International Journal of Neural Systems, Vol. 9, No. 6 (December, 1999) 563-581

(© World Scientific Publishing Company

A MODULAR NEURAL NETWORK ARCHITECTURE FOR
PATTERN CLASSIFICATION BASED ON
DIFFERENT FEATURE SETS

KE CHEN* and HUISHENG CHI
National Laboratory of Machine Perception and Center for Information Science,
Peking University, Beijing 100871, China

Received 25 April 1996
Revised 30 July 1997
Accepted 20 March 1999

We propose a novel connectionist method for the use of different feature sets in pattern classification.
Unlike traditional methods, e.g., combination of multiple classifiers and use of a composite feature set, our
method copes with the problem based on an idea of soft competition on different feature sets developed
in our earlier work. An alternative modular neural network architecture is proposed to provide a more

effective implementation of soft competition on different feature sets.

The proposed architecture is

interpreted as a generalized finite mixture model and, therefore, parameter estimation is treated as a
maximum likelihood problem. An EM algorithm is derived for parameter estimation and, moreover, a
model selection method is proposed to fit the proposed architecture to a specific problem. Comparative
results are presented for the real world problem of speaker identification.

1. Introduction

The problem of pattern classification can be stated
as follows: Given a set of training data D, each
with an associated label y, find a classification sys-
tem that will produce the correct label y for any
data D drawn from the same source as the training
data. In general, a typical pattern classification sys-
tem, as depicted in Fig. 1(a), is composed of three
stages: preprocessing, feature extraction, and classi-
fication. For real world problems, both preprocessing
and feature extraction are necessary prior to training
of a classification system in order to avoid the curse
of dimensionality.!! Therefore, the performance of a
classification system highly depends upon a feature
set used. For a complicated pattern classification
task, there are often a number of methods available
for feature extraction. By these methods, a raw data
set is represented by several different feature sets,
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which leads to a problem how to utilize those fea-
ture sets for classification. To our knowledge, there
are two frameworks to tackle the problem; one is the
use of feature selection to achieve an optimal feature
set, and the other is the joint use of different feature
sets. If an optimal feature set can be achieved for a
raw data set, we would merely use it to train a clas-
sification system, as shown in Fig. 1(a).
such an optimal set is not achieved often. In this cir-
cumstance, the individual use of different feature sets
leads to similar performance in classification and, as
depicted in Fig. 1(b), the joint use of different feature
sets results in better performance or a robust effect.
In the real world, there are many such instances, such
as speaker recognition!?:15:23:26 and hand-written op-
tical character recognition (OCR)"31:32 etc. In this
paper, we call such a kind of pattern classification
tasks pattern classification based on different feature
sets.

However,
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Fig. 1. Typical pattern classification systems. (a) A system based on one feature set. (b) A system based on different

feature sets.

There have been two traditional methods to si-
multaneously use different feature sets for classifica-
tion; i.e., use of a composite feature set and com-
bination of multiple classifiers trained on different
feature sets. In a composite feature set, a com-
posite feature vector is generated by lumping sev-
The basic

idea behind the use of a composite feature set is to

eral different feature vectors together.

consider an integration of different feature sets as
a single feature set that can represent a raw data
better than one of components. Although the use
of a composite feature set may improve performance
of classification, the following problems are unavoid-
able: (a) Curse of dimensionality; the dimension of
a composite feature vector may be much higher than
any of component feature vectors. (b) Difficulty in
formation; it may be difficult to lump several differ-
ent feature vectors together due to their diversified
forms. (c) Redundancy; the component feature vec-
tors may not be independent of each other. Due to
the aforementioned problems, the use of a compos-
ite feature set does not result in significant improve-
ments. On the other hand, there have been extensive
studies on classification by combining multiple classi-

fiers trained on different feature sets.5.16:21,24,31,32

The basic idea underlying these methods is some-
how to learn from outputs of the multiple classifiers
trained on different feature sets. Basically most of
those methods are viewed as applications of a gen-
eral approach called stacked generalization outlined
by Wolpert.2® Consequently, the learning of a pat-
tern classification task consists of two phases; each
classifier is first trained on a training set, and then a
combination scheme is trained on a cross-validation
set. Recent studies show that combination of multi-
ple classifiers trained on different feature sets results
in the significantly improved performance. However,
a sufficiently large data set is usually demanded for
that two-stage learning. In addition, combination of
multiple classifiers is also viewed as a specific hybrid
multi-modular architecture for pattern classification.
Due to the use of sequential training, such a hybrid
multi-modular architecture works in a sub-optimal
style.!?

We have proposed an alternative method that si-
multaneously utilizes different feature sets for pat-
tern classification.>* The basic idea underlying the
method is a soft competition scheme for the op-
timal use of different feature sets. A critical is-
sue in the alternative method is how to provide an
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effective implementation of the soft competition
scheme. Previously, we proposed a modular neu-
ral network architecture,® which is an extension
of the mixture-of-expert (ME) model.!” Although
it outperforms two traditional methods, the global
soft competition among subnetworks results in un-
expected performance; subnetworks trained on dif-
ferent feature sets may not utilize the information
from the same feature set sufficiently. In addition,
model selection is an open problem for that modular
neural network architecture.® In this paper, we pro-
pose an alternative connectionist implementation for
the soft competition scheme. The proposed imple-
mentation is a modular neural network architecture,
which can be regarded as a generalized mixture-of-
expert (GME) model. Unlike the mixture-of-expert
architecture,!” a gate-bank consists of several gat-
ing networks trained on different feature sets, while
multiple expert-banks are trained on different feature
sets and each expert-bank consists of multiple expert
networks trained on the same feature set. In our ar-
chitecture, there are three soft competition schemes;
gating networks based on different feature sets com-
pete for the right to stochastically select an appropri-
ate expert-bank as the winner, expert-banks based
on different feature sets compete for the right to
produce an output, and in each expert-bank expert
networks compete for the right to learn the training
data in terms of a single feature set. The proposed
architecture can be interpreted as a generalized fi-
nite mixture model from the viewpoint of statistics.
Therefore, learning in this architecture is treated as
a maximum likelihood problem and an EM algo-
rithm is derived for adjusting the parameters in our

