time-delay HMEs in order to investigate the robustness of these systems. In this method, we first
produce a sequence consisting of 5 digits at random (it may be viewed as a password.), then ask
a speaker to utter digits in the sequence one by one. For each digit in the sequence, there is an
identified result by using the aforementioned digit-based method. After obtaining all results, the
system tolls a vote with the principle of majority that a speaker can be identified only if there are at
least three same identification results for the speaker; otherwise, the system refuses to identify the
unknown speaker. Using the method, all systems with TD-HME[1], TD-HME[2] and TD-HME[3]
are robust with 100% identification accuracies over 2000 tests up to now.

5.3 Results by Combining Time-Delay HMEs

The experimental results on an individual time-delay HME with the short input-window indicate
that it is difficult to find an appropriate size of the short input-window for the time-delay HME
in order to achieve significant improvement in performance. On the other hand, the use of a long
input-window for the time-delay HME will suffer from a very high computational burden. To at-
tack these problems, in section 3.2, we have described a scheme of combining multiple time-delay
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HMEs with different input-windows. In this method, first of all, we must acquire the prior knowl-
edge about all combined time-delay HMEs through achieving their confusion matrices in Eq.(10).
As a result, we employ the sixth time utterances of each digit recorded in the first session and the
first four times utterances of each digit recorded in the second session as a data set to derive all
confusion matrices. In our current experiments, we consider combining the HME without time
delay, TD-HME[0], and the aforementioned three time-delay HMEs, i.e. TD-HME[1], TD-HME[2]
and TD-HME[3]. Applying these trained HMEs on the aforementioned data set, we may achieve
four confusion matrices corresponding to TD-HME[0], TD-HME[1], TD-HME[2] and TD-HME[3],
respectively. During test, we complete three tests, i.e. Test-1, Test-2 and Test-1A. Test-1A refers
to that the test data set consists of all data in Set-2 except those four times utterances of each
digit used to achieve confusion matrices. Based upon confusion matrices and the decision rule
described in Eq.(17) accordingly, the digit-based results of combining these time-delay HMEs for
speaker identification are shown in TABLE VII.

TABLE VII
The identifying accuracies of combining time-delay HMEs.

Text ’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’ mean
Test-1 95.0 98.0 94.0 92.0 90.0 93.0 95.0 97.0 91.0 97.0 94.2
Test-2 91.0 96.0 92.0 88.0 87.0 93.0 87.0 94.0 88.0 93.0 90.9

Test-1A 93.0 97.0 92.0 89.0 90.0 91.0 95.0 95.0 90.0 95.0 92.7

In comparison with results shown in TABLE V and TABLE VI, the performance of the system
using the combination of time-delay HMEs has been significantly improved. Furthermore, the
sequence-based method has also been used for test and the identifying accuracies are still 100%
over 2000 tests.

6 Discussions

In this section, we intend to discuss some problems about the HME and the time-delay in the
HME.

For solving the IRLS problem, we have introduced a changeable learning rate to the updated
formula in Eq.(7) instead of that the value is always one in the previous formula [9]. As a result,
the modified updated formula may alleviate the instability and accelerate training during train-
ing. In addition, we have also proposed the generalized Bernoulli density for the specific multiway
classification instead of the multinomial logit density. Indeed, the Bernoulli density can also be used
for the multiway classification if we consider the multiway classification as N two-category clas-
sifications for N classes. Unfortunately, it will suffer from the trouble of time-consuming. For in-
stance, the current task will need 100 HMEs with the Bernoulli density since there are 10 speakers
registered in the system and 10 digits as the fixed text for text-dependent speaker identification.
But the model with the generalized Bernoulli density avoids the problem successfully by using
the appropriate architecture for the multiway classification and keeping the characteristics of the
Bernoulli density. In addition, the model with the generalized Bernoulli density is more efficient
than the one with the multinomial logit density since it keeps the same architecture as the one
with the multinomial logit density but uses a more appropriate distributing density to model the
specific multiway classification problem.

We have introduced the time delay concept to the HME architecture. In order to attack the
dilemma on the size of input-window for time-delay and the computational cost, moreover, we
use the trick of combining multiple classifiers to the combination of multiple time-delay HMEs.

13



As mentioned in section 3.1, currently, all component nets in the HME are two-layer architectures
without any hidden layer. The reason is that such architectures of component nets in HME are
based upon the GLIM theory which provides the basic statistical structure for the components of
the HME. There seems to be another way to capture more temporal information in the HME if we
do not employ the GLIM theory to model the basic statistical structure of expert nets in the HME.
Instead we model the probabilistic description of expert net (i; j) in the HME as

P (yjx; �ij) = exp[�(y � �ij)
T (y � �ij)] (18)

where y is chosen from the probability density Pij(yjx; �ij) and �ij is all free parameters in the
probability model. Unlike the one in the GLIM theory, �ij is the mean of ywhich may be achieved
using any probability approximator instead of the one in the exponential family. It is well known
that a neural network can be viewed as a probability approximator [27]-[31]. Thus, we may use
a classic time-delay neural network with at least one hidden layer [14] or an adaptive time-delay
neural network [32] as expert nets in the HME. Hence, the EM algorithm is still employed to deal
with the problem of parameter estimation in the HME. There is no change in the E-step and the
optimization of gating net(s) in the M-step. The unique change is in the optimization of expert
nets in the M-step. As a result, this problem becomes general unconstrained optimization due to
h
(t)
ij � 0 as follows,

�
(p+1)
ij = argmax

ij

X
t

h
(t)
ij lnP (yjx; �ij)

= argmax
ij

X
t

h
(t)
ij [�(y(t) � �

(t)
ij )

T (y(t) � �
(t)
ij )]

= argmin
ij

X
t

h
(t)
ij [(y

(t) � �
(t)
ij )

T (y(t) � �
(t)
ij )] (19)

Instead of the IRLS algorithm, thus, there are many optimization algorithms for the problem such
as the gradient-based method and Newton method etc. [33]. For the model, moreover, we shall
adopt smooth delay functions over time instead of the current rectangular hat-shaped function for
improving the performance of time-delay [34]-[38].

7 Conclusions

We have described the application of the time-delay HME with EM algorithm to speaker identi-
fication based on the proposed generalized Bernoulli density. It has been shown that the speaker
identification system based on the time-delay HME can achieve the satisfactory performance.
Moreover, we introduce a combining scheme to attack the dilemma on the size of input-window
and the computational cost by completing multi-scale analysis for the temporal data. Its useful-
ness has been demonstrated in experiments. The merit of fast training of the HME along with the
EM algorithm has also been verified in our experiments. Our near-future work is to develop a
time-delay HME with stronger capabilities of temporal processing using the method discussed in
this paper. In addition, the direction of our future work also includes developing the HME with
self-architecture to attack the problem of pre-determined structure.
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