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We propose a novel connectionist method for the use of different feature sets in pattern classification.
Unlike traditional methods, e.g., combination of multiple classifiers and use of a composite feature set, our
method copes with the problem based on an idea of soft competition on different feature sets developed
in our earlier work. An alternative modular neural network architecture is proposed to provide a more
effective implementation of soft competition on different feature sets. The proposed architecture is
interpreted as a generalized finite mixture model and, therefore, parameter estimation is treated as a
maximum likelihood problem. An EM algorithm is derived for parameter estimation and, moreover, a
model selection method is proposed to fit the proposed architecture to a specific problem. Comparative
results are presented for the real world problem of speaker identification.

1. Introduction

The problem of pattern classification can be stated

as follows: Given a set of training data D, each

with an associated label y, find a classification sys-

tem that will produce the correct label y for any

data D drawn from the same source as the training

data. In general, a typical pattern classification sys-

tem, as depicted in Fig. 1(a), is composed of three

stages: preprocessing, feature extraction, and classi-

fication. For real world problems, both preprocessing

and feature extraction are necessary prior to training

of a classification system in order to avoid the curse

of dimensionality.11 Therefore, the performance of a

classification system highly depends upon a feature

set used. For a complicated pattern classification

task, there are often a number of methods available

for feature extraction. By these methods, a raw data

set is represented by several different feature sets,

which leads to a problem how to utilize those fea-

ture sets for classification. To our knowledge, there

are two frameworks to tackle the problem; one is the

use of feature selection to achieve an optimal feature

set,2 and the other is the joint use of different feature

sets. If an optimal feature set can be achieved for a

raw data set, we would merely use it to train a clas-

sification system, as shown in Fig. 1(a). However,

such an optimal set is not achieved often. In this cir-

cumstance, the individual use of different feature sets

leads to similar performance in classification and, as

depicted in Fig. 1(b), the joint use of different feature

sets results in better performance or a robust effect.

In the real world, there are many such instances, such

as speaker recognition10,15,23,26 and hand-written op-

tical character recognition (OCR)1,31,32 etc. In this

paper, we call such a kind of pattern classification

tasks pattern classification based on different feature

sets.
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Fig. 1. Typical pattern classification systems. (a) A system based on one feature set. (b) A system based on different
feature sets.

There have been two traditional methods to si-

multaneously use different feature sets for classifica-

tion; i.e., use of a composite feature set and com-

bination of multiple classifiers trained on different

feature sets. In a composite feature set, a com-

posite feature vector is generated by lumping sev-

eral different feature vectors together. The basic

idea behind the use of a composite feature set is to

consider an integration of different feature sets as

a single feature set that can represent a raw data

better than one of components. Although the use

of a composite feature set may improve performance

of classification, the following problems are unavoid-

able: (a) Curse of dimensionality; the dimension of

a composite feature vector may be much higher than

any of component feature vectors. (b) Difficulty in

formation; it may be difficult to lump several differ-

ent feature vectors together due to their diversified

forms. (c) Redundancy; the component feature vec-

tors may not be independent of each other. Due to

the aforementioned problems, the use of a compos-

ite feature set does not result in significant improve-

ments. On the other hand, there have been extensive

studies on classification by combining multiple classi-

fiers trained on different feature sets.4,5,16,21,24,31,32

The basic idea underlying these methods is some-

how to learn from outputs of the multiple classifiers

trained on different feature sets. Basically most of

those methods are viewed as applications of a gen-

eral approach called stacked generalization outlined

by Wolpert.29 Consequently, the learning of a pat-

tern classification task consists of two phases; each

classifier is first trained on a training set, and then a

combination scheme is trained on a cross-validation

set. Recent studies show that combination of multi-

ple classifiers trained on different feature sets results

in the significantly improved performance. However,

a sufficiently large data set is usually demanded for

that two-stage learning. In addition, combination of

multiple classifiers is also viewed as a specific hybrid

multi-modular architecture for pattern classification.

Due to the use of sequential training, such a hybrid

multi-modular architecture works in a sub-optimal

style.12

We have proposed an alternative method that si-

multaneously utilizes different feature sets for pat-

tern classification.3,4 The basic idea underlying the

method is a soft competition scheme for the op-

timal use of different feature sets. A critical is-

sue in the alternative method is how to provide an
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effective implementation of the soft competition

scheme. Previously, we proposed a modular neu-

ral network architecture,3 which is an extension

of the mixture-of-expert (ME) model.17 Although

it outperforms two traditional methods, the global

soft competition among subnetworks results in un-

expected performance; subnetworks trained on dif-

ferent feature sets may not utilize the information

from the same feature set sufficiently. In addition,

model selection is an open problem for that modular

neural network architecture.3 In this paper, we pro-

pose an alternative connectionist implementation for

the soft competition scheme. The proposed imple-

mentation is a modular neural network architecture,

which can be regarded as a generalized mixture-of-

expert (GME) model. Unlike the mixture-of-expert

architecture,17 a gate-bank consists of several gat-

ing networks trained on different feature sets, while

multiple expert-banks are trained on different feature

sets and each expert-bank consists of multiple expert

networks trained on the same feature set. In our ar-

chitecture, there are three soft competition schemes;

gating networks based on different feature sets com-

pete for the right to stochastically select an appropri-

ate expert-bank as the winner, expert-banks based

on different feature sets compete for the right to

produce an output, and in each expert-bank expert

networks compete for the right to learn the training

data in terms of a single feature set. The proposed

architecture can be interpreted as a generalized fi-

nite mixture model from the viewpoint of statistics.

Therefore, learning in this architecture is treated as

a maximum likelihood problem and an EM algo-

rithm is derived for adjusting the parameters in our

architecture. Motivated by recent work,18,30 more-

over, we propose a model selection method by means

of the maximal likelihood and the cross-validation

principles to determine an appropriate structure of

the GME classifier along with learning for a specific

problem. In order to evaluate the proposed archi-

tecture, we have applied our architecture to a real

world problem, speaker identification, in which dif-

ferent feature sets usually need to be jointly used for

robustness. Simulation results have demonstrated

that the proposed architecture along with the EM

algorithm yields satisfactory results and fast training

and, moreover, the proposed model selection method

leads to better generalization performance. For com-

parison, we also applied ME classifiers trained on

either individual feature sets or a composite feature

set and a method of combining multiple classifiers

trained on different feature sets to the same prob-

lem. Comparative results indicate that our method

yields better performance.

The remainder of this paper is organized as fol-

lows. Section 2 presents model description. Section 3

presents an EM algorithm for parameter estimation

and a model selection method for structure prun-

ing. Section 4 reports simulation results on speaker

identification and conclusions are drawn in the last

section.