architecture. Motivated by recent work,!®?3°

more-
over, we propose a model selection method by means
of the maximal likelihood and the cross-validation
principles to determine an appropriate structure of
the GME classifier along with learning for a specific
problem. In order to evaluate the proposed archi-
tecture, we have applied our architecture to a real
world problem, speaker identification, in which dif-
ferent feature sets usually need to be jointly used for
robustness. Simulation results have demonstrated
that the proposed architecture along with the EM
algorithm yields satisfactory results and fast training
and, moreover, the proposed model selection method
leads to better generalization performance. For com-
parison, we also applied ME classifiers trained on

either individual feature sets or a composite feature
set and a method of combining multiple classifiers
trained on different feature sets to the same prob-
lem. Comparative results indicate that our method
yields better performance.

The remainder of this paper is organized as fol-
lows. Section 2 presents model description. Section 3
presents an EM algorithm for parameter estimation
and a model selection method for structure prun-
ing. Section 4 reports simulation results on speaker
identification and conclusions are drawn in the last
section.

2. Model Description

In this section, we first review the soft competition
scheme on different feature sets proposed in our pre-
vious work.®>* Then, we present a novel modular
neural network architecture to provide an alterna-
tive implementation of the soft competition scheme.
To understand our model better, a probabilistic in-
terpretation of our model is given in this section.

2.1. Soft competition scheme for the
use of different feature sets

For pattern classification on different feature sets, we
assume that there are K (K > 1) different feature
extraction methods so that K different feature sets
can be extracted from a raw data set. Thus, K dif-
ferent feature vectors, x,(D®), ..., xx(D®), can
be achieved to represent the sample D(*) in diversi-
fied forms for an input sample D® in a raw data
set, X = {D® y®}IT_ = To simplify the presenta-
tion, hereinafter, we drop the specific sample term,
D® from those feature vectors as xgt), ey xg?.
Suppose that there is an optimal feature vector
which is the best one to represent the corresponding
raw datum among K different feature vectors. Thus,
a problem can be addressed: which one is the opti-
mal feature vector of the sample, D), among its K
different feature vectors, xgt), ceey x&?? Apparently,
a feature selection technique must be used to gener-
ate a solution to this problem. Unfortunately, such
a method is often not available in many real world
problems. It implies that different feature sets can
independently represent a raw data set but in general
none of them provides much better representation in
comparison with others. Due to high complexity of
a real world problem, a single feature set represents
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only partial data well, and the joint use of different
feature sets can represent all the data better. In this
circumstance, we have proposed a solution to this
problem.34

Prior to addressing the solution, we first intro-
duce a set of binary indicator variables to represent

the optimal feature vector. An indicator, I ,gt), corre-
sponding to feature vector x,(ct) is defined as [ ,gt) =1
if x,(ct) is the optimal feature vector. Otherwise,
I,gt) = 0. According to the optimal feature defini-
tion, Zszl I ,it) = 1 is always guaranteed. If we al-
ways use such an optimal feature vector to represent
a raw datum and ignore other feature vectors, there
would exist a probabilistic relation between the raw
datum and its optimal feature vector via the indica-

tor as follows:

P(x) = (DY) =1). (1)

Obviously, a solution to the aforementioned prob-
lem would be always available if such indicators were
known. In practice, however, the indicators remain
unknown or are typically missing data. As pointed
out above, it is more likely that there is no unique
feature set highly superior to other feature sets to

convex weighted sum

represent all the input samples. Therefore, the basic
idea is the joint use of all the achieved feature vectors
to represent a raw datum via indicator variables. For
doing so, we specify a finite mixture model as

K
P(DW) = Z POV =PI =1). (2)
k=1

This mixture model provides an optimal way to uti-
lize different feature sets through soft competition.
In Eq. (2), those probability terms, P(I,gt) = 1),
will be used to determine the winner or losers. For
such a method, an open problem is how to utilize the
mixture model to implement the soft competition on
different feature sets. In this sequel, we propose a
novel modular neural network architecture to solve
this problem.

2.2. Architecture

As illustrated in Fig. 2, the proposed GME archi-
tecture consists of a gate-bank, where there are K
gating networks, and K expert-banks assuming that
K different feature vectors can be extracted from an

gate-bank
[
a W
Gatin Gatin
Network | .- Networ
1 K
“ “ expert-b
X X«

X

Fig. 2. The generalized mixture-of-expert architecture.
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original simple D. Unlike the standard ME model,
a gate-bank is used in our architecture to implement
the basic idea on the use of different feature sets for
classification. The kth gating network in the gate-
bank always receives the feature vector x; and pro-
duces scalar outputs as a partition of unity at each
point in the input space based on only the feature
vector x. By the output of each gating network, the
gate-bank produces scalar outputs as a partition of
unity at each point in the input space in terms of dif-
ferent feature sets. In contrast to the standard ME
model where a number of expert networks are em-
ployed, K expert-banks are used to deal with differ-
ent feature sets, respectively, for classification. The
ith expert-bank consists of N; expert networks which
always receive the same feature vector, x;, while dif-
ferent expert-banks always receive the different fea-
ture vectors. The outputs of expert networks in a
expert-bank are linearly combined to form an output
of this expert-bank. The final output of our archi-
tecture is a convex weighted sum of output vectors
produced by K expert-banks.

In the GME architecture, each expert network is
linear with a single output nonlinearity; i.e., the jth
expert network in the ith expert-bank, (i, j), pro-
duces its output, 0,5, as a generalized linear function
of the input x;:

0ij = f(Wijx;), (3)

where W;; is a weight matrix and f is a fixed con-
tinuous nonlinearity. The vector x; is assumed to
include a fixed component of one to allow for an in-
tercept term. The output of the ith expert-bank, o;,
is

N;
0; =Y Bijoij, (4)
=1

where (;; are linear coeflicients to combine the out-
puts produced by expert networks in the ith expert-
bank on the conditions: Zjvzl Bij =1 and B;; > 0.