2. Model Description

In this section, we first review the soft competition

scheme on different feature sets proposed in our pre-

vious work.3,4 Then, we present a novel modular

neural network architecture to provide an alterna-

tive implementation of the soft competition scheme.

To understand our model better, a probabilistic in-

terpretation of our model is given in this section.

2.1. Soft competition scheme for the

use of different feature sets

For pattern classification on different feature sets, we

assume that there are K (K > 1) different feature

extraction methods so that K different feature sets

can be extracted from a raw data set. Thus, K dif-

ferent feature vectors, x1(D
(t)), . . . , xK(D(t)), can

be achieved to represent the sample D(t) in diversi-

fied forms for an input sample D(t) in a raw data

set, X = {D(t), y(t)}Tt=1. To simplify the presenta-

tion, hereinafter, we drop the specific sample term,

D(t), from those feature vectors as x
(t)
1 , . . . , x

(t)
K .

Suppose that there is an optimal feature vector

which is the best one to represent the corresponding

raw datum among K different feature vectors. Thus,

a problem can be addressed: which one is the opti-

mal feature vector of the sample, D(t), among its K

different feature vectors, x
(t)
1 , . . . , x

(t)
K ? Apparently,

a feature selection technique must be used to gener-

ate a solution to this problem. Unfortunately, such

a method is often not available in many real world

problems. It implies that different feature sets can

independently represent a raw data set but in general

none of them provides much better representation in

comparison with others. Due to high complexity of

a real world problem, a single feature set represents
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only partial data well, and the joint use of different

feature sets can represent all the data better. In this

circumstance, we have proposed a solution to this

problem.3,4

Prior to addressing the solution, we first intro-

duce a set of binary indicator variables to represent

the optimal feature vector. An indicator, I
(t)
k , corre-

sponding to feature vector x
(t)
k is defined as I

(t)
k = 1

if x
(t)
k is the optimal feature vector. Otherwise,

I
(t)
k = 0. According to the optimal feature defini-

tion,
∑K
k=1 I

(t)
k = 1 is always guaranteed. If we al-

ways use such an optimal feature vector to represent

a raw datum and ignore other feature vectors, there

would exist a probabilistic relation between the raw

datum and its optimal feature vector via the indica-

tor as follows:

P (x
(t)
k ) = P (D(t)|I(t)

k = 1) . (1)

Obviously, a solution to the aforementioned prob-

lem would be always available if such indicators were

known. In practice, however, the indicators remain

unknown or are typically missing data. As pointed

out above, it is more likely that there is no unique

feature set highly superior to other feature sets to

represent all the input samples. Therefore, the basic

idea is the joint use of all the achieved feature vectors

to represent a raw datum via indicator variables. For

doing so, we specify a finite mixture model as

P (D(t)) =
K∑
k=1

P (D(t)|I(t)
k = 1)P (I

(t)
k = 1) . (2)

This mixture model provides an optimal way to uti-

lize different feature sets through soft competition.

In Eq. (2), those probability terms, P (I
(t)
k = 1),

will be used to determine the winner or losers. For

such a method, an open problem is how to utilize the

mixture model to implement the soft competition on

different feature sets. In this sequel, we propose a

novel modular neural network architecture to solve

this problem.

2.2. Architecture

As illustrated in Fig. 2, the proposed GME archi-

tecture consists of a gate-bank, where there are K

gating networks, and K expert-banks assuming that

K different feature vectors can be extracted from an

1
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Fig. 2. The generalized mixture-of-expert architecture.
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original simple D. Unlike the standard ME model,

a gate-bank is used in our architecture to implement

the basic idea on the use of different feature sets for

classification. The kth gating network in the gate-

bank always receives the feature vector xk and pro-

duces scalar outputs as a partition of unity at each

point in the input space based on only the feature

vector xk. By the output of each gating network, the

gate-bank produces scalar outputs as a partition of

unity at each point in the input space in terms of dif-

ferent feature sets. In contrast to the standard ME

model where a number of expert networks are em-

ployed, K expert-banks are used to deal with differ-

ent feature sets, respectively, for classification. The

ith expert-bank consists of Ni expert networks which

always receive the same feature vector, xi, while dif-

ferent expert-banks always receive the different fea-

ture vectors. The outputs of expert networks in a

expert-bank are linearly combined to form an output

of this expert-bank. The final output of our archi-

tecture is a convex weighted sum of output vectors

produced by K expert-banks.

In the GME architecture, each expert network is

linear with a single output nonlinearity; i.e., the jth

expert network in the ith expert-bank, (i, j), pro-

duces its output, oij , as a generalized linear function

of the input xi:

oij = f(Wijxi) , (3)

where Wij is a weight matrix and f is a fixed con-

tinuous nonlinearity. The vector xi is assumed to

include a fixed component of one to allow for an in-

tercept term. The output of the ith expert-bank, oi,

is

oi =
Ni∑
j=1

βijoij , (4)

where βij are linear coefficients to combine the out-

puts produced by expert networks in the ith expert-

bank on the conditions:
∑Ni
j=1 βij = 1 and βij ≥ 0.

The kth gating network in the gate-bank is also

generalized linear. As a result, the ith output of the

kth gating network, gk,i, is the softmax function of

intermediate variables ξk,i:

gk,i =
eξk,i

K∑
u=1

eξk,u

, (5)

where ξk,i = vTk,ixk and vk,i is a weight vector. Fur-

thermore, the ith output of the gate-bank, λi, is

λi =
K∑
k=1

αkgk,i , (6)

where αk are linear coefficients for combining the

outputs produced by gating networks in the gate-

bank on the conditions:
∑K
k=1 αk = 1 and αk ≥ 0.

Therefore, the total output, o, of the GME is

o =
K∑
i=1

λioi

=
K∑
i=1

Ni∑
j=1

K∑
k=1

αkgk,iβijoij . (7)

2.3. Probabilistic interpretation

In order to understand our architecture, it is helpful

to present a probabilistic interpretation. As a result,

this probabilistic interpretation provides a statisti-

cal model for the GME architecture in turn so that

an efficient learning algorithm can be developed for

parameter estimation.

The probabilistic interpretation is described as

follows. The gate-bank is an implementation of the

finite mixture model in Eq. (2). gk,i is the proba-

bility that the ith expert-bank is chosen for classifi-

cation based on the optimal feature vector xk of the

sample D, while αk could be interpreted as the prob-

ability that the feature vector xk is optimal among

K different feature vectors of the sample D accord-

ingly. Thus, λi is interpreted as the multinomial

probability which can make the decision that ter-

minates in a regressive process that maps D to y.