The kth gating network in the gate-bank is also
generalized linear. As a result, the ith output of the
kth gating network, gy ;, is the softmax function of
intermediate variables & ;:

elk.i

=% > (5)
Z ebkou
u=1

Ik, i

where & ; = vgﬂ-xk and vy, ; is a weight vector. Fur-
thermore, the ith output of the gate-bank, A;, is

K
A = Z Qe Gk,i 5 (6)

k=1

where oy, are linear coefficients for combining the
outputs produced by gating networks in the gate-
bank on the conditions: Zszl ar = 1 and a > 0.
Therefore, the total output, o, of the GME is

K
o = E )\ioi
i=1

N;

K
- Z Z Z akGrk,iBij0ij - (7)

i=1 j=1 k=1

2.3. Probabilistic interpretation

In order to understand our architecture, it is helpful
to present a probabilistic interpretation. As a result,
this probabilistic interpretation provides a statisti-
cal model for the GME architecture in turn so that
an efficient learning algorithm can be developed for
parameter estimation.

The probabilistic interpretation is described as
follows. The gate-bank is an implementation of the
finite mixture model in Eq. (2). g, is the proba-
bility that the ith expert-bank is chosen for classifi-
cation based on the optimal feature vector x; of the
sample D, while oy, could be interpreted as the prob-
ability that the feature vector xj is optimal among
K different feature vectors of the sample D accord-
ingly. Thus, )\; is interpreted as the multinomial
probability which can make the decision that ter-
minates in a regressive process that maps D to y.
On the other hand, 3;; could be interpreted as the
probability that y is generated by the expert net-
work (4, j) when expert-bank ¢ has been chosen to
deal with the current input sample for classification.
Once the decision has been made by the gate-bank,
resulting in a choice of the ith expert-bank, output
y is assumed to be generated according to the statis-
tical model P(y|x;, 6;), where 6; denotes the set of
all the parameters in the probabilistic model of the
ith expert-bank. The regressive process associated
with the ith expert network is described by a finite
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mixture model:
N;
P(ylxi, 6:) = > Biy P(yIxi, 645) , (3)
j=1

where P(y|x;, 0;;) is the statistical model of expert
network (i, j) and 6;; is the set of all the param-
eters in the statistical model. Therefore, the total
probability of generating y from D can be viewed
as the mixture of the probabilities of generating y
from component densities, in terms of the raw data,
through use of soft competition on different feature
sets. Thus, the generalized finite mixture model of
the GME architecture in the parameter form is

B )

<
>
A

)

AiP(yl|xi, 6;)

z

M= 1M

[k gk,i(Xks Vi,i)][Big P(y]xi, 0ij)]

K
i=1 j=1 k=1
K N K

=D anBijgi(xn, vii)Pylxi, 655), (9)
i=1 j=1 k=1

where @ includes all the expert network parameters
(0;; and B;;) as well as the gate-bank parameters
(vk,; and ay). Since the model is merely used for pat-
tern classification based on different feature sets, the
probabilistic component of the model, P(y|x;, 6;;),
is assumed to be Bernoulli distribution in the case of
binary classification,'® multinomial logit distribution
or the generalized Bernoulli distribution”™%! in the
case of multiway classification.

Here we mention that the ME architecture could
be a case of the GME architecture when an optimal
feature set is available by a feature selection method.
In this case, only one single network is required in the
gate-bank, and each expert-banks will be substituted
by a single expert network, where the optimal fea-
ture vectors are fed to all the expert networks. Like
the hierarchical mixture-of-expert (HME) model,*
an extension of our model can make the GME model
become a hierarchical architecture and will be pre-
sented in Appendix 1.

3. Learning Algorithms

In this section, we derive an EM learning algorithm
for parameter estimation in the GME architecture

and propose a model selection method to generate
an appropriate GME structure for a given classifica-
tion problem during training.

3.1. EM algorithm

Suppose that a training set is given as X =
{(DW,y®), t = 1,..., T}, where K feature vec-
tors, x;°,..., X , are extracted from D® Al the
paired data in X are called observable data. To de-
velop an EM algorithm for the GME architecture,
a set of missing data are introduced to simplify the
likelihood function. The set of missing data with
binary value are denoted as

IJ(;? i i=1,... K,
j=1,....,N;, k=1,..., K}, (10)

z={"

where the indicator variable Ii(t) is defined as

1 if y® is generated from the ith
= expert-bank. (11)
0 otherwise

I(t)

%

‘tl) is defined as

and the indicator variable Ij(.
1 if y® is generated from the

70 _ jth expert network in the 12

il — ith expert-bank. (12)

0 otherwise

Given Ii(t) and I;?, the indicator variable Ii(;) is the

product of Ii(t) and Ij(.t). The indicator variable I ,it)

|2
is defined as

1 if the decision is made by
the kth gating network in
the gate-bank.

0 otherwise

nY = (13)

These indicator variables satisfy the conditions:
Zf; Ii(t) =1 Z;V:1 IJ(L) =1, Zf; Zjvzl Ii(;) =1,
and 25:1 I,gt) = 1. Hence the complete data, ),
are composed of both observable and missing data
as Y ={X, ZI}.

Note that the dependence of the probabilities
9k,i(Xk, Vk,;) was explicitly indicated on xj and on
the parameters in Eq. (9) and expert networks in
the ith expert-bank explicitly receive the same input
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vector x;. In the remainder of the paper, we drop the
explicit reference to the input and the parameters to
simplify the notation. As a result, the probability
model in Eq. (9) is rewritten as

Ni

K
y|D (I) = Z Z ak,@zjgkz ij Y) (14)

i=1 j=1 k=1

By the complete data, hence, this probability model
can be written in terms of If; ) and I ,gt) as follows:

P(y", 1§, 1,7|D", ®)

= akﬂijgg(f,zpij (")

K N; K

(t) r(t)
= [T IT TTH{ewBiiati Py . (15)
i=1 j=1 k=1

Taking the logarithm of this probability model yields
the following complete-data likelihood:

lc(é; y)

T K K
:Z Z ZI;)I ){log o

=1 i=1 j=1 k=1

Ni

~+

+ log B3;; + log g(t) +log P;; (y(t))}. (16)

Consequently, the E-step of the EM algorithm is
defined by taking the expectation of the complete-
data likelihood:

K K
Elle(@; M)X]=3" 3" 3" 5T 2R n) {10g as

t=1 i=1 j=1 k=1

N;

+ log Bi;+log gy} +log Pij(y ™)},
(17)

where hl;), h(t and hg)l are the posterior probabili-

ties as
ny = B\, n = B0,

(18)
w = B[1?, 1{"|x].

Computation of all the posterior probabilities is de-
scribed in Appendix 2.

The M-step requires maximizing E[l.(®; V)| X]
with respect to both the expert-bank and the gate-
bank parameters. By examining Eq. (17), it is ap-
parent that the expert-bank parameters affect the
E[l.(®; V)|X] through only terms hl(-;) log Pi;(y®)

and hz(;) log B;;, while the gate-bank parameters
influence the FEJ, g<1>' V)|X] through only terms
hg) log a, and h ;log g(t) Thus, the M-step
reduces to the followmg separate maximization
problems:

T
1
oY) = arg max > A log Py(y),  (19)

Yot=1

,8(3+1) = arg maxz Z h(t) log Biv s.t.
” t=1 v=1 (20)

N;
Zﬂivz]ﬂﬁivzov

(S+1) = arg maxz Z h i log gk - (21)

t=1 i=1
where vy, is the set of all parameters of the kth gating
network in the gate-bank, and

T K
a,(:'H) = arg maxz Z hfj) log a,, s.t.
k t=1 u=1 (22)

K
Zauzl,auzo.
u=1

Problems in Eq. (19) and Eq. (21) belong to the
iterative reweighted least squares (IRLS) problem.
Jordan and Jacobs proposed an IRLS algorithm to
solve this kind of problems.'® However, the algo-
rithm often suffers from instability in multiway clas-
sification. In our earlier work, the reason of in-
stability in the IRLS algorithm was systematically
investigated. Instead an improved learning algo-
rithm has been proposed to solve this kind of IRLS
problems in multiway classification® and, moreover,
an approximation to the improved learning algo-
rithm can be achieved for fast training® when a prob-
abilistic model is subject to the generalized Bernoulli
distribution.” In the case of multiway classification,
therefore, problems in Eq. (19) can be solved with the
improved algorithm or its approximation, while the
problem in Eq. (21) can be solved only by the im-
proved algorithm since the statistical model of gating
networks is subject to the multinomial distribution,
which belongs to multiway classification. As for max-
imization problems in Eq. (20) and Eq. (22), they can
be analytically solved by

(s+1) (t)
/613 T Z hzg ’ (23)
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and
(s+1) _ 1 ZT (t)
s —
Otk = T 2 hk: . (24)

Based on the above analysis, we summarize the
EM algorithm as follows:

Algorithm: (EM Algorithm for the Generalized
Mixture-of-Expert Model)

1. For each data pair (D®, y(®) extract K

feature vectors, xgt), e x(l?, from D®,

’E;)7
hg), and h,(f)l using its current value of all
parameters.

2. For each expert network, solve an IRLS prob-
lem in Eq. (19) with observations {(xgt),
y®)}T and observation weights {hS)}lT by the
improved learning algorithm or its approxima-
tion in terms of its probabilistic components.®

3. For each parameter §;; in expert-banks, ob-
tain the new estimate using Eq. (23).

4. For each gating network in the gate-bank,
solve an IRLS problem in Eq. (21) with obser-
vations {(xq(f), hff)l)}f by the improved learn-

then compute the posterior probabilities h

ing algorithm.?

5. For each parameter oy in the gate-bank, ob-
tain the new estimate using Eq. (24).

6. Iterate using the updated parameter values
from step 1 to step 5 until a termination con-
dition is satisfied.

3.2. Model selection

The pre-determined structure problem refers to that
prior to training, an appropriate structure needs to
be determined for a given problem. This problem
has been well known in neural network community,
and most of neural network models suffer from the
problem. Like the standard ME architecture, this
problem is also unavoidable on applying the GME
model to a practical problem. To tackle the problem
in the ME architecture, Jacobs et al. have recently
proposed a pruning method based on the maximum
a posteriori (MAP) principle for model selection.'®
Xu has proposed a so-called hard-cut EM algorithm
for fast training in the ME architecture by means
of his Bayesian YING-YANG learning theory.?’ The
idea underlying the hard-cut EM algorithm could be
extended to evaluate the usefulness of each expert

network for a given problem during training. Moti-
vated by their work, we propose an alternative prun-
ing method for the GME architecture.

For a given classification problem, we assume
that the initial GME structure is always of a com-
plicated topology. The idea underlying the proposed
pruning method is to select an appropriate model
by combination of the MAP and the cross-validation
principles. According to the posterior probabilities,
we can transfer the soft-competition scheme into a
winner-take-all mechanism in our architecture. The
winner is defined as the expert network with the
maximal posterior probability for a sample D® in
a training set with 7" samples. In other words, a
label with binary value can be assigned to each ex-
pert network in terms of the sample D®) to indicate
whether it is a winner or not. For expert network
(i, ), the value of the label, zi(;), is defined as

ij (25)

if B = (t)
0 _ 1 if h;/ = arg max hayt
0 otherwise

whereu=1,..., K,v=1,..., N, (K is the num-
ber of expert-banks and IV, is the number of expert
networks in expert-bank u), and hq(fg is the poste-
rior probability as defined in Eq. (18). Moreover, a
winner-index WI;; based on the labels z;; for expert
network (4, j) is defined as

T
1
Wlij =% 20 (26)
t=1

Based on the winner-index, we present a two-
stage learning procedure with the pruning mecha-
nism for parameter estimation and model selection
in the GME architecture. The learning procedure is
described as follows: (a) For a given problem, a GME
structure starting with the complicated topology is
first trained on a training set by the EM algorithm
described in Sec. 3.1. (b) Once the training is fin-
ished, the winner-index for each expert network is
calculated on a cross-validation set. Any expert net-
work (¢*, j*) will be pruned if WI;+;- < e, where ¢
is a pre-specified threshold. (c) The parameter val-
ues achieved in step a remain as initialization, and
the resulting GME structure achieved in Step b is
re-trained on the training set used in step a by the
EM algorithm.