On the other hand, βij could be interpreted as the

probability that y is generated by the expert net-

work (i, j) when expert-bank i has been chosen to

deal with the current input sample for classification.

Once the decision has been made by the gate-bank,

resulting in a choice of the ith expert-bank, output

y is assumed to be generated according to the statis-

tical model P (y|xi, θi), where θi denotes the set of

all the parameters in the probabilistic model of the

ith expert-bank. The regressive process associated

with the ith expert network is described by a finite
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mixture model:

P (y|xi, θi) =

Ni∑
j=1

βijP (y|xi, θij) , (8)

where P (y|xi, θij) is the statistical model of expert

network (i, j) and θij is the set of all the param-

eters in the statistical model. Therefore, the total

probability of generating y from D can be viewed

as the mixture of the probabilities of generating y

from component densities, in terms of the raw data,

through use of soft competition on different feature

sets. Thus, the generalized finite mixture model of

the GME architecture in the parameter form is

P (y|D, Φ)

=
K∑
i=1

λiP (y|xi, θi)

=
K∑
i=1

Ni∑
j=1

K∑
k=1

[αkgk,i(xk, vk,i)][βijP (y|xi, θij)]

=
K∑
i=1

Ni∑
j=1

K∑
k=1

αkβijgk,i(xk, vk,i)P (y|xi, θij) , (9)

where Φ includes all the expert network parameters

(θij and βij) as well as the gate-bank parameters

(vk,i and αk). Since the model is merely used for pat-

tern classification based on different feature sets, the

probabilistic component of the model, P (y|xi, θij),
is assumed to be Bernoulli distribution in the case of

binary classification,19 multinomial logit distribution

or the generalized Bernoulli distribution7,9,19 in the

case of multiway classification.

Here we mention that the ME architecture could

be a case of the GME architecture when an optimal

feature set is available by a feature selection method.

In this case, only one single network is required in the

gate-bank, and each expert-banks will be substituted

by a single expert network, where the optimal fea-

ture vectors are fed to all the expert networks. Like

the hierarchical mixture-of-expert (HME) model,19

an extension of our model can make the GME model

become a hierarchical architecture and will be pre-

sented in Appendix 1.

3. Learning Algorithms

In this section, we derive an EM learning algorithm

for parameter estimation in the GME architecture

and propose a model selection method to generate

an appropriate GME structure for a given classifica-

tion problem during training.

3.1. EM algorithm

Suppose that a training set is given as X =

{(D(t), y(t)), t = 1, . . . , T}, where K feature vec-

tors, x
(t)
1 , . . . , x

(t)
K , are extracted from D(t). All the

paired data in X are called observable data. To de-

velop an EM algorithm for the GME architecture,

a set of missing data are introduced to simplify the

likelihood function. The set of missing data with

binary value are denoted as

I = {I(t)
i , I

(t)
j|i , I

(t)
k ; i = 1, . . . , K,

j = 1, . . . , Ni, k = 1, . . . , K} , (10)

where the indicator variable I
(t)
i is defined as

I
(t)
i =


1 if y(t) is generated from the ith

expert-bank.

0 otherwise

(11)

and the indicator variable I
(t)
j|i is defined as

I
(t)
j|i =


1 if y(t) is generated from the

jth expert network in the
ith expert-bank.

0 otherwise

(12)

Given I
(t)
i and I

(t)
j|i , the indicator variable I

(t)
ij is the

product of I
(t)
i and I

(t)
j|i . The indicator variable I

(t)
k

is defined as

I
(t)
k =


1 if the decision is made by

the kth gating network in
the gate-bank.

0 otherwise

(13)

These indicator variables satisfy the conditions:∑K
i=1 I

(t)
i = 1,

∑Ni
j=1 I

(t)
j|i = 1,

∑K
i=1

∑Ni
j=1 I

(t)
ij = 1,

and
∑K
k=1 I

(t)
k = 1. Hence the complete data, Y,

are composed of both observable and missing data

as Y = {X , I}.
Note that the dependence of the probabilities

gk,i(xk, vk,i) was explicitly indicated on xk and on

the parameters in Eq. (9) and expert networks in

the ith expert-bank explicitly receive the same input
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vector xi. In the remainder of the paper, we drop the

explicit reference to the input and the parameters to

simplify the notation. As a result, the probability

model in Eq. (9) is rewritten as

P (y|D, Φ) =
K∑
i=1

Ni∑
j=1

K∑
k=1

αkβijgk,iPij(y) . (14)

By the complete data, hence, this probability model

can be written in terms of I
(t)
ij and I

(t)
k as follows:

P (y(t), I
(t)
ij , I

(t)
k |D(t), Φ)

= αkβijg
(t)
k,iPij(y

(t))

=
K∏
i=1

Ni∏
j=1

K∏
k=1

{αkβijg(t)
k,iPij(y

(t))}I
(t)
ij
I
(t)
k . (15)

Taking the logarithm of this probability model yields

the following complete-data likelihood:

lc(Φ; Y)

=
T∑
t=1

K∑
i=1

Ni∑
j=1

K∑
k=1

I
(t)
ij I

(t)
k {log αk

+ log βij + log g
(t)
k,i + log Pij(y

(t))} . (16)

Consequently, the E-step of the EM algorithm is

defined by taking the expectation of the complete-

data likelihood:

E[lc(Φ; Y)|X ]=
T∑
t=1

K∑
i=1

Ni∑
j=1

K∑
k=1

h
(t)
ij h

(t)
k h

(t)
k,i{log αk

+ log βij+log g
(t)
k,i+log Pij(y

(t))} ,
(17)

where h
(t)
ij , h

(t)
k and h

(t)
k,i are the posterior probabili-

ties as

h
(t)
ij = E[I

(t)
ij |X ] , h

(t)
k = E[I

(t)
k |X ] ,

h
(t)
k,i = E[I

(t)
i , I

(t)
k |X ] .

(18)

Computation of all the posterior probabilities is de-

scribed in Appendix 2.

The M-step requires maximizing E[lc(Φ; Y)|X ]

with respect to both the expert-bank and the gate-

bank parameters. By examining Eq. (17), it is ap-

parent that the expert-bank parameters affect the

E[lc(Φ; Y)|X ] through only terms h
(t)
ij log Pij(y

(t))

and h
(t)
ij log βij , while the gate-bank parameters

influence the E[lc(Φ; Y)|X ] through only terms

h
(t)
k log αk and h

(t)
k,i log g

(t)
k,i. Thus, the M-step

reduces to the following separate maximization

problems:

θ
(s+1)
ij = arg max

θij

T∑
t=1

h
(t)
ij log Pij(y

(t)) , (19)

β
(s+1)
ij = arg max

βij

T∑
t=1

Ni∑
v=1

h
(t)
iv log βiv s.t.