In contrast to the pruning method reported in
Ref. 18, we use a two-stage learning procedure for
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learning and pruning a GME structure based on a
cross-validation data set, which may lead to bet-
ter generalization. We point out that this two-stage
learning procedure might be used in the alternative
mixture-of-expert architecture developed in Ref. 3 as
well.

4. Simulations

The generalized mixture-of-expert architecture has
been applied to a real world problem called text-
dependent speaker identification. All the simulations
were done in a SUN SPARC II workstation. In this
section, we first describe the speaker identification
problem, and then present simulation results. Fi-
nally, we report comparative results produced by re-
lated methods.

4.1. Text-dependent speaker
identification

Speaker identification is to classify an unlabeled
voice token as belonging to one of reference speak-
ers. In particular, text-dependent speaker identifi-
cation refers to that the same text is used in both
training and testing phases. The problem is a hard
classification task because a person’s voice always
changes over time. The main outcome of many stud-
ies on speaker’s features indicates that the speech
spectrum reflects the anatomical structure of a per-
son’s vocal tract and nasal cavities and so con-
tains information about hopefully unique physical
attributes.!0:13:14.23,26.27 However, there is less agree-
ment on which parameterization of the speech spec-
trum to use as features for speaker identification.
Many kinds of spectral features have been reported
to be useful to speaker identification. Therefore,
speaker identification becomes a typical problem of
pattern classification based on different feature sets.
In earlier studies, two or more kinds of different fea-
ture sets were combined together to form a compos-
ite feature set so that different feature sets can be
used simultaneously.'®?2 However, the performance
of such a system based on a composite feature set
is not significantly improved. On the other hand,
methods of combining multiple classifiers trained on
different feature sets were recently applied to speaker
identification, which led to satisfactory results.*®
However, a large amount of data were demanded for

training not only multiple classifiers but also a com-
bination scheme.

In the simulations, we chose isolated digits as the
fixed text. The method has been extensively used
in text-dependent speaker identification.3:4:6-8:10,28
The acoustic database consisted of ten isolated dig-
its from ‘0’ to ‘9’ uttered in Mandarin. All utterances
were recorded in three different sessions and ten male
speakers were registered in the database. For each
digit, 100 utterances (10 utterances/speaker) were
recorded in each session. We divided all data into
three data sets in terms of recording sessions for dif-
ferent use. The technical details of preprocessing
are briefly as follows: (a) 16-bit A /D-converter with
11.025 kHz sampling rate, (b) processing the data
with a pre-emphasis filter H(z) = 1 — 0.952~! and
(c) 25.6 msec Hamming window with 12.8 msec over-
lapping for blocking an utterance into several feature
frames in the short-time spectral analysis. Thus,
an utterance of digit was blocked as a sequence of
frames. In the simulations, we adopted four com-
mon speech spectral features for speaker identifica-
tion, i.e., 19-order delta-cepstrum (DEL-CEPS), 19-
order LPC based cepstrum (LPC-CEPS), 15-order
LPC coefficients (LPC-COEF), and 19-order Mel-
scale cepstrum (MEL-CEPS). After preprocessing,
the four different feature vectors were independently

extracted from each frame.?®

4.2. Results of the GME architecture

In the simulations, ten GME classifiers were em-
ployed where each GME classifier was used to handle
one of ten digits in terms of a feature set chosen. The
initial structure of these GME classifiers consisted
of four expert-banks (five expert networks in each
expert-bank) and a gate-bank with four gating net-
works due to four different feature sets used simul-
taneously for identification (see Fig. 2). In partic-
ular, four kinds of feature vectors, i.e., DEL-CEPS,
LPC-CEPS, LPC-COEF, and MEL-CEPS, are input
to expert-banks 1-4, respectively. Since the current
identification problem is a special multiway classi-
fication in which each component of output is bi-
nary and there is only a single non-zero component,

79 can be used

the generalized Bernoulli distribution
as the probabilistic model of expert networks. We
used the improved learning algorithm to train all

the gating networks and its approximation to train
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Fig. 3. Identification rates of ten GME classifiers corresponding to ten digits in terms of two learning stages in the

digit-based test. (a) Results of Test-1. (b) Results of Test-2.

all the expert networks in the M-step of the EM
algorithm.? All utterances recorded in the first ses-
sion were used during training; i.e., the training set
consisted of 60 utterances (6 utterances/speaker) for
each digit, and the cross-validation set was composed
of the remaining 40 utterances. All the utterances
recorded in two additional sessions were used for test,
and tests on the two data sets recorded in the sec-
ond and third sessions were called Test-1 and Test-2,
accordingly.

In the simulations, we adopted two testing meth-
ods: digit-based test and sequence-based test. In
the digit-based test, the utterance of one single digit
was used for identifying an unknown speaker. Since
an utterance was divided into several frames in the
short-time spectral analysis, the mean of results pro-
duced by all the feature vectors belonging to one ut-
terance was used as the final identification result of
the utterance. In contrast, a sequence of five isolated
digits (it may be viewed as a password) were used in
the sequence-based test. For each digit, an identify-
ing result can be achieved based on the digit-based
method. After achieving all five individual results,
the system polled a vote with the majority princi-
ple that an unknown speaker can be identified only
when at least three of the five GME classifiers pro-
duced the same identification results. Otherwise, the
system would reject the unknown speaker.