Ni∑
v=1

βiv = 1, βiv ≥ 0 ,

(20)

v
(s+1)
k = arg max

vk

T∑
t=1

K∑
i=1

h
(t)
k,i log g

(t)
k,i , (21)

where vk is the set of all parameters of the kth gating

network in the gate-bank, and

α
(s+1)
k = arg max

αk

T∑
t=1

K∑
u=1

h(t)
u log αu s.t.

K∑
u=1

αu = 1, αu ≥ 0 .

(22)

Problems in Eq. (19) and Eq. (21) belong to the

iterative reweighted least squares (IRLS) problem.

Jordan and Jacobs proposed an IRLS algorithm to

solve this kind of problems.19 However, the algo-

rithm often suffers from instability in multiway clas-

sification. In our earlier work, the reason of in-

stability in the IRLS algorithm was systematically

investigated. Instead an improved learning algo-

rithm has been proposed to solve this kind of IRLS

problems in multiway classification9 and, moreover,

an approximation to the improved learning algo-

rithm can be achieved for fast training9 when a prob-

abilistic model is subject to the generalized Bernoulli

distribution.7,9 In the case of multiway classification,

therefore, problems in Eq. (19) can be solved with the

improved algorithm or its approximation, while the

problem in Eq. (21) can be solved only by the im-

proved algorithm since the statistical model of gating

networks is subject to the multinomial distribution,

which belongs to multiway classification. As for max-

imization problems in Eq. (20) and Eq. (22), they can

be analytically solved by

β
(s+1)
ij =

1

T

T∑
t=1

h
(t)
ij , (23)
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and

α
(s+1)
k =

1

T

T∑
t=1

h
(t)
k . (24)

Based on the above analysis, we summarize the

EM algorithm as follows:

Algorithm: (EM Algorithm for the Generalized

Mixture-of-Expert Model)

1. For each data pair (D(t), y(t)), extract K

feature vectors, x
(t)
1 , . . . , x

(t)
K , from D(t),

then compute the posterior probabilities h
(t)
ij ,

h
(t)
k , and h

(t)
k,i using its current value of all

parameters.

2. For each expert network, solve an IRLS prob-

lem in Eq. (19) with observations {(x(t)
i ,

y(t))}T1 and observation weights {h(t)
ij }T1 by the

improved learning algorithm or its approxima-

tion in terms of its probabilistic components.9

3. For each parameter βij in expert-banks, ob-

tain the new estimate using Eq. (23).

4. For each gating network in the gate-bank,

solve an IRLS problem in Eq. (21) with obser-

vations {(x(t)
u , h

(t)
u,i)}T1 by the improved learn-

ing algorithm.9

5. For each parameter αk in the gate-bank, ob-

tain the new estimate using Eq. (24).

6. Iterate using the updated parameter values

from step 1 to step 5 until a termination con-

dition is satisfied.

3.2. Model selection

The pre-determined structure problem refers to that

prior to training, an appropriate structure needs to

be determined for a given problem. This problem

has been well known in neural network community,

and most of neural network models suffer from the

problem. Like the standard ME architecture, this

problem is also unavoidable on applying the GME

model to a practical problem. To tackle the problem

in the ME architecture, Jacobs et al. have recently

proposed a pruning method based on the maximum

a posteriori (MAP) principle for model selection.18

Xu has proposed a so-called hard-cut EM algorithm

for fast training in the ME architecture by means

of his Bayesian YING-YANG learning theory.30 The

idea underlying the hard-cut EM algorithm could be

extended to evaluate the usefulness of each expert

network for a given problem during training. Moti-

vated by their work, we propose an alternative prun-

ing method for the GME architecture.

For a given classification problem, we assume

that the initial GME structure is always of a com-

plicated topology. The idea underlying the proposed

pruning method is to select an appropriate model

by combination of the MAP and the cross-validation

principles. According to the posterior probabilities,

we can transfer the soft-competition scheme into a

winner-take-all mechanism in our architecture. The

winner is defined as the expert network with the

maximal posterior probability for a sample D(t) in

a training set with T samples. In other words, a

label with binary value can be assigned to each ex-

pert network in terms of the sample D(t) to indicate

whether it is a winner or not. For expert network

(i, j), the value of the label, z
(t)
ij , is defined as

z
(t)
ij =

{
1 if h

(t)
ij = arg max

uv
h(t)
uv

0 otherwise
(25)

where u = 1, . . . , K, v = 1, . . . , Nu (K is the num-

ber of expert-banks and Nu is the number of expert

networks in expert-bank u), and h
(t)
uv is the poste-

rior probability as defined in Eq. (18). Moreover, a

winner-index WI ij based on the labels zij for expert

network (i, j) is defined as

WIij =
1

T

T∑
t=1

z
(t)
ij . (26)

Based on the winner-index, we present a two-

stage learning procedure with the pruning mecha-

nism for parameter estimation and model selection

in the GME architecture. The learning procedure is

described as follows: (a) For a given problem, a GME

structure starting with the complicated topology is

first trained on a training set by the EM algorithm

described in Sec. 3.1. (b) Once the training is fin-

ished, the winner-index for each expert network is

calculated on a cross-validation set. Any expert net-

work (i∗, j∗) will be pruned if WIi∗j∗ < ε, where ε

is a pre-specified threshold. (c) The parameter val-

ues achieved in step a remain as initialization, and

the resulting GME structure achieved in Step b is

re-trained on the training set used in step a by the

EM algorithm.

In contrast to the pruning method reported in

Ref. 18, we use a two-stage learning procedure for
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learning and pruning a GME structure based on a

cross-validation data set, which may lead to bet-

ter generalization. We point out that this two-stage

learning procedure might be used in the alternative

mixture-of-expert architecture developed in Ref. 3 as

well.

4. Simulations

The generalized mixture-of-expert architecture has

been applied to a real world problem called text-

dependent speaker identification. All the simulations

were done in a SUN SPARC II workstation. In this

section, we first describe the speaker identification

problem, and then present simulation results. Fi-

nally, we report comparative results produced by re-

lated methods.

4.1. Text-dependent speaker

identification

Speaker identification is to classify an unlabeled

voice token as belonging to one of reference speak-

ers. In particular, text-dependent speaker identifi-

cation refers to that the same text is used in both

training and testing phases. The problem is a hard

classification task because a person’s voice always

changes over time. The main outcome of many stud-

ies on speaker’s features indicates that the speech

spectrum reflects the anatomical structure of a per-

son’s vocal tract and nasal cavities and so con-

tains information about hopefully unique physical

attributes.10,13,14,23,26,27 However, there is less agree-

ment on which parameterization of the speech spec-

trum to use as features for speaker identification.