Figure 3 shows identification rates produced by
ten GME classifiers in two learning stages of our
learning algorithm presented in Sec. 3.2 by the digit-
based test. The CPU time of training GME classi-
fiers in two learning stages is illustrated in Fig. 4.
It is evident from the simulations that the gen-
eralization performance of resulting structures is
improved in general using the two-stage learning
procedure, and the training in the second stage

18
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Fig. 4. CPU time of training ten GME classifiers corre-
sponding to ten digits taken in two learning stages.
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Fig. 5. The winner-index values of 20 expert networks located in four expert-banks of the GME classifier corresponding
to digit ‘9. Initially, there are five expert networks in each expert-bank. (a) Results of expert-bank 1. (b) Results of
expert-bank 2. (c) Results of expert-bank 3. (d) Results of expert-bank 4.

is considerably faster than that in the first stage be-
cause the achieved parameters in the first stage were
used to initialize the pruned structure in the second
stage. To demonstrate the pruning process, Fig. 5
illustrates the winner-index values of all expert net-
works in the GME classifier corresponding to digit
‘9’ for instance. In our simulations, we chose the
threshold € as 0.005. Here the value of ¢ implies
that an expert network will be pruned from the ini-
tial structure when the number that the expert net-

work becomes winners is less than five for test by
a cross-validation set of 1000 samples. As a result,
the remaining numbers of expert networks in expert-
banks 1-4 are 4, 3, 4, and 4, respectively, after prun-
ing. Due to limited space, we report only the result-
ing structures of all GME classifiers after pruning in
Table 1 instead of their winner-index values.
Furthermore, we used the sequence-based
method to evaluate the performance. As shown
in Table 2, the testing results show that the speaker
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Table 1. Numbers of expert networks in ten GME classifiers after pruning.

GME Classifiers ‘0’ ‘v ‘2’ ‘3 ‘4 ‘5’ ‘6’ ‘r ‘8’ ‘9’
Expert-Bank 1 5 3 5 4 4 4 4 4 5 4
Expert-Bank 2 3 4 3 3 3 4 4 2 3 3
Expert-Bank 3 4 3 4 2 3 4 2 3 3 4
Expert-Bank 4 3 4 5 5 4 4 4 4 4 4

Table 2. Performance of the speaker identification system based on the
GME architecture by the sequence-based test.

Test No. 500 1000 2000 3000 4000 5000
Identification No. 500 1000 1999 2998 3995 4994
Substitution No. 0 0 0 1 2 2
Rejection No. 0 0 1 1 3 4

identification system based on the GME architecture
can be practically used with acceptable performance.

4.3. Comparative results

For comparison, we have already conducted some
simulations by applying related methods to the same
problem. The training and cross-validation sets were
the same as described above. It is obvious that the
performance of the sequence-based test highly de-
pends upon that of the digit-based test. Therefore,
we merely report simulation results of the digit-based
test in the sequel.

First of all,
17

used the standard ME
as classifiers to deal with the same
problem. Simulations were two-fold; four individ-
ual different feature sets were independently used
and a 72-dimensional composite feature set formed
by combination of the four different feature sets to-
gether was used to train ME classifiers. Structures

we
architecture

of ten ME classifiers were determined by the cross-
validation method. All structures of ME classifiers
ranging from 12 to 16 experts were investigated and
the ‘optimal’ structures used in the simulations are
shown in Table 3, where for the same digit the use of
different feature sets as input may result in different
structures of ME classifiers. Similarly, the improved
learning algorithm and its approximation were used
in the M-step of the EM algorithm to train the gat-
ing network and expert networks. Figure 6 shows
testing results in Test-1 and Test-2, and Fig. 7 illus-
trates CPU time of training the ME classifiers. Due
to limited space, we only show the mean identifica-
tion rates and the mean training time of ME classi-
fiers trained on individual feature sets in Figs. 6 and
7. For comparison, the identification rates and to-
tal training time of the two-stage learning in those
GME classifiers are also shown in Figs. 6 and 7. It is
evident from the simulation results that the GME ar-
chitecture outperforms the ME architecture in terms

Table 3. Structures of ME classifiers used in the comparative experiments: the number

of expert networks in each ME classifier.

ME Classifiers ‘0’ ‘r ‘2’ ‘3 ‘4 ‘5’ ‘6’ ‘v ‘8’ ‘9
DEL-CEPS 12 13 12 12 13 14 14 13 14 16
LPC-CEPS 13 13 13 13 14 14 14 13 15 15
LPC-COEF 13 12 12 13 12 12 13 13 13 14
MEL-CEPS 14 14 15 13 14 14 16 14 14 15
Composite Feature 16 15 16 14 15 15 16 16 15 16
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Fig. 7. Comparative results: CPU time of training the
GME classifiers and ME classifiers trained on either in-
dividual feature sets or a composite feature set.

of either the use of individual feature sets or the com-
posite feature set. In particular, the GME classifiers
yield significantly fast training in comparison with
ME classifiers on the composite feature set though
the training of the GME classifiers is slightly slower
than that of ME classifiers on individual feature sets
due to the two-stage learning.

We also conducted an experiment of combining
four ME classifiers trained on different feature sets
for the same problem. The so-called Bayesian rea-
soning combination method®' was adopted as the
combination scheme. This method is viewed as
a typical application of the stacked generalization
principle?® to improve the performance of multiple
classifiers. The recent investigation showed that
the Bayesian reasoning combination method yields
the best performance on a benchmark hand-written
OCR problem in contrast to other typical combina-

tion methods.2431

In this combination method, the
confusion matrix3! was estimated based on the cross-
validation set for combination. The identification
rates of the combination method are also shown in
Fig. 6 for comparison. According to simulation re-
sults, we found that in the terms of the mean identi-
fication rates on ten digits, the combination method
slightly outperforms the GME architecture in Test-
1, but its performance is worse than the GME archi-
tecture in Test-2. A possible reason of this instable
outcome is due to insufficient data used to estimate
the confusion matrix according to our previous work
on the combination of multiple classifiers trained on
different feature sets.®
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In summary, comparative results reported above
indicate that our model yields better performance in
text-dependent speaker identification. In particular,
our model leads to robust performance in the case of
less data available for training.