Many kinds of spectral features have been reported

to be useful to speaker identification. Therefore,

speaker identification becomes a typical problem of

pattern classification based on different feature sets.

In earlier studies, two or more kinds of different fea-

ture sets were combined together to form a compos-

ite feature set so that different feature sets can be

used simultaneously.15,22 However, the performance

of such a system based on a composite feature set

is not significantly improved. On the other hand,

methods of combining multiple classifiers trained on

different feature sets were recently applied to speaker

identification, which led to satisfactory results.4,5

However, a large amount of data were demanded for

training not only multiple classifiers but also a com-

bination scheme.

In the simulations, we chose isolated digits as the

fixed text. The method has been extensively used

in text-dependent speaker identification.3,4,6–8,10,28

The acoustic database consisted of ten isolated dig-

its from ‘0’ to ‘9’ uttered in Mandarin. All utterances

were recorded in three different sessions and ten male

speakers were registered in the database. For each

digit, 100 utterances (10 utterances/speaker) were

recorded in each session. We divided all data into

three data sets in terms of recording sessions for dif-

ferent use. The technical details of preprocessing

are briefly as follows: (a) 16-bit A/D-converter with

11.025 kHz sampling rate, (b) processing the data

with a pre-emphasis filter H(z) = 1 − 0.95z−1 and

(c) 25.6 msec Hamming window with 12.8 msec over-

lapping for blocking an utterance into several feature

frames in the short-time spectral analysis. Thus,

an utterance of digit was blocked as a sequence of

frames. In the simulations, we adopted four com-

mon speech spectral features for speaker identifica-

tion, i.e., 19-order delta-cepstrum (DEL-CEPS), 19-

order LPC based cepstrum (LPC-CEPS), 15-order

LPC coefficients (LPC-COEF), and 19-order Mel-

scale cepstrum (MEL-CEPS). After preprocessing,

the four different feature vectors were independently

extracted from each frame.25

4.2. Results of the GME architecture

In the simulations, ten GME classifiers were em-

ployed where each GME classifier was used to handle

one of ten digits in terms of a feature set chosen. The

initial structure of these GME classifiers consisted

of four expert-banks (five expert networks in each

expert-bank) and a gate-bank with four gating net-

works due to four different feature sets used simul-

taneously for identification (see Fig. 2). In partic-

ular, four kinds of feature vectors, i.e., DEL-CEPS,

LPC-CEPS, LPC-COEF, and MEL-CEPS, are input

to expert-banks 1–4, respectively. Since the current

identification problem is a special multiway classi-

fication in which each component of output is bi-

nary and there is only a single non-zero component,

the generalized Bernoulli distribution7,9 can be used

as the probabilistic model of expert networks. We

used the improved learning algorithm to train all

the gating networks and its approximation to train
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Fig. 3. Identification rates of ten GME classifiers corresponding to ten digits in terms of two learning stages in the
digit-based test. (a) Results of Test-1. (b) Results of Test-2.

all the expert networks in the M-step of the EM

algorithm.9 All utterances recorded in the first ses-

sion were used during training; i.e., the training set

consisted of 60 utterances (6 utterances/speaker) for

each digit, and the cross-validation set was composed

of the remaining 40 utterances. All the utterances

recorded in two additional sessions were used for test,

and tests on the two data sets recorded in the sec-

ond and third sessions were called Test-1 and Test-2,

accordingly.

In the simulations, we adopted two testing meth-

ods: digit-based test and sequence-based test. In

the digit-based test, the utterance of one single digit

was used for identifying an unknown speaker. Since

an utterance was divided into several frames in the

short-time spectral analysis, the mean of results pro-

duced by all the feature vectors belonging to one ut-

terance was used as the final identification result of

the utterance. In contrast, a sequence of five isolated

digits (it may be viewed as a password) were used in

the sequence-based test. For each digit, an identify-

ing result can be achieved based on the digit-based

method. After achieving all five individual results,

the system polled a vote with the majority princi-

ple that an unknown speaker can be identified only

when at least three of the five GME classifiers pro-

duced the same identification results. Otherwise, the

system would reject the unknown speaker.

Figure 3 shows identification rates produced by

ten GME classifiers in two learning stages of our

learning algorithm presented in Sec. 3.2 by the digit-

based test. The CPU time of training GME classi-

fiers in two learning stages is illustrated in Fig. 4.

It is evident from the simulations that the gen-

eralization performance of resulting structures is

improved in general using the two-stage learning

procedure, and the training in the second stage
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Fig. 4. CPU time of training ten GME classifiers corre-
sponding to ten digits taken in two learning stages.



A Modular Neural Network Architecture for Pattern Classification Based . . . 573

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Expert−Bank 1

W
in

ne
r−

In
de

x

(a)

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

W
in

ne
r−

In
de

x

Expert−Bank 2

(b)

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Expert−Bank 3

W
in

ne
r−

In
de

x

(c)

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

W
in

ne
r−

In
de

x

Expert−Bank 4

(d)

Fig. 5. The winner-index values of 20 expert networks located in four expert-banks of the GME classifier corresponding
to digit ‘9’. Initially, there are five expert networks in each expert-bank. (a) Results of expert-bank 1. (b) Results of
expert-bank 2. (c) Results of expert-bank 3. (d) Results of expert-bank 4.

is considerably faster than that in the first stage be-

cause the achieved parameters in the first stage were

used to initialize the pruned structure in the second

stage. To demonstrate the pruning process, Fig. 5

illustrates the winner-index values of all expert net-

works in the GME classifier corresponding to digit

‘9’ for instance. In our simulations, we chose the

threshold ε as 0.005. Here the value of ε implies

that an expert network will be pruned from the ini-

tial structure when the number that the expert net-

work becomes winners is less than five for test by

a cross-validation set of 1000 samples. As a result,

the remaining numbers of expert networks in expert-

banks 1–4 are 4, 3, 4, and 4, respectively, after prun-

ing. Due to limited space, we report only the result-

ing structures of all GME classifiers after pruning in

Table 1 instead of their winner-index values.

Furthermore, we used the sequence-based

method to evaluate the performance. As shown

in Table 2, the testing results show that the speaker
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Table 1. Numbers of expert networks in ten GME classifiers after pruning.