5. Conclusions

We have described a novel modular neural net-
work architecture to implement the soft competition
scheme on different feature sets. For learning, an EM
algorithm is developed for adjusting the parameters
in our architecture and, moreover, a model selection
method is proposed to obtain an appropriate struc-
ture for a specific problem. The EM algorithm and
the model selection method constitute a two-stage
learning procedure so that an initial structure can
be pruned to produce better generalization perfor-
mance. Simulation results that the proposed method
yields satisfactory performance and fast training in
contrast to related methods.
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Appendix 1. Generalized Hierarchical
Mixtures of Experts

In this appendix, we extend the GME architecture
to a hierarchical structure, which can be viewed as a
generalized hierarchical mixture-of-expert (GHME)
model for pattern classification based on different
feature sets. To simplify the presentation, we re-
strict ourselves to a two-level hierarchy throughout
the appendix. All of the algorithms described in the
appendix, however, can generalize readily to hierar-
chies of arbitrary depth. Omne may be referred to
Ref. 20 for a recursive formalism that handles arbi-
trary hierarchies.

A two-level GHME architecture consisting of N
GME modules (cf. Fig. 2) is a tree in which the gate-
banks sit at the nonterminals of the tree and expert-
banks sit the leaves of the tree. These gate-banks re-

ceive the vectors, x1,..., Xk, as input and produce
scalar outputs assuming that K different feature sets
can be extracted. K expert-banks are used to handle
different feature sets in each GME module, respec-
tively. The ith expert-bank in the mth GME module
consists of N, expert networks which receive the
same input vector, x;, while different expert-banks
receive the different feature vectors. The output vec-
tor of an expert-bank is the convex weighted sum
of output vectors produced by expert networks in
the expert-bank. Output vectors of all expert-banks
proceed up the tree, being blended by the gate-bank
outputs to produce the final output of the GHME
architecture.

The jth expert network associated with the ith
expert-bank in the mth GME module produces the
output, 0|, as

Oijlm = f(Wijlmxi) s (27)

where Wij,, is a weight matrix. The output of the
ith expert-bank in the mth GME module, 0;,, is

N,

i|m

Oilm = Z Bij|mOijim » (28)
j=1

where (;;|,, are linear coefficients for combining
outputs produced by expert networks in the ith
expert-bank on the conditions: Zjvzl Bijjm = 1 and

Bijim = 0.
The mth output of the nth gating network in the
top-level gate-bank, gy m, is

ebnim
N )
Y etn
u=1

where &, ., = v,:’;mxn and v, is a weight vector.

(29)

In.m =

Furthermore, the mth output of the top-level gate-
bank A, is the convex weighted sum of gy, p:

K
)\m = Z AnGn,m (30)
n=1

where a,, are linear coefficients for combining out-
puts produced by gating networks in the top-level
gate-bank on the conditions: Zszl a, = 1 and
apn > 0. Similarly, the ith output of the kth gat-
ing network in the lower-level gate-bank in the mth
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GME module, g jjm, is

eSk.ilm
G = ™ (31)

E eik,u\m
u=1

where & jjm = vgilmxk and vy i, is a weight vec-
tor. Furthermore, the ith output of the lower-level
gate-bank in the mth GME module, A;,, is

z\m Z Ak |mk,i|m » (32)

where oy, are linear coefficients for combining out-
puts produced by gating networks in the gate-bank
on the condition that Zszl aglm = 1 and agjm > 0.
Therefore, the total output of the GHME architec-
ture, o, is

N K
=Y M) AimOijm - (33)

m=1 =1

Let P(y|xi, 0;m) denote the probability model
of the ith expert-bank in the mth module in the
GHME architecture, where 6;,,, denotes the set of
parameters in the model. Let P(y|x;, 0;j|,,,) denote
the probability model of the jth expert network as-
sociated with the ith expert-bank in the mth module
in the GHME architecture, where 6;;,,, is the set of

parameters in the model. The generalized finite mix-
|

(1) E-step

ture model of the GHME architecture is specified by

N K
m=1 i=1

P(y|D, @)

Niim K

K
X E E ak\mgk,i\m(xka Vk,i|m)

i=1 j=1 k=1
X Bijlm P (¥ |Xi5 Oijim) » (34)

where @ includes all the expert-bank parameters in-
cluding 6;),, and B;j,, and the gate-bank param-
eters including vy m, Qn, Vi im and agp,. In the
remainder of this appendix we drop the explicit ref-
erence to the input and the parameters to simplify
the notation. As a result, the probability model in
Eq. (34) is rewritten as

N K K
¥YID, ®) =" ongnm

m=1 n=1 i=1 j

2

ilm K

1 k=1

X Q| Gh,i|m Bij Pijlm (¥) - (35)

For the GHME architecture, we develop an EM
algorithm for adjusting the parameters in this archi-
tecture. Given the current estimate ®(*), each epoch
consists of the E-step and the M-step as follows:

For each pair (x(t), y(t)), the posterior probabilities hgﬁ), hgf), hgf‘zn, h(?n and h;ct?ﬁm are computed as

i

K Nim K
t
=1 i=1 j=1 k=
il = N K” K] i 1K ’ (36)
s (s) (¥) ( )
D2 g D D UimnipmBisim Pistm (V)
m=1 n=1 i=1 k=1
) K Nim )
S Z g’glt)ﬂ’bz ak|mgk1\m z]s|m z]|m( (t))
(t) _ =1 j=1 1
' = ¢ K Ni K ’ (37)
s t
> > a9 >0 D0 D i Ot P ()
m=1 n=1 i=1 j=1 k=1
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K Nim
(s) () (S) t
k‘mz Z 9k ,ilm z]|mPij\m(y( ))
() _ =1 j=1
M = Vo & : (38)
(s)
Z Z aklmgk z|m z]|mP]|m( (t))
i=1 j=1 k=1
= () @) 5(s)
s t s t
Z k\mgk z\mﬂm\mplﬂm(y( ))
) _ k=1
hmm K Nim K ) (39)
Z aks\?ngk z\mﬁzﬂm U"’n( (t))
i=1 j=1 k=1
and al®) o gls)
s S
pi = k\mgk imPi5im Pisim ) (40)
kilm ™ g Nijm .
(s) (&) (S) t
Z Z aklmgk ilm z]\m‘Pij\m(y( )>
i=1 j=1 k=
(2) M-step
A new estimate ®(**+1 is found through solving the following maximization problems:
+1 t
O = arg mﬁ{fz RO og Pijjm (y1), (41)
T K K
ottt = arg max Y > hPlog aw, st Y au=1, a, >0, (42)
on t=1 u=1 u=1
T N K
ngﬁql) = arg maXy,, ,, Z Z Z hg?z log gg?z (43)
t=1 z=1 w=1
T K K
OLI(CT:’; ) — arg g}j}xz Z hq(f‘)m log Qy|m, 8 t Z Qyjm = 1, Qylm >0, (44)
=1 u=1 u—1

K K

vt

TS 9D OULD 9D DL IR T I ()
u=1 w=1

t=1 z=1
where vy, is the set of all the parameters of the kth gating network in a lower-level gate-bank, and

T Nijm Niim

/6’1(;‘—;1) = arg maXZ Z h;t,)‘m log /6’1'11|m7 s.t. Z /6’1'11|m =1, Qivlm >0. (46)

Bisim i1 =1 v=1

Problems in Eq. (41), Eq. (43) and Eq. (45) belong to the IRLS problem which can be solved using the
improved learning algorithm or its approximation.® The maximization problems in Eq. (42), Eq. (44) and Eq. (46)
can be analytically solved, respectively, as

T
1
ol = L3, (a7
t=1

T
s+1)
ak\m Z k\m’ (48)
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and

~

s+1)
Bisim Z i (49)

Appendix 2. Posterior Probabilities in EM Algorithm

In this appendix, we derive the posterior probabilities used in the E-step of the EM algorithm for the GME
architecture.
E [If; ) |X] can be computed using the Bayesian rule as

E[IY1x) = P =1ly®, DY, &)
= P(Ii(t) =1, Ij(‘tl) =1y®, DO &)

P(y(t)uﬁ(t) I(t) 1, D(t) ) s)) (I(t) I(t) 1|D(t (s))

= 50
PyOID, 301 0
Furthermore, P(I; ) — 1, I (t 1|D(t) ®(*)) can be computed by the joint and total probability rules as
P(I =1, I(t) 1|D®, )y = (Ij(\tz) — 1|Ii(t) =1, D, ) P(I 10 — =1|D®, &), (51)
and
K
P =11D®, @) =3~ P = 11" = 1, DO, 2\ P(1{” = 1|DD, o). (52)
k=1
According to the probabilistic model as defined in Eq. (9), we have
P =1I" =1, DO, @) = ¢, (53)
P =1|D®, ) = o\, (54)
P =11 =1, DV, ) = g (55)
and
( t)|I(t) 1, D(t) (I)(s)> _ ( (t) |I(t) 1, I(t) 1, D(t) (I)(s)) _ sz(y(t)> ) (56)

Therefore, inserting Egs. (51) and (52) into Eq. (50) yields

K
3 ol gVPBs (v0)

_ .
3 g Py (y )

E[I ,gt)|X ] is computed using the Bayesian rule as
Bl|1X) =PI = 1y, DY, 2©)

p(y(t)|[]gt) =1, D(t) @(S)) ([(t = 1|D, (1)(8))

(58)
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Furthermore, P(y® |I,gt) =1, D &) can be computed by the total probability rule as

K N;
PyOIR =1, 00, 0) = 37 3" Py = 1, 1) =1, DO, 8P = 1|1} =1, D, 31)
i=1 j=1
K N;
t S t t S

=33 Py =1, DO, o) Py = 11" =1, DO, ). (59)
i=1 j=1

Note that the indicator variable I,gt) = 1 can be ignored from P(y(t)|I,£t) I(t) 1, DM, ®®)) in Eq. (59)

since it is independent of the probabilistic model based on the fact that y(t) is generated from the jth expert
network in the ith expert-bank regardless of any gating network. According to Eqs. (53)—(56), inserting Eq. (59)
into Eq. (58) yields

2

i

K
o0 D2 D 9k Par?)

i=1 j=1
EL)|X] = ——% . (60)
>33 ol e Py
i=1 j=1 k=1
E[Ii(t) =1, I,gt)|/'\f] can be computed using the Bayesian rule as
B, 171X = P =1, 17 = 1}y®, DO, &)
Piy®OI® =1, 19 =1, DO, P =1, 1 = 1|D®, &)
— : (61)
(y(t)|D(t), (I)(s))
Similarly, P(Ii(t) =1, I,gt) =1|D®, () can be computed as
pY =1, 1" =1|pW, )y = p(1" = 1|1V =1, DO, ) P(1{" = 1|D®), $)), (62)
and P(y(t)|Ii(t) =1, I,gt) =1, DW, <I>(S)) can be computed using the total probability rule as
P(y(t)|li(t) =1, I,gt) =1, l)(t)7 (I,(s))
N.
_ ZP( (t)|I(t =1, I(I) =1, I,gt) =1, D(t), (I,(s)) (I(t 1|I =1, D(t), (I,(s))
j=1
N;
=3 PyWIY =1, 1} =1, DY, @) P} =11;" =1, DO, &), (63)
j=1
According to Egs. (53)—(56), inserting Eqgs. (62) and (63) into Eq. (61) yields
azf)ngi Z Bij S)P y®)
B[, 1)|X) = (64)

- .
o g8 Py (y ™)

Mw

S

=1 j=1

B
I

1
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