GME Classifiers ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

Expert-Bank 1 5 3 5 4 4 4 4 4 5 4

Expert-Bank 2 3 4 3 3 3 4 4 2 3 3

Expert-Bank 3 4 3 4 2 3 4 2 3 3 4

Expert-Bank 4 3 4 5 5 4 4 4 4 4 4

Table 2. Performance of the speaker identification system based on the
GME architecture by the sequence-based test.

Test No. 500 1000 2000 3000 4000 5000

Identification No. 500 1000 1999 2998 3995 4994

Substitution No. 0 0 0 1 2 2

Rejection No. 0 0 1 1 3 4

identification system based on the GME architecture

can be practically used with acceptable performance.

4.3. Comparative results

For comparison, we have already conducted some

simulations by applying related methods to the same

problem. The training and cross-validation sets were

the same as described above. It is obvious that the

performance of the sequence-based test highly de-

pends upon that of the digit-based test. Therefore,

we merely report simulation results of the digit-based

test in the sequel.

First of all, we used the standard ME

architecture17 as classifiers to deal with the same

problem. Simulations were two-fold; four individ-

ual different feature sets were independently used

and a 72-dimensional composite feature set formed

by combination of the four different feature sets to-

gether was used to train ME classifiers. Structures

of ten ME classifiers were determined by the cross-

validation method. All structures of ME classifiers

ranging from 12 to 16 experts were investigated and

the ‘optimal’ structures used in the simulations are

shown in Table 3, where for the same digit the use of

different feature sets as input may result in different

structures of ME classifiers. Similarly, the improved

learning algorithm and its approximation were used

in the M-step of the EM algorithm to train the gat-

ing network and expert networks. Figure 6 shows

testing results in Test-1 and Test-2, and Fig. 7 illus-

trates CPU time of training the ME classifiers. Due

to limited space, we only show the mean identifica-

tion rates and the mean training time of ME classi-

fiers trained on individual feature sets in Figs. 6 and

7. For comparison, the identification rates and to-

tal training time of the two-stage learning in those

GME classifiers are also shown in Figs. 6 and 7. It is

evident from the simulation results that the GME ar-

chitecture outperforms the ME architecture in terms

Table 3. Structures of ME classifiers used in the comparative experiments: the number
of expert networks in each ME classifier.

ME Classifiers ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

DEL-CEPS 12 13 12 12 13 14 14 13 14 16

LPC-CEPS 13 13 13 13 14 14 14 13 15 15

LPC-COEF 13 12 12 13 12 12 13 13 13 14

MEL-CEPS 14 14 15 13 14 14 16 14 14 15

Composite Feature 16 15 16 14 15 15 16 16 15 16
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Fig. 6. Comparative results: identification rates of the GME architecture (solid line), ME classifiers trained on either
individual feature sets (dotted line), ME classifiers trained on a composite feature set (dashed line), and the Bayesian
reasoning combination of ME classifiers trained on different feature sets (dash-dot line). (a) Results of Test-1. (b) Results
of Test-2.
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Fig. 7. Comparative results: CPU time of training the
GME classifiers and ME classifiers trained on either in-
dividual feature sets or a composite feature set.

of either the use of individual feature sets or the com-

posite feature set. In particular, the GME classifiers

yield significantly fast training in comparison with

ME classifiers on the composite feature set though

the training of the GME classifiers is slightly slower

than that of ME classifiers on individual feature sets

due to the two-stage learning.

We also conducted an experiment of combining

four ME classifiers trained on different feature sets

for the same problem. The so-called Bayesian rea-

soning combination method31 was adopted as the

combination scheme. This method is viewed as

a typical application of the stacked generalization

principle29 to improve the performance of multiple

classifiers. The recent investigation showed that

the Bayesian reasoning combination method yields

the best performance on a benchmark hand-written

OCR problem in contrast to other typical combina-

tion methods.24,31 In this combination method, the

confusion matrix31 was estimated based on the cross-

validation set for combination. The identification

rates of the combination method are also shown in

Fig. 6 for comparison. According to simulation re-

sults, we found that in the terms of the mean identi-

fication rates on ten digits, the combination method

slightly outperforms the GME architecture in Test-

1, but its performance is worse than the GME archi-

tecture in Test-2. A possible reason of this instable

outcome is due to insufficient data used to estimate

the confusion matrix according to our previous work

on the combination of multiple classifiers trained on

different feature sets.5
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In summary, comparative results reported above

indicate that our model yields better performance in

text-dependent speaker identification. In particular,

our model leads to robust performance in the case of

less data available for training.

5. Conclusions

We have described a novel modular neural net-

work architecture to implement the soft competition

scheme on different feature sets. For learning, an EM

algorithm is developed for adjusting the parameters

in our architecture and, moreover, a model selection

method is proposed to obtain an appropriate struc-

ture for a specific problem. The EM algorithm and

the model selection method constitute a two-stage

learning procedure so that an initial structure can

be pruned to produce better generalization perfor-

mance. Simulation results that the proposed method

yields satisfactory performance and fast training in

contrast to related methods.
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Appendix 1. Generalized Hierarchical

Mixtures of Experts

In this appendix, we extend the GME architecture

to a hierarchical structure, which can be viewed as a

generalized hierarchical mixture-of-expert (GHME)

model for pattern classification based on different

feature sets. To simplify the presentation, we re-

strict ourselves to a two-level hierarchy throughout

the appendix. All of the algorithms described in the

appendix, however, can generalize readily to hierar-

chies of arbitrary depth. One may be referred to

Ref. 20 for a recursive formalism that handles arbi-

trary hierarchies.

A two-level GHME architecture consisting of N

GME modules (cf. Fig. 2) is a tree in which the gate-

banks sit at the nonterminals of the tree and expert-

banks sit the leaves of the tree. These gate-banks re-

ceive the vectors, x1, . . . , xK , as input and produce

scalar outputs assuming that K different feature sets

can be extracted. K expert-banks are used to handle

different feature sets in each GME module, respec-

tively. The ith expert-bank in the mth GME module

consists of Ni|m expert networks which receive the

same input vector, xi, while different expert-banks

receive the different feature vectors. The output vec-

tor of an expert-bank is the convex weighted sum

of output vectors produced by expert networks in

the expert-bank. Output vectors of all expert-banks

proceed up the tree, being blended by the gate-bank

outputs to produce the final output of the GHME

architecture.

The jth expert network associated with the ith

expert-bank in the mth GME module produces the

output, oij|m, as

oij|m = f(Wij|mxi) , (27)

where Wij|m is a weight matrix. The output of the

ith expert-bank in the mth GME module, oi|m, is

oi|m =

Ni|m∑
j=1

βij|moij|m , (28)

where βij|m are linear coefficients for combining

outputs produced by expert networks in the ith

expert-bank on the conditions:
∑Ni
j=1 βij|m = 1 and

βij|m ≥ 0.

The mth output of the nth gating network in the

top-level gate-bank, gn,m, is

gn,m =
eξn,m

N∑
u=1

eξn,u

, (29)

where ξn,m = vTn,mxn and vn,m is a weight vector.

Furthermore, the mth output of the top-level gate-

bank λm is the convex weighted sum of gn,m:

λm =
K∑
n=1

αngn,m , (30)

where αn are linear coefficients for combining out-

puts produced by gating networks in the top-level

gate-bank on the conditions:
∑K
k=1 αn = 1 and

αn ≥ 0. Similarly, the ith output of the kth gat-

ing network in the lower-level gate-bank in the mth
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GME module, gk,i|m, is

gk,i|m =
eξk,i|m

K∑
u=1

eξk,u|m

, (31)

where ξk,i|m = vTk,i|mxk and vk,i|m is a weight vec-

tor. Furthermore, the ith output of the lower-level

gate-bank in the mth GME module, λi|m, is

λi|m =
K∑
k=1

αk|mgk,i|m , (32)

where αk|m are linear coefficients for combining out-

puts produced by gating networks in the gate-bank

on the condition that
∑K
k=1 αk|m = 1 and αk|m ≥ 0.

Therefore, the total output of the GHME architec-

ture, o, is

o =
N∑
m=1

λm

K∑
i=1

λi|moi|m . (33)

Let P (y|xi, θi|m) denote the probability model

of the ith expert-bank in the mth module in the

GHME architecture, where θi|m denotes the set of

parameters in the model. Let P (y|xi, θij|m) denote

the probability model of the jth expert network as-

sociated with the ith expert-bank in the mth module

in the GHME architecture, where θij|m is the set of

parameters in the model. The generalized finite mix-

ture model of the GHME architecture is specified by

P (y|D, Φ) =
N∑
m=1

λm

K∑
i=1

λi|mP (y|xi, θi|m)

=
N∑
m=1

K∑
n=1

αngn,m(xn, vn,m)

×
K∑
i=1

Ni|m∑
j=1

K∑
k=1

αk|mgk,i|m(xk, vk,i|m)

× βij|mP (y|xi, θij|m) , (34)

where Φ includes all the expert-bank parameters in-

cluding θij|m and βij|m and the gate-bank param-

eters including vn,m, αn, vk,i|m and αk|m. In the

remainder of this appendix we drop the explicit ref-

erence to the input and the parameters to simplify

the notation. As a result, the probability model in

Eq. (34) is rewritten as

P (y|D, Φ) =
N∑
m=1

K∑
n=1

αngn,m

K∑
i=1

Ni|m∑
j=1

K∑
k=1

×αk|mgk,i|mβijPij|m(y) . (35)

For the GHME architecture, we develop an EM

algorithm for adjusting the parameters in this archi-

tecture. Given the current estimate Φ(s), each epoch

consists of the E-step and the M-step as follows:

(1) E-step

For each pair (x(t), y(t)), the posterior probabilities h
(t)
m , h

(t)
n , h

(t)
k|m, h

(t)
i|m and h

(t)
k,i|m are computed as

h
(t)
m =

g
(t)
n,m

K∑
n=1

α(s)
n

K∑
i=1

Ni|m∑
j=1

K∑
k=1

α
(s)
k|mg

(t)
k,i|mβ

(s)
ij|mPij|m(y(t))

N∑
m=1

K∑
n=1

α(s)
n g(t)

n,m

K∑
i=1

Ni|m∑
j=1

K∑
k=1

α
(s)
k|mg

(t)
k,i|mβ

(s)
ij|mPij|m(y(t))

, (36)

h
(t)
n =

α
(s)
n

N∑
m=1

g(t)
n,m

K∑
i=1

Ni|m∑
j=1

K∑
k=1

α
(s)
k|mg

(t)
k,i|mβ

(s)
ij|mPij|m(y(t))

N∑
m=1

K∑
n=1

α(s)
n g(t)

n,m

K∑
i=1

Ni|m∑
j=1

K∑
k=1

α
(s)
k|mg

(t)
k,i|mβ

(s)
ij|mPij|m(y(t))

, (37)
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h
(t)
k|m =

α
(s)
k|m

K∑
i=1

Ni|m∑
j=1

g
(t)
k,i|mβ

(s)
ij|mPij|m(y(t))

K∑
i=1

Ni|m∑
j=1

K∑
k=1

α
(s)
k|mg

(t)
k,i|mβ

(s)
ij|mPij|m(y(t))

, (38)

h
(t)
ij|m =

K∑
k=1

α
(s)
k|mg

(t)
k,i|mβ

(s)
ij|mPij|m(y(t))

K∑
i=1

Ni|m∑
j=1

K∑
k=1

α
(s)
k|mg

(t)
k,i|mβ

(s)
ij|mPij|m(y(t))

, (39)

and

h
(t)
k,i|m =

α
(s)
k|mg

(t)
k,i|mβ

(s)
ij|mPij|m(y(t))

K∑
i=1

Ni|m∑
j=1

K∑
k=1

α
(s)
k|mg

(t)
k,i|mβ

(s)
ij|mPij|m(y(t))

. (40)

(2) M-step
A new estimate Φ(s+1) is found through solving the following maximization problems:

θ
(s+1)
ij|m = arg max

θij|m

T∑
t=1

h(t)
m h

(t)
ij|m log Pij|m(y(t)) , (41)

α
(s+1)
n = arg max

αn

T∑
t=1

K∑
u=1

h(t)
u log αu, s.t.

K∑
u=1

αu = 1, αu ≥ 0 , (42)

v
(s+1)
n,m = arg maxvn,m

T∑
t=1

N∑
z=1

K∑
w=1

h(t)
w,z log g(t)

w,z (43)

α
(s+1)
k|m = arg max

αk|m

T∑
t=1

K∑
u=1

h
(t)
u|m log αu|m, s.t.

K∑
u=1

αu|m = 1, αu|m ≥ 0 , (44)

v
(s+1)
k|m = arg max

vk|m

T∑
t=1

N∑
z=1

h(t)
z

K∑
u=1

K∑
w=1

h
(t)
w,u|z log g

(t)
w,u|z , (45)

where vk|m is the set of all the parameters of the kth gating network in a lower-level gate-bank, and

β
(s+1)
ij|m = arg max

βij|m

T∑
t=1

Ni|m∑
v=1

h
(t)
iv|m log βiv|m, s.t.

Ni|m∑
v=1

βiv|m = 1, αiv|m ≥ 0 . (46)

Problems in Eq. (41), Eq. (43) and Eq. (45) belong to the IRLS problem which can be solved using the
improved learning algorithm or its approximation.9 The maximization problems in Eq. (42), Eq. (44) and Eq. (46)
can be analytically solved, respectively, as

α
(s+1)
n =

1

T

T∑
t=1

h(t)
n , (47)

α
(s+1)
k|m =

1

T

T∑
t=1

h
(t)
k|m , (48)
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and

β
(s+1)
ij|m =

1

T

T∑
t=1

h
(t)
ij|m . (49)

Appendix 2. Posterior Probabilities in EM Algorithm

In this appendix, we derive the posterior probabilities used in the E-step of the EM algorithm for the GME
architecture.

E[I
(t)
ij |X ] can be computed using the Bayesian rule as

E[I
(t)
ij |X ] = P (I

(t)
ij = 1|y(t), D(t), Φ(s))

= P (I
(t)
i = 1, I

(t)
j|i = 1|y(t), D(t), Φ(s))

=
P (y(t)|I(t)

i = 1, I
(t)
j|i = 1, D(t), Φ(s))P (I

(t)
i = 1, I

(t)
j|i = 1|D(t), Φ(s))

P (y(t)|D(t), Φ(s))
. (50)

Furthermore, P (I
(t)
i = 1, I

(t)
j|i = 1|D(t), Φ(s)) can be computed by the joint and total probability rules as

P (I
(t)
i = 1, I

(t)
j|i = 1|D(t), Φ(s)) = P (I

(t)
j|i = 1|I(t)

i = 1, D(t), Φ(s))P (I
(t)
i = 1|D(t), Φ(s)) , (51)

and

P (I
(t)
i = 1|D(t), Φ(s)) =

K∑
k=1

P (I
(t)
i = 1|I(t)

k = 1, D(t), Φ(s))P (I
(t)
k = 1|D(t), Φ(s)) . (52)

According to the probabilistic model as defined in Eq. (9), we have

P (I
(t)
k = 1|I(t)

i = 1, D(t), Φ(s)) = g
(t)
k,i , (53)

P (I
(t)
k = 1|D(t), Φ(s)) = α

(s)
k , (54)

P (I
(t)
j|i = 1|I(t)

i = 1, D(t), Φ(s)) = β
(s)
ij , (55)

and

P (y(t)|I(t)
ij = 1, D(t), Φ(s)) = P (y(t)|I(t)

i = 1, I
(t)
j|i = 1, D(t), Φ(s)) = Pij(y

(t)) . (56)

Therefore, inserting Eqs. (51) and (52) into Eq. (50) yields

E[I
(t)
ij |X ] =

K∑
k=1

α
(s)
k g

(t)
k,iPijβ

(s)
ij (y(t))

K∑
i=1

Ni∑
j=1

K∑
k=1

α
(s)
k g

(t)
k,iβ

(s)
ij Pij(y

(t))

. (57)

E[I
(t)
k |X ] is computed using the Bayesian rule as

E[I
(t)
k |X ] = P (I

(t)
k = 1|y(t), D(t), Φ(s))

=
P (y(t)|I(t)

k = 1, D(t), Φ(s))P (I
(t)
k = 1|D(t), Φ(s))

P (y(t)|D(t), Φ(s))
. (58)
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Furthermore, P (y(t)|I(t)
k = 1, D(t), Φ(s)) can be computed by the total probability rule as

P (y(t)|I(t)
k = 1, D(t), Φ(s)) =

K∑
i=1

Ni∑
j=1

P (y(t)|I(t)
k = 1, I

(t)
ij = 1, D(t), Φ(s))P (I

(t)
ij = 1|I(t)

k = 1, D(t), Φ(s))

=
K∑
i=1

Ni∑
j=1

P (y(t)|I(t)
ij = 1, D(t), Φ(s))P (I

(t)
ij = 1|I(t)

k = 1, D(t), Φ(s)) . (59)

Note that the indicator variable I
(t)
k = 1 can be ignored from P (y(t)|I(t)

k = 1, I
(t)
ij = 1, D(t), Φ(s)) in Eq. (59)

since it is independent of the probabilistic model based on the fact that y(t) is generated from the jth expert
network in the ith expert-bank regardless of any gating network. According to Eqs. (53)–(56), inserting Eq. (59)
into Eq. (58) yields

E[I
(t)
k |X ] =

α
(s)
k

K∑
i=1

Ni∑
j=1

g
(t)
k,iβ

(s)
ij Pij(y

(t))

K∑
i=1

Ni∑
j=1

K∑
k=1

α
(s)
k g

(t)
k,iβ

(s)
ij Pij(y

(t))

. (60)

E[I
(t)
i = 1, I

(t)
k |X ] can be computed using the Bayesian rule as

E[I
(t)
i , I

(t)
k |X ] = P (I

(t)
i = 1, I

(t)
k = 1|y(t), D(t), Φ(s))

=
P (y(t)|I(t)

i = 1, I
(t)
k = 1, D(t), Φ(s))P (I

(t)
i = 1, I

(t)
k = 1|D(t), Φ(s))

P (y(t)|D(t), Φ(s))
. (61)

Similarly, P (I
(t)
i = 1, I

(t)
k = 1|D(t), Φ(s)) can be computed as

P (I
(t)
i = 1, I

(t)
k = 1|D(t), Φ(s)) = P (I

(t)
i = 1|I(t)

k = 1, D(t), Φ(s))P (I
(t)
k = 1|D(t), Φ(s)) , (62)

and P (y(t)|I(t)
i = 1, I

(t)
k = 1, D(t), Φ(s)) can be computed using the total probability rule as

P (y(t)|I(t)
i = 1, I

(t)
k = 1, D(t), Φ(s))

=
Ni∑
j=1

P (y(t)|I(t)
i = 1, I

(t)
j|i = 1, I

(t)
k = 1, D(t), Φ(s))P (I

(t)
j|i = 1|I(t)

k = 1, D(t), Φ(s))

=

Ni∑
j=1

P (y(t)|I(t)
i = 1, I

(t)
j|i = 1, D(t), Φ(s))P (I

(t)
j|i = 1|I(t)

k = 1, D(t), Φ(s)) . (63)

According to Eqs. (53)–(56), inserting Eqs. (62) and (63) into Eq. (61) yields

E[I
(t)
i , I

(t)
k |X ] =

α
(s)
k g

(t)
k,i

Ni∑
j=1

β
(s)
ij Pij(y

(t))

K∑
i=1

Ni∑
j=1

K∑
k=1

α
(s)
k g

(t)
k,iβ

(s)
ij Pij(y

(t))

. (64)
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